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ABSTRACT

Interferometric Synthetic Aperture Radar (InSAR)-derived
surface displacement time series enable a wide range of ap-
plications from urban structural monitoring to geohazard
assessment. With systematic data acquisitions becoming
the new norm for SAR missions, millions of time series are
continuously generated. Machine Learning provides a frame-
work for the efficient mining of such big data. Here, we focus
on unsupervised mining of the data via clustering the similar
temporal patterns and data-driven displacement signal re-
construction from the InSAR time series. We propose a deep
Long Short Term Memory (LSTM) autoencoder model which
can exploit temporal relations in contrast to the commonly
used shallow learning methods, such as Uniform Manifold
Approximation and Projection (UMAP). We also modify the
loss function to allow the quantification of uncertainties in
the time series data. The two approaches are applied to the
Lazufre Volcanic Complex located at the central volcanic
zone of the Andes and thereby compared.

Index Terms— InSAR, Time Series, Unsupervised
Learning, Latent Representation Learning, Autoencoders,
Sequence Models, Deep Learning, Clustering

1. INTRODUCTION

Thanks to the systematic data acquisition of Sentinel-1 mis-
sion, nation-wide Earth surface displacement monitoring has
become a common application of Interferometric Synthetic
Aperture Radar (InSAR). This monitoring capability provides
an unprecedented wealth of data, whose mining poses a chal-
lenge whilst providing a unique opportunity.

This study is part of the TecVolSA project and partially funded by the
Helmholtz Association of German Research Centers. The authors would like
to thank Prof. Dr. T. Walter and R. Mania from German Research Center for
Geosciences (GFZ), for their insights regarding the volcanic complex, and
Dr. R. Shau and Dr. F. De Zan from DLR for the provision of InSAR data.

Standard product of InSAR techniques include point-wise
measurements of the earth surface; the temporal evolution
of the surface elevation form displacement Time Series (TS)
per point. With systematic large-scale mapping, millions of
point-wise TS are at our disposal for information extraction.
The sheer volume of the data as well as the diversity of the dis-
placement patterns call for efficient data mining approaches.

The common approach in InSAR TS analysis is to retrieve
the temporal displacement signal by assumng a priori mod-
els, such as linear, sinosoidal or their superimposition, fol-
lowed by statistical model selection (see e.g. [1]). Although
powerful, this approach does not scale well to the Big Data
at hand. Moreover, the assumed displacement models may
be too restrictive for detection of unknown temporal patterns.
The precision of this modeling is further compromised if the
implicit assumption of trend-stationarity does not hold for the
displacement signals.

As an alternative solution, in this work we employ a Ma-
chine Learning (ML) approach, where the displacement mod-
els are adaptively learned from the TS rather than being re-
stricted to a set of a priori known base functions. We adapt a
general pipeline from exploratory data analysis for unsuper-
vised mining of the TS. The clustering of similar displace-
ment patterns and retrieving the noise-removed displacement
signal are the outcome of the pipeline.

Two shallow and deep learning approaches are integrated
and compared in the ML pipeline. A variation of the shallow
approach has been previously used by [2] and [3]. Building
on the latter works, by proposing a different shallow algo-
rithm, we further explore the capabilities and flexibility that
a deep learning approach provides for TS mining. The deep
approach is based on the Long Short Term Memory (LSTM)
Autoencoder (AE). In comparison to the shallow alternative,
this deep learning approach allows for:

• exploitation of temporal correlations in feature extrac-
tion from the TS;

• modification of the loss function to model the data un-
certainties [4] in the TS;

• enabling applications such as signal reconstruction
from noisy TS and anomaly detection.
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Fig. 1: The proposed Noise-Aware LSTM Autoencoder network as a deep learning approach for feature extraction from InSAR time series.
The data uncertainties, shown by the diagonal matrix Γ, account for the possible residual noise in the time series.

Fig. 2: Displacement velocity map of Lazufre volcanic complex,
as a standard product of InSAR processing. The stars indicate the
location of four volcanoes in the complex.

2. ML PIPELINE FOR TIME SERIES MINING

The rationale of the ML pipeline follows from common ex-
ploratory data analysis techniques. It consists of two core
steps: 1) extracting informative features from the TS, thereby
reducing its dimensionality; and 2) clustering similar TSs
based on the retrieved features. For performing each step an
arsenal of ML algorithms are at our disposal. The efficacy of
this data mining approach is governed primarily by the choice
of these ML algorithms and secondly by tuning their hyper-
parameter sets. In the following we expand on our choice of
algorithms.

2.1. Feature Extraction from Time Series

The point-wise TS are the input of this stage. Note that, the
spatial structure, i.e. potenital similarities among the TS of
the neighboring points, are not exploited by the ML algo-
rithm. Following this stage, the TS is transformed and re-

duced to m number of informative features. For this transfor-
mation, we choose and compare two shallow and deep learn-
ing approaches to compress the TS.

2.1.1. Shallow learning approach

The state-of-the-art shallow approach in dimensionality re-
duction is provided by the Uniform Manifold Approximation
and Projection (UMAP) algorithm [5]. Exploring the topol-
ogy, UMAP allows for capturing the global and local patterns
in data simultaneously; it scales gracefully with the dimen-
sionality of data, i.e. the length of TS, as well as the size of
the target feature space m. The latter is a hyperparameter to
be tuned. Despite its advantages, UMAP does not allow for
exploring the temporal relations of the input data and treat
the different epochs in the TS as independent and identically
distributed (i.i.d.) samples.

2.1.2. Deep learning approach

Autoencoders (AEs) are designated neural network architec-
tures for dimensionality reduction. The data compression
in AEs is learned adaptively via a cascade of neural layers,
which firstly encode the input data into a latent low dimen-
sional feature space; and further reconstruct a version of the
input data from the encoded features, via a cascade of decod-
ing layers. The mappings in encoder and decoder are learned
by minimizing a regression loss between input data and its
reconstruction. We design an AE which exploits the temporal
patterns and dependencies in the input signal by using LSTM
[6] layers in the encoder and decoder. Furthermore, we mod-
ified the reconstruction loss to model the data uncertainties
in the Time Series (TS) [4]. This uncertainty represents the
residual atmospheric and decorrelation noise in the InSAR
time series and therefore accommodates a more effective sig-
nal reconstruction and feature extraction. Figure 1 depicts
the designed noise-aware LSTM-AE, while summarizing the



(a) UMAP

(b) Noise-Aware LSTM Autoencoder

Fig. 3: The latent representations of the displacement TS shown for (a) the shallow and (b) deep learning approaches. The stars indicate the
volcanoes. A high correlation between these representations and the InSAR-derived veloctiy and elevation maps is observed (cf. Fig. 2).
Further interpretation and comparisosn of the latent sources will follow in the oral presentation.

Fig. 4: An example of clustered TS for one cluster. (left) spatial distribution of the clustered samples shown by black dots overlaid on the
InSAR velocity map (middle) displacement time series of the clustered samples per acquisition date, (right) the reconstructed signal of the
same samples by the LSTM-AE. The selected cluster pertains to areas which undergo slope-induced displacement.

involved mappings, loss function and optimization of the
network.

2.2. Clustering based on the TS features

Our choice of clustering algorithm is the Hierarchical Density-
based Spatial Clustering of Applications with Noise (HDB-
SCAN) [7]. As the name suggest, this algorithm benefits from
the advantages of both hierarchical and density-based tech-
niques, resulting in a highly automated and powerful method.
Some of its decisive characteristics for the task at hand are:
the possibility of soft clustering, exclusion of outlying sam-
ples, and automatic selection of important hyperparameters
for clustering, e.g. distance measure, for the selection of
nearby inlying samples, as well as the number of clusters.

The input of this step are the leanrned m feature from the
TS. Following this steps, similar point-wise measurements are
clustered. Is the feature extraction and clustering effective,
the clustered measurements will show a similar temporal pat-
terns in their initial TS.

3. APPLICATION TO LAZUFRE VOLCANIC
COMPLEX

The Lazufre volcanic complex is chosen here to demonstrate
the application of the proposed TS mining approach. The site
is located in central volcanic zone of the Andes and is com-
prised of four volcanoes spanning an area of 2500 km2. A
variety of different geophysical signals are expected in the re-
gion.

3.1. InSAR Time Series Data

A time series of 128 Sentinel-1 acquisitions from 2016 to
2019 comprise the data set. A combination of persistent
and distributed scatterers are exploited in the Interferomet-
ric Wide Area Processing (IWAP) chain [8] to process the
time series. IWAP provides a unique capability in retrieving
high-precision displacement time series. Compared to the
state-of-the-art InSAR time series techniques, IWAP preci-
sion is especially enhanced by atmospheric corrections [9]



and precise phase estimation for distributed scatterers [10].
The accuracy and precision of IWAP is scrutinized in [11]
and [12]. Figure 2 shows the estimated displacement velocity
as a standard product of InSAR and IWAP. Note that in the
retrieval of the displacement TS, IWAP considers a spatial
estimation and removal of the residual atmospheric signals.
Using this technique, non-linear deformation signal may leak
to the atmospheric estimation and thereby be removed from
the exploited TS data.

3.2. Latent Representation Learning

Extracting features using either of the shallow or deep learn-
ing methods of 2.1 allows the representation of the TS from a
128 dimensional space into a low dimentional latent space.
The dimensionality of the latent space is chosen from the
range of 5 to 12 based on reconstruction performance on a
separate validation dataset.

In the following, we expand on our method for vitalization
of such learned latent representations. Having the displace-
ment TS as the input signals, the algorithm outputs m features
per TS. Each TS is tagged by geographic coordinates. Al-
though this spatial information is not exploited in the feature
extraction, we use it to visualize the latent representations, by
plotting each feature according to the coordinates of the in-
put signal. Such visualization allows the interpretation and
inspection of the latent representations. Figure 3 shows the
outcome of this visualization for both UMAP and LSTM-AE.

3.3. Time Series Clustering

Given the latent features, the similar signals are clustered ac-
cording to Section 2.2. To inspect the result, the input TS
per cluster is visualized (Fig. 4 middle), the corresponding
geographical coordinates of each sample TS in the cluster is
provided as an overlay of points on the velocity map (Fig. 4
right). The latter allows the inspection of spatial distribution
of the samples. Figure 4 shows an example of a clustered
signal using the UMAP+HDBSCAN pipeline.

3.4. Further capabilities of the LSTM Autoencoder

Aside from the clustering application, the employed LSTM-
AE allows for the reconstruction of the displacement signal
from the noisy input TS. Figure 4 right depicts an example of
such signal recovery. Moreover, the introduction of data un-
certainty in the optimization of the network provides a mean
to quantify the noise in the TS and take this noise into account
in the reconstruction of the displacement signal.

4. SUMMARY AND OUTLOOK

In this short abstract we summarized two deep and shallow
learning approaches for efficient InSAR TS mining. For the
sake of brevity, in depth comparison of the two frameworks

as well as their merits in latent representation learning and
clustering will be addressed in the oral presentation.

A relevant future research direction is the transferability
of such TS mining approaches; i.e. the applicability of a
learned model based on data sets used in thr training process
to a data set from a different region of interest. This trans-
ferebility is in particular challenging for InSAR data; reasons
are: the specificity of InSAR signal and error sources to the
signal propagation medium and surface characteristic; such as
topography, land-cover etc., as well as the sensor geometry.
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