Introduction
[e]e]e}

Tensor-Train SVD algorithm Results Conclusion
0000 00000 (oo}

Performance of high-order SVD approximation:
reading the data twice is enough

Melven Roéhrig-Zoliner, Jonas Thies and Achim Basermann
Institute for Software Technology, German Aerospace Center (DLR)

Introduction Tensor-Train SVD algorithm Results Conclusion
@00 0000 00000 (oo}

Categories of tensor decomposition methods

from the point of view of computing resources:. . .
1. data too large to process as a whole

P> "randomly" access part of the data
P reconstruct approximation with some probability

2. data implicitly given by some high-dim. function with known low rank / smoothness

> "black box" approximation, evaluate as few entries as possible
» error bounds for special classes of functions

3. data large and sparse, feasible to access all entries
> exploit (problem specific) sparsity
» accurate up to a desired tolerance

4. data large and dense, feasible to access all entries

> discussed here!
P accurate up to a desired tolerance

Introduction Tensor-Train SVD algorithm Results Conclusion
] 1o} 0000 00000 (oo}

Problem definition

Low-rank approximation in tensor-train format [Oseledets]
Given:

> large dense tensor X € RM*mx:xnd

> max. tensor-train rank fmay

» desired tolerance €
Calculate:

» tensor-train Xt with:
ranks(X77) < fmax and | X — X77||F < €tol

Remarks:
» Focus on the tensor-train format; very similar approaches for some other formats

» Consider high-dimensional case (d > 3) and sufficiently small TT-ranks r,...rg_1

4#7 3 ik
DLR ‘

——

Introduction Tensor-Train SVD algorithm Results Conclusion
ooe 0000 00000 (oo}

Roofline performance model

Consider 2 bottlenecks:
1. Peak performance: Ppyax [GFlop/s]
2. Memory bandwidth: bs [GByte/s|

Analyze the algorithm:
1. Computations: ngops [flop]
2. Data transfers: Vieadtwrite [Dyte]

= Expected (ideal) runtime:

n V, ;
t = max < flops’ read+wr|te> [S]
Pmax bs

Remark: growing memory gap Pax/bs (e.g. ~ 100 Flops per double on my CPU from 2017)

S V7 i R
DLR T K

Introduction Tensor-Train SVD algorithm Results Conclusion
(oo}

[e]e]e} @000 00000

Standard TT-SVD algorithm

Algorithm

Input: Tensor X
n+1
fori=1,...,d —1do
Reshape X to a; X (n;ri—1)
Calculate SVD: USVT = X
Choose rank r;
Ti < Vil reshape to ri_1 X n; x r;
X Ul:risl:r;
end for
Reshape X to (rg—1 X ng x 1)
Output: Tensor-train (Ty,..., Tg—1,X)

S Y/ il

Introduction Tensor-Train SVD algorithm
[e]e]e} @000

Standard TT-SVD algorithm

Algorithm

Input: Tensor X
n+1
fori=1,...,d —1do
Reshape X to a; X (n;ri—1)
Calculate SVD: USVT = X
Choose rank r;
Ti + Vl:Tr/_, reshape to ri_1 X nj X r;
X Ul:r,»slzr,'
end for
Reshape X to (rg—1 X ng x 1)
Output: Tensor-train (Ty,..., Tg—1,X)

i DLR

Results Conclusion
00000 (oo}

Observations

>

>
>

Based on successive SVDs, reshapes and
matrix-matrix multiplications (GEMM)

Cheap operations are grayed out

All large matrices are tall and skinny
. d

nj = Hj:i+1 nj > njrj

Operations are likely memory-bound!

Size of X ideally decreases in each step,
not ensured in first steps for r; < fmax

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} o] lele) 00000 (oo}

Optimized TT-SVD algorithm

Algorithm

Input: Tensor X
Skip first j — 1 iterations
Reshape X to nj x (n1---n;)
fori=j,...,d—1do
Calculate QR decomposition: QR = X
Calculate small SVD: USVT = R
Choose rank r;
Ti < Vl:Tr/_, reshape to ri_1 X n; X r;
X + XV4y.,,, reshape to f; 11 X (niy1r;)
end for
Recover Ty, ..., T;
Output: Tensor-train (Ty,..., Tg—1,X)

S Y/ inl

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} [e] le]e] 00000 (oo}

Optimized TT-SVD algorithm

Algorithm Remarks

Input: Tensor X » Skip iterations that don't reduce the size
Skip first j — 1 iterations of X
Reshape X to 7 x (ny -+~ ;) » Replaced costly SVD by tall-skinny QR

fori=j,...,d—1do

> N — Q-less TSQR
Calculate QR decomposition: QR = X ever use Q Q-less TSQ

Calculate small SVD: USVT = R » Fused reshape and tall-skinny

Choose rank r; matrix-matrix multiplication ("TSMM"):

Ti < V4T, reshape to ri_y x n; x r; X = XVi.p;, reshape to . ..

X < XV4.,., reshape to fjy1 % (nit1r;) — Reads the input data twice (1st iteration):
end for (once for QR = X, once for X < XV4.,,)
Recover Ty, ..., T;

Output: Tensor-train (Ty,..., Tg—1,X)

E DLR 4 5

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} ooeo 00000 (oo}

Performance analysis (1)

Building blocks

Q-less TSQR:
(X 6 RnXm)

> Vread = nm
> Nflops = 2nm2

TSMM-+-reshape:
(X + XM, M € R™*K)

» Viead+write = n(m + k)
P Nfops = 2nmk
= One step of the TT-SVD iteration:
» Viead+write = n(2m + k)
> Nfiops ~ 2nm(m + k)

S Yo/ i

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} [e]e] o] 00000 (oo}

Performance analysis (1)

Building blocks Complete TT-SVD algorithm
Q-less TSQR: Assume size reduction factor f < 1 in each step
(X € R™™) with k/m < f.

= upper bound from the geometric series:
2N N
> Niops & 2nm? > Viead+wite < 77F + 17

TS srestapes > Nops S 2Nimax (1 + 127) + O(ra)
— , MeR"

» Viead+write = n(m + k)
P Nfops = 2nmk
= One step of the TT-SVD iteration:
» Viead+write = n(2m + k)
> Nfiops ~ 2nm(m + k)

» Viead = nm

with N := H:.j:l n;.

a——

DLR

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} [eJele]] 00000 (oo}

Performance analysis (2)

Interpretation

Try to influence f by combining (splitting) dimensions!
Suitable choices for 29 tensors:

» f=1/16 (low rank): Vieadtwrite S 2.2N and ngops < 36 Nrax
» f=1/2 (medium rank): Viead write

< 5N and Nflops 5 12Nrma><

~

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} [e]ele]] 00000 (oo}

Performance analysis (2)

Interpretation

Try to influence f by combining (splitting) dimensions!
Suitable choices for 29 tensors:

» f=1/16 (low rank): Vieadtwrite S 2.2N and ngops < 36 Nrax
» f=1/2 (medium rank): Vieadrwrite = 5N and nops S 12Nrmax

Comparison with measurements (using CPU performance counters)

Decompose a double-precision 230 tensor (8GB)
fmax Operations (est.) data transfers (est.)

[GFlop] [GByte]
f=1/2 1 14 (13) 43 (43)
fF=1/16 1 41 (39) 21 (19)
f=1/2 31 417 (399) 43 (43)

!in practice, as n; and r; are integers, only some discrete values for f possible)
DLR

Introduction Tensor-Train SVD algorithm Results
[e]e]e} 0000 @0000

Performance of building blocks: Q-less TSQR

Conclusion
(oo}

> (25-10°) x m matrix, 100
m=1,...,m (double-precision)

> Data size: 200MB,...,20GB

» 14-core Intel Skylake Gold 6132

» Bandwidth: b, := Viead/t

— Peak bandwidth for small m,
~1/3 peak Flop/s for larger m

T I T
peak bandwidth (LOAD) ?O:;Tsngfg"; —
I mi

Trilinos TSQR — —]

80

Le
%
60 <y
//77/}

» Significantly faster than other 40

TSQR implementations | tried. ..

» BUT the Trilinos TSQR here 20
calculates @ explicitly!

bandwidth [GByte/s]

memory bound compute bound
R >

0 | B el i SRy (S [I P
10 20 30 40 50 60 70 80 90 100

#columns

i DLR

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} 0000 [¢] lele]e} (oo}

Performance of building blocks: fused tall-skinny GEMM-+-reshape

> For X € R™2m M ¢ R2mxm,

X XM, ;eShape to (n/2,2m), or Ipeaklbandv:/idth (ISTREIAM)]
n=25-10", m=1,...,50
» Data size: 200MB,...,20GB "
» Bandwidth:b, ‘= Vieadtwrite/t 560
> l4-core Intel Skylake Gold 6132 & %
— High bandwidth with fused $40 -
reshape '1530 B |
» Similar performance as MKL, 3
exploit known memory layout 20 N
10 - TSMM-reshape _
MKL dgemm
0 ! ! | | ! ! ! !

10 20 30 40 50 60 70 80 90 100

#columns
EDLR ﬁ' B

Introduction Tensor-Train SVD algorithm
[e]e]e} 0000

TT-SVD runtime: different implementations

» Decompose random 227 tensor,
fmax = 1,...,50

(double precision)

Data size: 1GB

14-core Intel Skylake Gold 6132
"Almost" optimal runtime

Existing software: >50x slower

vl l vy

tntorch first constructs a
full-rank TT, then truncates it.

» remark: my RNG is slower than
the TT-SVD for rpmax < 20.

~

time [s]

100

—_

o
=

Results
[o]e] lele}

Conclusion
(oo}

t3f (Eigen::BDCSVD
TensorToolbox (MKL dgesvd

simple numpy (MKL dgesdd
ttpy (MKL dgesvd

)
)
tntorch (MKL dgeqrf)
)
)

TSQR TT-SVD

read data twice

T

10

15

20

25

30

max. rank

35

40

45

o1
o

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} 0000 [o]ele] lo} (oo}

TT-SVD runtime: different tensor dimensions

» Decompose large random tensor, 10 -—

fmax = 1,...,50 230 tensor ———

(double precision) 412 tensor ———

i I 8" tensor —— |

> Data size: ~ 8GB 8 10° tensor ———
» Combine first dimensions only if 32° tensor

beneficial = 0T n
» 14-core Intel Skylake Gold 6132 2

— Calculation more costly with 4 =
fewer small dimensions!

P Jumps in runtime: switch from s L
e.g. 8% x 8% 1to 8" x 8% in the
first tsqr step

_read data twice |
T T T

0 5 10 15 20 25 30 35 40 45 50

4#7 s
DLR ;

Introduction Tensor-Train SVD algorithm Results Conclusion
[e]e]e} 0000 [o]elele] } (oo}

TT-SVD runtime: distributed memory (MPI)

» Decompose random 2¢ tensor, 10 | | | | | | | |
d=29,...,36, 1 socket(s) _—
— 2 socket(s) ——
rgax bl L '.’ .50 8 | 4socket(s) —— goc\“e&
(double precision) 8 socket(s)
» Data size: 4GB, ..., 550GB 16 socket(s)
» Distributed parallel (user-defined = 0T
MPI reduction for TSQR) E
» Up to 4 nodes with 4x14-core s o4 b
Intel Skylake Gold 6132
— Scales well onto multiple nodes 5 ket

g
0 — | | | 2% elements per soclket
0 5 10 15 20 25 30 35 40 45 50

E max. rank
DLR ’)

Introduction

Tensor-Train SVD algorithm Results Conclusion

000 0000 00000 [1]
Conclusion
» Goal: compute a low-rank approximation of a large dense high-dimensional tensor (d > 10)
» Runtime lower bounds for the TT-SVD algorithm:
» low rank: ~ access data twice
> medium rank: O(fmax - N)
— Similar for some other tensor decompositions
» Almost optimal implementation:
~ 50x faster than others
— Difficult to map tensor algorithms to efficient building blocks
» Future work: other tensor formats, performance of randomized decompositions (they can

i DLR

avoid this lower bound!), speed up algorithms from data analysis using TT-SVD

Introduction
[e]e]e}

Tensor-Train SVD algorithm Results Conclusion
0000 00000 oce

Literature

Rohrig-Zoliner et.al.: "Performance of low-rank approximations in tensor train format
(TT-SVD) for large dense tensors", submitted to SISC, arXiv:2102.00104, 2021

Oseledets: "Tensor-Train Decomposition", SISC, 2011

Demmel et.al.: "Communication-optimal Parallel and Sequential QR and LU
Factorizations", SISC 2012

Psarras et.al.: "The Linear Algebra Mapping Problem", preprint, arXiv:911.09421, 2019

Demmel: "Communication avoiding algorithms", ENLA Seminar,
https://www.youtube.com/watch?v=42fOn0w2N1lg

Williams et.al.: "Roofline: An Insightful Visual Performance Model for Multicore
Architectures", Comm. of the ACM, 2009

Yl b

https://arxiv.org/abs/2102.00104
https://arxiv.org/abs/1911.09421
https://www.youtube.com/watch?v=42f0nOw2Nlg

Q-less tall-skinny QR implementation
[1]

Implementation details: TSQR SIMD optimization

Idea
» Combine a full and a triangular block

» Used for all reductions in the TSQR algorithm
(sequential /cache optimized, parallel/comm. optimized)

Q-less tall-skinny QR implementation
e0

Implementation details: TSQR SIMD optimization

Idea

» Combine a full and a triangular block

» Used for all reductions in the TSQR algorithm
(sequential /cache optimized, parallel/comm. optimized)

Householder QR algorithm
1. New block + previous block (already triangular)

5
DLR ;

*
0
0
0
0

O O O % *

O O % * %

O ¥ ¥ ¥ %

¥ X X ¥ X

Q-less tall-skinny QR implementation
e0

Implementation details: TSQR SIMD optimization

Idea

» Combine a full and a triangular block

» Used for all reductions in the TSQR algorithm
(sequential /cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector

i DLR

*

S

* ¥ ¥

L

* % ¥

Q-less tall-skinny QR implementation
e0

Implementation details: TSQR SIMD optimization

Idea

» Combine a full and a triangular block

» Used for all reductions in the TSQR algorithm
(sequential /cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection

i DLR

o o

*

*

*

*

Q-less tall-skinny QR implementation
e0

Implementation details: TSQR SIMD optimization

Idea

» Combine a full and a triangular block

» Used for all reductions in the TSQR algorithm
(sequential /cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection
3. Repeat

EDLR] 5

o O

* ¥

* ¥ ¥

* X ¥

* X ¥

Q-less tall-skinny QR implementation
e0

Implementation details: TSQR SIMD optimization

Idea

» Combine a full and a triangular block

» Used for all reductions in the TSQR algorithm
(sequential /cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection
3. Repeat

i DLR

[«)

*

o

* ¥

* ¥

*

Q-less tall-skinny QR implementation
e0

Implementation details: TSQR SIMD optimization

Idea §

» Combine a full and a triangular block 0 =«

» Used for all reductions in the TSQR algorithm 0 0 x % x
(sequential /cache optimized, parallel/comm. optimized) SR

. & 0 0 * x =
Householder QR algorithm B 0 0 % x x
1. New block + previous block (already triangular) 0 0 * = =
2. Calculate reflection vector and apply reflection 0 0 * » «
0 0 0 % =
3. Repeat 000 0 %

— Works with vectors of fixed-size b - ngmg (multiple of SIMD width)

E DLR] 5

Q-less tall-skinny QR implementation
oe

Implementation details: "rank preserving" TSQR

Goal

» Avoid data dependencies!
— crucial for high performance,
(the CPU is a big pipeline)
— No pivoting 4

» Still handle rank-deficient blocks

Q-less tall-skinny QR implementation
oe

Implementation details: "rank preserving" TSQR

Goal Algorithm

» Avoid data dependencies!
— crucial for high performance,
(the CPU is a big pipeline)
— No pivoting 4

» Still handle rank-deficient blocks

i DLR

AN e

Input: Input column v € R¥,

Smallest positive FP number e, (=~ 10 %)

Output: Householder reflection (/ — wT)

with [|v|]2 = V2

t 4 [lull3 + er

o —sign(u)/TF €
t<—t—aun

up < up — o

B 1/t

v« Bu

Q-less tall-skinny QR implementation
oe

Implementation details: "rank preserving" TSQR

Goal Algorithm
» Avoid data dependencies! Input: Input column v € R¥,
— crucial for high performance, Smallest positive FP number e, (~ 10 °%)
(the CPU is a big pipeline) Output: Householder reflection (/ — wT)
— No pivoting % with [|v|, = V2
> Still handle rank-deficient blocks Lt [|ull3 + e
20 a < —sign(uy) /T T €6
Adjusted Householder reflection 3t t—aun
> Add smallest representable number eg, g ;1:171\/_?&
» Prevents break-down (no division by zero) 6: v« Su

> Introduces an error of order /€, if u=0
> Ensures a valid reflection (||v|» = v/2)

i DLR

	Introduction
	Tensor-Train SVD algorithm
	Results
	Conclusion
	Appendix
	Q-less tall-skinny QR implementation

