Cost-Benefit Analysis of an Innovative and Modular Autonomous Vehicle: The Case of "U-Shift"

Wissen für Morgen

2021 Annual Conference - Society for Benefit-Cost Analysis 18 March 2021, online

Ines Österle, Christian Ulrich, Sebastian Herwartz, Sebastian Sigle, Jürgen Weimer – *German Centre for Aerospace, Stuttgart* Markus Conzelmann, Tobias Fleck, Marc Zofka – *FZI Research Center for Information Technology, Karlsruhe*

Contents

1. U-Shift Vehicle Concept

Cost-Benefit Analysis

- 2. Framework
- 3. Results
- 4. Main Inputs
- 5. Conclusions

1.1 U-Shift: An on-the-road modular, autonomous vehicle concept

Electric – Durable – Energy Efficient Design – Disabled-Accessible – Intermodal – Multi-Functional

Background

- Since 2017, U-Shift has been developed by the German Centre for Aerospace
- In 2020, a first prototype has been completed

• In addition to technical R&D activities, the institutes conducts analysis to evaluate the proposed technology

Cost-Benefit Analysis

→ Quantification of costs and benefits of U-Shift with a focus on CO₂-emissions, air pollution and road safety

→ The CBA was undertaken in 2019-2020 as part of a feasibility study funded by the German Ministry for Economy

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

2. Cost-Benefit Analysis Framework

2.1 Cost-Benefit Analysis Framework

Assessment of 3 different future **autonomous vehicle scenarios** in Stuttgart in 2040:

2.1 Cost-Benefit Analysis Framework

Item	Description	
Price Year	€2019	
Study Year	1 year (2040)	
Base Year	2040	
Study Area	Stuttgart	
Scenarios	Base Case (Business-as-usual) U-Shift Managed Automated Driving (MAD); U-Shift Automated Driving (AD);	
Cost quantification	Opex: 2040 Capex: apportioned to 2040 based on asset life	
Benefit quantification	2040	
Quantified benefits	Road safety, CO2 emissions, air pollution	

→ CBA is undertaken in accordance with Australian infrastructure appraisal practice and methodology developed in eIMPACT (2006). Input values based on German guidance and local data.

1 eIMPACT (2006) Socio-economic Impact Assessment of Stand-alone and Co-operative Intelligent Vehicle Safety Systems (IVSS) in Europe Report type Deliverable D3

3. Cost-Benefit Analysis Results

3. Headline Results

Driver: Reduction in average emission factor (g/km)

Standalone, in €	Base Case	U-Shift: Managed Automated Driving	U-Shift: Automated Driving	
Road Safety	-398 M	-317 M	-332 M	
CO ₂ Emissions	-153 M	-107 M -110 M		
Air Pollution	-96 M	-73 M -75 M		
Total Benefits	-647 M	-496 M	-517 M	
CAPEX	958 M	837 M 860 M		
OPEX	721 M	927 M	919 Mi	
Total Cost	1.680 M	1.765 M	1.779 M	
Benefit-Cost Ratio)	1,8	1,3	

Largest benefit: improvement in road safety

> Driver: large maintenance costs of U-Shift (conservative approach)

CAPEX: infrastructure based automation less costly than vehicle based automation!

4. Main Inputs

4. Main Inputs Road Safety

- High expectations regarding road safety improvements from automated vehicles
- Technology is not mature, extent of future road safety benefits are unknown. For estimates, different approaches are used:
 - Analysis of crash data from prototype vehicles: e.g. data on Waymo vehicles include description of 16 rear-end accidents: Waymo was one time the back vehicle; 15 times it was the front vehicle²
 - Isolation of effect of driver assistance systems on safety
 - Insurance Institute for Highway Safety (IIHS) (2020)³ study base approach crashes involving <u>only</u> sensing/perceiving factors or incomposition of accidents could be prevented by autonomous vehicles, 34% of accidents could be prevented

Automated vehicles are expected to be a game changer with respect to road safety Magnitude of benefits are unknown ² Schwall et al. (2020) Waymo Public Road Safety Performance Data ³ Insurance Institute for Highway Safety (2020) What humanlike errors do autonomous vehicles need to avoid to maximize safety?

4. Main Inputs Road Safety

Assumption on road safety for this study: own qualitative assessment based on data in IIHS (2020)²

Sleeping, heart attacks an drug&alcohol abuse are no known problems of machine	d ot es Crashes (by Causes)	Managed Automated Driving	Automated Driving	
	Only sensing and perceiving crashes	95%	75%	
	Incapacitation	100%	100%	
	Unavoidable by driver	0%	0% 🔶	
	Remaining crashes with multiple factors (average)	62%	62%	
	Planning and deciding	75%	75%	
Difficult to project how well machine will perform in the future	Execution and performance	50%	50%	
	Predicting	50%	50%	
	Crashes preventable by U-Shift compared to to today	1.569.076	1.439.913	
	Crashes preventable by U-Shift %	74%	68%	

Estimated reduction potential of accidents (by causes)

Not possible to achieve 100% perception, e.g. due to view obstructions; infrastructure-based automation has advantage

2% of accidents. Mainly echnical failure. These issues vill increase with autonomous vehicles.

² Insurance Institute for Highway Safety (2020) What humanlike errors do autonomous vehicles need to avoid to maximize safety?

4. Main Inputs Energy Consumption of Automation

- Replacement of driver with machine requires electrical energy
- Today, automated vehicle prototypes require as much energy as needed for propulsion
- Future: Uncertain. Substantial energy efficiency improvements from technological advancements are possible; however, risk of rebound effect from increased focus on comfort/ entertainment feature
- \rightarrow Input values for average energy consumption of automation in CBA:
- Core Scenario: 3,5 kWh / 100 km (Source: Gawron et al. 2018)³
- Sensitivity test with pessimistic case: 12,5 kWh / 100 km

→ Automated vehicles require energy for automation Magnitude depends on technological progress and implementation

³ Gawron et al. (2018) Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects

4. Main Results and Conclusions

Main Results

Benefits of U-Shift

Opportunities Disbenefits (not quantified)

- Implementation of U-Shift may contribute to substantial reduction of road accidents
- CO₂ emissions and air quality can be improved because of shared approach and lower vehicle specific emissions compared to a Business-as-Usual Scenario
- Automated driving is less costly under the infrastructure-based automation approach compared to the vehicle-based approach because of less automation hardware required
- Implementation of U-Shift in the scenarios considered leads to more congestion and road space required because average load is lower compared to today's vehicles → need to identify adequate use cases (ongoing research activity)

Challenges

• Energy consumption of automated vehicles is higher compared to today's vehicles, driving emissions and operating costs

Conclusions

- To harness opportunities from autonomous driving technologies, main principles for adoption should be:
 - Minimization of vehicles' energy consumption (for propulsion, automation, comfort)
 - Integration into sustainable mobility concepts (no mode shift from public transport and walking/cycling; shared use of autonomous vehicles; high occupancy rate)
 - Prerequisite that machines should be better drivers than humans
- The study shows that **Cost-Benefit Analysis for a future technology** has proven adequate:
 - To identify possible drivers for costs and benefits for society
 - To identify opportunities and risks of automated driving
 - To provide evidence base to formulate policy recommendation
 - To inform implementation scenarios

Thank you for your attention.

QA

Ines.oesterle@dlr.de

