
Introduction Tensor-Train SVD algorithm Results Conclusion

Performance of high-order SVD approximation:
reading the data twice is enough

Melven Röhrig-Zöllner, Jonas Thies and Achim Basermann
Institute for Software Technology, German Aerospace Center (DLR)



Introduction Tensor-Train SVD algorithm Results Conclusion

Categories of tensor decomposition methods

from the point of view of computing resources:. . .
1. data too large to process as a whole

I "randomly" access part of the data
I reconstruct approximation with some probability

2. data implicitly given by some high-dim. function with known low rank / smoothness
I "black box" approximation, evaluate as few entries as possible
I error bounds for special classes of functions

3. data large and sparse, feasible to access all entries
I exploit (problem specific) sparsity
I accurate up to a desired tolerance

4. data large and dense, feasible to access all entries
I discussed here!
I accurate up to a desired tolerance



Introduction Tensor-Train SVD algorithm Results Conclusion

Problem definition

Low-rank approximation in tensor-train format [Oseledets]
Given:
I large dense tensor X ∈ Rn1×n2×···×nd

I max. tensor-train rank rmax

I desired tolerance εtol
Calculate:
I tensor-train XTT with:

ranks(XTT) ≤ rmax and ‖X − XTT‖F . εtol

Remarks:
I Focus on the tensor-train format; very similar approaches for some other formats
I Consider high-dimensional case (d � 3) and sufficiently small TT-ranks r1, . . . rd−1



Introduction Tensor-Train SVD algorithm Results Conclusion

Roofline performance model

Consider 2 bottlenecks:
1. Peak performance: Pmax [GFlop/s]
2. Memory bandwidth: bs [GByte/s]

Analyze the algorithm:
1. Computations: nflops [flop]
2. Data transfers: Vread+write [byte]

⇒ Expected (ideal) runtime:

t = max
(

nflops
Pmax

,
Vread+write

bs

)
[s]

Remark: growing memory gap Pmax/bs (e.g. ∼ 100 Flops per double on my CPU from 2017)



Introduction Tensor-Train SVD algorithm Results Conclusion

Standard TT-SVD algorithm

Algorithm
Input: Tensor X

r0 ← 1
for i = 1, . . . , d − 1 do
Reshape X to n̄i × (ni ri−1)
Calculate SVD: USV T = X
Choose rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← U1:ri S1:ri

end for
Reshape X to (rd−1 × nd × 1)

Output: Tensor-train (T1, . . . ,Td−1,X )

Observations
I Based on successive SVDs, reshapes and

matrix-matrix multiplications (GEMM)
I Cheap operations are grayed out
I All large matrices are tall and skinny

n̄i :=
∏d

j=i+1 ni � ni ri

→ Operations are likely memory-bound!
I Size of X ideally decreases in each step,

not ensured in first steps for ri � rmax



Introduction Tensor-Train SVD algorithm Results Conclusion

Standard TT-SVD algorithm

Algorithm
Input: Tensor X

r0 ← 1
for i = 1, . . . , d − 1 do
Reshape X to n̄i × (ni ri−1)
Calculate SVD: USV T = X
Choose rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← U1:ri S1:ri

end for
Reshape X to (rd−1 × nd × 1)

Output: Tensor-train (T1, . . . ,Td−1,X )

Observations
I Based on successive SVDs, reshapes and

matrix-matrix multiplications (GEMM)
I Cheap operations are grayed out
I All large matrices are tall and skinny

n̄i :=
∏d

j=i+1 ni � ni ri

→ Operations are likely memory-bound!
I Size of X ideally decreases in each step,

not ensured in first steps for ri � rmax



Introduction Tensor-Train SVD algorithm Results Conclusion

Optimized TT-SVD algorithm

Algorithm
Input: Tensor X
Skip first j − 1 iterations
Reshape X to n̄j × (n1 · · · nj)
for i = j , . . . , d − 1 do
Calculate QR decomposition: QR = X
Calculate small SVD: ŪSV T = R
Choose rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← XV1:ri , reshape to n̄i+1 × (ni+1ri )
end for
Recover T1, . . . , Tj

Output: Tensor-train (T1, . . . ,Td−1,X )

Remarks
I Skip iterations that don’t reduce the size

of X
I Replaced costly SVD by tall-skinny QR
I Never use Q → Q-less TSQR
I Fused reshape and tall-skinny

matrix-matrix multiplication ("TSMM"):
X ← XV1:ri , reshape to . . .

→ Reads the input data twice (1st iteration):
(once for QR = X , once for X ← XV1:r1)



Introduction Tensor-Train SVD algorithm Results Conclusion

Optimized TT-SVD algorithm

Algorithm
Input: Tensor X
Skip first j − 1 iterations
Reshape X to n̄j × (n1 · · · nj)
for i = j , . . . , d − 1 do
Calculate QR decomposition: QR = X
Calculate small SVD: ŪSV T = R
Choose rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← XV1:ri , reshape to n̄i+1 × (ni+1ri )
end for
Recover T1, . . . , Tj

Output: Tensor-train (T1, . . . ,Td−1,X )

Remarks
I Skip iterations that don’t reduce the size

of X
I Replaced costly SVD by tall-skinny QR
I Never use Q → Q-less TSQR
I Fused reshape and tall-skinny

matrix-matrix multiplication ("TSMM"):
X ← XV1:ri , reshape to . . .

→ Reads the input data twice (1st iteration):
(once for QR = X , once for X ← XV1:r1)



Introduction Tensor-Train SVD algorithm Results Conclusion

Performance analysis (1)

Building blocks
Q-less TSQR:
(X ∈ Rn×m)
I Vread = nm
I nflops ≈ 2nm2

TSMM+reshape:
(X ← XM, M ∈ Rm×k)
I Vread+write = n(m + k)
I nflops = 2nmk
⇒ One step of the TT-SVD iteration:
I Vread+write = n(2m + k)
I nflops ≈ 2nm(m + k)

Complete TT-SVD algorithm
Assume size reduction factor f < 1 in each step
with k/m ≤ f .
⇒ upper bound from the geometric series:
I Vread+write ≤ 2N

1−f + fN
1−f

I nflops . 2Nrmax

(
1
f + 2

1−f

)
+ O(r3max)

with N :=
∏d

i=1 ni .



Introduction Tensor-Train SVD algorithm Results Conclusion

Performance analysis (1)

Building blocks
Q-less TSQR:
(X ∈ Rn×m)
I Vread = nm
I nflops ≈ 2nm2

TSMM+reshape:
(X ← XM, M ∈ Rm×k)
I Vread+write = n(m + k)
I nflops = 2nmk
⇒ One step of the TT-SVD iteration:
I Vread+write = n(2m + k)
I nflops ≈ 2nm(m + k)

Complete TT-SVD algorithm
Assume size reduction factor f < 1 in each step
with k/m ≤ f .
⇒ upper bound from the geometric series:
I Vread+write ≤ 2N

1−f + fN
1−f

I nflops . 2Nrmax

(
1
f + 2

1−f

)
+ O(r3max)

with N :=
∏d

i=1 ni .



Introduction Tensor-Train SVD algorithm Results Conclusion

Performance analysis (2)

Interpretation
Try to influence f by combining (splitting) dimensions!
Suitable choices for 2d tensors:
I f = 1/16 (low rank): Vread+write . 2.2N and nflops . 36Nrmax

I f = 1/2 (medium rank): Vread+write . 5N and nflops . 12Nrmax

Comparison with measurements (using CPU performance counters)
Decompose a double-precision 230 tensor (8GB)

rmax operations (est.) data transfers (est.)
[GFlop] [GByte]

f = 1/2 1 14 (13) 43 (43)
f = 1/16 1 41 (39) 21 (19)
f = 1/2 31 417 (399) 43 (43)

(in practice, as ni and ri are integers, only some discrete values for f possible)



Introduction Tensor-Train SVD algorithm Results Conclusion

Performance analysis (2)

Interpretation
Try to influence f by combining (splitting) dimensions!
Suitable choices for 2d tensors:
I f = 1/16 (low rank): Vread+write . 2.2N and nflops . 36Nrmax

I f = 1/2 (medium rank): Vread+write . 5N and nflops . 12Nrmax

Comparison with measurements (using CPU performance counters)
Decompose a double-precision 230 tensor (8GB)

rmax operations (est.) data transfers (est.)
[GFlop] [GByte]

f = 1/2 1 14 (13) 43 (43)
f = 1/16 1 41 (39) 21 (19)
f = 1/2 31 417 (399) 43 (43)

(in practice, as ni and ri are integers, only some discrete values for f possible)



Introduction Tensor-Train SVD algorithm Results Conclusion

Performance of building blocks: Q-less TSQR

I (25 · 106)×m matrix,
m = 1, . . . ,m (double-precision)

I Data size: 200MB,. . . ,20GB
I 14-core Intel Skylake Gold 6132
I Bandwidth: bw := Vread/t
→ Peak bandwidth for small m,
∼1/3 peak Flop/s for larger m

I Significantly faster than other
TSQR implementations I tried. . .

I BUT the Trilinos TSQR here
calculates Q explicitly!

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

peak bandwidth (LOAD)

peak Flop limit

memory bound compute bound
ba
nd

wi
dt
h
[G
By

te
/s
]

#columns

Q-less TSQR
roofline limit

Trilinos TSQR



Introduction Tensor-Train SVD algorithm Results Conclusion

Performance of building blocks: fused tall-skinny GEMM+reshape

I For X ∈ Rn×2m, M ∈ R2m×m,
X ← XM, reshape to (n/2, 2m),
n = 25 · 107, m = 1, . . . , 50

I Data size: 200MB,. . . ,20GB
I Bandwidth:bw := Vread+write/t
I 14-core Intel Skylake Gold 6132
→ High bandwidth with fused

reshape
I Similar performance as MKL,

exploit known memory layout

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100

peak bandwidth (STREAM)

ba
nd

wi
dt
h
[G
By

te
/s
]

#columns

TSMM+reshape
MKL dgemm



Introduction Tensor-Train SVD algorithm Results Conclusion

TT-SVD runtime: different implementations

I Decompose random 227 tensor,
rmax = 1, . . . , 50
(double precision)

I Data size: 1GB
I 14-core Intel Skylake Gold 6132
→ "Almost" optimal runtime
→ Existing software: >50x slower
I tntorch first constructs a

full-rank TT, then truncates it.
I remark: my RNG is slower than

the TT-SVD for rmax . 20.

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45 50

read data twice
tim

e
[s]

max. rank

t3f (Eigen::BDCSVD)
TensorToolbox (MKL dgesvd)

tntorch (MKL dgeqrf)
simple numpy (MKL dgesdd)

ttpy (MKL dgesvd)
TSQR TT-SVD



Introduction Tensor-Train SVD algorithm Results Conclusion

TT-SVD runtime: different tensor dimensions

I Decompose large random tensor,
rmax = 1, . . . , 50
(double precision)

I Data size: ∼ 8GB
I Combine first dimensions only if

beneficial
I 14-core Intel Skylake Gold 6132
→ Calculation more costly with

fewer small dimensions!
I Jumps in runtime: switch from

e.g. 88 × 82 to 87 × 83 in the
first tsqr step

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

read data twice
tim

e
[s]

max. rank

230 tensor
415 tensor
810 tensor
109 tensor
326 tensor



Introduction Tensor-Train SVD algorithm Results Conclusion

TT-SVD runtime: distributed memory (MPI)

I Decompose random 2d tensor,
d = 29, . . . , 36,
rmax = 1, . . . , 50
(double precision)

I Data size: 4GB, . . . , 550GB
I Distributed parallel (user-defined

MPI reduction for TSQR)
I Up to 4 nodes with 4x14-core

Intel Skylake Gold 6132
→ Scales well onto multiple nodes

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50
229 elements per socket

230 elements per socket

231 elements per
socket

23
2 elem

ents
per

sock
et

tim
e
[s]

max. rank

1 socket(s)
2 socket(s)
4 socket(s)
8 socket(s)
16 socket(s)



Introduction Tensor-Train SVD algorithm Results Conclusion

Conclusion

I Goal: compute a low-rank approximation of a large dense high-dimensional tensor (d ≥ 10)

I Runtime lower bounds for the TT-SVD algorithm:
I low rank: ∼ access data twice
I medium rank: O(rmax · N)
→ Similar for some other tensor decompositions

I Almost optimal implementation:
∼ 50× faster than others
→ Difficult to map tensor algorithms to efficient building blocks

I Future work: other tensor formats, performance of randomized decompositions (they can
avoid this lower bound!), speed up algorithms from data analysis using TT-SVD



Introduction Tensor-Train SVD algorithm Results Conclusion

Literature

I Röhrig-Zöllner et.al.: "Performance of low-rank approximations in tensor train format
(TT-SVD) for large dense tensors", submitted to SISC, arXiv:2102.00104, 2021

I Oseledets: "Tensor-Train Decomposition", SISC, 2011

I Demmel et.al.: "Communication-optimal Parallel and Sequential QR and LU
Factorizations", SISC 2012

I Psarras et.al.: "The Linear Algebra Mapping Problem", preprint, arXiv:911.09421, 2019

I Demmel: "Communication avoiding algorithms", ENLA Seminar,
https://www.youtube.com/watch?v=42f0nOw2Nlg

I Williams et.al.: "Roofline: An Insightful Visual Performance Model for Multicore
Architectures", Comm. of the ACM, 2009

https://arxiv.org/abs/2102.00104
https://arxiv.org/abs/1911.09421
https://www.youtube.com/watch?v=42f0nOw2Nlg


Q-less tall-skinny QR implementation

Implementation details: TSQR SIMD optimization

Idea
I Combine a full and a triangular block
I Used for all reductions in the TSQR algorithm

(sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector
3. Repeat

→ Works with vectors of fixed-size b · nsimd (multiple of SIMD width)



Q-less tall-skinny QR implementation

Implementation details: TSQR SIMD optimization

Idea
I Combine a full and a triangular block
I Used for all reductions in the TSQR algorithm

(sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm
1. New block + previous block (already triangular)

2. Calculate reflection vector
3. Repeat

→ Works with vectors of fixed-size b · nsimd (multiple of SIMD width)


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗





Q-less tall-skinny QR implementation

Implementation details: TSQR SIMD optimization

Idea
I Combine a full and a triangular block
I Used for all reductions in the TSQR algorithm

(sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm
1. New block + previous block (already triangular)
2. Calculate reflection vector

3. Repeat

→ Works with vectors of fixed-size b · nsimd (multiple of SIMD width)



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗





Q-less tall-skinny QR implementation

Implementation details: TSQR SIMD optimization

Idea
I Combine a full and a triangular block
I Used for all reductions in the TSQR algorithm

(sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm
1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection

3. Repeat

→ Works with vectors of fixed-size b · nsimd (multiple of SIMD width)



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
...

...
...

...
...

0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗





Q-less tall-skinny QR implementation

Implementation details: TSQR SIMD optimization

Idea
I Combine a full and a triangular block
I Used for all reductions in the TSQR algorithm

(sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm
1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection
3. Repeat

→ Works with vectors of fixed-size b · nsimd (multiple of SIMD width)



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
...

...
...

...
...

0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗





Q-less tall-skinny QR implementation

Implementation details: TSQR SIMD optimization

Idea
I Combine a full and a triangular block
I Used for all reductions in the TSQR algorithm

(sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm
1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection
3. Repeat

→ Works with vectors of fixed-size b · nsimd (multiple of SIMD width)



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
...

...
...

...
...

0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗





Q-less tall-skinny QR implementation

Implementation details: TSQR SIMD optimization

Idea
I Combine a full and a triangular block
I Used for all reductions in the TSQR algorithm

(sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm
1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection
3. Repeat

→ Works with vectors of fixed-size b · nsimd (multiple of SIMD width)

b
·n

sim
d





∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
...

...
...

...
...

0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗





Q-less tall-skinny QR implementation

Implementation details: "rank preserving" TSQR

Goal
I Avoid data dependencies!
→ crucial for high performance,
(the CPU is a big pipeline)
→ No pivoting �

I Still handle rank-deficient blocks

Adjusted Householder reflection
I Add smallest representable number εfp
I Prevents break-down (no division by zero)
I Introduces an error of order √εfp if u = 0
I Ensures a valid reflection (‖v‖2 =

√
2)

Algorithm
Input: Input column u ∈ Rk ,

Smallest positive FP number εfp (≈ 10−300)
Output: Householder reflection (I − vvT )

with ‖v‖2 =
√
2

1: t ← ‖u‖22 + εfp
2: α← − sign(u1)√t + εfp
3: t ← t − αu1
4: u1 ← u1 − α
5: β ← 1/

√
t

6: v ← βu



Q-less tall-skinny QR implementation

Implementation details: "rank preserving" TSQR

Goal
I Avoid data dependencies!
→ crucial for high performance,
(the CPU is a big pipeline)
→ No pivoting �

I Still handle rank-deficient blocks

Adjusted Householder reflection
I Add smallest representable number εfp
I Prevents break-down (no division by zero)
I Introduces an error of order √εfp if u = 0
I Ensures a valid reflection (‖v‖2 =

√
2)

Algorithm
Input: Input column u ∈ Rk ,

Smallest positive FP number εfp (≈ 10−300)
Output: Householder reflection (I − vvT )

with ‖v‖2 =
√
2

1: t ← ‖u‖22 + εfp
2: α← − sign(u1)√t + εfp
3: t ← t − αu1
4: u1 ← u1 − α
5: β ← 1/

√
t

6: v ← βu



Q-less tall-skinny QR implementation

Implementation details: "rank preserving" TSQR

Goal
I Avoid data dependencies!
→ crucial for high performance,
(the CPU is a big pipeline)
→ No pivoting �

I Still handle rank-deficient blocks

Adjusted Householder reflection
I Add smallest representable number εfp
I Prevents break-down (no division by zero)
I Introduces an error of order √εfp if u = 0
I Ensures a valid reflection (‖v‖2 =

√
2)

Algorithm
Input: Input column u ∈ Rk ,

Smallest positive FP number εfp (≈ 10−300)
Output: Householder reflection (I − vvT )

with ‖v‖2 =
√
2

1: t ← ‖u‖22 + εfp
2: α← − sign(u1)√t + εfp
3: t ← t − αu1
4: u1 ← u1 − α
5: β ← 1/

√
t

6: v ← βu


	Introduction
	Tensor-Train SVD algorithm
	Results
	Conclusion
	Appendix
	Q-less tall-skinny QR implementation


