Performance of high-order SVD approximation:

 reading the data twice is enoughMelven Röhrig-Zöllner, Jonas Thies and Achim Basermann Institute for Software Technology, German Aerospace Center (DLR)

Categories of tensor decomposition methods
from the point of view of computing resources:. . .

1. data too large to process as a whole

- "randomly" access part of the data
- reconstruct approximation with some probability

2. data implicitly given by some high-dim. function with known low rank / smoothness

- "black box" approximation, evaluate as few entries as possible
- error bounds for special classes of functions

3. data large and sparse, feasible to access all entries

- exploit (problem specific) sparsity
- accurate up to a desired tolerance

4. data large and dense, feasible to access all entries

- discussed here!
- accurate up to a desired tolerance

Problem definition

Low-rank approximation in tensor-train format [Oseledets]
Given:

- large dense tensor $X \in \mathbf{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$
- max. tensor-train rank $r_{\text {max }}$
- desired tolerance $\epsilon_{\text {tol }}$

Calculate:

- tensor-train X_{TT} with:

$$
\operatorname{ranks}\left(X_{\mathrm{TT}}\right) \leq r_{\max } \quad \text { and } \quad\left\|X-X_{\mathrm{TT}}\right\|_{F} \lesssim \epsilon_{\mathrm{tol}}
$$

Remarks:

- Focus on the tensor-train format; very similar approaches for some other formats
- Consider high-dimensional case $(d \gg 3)$ and sufficiently small TT-ranks $r_{1}, \ldots r_{d-1}$

DLR

Roofline performance model

Consider 2 bottlenecks:

1. Peak performance: $P_{\text {max }}[G F l o p / s]$
2. Memory bandwidth: b_{s} [GByte/s]

Analyze the algorithm:

1. Computations: $n_{\text {flops }}[f l o p]$
2. Data transfers: $V_{\text {read+write }}$ [byte]
\Rightarrow Expected (ideal) runtime:

$$
t=\max \left(\frac{n_{\text {flops }}}{P_{\max }}, \frac{V_{\text {read }+ \text { write }}}{b_{s}}\right)[\mathrm{s}]
$$

Remark: growing memory gap $P_{\max } / b_{s}$ (e.g. ~ 100 Flops per double on my CPU from 2017)

Standard TT-SVD algorithm

```
Algorithm
Input: Tensor \(X\)
    \(r_{0} \leftarrow 1\)
    for \(i=1, \ldots, d-1\) do
        Reshape \(X\) to \(\bar{n}_{i} \times\left(n_{i} r_{i-1}\right)\)
        Calculate SVD: \(U S V^{T}=X\)
        Choose rank \(r_{i}\)
        \(T_{i} \leftarrow V_{1: r_{i} ;}^{T}\), reshape to \(r_{i-1} \times n_{i} \times r_{i}\)
        \(X \leftarrow U_{1: r_{i}} S_{1: r_{i}}\)
    end for
    Reshape \(X\) to \(\left(r_{d-1} \times n_{d} \times 1\right)\)
Output: Tensor-train \(\left(T_{1}, \ldots, T_{d-1}, X\right)\)
```


Standard TT-SVD algorithm

Algorithm
Input: Tensor X
$r_{0} \leftarrow 1$
for $i=1, \ldots, d-1$ do
Reshape X to $\bar{n}_{i} \times\left(n_{i} r_{i-1}\right)$
Calculate SVD: $U S V^{T}=X$
Choose rank r_{i}
$T_{i} \leftarrow V_{1: r_{i}}^{T}$, reshape to $r_{i-1} \times n_{i} \times r_{i}$
$X \leftarrow U_{1: r_{i}} S_{1: r_{i}}$
end for
Reshape X to $\left(r_{d-1} \times n_{d} \times 1\right)$
Output: Tensor-train $\left(T_{1}, \ldots, T_{d-1}, X\right)$

Observations

- Based on successive SVDs, reshapes and matrix-matrix multiplications (GEMM)
- Cheap operations are grayed out
- All large matrices are tall and skinny $\bar{n}_{i}:=\prod_{j=i+1}^{d} n_{i} \gg n_{i} r_{i}$
\rightarrow Operations are likely memory-bound!
- Size of X ideally decreases in each step, not ensured in first steps for $r_{i} \ll r_{\text {max }}$

Optimized TT-SVD algorithm

Algorithm

Input: Tensor X
Skip first j - 1 iterations
Reshape X to $\bar{n}_{j} \times\left(n_{1} \cdots n_{j}\right)$
for $i=j, \ldots, d-1$ do
Calculate $Q R$ decomposition: $Q R=X$
Calculate small SVD: $\bar{U} S V^{\top}=R$
Choose rank r_{i}
$T_{i} \leftarrow V_{1 r_{i}}^{T}$, reshape to $r_{i-1} \times n_{i} \times r_{i}$
$X \leftarrow X V_{1: r_{i}}$, reshape to $\bar{n}_{i+1} \times\left(n_{i+1} r_{i}\right)$
end for
Recover T_{1}, \ldots, T_{j}
Output: Tensor-train $\left(T_{1}, \ldots, T_{d-1}, X\right)$

Optimized TT-SVD algorithm

Algorithm

Input: Tensor X

Skip first $j-1$ iterations
Reshape X to $\bar{n}_{j} \times\left(n_{1} \cdots n_{j}\right)$
for $i=j, \ldots, d-1$ do
Calculate QR decomposition: $Q R=X$ Calculate small SVD: $\bar{U} S V^{T}=R$
Choose rank r_{i}
$T_{i} \leftarrow V_{1: r_{i}}^{T}$, reshape to $r_{i-1} \times n_{i} \times r_{i}$ $X \leftarrow X V_{1: r_{i}}$, reshape to $\bar{n}_{i+1} \times\left(n_{i+1} r_{i}\right)$
end for
Recover T_{1}, \ldots, T_{j}
Output: Tensor-train $\left(T_{1}, \ldots, T_{d-1}, X\right)$

Remarks

- Skip iterations that don't reduce the size of X
- Replaced costly SVD by tall-skinny QR
- Never use $Q \rightarrow$ Q-less TSQR
- Fused reshape and tall-skinny matrix-matrix multiplication ("TSMM"): $X \leftarrow X V_{1: r}$, reshape to ...
\rightarrow Reads the input data twice (1st iteration): (once for $Q R=X$, once for $X \leftarrow X V_{1: r_{1}}$)

Building blocks
Q-less TSQR:
$\left(X \in \mathbf{R}^{n \times m}\right)$

- $V_{\text {read }}=n m$
- $n_{\text {flops }} \approx 2 n^{2}$

TSMM+reshape:
$\left(X \leftarrow X M, M \in \mathbb{R}^{m \times k}\right)$

- $V_{\text {read }+ \text { write }}=n(m+k)$
- $n_{\text {flops }}=2 n m k$
\Rightarrow One step of the TT-SVD iteration:
- $V_{\text {read }+ \text { write }}=n(2 m+k)$
- $n_{\text {flops }} \approx 2 n m(m+k)$

Building blocks

Q-less TSQR:
$\left(X \in \mathbf{R}^{n \times m}\right)$

- $V_{\text {read }}=n m$
- $n_{\text {flops }} \approx 2 n^{2}$

TSMM+reshape:
$\left(X \leftarrow X M, M \in \mathbf{R}^{m \times k}\right)$

- $V_{\text {read }+ \text { write }}=n(m+k)$
- $n_{\text {flops }}=2 n m k$
\Rightarrow One step of the TT-SVD iteration:
- $V_{\text {read }+ \text { write }}=n(2 m+k)$
- $n_{\text {flops }} \approx 2 n m(m+k)$

Complete TT-SVD algorithm

Assume size reduction factor $f<1$ in each step with $k / m \leq f$.
\Rightarrow upper bound from the geometric series:

- $V_{\text {read+write }} \leq \frac{2 N}{1-f}+\frac{f N}{1-f}$
$-n_{\text {flops }} \lesssim 2 N r_{\max }\left(\frac{1}{f}+\frac{2}{1-f}\right)+O\left(r_{\text {max }}^{3}\right)$
with $N:=\prod_{i=1}^{d} n_{i}$.

Interpretation

Try to influence f by combining (splitting) dimensions!
Suitable choices for 2^{d} tensors:

- $f=1 / 16$ (low rank): $V_{\text {read }+ \text { write }} \lesssim 2.2 \mathrm{~N}$ and $n_{\text {flops }} \lesssim 36 \mathrm{Nr}_{\text {max }}$
- $f=1 / 2$ (medium rank): $V_{\text {read+write }} \lesssim 5 \mathrm{~N}$ and $n_{\text {flops }} \lesssim 12 N r_{\text {max }}$

Interpretation

Try to influence f by combining (splitting) dimensions!
Suitable choices for 2^{d} tensors:

- $f=1 / 16$ (low rank): $V_{\text {read }+ \text { write }} \lesssim 2.2 \mathrm{~N}$ and $n_{\text {flops }} \lesssim 36 \mathrm{Nr}_{\text {max }}$
- $f=1 / 2$ (medium rank): $V_{\text {read+write }} \lesssim 5 \mathrm{~N}$ and $n_{\text {flops }} \lesssim 12 N r_{\text {max }}$

Comparison with measurements (using CPU performance counters)
Decompose a double-precision 2^{30} tensor (8GB)
$r_{\text {max }}$ operations (est.) data transfers (est.)

		[GFlop]	[GByte]
$f=1 / 2$	1	$14(13)$	$43(43)$
$f=1 / 16$	1	$41(39)$	$21(19)$
$f=1 / 2$	31	$417(399)$	$43(43)$

(in practice, as n_{i} and r_{i} are integers, only some discrete values for f possible)

Performance of building blocks: Q-less TSQR

- $\left(25 \cdot 10^{6}\right) \times m$ matrix, $m=1, \ldots, m$ (double-precision)
- Data size: 200MB,...,20GB
- 14-core Intel Skylake Gold 6132
- Bandwidth: $b_{w}:=V_{\text {read }} / t$
\rightarrow Peak bandwidth for small m, $\sim 1 / 3$ peak Flop/s for larger m
- Significantly faster than other TSQR implementations I tried.
- BUT the Trilinos TSQR here calculates Q explicitly!

DLR

Performance of building blocks: fused tall-skinny GEMM+reshape

- For $X \in \mathbf{R}^{n \times 2 m}, M \in \mathbf{R}^{2 m \times m}$ $X \leftarrow X M$, reshape to $(n / 2,2 m)$, $n=25 \cdot 10^{7}, m=1, \ldots, 50$
- Data size: 200MB,...,20GB
- Bandwidth: $b_{w}:=V_{\text {read+write }} / t$
- 14-core Intel Skylake Gold 6132
\rightarrow High bandwidth with fused reshape
- Similar performance as MKL, exploit known memory layout

DLR

TT-SVD runtime: different implementations

- Decompose random 2^{27} tensor, $r_{\text {max }}=1, \ldots, 50$
(double precision)
- Data size: 1GB
- 14-core Intel Skylake Gold 6132
\rightarrow "Almost" optimal runtime
\rightarrow Existing software: $>50 \mathrm{x}$ slower
- tntorch first constructs a full-rank TT, then truncates it.
- remark: my RNG is slower than the TT-SVD for $r_{\text {max }} \lesssim 20$.

TT-SVD runtime: different tensor dimensions

- Decompose large random tensor, $r_{\text {max }}=1, \ldots, 50$
(double precision)
- Data size: ~ 8GB
- Combine first dimensions only if beneficial
- 14-core Intel Skylake Gold 6132
\rightarrow Calculation more costly with fewer small dimensions!
- Jumps in runtime: switch from e.g. $8^{8} \times 8^{2}$ to $8^{7} \times 8^{3}$ in the first tsqr step

DLR

TT-SVD runtime: distributed memory (MPI)

- Decompose random 2^{d} tensor, $d=29, \ldots, 36$,
$r_{\text {max }}=1, \ldots, 50$
(double precision)
- Data size: 4GB, ..., 550GB
- Distributed parallel (user-defined MPI reduction for TSQR)
- Up to 4 nodes with 4×14-core Intel Skylake Gold 6132
\rightarrow Scales well onto multiple nodes

max. rank

Conclusion

- Goal: compute a low-rank approximation of a large dense high-dimensional tensor ($d \geq 10$)
- Runtime lower bounds for the TT-SVD algorithm:
- low rank: ~ access data twice
- medium rank: $O\left(r_{\text {max }} \cdot N\right)$
\rightarrow Similar for some other tensor decompositions
- Almost optimal implementation:
$\sim 50 \times$ faster than others
\rightarrow Difficult to map tensor algorithms to efficient building blocks
- Future work: other tensor formats, performance of randomized decompositions (they can avoid this lower bound!), speed up algorithms from data analysis using TT-SVD

Literature

- Röhrig-Zöllner et.al.: "Performance of low-rank approximations in tensor train format (TT-SVD) for large dense tensors", submitted to SISC, arXiv:2102.00104, 2021
- Oseledets: "Tensor-Train Decomposition", SISC, 2011
- Demmel et.al.: "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC 2012
- Psarras et.al.: "The Linear Algebra Mapping Problem", preprint, arXiv:911.09421, 2019
- Demmel: "Communication avoiding algorithms", ENLA Seminar, https://www.youtube.com/watch?v=42f0nOw2Nlg
- Williams et.al.: "Roofline: An Insightful Visual Performance Model for Multicore Architectures", Comm. of the ACM, 2009

Q-less tall-skinny QR implementation
Implementation details: TSQR SIMD optimization

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm
(sequential/cache optimized, parallel/comm. optimized)

Implementation details: TSQR SIMD optimization

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & * & *
\end{array}\right) \\
& \left(\begin{array}{ccccc}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & *
\end{array}\right)
\end{aligned}
$$

Implementation details: TSQR SIMD optimization

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector

$$
\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & *
\end{array}\right)
$$

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection

$$
\left(\begin{array}{ccccc}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & *
\end{array}\right)
$$

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection
3. Repeat

$$
\left(\begin{array}{ccccc}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & *
\end{array}\right)
$$

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection
3. Repeat
$\left(\begin{array}{ccccc}* & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & *\end{array}\right)$

DLR

Idea

- Combine a full and a triangular block
- Used for all reductions in the TSQR algorithm (sequential/cache optimized, parallel/comm. optimized)

Householder QR algorithm

1. New block + previous block (already triangular)
2. Calculate reflection vector and apply reflection
3. Repeat
\rightarrow Works with vectors of fixed-size $b \cdot n_{\text {simd }}$ (multiple of SIMD width)

Implementation details: "rank preserving" TSQR

Goal

- Avoid data dependencies!
\rightarrow crucial for high performance, (the CPU is a big pipeline)
\rightarrow No pivoting $\}$
- Still handle rank-deficient blocks

Implementation details: "rank preserving" TSQR

Goal

- Avoid data dependencies!
\rightarrow crucial for high performance, (the CPU is a big pipeline)
\rightarrow No pivoting ${ }^{2}$
- Still handle rank-deficient blocks

Algorithm
Input: Input column $u \in \mathbf{R}^{k}$,
Smallest positive FP number $\epsilon_{\mathrm{fp}}\left(\approx 10^{-300}\right)$
Output: Householder reflection $\left(I-v v^{\top}\right)$
with $\|v\|_{2}=\sqrt{2}$
1: $t \leftarrow\|u\|_{2}^{2}+\epsilon_{\mathrm{fp}}$
2: $\alpha \leftarrow-\operatorname{sign}\left(u_{1}\right) \sqrt{t+\epsilon_{\mathrm{fp}}}$
3: $t \leftarrow t-\alpha u_{1}$
4: $u_{1} \leftarrow u_{1}-\alpha$
5: $\beta \leftarrow 1 / \sqrt{t}$
6: $v \leftarrow \beta u$

Implementation details: "rank preserving" TSQR

Goal

- Avoid data dependencies!
\rightarrow crucial for high performance, (the CPU is a big pipeline)
\rightarrow No pivoting ${ }^{2}$
- Still handle rank-deficient blocks

Adjusted Householder reflection

- Add smallest representable number ϵ_{fp}
- Prevents break-down (no division by zero)
- Introduces an error of order $\sqrt{\epsilon_{\mathrm{fp}}}$ if $u=0$
- Ensures a valid reflection $\left(\|v\|_{2}=\sqrt{2}\right)$

Algorithm

Input: Input column $u \in \mathbf{R}^{k}$,
Smallest positive FP number $\epsilon_{\mathrm{fp}}\left(\approx 10^{-300}\right)$
Output: Householder reflection $\left(I-v v^{\top}\right)$
with $\|v\|_{2}=\sqrt{2}$
1: $t \leftarrow\|u\|_{2}^{2}+\epsilon_{\mathrm{fp}}$
2: $\alpha \leftarrow-\operatorname{sign}\left(u_{1}\right) \sqrt{t+\epsilon_{\mathrm{fp}}}$
3: $t \leftarrow t-\alpha u_{1}$
4: $u_{1} \leftarrow u_{1}-\alpha$
5: $\beta \leftarrow 1 / \sqrt{t}$
$6: v \leftarrow \beta u$

