Tensor-Train SVD algorithm 0000

Results 00000

Knowledge for Tomorrow

Conclusion 00

Performance of high-order SVD approximation: reading the data twice is enough

Melven Röhrig-Zöllner, Jonas Thies and Achim Basermann Institute for Software Technology, German Aerospace Center (DLR)

Tensor-Train SVD algorithm 0000

Results

Conclusion 00

Categories of tensor decomposition methods

from the point of view of computing resources:...

- 1. data too large to process as a whole
 - "randomly" access part of the data
 - reconstruct approximation with some probability
- $2.\ data$ implicitly given by some high-dim. function with known low rank / smoothness
 - "black box" approximation, evaluate as few entries as possible
 - error bounds for special classes of functions
- 3. data large and sparse, feasible to access all entries
 - exploit (problem specific) sparsity
 - accurate up to a desired tolerance
- 4. data large and dense, feasible to access all entries
 - discussed here!
 - accurate up to a desired tolerance

Introduction OOO	
Problem	definition

Tensor-Train	SVD	algorithm
0000		

Results

Low-rank approximation in tensor-train format [Oseledets] Given:

- ▶ large dense tensor $X \in \mathbf{R}^{n_1 \times n_2 \times \cdots \times n_d}$
- ▶ max. tensor-train rank r_{max}
- desired tolerance \(\epsilon_{tol}\)

Calculate:

tensor-train X_{TT} with:

$$\mathsf{ranks}(X_\mathsf{TT}) \leq r_\mathsf{max}$$
 and $\|X - X_\mathsf{TT}\|_F \lesssim \epsilon_\mathsf{tol}$

Remarks:

▶ Focus on the tensor-train format; very similar approaches for some other formats

• Consider high-dimensional case $(d \gg 3)$ and sufficiently small TT-ranks $r_1, \ldots r_{d-1}$

Introduction	
000	

Results

Roofline performance model

Consider 2 bottlenecks:

- 1. Peak performance: P_{max} [GFlop/s]
- 2. Memory bandwidth: b_s [GByte/s]

Analyze the algorithm:

- 1. Computations: n_{flops} [flop]
- 2. Data transfers: $V_{\text{read}+\text{write}}$ [byte]

 \Rightarrow Expected (ideal) runtime:

$$t = \max\left(\frac{\textit{n}_{\mathsf{flops}}}{\textit{P}_{\mathsf{max}}}, \frac{\textit{V}_{\mathsf{read}+\mathsf{write}}}{\textit{b}_{s}}\right) [\mathsf{s}]$$

Remark: growing memory gap $P_{\rm max}/b_s$ (e.g. \sim 100 Flops per double on my CPU from 2017)

Tensor-Train SVD algorithm •000 Results 0000 Conclusion 00

Standard TT-SVD algorithm

Algorithm

Input: Tensor X $r_0 \leftarrow 1$ for i = 1, ..., d - 1 do Reshape X to $\bar{n}_i \times (n_i r_{i-1})$ Calculate SVD: $USV^T = X$ Choose rank r; $T_i \leftarrow V_{1:r}^T$, reshape to $r_{i-1} \times n_i \times r_i$ $X \leftarrow U_{1 \cdot r} S_{1 \cdot r}$ end for Reshape X to $(r_{d-1} \times n_d \times 1)$ **Output:** Tensor-train $(T_1, \ldots, T_{d-1}, X)$

Tensor-Train SVD algorithm •000 Results

Conclusion 00

Standard TT-SVD algorithm

Algorithm

Input: Tensor X $r_0 \leftarrow 1$ for i = 1, ..., d - 1 do Reshape X to $\bar{n}_i \times (n_i r_{i-1})$ Calculate SVD: $USV^T = X$ Choose rank r: $T_i \leftarrow V_{1:r}^T$, reshape to $r_{i-1} \times n_i \times r_i$ $X \leftarrow U_{1 \cdot r} S_{1 \cdot r}$ end for Reshape X to $(r_{d-1} \times n_d \times 1)$ **Output:** Tensor-train $(T_1, \ldots, T_{d-1}, X)$

Observations

- Based on successive SVDs, reshapes and matrix-matrix multiplications (GEMM)
- Cheap operations are grayed out
- All large matrices are tall and skinny $\bar{n}_i := \prod_{j=i+1}^d n_i \gg n_i r_i$
- ightarrow Operations are likely memory-bound!
- ► Size of X ideally decreases in each step, not ensured in first steps for r_i ≪ r_{max}

Tensor-Train SVD algorithm 0000 Results

Conclusion 00

Optimized TT-SVD algorithm

Algorithm

Input: Tensor X Skip first j - 1 iterations Reshape X to $\bar{n}_j \times (n_1 \cdots n_j)$ for $i = j, \dots, d - 1$ do Calculate QR decomposition: QR = XCalculate small SVD: $\bar{U}SV^T = R$ Choose rank r_i $T_i \leftarrow V_{1:r_i}^T$, reshape to $r_{i-1} \times n_i \times r_i$ $X \leftarrow XV_{1:r_i}$, reshape to $\bar{n}_{i+1} \times (n_{i+1}r_i)$ end for

Recover T_1, \ldots, T_j **Output:** Tensor-train $(T_1, \ldots, T_{d-1}, X)$

Tensor-Train SVD algorithm ○●○○ Results 00000 Conclusion 00

Optimized TT-SVD algorithm

Algorithm

Input: Tensor X Skip first j - 1 iterations Reshape X to $\bar{n}_j \times (n_1 \cdots n_j)$ for $i = j, \dots, d - 1$ do Calculate QR decomposition: QR = XCalculate small SVD: $\bar{U}SV^T = R$ Choose rank r_i $T_i \leftarrow V_{1:r_i}^T$, reshape to $r_{i-1} \times n_i \times r_i$ $X \leftarrow XV_{1:r_i}$, reshape to $\bar{n}_{i+1} \times (n_{i+1}r_i)$ end for

Recover T_1, \ldots, T_j **Output:** Tensor-train $(T_1, \ldots, T_{d-1}, X)$

Remarks

- Skip iterations that don't reduce the size of X
- Replaced costly SVD by tall-skinny QR
- ▶ Never use $Q \rightarrow Q$ -less TSQR
- ► Fused reshape and tall-skinny matrix-matrix multiplication ("TSMM"): X ← XV_{1:ri}, reshape to ...
- → Reads the input data twice (1st iteration): (once for QR = X, once for $X \leftarrow XV_{1:r_1}$)

Tensor-Train SVD algorithm

Results

Conclusion 00

Performance analysis (1)

Building blocks

Q-less TSQR:

 $(X \in \mathbf{R}^{n \times m})$

- \blacktriangleright $V_{\text{read}} = nm$
- ▶ $n_{\rm flops} \approx 2nm^2$

$\mathsf{TSMM}{+}\mathsf{reshape:}$

 $(X \leftarrow XM, M \in \mathbf{R}^{m \times k})$

$$\blacktriangleright V_{\mathsf{read}+\mathsf{write}} = \mathit{n}(\mathit{m}+\mathit{k})$$

▶ $n_{\rm flops} = 2nmk$

 \Rightarrow One step of the TT-SVD iteration:

$$\blacktriangleright V_{\text{read}+\text{write}} = n(2m+k)$$

$$n_{\rm flops} \approx 2nm(m+k)$$

Tensor-Train SVD algorithm 0000 Results 00000 Conclusion 00

Performance analysis (1)

Building blocks

Q-less TSQR: $(X \in \mathbb{R}^{n \times m})$

 \blacktriangleright $V_{\text{read}} = nm$

► $n_{\rm flops} \approx 2nm^2$

TSMM+reshape: ($X \leftarrow XM, M \in \mathbb{R}^{m \times k}$)

$$\blacktriangleright V_{\text{read}+\text{write}} = n(m+k)$$

 \blacktriangleright $n_{\rm flops} = 2nmk$

 \Rightarrow One step of the TT-SVD iteration:

$$\blacktriangleright V_{\text{read}+\text{write}} = n(2m+k)$$

$$n_{\rm flops} \approx 2nm(m+k)$$

Complete TT-SVD algorithm

Assume size reduction factor f < 1 in each step with $k/m \leq f$.

 \Rightarrow upper bound from the geometric series:

$$V_{\text{read}+\text{write}} \leq \frac{2N}{1-f} + \frac{fN}{1-f}$$

$$n_{\text{flops}} \leq 2Nr_{\text{max}} \left(\frac{1}{f} + \frac{2}{1-f}\right) + O(r_{\text{max}}^3)$$
with $N := \prod_{i=1}^d n_i$.

Tensor-Train SVD algorithm

Results

Conclusion 00

Performance analysis (2)

Interpretation

Try to influence f by combining (splitting) dimensions! Suitable choices for 2^d tensors:

- $\blacktriangleright~f=1/16$ (low rank): $V_{\rm read+write}\lesssim 2.2N$ and $\mathit{n}_{\rm flops}\lesssim 36\mathit{Nr}_{\rm max}$
- ▶ f = 1/2 (medium rank): $V_{\rm read+write} \lesssim 5N$ and $n_{\rm flops} \lesssim 12Nr_{\rm max}$

Tensor-Train SVD algorithm 000● Results

Conclusion 00

Performance analysis (2)

Interpretation

Try to influence f by combining (splitting) dimensions! Suitable choices for 2^d tensors:

- $\blacktriangleright~f=1/16$ (low rank): $V_{\rm read+write}\lesssim 2.2N$ and $\mathit{n}_{\rm flops}\lesssim 36\mathit{Nr}_{\rm max}$
- ▶ f = 1/2 (medium rank): $V_{\rm read+write} \lesssim 5N$ and $n_{\rm flops} \lesssim 12Nr_{\rm max}$

Comparison with measurements (using CPU performance counters)

Decompose a double-precision 2³⁰ tensor (8GB)

	•		•		
		r _{max}	operations (est.)	data transfers (est.)	
			[GFlop]	[GByte]	
	f = 1/2	1	14 (13)	43 (43)	
	f = 1/16	1	41 (39)	21 (19)	
	f = 1/2	31	417 (399)	43 (43)	
	(in practice,	as n _i i	and r _i are integers,	only some discrete value	es for <i>f</i> possible)
Ø.	7		110 Hast	Contraction of the second s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Results 00000

Performance of building blocks: Q-less TSQR

- (25 · 10⁶) × m matrix, m = 1, ..., m (double-precision)
- Data size: 200MB,...,20GB
- ► 14-core Intel Skylake Gold 6132
- ▶ Bandwidth: $b_w := V_{read}/t$
- ightarrow Peak bandwidth for small *m*, $\sim 1/3$ peak Flop/s for larger *m*
- Significantly faster than other TSQR implementations I tried...
- BUT the Trilinos TSQR here calculates Q explicitly!

Introduction	Tensor-Train SVD algorithm	Results	Conclusion
000	0000	0000	00

Performance of building blocks: fused tall-skinny GEMM+reshape

- For $X \in \mathbb{R}^{n \times 2m}$, $M \in \mathbb{R}^{2m \times m}$, $X \leftarrow XM$, reshape to (n/2, 2m), $n = 25 \cdot 10^7$, $m = 1, \dots, 50$
- Data size: 200MB,...,20GB
- $\blacktriangleright \text{ Bandwidth:} b_w := V_{\text{read}+\text{write}}/t$
- ► 14-core Intel Skylake Gold 6132
- → High bandwidth with fused reshape
- Similar performance as MKL, exploit known memory layout

Results 00●00

TT-SVD runtime: different implementations

- Decompose random 2²⁷ tensor, *r*_{max} = 1,...,50 (double precision)
- Data size: 1GB
- ► 14-core Intel Skylake Gold 6132
- \rightarrow "Almost" optimal runtime
- \rightarrow Existing software: >50x slower
- tntorch first constructs a full-rank TT, then truncates it.
- ▶ remark: my RNG is slower than the TT-SVD for $r_{\rm max} \lesssim 20$.

Introduction	
000	

Results 000●0

TT-SVD runtime: different tensor dimensions

- Decompose large random tensor, *r*_{max} = 1,...,50 (double precision)
- ▶ Data size: ~ 8GB
- Combine first dimensions only if beneficial
- ► 14-core Intel Skylake Gold 6132
- → Calculation more costly with fewer small dimensions!
- Jumps in runtime: switch from e.g. 8⁸ × 8² to 8⁷ × 8³ in the first tsqr step

Tensor-Train SVD algorithm 0000 Results 0000

TT-SVD runtime: distributed memory (MPI)

- Decompose random 2^d tensor, *d* = 29,...,36, *r*_{max} = 1,...,50 (double precision)
- ▶ Data size: 4GB, ..., 550GB
- Distributed parallel (user-defined MPI reduction for TSQR)
- Up to 4 nodes with 4x14-core Intel Skylake Gold 6132
- \rightarrow Scales well onto multiple nodes

Tensor-Train SVD algorithm
0000

Results 00000

- Goal: compute a low-rank approximation of a large dense high-dimensional tensor ($d \ge 10$)
- Runtime lower bounds for the TT-SVD algorithm:
 - Iow rank: ~ access data twice
 - medium rank: $O(r_{\max} \cdot N)$
 - \rightarrow Similar for some other tensor decompositions
- Almost optimal implementation:
 - $\sim 50\times$ faster than others
 - \rightarrow Difficult to map tensor algorithms to efficient building blocks
- Future work: other tensor formats, performance of randomized decompositions (they can avoid this lower bound!), speed up algorithms from data analysis using TT-SVD

Introduction

Conclusion

Literature

Tensor-Train SVD algorithm 0000

Results

Conclusion O

- Röhrig-Zöllner et.al.: "Performance of low-rank approximations in tensor train format (TT-SVD) for large dense tensors", submitted to SISC, arXiv:2102.00104, 2021
- Oseledets: "Tensor-Train Decomposition", SISC, 2011
- Demmel et.al.: "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC 2012
- Psarras et.al.: "The Linear Algebra Mapping Problem", preprint, arXiv:911.09421, 2019
- Demmel: "Communication avoiding algorithms", ENLA Seminar, https://www.youtube.com/watch?v=42f0nOw2Nlg
- Williams et.al.: "Roofline: An Insightful Visual Performance Model for Multicore Architectures", Comm. of the ACM, 2009

Q-less tall-skinny QR implementation $\bullet \mathsf{O}$

Implementation details: TSQR SIMD optimization

ldea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Q-less tall-skinny QR implementation $\bullet \mathsf{O}$

Implementation details: TSQR SIMD optimization

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)

(*	*	*	*	*)
*	*	*	*	*
*	*	*	*	*
:	÷	÷	÷	÷
(*	*	*	*	*/
(*	*	*	*	*)
$\binom{*}{0}$	*	*	*	*
1				
0	*	*	*	*

ldea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

- 1. New block + previous block (already triangular)
- 2. Calculate reflection vector

(*	*	*	*	*)
*	*	*	*	*
*	*	*	*	*
:	÷	÷	÷	÷
*	*	*	*	*
*	*	*	*	*
0	*	*	*	*
0	0	*	*	*
0	0	0	*	*
0/	0	0	0	*/

Q-less tall-skinny QR implementation $\bullet \mathsf{O}$

Implementation details: TSQR SIMD optimization

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

- 1. New block + previous block (already triangular)
- 2. Calculate reflection vector and apply reflection

/*	*	*	*	*)
0	*	*	*	*
0	*	*	*	*
:	:	:	:	:
0	*	*	*	*
0	*	*	*	*
0	*	*	*	*
0	0	*	*	*
0	0	0	*	*
0/	0	0	0	*/

ldea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

- 1. New block + previous block (already triangular)
- 2. Calculate reflection vector and apply reflection
- 3. Repeat

/*	*	*	*	*)
0	*	*	*	*
0	*	*	*	*
:	÷	÷	÷	÷
0	*	*	*	*
0	*	*	*	*
0	*	*	*	*
0	0	*	*	*
0	0	0	*	*
0/	0	0	0	*/

ldea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

- 1. New block + previous block (already triangular)
- 2. Calculate reflection vector and apply reflection
- 3. Repeat

/*	*	*	*	*)
0	*	*	*	*
0	0	*	*	*
÷	÷	÷	÷	÷
0	0	*	*	*
0	0	*	*	*
0	0	*	*	*
0	0	*	*	*
0	0	0	*	*
0/	0	0	0	*/

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

- 1. New block + previous block (already triangular)
- 2. Calculate reflection vector and apply reflection
- 3. Repeat
- \rightarrow Works with vectors of fixed-size $b \cdot n_{simd}$ (multiple of SIMD width)

	/*	*	*	*	* /	
	0	*	*	*	*	
r	0	0	*	*	*	
	:	÷	÷	÷	÷	
	0	0	*	*	*	
	0	0	*	*	*	
	0	0	*	*	*	
	0	0	*	*	*	
	0	0	0	*	*	
	0/	0	0	0	*/	

1

 $b\cdot n_{\mathsf{simd}}$

Q-less tall-skinny QR implementation \bigcirc

Implementation details: "rank preserving" TSQR

Goal

Avoid data dependencies!

 \rightarrow crucial for high performance, (the CPU is a big pipeline)

 \rightarrow No pivoting 4

Still handle rank-deficient blocks

Q-less tall-skinny QR implementation $O \bullet$

Implementation details: "rank preserving" TSQR

Goal

Avoid data dependencies! crucial for high performance,

(the CPU is a big pipeline)

 \rightarrow No pivoting 4

Still handle rank-deficient blocks

Algorithm

Input: Input column $u \in \mathbf{R}^k$, Smallest positive FP number $\epsilon_{fp} \ (\approx 10^{-300})$ Output: Householder reflection $(I - vv^T)$ with $\|v\|_2 = \sqrt{2}$ 1: $t \leftarrow \|u\|_2^2 + \epsilon_{fp}$ 2: $\alpha \leftarrow -\operatorname{sign}(u_1)\sqrt{t + \epsilon_{fp}}$ 3: $t \leftarrow t - \alpha u_1$ 4: $u_1 \leftarrow u_1 - \alpha$ 5: $\beta \leftarrow 1/\sqrt{t}$ 6: $v \leftarrow \beta u$

Q-less tall-skinny QR implementation O●

Implementation details: "rank preserving" TSQR

Goal

Avoid data dependencies!

 \rightarrow crucial for high performance, (the CPU is a big pipeline)

- \rightarrow No pivoting 4
- Still handle rank-deficient blocks

Adjusted Householder reflection

- Add smallest representable number $\epsilon_{\rm fp}$
- Prevents break-down (no division by zero)
- ▶ Introduces an error of order $\sqrt{\epsilon_{fp}}$ if u = 0
- Ensures a valid reflection $(||v||_2 = \sqrt{2})$

Algorithm

Input: Input column $u \in \mathbf{R}^k$, Smallest positive FP number $\epsilon_{fp} (\approx 10^{-300})$ Output: Householder reflection $(I - vv^T)$ with $||v||_2 = \sqrt{2}$ 1: $t \leftarrow ||u||_2^2 + \epsilon_{fp}$ 2: $\alpha \leftarrow -\operatorname{sign}(u_1)\sqrt{t + \epsilon_{fp}}$ 3: $t \leftarrow t - \alpha u_1$ 4: $u_1 \leftarrow u_1 - \alpha$ 5: $\beta \leftarrow 1/\sqrt{t}$ 6: $v \leftarrow \beta u$

