
1	 Introduction

Cities are hotspots of transportation. This phenomenon gets intensified by the steady growth and den-
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Spatial parameters for transportation: A multi-modal approach 
for modelling the urban spatial structure using deep learning and 
remote sensing

Abstract: A significant increase in global urban population affects the 
efficiency of urban transportation systems. Remarkable urban growth 
rates are observed in developing or newly industrialized countries where 
researchers, planners, and authorities face scarcity of relevant official data 
or geo-data. In this study, we explore remote sensing and open geo-data 
as alternative sources to generate missing data for transportation models 
in urban planning and research. We propose a multi-modal approach 
capable of assessing three essential parameters of the urban spatial 
structure: buildings, land use, and intra-urban population distribution. 
Therefore, we first create a very high-resolution (VHR) 3D city model 
for estimating the building floors. Second, we add detailed land-use 
information retrieved from OpenStreetMap (OSM). Third, we test and 
evaluate five experiments to estimate population at a single building 
level. In our experimental set-up for the mega-city of Santiago de Chile, 
we find that the multi-modal approach allows generating missing data 
for transportation independently from official data for any area across 
the globe. Beyond that, we find the high-level 3D city model is the most 
accurate for determining population on small scales, and thus evaluate 
that the integration of land use is an inevitable step to obtain fine-scale 
intra-urban population distribution.

Keywords: Urban spatial structure, built environment, 3D city model, 
land-use model, intra-urban population, data fusion
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sification of urban populations (United Nations, 2019). On the one hand, the spatial proximity within 
cities promotes innovation, economic wealth, education, and thereby attracts more and more people to 
move into urban agglomerations (e.g., Glaeser, 2011). On the other hand, a spatial concentration has 
also negative implications, e.g., shortage of space, increase in pollution, noise emission, and congestion. 
Transportation related pollution and noise are particularly problematic in dense urban environments, 
being a public health concern for the local population (Choi & Zhang, 2017; Okokon et al., 2015). Ad-
ditionally, inadequate urban transportation has also economic and environmental impacts (Rodrigue, 
Comtois, & Slack, 2016).

The urban spatial structure plays an important role in urban transportation research and describes 
the morphological dimensions, but also the functional features of a city (Krehl, Siedentop, Taubenböck, 
& Wurm, 2016). This includes the distribution of transportation networks, flows of goods and services, 
(un)employment, population, and land use among others (Farber & Li, 2013; Parr, 2013). The urban 
spatial structure was found to be associated with, e.g., mode choice (Tracy, Su, Sadek, & Wang, 2011), 
active travel (Cheng et al., 2019), level of human activity (Chen, Hui, Wu, Lang, & Li, 2019), commut-
ing patterns (Sohn, 2005), travel time, private transport energy consumption (Liddle, 2013), and vehi-
cle miles traveled (VMT) (Ihlanfeldt, 2020) including CO2 emissions (Lee & Lee, 2020). Accordingly, 
active planning of characteristics of the urban spatial structure is understood as an effective tool for trans-
portation planning, often described as smart growth (Jin, 2019; Tracy et al., 2011). Furthermore, char-
acteristics of the urban spatial structure including land use as well as population and their distribution 
are crucial to predict travel behavior and estimate travel demand (Zhang, Liu, Tang, Cheng, & Wang, 
2019). This information serves as base data for models addressing transportation forecasting, e.g., aim-
ing at purposes for trip generation and origin/destination (O/D) estimations (Machado & Quintanilha, 
2019). Buildings, for example, serve as the minimal spatial units where trips originate and end (Sevtsuk 
& Mekonnen, 2012), and are the basis to further define land use and population (Hecht, Kunze, & 
Hahmann, 2013). Therefore, sufficient knowledge about the urban spatial structure is necessary to cre-
ate adequate countermeasures, and reduce negative concomitants of transportation while satisfying the 
need for mobility for everyone. However, we experience a lack of relevant base data for many populated 
places, e.g., for estimating transportation demands (Levashev, 2017). Although the quality and quantity 
of open geo-data continues to increase, e.g., from OSM (Barrington-Leigh & Millard-Ball, 2017; Tian, 
Zhou, & Fu, 2019), many regions are still underrepresented. Especially in highly dynamic cities of the 
Global South these necessary data are often outdated, incomplete, not reliable or generally inexistent 
(Cervero, 2013; Walker, Srinivasan, & Bolduc, 2010). In addition, traditional methods like surveys 
and traffic counting to collect data for O/D estimations can often not be implemented in developing 
countries due to a lack of financial resources and skilled personnel, complicated by high urban crime 
rates (Machado & Quintanilha, 2019). These circumstances lead to the fact that suitable transportation 
models are underrepresented in developing countries (Wang, Mishra, Ye, Li, & Wu, 2017). Moreover, 
data at the administrative level are often main data sources for transportation forecasting. However, these 
aggregated spatial units cannot be considered as ideal and entities with a higher level of detail are favor-
able, especially in dense urban environments (Nordenholz, Metzler, & Winkler, 2019). A high spatial 
resolution of reliable base data is also advantageous for agent-based models, e.g., for studying the effect 
of transportation for the local population in regard to traffic-related noise (Kaddoura, Kröger, & Nagel, 
2016) and emissions (Linton, Grant-Muller, & Gale, 2015). Where relevant data are not available, there 
is a need for alternative sources.

Remote Sensing might serve as such an alternative, possibly able to provide missing data for trans-
portation (Machado & Quintanilha, 2019). Remote sensing 1) allows large area coverage beyond ad-
ministrative boundaries, 2) provides an objective framework independently from official sources, 3) 
helps to gather up-to-date information, and 4) is time and cost efficient. Although remote sensing usage 
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requires specialist knowledge (de Sherbinin et al., 2002; Young et al., 2017) and assumes availability of 
the respective data, it was used in various studies in the context of transportation (Bowen, Vlasek, & 
Webb, 2004; Guindon & Zhang, 2007; Kopsiaftis & Karantzalos, 2015; Machado & Quintanilha, 
2019; Palubinskas, Kurz, & Reinartz, 2010; Salvo, Caruso, Scordo,Guido, & Vitale, 2017; Zhang 
& Guindon, 2006; Zhang, Guindon, & Sun, 2010). For example, Aljoufie, Zuidgeest, Brussel, and 
van Maarseveen (2013) analyzed the spatio-temporal relationship of urban growth and transportation. 
Dincer, Akdemir, Ulvi, and Duzkaya (2019) revealed how infrastructure projects have led to an increase 
in built-up areas and population using Landsat data. In general, remote sensing data allow to capture 
various aspects of the urban spatial structure: To monitor the spreading of settlements, it is possible to 
derive their extent, which describes the 2D horizontal spreading (Angel, Parent, Civco, Blei, & Potere, 
2011; Taubenböck et al., 2019). With height information retrieved from stereo or tri-stereo satellite 
data, it is possible to create a digital surface model (DSM) or a normalized DSM (nDSM), which makes 
it possible to furthermore derive the vertical spreading of cities and urban densities as proxies (Wurm, 
Taubenböck, Schardt, Esch, & Dech, 2011; Wurm, d' Angelo, Reinartz, & Taubenböck, 2014). Ad-
ditionally, the combination of remote sensing and Google Street View enables to derive building floors, 
which allows in-depth analyses of the urban spatial structure (María, Hube, Rivera, Yepes-Estrada, & 
Valcárcel, 2016; Taubenböck, Kraff, & Wurm, 2018).

The goal of this study is to demonstrate the feasibility of remote sensing based data and derived 
geoinformation as proxies to support transportation-related studies, especially for areas with data scar-
city. To do so, this study focuses on three factors which first significantly contribute to the characteristics 
of the urban spatial structure, and further can be accessed using remote sensing and open geo-data: 1) 
buildings, 2) land use, and 3) population (discussed in detail in Section 2). These three key parameters of 
the urban spatial structure are derived at a very high spatial resolution for the exemplary mega-city of 
Santiago de Chile to address the following aspects:

1) 	Where are buildings located and how can these be characterized according to their area, height, 
	 and number of floors?
2) 	Which type of land use can be assigned to these buildings, and consequently, how is land use 
	 distributed throughout the city?
3) 	How many people can be attributed to each building, and therefore, how about the intra-urban 
	 population distribution? What kind of data is needed to achieve reasonable population num
	 bers supporting transportation models?
Hence, we create a multi-modal 3D functional model capable of capturing these important fea-

tures of the urban spatial structure with four levels of details. In a first step, we create the 3D build-
ings (Level-1). Therefore, we combine cutting edge deep learning methods for semantic segmentation 
of area-wide orthophotos for the derivation of building footprints with height information from an 
nDSM. In a second step, we use Google Street View to obtain the number of floors for a sample of 
buildings for training a regression model to derive city-wide building floors (Level-2). Third, we use 
OSM land-use polygons and points of interest (POIs) to add detailed land-use information (Level-3). 
Fourth, we estimate population at single building level to determine intra-urban variations in popula-
tion (Level-4). For this, we carry out five experiments using different levels of detail, which are intended 
to show which level of detail is decisive for a valid population distribution. The data used in this study 
are available for many parts of the world, but unfortunately not globally. Therefore, these experiments 
allow us to assess the possibilities and limitations for other data scenarios as well. Section 2 introduces 
the three key parameters in detail. Section 3 describes the study region and the data used. Section 4 
outlines the methods to obtain the functional 3D city model encompassing the three key parameters. 
Section 5 presents the results including the validation of the functional 3D model with its four levels of 
detail. Section 6 discusses the findings.
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2	 Background

This section focuses on the three parameters of the urban spatial structure addressed in this study: build-
ings, land use, and population. For each parameter, it highlights its relevance within the context of urban 
transportation, and reviews methods of their determination through remote sensing.

2.1	 Buildings

Main features of the urban spatial structure are buildings. They can be considered as the basic physical 
component of a city’s spatial structure, and are needed as a baseline for any further semantic determi-
nation, e.g., land use and population (Hecht et al., 2013). It is possible to derive the built density or 
compactness metrics from building data (2D and 3D), which was found to be an essential character-
istic for matters of the urban transportation system (Chen et al., 2019; Liddle, 2013; Resch, Bohne, 
Kvamsdal, & Lohne, 2016). Despite their importance for urban planning and research, building data 
are scarce for many regions throughout the world. Although OSM provides building footprints, there 
is only little known about their worldwide completeness. However, for example, their completeness for 
the region Lombardy in Northern Italy has been identified to be at 57% (Brovelli & Zamboni, 2018). 
For Munich, Germany, Fan, Zipf, Fu, and Neis (2014) found a high degree of completeness, however 
with less information on the building attributes, e.g., height or number of floors. It can be assumed that 
completeness and attribute data are worse in other regions, e.g., in non-industrialized countries. Remote 
sensing imagery can serve as an alternative source to gather missing building data. Although it has been 
a task within the remote sensing community for some time, building extraction remains a challenging 
task (Bittner, Cui, & Reinartz, 2017; Ghanea, Moallem, & Momeni, 2016). Recently, novel approaches 
using deep learning have outperformed traditional methods (Ma et al., 2019; Zhu et al., 2017). They 
have been found to be very precise in building extraction tasks (Hui, Du, Ye, Qin, & Sui, 2019) using 
semantic segmentation and transfer learning (Wurm, Stark, Zhu, Weigand, & Taubenböck, 2019b). 
With these 2D footprints it is possible to further add height information and create 3D buildings by 
using an nDSM derived from satellite data (Wurm et al., 2021). A DSM contains the height of all ob-
jects on the earth’s surface, both natural and artificial features are depicted. An nDSM obtains only the 
heights of objects in relation to the ground surface, i.e., the height of the buildings. The 3D buildings 
can be used as the baseline to determine further important factors of the urban spatial structure: land use 
and population (e.g., Wurm et al., 2011).

2.2	 Land use

Each type of land use has its specific impact on mobility requirements and can serve as a generator or 
attractor of movements (Nuhn & Hesse, 2006). Diverse land use has been associated with shorter trips 
(Srinivasan, Provost, & Steiner, 2013), a reduction in driving emission through VMT cutback (Choi 
& Zhang, 2017), an increase in public transportation usage (Stevenson et al., 2016), and a higher 
probability using non-motorized modes (Duncan et al., 2010; Faghih-Imani et al., 2014). Commut-
ing mode choice and patterns were also found to be related to land use (Hu, Xu, Shen, Shi, & Chen, 
2018; Jin, 2019; Sun, Ermagun, & Dan, 2017), although a study suggests that the effect of land use on 
mode choice differs between trips and tours (van Acker & Witlox, 2010). Additionally, the intra-urban 
distribution of a certain land-use type within a city can support or hinder private auto ownership. Cao, 
Naess, and Wolday (2019) found that relocating residential areas outward of the city increases auto own-
ership, and relocating residential areas inward of the urban area decreases auto ownership. For retrieving 
relevant land use, there is an increasing amount of studies using volunteered geographic information 
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(VGI) data, especially from OSM (OpenStreetMap contributors, 2017). The advantage of using OSM 
land-use data is that they provide a free and highly detailed database, enabling a more detailed land-use 
determination, which could not be assessed by using solely remote sensing data (Fonte et al., 2017; 
Schultz, Voss, Auer, Carter, & Zipf, 2017). Land use does also play a key role for population estimation 
tasks (Biljecki, Ohori, Ledoux, Peters, & Stoter, 2016).

2.3	 Population

Population is often used as a key variable for travel demand estimation (Choupani & Mamdoohi, 2016) 
and accessibility analyses (Sarlas, Páez, & Axhausen, 2020). High population density positively affects 
shared bicycle flows (Faghih-Imani, Eluru, El-Geneidy, Rabbat, & Haq, 2014), and decreases the like-
lihood of owning more than one car (Soltani & Somenahalli, 2005), thereby promotes sustainability 
within the transportation sector. Furthermore, Zhang and Guindon (2006) emphasized that intra-urban 
population variation is a decisive factor for urban transportation systems. Srinivasan et al. (2013) found 
that a high density of residential population and diverse land-use results in shorter trips, emphasizing 
that both factors are interwoven. Approaches to derive intra-urban population patterns can be separated 
into top-down and bottom-up, by distributing the total urban population number to smaller entities 
(e.g., transportation analysis zones (TAZs), administrative areas, etc.) and by scaling-up population from 
parts of the city to the whole city, respectively (Stevens , Gaughan, Linard, & Tatem, 2015; Taubenböck, 
Roth, & Dech, 2008; Wu, Qui, & Wang, 2005; Wurm et al., 2009). The advantage of top-down ap-
proaches is that no small-scale and detailed population data are necessary, but only the total population 
number of a city, thereby increasing the transferability of the approach.

3	 Study area and data

3.1	 Santiago de Chile

Our study area comprises the majority of the urban core called Gran Santiago with a population of 4.9 
million (Table 1, Figure 1). We choose Santiago de Chile as our study region, as relevant data were avail-
able for testing and validating the proposed approach (Section 3.2–3.6). Furthermore, the urban area of 
Santiago has experienced a remarkable expansion during the past decades and is expected to grow even 
further (Puertas, Henríquez, & Meza, 2014), thereby being a great example of a dynamic city. Santiago 
has a relatively low motorization rate compared to its economic development. However, the city must 
deal with significant air pollution, especially with respirable particulates and nitrogen oxides, whereby 
transportation is the source for 56% and 87% of the emissions, respectively (Zegras, 2010). To counter-
act, the authorities have introduced a permanent restriction since 1986, which bans vehicles having no 
catalytic converter according to license plate numbers during high-pollution rates (Grange & Troncoso, 
2011). These regulations have been extended subsequently, however, car use was only decreased by in-
troducing a ban for all catalytic converters in the morning on days (Grange & Troncoso, 2011).
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Table 1. Overview of our study area within Gran Santiago, which is restricted by the data extent of the building footprints 
(see Section 3.2)

Area (km²) 591

Population 4,897,593

Population density (per km²) 8,282
 

Figure 1. Location of Chile and the region Metropolitana (left), and the region Metropolitana with Gran Santiago and the 
administrative unit of Gran Santiago with the study area (right)

3.2	 VHR building footprint data

For Santiago de Chile, freely available building footprint data are scarce, e.g., we observed a poor cover-
age of OSM building data (Stiller, Stark, Wurm, Dech, Taubenboöck, 2019b). Therefore, we extracted 
buildings for entire Gran Santiago at a very high spatial resolution using a deep learning approach. For 
details on the methods we refer to our prior study (Stiller et al., 2019b). In brief, as input data, we used 
an aerial orthophoto mosaic from 2014 (Figure 2a) with a geometric resolution of 0.35m (Infraestruc-
tura de Datos Geoespeciales (IDE) Chile, 2019). To extract the buildings within our study area, we used 
the neural network MASK R-CNN, which has already been pre-trained on satellite imagery during a 
mapping challenge (Humanity & Inclusion, 2019). We labelled buildings for training data to fine-tune 
the deep learning model and to improve the performance (Wurm et al., 2019b). With the fine-tuned 
model we classified 336,598 buildings for entire Gran Santiago at an overall accuracy of 92%. For this 
study, we reused the extracted buildings as building footprints (Figure 2b) and modified these as pre-
sented in Section 4.1.

3.3	 DSM and nDSM

To add height information to the existing 2D building footprints, and thereby to obtain 3D objects, 
e.g., stereo or tri-stereo data can be used. When using stereo imagery, ground and roads are often oc-
cluded in densely built-up areas. Tri-stereo imagery is acquired from three perspectives, which reduces 
these unseen areas and the increased redundancy leads to improved height accuracy. Usually, sub-meter 
VHR tri-stereo imagery is used to obtain digital elevation models in dense urban regions, however due 
to the large size of the study area we used panchromatic tri-stereo images from 2014 with a geometric 
resolution of 2m acquired by the SPOT-7 satellite covering an area of about 1,300km² over Gran San-
tiago (Figure 2c). From these, we created a DSM and an nDSM (see Section 4.1).
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To validate the city-wide nDSM from SPOT-7, we used DSM data with a pixel spacing of 0.12m 
derived from VHR DSM of DLR MACS (Lehmann et al., 2011) processed by an algorithm for VHR 
input data (Piltz, Bayer, & Poznanska, 2016). The airborne VHR data cover a strip in north-eastern 
Santiago with a total area of about 17.6km² (Figure 2d).

3.4	 Building floors from Google Street View data

The number of floors per building is an important factor of the urban spatial structure, and serves as 
an input variable for the population estimation procedure within this study (see Section 4.4). To derive 
the number of floors per building, we conducted a regression analysis that estimates the floors in depen-
dence on the building height (e.g., Wurm et al., 2019a). Therefore, a sample was created containing 100 
buildings from the original building footprint dataset. For this sample, we manually inspected Google 
Street View imagery to retrieve the number of floors for each building. 

3.5	 OSM data: land-use polygons and POIs

The OSM initiative provides free geospatial data to anyone (OpenStreetMap contributors, 2017). We 
include OSM data for deriving land-use information based at single building level. For that, we used 
two out of the various datasets that are provided by OSM: land-use polygons and POIs (Figures 2e and 
2f). The land-use polygons contain 17 land-use labels for our study area, e.g., residential, commercial, 
military, park, and industrial. The POIs comprise a total of 114 highly diverse labels, e.g., café, hotel, 
doctors, shops, school, etc. 

For eliminating some misclassifications within the building dataset we used additional OSM data: 
OSM roads and the OSM water line dataset (procedure described in Section 4.1).

3.6	 Census data

We used census data from 2017 (Instituto Nacional de Estadísticas (INE) Chile, 2017) containing 
population numbers on two different spatial scales, i.e., at the administrative levels of manzanas (build-
ing blocks) and districts (Table 2). The data were used 1) to sum up the small entity population numbers 
to gather the total population for our study area, and 2) to validate the performance of our approach for 
estimating the population at building level (Section 4.5).

 

Figure 2. Extent of Gran Santiago aerial imagery that was used to extract the VHR buildings (a), initial building footprint data 
(b), nadir-multispectral SPOT-7 data (c), location of VHR airborne DSM data (d), OSM land-use polygons (e), and OSM 
POIs (f)
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Table 2. Characteristics of the 2017 census data from INE
	

Manzanas Districts

total number of entities 34,507 297

mean size (m²) 14,666 m² (≈120×120m) 2,524,978 m² (≈1,600×1,600m)

range of size (min – max) (m²) 227 – 4,225,893 376,571 – 39,845,877

mean population 148 16,458

4	 Methodology: creating the VHR functional 3D Model

The aim of this study is to create a VHR functional 3D Model with four levels of detail containing de-
cisive parameters for urban transportation systems with regard to the urban spatial structure (Figure 3):

•	 Level-1: 3D buildings with building heights
•	 Level-2: 3D buildings with estimated number of floors
•	 Level-3: 3D buildings with detailed land-use information derived from OSM data
•	 Level-4: 3D buildings containing estimated population count at the single building level

In the following sections of this chapter, we present the methodology for creating this functional 
3D city model.

 

Figure 3. Increase the semantic level of the 3D functional model based on our multi-modal approach: overview of data and 
methods used for achieving different levels of information depth
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4.1	 Data fusion: 2D building footprints and height information (Level-1)

The building footprints described in Section 3.2 were reused and optimized regarding several criteria: 
First, the outline borders were smoothed by applying morphological opening and closing by the extent 
of 1 pixel. Second, misclassifications were automatically removed within larger streets and within the 
course of rivers based on spatial intersection by using OSM’s roads dataset with the class highway and 
water line. Third, other minor misclassifications were automatically eliminated by using a size threshold 
of 2.5m². All potential buildings below this threshold were removed, as they were falsely classified as 
buildings, as they exhibit a similar rectangular shape. 

From the SPOT-7 data, a DSM was created after a fully automatic processing system for optical 
satellite imagery (d'Angelo & Reinartz, 2011; Krauß, 2014). The SPOT-7 data were co-registered to 
the location of the orthophoto mosaic, which increases the location accordance of multi-sensor data. 
To generate an nDSM containing only above-ground information we used the approach proposed by 
Perko, Raggam, Gutjahr, and Schardt (2015).

The nDSM retrieved from SPOT-7 data was used and combined with the building footprints by 
using the mean height due to large height differences in the spatial resolution of the two data sources 
(Wurm et al., 2014). With this, the mean building height was determined for every single building 
entity for entire Santiago de Chile. 

4.2	 Determination of building floors with Google Street View imagery (Level-2)

To increase the semantic level of the 3D model, the number of floors for every building of Gran Santiago 
was derived using sampled Google Street View data for 100 buildings. We assume a linear relationship 
of the mean building height and building floors. Thus, a linear regression analysis was conducted to 
determine the number of floors per building for our study area. The regression analysis was based on the 
sample of 100 buildings. The mean building height was used as the explanatory variable and the number 
of floors as the dependent variable. From the sample of 100 buildings, six outliers were removed during 
the procedure to build the final model.

4.3	 Extraction of land use from OSM (Level-3)

To retrieve land use at building level, we included OSM data in our analysis and determined land-use 
categories in three subsequent steps: sub-categorization, combination, and simplification (Figure 4). 

Firstly, we defined relevant land-use categories. Therefore, we used OSM land-use polygons to 
determine three sub-categories: residential, commercial, and industrial. Furthermore, we used OSM 
POIs to obtain a finer level of detail (Estima & Painho, 2015). The POIs comprise a total of 114 la-
bel categories. We grouped these diverse point data into the following six sub-categories: commercial, 
education, accommodation, communal, cultural, and health. Secondly, we combined the two groups 
of sub-categories to create twelve final land-use classes. We observed that no land-use class was assigned 
to some buildings, as these were neither covered by the land-use polygon data nor by the POIs. Thirdly, 
for estimating the population (see next section), we simplified the land-use categories considered either 
as populated or non-populated.
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Figure 4. Working scheme on OSM-based land-use categorization within three steps: sub-categorization, combination, and 
simplification

4.4	 Estimation of population at single building level (Level-4)

In general, after Wu et al. (2005) methodologies for population estimation can be categorized into 1) 
areal interpolation methods, also known as disaggregation, and 2) statistical modelling methods. In this 
study, we used the first method, which supports the transferability of the approach by requiring only one 
total population count for the proposed study region. We conducted five experiments by subsequently 
increasing the level of detail by using only one overall population number for the whole area of investiga-
tion (Table 3, Figure 5):

•	 experiment 1 relies on using the area of the building footprints. In former studies, the area of 
buildings was found to reasonably agree with population numbers (Wu et al., 2008).

•	 experiment 2 includes the 3D height information. Therefore, population is a function of area 
and height.

•	 experiment 3 aims to use the estimated and rounded floor number. From the height H (m), 
we estimated a whole number S for assumed floors based on the findings from the regression 
analysis. For that, we assume:

	
			   for 0<H<1:       S=1;	 (1)

			   for 1<H<2:       S=2;	 (2)

			   …	
			   for i<H<j:       S=j;	 (3)
			   i:original height (m)  as decimal number

				    j:irounded (rounded to the higher whole number)
•	 for experiment 4 and 5 we used the simplified land-use classes and their relevance as dwelling 

units, while experiment 4 uses H and experiment 5 uses S. A building of class “residential” is 
considered as fully populated, meaning that every floor is considered as a dwelling unit. The 
class “residential-mixed” is assumed to have one floor not populated (e.g., a shop at the ground 
floor) (Biljecki et al., 2016). The land-use classes “other”  and no land use”  are considered as 
not being populated, e.g., industrial, commercial, etc.

With these five experiments, we systematically tested how the approaches perform in estimating 
population at single building level using 1) only remote sensing (experiment 1 and 2) and 2) remote 
sensing in combination with other geo-data (experiment 3, 4 and 5). Therefore, they serve as an indica-
tor for the accuracy of the population estimation that can be expected when using the respective data 
with different levels of detail, also relevant for data availability and computation power and time. 
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Table 3. Overview of five experiments and data used for the population estimation at single building level

description        required data

Experiment 1a) 2D, Area of building footprints VHR aerial imagery

Experiment 2a) 3D buildings (area × height) VHR aerial imagery
+ stereo-data

Experiment 3b) Building floors (area × estimated floor)
VHR aerial imagery
+ stereo-data
+ Google Street View

Experiment 4b) 3D + land use
VHR aerial imagery
+ stereo-data
+ OSM

Experiment 5b) Building floors + land use

VHR aerial imagery
+ stereo-data
+ Google Street View
+ OSM

Note: a) experiment conducted using only remote sensing data; b) experiment conducted using remote sensing in combina-
tion with other geo-data

 
 

Figure 5. Schematic illustration showing the five experiments that were conducted for population estimation at single building 
level: using for experiment 1) the 2D building dataset containing the building footprints, experiment 2) the volume of the 3D 
building dataset, experiment 3) the 3D building dataset containing the number of the rounded floors, and the 3D building 
dataset with the extra information on the accompanied land use (*) based on volume for experiment 4 and rounded estimated 
floors for experiment 5

4.5	 Validation

The VHR airborne DSM was used as a reference to validate the height of the 3D city model’s features. 
The VHR DSM served to create an nDSM based on an algorithm by Pijl et al. (2020). The mean of the 
VHR nDSM pixel values was used to retrieve the height per building. Based on this, an object-based 
accuracy assessment was carried out given the overall deviation in terms of the mean absolute error 
(MAE). Additionally, we present an in-depth accuracy assessment based on the absolute percent error 
(APE) comparing the VHR nDSM and the SPOT nDSM. The APE is defined as the elementwise 
absolute percent difference between two numeric vectors and gives the deviation (Frasco, Hamner, & 
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LeDell, 2018).
To determine the accuracy of the population estimation, we used the census data for Santiago as 

a reference. The validation is performed at two spatial scales: manzanas and districts. This 1) enables 
to determine possible differences in methodological accuracy for small (manzanas) and large entities 
(districts), and 2) helps to identify the best method (experiment 1, 2, 3, 4 or 5) for future applications. 
We compare the reference and estimated values in total represented as scatterplots, and present the 
MAE and relative absolute error (RAE) as accuracy metrics. The RAE computes the relative absolute 
error between two numeric vectors (Frasco et al., 2018). For the best performing method in predicting 
population, we provide an in-depth accuracy analysis, comparing the error metric based on land-use 
proportions.

5	 Results

5.1	 3D City model

An exemplary part of the created 3D city model shows the Central Business District (CBD) of Santiago’s 
city center (Figure 6). The resulting 3D model depicts the different structures within this area, having 
the highest buildings within the CBD and smoothly fading out to the surrounding area.

 

Figure 6. Exemplary illustration of the 3D model, showing the CBD of Santiago

For validating the height information of the 3D model, we tested the accuracy of the large-scale 
HR SPOT-7 nDSM against the airborne VHR nDSM that was available for a part of Santiago. The 
mean absolute error revealed that the height of buildings varies in average with 2.90m from the VHR 
reference data (MAE=2.90). An in-depth accuracy analysis demonstrated that the APE decreases with 
increasing building height and building area (Figure 7). This means that the estimated building height 
from the HR SPOT nDSM was more accurate for higher and larger buildings.
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Figure 7. Boxplots showing the APE for different groups (x-axis) of building height in m (left) and building area in m² (right). 
The y-axis is showing the value of APE.

5.2	 Deriving building floors

With the building floor sample based on 100 Google Street View observations we were able to 
build a robust linear regression model (adj. R²: 0.88, p-value: 2.2e-16) (Figure 8). Given an intercept 
of 0.69, the linear regression revealed that an average height of 2m in the height model corresponds to 
one floor (slope=0.50; being 1m building height=0.50 floors). The resulting slope of the linear model 
can be interpreted as the number of floors which corresponds to 1m of building height. The value of 2m 
can be understood as the relative floor height within our model, but not the absolute average height of 
floors in Santiago de Chile.

 

Figure 8. Results from the regression analysis revealing the relation of building floors and mean building height (m) of the 
building sample (adj. R²: 0.88, p-value: 2.2e-16)

5.3	 Intra-urban land use

The acquired land use at single building level is shown in Figure 9. As described in Section 4.3, we have 
determined twelve final land-use classes for the study area. For reasons of clarity, and to concise to the 
most prominent land-use types, we limited the land use to five classes for the land-use mapping in Figure 
9. The spatial distribution of land-use types differed remarkably throughout the city area. Within the 
center, there was a high density of land-use type “residential-mixed,” whereas the most prominent land-
use class in the outskirts of Santiago was the class “residential.” “Residential” was the most prominent 
land-use class in our analysis with about 83% of all buildings and 75% of the total building area.
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Figure 9. Map showing the identified land use at single building level for Santiago de Chile based on the applied OSM data 
workflow. The bar charts indicate the classified land-use proportions in regard to the total building number (a), and the total 
building area (b). The class “other” refers to “commercial-mixed,” “industrial-mixed,” “accommodation,” “education,” “cul-
tural,” “health,” and “no land use.”

5.4	 Population estimation

For the overall accuracy metrics, we used the MAE and the RAE for the two spatial entities “manzanas” 
and “districts” (Table 4). The MAE presents the average absolute deviation in number of people between 
the predicted population and the population from the census data. The values can be understood as total 
persons. The RAE compares the mean residuals of the tested model to the mean residuals of a naïve 
model. A reasonable model will result in a RAE of less than 1 (Cichosz, 2015).Our findings revealed that 
experiment 5 is the most accurate of all tested approaches for both spatial scales. However, at the district 
level, experiment 1 performed equally considering the RAE (RAE=0.74). Nevertheless, experiment 5 
performed better in regard to the MAE. The lowest accuracy was yielded by experiment 2.

The accuracy assessment of the five experiments revealed a contrary picture on the two spatial 
scales, when comparing the estimated population versus the census reference data (Figure 10). On the 
fine granular basis of the manzanas, the area-based (experiment 1), 3D (experiment 2) and floor-based 
(experiment 3) approaches revealed a poor performance. These three approaches underestimated clearly 
the actual population number. The accordance increased significantly when adding land-use informa-
tion (experiment 4 and 5; adj. R²: 0.38 and 0.40, respectively). At the level of districts, the best per-
forming approach was experiment 5 (adj. R²: 0.52), closely followed by experiment 1 (adj. R²: 0.50). 
Experiment 4 did also perform well (adj. R²: 0.40). Least performative were experiment 2 and 3 (adj. 
R²: 0.26 and 0.32, respectively).

Figure 11 depicts the effect of different land-use types on the accuracy of the population estimation. 
The APE decreased with an increasing proportion of the land-use type “residential,” either for manzanas 
or for districts. On the other hand, the error increased for the class “residential-mixed,” similarly to the 
classes “other” and “no land use.”
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Table 4. Overall accuracy metrics showing the mean absolute error (MAE) and relative absolute error (RAE) for the results of 
the population estimation for all five experiments. The MAE is given in number of persons.

 MAE RAE

 Manzanas Districts Manzanas Districts

Experiment 1 87.2 4929.9 0.84 0.74

Experiment 2 110.8 7772.2 1.07 1.18

Experiment 3 101.7 6638.8 0.98 1.00

Experiment 4 85.3 6070.1 0.83 0.92

Experiment 5 78.9 4888.4 0.76 0.74

 

Figure 10. Scatterplots showing the values of the estimated population on the y-axis and the population from census validation 
data on the x-axis for manzanas (top) and districts (bottom) for all five experiments

 

Figure 11. Boxplots showing the absolute percent error (APE) in relation to land-use proportions (%) for the classes “residen-
tial,” “residential-mixed,” “other” and “no land use” on two different spatial scales (manzanas and districts). The error metrics 
were retrieved from population estimation based on experiment 5.
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6	 Discussion

In this study we aimed at deriving three key parameters for transportation analyses in cities: 1) buildings, 
as a minimal spatial unit where trips begin and end with 2) detailed land-use information, e.g., to predict 
travel behavior, and 3) the accompanied population, e.g., to estimate travel demand. We showed that 
these input data can be generated anywhere across the globe:

•	 extract city-wide VHR building footprints using a deep learning classification procedure using 
freely available RGB imagery (Stiller et al., 2019b),

•	 add building attributes, i.e., height information from HR tri-stereo imagery to obtain 3D fea-
tures, and number of floors from Google Street View (discussed in Section 6.1),

•	 retrieve detailed land use from OSM data at single building level, which is available on large 
scales (discussed in Section 6.2),

•	 	 estimate the population at single building level by using a top-down approach requiring only 
one total population number at municipality level for the study area to determine intra-urban 
population patterns (discussed in Section 6.3).

Santiago de Chile served exemplary for any global city. The presented approach is transferrable 
and can be applied on large scales to gather base data for transportation planning concerning the urban 
spatial structure, including 3D buildings accompanied by the number of floors, land use, and popula-
tion. The use of remote sensing data and methods has the clear advantage of providing objective insights 
and data for transportation research. Relevant data are missing for many places on Earth, especially in 
developing regions (Yuan et al., 2018). The proposed approach can help to overcome these imbalances 
of data availability in the context of transportation analysis. This is a relevant aspect, as urbanization and 
population growth are especially prominent in developing countries – two important factors for the 
increase in urban transportation demand – while facing a lack in data quantity and quality.

6.1	 3D city model: creating Level-1 and Level-2 data

We combined VHR 2D building footprint data with a resolution of 0.35m with comparatively coarse 
HR SPOT-7 data with a resolution of 2m. The advantage of this procedure guarantees to have the high 
accuracy and exact location of building features at a VHR and add height information for the entire 
study area. The relatively coarse resolution of SPOT-7 data caused inaccuracies in the assignment of 
building heights. However, the validation with the VHR nDSM showed an average absolute error of 
2.90m, being a deviation of less than 1.5 building floors. Analyzing the vertical accuracies revealed that 
the higher or larger a building, the smaller is the height error. This observation is in line with prior stud-
ies comparing large-area satellite-based DSMs with high resolution reference data (Wurm et al., 2014). 
On the one hand, this effect was specifically prominent in small housing areas with a low floor number, 
e.g., in residential areas apart from the city center. On the other hand, the effect became less influential 
for larger and higher buildings, e.g., building units within dense, and highly populated urban areas. 
Moreover, the orthophoto mosaic contained several different perspectives, from which the building 
footprints have been retrieved. This caused inconsistencies within the approach, so façades of buildings 
were erroneously included in the footprint area. Consequently, this effect caused an overestimation of 
building area. However, the fusion of data from different sensors in conjunction with different geomet-
ric resolutions is challenging (Stiller, Ottinger, & Leinenkugel, 2019a). Mapping the used building data 
(0.35m) and the SPOT nDSM (2m) revealed that general patterns are matching but do also show shifts 
of the locations. Taking all these inaccuracies into account, the proposed workflow generated a 3D city-
wide model with minor height deviations in an acceptable range able to derive buildings, which serve as 
objects where trips originate and end (Sevtsuk & Mekonnen, 2012).
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Google Street View served to estimate the number of floors in relation to the mean building height 
based on a linear regression approach. For this, the number of floors was sampled from Google Street 
View imagery for a total of 100 buildings. This resulted in a robust linear regression model. Although 
the sampled buildings have been distributed across different building types and within different areas 
throughout the study area, this generalized assumption does not distinguish between differences in local 
building styles or land-use type. In reality, floor heights differ within land-use types, e.g., in the U.S. resi-
dential ceiling heights are assumed to be 2.4 and the overall floor heights for commercial and industrial 
uses is about 3.4m (Zhang, Zhao, & Sutherland, 2013). 

6.2	 Land-use assignment: creating Level-3 data

For determining land use, we relied on open crowd-sourced data from OSM. We are aware that crowd-
sourced data have different levels of accuracy and completeness (Senaratne, Mobasheri, Ali, Capineri, 
& Haklay, 2016). However, OSM data have the advantage of determining a higher level of detail that 
would not be possible, e.g., by using only remote sensing data (Fonte et al., 2017; Schultz et al., 2017). 
In addition, OSM data were found to serve as a reasonable alternative for identifying land use apart from 
authoritative datasets (Arsanjani, Mooney, Zipf, & Schauss, 2015). A detailed land-use classification for 
entire Santiago was possible through the combination of the land-use polygons and the more detailed 
POIs. This guarantees for a city-wide land-use determination while having the ability to achieve a more 
detailed classification of land use, both being advantageous for transportation analysis to include all 
aspects of the transportation system within an entire metropolitan area. In addition, both OSM data-
sets are available for many places throughout the world, allowing for transferability of the approach to 
other cities. By adding land-use information, we found that the accuracy of the population distribution 
increased, which was also confirmed by (Biljecki et al., 2016) and is discussed in more detail in the next 
section.

6.3	 Population estimation: creating Level-4 data

Here we discuss our findings based on the two spatial units we considered: manzanas and districts. Add-
ing land-use information was a crucial step on the scale of block-level entities (manzanas), as this showed 
a strong increase in accuracy. Using data with a lower level of detail, all other experiments performed less 
accurate. Thus, if small-scale intra-urban population distribution is needed for the purpose of transpor-
tation planning or modelling, land use seems to play an indispensable role, whereby approaches using 
solely remote sensing come up against their limits (experiment 1 and 2). Without land use, population 
appeared to be underestimated significantly (Figure 6). For example, TAZs are common units for trans-
portation models (Nordenholz et al., 2019). Their size is not consistent and varies throughout different 
administrations and within space, as it is defined through population counts. Thereby, TAZ sizes vary 
strongly, and can range from building-level within city centers, to block-level or even district-level in 
the outskirts (Harvey, 2002). Within this study, population was determined at the single building level. 
Therefore, it can be spatially aggregated to larger entities, e.g., administrative boundaries, TAZs or any 
desired grid cell size. This might also be of special interest for transportation research, as relevant input 
data do not follow unified spatial standards, e.g., TAZs (Martínez, Viegas, & Silva, 2009).

For larger spatial scales (districts), experiment 5 was the most accurate in predicting population us-
ing estimated building floors and land-use information. Nevertheless, experiment 1 using only remote 
sensing based 2D data performed similarly in predicting the population number. This finding is in 
accordance with other studies, which found a good relation of built-up area and population numbers 
(Harvey, 2002; Wu, Wang, & Qiu, 2008). Therefore, using only remote sensing data is an applicable 
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approach at the district scale, being a great alternative, as it requires less data, computation and time. We 
obtained a city-wide estimation of the number of floors at single building level with a reasonable regres-
sion model, by only using 100 sampled buildings. However, using the 3D and building floor dataset 
(experiment 2 and experiment 3) showed a poor performance and even fell short of using solely 2D 
data derived from remote sensing. For this reason, we recommend increasing the number of sampled 
buildings, which might help to increase the accuracy rates for population estimation tasks, when using 
3D floor data. To sum up, using only remote sensing can be understood as a reasonable proxy anywhere 
across the world for assessing population at district scales, whereas using further geo-data achieves better 
results at building block level (manzanas) but is less applicable across the globe.

The validation procedure for the experiments revealed that some entities can be considered as 
extreme outliers. This had strong effects on the overall accuracy of the evaluated experiments. We identi-
fied the CBD as a strong outlier for the population estimation at the district scale based on experiment 4 
and 5. This outlier had a strong effect on the overall accuracy of the final result, as it massively overesti-
mated population giving a population count of about 120,000 (experiment 4) and 90,000 (experiment 
5), while the reference census data revealed a population number of approximately 20,000. Experiment 
1, which uses only remote sensing data, performed reasonably well with an estimated population count 
of about 17,000. This agrees with other studies, which found a good correspondence of area and popu-
lation within relatively homogenous areas with similar building height (Wu et al., 2008). The CBD 
of Santiago is also characterized by relatively constant building heights. Therefore, using solely remote 
sensing to estimate population in those built environments served as an alternative to highly detailed 
data (experiment 4 and 5). A possible reason for the overestimation by experiment 4 and 5 within the 
CBD is that it exhibited relatively large and high buildings, resulting in a high potential dwelling area. 
Additionally, according to the OSM workflow the classes “residential” and “residential-mixed” were 
determined, following in a high estimated population number (Figure 12a). Moreover, the presented 
results revealed that the error rate increased with the proportion of the land use “residential-mixed” at 
both, the manzana and district level. Steinnocher, Bono, Chatenoux, Tiede, & Wendt, (2019) found 
that a highly accurate delineation between residential and non-residential areas is significant for accurate 
population estimation. The CBD was one extreme example within our study area for this phenomenon. 
Eliminating this outlier increased the overall accuracy significantly based on experiment 5 (Figure 12b; 
R²: 0.61; p-value: <2.2e-16). Therefore, we recommend adapting the factor for distributing population 
for class “residential-mixed” to decrease their influence as dwelling units, and thus to increase the overall 
accuracy of estimating population at single building level.

 

Figure 12. (a) Map of the CBD and classified buildings with accompanied land use, and (b) scatterplot of experiment 5 at 
district scale after removing the “outlier” CBD (R²: 0.61; p-value: <2.2e-16)
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7	 Conclusion

Our study aimed at presenting a generic approach to generate relevant data for transportation mod-
els in urban planning and research, specifically addressing three important factors of the urban spatial 
structure: buildings, land use, and intra-urban population distribution. Through its transferability it is 
not limited to any specific or unique type of city or region and it is independent from official data.

We conclude with the following five key aspects from our study:
•	 Filling the gap of missing geo-data: using deep-learning based classification approaches help to 

extract relevant geo-data from airborne or remote sensing imagery with a high level of accuracy
•	 Data fusion for robust 3D city models: depict the physical characteristics of the urban spatial 

structure and achieve a higher overall level of detail through the combination of data with dif-
ferent levels of spatial resolution

•	 Combine remote sensing derived building footprints with OSM: determine detailed land use from 
various OSM datasets at the single building level

•	 Depending on the scale of analysis: include land use for more accurate population estimation 
for smaller entities (here: manzanas with an average size of approximately 120×120m); re-
mote sensing based approaches are sufficient for larger entities (here: districts approximately 
1,600×1,600m)

•	 The combination of remote sensing data and techniques with open geo-data can help to push 
forward data availability in the field of urban transportation, especially in developing countries

The three investigated parameters of the urban spatial structure are of special interest in the context 
of urban transportation systems. When relevant data on these key parameters are not available or tradi-
tional methods come up against limiting factors, the proposed approach might serve as an alternative to 
support transportation planning and research towards a more sustainable and effective urban transpor-
tation system. This is of particular importance in the face of global urbanization, where highest urban 
growth rates exist in non-developed countries, causing explosive increase in transportation demand, 
requiring reliable and large-area baseline data.
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