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ABSTRACT

The interaction of molecules with sunlight has always played a crucial role in determining
the chemical composition of the atmosphere. In this thesis, I intend to explore how describ-
ing photochemical reactions in silico can bridge the gap between performing a single-point

electronic structure calculation, and being able to predict the rates of photochemical reactions.
Photolysis rates in models of atmospheric chemistry are frequently calculated from the mea-

sured absorption cross section. There are a number of methods for reproducing the broadening of
excitation bands when this spectrum is unavailable, which I will test on a selection of atmospheric
molecules so as to design a set of guidelines for selecting an appropriate strategy in each case.

One of these molecules, a hydroperoxy aldehyde, is of particular interest due to the role that
nonadiabatic effects play in its photolysis. Using this model system I test an extension of the
energy-grained master equation which factors in nonadiabatic transitions between different elec-
tronic states by comparing it to fully atomistic nonadiabatic dynamics. Looking at nonadiabatic
processes in the excited state through a kinetic lens allows us to model the rate of population
transfer between diabatic states when it is in the ergodic regime, with highly accurate transition
probabilities obtained through Zhu-Nakamura theory.

In later chapters, I also explore and implement a novel nonadiabatic dynamics protocol, and
apply explicit and implicit solvation methods in two case studies of photochemical reactivity.
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INTRODUCTION

L ight passing through matter is exponentially attenuated according to the Beer-Lambert

law. Attenuation of light intensity occurs due to electromagnetic energy being absorbed by

a material and converted to chemical energy, that is electronic, translational, vibrational,

or rotational energy of the constituent molecules. This energy transfer can be the driving force

of chemical change, with many naturally occurring examples including photosynthesis, vision,

and bioluminescence. Light-driven reactions have also been used for industrial applications:

photo-initiated free-radical polymerisation is used in the production of polystyrene,[1] photovoltaic

cells are used to convert light energy to electricity,[2] sunscreens work by absorbing UV light.[3]

In this work, I am interested in how light drives chemical reactivity in atmospheric molecules,

and describing the dynamics of these processes from a theoretical perspective. This entails

understanding and improving the methods that we as computational chemists use to bridge

the gap between a single point electronic structure calculation, and tangible experimental

observables.

A change in electronic state is typically accompanied by the absorption of a photon whose

wavelength is in the 200-800 nm range. Electronic transitions are commonly understood in the

terms presented by a Jablonski diagram – see Fig. 1.1 – which contains a set of electronic and

vibrational (and implicitly, rotational) states which are connected through radiative and non-

radiative transitions. We must however consider the information missing from these diagrams.

Firstly, the energetic ordering of these states is only true at a particular nuclear geometry

(configuration), so any dynamics or even rearrangement of the solvent cage around the new

state can change how favourable a given process is. Timescales of electronic transitions differ

significantly, with photon absorption being almost instantaneous (10−15 s), vibrational relaxation

only a little slower (10−12 s), fluorescence occurring in 10−10–10−7 s, and phosphorescence often

1
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Figure 1.1: An example of a Jablonski diagram illustrating some common photochemical processes.
Radiative processes, where a photon is absorbed or emitted include absorption, fluorescence,
and phosphorescence. Non-radiative processes include (intramolecular) vibrational relaxation,
intersystem crossing, and internal conversion.

taking longer that 10−6 s. These timescales are in part governed by photochemical processes such

as internal conversion (IC), intersytem crossing (ISC), and vibrational relaxation (IVR) shown in

Fig. 1.1. The work described in this thesis will mainly concern IC processes as they tend to occur

faster than ISC. However, ISC can become important when the spin-orbit coupling is substantial,

which is more common in molecules containing heavy atoms such as iodine or bromine. This

leaves us with the question of why a particular photochemical mechanism is any more likely than

another. This is the question that I would like to address in this work.

1.1 A brief overview of the field

The title of this thesis draws a connection between two vast research fields: atmospheric pho-

tochemistry and the computational study of excited states. Therefore, it is deeply necessary to

narrow the scope of the discussion to a few specific questions that will be addressed here, while

keeping in mind why, in practical terms, a particular question is important.

Building reliable models of atmospheric chemistry is crucial to understanding ground level

pollution, making climate and weather predictions, and tracking the recovery of the ozone layer.

Only recently, chemical transport models have been used to trace an increase in chlorofluorocarbon

(CFC-11) emissions to a specific geographic region.[4] The implication of this, is that such models

can be a tool of accountability in international agreements on emission targets, making their

accuracy all the more crucial. Examples of atmospheric chemistry models include: the United

Kingdom Chemistry and Aerosols (UKCA) model, which is used by the MET Office to forecast

2
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air quality and for scientific research; the Master Chemical Mechanism (MCM), which contains

a reaction network describing the gas-phase reactions of volatile organic compounds (VOCs);[5]

and the GEOS-CHEM model, an open-access 3-D model which builds on historical meteorological

data.[6] These are all numerical models, in which the production and loss of chemical species is

governed by coupled ordinary differential equations. They all contain a reaction network, with the

rates of those reactions; a photolysis scheme that incorporates the effects of cloud occlusion and

aerosols; deposition/emission rates; and surface chemistry (e.g. on polar stratospheric clouds). In

the following paragraph, I will give a very brief overview of some of the most important reactions

occurring in the atmosphere.

The Chapman cycle is arguably the most important photochemical process, which describes

the inter-conversion of ozone and oxygen in the stratosphere through the absorption of UV

light (<310 nm).[7] While this reaction dominates the stratosphere, at ground level and in the

troposphere the chemical reaction network has become significantly more complex due to an

abundance of emissions. Those emissions can be anthropogenic, i.e. originating from human

activity such as the burning of fossil fuels; biogenic, originating from natural functions of biological

organisms; or non-biogenic, covering non-biological natural processes e.g. volcano eruptions. It

was originally thought that pollutants must slowly diffuse into the stratosphere for them to be

destroyed by oxidation, leading to predictions of long diffusion-limited atmospheric lifetimes.[8]

In the 1970s it was discovered that those gases were in fact removed from the troposphere by

reacting with hydroxyl (OH) radicals, which are present in the troposphere at concentrations

of 106 molecule cm−3. Hydroxyl rapidly oxidises most non-radical molecules, being especially

reactive with hydrogen containing compounds, which is why OH is colloquially known as an

atmospheric "detergent". The main source of OH is through the photolysis of ozone which produces

O(1D) atoms that react with water vapour, however it is also produced in the oxidative cycle

of isoprene which will be discussed in chapters 3 and 4 of this thesis. The OH radical then

reacts mainly with CO, CH4, and other VOCs, initiating chains of radical reactions that can

produce more O3 depending on ambient concentrations of NOx.[9] These reactions mean that

gross O3 production in the troposphere is greater than the downwards flux from the stratosphere.

Another important reaction is the ozonolysis of alkenes, which results in the formation of Criegee

intermediates. These intermediates have been studied extensively, and are known to play an

important role in the tropospheric oxidative cycle.[10]

The background gas-phase HOx-O3-CO-CH4-NOx-VOC tropospheric cycle is further compli-

cated by interactions between different phases e.g. aerosols and particulate surfaces. Formation

of sulphate aerosols is initiated by dimethyl sulphide (DMS) and sulphur dioxide (SO2) reacting

in the troposphere to form sulphuric acid. Aerosols can significantly impact the optical properties

of air due to their ability to scatter and absorb sunlight, and affect cloud formation by acting as

cloud condensation nuclei leading to changes in droplet size distribution. Observing the increase

in cloud albedo as a result of sulphate emissions from the eruption of Mt. Pinatubo has led some

3



CHAPTER 1. INTRODUCTION

to suggest radical geoengineering solutions to climate change through artificial cloud seeding.[11]

The knock-on effects of such interventions are extremely uncertain since artificial alterations in

solar flux will impact the rates of all photochemical reactions at ground level. At current ozone

concentrations, only solar radiation with wavelengths higher than 290 nm can penetrate the

stratosphere to initiate ground-level photochemistry. Photolysis will occur if the photodissociation

energy of an atmospheric species is below that threshold. The rates of these processes depend

on the wavelength dependent quantum yield, solar flux, and on the absorption cross-section,

which is therefore needed to obtain the photodissociation rates included in models of atmospheric

kinetics.

Ultimately, I argue that computational tools will become indispensable if we seek to under-

stand the full complexity of the chemical reaction networks present in the troposphere. In the

following sections I describe how the quantities needed to construct chemical models can be

obtained experimentally. Then, I give an overview of the main theoretical concepts used when

describing excited state processes, leading into a discussion of electronic structure theory for

excited states.

1.1.1 Experiment

In the Master Chemical Mechanism (MCM v3.1) the photolysis rates are calculated as a function

of solar zenith angle, the absorption cross section, and literature quantum yields.[5] For stable

molecules with a reasonable vapour pressure, collecting the UV-Vis spectrum is a routine pro-

cedure in analytical chemistry – although it may be more difficult for radicals and transient

intermediates.[12] The Beer-Lambert law is applied to determine the wavelength-dependent

absorbance and thus, the cross section. Experiments to determine quantum yields are less

straightforward – often, a collapsible Teflon film reaction chamber (or a cloud chamber for the

study of aerosols) is used, with a valve which takes out a sample of the gas mixtures in the

chamber at regular time intervals. The product concentrations in these samples can be measured

through mass spectrometry,[13] chromatography,[14] or FTIR spectroscopy[15] to calculate the

rate. However, chamber reaction data can be unreliable due to wall reactions, and the product

ratio may have a temperature and pressure dependence that is difficult to measure. Direct

spectroscopic measurement of the quantum yield in the reaction chamber is also possible, as

demonstrated by Pope et al. in their measurement of formaldehyde photolysis products.[16] Still,

for many reactions in the MCM model, quantum yields are assumed to be unity.

Reaction chamber experiments are valuable for determining rates and yields but can’t be used

to understand the mechanisms of ultrafast photochemical processes. It is possible to observe the

time-resolved mechanism of a reaction in detail through time-resolved transient absorption (TA)

spectroscopy. This widespread pump-probe experimental technique is used to study the dynamics

of a system and can be used to observe ultrafast processes such as electron or charge transfer,

solvent relaxation, or photoisomerization. The initial laser pump pulse excites the system out of
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equilibrium, while the subsequent probe pulse measures the response in its wavelength-resolved

difference spectrum at discrete time intervals. The timescale of a TA experiment can range from

10s of femtoseconds to a few nanoseconds, determining the aspects of a mechanism that can be

observed. While TA is especially difficult in the gas phase because of the low concentration of

molecules, in atmospheric chemistry it has been used to study a wide range of reactions such

as the wavelength dependence in chlorine dioxide photochemistry,[17] pressure dependence of

hydroxyl radical recombination,[18] and photolysis of nitrophenol derivatives as potential sources

of OH.[19]

1.1.2 Theory

In recent years, our understanding of atmospheric reaction networks has become more reliant

on theoretical as well as experimental studies. Since many gas-phase atmospheric molecules

are small (fewer than 6 non-hydrogen atoms), multireference electronic structure calculations

allow us to calculate thermodynamic barriers to within the bounds of chemical accuracy (1 kcal

mol−1).[20, 21] It is now routine to use these values to determine ab initio rate constants through

well-established rate theories originating in transition state theory (TST), such as variational

TST,[22] and multi-conformer TST.[23] Exploring these reaction networks in silico lets us examine

short-lived radical species, or molecules that are produced at a very low concentration, making

the experimental determination of these values significantly more difficult. Some atmospheric

mechanisms have been proposed based purely on a computational argument, including the

isoprene oxidation mechanism LIM0[24] and the reactions of aliphatic amines with OH.[25]

While this strategy is extremely useful for the ground electronic state, it cannot be applied

straightforwardly to reactions that proceed via one or more excited states.

These computational protocols are confined to the ground state potential energy surface (PES)

and are therefore implicitly reliant on the Born-Oppenheimer (BO) approximation. Stated simply,

this is the assumption that atomic nuclei move on a significantly slower timescale than electrons

and so their motion can be decoupled from each other. By expressing the total wavefunction as

a separable product of electronic and nuclear parts Ψ(r,R) ≈ φe(r;R)χn(R), finding a solution

to the Schrödinger equation becomes much simpler, as the nuclear kinetic energy part of the

Hamiltonian can be neglected. This leaves us with the electronic Hamiltonian Ĥe where the

nuclear coordinate vector R is a fixed parameter, yielding an eigenvalue equation that can be

solved approximately as

Ĥeφe(r;R)= E iφe(r;R).

This means that for every fixed nuclear configuration R and state i, there is a corresponding

energy E i defining the PES for that state.

Despite its utility, the BO approximation famously breaks down in many photochemically

important scenarios. Motion of the nuclei can trigger an electronic transition when the states are

close in energy.[26] These types of phenomena are described as nonadiabatic and play a crucial
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role in most photodynamic processes,[27] charge-transfer reactions,[28] conductivity,[29] molecular

electronics,[30] and a multitude of other scenarios. Simulations of molecular dynamics in these

cases need to somehow incorporate nonadiabatic effects, and a multitude of methods have been

developed to achieve this, which will be discussed in greater detail in chapter 3. Nonadiabatic

dynamics simulations have been applied to explore the mechanisms of many atmospherically

significant reactions, not least to investigate the photochemistry of Criegee intermediates,[31]

the photodissociation of atmospheric mercury species,[32] and the passage through a conical

intersection between two singlet states in sulphur dioxide.[33]

The idea of a PES informs much of our intuitive understanding of photochemical mechanisms,

since transitions between electronic states are linked to topological features such as conical inter-

sections, avoided crossings, saddle points, and potential energy barriers. Visualising molecular

motion is simply easier in 3N-6 dimensional spaces described by nuclear coordinates, rather than

abstract Hilbert spaces suggested by the Schrödinger equation. Perhaps this is why many modern

nonadiabatic dynamics methods rely on the idea of a PES as a landscape guiding the evolution of

a nuclear wavepacket. Even in Ehrenfest dynamics[34] where trajectories are not constrained to

any particular PES, the dynamics occur on an average of multiple potentials and so are guided by

them. We can therefore conclude that accurate excited state PES are crucial for making reliable

predictions with nonadiabatic dynamics methods such as multiconfigurational time-dependent

Hartree (MCTDH) or ab initio multiple spawning (AIMS).[35] How we can calculate accurate

excited state PES is discussed in the following section. However, it should be mentioned that

new theories are being developed that can bypass this decoupled view of nuclear and electron

motion.[36]

Lastly, the Franck-Condon principle is the assumption that electronic transitions mediated by

the absorption or emission of a photon are essentially instantaneous on the timescale of nuclear

motion. This assumption allows us to calculate the probability of excitation between two vibronic

states based on the overlap of their vibrational wavefunctions, i.e. the Franck-Condon factor. The

Franck-Condon principle will be discussed further in the following chapter.

1.2 Electronic structure for excited states

The accuracy of any computational prediction made about the photochemical reactivity of a

molecular system is limited by the quality of the electronic structure method used to compute its

excited states. Choosing a suitable protocol depends on a number of factors, including system

size, the type of excited state being investigated, and availability of computational resources. In

this section I will outline some of the most popular approaches to predicting excitation energies,

and contemporary developments in this field. Excited state methods are often used to calculate

excitation energies, oscillator strengths for transitions (from transition dipole moments), or

nonadiabatic coupling vectors between states. Like ground state methods, they can be split into
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two broad categories: single reference and multi reference.

One way to performing an excited state calculation is by solving the electronic time-independent

Schrödinger equation (TISE). Although it is the ground state whose energy is variationally min-

imised, it is possible to solve the TISE for multiple roots which correspond to higher states

– this is the approach taken in post Hartree-Fock methods like configuration interaction (CI).

Alternatively, we can use response theory by finding the frequency-dependent polarisability of

the molecule and seeing how it interacts with a time-dependent electric field. The poles of this

function then correspond to the excitation energies.

The full CI wavefunction is written as

|Ψ〉 = c0 |Φ0〉+
∑
i,a

ca
i
∣∣Φa

i
〉+ ∑

i< j,a<b
cab

i j

∣∣∣Φab
i j

〉
+·· ·

where
∣∣Φa

i
〉

and
∣∣∣Φab

i j

〉
are Slater determinants that correspond to single and double excitations

from the Hartree-Fock reference determinant |Φ0〉. Substituting |Ψ〉 into the TISE and solving

the resulting eigenvalue equation returns a set of eigenvalues (excitation energies) and their

corresponding eigenvectors (sets of expansion coefficients, c j
i etc.). If all possible excitations are

included, in the limit of a complete basis a full CI calculation will yield the exact energies of

the ground and excited states. However, because the number of terms in the expansion grows

factorially with the electron number, it is only possible to solve for extremely small systems.

Truncating |Ψ〉 at the first two terms such that the wavefunction contains only the HF

determinant and all possible singlet excitations, gives us the simplest excited state method which

is the single excitation configuration interaction (CIS). The formal scaling of this method with

basis set size is O(n4), although tricks like using an auxilliary basis expansion can be used to

reduce this.[37] By omitting higher order excitations this method suffers from lack of electron

correlation, leading to overestimation of excited state energies by roughly 1 eV. Using CIS(D) adds

a perturbative correction that approximately includes double excitations. This method reclaims

some electron correlation missing in CIS but still has errors of approximately 0.5 eV.

Another approach to truncating |Ψ〉 is by manually choosing to use only the most important

Slater determinants to be included in a CI-type procedure. The complete active space self-

consistent field (CASSCF) method requires a degree of chemical intuition since the active space

must be manually chosen to contain all the relevant molecular orbitals. This means it can work

even at highly distorted geometries if the active space is chosen correctly, so is valuable for

studying bond-breaking reactions. The number of Slater determinants can be reduced further

by subdividing the active space into subspaces, and restricting the number of electrons or

holes in each set of orbitals – this is the restricted active space self-consistent field method

(RASSCF). The CASSCF wavefunction with a sufficiently large active space describes static

correlation well, but lacks dynamic correlation which can be corrected by using perturbation

theory (CASPT2) yielding highly accurate excitation energies. Methods covered in this paragraph

are types of multiconfiguration self-consistent field (MCSCF) methods which follow a variational
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optimisation procedure based on the wavefunction expansion |Ψ〉. Unlike CI they minimise the

energy of the MCSCF wavefunction by rotating the molecular orbitals as well as optimising

the linear expansion coefficients.[38] Some variants of MCSCF such as state-averaged CASSCF

(SA-CASSCF) or multi-state CASPT2 (MS-CASPT2) will optimise the weighted average energy

of multiple states.

For larger molecules a cheaper, and therefore more popular, method for excited state calcu-

lations is time-dependent density-functional theory (TDDFT). This is an extension to density-

functional theory (DFT), which was initially proposed by Runge and Gross in 1984.[39] Later on

Cassida suggested a linear-response formalism which took the approach of calculating the linear

response of a ground state electron density matrix to an external electric field.[40] Solving the

Cassida equations (Eqn. 1.1) should theoretically return the exact density response function,

whose poles correspond to the excitation energies. Here, A and B are orbital rotation Hessians

and X=−Y is the normal mode eigenvector corresponding to frequency ω.[41] However, like with

DFT, an approximate exchange-correlation functional must be used limiting the accuracy of the

method.

(1.1)

(
A B
B∗ A∗

)(
X
Y

)
=ω

(
1 0

0 −1

)(
X
Y

)

Often the Tamm-Dancoff approximation (TDA) is invoked by neglecting the B and Y matrices

leading to a simpler Hermitian eigenvalue problem AX=ωX. Applying the TDA returns results

of comparable accuracy to LR-TDDFT in most cases, and it has been shown that poor agreement

between the two is a symptom of a badly defined ground state.[42]

The popularity of LR-TDDFT spurred on such a large number of benchmark review papers

that a review of them had to be conducted in order to make sense of this quickly expanding

field.[43] It has an advantage over methods with comparable scaling like CIS, as it includes some

dynamic correlation via the exchange-correlation functional. Like CIS, it has been applied to

systems of over 1000 atoms.[44] Calculations can be accelerated by as much as 80× by using

GPU-based integral routines, meaning that SCF (self-consistent field) iterations which take less

than 60 seconds are possible even for systems containing hundreds of atoms.[45] Calculations

for systems of this size are still impossible for methods like CASPT2. Depending on the state

character, the accuracy of LR-TDDFT calculations can be reasonable: it works best for valence

states, where the error is typically ≈ 0.3 eV. However, it underestimates excitation energies of

diffuse charge-transfer (CT) and Rydberg states because of the incorrect description of the 1/R

Coulombic attraction between the electron and hole. To improve the result for CT states we

can use "asymptotically corrected" range-separated hybrid functionals with built-in long range

correlation such as CAM-B3LYP or ωB97X. LR-TDDFT is also a poor choice for predicting double

excitations and fails at the geometries where ground and excited states become degenerate.

Coupled cluster methods can be generalised to the calculation of excited states through either

the equation-of-motion or the linear response formalism. Equation-of-motion coupled-cluster
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singles and doubles (EOM-CCSD) is the excited state extension of the ground state coupled-

cluster formalism which yields excellent accuracy for singly excited states, with errors relative

to experiment as low as 0.2 eV. It works by solving the ground state CCSD equations, then

performing a similarity transform on the Hamiltonian, and then using it to perform CIS(D).

New electronic structure theories for excited states which can be applied to larger systems are

constantly being developed. Delta-self-consistent field (∆SCF) theory suggests re-optimising the

molecular orbitals for an excited state electron configuration through an iterative SCF procedure.

In spite of its simplicity, excitation energies and transition dipole moments are predicted with

accuracy comparable to TDDFT.[46] Medium sized molecules can be tractable with the algebraic-

diagrammatic construction propagator approach (ADC), which is closely related to the coupled-

cluster method (CC2). Errors for ADC(2)/CC2 are on the order of 0.2 eV (higher for Rydberg

states), while the scaling can be as low as O(n4) when coupled with the resolution-of-identity

approximation.[47]

All of the above methods can be modified to calculate triplet as well as singlet excitations,

however this discussion is beyond the scope of this work. The above selection is by no means

exhaustive, but these approaches are some of the most popular methods implemented in widely

available electronic structure packages such as Molpro, Molcas, Turbomole, and Q-Chem.

1.3 Thesis outline

In this introduction I have attempted to lay out the necessary groundwork for exploring computa-

tional methods which can be used for the prediction of tangible experimental observables. In the

first results chapter, I will simulate inhomogeneous broadening in absorption cross sections in a

number of ways and test them on a selection of atmospheric molecules. Predicting the outcome

of photoexcitation through atomistic on-the-fly dynamics methods can become intractable when

reactions occur on a slower timescale. In chapter 3, I propose an energy-grained master equation

approach which has been modified to include nonadiabatic effects, and test it by using a product

of isoprene oxidation as a bi-chromophoric model system for partially oxidized atmospheric VOCs.

In chapter 4 I will consider the same reaction from the perspective of tropospheric chemistry and

discuss the implications of including this photodissociative reaction in atmospheric models. Then,

in chapter 5, I will discuss my work in the implementation of a novel nonadiabatic dynamics

method and test the algorithm on a selection of familiar model systems. Lastly, I consider solvent

effects in photochemical processes and suggest ways in which explicit solvent can be included in

an efficient way.
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2
AB INITIO PREDICTION OF PHOTOABSORBTION CROSS SECTIONS

The photoabsorption cross section σ(λ) measures the capacity of a chemical species to absorb

light at wavelength λ. In other words, σ(λ) is the net power absorbed by the molecule, divided by

the incident power per unit of area (it’s often reported in units of cm2). The UV-Vis spectrum is an

experimental observable measured in the 100-1000 nm range, which has a direct correspondence

to σ(λ). Bands in the spectrum correspond to transitions from the ground electronic state of

the molecule to any energetically accessible electronic excited state. Using accurate σ(λ) is

important in the calculation of photolytic rates and therefore for the construction of atmospheric

chemistry models described in the previous chapter, such as the Master Chemical Mechanism.[5]

Tropospheric reactions are initiated by solar radiation reaching the Earth’s surface whose

wavelengths are in the UV-Vis range.[48] For transient molecules and radicals where experimental

UV-Vis data often isn’t available it is useful to have a set of guiding principles used to calculate

the spectral shape ab initio.

An electronic structure calculation can give us the energy gap and oscillator strength for a

transition from the ground to an excited state, for a given geometry. There is a vast toolbox of

available methods for calculating electronic excitations, ranging in accuracy and expense.[43, 49, 50]

Calculating vertical excitation energies at the geometry optimised minimum of the potential

energy surface (PES) produces a stick spectrum with a line corresponding to each electronic

transition. Although such a calculation is useful for assigning excitations to spectral bands

it does not produce a realistic spectrum with the correct band shape. Broadening of spectral

peaks in experimental spectra is caused by a number of factors which are outlined explicitly

in Segarra-Martí et al.[51] Firstly, intra-molecular vibrations give rise to a progression of peaks

in the absorption spectrum since the excitation can occur into a particular vibrational state.

Because any excited state has a limited lifetime before it decays to the ground state or other

products, spectral peaks are subject to lifetime broadening. This phenomenon which arises due to
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the energy-time uncertainty principle broadens the peaks to a Lorentzian shape, however this

significantly impacts the spectrum only on ultrashort timescales. Homogeneous broadening of a

spectral band is caused by an excited state interacting with its environment, such as solvents,

causing the energy gap between states to fluctuate. Lastly, inhomogeneous broadening is caused

by there being numerous instantaneous geometries of a molecule absorbing light in a sample.

The variations in the excitation energy cause the band to broaden, obfuscating the fine structure

of a spectrum.

Spectral shape can also be used to tell us about the molecule’s dynamics in the excited state.

Presence of vibrational fine structure in the spectrum indicates that the gradient of the excited

state potential is likely to be flat in the Franck-Condon region (PES near the S0 geometry)

indicative of a longer excited state lifetime.[52] A structure-less spectrum on the other hand

hints at a steep potential slope, and potentially ballistic wavepacket dynamics leading to a direct

photodissociation mechanism. In this work I will focus on a few atmospherically relevant volatile

organic compounds (VOCs), which have readily available spectra that could be compared against

our predictions. With this information it is possible to derive a set of guidelines on the best

method for predicting an absorption cross section based on the properties of the molecule in

question. This chapter does not cover the question of which is the best electronic structure method

for predicting a given spectrum, but aims to examine a few nuclear ensemble sampling methods

that have been suggested to capture inhomogeneous broadening effects.

I begin with a description of how Franck-Condon spectra can be computed to model vibrational

broadening, and how the Herzberg-Teller approximation can be used to include weakly allowed

transitions. Next, I discuss nuclear ensemble (NE) methods which are a means to capture the

inhomogeneous broadening of the spectral band. An NE method is one that produces a spectrum

by convolving stick spectra calculated for a given set of nuclear conformations (geometries).

The main distinctions between NE methods are in how to assemble this ensemble such that it

is representative of the molecule’s ground state distribution. Such methods include sampling

geometries from an uncorrelated Wigner distribution,[53] a ground-state harmonic oscillator

distribution,[54] a classical MD trajectory, or path integral dynamics with a quantum thermostat

(PI+GLE). Applying these methods to the selected example molecules will illustrate the factors

that need to be considered when choosing how to simulate a UV-Vis spectrum for any given system.

Here I should add that all these methods are time-independent, and I will not be discussing the

variety of available time-dependent methods for cross-section simulation, notably those suggested

by Eric Heller.[55] He pioneered an approach which used the semi-classical propagation of nuclear

wavepackets in which the time evolving correlations between the ground and excited states were

Fourier transformed from the time to the frequency domain to get the absorption spectrum.
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2.1. ABSORPTION CROSS SECTION

2.1 Absorption cross section

The absorption cross section σ(λ) has units of cm2 as it is defined by the net power absorbed by

the molecule at wavelength λ, divided by the incident power per unit of area. When an oscillating

electric field interacts with a charged particle in the molecule it causes a transition whose

signature can be seen in the UV-Vis range. The energy of this interaction at a given wavelength

corresponds to σ(λ), and is a product of the field and the dipole moment vectors. The classical

dipole moment is a sum over all particle charges and their position vectors, µ=∑−qir i, while

the electric field is assumed to be constant for cases where the molecule length is much smaller

than λ.

The σ(λ) can then be expressed as

(2.1) σ(λ)= 4cπ2

3λ

∑
f
|〈Ψi,α

∣∣ µ̂ ∣∣Ψ f ,β
〉 |2δ(E f −E i −~c/λ)

where µ̂ is the dipole moment operator and the transition dipole moment (TDM) integral〈
Ψi,α

∣∣ µ̂ ∣∣Ψ f ,β
〉

gives the intensity of the transition from the initial electronic state i and vi-

bronic state α to the final electronic state f and vibronic state β. The strength of the electric field

is contained in the prefactor, c is the speed of light, and energies of initial and final states are

E i and E f respectively. Calculation of the TDM is simplified by using the Born Oppenheimer

approximation which separates the total wavefunction into its nuclear (χγ, j(R)) and electronic

(ψ j(r;R)) parts. Similarly, the TDM operator can be split into a sum of its electronic and nuclear

parts.[56] Using these assumptions the TDM is expanded as

(2.2) 〈Ψi| µ̂
∣∣Ψ f

〉= 〈
χα,i

∣∣〈ψi
∣∣ µ̂elec

∣∣ψ f
〉∣∣χβ, f

〉+〈
χα,i

∣∣〈ψi
∣∣ µ̂nuc

∣∣ψ f
〉∣∣χβ, f

〉
,

however the second term vanishes because the orthogonality of the electronic wavefunctions in

two distinct electronic states means that

〈
ψi(r;R)

∣∣ µ̂nuc(R)
∣∣ψ f (r;R)

〉= µ̂nuc(R)
〈
ψi(r;R)

∣∣ψ f (r;R)
〉= 0.

The electronic TDM, µ̄i f = 〈
ψi

∣∣ µ̂elec
∣∣ψ f

〉
does not have an exact analytical form, however it

can be approximated by Taylor expanding µ̄i f about the equilibrium ground state geometry

R0. This expansion is the starting point to defining the Franck-Condon and Hertzberg-Teller

approximations which will be discussed further in the following section.

Some experimental observables can be directly related to the absorption cross section. The

molar attenuation coefficient ε(λ) of a material is related to σ(λ) by the following factor, where

NA is Avogadro’s number.

σ(λ)= 103 ln(10)
ε(λ)
NA

According to the Beer-Lambert law there is a linear relationship between wavelength-resolved

absorption and ε(λ). Furthermore, the rate constant of photolysis J can be calculated from the
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convolution of the cross section σ(λ), the actinic flux Fac, and the quantum yield for a particular

reaction channel φ:

(2.3) J =
∫
φ(λ)σ(λ)Fac(λ)dλ

Experimentally obtained σ(λ) includes broadened bands that correspond to excitations into

any number of energetically accessible excited states. A single point excited state calculation

gives us insufficient information to model the shape of a band when the molecule is exposed to

the full spectrum of solar radiation rather than a monochromatic laser pulse.

2.2 Methods

2.2.1 Franck-Condon Herzberg-Teller

To describe the Franck-Condon (FC) spectrum we must return to the expansion of the transition

dipole moment within the Born-Oppenheimer approximation given in equation 2.2 .

(2.4) 〈Ψi| µ̂
∣∣Ψ f

〉= 〈
ψi

∣∣ µ̂elec
∣∣ψ f

〉〈
χα,i

∣∣χβ, f
〉= µ̄i f

〈
χα,i

∣∣χβ, f
〉

The first term on the LHS of Eqn. 2.4 is the electronic TDM µ̄i f , which is dependent on nuclear

positions through the parametrical dependence of the electronic wave functions on atomic posi-

tions. Therefore we can approximate it by Taylor expanding about the ground state equilibrium

geometry R0.

(2.5) µ̄i f (R)≈ µ̄i f (R0)+
∣∣∣∣∂µ̄i f (R)

∂R

∣∣∣∣
R0

(R−R0)+
∣∣∣∣∣∂2µ̄i f (R)

∂R2

∣∣∣∣∣
R0

(R−R0)2 +·· ·

The electronic TDM can be evaluated straightforwardly by truncating Eqn. 2.5 at the zeroth-order

term in the expansion. This assumes that the geometry of the molecule and its dipole moment

doesn’t change during the transition, which is the Franck-Condon approximation.[57–59] The

first-order nuclear coordinate dependence of µ̄i f (R) takes into account a limited change in the

TDM during the photoexcitation and means that a weakly allowed or dipole-forbidden electronic

transition can still produce a peak in the calculated spectrum. When the first order term in the

expansion is included, the Franck-Condon Herzberg-Teller (FCHT) spectrum is returned.[60]

The second part of Eqn. 2.4 is the overlap between the ground and excited state nuclear

wavefunctions,
〈
χα,i

∣∣χβ, f
〉
, which is referred to as the Franck-Condon factor. This is an integral

which gives the probability of a vibronic transition. Practically, to calculate this integral the

ground and excited states must share a coordinate set. This is typically done through a linear

transformation between the normal modes of the initial and final states, i.e. by using a Duschinsky

matrix.[61] The vibrational states
∣∣χβ, f

〉
can be determined from the Hessian by assuming that the

PES of the ground and excited electronic states are harmonic in that region. The total absorption
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Figure 2.1: Schematic for a FC/FCHT spectrum
simulation within the harmonic oscillator ap-
proximation. The overlap between the ground
state ν0 = 0 and excited state vibrational wave-
functions correspond to the FC integrals. At
finite temperature the thermal population of
ground state vibrational levels are determined
by the Boltzmann distribution. In experimental
spectra transitions from ν0=1 and higher corre-
spond to hot bands.

cross section can then be given as a sum over a series of distinct vibronic peaks corresponding to

vertical excitations between vibrational states.

In order to calculate σ(λ) we need to know the optimised geometries and normal mode

vibrational frequencies of the ground and excited states, the electronic TDM, and the energy gap

E f −E i at the S0 minimum geometry. There are many advantages of applying FC and FC-HT

simulation protocols in specific cases. The most obvious is that it’s the only approach presented

in this chapter that explicitly calculates vibrational fine structure. This can work well for small,

rigid molecules being excited into long lived states. However, this strategy does not work for the

general case.

Firstly, we have to rely on the uncoupled harmonic oscillator approximation in both the

ground and excites states to calculate the Franck-Condon integral for the vibrational progression

which can fail for cases where there is significant anharmonicity at the stationary points (e.g.

normal modes with a significant internal rotational contribution). The optimised excited state

geometry needs to be similar enough to the ground state that the FC integrals are not negligible,

which limits the cases for which this method can be applied. Unlike the ensemble methods listed

here only one excitation band at a time can be calculated, so typically only S0 → S1 excitation

bands are computed.

Lastly, I would like to highlight that there are a number of similar methods for simulating

vibronic spectra. For example, the independent mode, displaced harmonic oscillator (IMDHO)

model (implemented in ORCA)[62] requires only the ground state Hessian, but assumes that the

excited state PES is equivalent to the GS PES shifted to a new equilibrium geometry.[63]
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2.2.1.1 Computational details

All calculations used to produce FC and FC-HT spectra were performed in Gaussian 16.[64]

Molecular geometries were optimised using DFT in the ground state and LR-TDDFT in the

excited state, and analytical normal mode frequencies were then calculated at these geometries,

with tight convergence conditions, to confirm they were stationary point minima on the PES. The

PBE0 exchange correlation functional with the TZVP basis set was used for the optimisations.

2.2.2 Wigner sampling

Ensemble sampling methods aim to represent the vibrational wavefunction of an electronic state

by a set of classical geometries and momenta. These methods do not rely on knowledge of the

excited state PES, and because of this they cannot be used to predict vibrational fine structure.

However, by applying the reflection principle a broadened spectrum may be constructed from

individual excitations and their oscillator strengths. All nuclear ensemble methods rely on the

semiclassical reflection principle which states that the absorption cross section is the reflection

of the ground state coordinate distribution on the energy axis. The principle was justified by

Schinke (1993) from the time-dependent expression for the absorption cross section (at short time

intervals) for an arbitrary number of dimensions.[52] Its implication is that that spectral shape

may be predicted from an accurate representation of ground state nuclear density.

An excited state calculation in most quantum chemistry software returns the oscillator

strength f0,n(Rl) and excitation energy ∆E0,n(Rl) for an excitation from the ground state 0 to

excited state n at the geometry Rl . By assembling an ensemble of geometries that are represen-

tative of the ground state nuclear distribution it is possible generate spectra which replicate

the experimentally observed inhomogenious broadening. Crespo-Otero et al. show the explicit

derivation of the nuclear ensemble approach and the absorption cross section expression for any

nuclear configuration ensemble of size Np given in Eqn. 2.6.[53]

(2.6) σ(E)= πe2~
2mecε0nrE

N f s∑
n

1
Np

Np∑
l
∆E0,n(Rl) f0,n(Rl)g(E−∆E(Rl),δ)

In the above expression N f s is the number of included excited states; electron charge and mass

are e and me; refractive index of the medium is nr; vacuum permittivity is ε0; g(E−∆E(Rl),δ)

is the line shape function peaked at the transition energy with phenomenological broadening δ.

Line shape could be a Gaussian or a Lorentzian function; the choice is determined by whether

thermal broadening (bath gas collisions – Gaussian process) or lifetime broadening (Lorentzian)

are more important for that particular system.

The Wigner quasiprobability distribution PW is sometimes referred to as the Wigner function.

It is the integral part of the Wigner formulation (or phase-space formulation) of quantum

mechanics, first presented in 1932 in Eugene Wigner’s paper on quantum corrections to the

Boltzmann equation.[65] It shows a direct correspondence between the quantum density matrix ρ̂
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in Hilbert space and the quasiclassical distribution in the classical phase space via the Wigner-

Weyl transform.[66] Whilst the Wigner distribution is a real valued function, it can become

negative which is why PW must be referred to as a quasiprobability distribution. In its original

formulation, the quantum mechanical density matrix ρ̂ of a system in a pure state ψ is replaced

by a function ρ(k′,k′′)=ψ(k′)ψ∗(k′′). In this anzats, the Wigner distribution is given as

(2.7) PW (q, p)= (π~)−1
∫
ψ∗(q+ y)ψ(q− y)e2i yp/~d y

for a 1-dimensional harmonic oscillator, where p is the momentum associated with the normal

mode coordinate q. Solving the above integral in the case of ψ as a quantum harmonic oscillator

wavefunction in its vibrational ground state produces the following distribution generalised for

3N −6 vibrational modes.

(2.8) PW (q,p)=
3N−6∏

i=1
(π~)−1 exp

{
− 1
~ωi

(
µiω

2
i q2

i +
p2

i

µi

)}

This is a multidimensional Gaussian distribution in (q,p) space which can be sampled using a

stochastic procedure.

The Wigner sampling method will be the first ensemble sampling method described in this

chapter. As well as spectrum prediction, Wigner sampling is routinely applied to generate initial

coordinates and momenta for classical and semiclassical trajectory calculations.[67, 68]

One notable advantage of this approach over FC/FC-HT is that the calculation may be

straightforwardly extended to multiple excited states. However, spectra generated using the

reflection principle cannot describe the vibronic features of the spectrum, or show the vibrational

broadening of long lived states. The spectral shape must be converged with the number of sampled

conformations.[53] This type of sampling also relies on the local harmonic approximation of the

potential, which may fail for strongly anharmonic systems.

Spectral bands that show excitation into a dissociative state should be broad and structure-

less – in such cases the nuclear ensemble can be adequate. Artifact spikes in Wigner spectra

can appear due to spuriously large hydrogen displacements in the ensemble sampling because

it uses linear normal modes for some non-linear degrees of freedom, such as torsions. Using

MD is preferable in these cases, although another option is to freeze such torsional modes when

constructing the Wigner distribution.

2.2.2.1 Including multiple conformers

When predicting σ(λ) for molecules with rotatable bonds, there may be a number of conformational

minima that need to be considered. There is a wide selection of algorithms that can determine

a set of conformers from molecular structure, including systematic rotor search, random rotor

search, weighted rotor search, and genetic algorithm methods – all of these are implemented

in OpenBabel.[69] However these strategies can become cumbersome for molecules with large
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Figure 2.2: Schematic illustrating the
Wigner ensemble method used to rep-
resent the ground state density. Normal
modes (frequency ω) at the equilibrium
geometry are assumed to be uncoupled
harmonic oscillators in the construction
of the Wigner quasiprobability distribu-
tion PW (q, p). Resulting spectrum is gen-
erated by applying the reflection prin-
ciple where peaks are overlaid with a
narrow Lorenzian or Gaussian function.
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numbers of torsions, and the efficient exploration of conformations in proteins remains an active

field of research.[70]

For spectrum modelling in molecules with multiple conformers, Barbatti et al. suggests a

modified variant of the Wigner sampling approach whereby the conformers are weighted by

their corresponding Boltzmann factor calculated from their energy.[68] This can become difficult

for a large number of geometries since each must be sampled sufficiently, in which case only

conformers with largest Boltzmann weights need be included.

Conformational space may also be explored with MD, since in the limit of an infinitely long

trajectory all thermally accessible conformers of a molecule will be sampled. The challenge of

this approach is the existence of high rotational barriers which may mean that a prohibitively

large number of MD steps would be necessary to obtain a representative ensemble.

2.2.2.2 Computational details

A set of Nconf nuclear geometries is generated in the Newton-X package,[71] from the distribution

shown in equation (2.8) generalised for an n-dimensional system.

For each geometry, qN of Nconf , in the ensemble, a TDDFT calculation is performed to

determine the energy gap ∆E0,n and oscillator strength f0n between the ground state and an

arbitrary number of excited states N f inal . The spectrum σ(E) is constructed by overlaying the

peak at each conformation with a Lorenzian (or Gaussian) centered at ∆E with width δ as seen
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in equation 2.9

(2.9) σ(E)= πe2~
2mcε0E

N f inal∑
n=1

1
Nconf

Nconf∑
i=1

∆E0,n (q) f0n (q)× g
(
E−∆E0,n (q) ,δ

)
For molecules with multiple conformers, I adopt the strategy suggested by Barbatti[68], and

draw their relative populations from the Maxwell Boltzmann distribution, with total energies

(electronic + vibrational ZPE) calculated at the PBE0/TZVP level. Rotamers are found with the

conformer search tool in OpenBabel, that uses a genetic algorithm to scan over the rotatable

bonds and returns geometries optimised for minimum energy.

Ensembles are generated from an uncorrelated Wigner distribution for each conformer, in the

same manner as described earlier. Spectra are assembled by combining numbers of geometries

from the ensemble corresponding to their Boltzmann weights.

2.2.3 Sampling from molecular dynamics

An alternative method of generating an ensemble of phase space points for spectrum simulation

is by taking snapshots of uncorrelated geometries along a molecular dynamics trajectory. Unlike

Wigner, dynamics naturally account for anharmonicity effects since no assumptions are made

about the underlying shape of the PES.

2.2.3.1 Classical molecular dynamics

Classical molecular dynamics (CMD) simulations treat atoms as point particles i which evolve in

time according to Hamilton’s equations of motion

q̇i = ∂H
∂pi

and ṗi =− ∂H
∂qi

in a phase space defined by their position and momentum coordinates, qi and pi.

Classical trajectories are applied extensively in the modelling of chemical reactions,[72]

collisions,[73] and intramolecular energy redistribution.[74, 75] Ensembles of geometries generated

from CMD have been used for generation of broadened UV-Vis spectra of liquid water, [76–78] and

photoionization spectra of sodium-water clusters.[79] Whilst it can be useful for simulation of fast,

classically allowed chemical dynamics, CMD does not account for tunnelling effects, vibrational

ZPEs, or nonadiabatic coupling which I will collectively describe as nuclear quantum effects

(NQEs). Such effects become especially important for predicting the dynamics of lighter atoms

and at colder temperatures. For example, in a study of proton transfer in water, CMD results

were shown to be significantly different from quantum simulations even at room temperature.[80]

It has been suggested that ZPE can be included in the simulation of spectra by sampling the

initial conditions of classical trajectories from a semiclassical (Wigner) distribution,[81] or by

setting the initial internal energy of the system at an energy corresponding to its quantum state

– the quasiclassical trajectory method.[82] However, these approaches still incorrectly model the

energy redistribution between modes and are inefficient for strongly anharmonic potentials.[83]
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Figure 2.3: CMD ensemble sampling.
Kinetic energy of the one reaction coordi-
nate q shown on the diagram is 1/2kBT,
according to equipartition theorem. The
canonical NVT ensemble is sampled by
taking uncorrelated snapshots of a tra-
jectory. The boundaries of the phase
space it can explore are limited by its
total energy, resulting in narrower spec-
tral bands than PIMD spectra because
zero-point energy is not included.
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2.2.3.2 CMD with a quantum thermostat

The generalised Langevin equation (GLE) thermostat can be used to improve the dynamical

properties of classical simulations at approximately the same cost. The equations of motion

(EOM) of a non-Markovian GLE for a unit mass particle moving under the influence of potential

V (q) is

q̇ = p

ṗ =−∂V
∂q

−
∫ t

−∞
K(t− s)p(s)ds+ζ(t)

where ζ(t) is the Gaussian random noise and K(t) is the friction memory kernel. These equations

are non-Markovian precisely because the memory kernel K(t) is finite, and related to the auto-

correlation function of the random noise ζ(t). Integrating this form of the EOM isn’t practical

as it relies on storing and integrating over the complete particle trajectory to compute K(t). To

avoid this, the classical phase space (p,q) is extended by a set of auxiliary momenta s, which

can be interpreted as the system memory, coupled to the momentum variable. This gives us

the Markovian form of the GLE, which contains parameters (app, b̂p, B, etc.) that need to be

iteratively optimised to obtain the desired sampling properties.[84]

q̇ = p(
ṗ

ṡ

)
=−

(
∂V
∂q

0

)
−

(
app aT

p

āp A

)(
p

s

)
+

(
bpp bT

p

b̄p B

)(
ξ
)

20



2.2. METHODS

Here, ξ is a vector of n+1 uncorrelated Gaussian random numbers – the power spectrum obtained

by a Fourier transform of its correlation function 〈ξ(t)|ξ(0)〉 is white noise. This noise term must

be balanced against the friction term in the equation such that the damping of the oscillators in

the system is optimal. Tuning the parameters contained in the GLE thermostat (i.e. the drift and

diffusion matrices [85]) should converge to the correct friction kernel K(t). The advantage of using

a GLE thermostat over a global one is that each normal mode of the system will be thermalised

to a different effective temperature T∗ corresponding to its ZPE, whilst avoiding the need to

explicitly calculate its frequencies.

A known artefact of this semi-classical method is that anharmonic coupling between modes

causes the energy to "leak" from high frequency modes to low frequency modes in an non-physical

way. The CMD+GLE scheme is therefore better suited to sampling static properties, rather than

dynamic properties such as diffusion coefficients since at longer timescales ZPE leakage causes

significant deviations from true quantum behaviour. The thermostat may be tuned to increase

the coupling, counterbalancing the effect of ZPE leekage.

V1

V0

 1/2 kBT*(ω)

hν

Ab
so

rp
tio

n 
cr

os
s s

ec
tio

n 
(σ

)

ν

Reaction coordinate (q)

En
er

gy
 (E

) 

ρ(q, ω, T )

Figure 2.4: Generalised Langevin equa-
tion thermostat applied to PI+GLE or
CMD+GLE sampling for spectrum sim-
ulation. NQEs are included by ther-
malising each mode of the system to a
frequency-dependent effective tempera-
ture T∗. In the case of an uncoupled har-
monic oscillator mode with frequency
ω, T∗ is given by ~ω

2kB
coth ~ω

2kBT . Because
ZPE is included, more phase space is
sampled leading to a broader band in
the resulting spectrum.

2.2.3.3 PI+GLE dynamics

Path integral molecular dynamics (PIMD) is a method that uses the isomorphism between the

quantum mechanical partition function of the physical system and the classical partition function

of a ring polymer consisting of replicas (beads) of the system that are connected by harmonic

springs.[86] It accounts for NQEs and, if the sampling is optimal, it will generate an ensemble

that reflects the exact ground state nuclear density.[85] Whilst the quantum thermostat enforces

the exact quantum configurational distribution in the uncoupled harmonic limit, PIMD is a
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systematically improvable method that gives the exact quantum result for all temperatures,

and captures ZPE and tunnelling effects. When Della Sala et al. applied PIMD to study the

absorption cross sections of Lithium clusters at very low temperatures, they observed qualitative

differences in temperature dependence and band shape in comparison with the CMD ensemble

method.[87] However, PIMD often requires a large number of replicas to converge to the correct

result, especially at lower temperatures, leading to a 10× to 100× computational cost overhead

over CMD.

PI+GLE is a method that uses a colored-noise GLE thermostat to accelerate the convergence

of imaginary-time PIMD.[86] Ceriotti et al. showed that thermodynamic properties of liquid water

can be calculated as accurately from a 16-bead PI+GLE simulation as a 128-bead PIMD run. A

white noise GLE thermostat is optimally efficient at a particular frequency, and a high sampling

efficiency is only obtained for a small frequency range. In contrast, a colored noise thermostat

has an optimal sampling frequency range that spans 4 orders of magnitude which includes both

the slow modes of the system, and the high-frequency internal modes of the ring polymer.[88]

2.2.3.4 Computational details

All ground state MD simulations for ensemble generation used in this chapter were performed

using the multipurpose ab initio MD package, ABIN, developed by Dr. Daniel Hollas.[89] This

code was interfaced with Gaussain 09[90] and the electronic structure method used for the MD

simulations were identical to those used to generate the Wigner ensemble – PBE0 in TZVP basis

for all molecules.

Each trajectory was executed for 50000 steps, with a time step of 20 a.u. (or 0.484 fs), and an

equilibration period of 2000 time steps (0.968 ps), such that the overall length of the trajectory is

24.2 ps.

In the CMD simulations, a Nosé-Hoover chain thermostat (4 chains, relaxation time 0.001

a.u.) was applied to maintain the temperature at 300 K. Parameters for the GLE thermostat

used in the PI+GLE and CMD+GLE simulations were obtained from an online generator,[91] with

target temperature T = 300K and spanning a frequency range up to ωmax = 10392 cm−1. In the

PI+GLE calculation 4 replicas were used, running concurrently over 4 cores.

For each of the CMD, CMD+GLE, and PI+GLE trajectories, 500 uncorrelated conformations

were chosen at random uncorrelated points along the trajectory. A LR-TDDFT calculation was

performed for each geometry in ORCA,[92, 93] using the PBE0 functional in TZVP basis to calculate

the first 5 singlet states. Absorption spectra were then assembled by overlying each S0 to S1

excitation with a Lorenzian with a broadening parameter of 0.05 eV.

Shell scripts for spectrum generation from ABIN trajectory output were supplied by Daniel

Hollas, with methods described in Hollas et. al. [94]
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2.2.4 Including temperature

Finite temperature effects can influence the shape of the UV-Vis spectral band in a number of

ways. Higher kinetic energy in the molecule’s vibrational modes will increase the scope of its

dynamics, and populate higher vibrationally excited states. In this section I will outline the ways

in which the aforementioned methods of spectrum simulation are able to include (or not) finite

temperature effects in predicting the cross section.

In FC/FCHT spectra, the main way to include temperature is by altering the Boltzmann

populations of the vibrational levels in the ground electronic state, and computing the FC

integrals for ν= 1 vibrational levels and higher. As the size of the molecule increases, so does

the number of normal modes for which these integrals must be calculated, so the computation of

vibrationally resolved spectra at finite temperature can become computationally intractable for

all but the smallest systems. Santoro et al. suggested a filtering strategy which selected only the

most relevant FC integrals.[95]

For sampling the NVT canonical ensemble with classical molecular dynamics, a constant

finite temperature is enforced through use of thermostats. Examples include Nosé-Hoover,[96, 97]

Andersen,[98] Langevin,[99] and a multitude of others which are more fully described in this

review by Hünenberger.[100] These thermostats work by altering the velocity of the atoms to fit

with a Maxwell-Boltzmann distribution of particle kinetic energies.

In path integral molecular dynamics where nuclei are treated as quantum entities by extend-

ing the phase space of the dynamics, the same classical MD thermostats can be applied to each

of the beads in the ring polymer. The coloured-noise GLE thermostat can enforce a quantum

distribution at the cost of classical MD by setting the effective temperature of each mode, thus

modifying the sampling. However, when Sršeň et al. used the PI+GLE method to simulate the

temperature dependence of the (E)-Azobenzene spectrum they showed that the convergence with

the number of ensemble points is very slow.[101] Even with 40,000 geometries, the difference

between experimental spectra at 380 K and 300 K could not be captured with the PI+GLE method

for ensemble generation.

Typically Wigner sampling is performed at 0K because of the assumption that kBT ¿ ~ω for

most frequencies. There are two main approaches to introduce finite temperaure effects into the

Wigner sampling protocol. Firstly, the population of higher vibrational states can be described

by summing temperature-independent Wigner functions for each vibrational state, weighted by

their population at temperature T.[102] Alternatively, the Wigner distribution from which the

ensemble points are sampled can be broadened by a factor of B = tanh(~ω/2kBT).

PW (q, p,T)= B
π~

exp
{−B
~ω

(
µω2q2 + p2

µ

)}
This analytical expression is true for a canonical ensemble of harmonic oscillators, and corre-

sponds exactly to the quantum density distribution at a finite temperature.[103] Therefore, it

works well at lower temperature regimes where anharmonicity of the potential does not have a
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strong effect. Anharmonic effects are also more likely to impact the results for larger systems

containing many low-frequency modes. At higher temperatures where kBT À ~ω trajectory

sampling methods would be preferred since the molecule is likely to move outside of the region

where its potential can be described by the harmonic approximation.[102]

To look at the effects of temperature on the spectral band shape, I have selected the example

of 3-hydroxy-2-butanone (acetoin) whose experimental spectrum was measured by Messaadia

et al. at 298K and 353K.[104] This molecule is an energy store in bacteria, and gives butter its

distinctive taste – although admittedly it isn’t of much atmospheric interest. However, it is one of

the few molecules for which spectral data was available at two distinct temperatures, which I

suspect is because it is liquid at R.T.P., making it easier to record its UV-Vis spectrum. As can be

seen in the top panel of figure 2.6, the experimental absorption cross sections show only subtle

temperature effects which will be captured through the Wigner ensemble method, as described

above.

Figure 2.5: Rotational isomers of 3-hydroxy-2-butanone (acetoin)

2.2.4.1 Computational Details

The structure of acetoin contains a chiral centre and 3 rotational isomers corresponding to a

twist about the chiral carbon, which are shown in figure 2.5. We optimised each of the rotamers

with DFT/PBE0/cc-pVDZ and calculate their normal mode frequencies at these ground state

stationary points, verifying that all normal mode frequencies are positive. Boltzmann weights of

each rotamer were calculated from their free energies (electronic + zero-point correction from

vibrations) at 298K and 353K. Their relative energies in kJ mol−1 are 0, 13.8, and 16.3. The lowest

energy conformer is stabilised by the hydrogen bond between the carbonyl and the OH group.

This stabilisation means that it has a significantly higher Boltzmann weight than the other two,

and in an ensemble of 500 geometries, 497 correspond to that conformer at 298K (497:2:1) and

494 at 353K (494:4:2). Initially, 500 nuclear configurations were sampled, then 1500 in the same

ratios to improve convergence of the results and reduce statistical error in the predicted spectra.

These ensembles were used to simulate the spectra according to the protocols described earlier.

The uncorrelated Wigner distribution was constructed based on the normal modes calculated with

DFT/PBE0/cc-pVDZ, applying the temperature broadening parameter at 298K and 353K for each

rotamer. Excitation energies and oscillator strengths were calculated for the first 10 singlet states
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with LR-TDDFT/PBE0/aug-cc-pVDZ in Gaussian 09. Spectra were then assembled by overlaying

the peak at each conformation with a Lorenzian curve (phenomenological broadening parameter

δ = 0.05 eV). Results can be seen in the bottom panel of figure 2.6. Ensemble generation and

spectrum simulation was performed in Newton-X,[71] and all electronic structure calculations

were performed in Gaussian 16.[64]

0

5

10

15

20

σ 
(1

0-2
0  c

m
2 )

298K
353K

3-hydroxy-2-butanone

Experimental

200 250 300 350
λ (nm)

0

10

20

30

40

σ 
(1

0-2
0  c

m
2 )

298K (500)
353K (500)
298K (1500)
353K (1500)

Wigner

Figure 2.6: Influence of finite temperature effects on the absorption cross section of acetoin. Top
panel contains the experimental spectra taken by Messadia et al.[104], which demonstrate subtle
changes in band shape. Wigner spectra shown in the bottom panel are calculated for 500 and
1500 sample points, with 95% confidence interval error bars shown for the latter set.

Computed spectra shown in the bottom panel of figure 2.6 are indistinguishable between

the two temperatures when 500 conformations are used. Increasing the ensemble size to 1500

reduces the statistical error in the predicted spectra, but it is evident from the error bars on the

figure that resolving the subtle differences seen in the experimental bands would require a much

larger ensemble size. These results show the limits of the Wigner approach for capturing finite

temperature effects when the changes in band shape are subtle. They show that convergence

with ensemble size can be improved using importance sampling techniques, albeit only when the
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ensembes are computed for a range of temperatures.[105]

2.3 Results and Discussion

This section will report the spectra simulated by using the methods described in section 2.2 and

compare them against experimental data. All experimental cross sections shown here were found

in the MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules.[106]

Formaldehyde is the smallest, simplest molecule examined using all the available protocols.

Fig. 2.7 illustrates that FC and FCHT can successfully reproduce the vibrational fine structure

of the experimental spectrum, including the gaps between consecutive peaks (this is more

apparent towards at the shorter wavelengths tail of the progression. FC and FCHT peaks overlap,

with intensity of the transition being the main difference between the two spectra. Because

formaldehyde is a small and relatively stiff molecule (primary vibrational mode is stretching of a

double bond C=O) the uncoupled harmonic oscillator model works well. The nuclear ensemble

methods also capture the broadness of the peak well, except CMD which underestimates it

significantly due to its neglect of ZPE. The quantum MD methods return functionally identical

results although the bands, like the Wigner band, are red-shifted in relation to the FC/FCHT

results. This can be attributed to the harmonic approximation which predicts larger ∆E between

the ground and excited states, whilst nuclear ensemble methods use the computed S0 and S1

energies. The intensity of the transitions is significantly higher in the FC/FCHT spectra than for

the nuclear ensemble methods (max at c.a. 20 cm2 molecule−1 vs 9 cm2 molecule−1). This could

also be attributed to the overestimation of FC factors in the harmonic approximation.

FCHT and FC also perform impressively for acrolein, with the FCHT prediction almost

exactly overlapping the experimental result (taken from Magneron et al.,[108]). The optimised

excited state geometry of acrolein is very similar to that of its ground state. In such cases we

might expect the largest FC integrals to be between the v = 0 ground state nuclear wavefunction,

and low vk excited state nuclear wavefunctions, where the shape of the potential is most similar

to its harmonic approximations. The vibrational progression isn’t as apparent in the experimental

spectrum, although some peaks are visible on the longer wavelength side of the band. Wigner

sampling also captures the band shape and amplitude extremely well, although it is slightly blue-

shifted which could be attributed to TDDFT overestimating the excitation energies. Since Wigner

also invokes the harmonic approximation, albeit only in the ground state, the assumption that

normal modes are mostly harmonic and uncoupled is probably valid in this case. MD ensemble

sampling methods in the bottom panel of figure 2.8 show the peaks were also blue shifted

relative to the FCHT and the experimental result. As with formaldehyde, the CMD spectrum

was significantly less broad than QT and PI+GLE spectra due to lack of quantum nuclear effects.

Hydroxypropanone was supposed to be a test case for the multiple-conformer sampling

strategy as it has two major conformers – A, with the dangling OH group hydrogen bonded to the
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Figure 2.7: Photoabsorption spectra of formaldehyde, comparison of experimental results from
Rogers et al.,[107] FC-HT, and nuclear ensemble approaches. All calculated spectra include only
S0 to S1 excitations.

carbonyl, and B, with the carbonyl and OH in an antiparallel conformation. At 298K, there is

99.7% A and 0.3% B, as calculated from the Maxwell-Boltzmann distribution. Because of this, the

spectrum in figure 2.9 doesn’t look much different from the spectrum that just includes conformer

A. Nevertheless, this figure once again shows that Wigner can capture the inhomogenous peak

broadening well, and demonstrates one of the key advantages of the Wigner method over FCHT.

It was impossible to calculate an FC or FCHT spectrum in this case because the optimised S1

state of hydroxypropanone was significantly distorted from S0 and so the FC integral is negligible,

which means that the resulting spectrum would be highly unreliable. This severely limits the

calculation of FCHT spectra to cases in which the excited state is bound, and the minimum is

near enough to the Franck-Condon region.

What is also notable in Fig. 2.9 is that the spectra are not smooth, and show many spurious

peaks not seen in the very smooth experimental spectrum. This could be because 500 ensemble

points are insufficient to converge the spectral shape. In the Wigner spectrum, this could also be
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Figure 2.8: Photoabsorption spectra of acrolein, comparison of experimental results from Mag-
neron et al.,[108] FC/FCHT, and nuclear ensemble approaches. All calculated spectra include only
S0 to S1 excitations.

due to the spurious hydrogen displacements discussed earlier.

2.4 Conclusion

In this chapter I compared a selection of available strategies for predicting band broadening

in UV-Vis spectra. The capabilities of the methods are summarised in table 2.1. FCHT is the

only method which can reproduce the vibrational fine structure of a spectrum. It is best used

for small-to-medium sized molecules with high symmetry, which are excited into a bound state

which is geometrically similar to its ground state. Sampling from a Wigner distribution gives a

universally good description of peak broadening, although a large number of ensemble points may

be necessary for convergence. It is good for mid-sized molecules with few torsional modes, and can

include temperature in the sampling procedure. Of all the MD ensemble sampling approaches

CMD should not be applied to spectrum prediction as it always underestimated the broadening
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Figure 2.9: Photoabsorption spectra of hydroxypropanone, comparison of experimental results
from Messaadia et al.[104] and nuclear ensemble approaches. All calculated spectra include only
S0 to S1 excitations.

of the spectrum relative to the experimental peak. The MD methods which included quantum

effects gave good results, but require a degree of understanding of GLE thermostats to set up

the sampling. For non-experts Wigner sampling is much more straightforward to apply, and is

computationally less expensive since the number of steps in an MD trajectory must be at least

10× higher than the number of ensemble points to ensure that they are uncorrelated.

Lastly, the result is sensitive to the selected electronic structure method – if the ground

state being sampled is inaccurate, it will return an inaccurate spectrum. To make quantitative

statements about the methods outlined here, I would have used a benchmark set of molecules to

generate spectra so as to make a direct statistical comparison with experimental σ(λ). However, it

would be necessary to use extremely accurate oscillator strengths and energy gaps to distinguish

between the error of the sampling method, and error of electronic structure. Since normal mode

frequencies, or ensemble sizes of over 500 points are needed for spectrum generation such an

endeavour would be extremely expensive, and therefore beyond the scope of this work.
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FCHT Wigner CMD CMD+GLE PI+GLE
Vibrational structure y n n n n

Anharmonic n n y y∗ y∗

ZPE y y n y† y
Temperature y y y y y
Conformers n y∗∗ y y y

Table 2.1: Breakdown of the methods discussed in this chapter. ∗ In MD the ground state
potential isn’t assumed to be harmonic, but the GLE thermostat is tuned to a set of harmonic
frequencies (although performance of GLE for anharmonic potentials can be improved by tuning
the coupling).[84, 85] † ZPE is included with the GLE thermostat, but is susceptible to "leaking"
from fast to slow normal modes. ∗∗ Although it is possible to include multiple conformers by
performing a conformer search prior to the sampling, in comparison with MD methods the
conformer search isn’t built-in to the sampling method.
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3
COMPARISON OF ENERGY GRAINED MASTER EQUATION AND

ATOMISTIC DYNAMICS FOR PREDICTING NONADIABATIC KINETICS

In accordance with the University of Bristol guidance on the integration of publications as

chapters within a dissertation, I declare that this chapter was previously published in the

Journal of Physical Chemistry A.[109] My contribution as first author was to design, execute,

and analyse the calculations, and to write the manuscript. David R. Glowacki and Basile F. E.

Curchod began working on this project in 2015 and both contributed their expertise towards this

publication. Robin J. Shannon contributed his expertise in Master Equation kinetics and his

knowledge of MESMER software. Several additions have been made to the manuscript to give the

reader a more comprehensive introduction to the methods described in this chapter. These are

the section on Nonadiabatic dynamics methods, the discussion of the Zhu-Nakamura equations,

and the discussion of the impact of time step size (which has been moved from the supporting

information in the paper).

3.1 Introduction

Accuracy of molecular photodynamic simulations in the excited state is inherently constrained

by the dimensionality of the system. Exact non-relativistic quantum mechanical dynamics of a

nuclear wavepacket can be described by solving the time-dependent Schrödinger equation, but

exponential scaling limits this approach to small molecular systems. At the opposing end of the

scale, there is a growing interest in describing the nonadiabatic dynamics of very large systems

characterised by exciton transfer between chromophores.[110–114] In fact, an analytical description

of nonadiabatic transitions for a simple one-dimensional two-state system in the weak coupling

limit has been available since 1932, developed simultaneously, and separately, by Landau, Zener,
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and Stueckelberg.[115–117] In many cases Landau-Zener (LZ) theory works reasonably well even

for larger, multidimensional systems. Later, Zhu and Nakamura built on this framework to

produce a set of exact nonadiabatic transition probabilities for different types of nonadiabatic

curve crossings.[118–124] Zhu-Nakamura (ZN) theory is valid over the entire coupling regime, is

fully analytical, and incorporates tunnelling contributions. Like LZ theory, it is formulated in a

single dimension.

On-the-fly trajectory-based semiclassical dynamics accounts for the full dimensionality of

a molecular system. For example, Tully’s fewest switches surface hopping (FSSH) is a well-

known and efficient way of simulating femtosecond timescale processes in the excited state,[125]

where the time evolution of a nuclear wavepacket is approximated by a swarm of independent

trajectories that classically propagate the nuclear degrees of freedom on a PES calculated on-

the-fly. Each trajectory can stochastically switch between electronic states in regions of strong

nonadiabatic coupling. While FSSH has known shortcomings (including overcoherence and

neglect of tunnelling and interference effects)[126] it often provides an accurate and scalable

method that is now widely used to explore photochemical and photophysical phenomena, also for

atmospheric chemistry.[32, 127–129] Given that FSSH typically has a sub-femtosecond integration

time step, pushing the simulation into the nanosecond regime necessitates compromises with

respect to the electronic structure method and number of trajectories. It has been suggested that

this bottleneck might be overcome through machine learned energies and couplings.[130]

For longer timescale simulations in the statistical regime, alternatives to conventional nona-

diabatic dynamics strategies are needed. The energy grained master equation (EGME) is the

numerical implementation of the exact master equation which discretises the density of states

ρ, recasting it in matrix form. The EGME has recently been applied to the study of non-RRKM

reaction kinetics in the gas phase,[131] in solution,[132, 133] and in surface chemistry.[134] Unlike

FSSH, where an electronic structure calculation is performed at each step of a trajectory, an

EGME calculation needs only the energies, frequencies and rotational constants of the relevant

stationary points. This allows for the use of more computationally demanding electronic structure

calculations and detailed sensitivity analyses on the results. The EGME also enables treatment

of collisional activation and energy dissipation from the system. Furthermore, unlike molecular

dynamics simulations where zero-point energy can leak, vibrational zero-point energy at the

stationary points can be included explicitly in an ME calculation. Approaches to zero-point energy

conservation in quantum-classical trajectories exist,[135] but they are not adopted in the standard

FSSH algorithm used in this work. Tunnelling corrections may also be included in the framework

of the EGME approach using an asymmetric Eckart barrier[136] or semiclassical WKB theory.[137]

Solving the ME returns temperature and pressure dependent species profiles, making it a useful

tool for modelling atmospheric or interstellar reactions.

Nonadiabatic analogues of standard statistical rate theories generalise classical transition

state theory (TST) to reactions involving multiple PESs.[138–140] For example, intersystem cross-
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Figure 3.1: Main reaction channel for C6-HPALD photodissociatio in the 300-400 nm range.

ings have been successfully modelled by using both the LZ and ZN expression for the inter-state

surface hopping probability at the minimum energy crossing point (MECP).[141–144] Until re-

cently, simulation of intersystem crossings in the surface hopping framework has been limited by

the need for the global calculation of the spin-orbit coupling matrix elements[145] or spin-orbit

coupling gradients.[146] It is now possible to run FSSH simulations that include coupling between

states of arbitrary spin multiplicity.[147, 148] Using the LZ approach to describe coupling between

states with differing multiplicity works well in the weak coupling regime, but fails for strong

coupling.[115] A nonadiabatic EGME model (NA-EGME) of internal conversion should instead use

the ZN expression, which is able to accurately treat the analytical nonadiabatic transition proba-

bilities for the full range of energies and couplings,[122] giving the LZ result in the weak coupling

limit, and the transition state theory result in the strong coupling limit. The ZN description of

the coupling region can also be formulated to include contributions from tunnelling through the

crossing barrier. In contrast to the full-DOF description of quantum-classical dynamics, the ZN

equations are only formulated for 1-D crossings. Here, we provide evidence that – for seam-like

crossings – the ZN approach offers a good approximation to describing nonadiabatic transitions

between adiabatic states.

In this work, we apply the NA-EGME to predict the dissociation rate of a photoexcited

bi-chromophoric hydroperoxy aldehyde, C6-HPALD, whose primary photodissociation channel

is shown in Fig. 3.1. In order to evaluate the validity of this approach, we show that the NA-

EGME results are similar to the outcomes of nonadiabatic molecular dynamics (NA-MD, in

this case FSSH). HPALDs are a class of molecules important in atmospheric chemistry, and

it has been suggested that they participate in OH radical recycling in low NOx regions of the

troposphere.[24, 149–153] As a product of isoprene oxidation, they contain an α,β-enone chro-

mophore that absorbs sunlight in the UV range, which is close to a labile peroxide bond. Previous

experiments investigating the photodissociation kinetics of C6-HPALD reported OH radical

production under UV light.[154] In this chapter, we are less concerned with the atmospheric

details of HPALD photodissociation, which will be addressed in the following chapter, but rather

with C6-HPALD as a prototypical example of a multi-chromophore system with an interesting
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seam-like nonadiabatic coupling topology between two low-lying excited states. We show that

the dissociation rate obtained using a NA-EGME model shows qualitative agreement with the

results of NA-MD, at a significantly reduced computational cost.

This chapter will be structured as follows. First, we describe how nonadiabatic effects can be

included in an EGME model using ZN transition probabilities. Second, we describe the electronic

structure calculations used to characterise the relevant excited states of C6-HPALD in the

Franck-Condon region, and along the dissociative coordinate. Third, we describe the NA-MD and

NA-EGME calculations and their adiabatic counterparts. Fourth, we compare the results of these

contrasting methods for a single isolated reaction coordinate which corresponds to the molecule

moving over a transition state on the S1 surface leading to photodissociation. Lastly, we extend

both models to include all rotational conformers of C6-HPALD.

3.2 Nonadiabatic molecular dynamics

In Newtonian classical dynamics the motion of a system is driven by the sum of the applied

forces. For an N-atom molecular system the force at a given point in phase space is defined by

the potential energy surface (PES) which is a 3N dimensional function of the nuclear geometry.

The PES is a core concept in molecular dynamics, that arises as a consequence of the Born-

Oppenheimer (BO) approximation. The total BO wavefunction is defined as

Ψ(r,R)=Φ(r;R)Ω(R)

where the electronic wavefunction Φ(r;R) is a function of electron position r parametrically

dependent on the nuclear position R. The expectation value of the electronic Hamiltonian

determines the potential on which the nuclear wavepacket can evolve, i.e. the PES. By applying

the BO approximation we assume that the motion of nuclei and electrons in a molecule can

be treated as independent due to their large disparity in mass. This is useful for dealing with

ground state dynamics on a single potential when the coupling to other electronic states is

negligible. However, this approximation breaks down for many photochemical processes where

electronic states may intersect, and electron and nuclear motion becomes coupled. Over the years

a multitude of ways have been developed that can treat such problems of nonadiabatic dynamics

and track the motion of a wavepacket across multiple PES in an approximate way.[26, 35] This

section will discuss the taxonomy of the most widely used methods, starting with the most exact.

The time dependent Schrödinger equation (TDSE) gives a complete description of a wavefunc-

tion evolving on a potential.

i~
∂

∂t
Ψ(r,R, t)= ĤΨ(r,R, t)

This wavefunction contains the full description of a molecular system and its formally exact form

is given by the Born-Huang expansion, where α denotes the electronic state.

Ψ(r,R, t)=
∞∑
α

Φα(r;R)Ωα(R, t)
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The Born-Huang expansion is the starting point in the derivation of many of the following

methods. Electronic and nuclear degrees of freedom (DoF) are treated on equal footing, but the

exponentially scaling cost to finding the solution to the TDSE numerically is prohibitive. As such,

this method is restricted to systems containing no more than three atoms, or model systems.

As early as the 1930s suggestions were made to improve the scalability of the problem by

solving the TDSE variationally.[155] This mean-field method is known as time-dependent Hartee

(TDH or TDSCF), and it works by approximating the wavefunction as a Hartree product of one-

dimensional single particle functions. Solving this problem using the Dirac-Frenkel variational

principle returns a set of coupled one-dimensional equations of motion (EOM) for each DoF of the

wavepacket.[156] However, due to the mean-field description of each DoF this method often fails

to correctly describe the correlation between them.

A more sophisticated approach uses a multiconfigurational wavefunction anzats in combina-

tion with the variational approach to capture some of this correlation. This is the multiconfigu-

rational time dependent Hartree (MCTDH) method, and it is a numerically exact in the limit

of a basis that includes all possible configurations.[157] One of the requirements to solving the

MCTDH EOM is fitting of multiple PES in a multidimensional phase space, which numerically

is performed on a fixed grid. Because of this, full MCTDH is still exponentially scaling, albeit

with a small prefactor. It is most suitable for molecules with 4-12 DoF, although variants of the

method have previously been used to describe systems as large as pyrazine (24 DoF).[158]

A subset of direct dynamics methods are the Gaussian based approaches which expand the

wavepacket in a basis of coupled fixed-width Gaussians moving on the PES. The variational

multi-configuration Gaussian wavepacket method[159] (vMCG) is derived from a variant of

MCTDH,[160] (G-MCTDH) that uses Gaussian expansion functions. In vMCG parameters of the

time dependent Gaussian wave packets (GWPs) evolve according to equations of motion obtained

from the Schrödinger equation via the Dirac-Frenkel variational principle. This set of EOMs

couple the GWPs to each other, and wavepacket propagation is nonclassical allowing them to

tunnel through barriers. This quantum dynamics method can be used "on-the-fly" (DD-vMCG) by

calculating Hamiltonian matrix elements using a local harmonic approximation – necessitating

the calculation of a Hessian at each time step.[161] Running dynamics "on-the-fly" is generally

preferred for larger systems as the need for electronic structure calculations is limited to the

regions of phase space explored by the wavepacket.

In full multiple spawning (FMS) the nuclear wavepacket is represented by an adaptive basis of

frozen Gaussian trajectory basis functions that, unlike in vMCG, follow classical trajectories.[162]

Nonadiabatic transitions are included via a spawning algorithm that expands the basis set over

the course of a trajectory by creating new Gaussian basis functions when the parent trajectory

enters an area of strong nonadiabatic coupling. In an infinite basis, FMS converges to the exact

TDSE solution.[26, 162]

Ab initio multiple spawning (AIMS) is an approximate "on-the-fly" version of FMS which is
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robust enough to be employed to simulate the excited state dynamics of molecules.[26, 35] There

are two key elements which distinguish these methods. Firstly, the "saddle-point" approximation

for the Hamiltonian matrix elements in FMS – which in AIMS are calculated by an overlap of

proximal Gaussians. Secondly, treating the trajectories as independent at t = 0, until the point

when a new Gaussian is spawned. The approximations necessary to take AIMS to its FMS limit

are explicit, allowing the user to tune the method to suit the complexity of the system.[163]

Mixed quantum-classical (MQC) dynamics methods allow the nuclear degrees of freedom to

evolve on a quasi-classical potential, and incorporate nonadiabatic effects. Examples of MQC

methods include multiconfigurational Ehrenfest and Tully’s surface hopping dynamics.[34, 125]

The Ehrenfest wavefunction ansatz is similar to that used in FMS, in that it is also expanded

on a set trajectory basis functions composed of electronic and nuclear parts. However, Ehrenfest

trajectories evolve on a potential which is a time dependent linear combination of adiabatic

potentials weighted by their electronic coefficients.[34] Because the trajectories move on this

average potential, Ehrenfest dynamics have been described as a mean-field solution to the TDSE.

Because of the non-physical nature of a wavepacket moving on an average potential this approach

has been predominantly used to model solid state systems.[26]

The surface hopping method was first introduced by Tully and Preston in the 1970s,[164] who

later developed the fewest switches algorithm in 1990.[125] The wavepacket is represented by

a swarm of independent trajectories which evolve classically on a potential that is calculated

on-the-fly. Nonadiabatic effects are included by allowing the trajectories to "hop" to another

state with a probability that depends on the coupling strength. This method is highly efficient

and parallelizable and has been applied to larger systems including the LH2 complex,[111] and

recently, the pentacene/buckminsterfullerene heterojunction.[165] However, there are cases where

this approach fails – particularly in its treatment of decoherence. Another important caveat is

that the accuracy of the dynamics is limited by the electronic structure method used.

Novel machine learning approaches have been proposed to reduce the cost of accurate PES

for running "on-the-fly" dynamics calculations without the requirement to perform electronic

structure calculations at each time step.[166, 167] Approximate kernel ridge regression potentials

have been integrated with trajectory based dynamics, although ML methods still struggle to

capture the shape of rapidly varying nonadiabatic coupling.

3.3 Nonadiabatic energy grained master equation

We propose an alternative approach to dynamics methods covered in the previous section: a

kinetic model that includes nonadiabatic transitions to a different electronic state. The energy

grained master equation (EGME) is a Markov-state model that has found widespread application

to non-equilibrium problems in chemical kinetics.[20, 132, 133, 168, 169] EGME is especially useful

for modelling atmospheric reactions as it has the option of including energy transfer by bath
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Figure 3.2: Left: A-EGME schematic; density of rovibrational states is discretised into grains
with energy εi, microcanonical rates between reactant R and product P connect the two isomers.
Right: NA-EGME schematic with included Zhu Nakamura crossing probabilities pZN(E).

gas collisions. It can also be used to determine the pressure and temperature dependence of

rate constants. The vast majority of applications of EGME models focus on reactive processes

on a single electronic state and do not incorporate nonadiabatic coupling. While strategies for

calculating microcanonical rate coefficients for nonadiabatic processes do exist, to our knowledge

there has only been one attempt to incorporate such transitions into an EGME framework.

Plane et al. modelled temperature and pressure dependent intersystem crossing kinetics by

treating the extended seam between the singlet and triplet state as a dividing surface.[169] The

MECP between these states was treated as a pseudo-transition state, and the probability of spin-

forbidden hopping transitions between these states was calculated by convoluting the density of

states at the MECP with the LZ expressions to obtain microcanonical rate coefficients.

Building on the work of Plane et al., we have extended the NA-EGME to calculate the rate

of HPALD photodissociation, where the nonadiabatic transition of interest involves coupling

between two states of the same multiplicity – i.e., significantly stronger coupling than the

intersystem crossing investigated by Plane et al. The LZ model is ill-suited to internal conversion

as it assumes the inter-state coupling is both localised and weak. For these reasons, we used ZN

theory to describe nonadiabatic transition probabilities in the coupling region. The ZN equations

produce the correct analytical hopping probability coefficients over the full range of coupling

regimes for a 1-D nonadiabatic tunnelling type crossing,[123, 170] returning the LZ result in the

limit of weak coupling, and the classical transition state theory result in the limit of strong

coupling.
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3.3.1 Ground state EGME kinetics

An adiabatic master equation model (A-EGME, illustrated in Fig. 3.2) is constructed from any

number of connected potential energy wells (isomers) and the transition states between them. In

order to make the problem computationally tractable, the energy of each species is discretised

into bins or grains of a set size. The population density across each energy grain of every isomer

in the system is then defined by a vector n(E, t), and it is possible to formulate a set of coupled

differential equations in terms of n(E, t) that describe the time-evolution of the grain populations.

Recasting these differential equations in matrix form defines the chemical master equation.

d
dt

n(E, t)=Mn(E, t)

The matrix M is given as [ω(P−I)− k], where ω is the Lennard Jones collision frequency,

P is a matrix of transition probabilities between grains, I is the identity, and k is a diagonal

matrix of energy-resolved microcanonical rate constants, k(E), for the reactive process. In the

EGME population transfer between grains can arise due to interactions with a bath gas or

through reactive loss/gain to a connected isomer. Energy transfer as a result of bath interactions

is typically modelled using an exponential down model. For reactions between different isomers,

population transfer can only occur between corresponding grains of the same energy.

Such reactions are included in the model through unimolecular microcanonical rate coef-

ficients calculated from RRKM theory. Rice-Ramsperger-Kassel-Marcus theory (RRKM), is a

microcanonical transition state theory for unimolecular reactions. In the MESMER EGME imple-

mentation, k(E)s calculated from RRKM theory are used to model the transfer of population from

an energy grain in one species to the corresponding energy grain in another, across a transition

state.

(3.1) k(E)= WTS(E−E0)
hρ(E)

In equation 3.1 WTS(E−E0) is the sum of rovibrational states at the optimized transition state

geometry between E and reaction threshold energy E0 (excepting the degree of freedom associated

with passage through the TS), ρ(E) is the density of rovibrational states of the reactant isomer,

and h is Planck’s constant.

It is appropriate to apply RRKM theory to a system when the following conditions are satisfied.

Firstly, there should be a free exchange of energy between rovibrational modes causing rapid

intramolecular energy transfer. If this is true, the total phase space of the molecule should be

populated statistically – this is sometimes referred to as the ergodicity assumption.[171] The

flow of energy between active modes implies that every activated molecule will eventually be

converted to products, unless deactivated by a collision. Non-RRKM behaviour can be seen in

cases of weak coupling between vibrational modes, but most molecular systems are anharmonic

enough that this assumption is satisfied. The second assumption is that of strong collisions

between molecules and the bath gas. Energisation and de-energisation are considered single step
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processes where energies >> kT are transfered between molecules. Like in classical TST it is

assumed that the forward flux across the dividing surface is the same as backwards flux such

that the system is at equilibrium and no net reaction is occurring. RRKM theory views energy

as a continuous and not a quantised variable. The number of quantum states in energy range

E∗ → E∗+dE∗ is written as a density of states which is generally true for dE∗ on the order of

4× 10−4 J mol−1.

Because the EGME can be used to model out-of-equilibrium phenomena,[172] it can be applied

to reactions in atmospheric and combustion chemistry which cannot be modelled with equilibrium

TST techniques due to the non-Boltzmann distribution of energy in the isomers. This feature

allows us to replicate the non-equilibrium energy distribution of a wavepacket directly following

photoexcitation.

3.3.2 Nonadiabatic EGME

Having established how a kinetic EGME model works in the ground state, we now consider how

nonadiabatic transitions could be included.

The NA-EGME model, illustrated in Fig. 3.2, is constructed analogously to the conventional

ground state A-EGME, except that the microcanonical rate coefficients are not calculated through

RRKM theory. Nonadiabatic coupling between states is included through an energy resolved ZN

expression for the transition probabilities PZN between two diabatic states in the vicinity of a

crossing point. We can then compute a set of nonadiabatic microcanonical rate coefficients kN A(E)

which transfer population between the different diabatic states. The expression for kN A(E) is

similar to the RRKM expression in Eqn. 3.1.

(3.2) k(E)= NTS(E)
hρS1(E)

where the density of states at the optimised S1 minimum is ρS1 and NTS is the convolution of

the ZN transition probabilities, PZN , and the density of states at the transition state, ρTS.

(3.3) NTS(E)=
∫ E′

0
ρTS(E−E′)PZN (E)dE′

Therefore, to find the master equation solution it is necessary to have a set of energy resolved

ZN transition probabilities. These can be calculated from the 1-D adiabatic profile across the

crossing point using the equations described in the following section.

3.3.3 Zhu-Nakamura theory of nonadiabatic transitions

Nonadiabatic transitions are a fundamental phenomenon, inherent in describing fundamental

chemical processes. First notable attempts to find an analytic solution for the probability of
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a nonadiabatic transition were made in 1932 by Landau,[115] Zener,[116] and Stueckelberg[117]

independently. Landau-Zener, or Landau-Zener-Stueckelberg theory, has had a foundational

influence on new theories that account for nonadiabatic effects. The LZ formula returns the

probability of a diabatic transition between energy states for a two-state system, and is straight

forward to derive by contour integration.[173]

PLZ = exp
(
− 2πA2

~ν|∆F|
)

Here A is the diabatic coupling, ν is the velocity of the wavepacket, and ∆F is the difference in

the gradients of the two diabatic surfaces.

However, the LZ formula was only correct at higher energies so it could not evaluate the

nonadiabatic transition probability at energies near to, or below, the crossing point. The LZ

formula also could not describe strong coupling regimes or account for tunnelling below the

barrier.

Zhu-Nakamura theory addressed all of these concerns. Originally derived for linear diabatic

potentials,[119–122, 174] it provides us with the exact solutions to the general two state curve

crossing problem. This theory works for the full range of energies and coupling strengths. [175]

ZN theory distinguished between two types of nonadiabatic crossing. In the "Landau Zener"

case, the two diabatic potential cross with the same signs of slopes whereas in the nonadiabatic

tunnelling case the diabatic curves have opposite slopes, creating a potential barrier at the

crossing. Both expressions contain the parameters a2 and b2, where a2 can be seen as the

effective coupling strength and b2 is the energy (b2 = 0 at the crossing point). The derivation

will only cover the nonadiabatic crossing case as it is comparable of the shape of the S1 PES in

HPALD photodissociation.

3.3.4 Zhu-Nakamura equations for a nonadiabatic tunnelling type crossing

This section contains the full set of Zhu-Nakamura equations, as they are implemented in

MESMER. Figure 3.3 is an illustration of a prototypical 1-dimensional nonadiabatic type crossing,

where all the parameters that will be significant in the equation are highlighted. We will use the

conventions of the original paper[123] to label all the variables. Dummy variables will be labelled

generally as gn. In the diabatic representation we define parameters a and b as

a2 = ~2F(F1 −F2)
16µV 3

X
(3.4)

b2 = (E−EX )(F1 −F2)
2FVX

(3.5)

where Fn are the slopes of the nth diabatic potential, F = p|F1F2| , µ is the reduced mass of

the system, and VX is the diabatic coupling between the electronic states. In the adiabatic
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Figure 3.3: Nonadiabatic-type crossing illustrating the parameters used in the Zhu-Nakamura
equations. Features in red highlight the variables used in the diabatic representation (V1 and
V2), and black show those in the adiabatic representation (W+ and W−).

representation these parameters are re-defined here

a2 = (1−γ2)~2

µ(Rb −Rt)2(Eb −E t)
(3.6)

b2 = E− (Eb +E t)/2
(Eb −E t)/2

(3.7)

where γ is a parameter expressed in terms of adiabatic state energies (W+, W−) and can be

interpreted as the separation of the adiabatic potentials in the crossing vicinity.

γ= Eb −E t

W+
(

Rb +Rt

2

)
−W−

(
Rb +Rt

2

)(3.8)

Each of the energy range "zones" have a different expression for the transition probability, which

will be given here.

Zone 1 transmission probabilities (E ≤ E t)

To define the transition probability below E t we introduce an adiabatic parameter δ, the integrand
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of the classical action over the nuclear coordinate on the lower adiabatic curve, W−.

δ=
t−1∫

t−2

|K−(R)|dR(3.9)

K−(R)= 1
~

√
2µ(E−W−(R))(3.10)

This integrand can be used to calculate the Gamow factor for tunnelling e−2δ while the impact of

nonadiabatic coupling is given by the function B(σc/π) of another adiabatic parameter σ as well

as δ, and where Γ(X ) is simply the standard Gamma function.

B(X )= 2πX2X e−2X

XΓ2(X )
(3.11)

σ= π

16a|b|

(
6+10

p
1−1/b4

)1/2

1+
p

1−1/b4
(3.12)

σc =σ(1−0.32×10−2.0/a2
e−δ)(3.13)

Which finally gives us the transition probability P12 in energy range E ≤ E t.

P12 = B(σc/π)e−2δ((
1+ a

2(1+a)
B(σc/π)e−2δ

)2
+B(σc/π)e−2δ

)(3.14)

Zone 2 transmission probabilities (E t ≤ E ≤ Eb)

In scattering theory, which is the starting point for the derivation of Zhu-Nakamura theory,

the nonadiabatic transition probability can be directly evaluated from the Stokes constant. The

analytical expression for the Stokes constant in this energy range given by Zhu-Nakamura theory

contains the quantity W. The expression for W has been improved from the original paper by

introducing empirical corrections g1 and g2.[175]

g1 = a−3b2

a+3

√
1.23+b2(3.15)

g2 = 0.38
(1+b2)1.2−0.4b2

a2(3.16)

W =
∞∫

0

1+ g2

a2/3 cos

 t3

3
− b2t

a2/3 −
g1

a2/3 t

0.61
p

2.0+b2 +a1/3t

dt(3.17)

And so the final expression for the ZN transition probability in the energy span E t ≤ E ≤ Eb is

P12 = W2

1+W2 .(3.18)

Zone 3 transmission probabilities (Eb ≤ E)
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Similarly to Zone 1, here we evaluate the classical action integral over the span of the crossing.

K+(R)= 1
~

√
2µ(E−W+(R))(3.19)

This can then be used to evaluate the adiabatic parameters σ and δ

σ=
t+2∫

t+1

|K+(R)|dR(3.20)

δ= π

16ab

(
6+10

p
1−1/b4

)1/2

1+
p

1−1/b4
(3.21)

These parameters can then used to find the quantity present in the Zhu-Nakamura expression

for the Stokes constant, φ

φ=σ+ δ

π
− δ

π
ln

(
δ

π

)
+ π

4
+ArgΓ

(
i
δ

π

)
− g3(3.22)

with an empirical correction

g3 = 0.23a1/2

a1/2 +0.75
40−σ.(3.23)

The Stokes constant in this energy range also contains the Landau-Zener transition probability

p defined as

p = exp

(
−π
4a

√
2

b2 + (b4 + g4)1/2

)
(3.24)

where

g4 =−0.72+0.62a1.43.(3.25)

After defining these extra variables the probability of transition for energies above Eb is expressed

as

P12 = 4cos2(φ)
4cos2(φ)+ p2/(1− p)

.(3.26)

3.4 Computational Details

3.4.1 Characterising the PES

C6-HPALD is a conformationally flexible molecule. A systematic rotor search performed in

Avogadro V1.2.0 finds 7 conformational isomers which we label A-G. Ground state geometries of

these conformers were then optimised with DFT/PBE0/TZVP and their analytical frequencies

confirm that these geometries are local minima on the ground state PES.
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Excited state properties, including energies, nuclear gradients, and nonadiabatic couplings,

can be calculated accurately and efficiently with linear response time dependent density func-

tional theory (LR-TDDFT). LR-TDDFT, like DFT, is formally exact on the condition that the true

frequency-dependent exchange-correlation functional is used. Its shortfalls are well documented,

including its tendency to underestimate energies of states with high charge transfer character or

regions of the PES with strong coupling between ground and excited states.[176, 177] Nevertheless,

LR-TDDFT is widely used for nonadiabatic dynamics simulations of larger systems due to its

favourable scaling with basis set size.[178, 179] Employing LR-TDDFT for excited state dynamics

always requires a careful validation of its accuracy in comparison to high-level wavefunction

methods.

To determine a method for running NA-MD in the relevant region of the PESs, we performed

a number of excited state benchmarks at the S0 geometry of the lowest energy conformer (B) of

C6-HPALD. A scan along the PES cross section of the -O-OH internal coordinate was initiated at

the S0 geometry of conformer B to validate the use of LR-TDDFT/PBE0/6-31G (calculated for 5

singlets) against MS(4)-CASPT2(10,8)/6-31G* and a number of other methods. The active space

of the MS-CASPT2 calculation was selected to include the bonding and anti-bonding orbitals of

the peroxide and α,β-enone chromophores, as well as the lone pairs on the oxygen atoms. All

DFT/LR-TDDFT calculations were performed in Gaussian 16.[64] Ground state energies at the

optimised geometries were refined with density fitted CCSD(T)-f12//cc-pVDZ-f12//def2-QZVPP in

Molpro 2019.[180] MS-CASPT2 calculations were performed in OpenMolcas v18.09.[181]

The transition state (S1-TS) on the S1 surface was optimised using an eigenvector following

Berny algorithm in Gaussian 16[64] with LR-TDDFT/PBE0/6-31G. Finding this first order saddle

point on the S1 surface was not a trivial task: because the seam is quite sharp, optimisation

steps that were too large would cause the optimisation to proceed down the steep slopes of the

ridge. The S1-TS geometry was verified through a vibrational frequency analysis that yielded a

single imaginary frequency. An intrinsic reaction coordinate (IRC) scan was performed, initiated

at this S1-TS geometry. Geometries of each conformer were optimised in the S1 state with the

optimisation starting at their respective S0 geometry. The minimum energy conical intersection

(MECI) between the S1 and S2 states was optimised by using the search algorithm described by

Harvey et al.[182]

3.4.2 Photoabsorption cross section

The photoabsorption cross section of C6-HPALD is yet to be measured experimentally. We

can predict it ab initio by using the nuclear ensemble approach based on a harmonic Wigner

distribution in the ground state[183] which captures the inhomogeneous broadening of the spectral

bands, which has been described in chapter 2. Ground state frequencies used to generate the

Wigner distribution were calculated for each conformer with DFT/PBE0/TZVP. For each of the

7 conformers, 100 nuclear configurations are sampled from their respective distribution. We
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calculate the absorption in the 300-400 nm range into the S1 and S2 electronic states separately,

as well as the combined spectrum. For each sample point the vertical transitions and oscillator

strengths are calculated with LR-TDDFT/PBE0/TZVP. Each peak is overlaid with a Lorentzian

curve whose phenomenological broadening is set to 0.05 eV to return a continuous spectrum.

The final photoabsorption cross section is a linear combination of the spectra for each conformer

where the Boltzmann weights of the conformers are calculated from their CCSD(T) electronic

energies. We approximated the Gibbs free energy by the electronic energy because free energy

corrections (from PBE0/TZVP frequencies) did not change the ordering of states.

3.4.3 Nonadiabatic dynamics

All trajectory dynamics simulations were performed using the following protocol, unless stated

otherwise. Fewest switches surface hopping simulations were performed in Newton-X.[139, 184]

Energies and gradients of the first four singlet states (S0-S3) were calculated at each step with LR-

TDDFT/PBE0/6-31G using Gaussian 09.[64] Energy based decoherence corrections were applied,

as described by Granucci and Persico,[185] with the decoherence parameter α set to 0.1 a.u.

Nonadiabatic coupling terms between electronic states were calculated using a time-derivative

coupling scheme.[186]

The importance of the nonadiabatic effects was quantified by comparing against adiabatic

molecular dynamics (A-MD) in which the nonadiabatic coupling between states was set to 0,

effectively restricting the trajectories to the S1 state. A-MD calculations were also performed in

Newton-X with identical initial conditions to the NA-MD run.

Starting geometries and velocities for the trajectories were generated by randomly sampling

points from a ground state Wigner distribution (for a harmonic oscillator). For each conformer

this distribution was constructed using DFT/PBE0/TZVP level normal mode frequencies at

the optimised S0 geometries, where a larger basis set is selected to improve the quality of the

distribution. In total, we ran 250 NA-MD and 50 A-MD trajectories, whose initial conditions

corresponded to the Wigner distribution of conformer C. A further 109 trajectories were performed

with both NA-MD and A-MD, corresponding to the realistic conformer distribution where the

number of trajectories corresponds to the Boltzmann weight of the conformer in the ground state.

All trajectories were initiated on the S1 electronic state as it corresponded to the strongest peak

in the actinic region, λ > 320 nm, of the photoabsorption cross section (available in the SI, S5).

All trajectories were propagated up to 4 ps or until photodissociation was observed. Total

energy was conserved in all trajectories up to the end point of the trajectory. Because LR-TDDFT

fails to describe homolytic bond dissociation, trajectories were stopped soon after the dissociation

was initiated. Classical nuclei were propagated with a 0.5 fs time step. The rationale behind this

choice is discussed further in section 3.6.2.
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3.4.4 Constructing a NA-EGME model

Each electronic structure calculation used to construct an EGME model was performed at the

same level of theory (LR-TDDFT/PBE0/6-31G) as that used for NA-MD so that we might directly

compare the results. Energies of all stationary points were specified with respect to the energy

of the geometry optimised S1 minimum which was treated as the reactant well in the model.

Zero-point energy corrections were not used when defining the relative energies so as to make

a direct comparison with results of dynamics calculations, in which ZPE was not rigorously

constrained.

The electronic structure theory codes which we utilized provided states energies in the

adiabatic (S0, S1, S2, etc.) representation. However, as illustrated in Fig. 3.2, the NA-EGME

treats the different states in the diabatic representation (in this case an nπ∗ and n′σ∗ state), and

requires as input an analytical form of the diabatic states in the vicinity of the crossing point

to determine PZN at the seam. To derive an analytical form of the diabats from the adiabatic

energies, we considered only the coordinate along the imaginary eigenvector of the S1-TS Hessian,

investigating 1-D motion along the 3N-7 dimensional coupling seam. The eigenvector describing

this motion takes the system across the nπ∗/n′σ∗ seam, which corresponds to extension of the

peroxide bond and loss of OH, denoted by reaction coordinate R. Energies of the S1 and S2

adiabatic states across this coordinate are used to fit the diabatic states near the TS. We do

this by constructing a simple Hamiltonian, H (R), which includes the two diabatic states and a

coupling between them (H12), assumed to be constant in that region.

H(R)=
(
H11(R) H12

H12 H22(R)

)
Analytical expressions for its two eigenvalues, λ1 and λ2 are determined by diagonalizing

H(R). These eigenvalues correspond to the S1 and S2 adiabatic states respectively. Calculated

adiabatic states which are shown in figure 3.8 are fitted to the analytical form of the diabats given

in equation 3.28. We assumed the dissociative state, H22(R), to have the form of an exponential

decay, and the bound state, H11(R), to have the form of a harmonic well.

H11(R)= Aπ∗
(
R−βπ∗

)2 +επ∗(3.27)

H22(R)= Aσ∗ exp
(−Rβσ∗

)+εσ∗(3.28)

The fitted parameters (available in Appendix A) were used in the NA-EGME calculation to

determine PZN and calculate a set of microcanonical rate constants for each energy grain.

The initial population vector n(E, t0) is set up with N energy grains. To replicate the energy

distribution of the wavepacket at the start of the dynamics, n(E, t0) must mirror the initial

conditions used in the NA-MD calculations. Each initial condition sampled from the Wigner

ensemble corresponds to an initial energy, a sum of its kinetic energy and its potential energy
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referenced to S1. The distribution of total energies resembles a normal distribution, with the

average initial energy above the S1 minimum. This average energy corresponds to the ni
th energy

grain in the population vector n(E, t) so the EGME calculations are initiated with 100% of the

initial population in this grain.

We used a grain size of 50 cm−1 in all EGME calculations and standard temperature and

pressure (300K and 760 Torr) to replicate atmospheric conditions. Collision parameters used for

the bath gas, He, were ε = 10.2 K and σ = 2.55 Åand the collisional energy transfer was treated

using an exponential down model.[187] The collisional energy transfer parameter is set to 250

cm−1, a value which is typical for standard atmospheric conditions.[20] Photodissociation was

assumed to be irreversible and the dissociation products were treated as a sink. To quantify the

impact of nonadiabatic effects at the nπ∗/n′σ∗ seam in these EGME calculations, the same model

was re-run without allowing nonadiabatic transitions, using a standard non-equilibrium ground

state EGME model. Microcanonical k(E) were calculated using the RRKM formulation given in

3.1.

The NA-EGME model was then modified by substituting MS(4)-CASPT2/6-31G* energies at

the same LR-TDDFT optimised stationary points to refine the EGME result. These calculations

use the same frequencies, and rotational constants calculated with LR-TDDFT/PBE0/6-31G.

Single point energy calculations were performed for the following geometries: the S1 minimum of

the B conformer; geometries found by taking steps along the imaginary eigenvector of S1-TS. For

the latter case, a crossing point between the diabatic surfaces is found at a small displacement

from the S1-TS geometry. New diabats were fitted to the results of the scan, leading to slightly

different ZN parameters.

All of the energy grained master equation calculations reported in this study were performed

using the open source master equation solver, MESMER (master equation solver for multi-well

energy reactions).[168, 188]

3.5 Results

3.5.1 Ground and excited state PES

Ground state geometries and relative CCSD(T) energies of all 7 conformers are shown in Fig.

3.4. Optimising these rotamer structures on the S1 PES with LR-TDDFT converged on 7 distinct

structures that maintain the orientation of the peroxide and (-CH2CH3) branches such that there

are multiple S1 minima. Conformer B remained the lowest energy conformer on the S1 PES.

Our predicted photoabsorption cross section shown in Fig. 3.5 indicates the majority of the

photoexcitation in the UV-Vis region is into the S1 state. Integrating over σ(λ), actinic flux, and

quantum yield in the actinic region we can make an ab initio estimate of the photolysis rate.

Assuming a unity quantum yield we predict this rate to be 1.4×10−4 s−1, which is within one
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Figure 3.4: 7 conformers of C6-HPALD found via a systematic rotor search, optimised with
PBE0/TZVP. Relative energies were refined using density fited CCSD(T).

order of magnitude of the observed experimental rate of 6.3±0.1×10−5 s−1.[154] The cross-section

indicates that in the actinic region the strongest peak corresponds to absorption into the S1 state.

Figure 3.5: Absorption cross section of C6-HPALD calculated using Wigner ensemble sampling.
Absorption into the S1 state dominates in the actinic region, above 320 nm.

Shapes of the excited state PESs along the peroxide bond coordinate calculated with LR-
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This figure illustrates the general topology of the PES including the barrier. The CASPT2 benchmark is overlaid to show that LR-TDDFT 
reproduces the shape of the PES - will reinforce the later comparison with CASPT2. The density difference plots also show the changing 

character of the S1 and S2 states on both sides of the nonadiabatic seam.

The character isn’t explicitly pi* or sig* for either, but they are the correct DDs so I’m not sure how to interpret that.

S1, nπ*

S2, nπ*
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Figure 3.6: Energies of the first 4 excited states of conformer B calculated with LR-
TDDFT/PBE0/6-31G and MS(4)-CASPT2(10,8)/6-31G*, alongside electron density difference
plots between S0 and specified state at 2 points along the peroxide bond coordinate illustrating
the change in diabatic character.

TDDFT/PBE0/6-31G and MS-CASPT2(10,8)/6-31G* show good qualitative agreement. On this

basis, we decided to use LR-TDDFT/PBE0/6-31G as the electronic structure method for all NA-MD

and A-MD calculations in this work. Rigid scans along the peroxide bond dissociation coordinate

in Fig. 3.6 show a near degenerate region between the S1 and S2 states at 1.65 Å, and between

S2 and S3 states at 1.76 Å. Benchmarks using larger basis sets show that as the bond extends

beyond 1.75 Å, LR-TDDFT provides a poor description of homolytic dissociation. This, however,

will not be a significant problem for the dynamics because the S1 potential is dissociative beyond

this point, at which point trajectories were terminated.

The density difference plots shown in Fig. 3.6 shows that the nπ∗ transition which charac-

terises the S1 state in the bound region of the PES (O-O extended to 1.6 Å) is located mostly on

the α,β-enone chromophore. At the same geometry, the n′σ∗ transition to the S2 state is located

mostly along the -O-OH bond. When the peroxide bond is extended to 1.7 Å, the electronic charac-

ter of the two states swaps, such that the S1 state is now characterised by the n′σ∗ transition.

The region of strong nonadiabatic coupling observed between the S1 and S2 at 1.65 Åin Fig. 3.6
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Figure 3.7: Scan of the S1/S2 nonadiabatic seam initiated at S1-TS, excitation energies calculated
with LR-TDDFT/PBE0/6-31G. Left panel highlights the extended near-degenerate (3N-7) seam.
a) Diabatic trapping mechanism; b) Adiabatic passage across seam leading to loss of OH.

is a single point on an extended (3N-7) seam where the nπ∗ and n′σ∗ diabatic states cross. We

located critical points along this seam which included an S1/S2 MECI as well as a saddle point on

the S1 surface (S1-TS) which is the minimum energy geometry in the space of this seam. The

energy of the MECI is 31.3 kJ mol−1 above the S1 minimum of the lowest energy conformer, B.

The energy of the S1-TS is at 16.1 kJ mol−1 relative to conformer B. Visualising the normal mode

corresponding to the only imaginary frequency at the S1-TS showed synchronization between

stretching in the -O-OH coordinate and compression in the C=O coordinate. This highlights that

this mode couples the α,β-enone and peroxide chromophores and therefore will be important for

describing the reaction coordinate. Furthermore, the remarkably high value of the imaginary

frequency (νim = -3534.1 cm−1) illustrates the sharpness of the (3N-7) seam in the vicinity of the

S1-TS. To visualise this seam, we performed a rigid 2D scan along the -C=O and -O-OH stretching

coordinates of C6-HPALD that correspond to the two coupling chromophores. Results of this scan

are shown in Fig. 3.7.

An intrinsic reaction coordinate (IRC) scan initiated at the S1-TS geometry converges on the

dissociated structure and the S1 minimum of conformer C, as can be seen in Fig. 3.8. Energies,

frequencies, and rotational constants at these critical points are tabulated in Appendix A.
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Figure 3.8: Intrinsic reaction coordinate scan started at the S1-TS. Energy is shown relative to
the S1 minimum of conformer C. Geometries are shown at the terminal step of the IRC scan.
Right panel shows a scan across the TS geometry along the eigenvector of the imaginary normal
mode. Fitted diabatic states used in the NA-EGME calculation are shown in black.

3.6 Single conformer model

Our exploration of the excited state PES located a direct reaction coordinate between the S1

minimum of conformer C and the S1-TS, shown by the IRC in Fig. 3.8. In the following section, we

consider a simple photodissociation model based on a potential well (S1-C) and a single barrier (S1-

TS) linked by this reaction coordinate, that ignores all other C6-HPALD conformations. We should

highlight that the dissociation rate calculated here is distinct from the photolysis rate calculated

in section 4.1; it is difficult to obtain a direct experimental measurement of the dissociation

rate, given that experimental studies involve a photoexcitation step (and corresponding photo-

excitation rate) which prepares the molecule in S1.

3.6.1 Dynamics

We began the investigation by running 50 A-MD and NA-MD trajectories, whose initial conditions

on the S1 state were sampled from the ground state Wigner distribution of conformer C. The

two sets of trajectories shown in Fig. 3.9 are projected on to the -C=O and -O-OH coordinates,

illustrating the passage of trajectories across the seam. By observing HPALD dynamics prior to

dissociation we see that the molecule remains in the S1 potential well for a number of vibrational

periods and explores the available phase space within its initial conformation.

For all 50 NA-MD trajectories the net adiabatic population remained largely on the S1 state,
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with 90% hopping to the S2 state at some point during the run. Only a single trajectory hopped

to the S3 state, and no population on S0 was ever observed. On this timescale we expect that the

dynamics are limited to the S1 and S2 adiabatic states. In the Franck-Condon region of the PES

the S1 state exhibits nπ∗ character and is near an S1 PES minimum. A-MD trajectories in Fig.

3.9 indicate that for loss of OH to occur, the -O-OH coordinate must extend in concert with the

compression of the -C=O bond, causing the S1 state to change character from predominantly nπ∗

to the dissociative n′σ∗ character. The nuclear wavepacket must necessarily proceed across the

seam adiabatically, however hopping to the non-dissociative S2 state can occur.

In Fig. 3.9 we also observe that while many NA-MD trajectories that travel across the barrier

rebound back towards the S1 well, almost all A-MD trajectories which cross the barrier dissociate.

In the nonadiabatic case such motion visibly corresponds with a switch to the S2 state. This

mechanism is referred to as diabatic trapping (originally described by Martínez et al. as up-

funnelling) whereby a trajectory remains on the same diabatic state as it crosses the coupling

region thereby preserving its electronic character.[27, 189] Because of this, OH loss is faster for

A-MD trajectories since crossing this (3N-7) seam will necessarily lead to a dissociative outcome,

whereas in NA-MD the trajectory might become trapped in S2 and rebound instead. A similar

upwards hopping process is observed in the work of Blancafort et al. in the bis-adamantyl radical

cation that contains two weakly coupled chromophores.[190] We note some similarities between

their system and ours, such as the extended near-degenerate seam between two adiabatic states.

Qualitatively, we note that diabatic trapping is likely in systems where the conical intersection

(CI) branching space vectors are of significantly different magnitude, as is the case here (Available

in the SI of the paper).

Next, we consider the rate of dissociation as determined by the dynamics. Three possible

outcomes have been observed in the NA-MD results: loss of OH (38 trajectories), loss of HO2 (9

trajectories), and no dissociative reaction (3 trajectories). The corresponding A-MD results are as

follows: loss of OH (45 trajectories), loss of HO2 (3 trajectories), and no dissociative reaction (2

trajectories). A dissociative outcome is defined as the extension of either the C-OOH or O-OH

bond coordinate beyond 1.75 Åand 1.9 Årespectively. Benchmark scans of the PES along these

coordinates have shown a potential barrier at 1.65 Å, beyond which the molecule is unlikely to

recombine. Dissociating trajectories terminated soon after this nonadiabatic barrier is crossed due

to the unreliability of LR-TDDFT in its description of homolytic dissociation. These trajectories

are included in the analysis up to the point of dissociation since we can assume that once the

bond has extended beyond the threshold, the rate coefficient for reassociation is very small.

Loss of HO2 is a minor dissociative channel which has been suggested experimentally for other

peroxides.[191] Its mechanism in C6-HPALD appears to be linked with diabatic trapping because

all NA-MD trajectories terminating in this way show an S2 to S1 hop 20 fs prior to dissociation.

Given its low probability, and because it cannot be treated with a kinetic model, the HO2 loss

channel is excluded in the following analyses.
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Figure 3.9: Projection of 50 A-MD and NA-MD trajectories of conformer C into the -C=O and
-O-OH coordinates. NA-MD panel (right) illustrates the switch from S1 to S2 with a colour change.
Background contour plot shows the shape of the S1 PES from a rigid scan initiated at the S1-TS
(indicated by the black square) then scanned across these two coordinates, illustrating the S1
potential energy well where the trajectories are initialised, and the dissociative potential on the
other side of the barrier.

To ensure that the NA-MD result is fully converged we ran another 200 trajectories by

using the same 50 initial conditions but inserting a new random seed for the surface hopping

algorithm 4 times.[192] In Fig. 3.10 we see that the results are well converged with as few as

50 trajectories. Biexponential fits of HPALD population decay are available in Appendix A. A

biexponential least-squares fit indicates that there are two separate decay timescales.[193] The

fast decay corresponds to trajectories that dissociated ballistically (OH loss takes less than 200

fs), while others remained in the pre-dissociative S1 well until the trajectory was able to cross the

seam allowing more time for intra-vibrational relaxation to occur. Decay constants for the slow

fraction of the decay are 1.87 ps for NA-MD and 1.29 ps for A-MD.

3.6.2 Importance of time step size for an (3N-7) dimensional seam crossing

Running FSSH requires a judicious choice of many parameters, one of which is the time step

(dt) with which the classical degrees of freedom evolve on the PES. In most cases, this decision

is made by selecting the smallest dt for a given computational cost, to maximise the accuracy

of the dynamics. However, what exactly is compromised when dt is too large? For example, the

accuracy of the classical integration of nuclear coordinates may be diminished. The more subtle

point is that the transition probabilities between states also depend on time discretization.[194]
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Figure 3.10: Comparison of C6-HPALD decay rate between EGME and trajectory-based methods
for conformer C. Convergence of NA-MD at 50 trajectories indicated by the similarity to the 250
trajectory result.

At each time step the time derivative coupling (TDC) is calculated to determine if a hop to

another adiabatic state occurs and when TDC is very localised it can be poorly resolved, or missed

altogether.

Meek et al. highlighted this problem for trivially unavoided crossings (TUC)[195] which are

(3N-7) dimensional intersections between two weakly coupled states, where N is the number

of nuclear degrees of freedom. If the coupling between the states is infinitesimal, a crossing

trajectory must necessarily remain on the same diabatic state. As it passes through the seam

there would be a sudden narrow spike in the TDC which might not be resolved with a larger dt,

and so the trajectory will, incorrectly, move to a different diabatic state. For (3N-8) dimensional

conical intersections this problem is less significant, as the nonadiabatic coupling is highly

localised in position space.

In this case, the topology of the C6-HPALD seam can be described as a TUC as there is an

effective (3N-7) crossing at the intersection of the nπ∗ and n′σ∗ diabatic states with a weak

nonadiabatic coupling between them. Slowness of the dissociation process limits us in how small

the time step can be, but it becomes necessary to verify the extent to which this might affect the

outcomes of the FSSH dynamics.

Although the loss of OH typically takes picoseconds, many trajectories encounter the (3N-7)

54



3.6. SINGLE CONFORMER MODEL

seam in the first 50 fs of the simulation. It is then possible to explore how the shape of the TDC

is affected by the time step and to see if the spike in TDC is too sharp to detect with dt=0.5 fs.

Three example trajectories were taken from the set initiated at conformer C, and repeated for 50

fs using identical initial conditions for dt = 0.25; dt = 0.1 fs; dt = 0.05 fs; dt = 0.025 fs. Results are

shown in Fig. 3.11. In this figure we see the results converging with progressively smaller values

of dt. Ideally, the trajectories should be ran with at least a 0.1 fs time step to properly capture

the shape of the TDC, however the computational cost of doing this is prohibitive. Luckily, the

peak is still present for 0.5 fs time step trajectories, even though they are visibly more coarse.

Figure 3.11: Convergence of time derivative coupling with time step size for three example
trajectories in the first 30 fs of the simulation.

Most trajectories encounter this seam multiple times, so it is still possible that the error in

the shape of the TDC peak for 0.5 fs time step may affect the long term dynamics of OH loss in

HPALD. Full length trajectories were ran to look for trends in dissociation behaviour between dt

= 0.25 fs and dt = 0.5 fs. For each of a set of 3 IC, we ran 20 replicas which were seeded with a

different random number. Results can be seen in Fig. 3.12. These results appear to indicate that

the time step size makes no systematic difference to the rate of OH loss and so on this basis we

conclude that it is safe to use a 0.5 fs time step for FSSH dynamics.
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Figure 3.12: Impact of time step size on the rate of OH loss in HPALD.

3.6.3 NA-EGME

Our NA-EGME model assumes that to describe the primary photodissociation channel leading to

the loss of OH we need only to consider the nπ∗/n′σ∗ state coupling along a 1-D coordinate over

the top of the TS. This necessitated only a normal mode analysis at the S1 minimum of conformer

C (S1-C) and the S1-TS barrier which is energetically 14.13 kJ mol−1 higher. The optimised MECI

is 15.2 kJ mol−1 above the S1-TS. The 3N-7 dimensional geometry of the nonadiabatic seam

means the MECI is unlikely to be an important critical point since the molecule does not need to

pass through it to reach the S2 state. For this reason, the MECI’s influence on the dissociation

rate can be neglected and we choose not to include it in the model. Total energies of the 50 initial

conditions are normally distributed with the average initial energy at 453.4 kJ mol−1 above the

S1-C minimum. This energy corresponds to the 758th grain in the population vector n(E, t) and

so, the EGME calculations were initiated with 100% of the population in this energy grain.

The HPALD decay rates calculated using A-EGME and NA-EGME are presented in Fig. 3.10,

illustrating that the photodissociation rates obtained with the trajectory-based approaches are

qualitatively similar to those obtained from EGME models, and more importantly that both

strategies capture the effect of diabatic trapping. Including nonadiabatic effects slows down the

decay rate approximately 6-fold (τN A−EGME = 2.72 ps) in comparison to the rate calculated when

nonadiabaticity is neglected (τA−EGME = 0.45 ps). The decay rate is shown to be robust to the

initial energy grain distribution and small variations in frequencies by the sensitivity analyses

provided in Appendix A.
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3.7 Full conformational analysis of C6-HPALD

Now that we have shown for the conformer C that both NA-EGME and NA-MD results capture

the effect of diabatic trapping during the OH photodissociation process, we will extend this

simple model to include all conformers of C6-HPALD highlighted in Fig. 3.4. For the dynamics

calculations we simply projected the ground state conformer distribution into the excited state

such that the set of trajectory initial conditions was representative of the rotamer distribution.

Boltzmann weights of the A-G conformers determine the number of trajectories to be run for

each. For TST-type methods like EGME, molecular torsions can be challenging because the rigid

rotor approximation breaks down due to the highly anharmonic hindered rotor modes. Ideally,

each conformation and its corresponding TS should be treated separately.[196] However, for 7

rotational conformers this approach would necessitate a cumbersome search for 30 separate TSs

in a 3N dimensional phase space. Instead, we propose a pared down model that uses the global

conformer minimum (S1-B) and the S1-TS to calculate the OH loss rate.

3.7.1 Dynamics

The relative numbers of trajectories sampled from each conformer corresponds to their Boltzmann

weight in the ground state calculated using CCSD energies: A: 24; B: 50; C: 5; D: 16; E: 3; and F:

11.

Dihedral angles φ1 and φ2 can be used as a shorthand to distinguish the conformers over

the course of a trajectory. This can be seen in figure 3.13 which shows all of the dissociating

trajectories exploring the rotational phase space, and highlighting the fact that internal rotations

are not fast on this timescale. Trajectories corresponding to conformers C and F especially tend

to remain conformationally locked, which supports our previous assumption that conformer C

could be treated independently. There is a flux of trajectories from conformer B to C suggesting

that the rotational barrier towards C is small.

Of the 109 FSSH trajectories initiated on the S1 state we observed the following outcomes:

loss of OH (50 trajectories), loss of HO2 (15); no dissociation (43). Corresponding result of the

AIMD simulations are as follows: loss of OH (82), loss of HO2 (10), no dissociation (17). The 95%

margin of error is shown by the error bars in Fig. 3.14 c) illustrates that the difference between

dissociative outcomes is significant.

Analysis of the mean adiabatic population shows that on average it remained on the S1

surface, rarely falling below 95%, with a fraction of population moving in to the S2 state. Very

few trajectories hopped into the S3 state and no population of the S0 state was observed on

the timescale of the simulation. Survival probability is fitted to an exponential decay, with a

first order lifetime, τN A−MD , of 4.6 ps. A-MD dynamics of OH loss are better fitted to a double

exponential, shown in Fig. 3.14 d). Approximately a quarter of A-MD trajectories are dissociated

on a fast timescale with a lifetime, τ f ast, of 58 fs. The rest of the trajectories dissociate on a
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Figure 3.13: HPALD conformer interconversion over a 4 ps timescale. Left panel shows the
evolution of the two dihedral angle coordinates φ1 and φ2 that define the conformation of the
HPALD molecule at a given time step for all 109 FSSH trajectories. Right panel shows 50
trajectories of conformer C only.

similar timescale to the NA-MD simulations with lifetime, τslow, of 2.4 ps.

3.7.2 An all-conformer NA-EGME model of OH loss

Now that we have the results of trajectory dynamics initiated from a realistic ground state

conformer distribution, we can construct a new, more realistic, NA-EGME model. Since a large

fraction (50 out of 109) of the trajectories were initiated from the conformer B initial condition we

use its S1 minimum as the reactant well (S1-B) and the S1-TS. The average initial energy of these

trajectories was at 487.0 kJ mol−1 above the S1-B minimum corresponding to the 814th energy

grain in the population vector n(E, t). Results of the NA-EGME calculations based on this model

are shown in Fig. 3.15. We see that including nonadiabaticity once again has a strong effect on

the microcanonical rate coefficients shown in the inset. The nonadiabatic lifetime τN A−EGME is

1.7 ps, once again approximately 6 times greater than the adiabatic lifetime, τA−EGME = 0.3 ps.

We have tested the importance of torsional anharmonicity using the hindered rotor approach,

as implemented in MESMER. This sensitivity analysis ensures that the presence of anharmonic

rotational modes does not significantly alter the ratio of densities of states, and the corresponding

decay constants. Normal mode frequencies corresponding to torsional motion were projected out

of the Hessian.[197] Results of rigid torsional scans performed over 4 torsional bonds at the S1-B
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Figure 3.14: Dynamics results for all conformers of C6-HPALD. a) An example of a diabatically
trapped trajectory where the switch to S2 is illustrated by a colour change. b) Example A-MD
trajectory that moves in the S1 well for a number of vibrational periods before crossing the
barrier and dissociating immediately. c) Outcomes of the 109 trajectories with 95% confidence
intervals showing that differences between NA-MD and A-MD are significant. We calculate the
error for a sample proportion as Z

√
(p(1− p)/n) where p is the proportion of trajectories with

given outcome, n is the number of trajectories, and Z the multiplier giving the 95% confidence
interval. d) Survival probabilities with respect to OH loss, fitted to exponential decay functions.
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Figure 3.15: Results of EGME calculations, with microcanonical rates calculated using an adia-
batic (A-EGME) and a nonadiabatic (NA-EGME) expression. Inset shows the energy resolved
microcanonical rate constants (kRRK M and kZN ) and the ZN transition probability (black line).

minimum and S1-TS geometries were input into the MESMER calculation. Results available

in Appendix A show that incorporating these torsional effects does not significantly impact the

reaction profiles. We suggest this could be due to the similarity between torsional profiles at the

S1 minimum and TS geometries that result in a cancellation of errors.

An implicit assumption in this treatment of hindered rotations is that rotamer interconversion

is fast on the reaction timescale. However, conformational analysis of the trajectories in Fig. 3.13

shows that while internal rotations are present, they are not fast. For this simplified model we

make an approximation to consider only the global S1 minimum (S1-B) and a single lowest point

on the (3N-7) seam (S1-TS). Similarity between the frequencies and rotational constants of the

conformers suggest that this is an acceptable compromise in this case.

3.7.3 Improving NA-EGME with CASPT2 energies

Our NA-EGME model could be improved by the addition of all inter-conformer transition states.

However, the need to search for each critical point on a 3N dimensional PES can undermine

the simplicity of the approach proposed here. Instead, we can exploit the comparatively low

computational cost of the EGME calculations by using energies calculated with a more sophisti-

cated, multireference, electronic structure method at the stationary points. By assuming that

the locations of the stationary points optimised with LR-TDDFT give a broadly accurate repre-

sentation of the PES, the model can be adjusted by using MS(4)-CASPT2(10,8)/6-31G* energies

(with LR-TDDFT frequencies and rotational constants) to calculate the population profile of
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HPALD over time. Results of this scan are shown in Fig. 3.16. New parameters are used in the

ZN equations, based on the fitting of diabats to new MS-CASPT2 energies calculated across the

same eigenvector coordinate as in the earlier calculation.

Results of NA-EGME calculations based on MS-CASPT2 energies show that the difference

between the nonadiabatic and adiabatic rates is more significant than that produced using

TDDFT/PBE0 energies. The adiabatic lifetime of HPALD is τA−EGME = 0.44 ps whereas the

nonadiabatic lifetime, τN A−EGME = 30 ps, is 70 times slower. Nonadiabatic coupling between the

states is weaker increasing the likelihood of transition to the S2 state illustrating the sensitivity

of the coupling strength to the selected electronic structure method. To improve the quality of

the model, accurate multireference methods – often too expensive for on-the-fly excited state

dynamics – must be used. In this section we showed how they can be built in to the EGME

approach.
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Figure 3.16: Diabatic potentials fitted to PES scan across eigenvector calculated with MS(4)-
CASPT2/6-31G*

3.8 Discussion

The most direct comparison between the two approaches can be seen in the models that isolate

conformer C. Fig. 3.10 demonstrates the remarkable similarity between the results of trajectory-

based methods and EGME: the NA-MD photodissociation lifetime τN A−MD = 1.9 ps is comparable

to the NA-EGME lifetime τN A−EGME = 2.7 ps. The impact of nonadiabatic effects on the photodis-

sociation rate is stronger in the EGME results: the calculated adiabatic lifetimes are τA−EGME

= 0.5 ps and τA−MD = 1.29 ps. A direct comparison between the decay rates in the extended
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Figure 3.17: Result of EGME calculation using MS(5)-CASPT2(10,8) energies at the critical
points. Inset shows the microcanonical rate coefficients across the state vector in the nonadiabatic
and RRKM cases, with the ZN transition probabilities.

models that include all conformers can be seen in Fig. 3.18. Nonadiabatic EGME and NA-MD

methods returned lifetimes differing by less than factor of 3: τN A−EGME = 1.7 ps and τN A−MD

= 4.6 ps. That these results match to within an order of magnitude is remarkable given the

stark differences between the two approaches. For the adiabatic simulations the comparison is

made with the slow component of the fitted decay, with τA−EGME = 0.31 ps and τA−MD = 2.4 ps,

out by less than a factor of 8. Trajectory surface hopping simulations indicate that a diabatic

trapping mechanism is responsible for this deceleration as it causes the nuclear wavepacket to

be trapped in a bound diabatic state, preventing direct dissociation. To quantify the impact of

nonadiabatic effects at the seam, we compare the ratios of the nonadiabatic/adiabatic lifetimes

for both the dynamical and the master equation approaches. We note that Plasser et al.[28]

showed, in the context of surface hopping and Landau-Zener probabilities, that the difference

between the adiabatic and nonadiabatic rates in diabatic trapping processes can be related to the

electronic transmission coefficient. This value is 1.9 for the trajectory methods, and 5.5 for the

kinetic model. The difference may arise in part from the assumption within the EGME model

that allows for only a single seam crossing. Formulations of LZ transition probability that allow

for multiple recrossing of the seam have been developed, notably by Delos and Nikitin[198, 199]

and could be applied to this method in future work. Another fundamental difference is that

EGME is a statistical method which assumes that the system is ergodic – i.e. energy has no

preference for residing in a specific mode and can be instantaneously exchanged with all of the

available modes in a particular molecule. The accuracy of the ergodicity assumption typically
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applies to timescales longer than 4 ps. For any dynamical approach at short timescales (including

excited-state dynamics), the energy is likely to be distributed in a non-Boltzmann way due to

the out-of-equilibrium nature of the dynamics following photoexcitation, and the fact that the

timescale for energy redistribution amongst intramolecular modes is finite. Unlike a dynamical

approach in which excited-state trajectories can explore different regions of the intersection space,

the EGME is ignorant of the broader PES topology, given that the crossing can only occur at the

TS along the defined one-dimensional coordinate. We finally note that nonadiabatic tunnelling

effects are built-in to the Zhu-Nakamura formulas.

It is also important to highlight that the excited-state dynamics performed here assume the

formation of a nuclear wavepacket upon light absorption. Such initial conditions corresponds to a

scenario where the molecule is photoexcited by an ultrashort laser pulse, rather than continuous

irradiation with sunlight as it would happen under atmospheric conditions. The question of

selecting proper initial conditions for the excited-state dynamics of atmospheric molecules is

discussed further in Suchan et al..[200] A protocol aiming at simulating sunlight absorption

processes was also recently proposed.[201] In the context of this work, this assumption does not

affect the comparison between the EGME models and the dynamics, but does limit the claims we

can make about the atmospheric implications of our results.

Figure 3.18: Side-by-side comparison of the two models used to calculate the dissociation rate for
C6-HPALD. The fit to the population decay is presented for both NA-MD and AIMS.

In this chapter we aimed to validate a nonadiabatic EGME model against NA-MD by calcu-

lating the rate of OH loss in C6-HPALD, which has been experimentally investigated by Wolfe et

al.[154] We highlight the approximations made in the construction of the master equation model

and outline how this model can be improved. Many features of the C6-HPALD dissociation process
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seem to justify these approximations. This includes the picosecond timescale of photodissociation;

ease of energy exchange between the many modes of HPALD; the (3N-7) geometry of the seam

which makes the 1-D seam crossing model appropriate. Of course, the exploratory value of run-

ning dynamics simulations cannot be superseded by a model that requires existing knowledge of

important stationary points. Without performing the NA-MD calculations the diabatic trapping

mechanism would not have been identified. Nonadiabatic transitions are ultimately caused

by nuclear motion and so atomistic simulations are necessary for an accurate description of

wavepacket dynamics. However, when nonadiabatic transitions between excited states occur on a

slow timescale we are limited by the computational cost of running long trajectories and using

the NA-EGME model allows us to refine the energies of the critical points whilst reproducing

the overall impact of diabatic trapping on the photodissociation rate. The NA-MD calculations

are without any doubts more computationally expensive than the NA-EGME approach and

would scale less favourably with the number of nuclear degrees of freedom. In instances of slow

photodynamic reactions with known mechanisms, alternative models might be explored before

choosing to run trajectory dynamics.

The workflow to perform a nonadiabatic EGME analysis on this type of crossing can then be

summarised as follows. 1. Locate and characterise the critical points on the excited state PES.

These include the bound minima near the Franck-Condon region, the conical intersections, and

the adjacent transition states. 2. Identify the normal mode at the crossing point that corresponds

to the exciton moving from one chromophore to the other. 3. Perform a scan across this normal

mode and fit the shape of the crossing point to a 1-dimensional analytical model. 4. Construct

an EGME model of the seam crossing, using the fitting parameters obtained in step 3 for ZN

transition probabilities. This utility is currently implemented in MESMER.

These findings describe a type of crossing between adiabatic surfaces that is intermediate

to the traditional representation of a two-cone type conical intersection (Fig. 3.19, left panel)

and a fully degenerate seam one might see in the context of intersystem crossing (Fig. 3.19,

right panel). The protocol described here is applicable when calculating rates for this type of

trivially unavoided crossing i.e. when collapsing the reaction coordinate to a single dimension

is appropriate. These coordinates could be identified through principal component analysis of

trajectory dynamics.

3.9 Conclusion

We directly compared the performance of NA-MD to that of a nonadiabatic EGME model by

conducting two side-by-side studies of C6-HPALD photodissociation. Both methods establish that

the nonadiabatic coupling at the extended seam is significant and reduces the rate of OH loss. The

lifetimes of C6-HPALD based on these fundamentally different models indicate that a reduced

dimensionality NA-EGME treatment for avoided crossings can reproduce results of dynamics to
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Figure 3.19: Types of crossings between electronic states

within an order of magnitude. Further work is needed to investigate the rate of intra-vibrational

relaxation between all modes, so as to determine the exact limits of the regime where this kind

of protocol can be applied. Similarity between the dynamic and EGME results also raises the

question of timescale, since intra-vibrational relaxation must be fast to satisfy the key assumption

of RRKM theory. It is unclear whether this is satisfied in this case, and so merits further work

to investigate the energy redistribution between modes prior to the dissociation. Some purely

dynamical features such as loss of HO2 could not be included in an EGME treatment, and merit

further exploration to determine the significance of HO2 loss to the atmospheric mechanism.

Alongside the significant improvement in computational cost we highlight that approaching this

photodissociation mechanism from both the kinetic and the dynamic perspective offers insights

into different aspects of the dissociative process.
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4
PHOTOCHEMISTRY OF HPALDS

The purpose of this chapter is to explore the atmospheric importance of hydroperoxy aldehydes

(HPALDs) using the computational tools developed in previous chapters. They will be used to

answer questions about its atmospheric properties and the strength and weaknesses of these

conclusions will be considered. Firstly, I will review the literature in atmospheric chemistry to

discuss the role HPALD plays in the complex mechanism of isoprene oxidation first proposed

by Peeters et al. in 2009.[24] This will help to highlight the uncertainties that remain regarding

the mechanism of HPALD production and loss. I will then use the best possible methods to

calculate a reliable UV-Vis spectrum for two isomers of HPALD following the protocol described

in chapter 2, and use these spectra to predict their photolysis rates. Then the mechanism of

HPALD photodissociation is described, which was determined based on mixed quantum-classical

dynamics simulations described in the previous chapter. Lastly, I address the difficult question

of initial conditions in excited state dynamics initiated by sunlight and consider the existing

literature which addresses this issue.[201]

4.1 Atmospheric photolysis in isoprene chemistry

Terrestrial vegetation releases substantial quantities of volatile organic compounds (VOCs) into

the atmosphere. Subsequent oxidative reactions of these VOCs have a significant knock-on effect

on the atmospheric oxidation capacity, air quality, and the carbon cycle. In quantitative terms,

one of the most important VOCs is isoprene, 500 teragrams of which is released yearly, mainly

over tropical rainforests. The foremost oxidant in the atmosphere is the hydroxyl (OH) radical

which is formed primarily through ozone photolysis. Hydroxyl radicals are known to be important

in the removal of gaseous pollutants from the daytime atmosphere and are colloquially referred

to as the "detergent" of the atmosphere.
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It had been previously assumed that biogenic VOCs such as isoprene would deplete hydroxyl

radicals and hence the oxidative capacity of the atmosphere.[202–204] However, unexpectedly high

concentrations of the OH radical have been detected in field studies over the Amazon rainforest

where biogenic isoprene is released in large quantities. An example of this would be the aircraft

measurements performed by the GABRIEL campaign which measured HOx concentrations of

5.6×106 cm−3, which were 5-10 times higher than those predicted by the original Mainz Isoprene

Mechanism (MIM).[150, 205]

To reconcile these differences Taraborrelli et al. suggested that atmospheric hydroxyl concen-

trations are buffered via an oxidative mechanism involving a product of isoprene oxidation.[151]

Such a mechanism must have a total HOx recycling efficiency of 40-80% through the breakdown

of isoprene-derived peroxy radicals.

In 2009, Peeters et al. [24] proposed a mechanism of isoprene oxidation that aimed to ratio-

nalise higher hydroxyl concentrations in low nitric oxide (NOx) regions. The first Leuven Isoprene

Mechanism (LIM0) was proposed based on a purely computational argument, using DFT and

MP2 energies combined with multi-conformer transition state theory to determine reaction rates.

A theoretical re-evaluation of the mechanism by Peeters et al. in 2014[153] extended the reaction

network and recomputed energy barriers and partition functions with higher level electronic

structure methods. This newer mechanism was labelled as LIM1. Calculated rate coefficients

for these reactions are published as part of the LIM1 mechanism. These findings have already

been integrated into the Master Chemical Mechanism (MCM v3.3.1), however it altered some

rate constants to account for results obtained by Crounse et al. in 2014. A more recent study

by Wennberg et al. in 2018 re-parametrised the mechanism once more[206] to fit with emerging

experimental evidence.[207]

As part of this mechanism, Peeters et al. postulated one of the OH recycling processes happens

via the photon absorption by the α,β-enone chromophore of an unsaturated hydroperoxy aldehyde

(HPALD). Absorbing sunlight in the 290-370 nm range would prompt an (nπ∗) excitation of the

enone chromophore to its singlet S1 state. Peeters et al. initially suggested that this excitation

would result in a fast internal conversion to a vibrationally excited S0 state, leading to the

homolysis of the peroxide bond faster than the rate of vibrational relaxation.[24] However, in

their 2010 paper Peeters et al. suggest a faster and more efficient photolysis mechanism which

proceeds via an avoided crossing between the bound S1 state on the enone chromophore and the

repulsive S2 state on the peroxide group.[149] They postulated that there is a low-lying transition

state for RO–OH dissociation on the S1 surface which acts as an energetic barrier to homolysis. A

crossing would lead to lysis of the weak peroxide bond and produce a hydroxyl radical with an

alkoxy radical co-product. This photodissociation would, at least in part, reconcile the discrepancy

in the measured hydroxyl radical concentration and that predicted by atmospheric models.
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4.1.1 HPALD formation in the atmosphere

The importance of the HPALD channel in the process of isoprene oxidation has been contested in

the literature.[24, 207, 208] To better understand it’s role, the oxidative process by which HPALD is

generated in the troposphere will be briefly described here. The full reaction scheme is presented

in Fig. 4.1. The reaction is initiated by the addition of an OH radical at the terminal carbon

of an isoprene molecule, and an O2 molecule, forming six OH-Iso-O2 adduct species that can

interconvert rapidly. The concentrations of these six species are in an equilibrium, and each is

depleted by unimolecular decomposition or further reaction with HOx, NOx, and ROx radicals.

Some of these radical species can directly reform hydroxyl radicals via a 1,5 hydroxy-hydrogen

shift which forms oxygenated organic side products including methacrolein (MACR), methyl vinyl

ketone (MVK), and formaldehyde (HCHO). Two of the six radical intermediates referred to as

Z-δ-OH-peroxy I and II in the LIM1 paper can perform a 1,6-H shift followed by O2 addition at two

possible positions. Early papers on this mechanism assumed a 100% yield of HPALD following

this 1,6-shift[24, 208] but when Peeters et al. updated their mechanism in 2014 they suggested

an alternative reaction pathway to dihydroperoxy-carbonyl peroxy (di-HPCARP) radicals. After

di-HPCARP radicals were predicted in theoretical calculations by Peeters in 2014[153] they were

observed experimentally by Teng et al. in 2017.[207] Hydroxyl radicals and other products may

then be recovered from di-HPCARP via a fast aldehydic hydrogen shift.[209] The other product

is an unsaturated hydroperoxy aldehyde suggested to regenerate OH radicals via a photolytic

dissociation. HPALDs are a set of compounds which contain both an α,β-enone chromophore

and a labile peroxide bond. Formation of HPALDs has been observed in numerous experiments
[207, 208, 210, 211] and they have been shown to produce OH radicals under UV light.[154]

The product yield of HPALD relative to di-HPCARP has also been contested. The LIM1

mechanism and MCM v3.3.1 use a 50:50 ratio for these two products, whereas Wennberg et al.

put it at 60:40 in favour of di-HPCARP.[206] Teng et al. suggested an HPALD yield around 0.4,

split 0.15:0.25 between β- and δ-HPALDs.[207] However, new experimental work by Berndt et

al.[211] suggests an HPALD yield as high as 0.75, and Möller et al.[212] speculate that the low

yield observed by Teng et al. can be explained by its loss on the walls of the sample tube. In

summary, the main uncertainties in this mechanism include: the temperature dependent rate

constant of the 1,6 H-shift of the Z-δ-OH-peroxy radical; product ratios following the 1,6-H shift;

reactivity following on from HPALD or di-HPCARP formation.

Recently, Novelli et al.[209] performed high level calculations (CCSD(T)/aug-cc-pVTZ) that

explored the reactions of di-HPCARP and its role in OH formation. They find that its main

reaction channel is the migration of the aldehyde H followed by fast CO loss, leading to an

unstable alkyl radical that will eliminate an OH radical to form di-hydroperoxy methyl vinyl

ketone (DHP-MVK). This reaction channel was included in the model, however a notable result

in this study was that varying the yield of HPALD from 0.4 to 0.75 in model calculations made no

meaningful difference to the results. This could be because both HPALD and di-HPCARP produce
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hydroxyl radicals and CO quickly (on a 1 hour timescale) and in a similar ratio, even though they

proceed by quite different mechanisms. If this is the case, the main question that remains is the

mechanism and rate of HPALD photodissociation.

4.1.2 Evidence for HPALD photolysis

The LIM1 mechanism assumes that HPALD cleanly dissociates to produce an OH radical, with

an overall yield of 1.65 OH per HPALD molecule.[206] In the original LIM0 mechanism the rate

of HPALD photodissociation was estimated at 3.5×10−4 s−1 which would mean an atmospheric

lifetime of 30 – 180 minutes.[149] Breaking of the -O-OH bond was suggested to occur following

internal conversion to a vibrationally excited S0 state as described in section 4.1. Later work

amended this mechanism of hydroxyl regeneration, supposing it to occur via an avoided crossing

on the S1 state, with the exciton transferring to a repulsive state whose character is localised on

the peroxide chromophore.[153] By using a comparison to a MeCO2H potential along the RO-OH

stretching coordinate, the height of this energy barrier was estimated to be around 8 kcal/mol. The

photolysis rate was estimated to be on the order of 5×10−4 s−1, based on the average absorption

cross sections of MVK and MACR which have a similar α,β-enone chromophore to HPALD, and

which would absorb sunlight in the 270-380 nm range.

These estimates were corroborated by controlled reaction chamber photolysis studies per-

formed by Wolfe et al.[154] on a six-carbon HPALD proxy, C6-HPALD, whose photolysis mechanism

was described in the previous chapter. Because of its low vapour pressure, gas phase UV-Vis

spectra of C6-HPALD could not be measured directly. Instead, an averaged UV-Vis spectrum

of three analogous molecules containing an α,β-enone chromophore was used to calculate rate

constants. The uncertainty in the averaged σ(λ) was quoted as 30%. The averaged spectrum may

not be representative of the true C6-HPALD spectrum, in part because it ignores the possibility

of UV-Vis absorption directly by the peroxide bond. In this work the experimental rate constant

for photolysis was quoted as (6.3±0.2)×10−5 s−1. Combined with the estimated spectrum, this

was used to estimate the bulk photolysis quantum yield of 1 ± 0.4 over the 300-400 nm range

(range of UV lamp used in the experiment).

Other reactions of HPALD can compete with photolysis, including reactions with the OH

radical and ozone both of which are present in significant quantities in the troposphere. Although

Wolfe et al. concluded that reaction with OH was not a major sink for C6-HPALD, they indirectly

measured its rate at (5.1±1.8)×10−11 cm3 molecule−1 s−1 which is remarkably close to an earlier

estimate based on analogous reactions of OH with unsaturated carbonyls.[149] Various reaction

channels for HPALDs and OH have been suggested,[149, 206] but crucially most of them are

expected to regenerate OH. This reaction is expected to becomes more competitive with photolysis

at higher OH concentrations and a higher solar zenith angle (when it is darker).[154]

Similarly, rate of C6-HPALD reaction with O3 was measured at 1.1 × 10 −18 cm3 which would

mean an atmospheric lifetime of 10 days. This is significantly slower than the rates for direct
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photolysis and OH reaction and so can safely be ignored in a model of HPALD chemistry.

4.2 UV-Vis spectra of HPALDs

In order to make a reliable prediction of the photolysis rate of both HPALD I and HPALD II, in

this section I will use the best available methods within the limitations of electronic structure

theory to predict the absorption cross section of these molecules. The Wigner sampling approach

described in chapter 2 is a simple strategy best suited to medium sized molecules such as

C5-HPALD and so will be the method used here.

4.2.1 Computational Details

Rotational conformers of HPALD I and HPALD II are found through a systematic rotor search,

and pre-optimised with the UFF forcefield in Avogadro v1.2.0. This search finds 3 conformers

for HPALD I (labelled A-C) and 2 conformers for HPALD II (labelled A,B), all emerging due

to the rotation of the C-O bond adjacent to the peroxide chromophore. Geometries were then

optimised with a range of methods, including DFT, MP2 and spin component scaled MP2 (SCS-

MP2), with tight convergence criteria. We used the following DFT functionals to optimise the

structures: PBE0, wB97XD, and B3LYP. These optimisations used the def2-TZVP basis set and

were calculated using Gaussian 16.[64] Post-HF methods such as MP2 and SCS-MP2 are known

to return accurate geometries[213] so it was used as a benchmark to select a suitable DFT method.

MP2 and SCS-MP2 calculations were performed in Orca v4.2.0[92] with the cc-pVTZ basis, and

with the use of the resolution-of-identity (RI) approximation. The important -O-OH and -C=O

bond lengths and RMSD of the geometry compared to the benchmark SCS-MP2/cc-pVQZ are

shown in table 4.1. By comparing the RMSD between the different structures, shown in table 4.1,

we have chosen the B3LYP functional with the def2-TZVP basis owing to it’s similarity to the

benchmark SCS-MP2 result.

The spectra are simulated by sampling from a multi-dimensional Wigner distribution based

on normal mode frequencies. These frequencies are calculated at the optimised geometry in

the S0 state. It is known that harmonic frequencies calculated with MP2 and SCS-MP2 are

competitive with, but not significantly better than those calculated with DFT.[214] Furthermore,

MP2 and other post-HF methods tend to converge more slowly with respect to basis set size.

Increased accuracy of SCS-MP2 frequencies would not account for increased computational cost,

so DFT frequencies at the B3LYP/def2-TZVP level will be used to construct the distribution. An

anharmonicity correction of 1.0044 is applied to the normal mode frequencies, as recommended

in Kesharwani et al.[214] for this combination of functional and basis.

Accurately modelling the ground state distribution is only one half of the problem. We also

need a reliable method to calculate the excitation energies and oscillator strengths for each

geometry in the ensemble. To this end, we benchmarked a number of excited state methods
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HPALD I

Conformer A -C=O (Å) -O-OH (Å) RMSD
PBE0/def2-TZVP 1.203 1.423 0.960

B3LYP/def2-TZVP 1.207 1.451 0.746
wB97X-D/def2-TZVP 1.202 1.421 1.073

MP2/cc-pVTZ 1.215 1.454 0.292
SCS-MP2/cc-pVTZ 1.211 1.455 0.059

SCS-MP2/cc-pVQZ 1.211 1.456 -
Conformer B

PBE0/def2-TZVP 1.203 1.425 0.959
B3LYP/def2-TZVP 1.207 1.452 0.687

wB97X-D/def2-TZVP 1.202 1.425 3.766
MP2/cc-pVTZ 1.216 1.453 0.256

SCS-MP2/cc-pVTZ 1.211 1.454 0.061
SCS-MP2/cc-pVQZ 1.212 1.455 -

Conformer C
PBE0/def2-TZVP 1.204 1.424 1.386

B3LYP/def2-TZVP 1.207 1.451 1.354
wB97X-D/def2-TZVP 1.202 1.422 0.606

MP2/cc-pVTZ 1.216 1.449 0.270
SCS-MP2/cc-pVTZ 1.211 1.450 0.159

SCS-MP2/cc-pVQZ 1.212 1.451 -

HPALD II

Conformer A -C=O (Å) -O-OH (Å) RMSD
PBE0/def2-TZVP 1.208 1.423 1.406

B3LYP/def2-TZVP 1.212 1.450 1.330
wB97X-D/def2-TZVP 1.206 1.422 1.143

MP2/cc-pVTZ 1.221 1.454 0.097
SCS-MP2/cc-pVTZ 1.216 1.454 0.062

SCS-MP2/cc-pVQZ 1.216 1.455 -
Conformer B

PBE0/def2-TZVP 1.209 1.427 1.470
B3LYP/def2-TZVP 1.212 1.455 2.172

wB97X-D/def2-TZVP 1.207 1.425 1.307
MP2/cc-pVTZ 1.221 1.455 0.128

SCS-MP2/cc-pVTZ 1.216 1.457 0.054
SCS-MP2/cc-pVQZ 1.216 1.457 -

Table 4.1: Benchmarking the DFT methods that will be used for ensemble sampling against
SCS-MP2/cc-pVQZ using the RI approximation

including TD-DFT, ADC(2), CC2, their spin coupled variants (SCS), and EOM-CCSD at the B3LYP

S0 geometry to select the most suitable approach for the simulation of the spectrum. TD-DFT

and EOM-CCSD calculations were carried out in Gaussian 16, and (SCS-)CC2 and (SCS-)ADC(2)

calculations were carried out in Turbomole v7.1,[215] always applying the RI approximation.
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Excitation S0 to S1 S2 S3
B3LYP/def2TZVP 3.55 (0.0003) 4.61 (0.0167) 5.18 (0.2514)
PBE0/def2TZVP 3.59 (0.0003) 4.83 (0.0301) 5.30 (0.2472)

SCS-ADC(2)/aug-cc-pVDZ 3.73 (0.0003) 5.82 (0.0842) 5.94 (0.2539)
SCS-ADC(2)/aug-cc-pVTZ 3.75 (0.0003) 5.84 (0.2004) 5.95 (0.1418)

ADC(2)/aug-cc-pVDZ 3.54 (0.0003) 5.49 (0.0348) 5.74 (0.2617)
CC2/aug-cc-pVTZ 3.73 (0.0003) 5.55 (0.0492) 5.78 (0.2583)

SCS-CC2/aug-cc-pVTZ 3.91 (0.0003) 5.87 (0.1264) 5.98 (0.1916)
EOM-CCSD/aug-cc-pVDZ 3.83 (0.0003) 5.77 (0.0170) 5.97 (0.2900)

Table 4.2: This table contains benchmark calculations performed to determine the most suitable
method for the prediction of σ(λ). Excitation energies to the first 3 states are given in eV, with
oscillator strengths shown in parentheses (Calculated for first 5 singlets).

The results of these calculations are given in table 4.2, where the EOM-CCSD/aug-cc-pVDZ

result is the benchmark for comparison. The closest result which is computationally tractable is

SCS-ADC(2) with the aug-cc-pVDZ basis, so this method will be used to calculate the excitation

energies for the ensemble.

HPALD photoabsorption cross sections were calculated for each conformer by using the

Wigner ensemble method implemented in Newton-X v2.2.[71] Points were sampled from an

uncorrelated quantum harmonic oscillator Wigner distribution based on the anharmonicity

corrected frequencies calculated at the S0 minimum. The temperature was set at 0 K and so it is

assumed that all the normal modes are in their ground vibrational state. This is an acceptable

approximation since at room temperature only low frequency modes (< 200 cm−1) are likely

to be excited, and such modes tend not to significantly affect absorption cross sections. For

each conformer, 100 nuclear geometries were sampled from the distribution, and the electronic

transitions (excitation energies and oscillator strengths) were computed for 5 singlet states

with SCS-ADC(2) and the aug-cc-pVDZ basis set, applying the RI approximation. The number

of ensemble points for each conformer used in the spectrum generation corresponded to their

respective Boltzmann weights. The Boltzmann weights of each conformer were calculated from

their B3LYP/def2-TZVP free energies (sum of electronic and vibrational ZPE) at T = 298K. In

order to generate a continuous spectrum each spectral transition is broadened by being overlaid

with a Lorentzian curve with a phenomenological broadening coefficient ∆ of 0.05 eV.

4.2.2 Spectra of HPALD I and HPALD II

The generated spectra for each conformer can be seen in figures 4.2 and 4.3 in the relevant range

of solar radiation. To generate σ(λ) of HPALD I, an ensemble size of 164 was used (38 conformer A,

26 conformer B, 100 conformer C). For σ(λ) of HPALD II, the ensemble size was 119 (19 conformer

A, 100 conformer B). There are few noticeable differences between the conformers, with a smaller

S1 peak at longer wavelengths partly obscured by the significantly larger overlapping S2 and S3

74



4.2. UV-VIS SPECTRA OF HPALDS

peaks. At wavelengths in the visible range (380 nm and above) the absorption is mainly into the

S1 state. This indicates that in the troposphere most HPALD molecules would be promoted into

this state.

In figures 4.2 and 4.3 the calculated bands corresponding to excitations into S2 and S3 states

do not extend above 300 nm. By extrapolating the S2 band into the longer wavelength part of the

spectrum we may expect some excitation into that state above 300 nm. However, there are too

few ensemble points to make a reliable estimate of the band shape in that region.
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Figure 4.2: Absorption cross sections generated from the Wigner ensemble of HPALD I, using a
weighted combination of its 3 conformers. Excitations calculated at SCS-ADC(2)/aug-cc-pVDZ
level.

The photolysis rate J, which is a first order rate constant, can be determined by integrating

the absorption cross section, actinic flux, and quantum yield over the full range of wavelengths,

as shown in equation 4.2.2.

J =
∫ λmax

λmin

σ(λ)F(λ)φ(λ)dλ

The actinic flux F(λ) is the rate of incident photons per unit area, which will be used at solar

zenith angle of 30°. Photolysis rate, J, is distinct from a photochemical lifetime which is the

time taken for a photoexcited molecule to decay back to its ground state. On the other hand, if

photoexcitation leads to a number of reaction channels each with its own corresponding quantum

yield φ(λ) then the rate for that channel can be calculated with equation 4.2.2. To calculate this

rate we will be using actinic flux data generously provided by John Crounse and Glenn Wolfe,
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Figure 4.3: Absorption cross sections generated from the Wigner ensemble of 2 conformers, A and
B, of HPALD II. Absorption bands for the first 3 singlet states calculated at SCS-ADC(2)/aug-cc-
pVDZ level. Excitation band for each state is shown separately. Error bars indicate the uncertainty
in the cross section due to statistical sampling.

measured for the UV-Vis lamp used in their experiments in the 300-400 nm range. Rates are

calculated using two approaches: integrating over σ(λ) for excitations into the S1 state only, or

σ(λ) that include all states S1 to S3. It is recommended to consider primarily the S1 rates, since

the result that includes all excitations is very sensitive to the Lorenzian broadening parameter.

Since the oscillator strength of the S0 – S2 absorption is significantly higher, the tail of the

curve overlaps with the S1 peak causing the rate to appear artificially high. For example, if the

broadening coefficient ∆ were set to 0.01 eV, the σS1 only photolysis rate for HPALD I would

barely increase to 1.05 ×10−4 s−1 whilst the σAll rate would almost halve to 1.37 ×10−4 s−1.

Using only the S1 excitations, the photodissociation rate for HPALD I is then 9.15 ×10−5 s−1 and

that for HPALD II is 1.93 ×10−4 s−1.

4.3 The mechanism of OH loss

Dynamics simulations performed in the previous chapter give us an insight into the mechanism

of HPALD photolysis after photoexcitation into S1. Although the aforementioned calculations

used C6-HPALD as a proxy molecule for the two isomers of C5-HPALD, these molecules are
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similar enough to infer the photochemistry of the former from the latter.

As we have established from the absorption cross sections, the HPALD molecule is primarily

photoexcited into the S1 state in the 300-400 nm range. An EOM-CCSD benchmark indicates

that the peak of the S0 → S2 transition occurs at a significantly lower wavelength (202 nm) than

S0 → S1 (330 nm), such that it’s out of the UV-Vis range. However, some geometries sampled

from the tail of the Wigner distribution show a lower energy S0 → S2 transition so some all-atom

nonadiabatic dynamics were performed to explore this pathway. Ab initio multiple spawning

(AIMS) calculations initiated in S2 (10 trajectories, LR-TDDFT/lc-ωPBE/6-31G) show that the

wavepacket slides down the dissociative S2 potential, leading to ultrafast ballistic loss of OH

within 20 fs.1 The S2 → S1 crossing is purely diabatic such that the wavepacket follows the n′σ∗

character of the S2 state in the actinic region.

Next, I will discuss the dominant photodissociation channel, following excitation into S1. In the

Franck-Condon region this electronic state exhibits nπ∗ character. Surface hopping calculations

described in the previous chapter indicate that the nuclear wavepacket moves on the PES near

the S1 minimum for a number of vibrational periods, eventually losing OH or HO2 on a picosecond

timescale. As the peroxide bond is extended (and enone bond is relaxed), the S1 and S2 states

become strongly coupled and it is possible for the wavepacket to proceed through the coupling

region adiabatically as the character of the S1 state changes from nπ∗ to n′σ∗. We can then say

that the dynamics calculations support the hypothesis proposed by Peeters et al. in 2010.[149] We

can however add that the dissociative process is slowed by the wavepacket becoming diabatically

trapped on the nπ∗ potential as it moves through the coupling region.

The lifetime of C6-HPALD following photoexcitation into S1 is approximated to be on the

order of 5 ps when nonadiabatic dynamics are performed at LR-TDDFT/PBE0/6-31G level of

theory.

4.4 Simulating sunlight-induced dynamics

Many reactions whose photochemistry we wish to understand are caused by the molecules’

interaction with sunlight, including photosynthesis, energy conversion by photovoltaics, or

eyesight. In this section I will outline the applicability of conventions in trajectory based methods

for reactions caused by such continuum-wave (CW) or black-body radiation, and consider possible

strategies to make these simulations more realistic.

Standard practice when simulating an ultrashort excitation is to generate initial conditions

by invoking the Franck-Condon approximation and vertically projecting the ground state nuclear

density given by a Wigner distribution onto the excited state potential. In the limit of an

infinitesimally short light pulse (i.e. a delta function in time) it will generate a wavepacket which

has the exact shape of the ground state nuclear wavefunction. The shortest pulse length that

1These AIMS calculations were ran by Dr. Basile Curchod at Stanford.
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has been generated in a controlled experiment at this time is 43 attoseconds,[216] but any laser

pulse shorter than a couple of picoseconds is considered ultrashort. This wavepacket is not an

eigenstate of the system, but a coherent superposition of excited eigenstates, which will then

dephase as the wavepacket moves on the new potential.

Longer laser pulses do not generate localised wavepackets, but rather excite the molecule into

a particular eigenstate which must be resonant with the radiation frequency. This is fundamen-

tally due to the energy-time uncertainty principle ∆E∆t ≥ ~/2 that means that a laser pulse of

length ∆t = 10 fs would have uncertainty in its energy spanning ∆E = 0.03 eV. For longer pulses

and CW radiation, ∆E will be significantly smaller. An adjustment to the nonadiabatic dynamics

protocol has been made by Suchan et al.[200], that generates initial conditions for trajectories in

the long-pulse limit with a constraint that enforces the resonance condition. This is achieved

by running ground state dynamics with the generalised Langevin equation thermostat which

enforces a quantum distribution – as described in chapter 2 – but using importance sampling

techniques such as umbrella sampling or Lagrange multipliers to ensure that only the configura-

tions that fulfil the resonance condition are sampled. This type of initial condition sampling is

computationally more demanding than ground state sampling, as it requires the knowledge of

excited state energies at each point. While this work addresses the question of how to simulate

excitation via long monochromatic pulses, it still isn’t a realistic model of black-body radiation

(sunlight).

A method for simulating thermal (black-body) light excitation based on the Chennu-Brummer

approach was suggested by Barbatti .[201] Absorption of thermal, incoherent, CW radiation leads

to a statistical mixture of stationary eigenstates, which evolve in time without the coherences

present in ultrafast spectroscopy. In the Chennu-Brummer ansatz this type of radiation is treated

as an ensemble of coherent pulses occurring at different times which is intuitive when thinking

of a bulk ensemble of molecules interacting with thermal radiation. Furthermore, an advantage

of this approach is that after the initial conditions are determined, the trajectories can evolve in

exactly the same way as conventional nonadiabatic mixed quantum-classical dynamics.

This discussion is an important caveat when we make claims about the behaviour of at-

mospheric systems based on simulations of nonadiabatic dynamics. The question of how to

approach mixed quantum-classical dynamics simulations for arbitrary irradiation merits further

investigation.

4.5 Conclusion

This chapter intends to address questions pertaining to the LIM1 mechanism of HPALD photodis-

sociation. We make a prediction of the HPALD absorbtion cross section which has not yet been

determined experimentally and elucidate the mechanism of OH loss from dynamics simulations.

The calculated absorption cross sections for C5-HPALD show that rates of photolysis on the
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order of 2×10−4 s−1 are a fair estimate of the real rate and are in agreement with predictions

made in the LIM1 mechanism. However, we highlight that when making statements about the

mechanism on the basis of nonadiabatic dynamics simulations, the question of how to replicate

photoexcitation caused by sunlight remains a pertinent one.
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5
QUANTUM TRAJECTORY SURFACE HOPPING

5.1 Introduction

Tully’s fewest switches surface hopping (FSSH) is one of the most popular algorithms for simulat-

ing quantum-classical dynamics following photoexcitation. I applied it in chapter 3, where it was

used to model the photodissociation of C6-HPALD. There are many reasons for the popularity

of FSSH, amongst them its conceptual simplicity and relative efficiency in comparison to fully

quantum wavepacket dynamics. Because trajectories can be ran independently, the cost scales

with the selected electronic structure method rather than the dimensionality of the system.

Therefore, when systems are well-benchmarked against cheaper methods such as LR-TDDFT

and ∆SCF, FSSH can be applied to run dynamics on larger systems.[217, 218]

By assuming that the wavepacket can be approximated as a swarm of independent trajectories

allows us to easily parallelise the calculation over multiple cores such that many trajectories can

be run simultaneously. This independent trajectory approximation results in the most well known

shortcoming the FSSH algorithm – its failure to correctly capture quantum coherence effects.

More formally, over the course of the simulation the off-diagonal elements of the density matrix

for each trajectory become larger than they would be in a fully quantum representation. Several

authors have made modifications to the FSSH algorithm that include decoherence corrections,

while still preserving the independent trajectory ansatz.[219–221]

Each trajectory is not meaningful on its own, but only as part of an ensemble representing

the wavepacket. To ensure that energy is conserved at the ensemble level, the FSSH algorithm

artificially rescales the momentum of a trajectory following a hop to compensate for the energy

gap between adiabatic states. While ad hoc corrections such as this are reasonable and make the

algorithm more robust, they do not have any physical meaning.
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In this chapter I will explore and implement a novel nonadiabatic dynamics strategy in-

troduced by Craig Martens, based on an exact formalism derived from the quantum Liouville

equation. This approach preserves the independent trajectory property of the FSSH algorithm,

but removes the energy rescaling step while still conserving energy at the ensemble level. I will

begin by outlining the classic fewest switches surface hopping (FSSH) algorithm. Then I will

introduce the formally exact Consensus Surface Hopping (CSH) formalism and summarize its

derivation from the quantum mechanical Liouville equation.[222] Quantum Trajectory Surface

Hopping (QTSH) is the independent trajectory limit of CSH, but is a more computationally

tenable algorithm so I will describe the stepwise approximations necessary to link the two. I

will then benchmark possible strategies for the implementation of the QTSH algorithm, com-

paring integration step algorithms and their convergence with time step size. My optimised

implementation in a development version of Newton-X will then be compared against the results

of FSSH when applied to a few model systems, including the problems outlined by Tully, and the

spin-boson Hamiltonian model.

5.2 Fewest switches surface hopping

The seminal paper describing the fewest switches surface hopping (FSSH) method was first

published by John C. Tully in 1990.[125] As the QTSH algorithm is formulated to resemble FSSH,

it is useful to define the terms and give a brief overview of the original method.

We begin by defining the full Hamiltonian for a system

(5.1) H = Tq +H0(r,q)

where Tq is the nuclear kinetic energy and H0(r,q) is the electronic Hamiltonian for a given

nuclear configuration q. Matrix elements of H0 can be written in terms of an orthonormal basis

φi(r;q).

(5.2) Vjk(q)= 〈φ j(r;q)|H0φk(r;q)〉

The nonadiabatic coupling (NAC) vector di j(q) can also been written in terms of the electronic

basis in the adiabatic representation where ∇q is the gradient with respect to the nuclear

configuration q.

(5.3) d jk(q)= 〈φ j(r;q)|∇qφk(r;q)〉

The sequence of nuclear configurations and momenta as a function of time defines a classical

trajectory (q(t),p(t)). For a given trajectory path we can then expand the time-dependent electronic

wavefunction as

(5.4) ψ(r, t)=∑
j

c j(t)φ j(r;q(t))
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where c j are complex expansion coefficients. This electronic wavefunction can then be substituted

into the time dependent Schrödinger equation (TDSE). Using the chain rule, 〈φ j|φ̇k〉 = q̇ ·d jk we

obtain a set of coupled first-order differential equations for the expansion coefficients.

(5.5) i~ċ j(t)=
∑
k

ck
(
Vjk − i~q̇ ·d jk

)
This result implies that for any trajectory the expansion coefficients c j can be integrated numer-

ically. These time-dependent coefficients correspond to the amplitude of each electronic state

at time t. It is then useful to define the electronic density matrix a as a jk = c j c∗k for a given

trajectory. Diagonal elements of a are the populations of an electronic state and off-diagonal

elements are the coherences between these states. State populations a j j evolve according to this

equation of motion

ȧ j j =
∑
k 6= j

b jk where(5.6)

b jk =
2
~

Im(a∗
jkVjk)−2Re(a∗

jkq̇ ·d jk)(5.7)

In practice, implementations of the FSSH algorithm proceed according to the following steps.

1. Positions and momenta at t = 0 are assigned to replicate the shape of the wavepacket

directly following photoexcitation. Typically this is done by vertically projecting a ground

state distribution into an excited state ( j) or splitting the wavepacket between a number of

excited states.

2. Positions of the atomic nuclei evolve classically on potential energy surface j for a time

interval ∆t.

3. Probability of hopping to electronic state k, g jk, is evaluated based on the off-diagonal

matrix elements of a. If g jk is negative, it is set to 0. The expression for g jk has been

constrained to minimise the frequency of state switches for arbitrarily small time steps. A

uniform random number ζ between 0 and 1 is generated, and a hop occurs if ζ is smaller

than g jk.

(5.8) g jk =∆t
b jk

a j j

4. If hopping occurs, the trajectory is transferred to the new state. To conserve the total

energy, a velocity adjustment is made to compensate for the ∆E between the two states. The

velocity adjustment is made in the direction of the NAC vector. Cases where the magnitude

of the velocity adjustment is greater than the magnitude of the original velocity are called

"frustrated hops", and in Tully’s original formulation they are forbidden. If there is no hop,

the algorithm returns to step 2.
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This procedure then repeats itself for a specified simulation time for all trajectories. The number

of trajectories typically ranges from 100 to a few 1000s, which is sufficient to reach statistical

convergence. A higher number of trajectories is needed for reactions with many possible outcomes

in order to properly sample the rare reaction channels. Tully tested this scheme on three typical

crossings illustrated in figure 5.1, which are now known as Tully’s models and are widely used

to benchmark novel nonadiabatic molecular dynamics methods. Molecular analogues of these

1-D models are useful to test the robustness of these methods when extended into multiple

dimensions.[192]

I will use Tully’s models to test my implementation of QTSH later on in this chapter.

Figure 5.1: Three one-dimensional model systems Tully used to test the FSSH algorithm. Tully
I is the single avoided crossing; Tully II is the dual avoided crossing where branching and
recoherence of the wavepacket is observed; Tully III has a wavepacket which moves through an
extended coupling region until state degeneracy is lifted and the wavepacket transfered to the
upper state may reflect backwards depending on initial momentum.

5.2.1 The problem of decoherence

In FSSH the electronic density matrix a is integrated continuously, preserving the quantum

phase coherence. However, this coherence is naturally damped in many-atom systems in a way

that isn’t replicated in the FSSH algorithm. Because of this, the FSSH algorithm suffers from

over-coherence. Coherences are the off-diagonal elements of a corresponding to the overlap of

wavepackets between surfaces. As diverging wavepackets move away from each other these ele-

ments should tend to 0. Multiple ways to artificially enforce decoherence have been suggested.[220]

Simply damping the off-diagonal electronic amplitudes can be effective in many cases. Granucci

and Persico suggested an ad hoc scheme that dampens the hopping probability by an exponential

factor e−∆t/τ jk , where the decoherence timescale τ jk is inversely proportional to the energy gap

between adiabatic states.[219] This is a popular decoherence scheme, and is implemented by

default in Newton-X. Still, it isn’t applicable in all cases – for example, it fails to reproduce the
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branching ratios for Tully’s second model system.[223] Another approach collapses the amplitudes

to a single state when a trajectory leaves a region of strong coupling.[224] Schwartz et al. also

suggested that the decoherence rate is proportional to the difference in the forces on the two

PES.[225]

Ultimately, the slow loss of phase coherence is an unavoidable consequence of the independent

trajectory ansatz. Most schemes that artificially enforce decoherence are useful, but reliant on

parametrization for a given system and are not formally derived. In the method presented

here, an empirical decoherence correction parameter has been suggested based on the ensemble

average of trajectory phases.[222] This correction is not yet implemented in the results presented

here, since the dependence of this parameter on the statistics of the trajectory ensemble creates

a degree of interdependence between the trajectories.

5.3 Consensus Surface Hopping

In this section I describe the Consensus Surface Hopping (CSH) formalism which provides a

rigorous theoretical framework for a trajectory-based nonadiabatic dynamics method that is fully

exact. Starting from a basic outline of its derivation from the multi-state quantum Liouville

equation, I will explain how trajectory ensembles can be used to exactly represent the time-

evolution of phase space density. A more complete explanation is given in the papers of Craig

Martens,[222, 226] however here the derivation is generalised for an arbitrary number of electronic

states.

The quantum Liouville equation (QLE) for the density operator ρ̂(t) and system Hamiltonian

Ĥ is displayed below, alongside its classical limit.

Quantum LE Classical LE

i~ dρ̂
dt =

[
Ĥ, ρ̂

] dρ
dt = {H,ρ}

Whilst in the QLE ρ̂ is a quantum density operator, in the classical analogue ρ is a function of

the phase-space position and momentum variable Γ(q,p) and time t. Here {H,ρ} are the Poisson

brackets of classical phase space functions H and ρ, defined as

{H,ρ}= ∂H
∂q

∂ρ

∂p
− ∂ρ

∂q
∂H
∂p

.

We can rewrite the QLE in the basis of N electronic states, such that the operators Ĥ and ρ̂

are written in terms of their matrix elements as Hmn = 〈m|Ĥ|n〉 and ρmn = 〈m|ρ̂|n〉 respectively.

(5.9) i~
dρmn

dt
=

N∑
k=1

Hmkρkn −ρmkHkn

At this point it should be noted that the CSH formalism is independent of representation,

i.e. that diabatic and adiabatic representations yield the same result. However, for a direct
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comparison to FSSH it is simpler to proceed along the adiabatic route in this derivation. We can

begin by defining the Hamiltonian and density matrix for N states in the adiabatic representation

in the following way.

Ĥ =


H1,1 · · · V1,N

...
. . .

...

VN,1 · · · HN,N

 ρ̂ =


ρ1,1 · · · ρ1,N

...
. . .

...

ρN,1 · · · ρN,N


Note that these matrices are nuclear operators, and not functions. The crucial step that

translates the operators to functions, and thus makes a semiclassical approximation to the QLE,

is the use of the Wigner-Moyal expansion in the powers of ~. This replaces the commutators in

the QLE with Poisson brackets, where A(q, p) and B(q, p) are functions defined in phase space

(q, p). [227] [
Â, B̂

]→ i~{A,B}+O
(
~2)

Products of two quantum operators in the Wigner-Moyal representation can be expressed as a

Moyal (star) product – this is fundamental for the phase space formulation of quantum mechanics,

which is exactly equivalent to the Hilbert-space representation. By keeping only the first order

non-classical term in the Moyal expansion, the quantum-classical Liouville equation (QCLE) is

then be derived.

(5.10) i~
∂ρmn

∂t
=

N∑
k=1

Hmkρkn −ρmkHkn +
i~
2

N∑
k=1

{
Hmk,ρkn

}−{
ρmk,Hkn

}
The off-diagonal coherences between states ρmn are written in terms of their real and imaginary

parts.

ρmn =αmn + iβmn

The density matrix is Hermitian such that ρmn = ρ∗nm with the implication that αmn =αnm and

βmn =−βnm. Diagonal elements and the off-diagonal couplings of H in the adiabatic representa-

tion are given as

Hnn = p2

2m
+Un(q) and Vmn =−V∗

nm =−i~dmn · p
µ

in the semiclassical limit, where Un is the adiabatic potential and µ is the mass.

By substituting these quantities into equation 5.10 we can derive the equations of motion for

the diagonal elements of the density matrix.

∂ρnn

∂t
= {

Hnn,ρnn
}+2

N∑
k 6=n

dkn ·
p
m
αkn −~

N∑
k 6=n

{
dkn ·

p
m

,βkn

}
(5.11)

Since the total density matrix ρ is written as

ρ =
N∑

n=1
ρnn
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we can derive the EOM for ρ

(5.12)
∂ρ

∂t
=

N∑
n=1

{
Hnn,ρnn

}−2~
N∑

n=1

N∑
k<n

{
dkn ·

p
m

,βkn

}

which is equivalent to the classical Langevin equation, with an additional term (multiplied by

~). This term contains the non-classical modifications to the nuclear dynamics and is dependent

on the NAC vector and the off-diagonal coherences. By splitting the off-diagonal elements of the

density matrix in the QCLE into real and imaginary parts it is also possible to derive the time

evolution of the coherences following a similar procedure

∂αmn

∂t
=

N∑
k 6=m,n

[
αmkdkn ·

p
m

−αkndmk ·
p
m

]
+ {H0,αmn}+ωβmn(5.13a)

+
N∑

k 6=m,n

{
αmk,dkn ·

p
m

}
−

{
dmk ·

p
m

,αkn

}
+dmn · p

m
(
ρnn −ρmm

)
∂βmn

∂t
=

N∑
k 6=m,n

[
βmkdkn ·

p
m

−βkndmk ·
p
m

]
+{

H0,βmn
}−ωαmn(5.13b)

+
N∑

k 6=m,n

{
βmk,dkn ·

p
m

}
−

{
dmk ·

p
m

,βkn

}
− ~

2

{
dmn · p

m
,ρnn +ρmm

}

where H0 = (Hmm + Hnn)/2 and ω is the difference frequency between adiabatic states ω =
(Um −Un)/~ (proof of this is available in the Appendix).

These equations of motion for the phase space densities can be written using the trajectory

ensemble ansatz.

ρ(Γ, t)= 1
Ntraj

∑
j
δ

(
Γ−Γ j(t)

)
(5.14a)

αmn(Γ, t)= 1
Ntraj

∑
j
αmn, j(t)δ

(
Γ−Γ j(t)

)
(5.14b)

βmn(Γ, t)= 1
Ntraj

∑
j
βmn, j(t)δ

(
Γ−Γ j(t)

)
(5.14c)

An ensemble of Ntra j trajectories Γ j(t) = (q j(t),p j(t)) represents the phase space densities.

Quantum population transfer between states is represented by stochastic hops at trajectory level

– each Γ j(t) has an integer attribute σk
j (t) which indicates the state that trajectory j occupies

at time t (1 if it’s on state k and 0 otherwise). The delta function δ
(
Γ−Γ j(t)

)
at the location

of the jth trajectory needs to be smoothed by a phase space Gaussian for a finite ensemble in

the numerical implementation. By inserting this trajectory ansatz into the coupled differential

equations 5.11-5.13b it is possible to derive the trajectory equations of motion for the classical
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ensemble given in equations 5.15a-5.15b.

q̇ j =
p j

µ
− 2~
µ

∑
n

∑
k<n

dkn, jβkn, j(5.15a)

ṗ j =−∇U j(q)+ 2~
µ

∑
n

∑
k<n

p j · (∇d)kn, jβkn, j(5.15b)

These are Hamilton’s equations describing the time evolution of the semi-classical trajectory Γ j(t)

on state n which can be derived from the corresponding Hamiltonian (where terms of order ~2

and higher are neglected).

H =

(
p−2~

∑
n

∑
k<n

dknβkn

)2

2µ
+U(q)(5.16)

By substituting equations 5.14b and 5.14c into 5.13a and 5.13b respectively, it’s also possible to

derive EOM for the coherences αmn and βmn. Finally, the probability of hopping to state n for the

jth trajectory moving on state m is given by the following expression, which closely resembles

the FSSH switching probability.

(5.17) PCSH
mn =

∣∣∣∣ 2
〈ρmm〉

d(r j) ·p j

µ
〈αmn〉 j∆t

∣∣∣∣
Here 〈ρmm〉 and 〈αmn〉 j are the local values of density ρmm and coherence αmn at the phase space

point Γ j, both of which depend on the knowledge of the complete ensemble.

5.3.1 Quantum Trajectory Surface Hopping

CSH is a useful framework for examining nonadiabatic dynamics in a statistical trajectory

ensemble representation. Interdependence of the trajectories that arises through the use of local

functions depending on the full ensemble in the equations of motion and hopping probabilities

means that quantum decoherence is treated correctly. This is demonstrated by its application to

1- and 2- dimensional model systems.[222, 226] However, the need for "consensus" means that this

method is more expensive than FSSH, although the exact scaling with dimensionality is not yet

determined. Furthermore, CSH removes the known advantage of trajectory based dynamics, that

of being easy to run in parallel on novel GPU architectures, which significantly improves their

efficiency.[110] Independent trajectories are simple to parallelize, so this ansatz makes QTSH a

more practical method. In this section I will describe the approximations needed to take CSH to

its independent trajectory limit: QTSH.

Firstly, ensemble average quantities such as 〈ρmm〉 = ρmm(Γ j) and 〈αmn〉 j = αmn(Γ j) are

replaced by their single-trajectory proxies. As FSSH relies on the correspondence between the

individual trajectory density matrix populations ann, and the total trajectory populations on each

state – so QTSH assumes that the CSH functions (Eqn. 5.14) are smoothly varying in local phase
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space. For example, if phase space population density of state m, ρmm, is varying slowly in the

vicinity of trajectory point Γ j we can say that

〈ρmm〉 j ≈ 〈σm〉 j 〈ρ〉 j .

where the expectation value of the stochastic variable 〈σm〉 j is just the trajectory density matrix

element amm, j. Furthermore, if the system is fully coherent we can assume that the function αm
j

is also slowly varying near the phase space point Γ j allowing the following replacement.

〈αmn〉 j ≈αmn, j 〈ρ〉 j

This allows the CSH hopping probability to be rewritten in terms of parameters that aren’t

expressed in terms of the whole ensemble.

(5.18) PQTSH
mn =

∣∣∣∣ 2
amm, j

d(q j) ·p j

µ
αmn, j∆t

∣∣∣∣
Equation 5.18 is equivalent to the FSSH hopping probability gmn in Eqn. 5.8. Like FSSH, the

QTSH algorithm can be broken down into 4 basic steps:

1. Generate initial conditions for the trajectories in an identical way to FSSH.

2. Propagate the classical nuclei in phase space following the QTSH equations of motion that

contain a non-classical component.

3. Integrate equation 5.5 to obtain a at this timestep. a contains the smoothly varying

coherences (α+ iβ) and state populations (ann) necessary to integrate the classical EOM.

4. Determine if the running state of the trajectory changes by comparing random number

ζ taken from a uniform distribution between 0 and 1 against the hopping probability in

equation 5.18. Return to step 2 until the end point of the trajectory.

This algorithm is extremely similar to FSSH and uses many of the same parameters (density

matrix coherences, hopping probabilities, classical positions and momenta). The following section

outlines the differences which are contained in steps 2 and 3, and the specifics of integrating

QTSH into an existing FSSH codebase.

While CSH is formally exact, the accuracy of QTSH is more comparable to FSSH in the cases

of the simple model systems explored by Martens. Advantages of using QTSH over FSSH are as

follows: QTSH is equivalent in the diabatic and the adiabatic representations; some contrivances

of FSSH such as forbidden hops are eliminated; QTSH is time-reversible at ensemble level, which

is impossible for FSSH due to frustrated hops and momentum rescaling.[222] In comparison to the

exact wavepacket calculations for the case of Tully’s single crossing model, QTSH can reproduce

the coherence with near-quantitative accuracy. However, FSSH shows better agreement to the

benchmark final state population (Martens speculates that this is due to the stricter energy

conservation procedure).[226]
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5.4 Implementing the algorithm

In the papers where the method was originally published, QTSH was applied to a selection of 1-D

and 2-D model systems. To extend the applicability of QTSH, possibly to molecular systems, I

implemented the algorithm in the development version of the mixed quantum-classical dynamics

software package Newton-X.[71, 184] Because many of the steps used in the FSSH algorithm are

the same as those in QTSH (in the adiabatic representation), there were limited changes to be

made to the architecture of the source code. Firstly, I needed to modify to the surface hopping

algorithm such that it removed the velocity re-scaling that occurred after a hop. Secondly, I needed

to implement the semiclassical equations of motion in Eqn. 5.19. The momentum derivative

ṗ is expensive to calculate since it contains the spatial derivative of the NAC vector ∇dmn.

Furthermore, to my knowledge neither the analytical nor numerical gradient of dmn is readily

available as an output in any electronic structure packages. To bypass this, the momentum

gradient can be rewritten as

(5.19) ṗ=−∇U(q)+2~
∑
n

∑
k<n

ḋkn(q)βkn

since ḋkn = dkn

µ
(p ·∇). It is significantly easier to evaluate the time derivative of dkn at each step

along a trajectory, by simply subtracting dmn(t−∆t) from dmn(t) and dividing through by the

time step. However, this introduces numerical errors that scale with step size.

Another approach to simplifying the integration of the classical EOM is to transform the

canonical momentum p to the kinematic momentum pkin as described by Cotton et al.[228] This

avoids both the costly requirement to evaluate the spatial derivative of the nonadiabatic coupling

in equation 5.15b, and the numerical errors in the calculation of the time derivative of the

coupling. For a two state system, the kinematic momentum is written as

(5.20) pkin =p−2~d(q)β

and its time derivative can be determined by applying the chain rule.

(5.21) ṗkin = ṗ−2~ḋ (q)β−2~d (q) β̇

Combining the fact that the time derivative of the coherence β̇ is −ω(q)α and that the time

derivative of the canonical momentum is given in the original EOM (equation 5.19) transforms

equation 5.21 to

(5.22) ṗkin =−∇U (q)+2~ω (q)d (q)α

which in combination with

(5.23) q̇= pkin

µ

makes this set of EOM far simpler to integrate numerically.
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5.4.1 The integrator

To ensure the accuracy of the QTSH algorithm, a suitable integration method for solving the

differential equations of motion (equations 5.14) must be selected. Desirable properties for an

integrator include energy conservation, tolerance of larger time step size without significant

errors, and symplecticity (conservation of phase space volume). It is especially important for

an integrator to be symplectic at longer timescales.[229] Velocity Verlet is a popular choice for

classical molecular dynamics due its accuracy and simplicity. As the classical Hamiltonian for

molecular motion is fully separable, H(q, p)= T(p)+V (q), the Verlet algorithm is symplectic. The

difficulty that arises in this case, is that the Hamiltonian for the system (given in equation 5.16)

is not separable. There is no general explicit method for integrating non-separable Hamiltonians

– although there are existing methods for some sub-classes of such Hamiltonians.[230] Here an

explicit integration method is one where it is possible to calculate the state of a system at time

t+∆t knowing only the state of the system at time t – familiar Euler and Verlet schemes fall

into this category. Generally, non-separable Hamiltonians are integrated by implicit integration

methods which work by solving an equation whose limits are the initial and final states of a given

system. This approach is significantly more expensive, and difficult to implement for on-the-fly

dynamics.

The Euler integrator is the most straightforward explicit method for the solution of ordinary

differential equations (ODEs) with some initial value. The implementation of the Euler integrator

at each time step with initial values (q(t0),p(t0)) is as follows,

q(t0 +∆t)=q(t0)+ q̇(t0)∆t

p(t0 +∆t)=p(t0)+ ṗ(t0)∆t

where the time derivatives of position and momentum are given in equation 5.14. Because this is

the most basic integrator, the error scales with the square of the time step ∆t causing significant

divergence from the analytical solution at longer timescales. This method is neither symplectic

nor time-reversible, but is used here as a baseline for testing the implementation of QTSH.

The Euler method is the simplest of a larger set of Runge-Kutta methods. Of these, fourth

order Runge-Kutta (RK4) is one of the most commonly used numerical integration methods. Its

error scaling with time step size is much more favourable than the Euler integrator, scaling

as O(∆t5). The standard RK4 propagation algorithm is complicated by applying it to multiple

co-dependent variables evolving in time, which in this case are pkin, p, q, d(q), α, β, and the

density matrix a for each trajectory. In the following algorithm, I use the general notation F({v})

where F is a general function of a set of variables {v} whose values at the start of the integration
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step are {v0}.

kF
1 =∆tḞ({v0}, t+∆t/2)

kF
2 =∆tḞ({v0 +kv

1/2}, t+∆t/2)

kF
3 =∆tḞ({v0 +kv

2/2}, t+∆t/2)

kF
4 =∆tḞ({v0 +kv

3}, t+∆t)

F(t0 +∆t)= F(t0)+ kF
1 +2kF

2 +2kF
3 +kF

4

6
This numerical integration strategy is often favoured because of its accuracy. However,

because this method requires the re-calculation of the forces, and therefore α, β, and d (q) at each

time step it can become expensive, so typically RK4 uses a larger time step.

Second order Runge-Kutta (RK2), sometimes referred to as the midpoint method, is a cheaper

alternative to RK4 as forces only need to be re-calculated twice per time step, while maintaining

favourable scaling of O(∆t3). RK2 uses the gradient at the midpoint of the integration step to

predict the subsequent position. This algorithm is written out explicitly below, this time in terms

of the phase space variables q and p.

kq
1 =∆tq̇(t0) kq

2 =∆tq̇(t0 +∆t)

kp
1 =∆tṗ(t0) kp

2 =∆tṗ(t0 +∆t)

q(t0 +∆t)=q(t0)+ (kq
1 +kq

2)
2

p(t0 +∆t)=p(t0)+ kp
1 +kp

2

2
The last integration method that I will consider is leapfrog integration. This strategy is

appealing in this case due to its time reversibility, meaning that if at the end point of each

trajectory the sign of the time step was reversed, the trajectory will return to its exact original

position. Time reversibility means that many important quantities such as energy and angular

momentum are conserved. Furthermore, the error scales favourably as O(∆t3). The equations for

propagating the phase space variables are

p(t0 +∆t/2)=p(t0 −∆t/2)+a(q(t0))µ∆t

q(t0 +∆t)=q(t0)+p(t0 +∆t/2)∆t

where a is the acceleration at position q(t0). Ultimately, I choose to implement the leapfrog

integration method in Newton-X. It’s simple, its error is comparable to RK2, and energy drift is

limited on a longer timescale, making it an appealing choice in this case.

5.5 Testing the QTSH implementation

In this section the performance of the QTSH algorithm will be compared against FSSH for a

number of model systems that are commonly used to benchmark novel nonadiabatic dynamics
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methods. Strengths and weaknesses of the various algorithms described in the previous section

will be explored, and the limitations of the QTSH method will be highlighted. The results will be

compared to exact quantum wavepacket calculations in the diabatic representation which used

Kosloff ’s propagation method.[231] Scripts that implement this method were generously provided

by Prof. Martens.

5.5.1 Tully’s model systems

The three 1-dimensional systems suggested by Tully in 1990 have become benchmarks for new

nonadiabatic dynamics methods.[192] The integration algorithms for non-separable Hamiltonians

described in the previous section will be tested on Tully’s single avoided crossing model in order

to determine the best integrator to implement in Newton-X.

These algorithms were implemented in a set of Fortran 90 scripts that executed the QTSH

calculations for an ensemble of 104 trajectories that evolved for 2400 a.u. (an atomic time unit

is ~/Eh) with ∆t = 0.1 a.u. and with initial momentum ~k = 10. In the following calculations

I used the kinematic momentum instead of the canonical momentum, as given in Cotton et

al.,[228] as it avoids the need to calculate the time derivative of the NAC vector which would

introduce additional errors to the calculation. In Fig. 5.2 the comparison is shown in how the

state populations evolve over the course of the simulation for the set of integrators that were

considered. Convergence with time step length is also illustrated, showing that all methods

converge to the same answer even with the relatively large time step of 10 a.u..

Energy conservation over the course of the simulation is illustrated in Fig. 5.3. The total

energy Etot is the diagonal energy Ediag with an additional coherence energy term Ecoh. The

coherence energy is required to balance the energy budget and depends on the coupling between

the states and off-diagonal coherences of the density matrix, and therefore it peaks as the

wavepacket moves through the crossing region. Fig. 5.3 shows that there is a small upwards

drift in Etot of 2%, which becomes marginally less significant with the use of a smaller time

step. Because the energy re-scaling after a hop is not applied in the QTSH algorithm, there is no

artificial constraint that enforces the conservation of energy at the individual trajectory level.

Formally, the energy is conserved at ensemble level so some variation may be expected due to

finite ensemble size, or the cumulative error of numerical precision.

Another variable in the implementation is the question of how the NAC vector will be used

in the EOM, discussed in section 5.4. There are three possible options: using explicit spatial

derivatives of the NAC vector which is not available to compute in most electronic structure

packages; using the time derivative of the NAC vector; or using the kinematic momentum. In

Fig. 5.4 a comparison is shown between the latter two implementations, for the same model as

used previously. Although the time derivative strategy returns noisier results, it can be seen that

energy is conserved more effectively than when using pkin. For this reason, this strategy is used

in the Newton-X implementation by storing the NAC coupling vector from the previous time step
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Figure 5.2: Density matrix element convergence with time step size. Comparison between integra-
tor algorithms for 10000 trajectories moving through Tully’s avoided crosssing model in the adiabatic
representation.

in memory.

In order to implement these changes in the Newton-X code (also written in Fortran 90)

I created a separate module containing the new integrator functions and a corrected surface

hopping subroutine which removed the momentum rescaling following a hop. Results of the

QTSH calculation in the adiabatic representation for Tully’s single avoided crossing model are

shown in Fig. 5.5 for two initial momenta ~k = 10 and ~k = 15. In these calculations I ran 500

trajectories each, with a time step of 0.2 a.u.. The initial positions are generated from a Gaussian

distribution centered on q=−6.0 with σ= 1.0. These results are consistent with those given in

Martens’ paper.[222]
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Figure 5.3: Conservation of total energy over time, compared for all considered integration algorithms
and time step sizes. Plots show evolution of total energy Etot and sum of kinetic and potential energy
Ediag which excludes coherence energy discussed in Martens’ paper.[222]
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given in Eqn. 5.21, or the time derivative coupling in Eqn. 5.19.
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Figure 5.5: Time dependence of the adiabatic lower state population computed with FSSH and
QTSH for Tully’s avoided crossing model, with initial momenta ~k = 10 (left) and ~k = 15 (right).
The RK2 integrator is used in the QTSH calculations and no decoherence corrections are applied.

5.5.2 Spin-boson Hamiltonian

A widely studied analytical model system for electron transfer processes is the spin-boson

Hamiltonian (SBH).[232] The SBH is a two state system coupled to a dissipative environment,

in this case a bath of harmonic oscillators. The SBH Hamiltonian contains three components

– system, bath, and the linear system-bath coupling. When decoupled from the bath, the two

electronic states of the system are separated by 2ε0 and coupled by ν0.

Ĥ = Hsystem +Hbath +Hcoupling(5.24a)

Hsystem =σzε0 +σxν0(5.24b)

Hbath = I
1
2

N∑
k=1

(
P2

k

Mk
+Mkω

2
kR2

k

)
(5.24c)

Hcoupling =σz

N∑
k=1

gkRk(5.24d)

In the above equations, σx and σz are Pauli matrices N is the number of oscillators each with

respective mass, momentum, position, and frequency Mk, Pk, Rk, and ωk. The coupling constant

for each oscillator to the system is gk and I is the 2×2 identity matrix. Energies, gradients and

nonadiabatic couplings are all available for this model in an analytical form.[167]

Example parameters for this model were taken from Dral et al.[167] which used an adiabatic

SBH model intended to roughly reproduce the S1/S0 dynamics of cytosine. Oscillator frequencies

are the 33 normal modes at the cytosine ground state optimised with B3LYP/6-31G(d). Of these

modes, two couple strongly to the system (as in a CI branching space) with system-bath coupling

gk = 0.012 Eh/a0 and the rest coupling with gk = 0.001 Eh/a0. Other parameters are set arbitrarily,

ε0 = 12000 cm−1 and ν0 = 800 cm−1.
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The initial conditions for the trajectories [p0,q0] can be sampled in a number of ways,

including sampling from a Wigner distribution, or using action angle variables. In this case we

simply randomly sampled a set of 200 velocities and geometries from a 2 ps MD run. Each initial

condition was ran with 5 replicas to aid convergence (same geometry and velocity, new random

seed), so a total of 1000 SBH trajectories were executed. Each QTSH trajectory evolved for 2 ps

with time step of 0.1 fs, whilst for the FSSH results a time step of 0.2 fs was used.

In Fig. 5.6 we see a comparison between the QTSH and FSSH result for the evolution of the

upper state population in the adiabatic SBH model. The FSSH result was taken from Dral et

al.[167] The QTSH decay from the upper S1 state reproduces the final state fraction from FSSH to

an acceptable accuracy, as well as the shape of the decay profile including the slight oscillations in

the state populations seen at 250, 500, and 750 fs. The total energy is conserved over the course

of the simulation, although there are fluctuations that could be due to the numerical instability

of the integrator at larger time steps. This agreement indicates that it will be possible to apply

the QTSH algorithm to more complex, atomistic molecular systems, although further work is

needed to ensure that the algorithm is numerically stable.

5.6 Conclusions

In this chapter I have reported on the work I carried out in the implementation of a novel nonadi-

abatic dynamics algorithm in an existing complex code base. The challenges of implementation

were mainly due to the non-separable nature of the Hamiltonian, which were resolved by selecting

an appropriate numerical integration scheme for the EOM. Another limit in the applicability

of this method in comparison to FSSH is that it requires the explicit calculation of the NAC

vector. Most implementations of FSSH use time derivative couplings to compute surface hopping

probabilities, which can be calculated from wavefunction overlaps for any electronic structure

theory method.[233] The NAC vector isn’t as readily available as the CI (wavefunction) overlap in

electronic structure software. In fact, CI overlaps have been shown to be more numerically stable

in cases of rapidly varying NAC vectors.[234]

Questions also remain about how to implement decoherence corrections which in Martens’

work are based on trajectory "phases", but are applied at ensemble level. This is difficult to apply

to each trajectory when they are being executed independently, so for now the Granucci-Persico

scheme based on the energy gap between states is deemed sufficient. With further work, the

QTSH strategy could prove to be a successful alternative to FSSH with an explicit stepwise

derivation from the QLE, whilst maintaining the useful independent trajectory feature. In future

work it will be valuable to apply this method to well benchmarked molecular systems such as the

photodynamics of the methaniminium cation.
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Figure 5.6: QTSH results for an adiabatic SBH model. Top panel shows the average fraction of
trajectories (1000 total) on the upper S1 adiabatic state over the course of the simulation. The
bottom panel shows the energy budget of the QTSH simulation.
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SOLVENT EFFECTS IN PHOTOCHEMISTRY

In accordance with the University of Bristol guidance on the integration of publications as chap-

ters within a dissertation, I declare that sections of this chapter were previously published in

Zeitschrift für Physikalische Chemie.[235] My role in this work was to design the computational

protocol, run the calculations, and write the parts of the manuscript that related to the compu-

tational parts of this study. Experiments were performed primarily by Dr Mahima Sneha with

Luke Lewis-Borrell, Prof. Aditi Bhattacherjee and Jasper Tyler. The manuscript was written

primarily by Prof. Andrew J. Orr-Ewing.

6.1 Introduction

Photosynthesis, bio-fluorescence, photon-induced charge transfer, and photoredox catalysis are

all examples of photochemical processes that occur in solution.[236–239] Transient absorption

spectroscopy experiments designed to study the photochemical dynamics of these and other

processes are typically performed in a solvent phase due to the low concentration of molecules

in the gas phase. However, in theoretical calculations the solute is often treated independently

of its surroundings because of the complexity of selecting an appropriate model of the solvent

environment. Theoretical descriptions of solvation can be split into two general categories:

implicit solvation where the solvent is treated as a bulk polarising environment for the solute; or

explicit solvation where atomistic solvent molecules surrounding the solute are included in the

calculation.

Methods for calculating excited state properties also fall between these two limits. There are

numerous studies that use the solvent shift calculated using implicit solvent, often in combination

with LR-TDDFT, to interpret their experiments.[240–242] In hydrogen bonded complexes, or for

ionic solutes, where the solute-solvent interaction is strong, we might see some charge transfer to
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the solvent molecule in the excitation process.[243] For such cases an implicit solvent model is

inadequate to describe the impact of solvation on the electronic character of the excited state.

Explicit solvent is preferred in cases where non-electrostatic and hydrogen bonding interac-

tions play an important role. For example, it improves the prediction of solvatochomic shifts in

Nile red,[244] and for solvents with a low dielectric constant where electrostatic polarisation is

weak. To create a realistic description of an explicitly solvated system necessitates the sampling

of many solute-solvent conformations, typically by taking snapshots of an MD trajectory. This pro-

cess is time consuming, and far from black-box, requiring a judicious choice of many parameters.

Moreover, including a large number of explicit solvent molecules in the simulation will incur a

significant increase in computational expense. Implicit solvation is appealing because it removes

the solvent degrees of freedom such that it is similar in cost to a gas phase calculation. Some

popular implicit solvation models, including the polarizable continuum model (PCM)[245] and the

conductor-like screening model (COSMO),[246] are classified as apparent surface charge (ASC)

methods. ASC methods use the notion of a charge distribution on the solute cavity surface to

calculate the electrostatic potential on the solute. They are a subset of a wider range of continuum

models, which include the generalised Born, multi-pole expansion, and SMx methods.[247]

Embedding methods can cut down the cost of explicit solvation by separating the system into

parts that can be treated with different levels of theory. Density embedding approaches, such as

projector-based embedding, do this by partitioning the electronic density matrix into two subsys-

tems, and will be discussed further in section 6.4.[248] They have also been successfully applied

to the prediction of highly accurate excitation energies in solvated systems.[249, 250] Polarizable

embedding is a different embedding scheme which can also be used to calculate excitations in

anisotropic environments like protein matrices. In this case the permanent charge distribution of

the environment is represented by a multicenter multipole expansion.[251] Polarizable embedding

has also been applied to the calculation of solvent shifts using a number of electronic structure

methods including the algebraic diagrammatic construction (ADC) scheme,[252] LR-TDDFT,[253]

and coupled cluster methods.[254]

In the first part of this chapter I will discuss the most widely used implicit solvation methods

implemented in popular electronic structure packages, and use the example of N-phenyl phenox-

azine photochemistry to show how these strategies can be applied to aid in the interpretation

of time relsolved experiments. In the second part I will apply the projector based embedding

approach developed by Bennie et al.[249] to a hydrogen bonded benzophenone complex and discuss

how it might be used to reduce the cost of explicit solvation.

6.2 Continuum solvation models

Dielectric continuum models of solvation describe the bulk solvent in terms of the dielectric

permittivity constant εs. This value defines the ability of a bulk medium to hold electrical charge
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so tends to be higher for polar solvents like water (εs = 80.1) and acetonitrile (εs = 37.5), than for

apolar solvents like toluene (εs = 2.4) or hexane (εs = 1.9).[255] The notion of a "cavity surface"

which acts as the interface between solvent and solute is a central idea to continuum solvation

methods. The cavity is defined so as to exclude all solvent atoms, but be large enough to contain

the full electron density of the solute. Algorithms for the construction of the solute cavity are

numerous, including the GEPOL algorithm where this surface is defined as a series of interlocking

atom-centered spheres, segmented into triangular faces.[256]

A solute surrounded by an infinite dielectric is polarized by its solvent environment, which in

turn is polarized by the charge of the solute. This sets up a self-consistent reaction-field (SCRF)

problem where the result is found iteratively. This electrostatics problem can be solved by using

the Poisson equation,

(6.1) −∇· [εs(r)∇V (r)]= 4πρM(r)

where ρM is the solute charge distribution and V (r) is the electrostatic potential. Given a ρM

obtained from an electronic structure calculation, the Poisson equation is solved, given some

boundary condition, for V (r) which contains both the electrostatic potential generated by the

solute’s charge density and the “reaction field” arising from the polarization of the continuum.[247]

Approaches to numerically solving Eqn. 6.1 fall into a number of categories – ACS, multipole

expansion (MPE), generalised Born models (GB), and finite element/finite difference methods.[257]

I will focus on ACS methods in this chapter, since they are commonly implemented in electronic

structure software. ASC methods simplify a 3-D problem to a 2-D representation by discretizing

the cavity surface instead of the whole volume to compute the reaction field potential. I should

note that it is also possible to solve the Poisson equation analytically for spherical or ellipsoidal

cavities if we use a multipole expansion to express the inside charge density.[258] However, this

doesn’t work for most real molecules which need arbitrary shaped cavities.

Finally, there are a number of assumptions which apply when the solvent is treated as a

continuum. The following methods give explicit expressions only for the electrostatic part of

the solute-solvent interactions, and when non-electrostatic components are included it is only

through empirical parameters. Solvent molecules are all assumed to be in their ground electronic

state, and are not reacting with the solute. Concentration is assumed to be low enough that

interactions between solute molecules are negligible. Bulk solvent beyond the cavity is completely

isotropic therefore no influence of ordering or field effects is possible.

Polarizable Continuum Model The polarizable continuum model (PCM) is an ASC method

in which the bulk dielectric permitivity is the εs of a given solvent while inside the cavity ε= 1.

The original polarizable continuum model (PCM) paper was published in 1981 by Miertuš et

al.[245] In their model, the solute is described by a charge distribution ρ(r) within a cavity, beyond

which is a continuum dielectric with permittivity εs. Since then a whole family of methods based

on PCM have sprung up, with the original method being referred to as D-PCM (dielectric PCM),
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and newer methods including C-PCM (conductor-like PCM) and IEF-PCM (integral equation

formalism PCM) which is the formalism most commonly implemented in electronic structure

software. IEF-PCM has been used in the calculation of circular dichroism spectra.[259]

COSMO The conductor like screening model (COSMO) is very similar to C-PCM in its formu-

lation. It simplifies the ASC formulation of the Poisson problem by treating the solvent as a

conductor εs =∞ such that the total electrostatic potential vanishes at the cavity surface. To

account for εs actually being finite, the unscreened charge density vector is scaled by a function

of εs.

f (εs)= εs −1
εs + x

The original COSMO paper[246] suggests that the value of x should be 0.5 based on the Onsager

model of a dipole in a spherical cavity, but is in part determined by the cavity shape and the

solute charge distribution.[247] A major limitation of COSMO was its inability to distinguish

between solvents with similar dielectric constants, although this has been corrected to some

extent in COSMO-RS (COSMO for realistic solvation).[260]

SMD The Universal Solvation Model (SMD) requires significantly more parameters than either

of the previous methods.[261] It is based on the generalised Born model (which comes from an

approximation to the Poisson equation) but its main advantage is the inclusion of non-electrostatic

effects through these extra parameters, which are available for over 170 different solvents. For

example, cavitation and dispersion energies are a product of the solvent accessible surface area

of the cavity and the solvent specific surface tension. There is a whole class of SMx methods that

are parametrized for different properties, and they are recommended for calculating solvation

energies.[247]

6.2.1 Excited states

Solvent can stabilise or destabilise excited states depending on the dipole moment of the solute

charge distribution, and the εs of the solvent. For vertical excitation energies it has been shown

that a continuum IEF-PCM model can reproduce the solvent shift with similar accuracy to

including explicit solvent.[243] There are two strategies to calculating the solvent shift, depending

on the purpose of the calculation. Equilibrium solvation implies that the density used in the

SCRF procedure is that of a specific excited state. This approach is often implemented as default

for the geometry optimisation of excited states, as it implies that the solvent has reoriented itself

in response to the new electrostatic potential generated by the excited state density. Alternatively,

non-equilibrium calculations use the ground state density in the SCRF so are preferred for

calculating vertical excitation energies from the ground state geometry because the solvent

molecules do not have time to respond on that timescale.
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6.3 NPP Photochemistry

Ruthenium and Iridium complexes have been widely used for selective and tunable catalysis

of single-electron transfer (SET) reactions. A dearth of rare earth metals has inspired a search

for more sustainable alternatives amongst organic dyes with suitable excited state properties,

such as long S1 and T1 lifetimes, to faciliate SET. N-phenyl phenoxazine (NPP) is a prototypical

N-aryl phenoxazine type organic photoredox catalyst (OPC) which is used to control rates of

atom-transfer radical polymerisation reactions.[262–267] Polymerization rates in this type of OPC

can be deliberately tailored by altering the side groups on the aryl rings using known design

principles.[268] Fine tuning NPP photochemistry also relies on choosing a suitable solvent which

can selectively stabilise particular states, and destabilise others, thus altering the rates of

internal conversion or intersystem crossing involved in the catalytic mechanism.

The following computational study is intended to accompany a set of transient vibrational

absorption spectroscopy (TVAS) and transient electronic absorption spectroscopy (TEAS) experi-

ments. These experiments were used to explore the ultrafast photodynamics of NPP prior to SET.

Equivalent TVAS and TEAS experiments were performed in N,N-dimethyl formamide (DMF),

dichloromethane (DCM) and toluene. There were two core aims to this study. Firstly, to determine

how the system evolves following photoexcitation with a 318 nm laser pulse. Secondly, to explore

how this mechanism is affected by changing the solvent. Using a set of LR-TDDFT calculations

performed in a continuum solvent model I assign the peaks of TVAS and TEAS spectra to elec-

tronic states and attempt to explain some of the experimentally observed differences in rate

between the solvents.

6.3.1 Computational Details

Geometry optimisation of NPP and ground state vibrational frequency calculations in toluene,

DCM and DMF solvents were performed using the Gaussian 09 program.[90] The CAM-B3LYP

density functional was used with a 6-31+G* basis and Grimme dispersion corrections with Becke-

Johnson damping. Solute-solvent interaction effects were accounted for through the conductor

polarizable continuum model (C-PCM). TDDFT optimisations of S1 and T1 geometries using the

same functional and basis were also performed in toluene and DMF, with normal mode analysis

confirming that these geometries were the minima on their respective potential energy surfaces.

An anharmonicity scaling factor of 0.953 was applied to the calculated normal mode frequencies

prior to comparisons with experimental spectra.[269] Vertical excitation energies and oscillator

strengths were calculated using the ORCA program (v4.2.0)[62] at the TDDFT/CAM-B3LYP/6-

31+G* level of theory. The solvent shift was computed via the SMD solvation model that includes

both electrostatic and non-electrostatic contributions. Transition dipole moments and oscillator

strengths between excited states for the S1 and T1 geometries were computed from the results of

the TDDFT calculations using the Multiwfn program for electronic wavefunction analysis.[270]
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6.3.2 Results

Absorption spectra of NPP in the 250–450 nm range show a strong band centered at 325 nm

which does not shift significantly in different solvents. The UV-Vis spectrum of NPP in toluene is

shown in Fig. 6.1. Here, the S0 → S1 excitation is calculated to be at 307 nm, with predominantly

local excitation (LE) character over the phenoxazine core as can be seen at the bottom of Fig.

6.1. The stronger S0 → S2 π→π∗ absorption band with f = 0.056 at λ = 303 nm has similarly

LE character, but the S0→S3 transition (λ = 290 nm, f = 0.0877 in toluene) shows more charge

transfer (CT) character. Similar calculations in DCM and DMF (Fig. 6.2) predict S0→S1, S2 and

S3 transitions at λ = 307, 294 and 289 (DCM) or 287 nm (DMF) respectively, with oscillator

strengths of f = 0.022, 0.029 and 0.128 in DMF and f = 0.028, 0.039 and 0.115 in DCM. The S2

state now shows CT character implying that it has been stabilized relative to the LE states by

the more polar DCM or DMF solvents. At the excitation wavelength of 318 nm used in these

experiments it is likely that the molecule is excited into a mixture of states, primarily LE S2 and

CT S3 state for NPP in toluene, and the LE S3 state in DCM or DMF.

Transient electronic absorption (TEA) spectra are measured up to 1200 ps in the 350–700

nm wavelength range. The most prominent feature observed in the TEA spectra is a band with

Gaussian profile centred near 460 nm in all three solvents. This feature is the last to emerge over

the course of the reaction and is accordingly assigned to absorption from the T1 state of NPP.

This assignment is supported by calculations reported in Appendix C which predict a strong T1

excited state absorption band (with oscillator strength f = 0.13) at 513 nm in DMF and 496 nm in

toluene (with f = 0.08). Similar triplet state ES absorption bands were observed by Sartor et al.

for modified versions of NPP with phenyl or biphenyl core substituents, albeit shifted to longer

wavelength by the additional core conjugation.[271] Earlier on in the experiment we observe the

loss of absorption at wavelengths above 550 nm and a growth then decay of an intermediate band

peaking near 520 nm (with a secondary peak at wavelengths around 390 nm). The evolution of

the spectral shape shows solvent-dependence, as this double-peaked feature at 520 nm is more

prominent for spectra measured in DCM or DMF than in toluene where it is barely discernible as

a broad feature above 500 nm. Plausible assignments of the rapidly decaying long-wavelength

absorption and the 520 nm intermediate band are to excited state absorption from the initially

photoexcited Sn (n = 2 or 3) state and the S1 state into which it relaxes by internal conversion

(IC). TDDFT calculations summarized in Appendix C predict a strong S1 absorption band at 560

nm in DMF (f = 0.44) and 565 nm in toluene (f = 0.14). The lower oscillator strength in toluene

may explain why this feature is less distinct for TEA spectra measured in this solvent. Decay of

the S1 state population proceeds either via a) intersystem crossing (ISC), resulting in growth of

T1 population, or b) relaxation by IC or fluorescence to S0, or c) reaction with the solvent which

occurs in the case of DCM.

In the transient vibrational absorption (TVA) spectra obtained following the 318-nm photoex-

citation of NPP we observe peaks emerging and disappearing on a slower 1000 ns timescale. We
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Figure 6.1: UV absorption spectrum of a 3.2 mM solution of NPP in toluene. The structure of
NPP is shown as an inset. Bottom: Electron density difference plots between the S0 and Sn states
for n = 1, 2 and 3 at the S0 geometry, showing the local excitation character for S0→S1 and
S0→S2 transitions, and greater charger transfer character for the S3 state. The calculations were
performed in toluene, the densities are visualised with isovalues set to 0.002, and an increase
in electron density is shown in red, with a decrease in blue. Calculated excitation wavelengths
(λ) and oscillator strengths (f) are given for the first three ES. These computed properties are
also shown as red vertical bars superimposed on the absorption spectrum, with the bar heights
proportional to f values.

can assign these peaks by comparing them against the computed IR band wavenumbers at S1

and T1 geometries, available in Appendix C. A broad transient absorption feature spanning 1500

– 1590 cm−1 is assigned to absorption from the S1 state because of its observed wavenumber

range and time-dependence corresponding to the peak at ∼ 560 nm in TEA spectra. The reason

for the breadth of this band is not apparent from the calculations which predict a single strong

feature and other much weaker bands in this wavenumber region. We see no bands that can

be assigned to NPP excitation from the T1 state because the calculated T1 band positions are

masked by strong solvent absorptions in DMF, and the bands intensities are computed to be weak

in all three solvents.

A schematic that illustrates the suggested mechanism for the excited state dynamics of NPP

can be seen in Fig. 6.3. Lifetimes of each state are calculated from the time-dependent integrated
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Figure 6.2: Electronic density difference plot for S0 to S1, S2, and S3 excitations in
dichloromethane (Top) and dimethyl formamide (Bottom).

band intensities which were extracted using the KOALA program.[272] Photoexcitation to the Sn

state (n = 2 or 3) at 318 nm is followed by competitive IC to S1 and S0 (the latter perhaps instead

from vibrationally hot S1 molecules) and vibrational energy transfer to solvent on timescales of

over 20 ps. IC from Sn or S1 to S0 requires conical intersections which are not shown. The S1

lifetime is 2 ns, with decay by competing fluorescence to S0 (blue arrow) and ISC to the triplet

manifold (represented here only by the T1 state). The T1 state decays to S0 on timescales greater

than 25 ns which appear to be influenced by quenching by dissolved O2. Computational normal

mode analysis confirms the assignment of these states to peaks in TEA and TVA spectra. Excited

state calculations in implicit solvent show a change in the ordering of CT and LE character states

(S2 and S3) between DMF and Toluene. In future work, we could identify the CI between Sn and

S1 states in Toluene and DMF so as to better understand the greater prominence of the TEA

spectral peak at 520 nm in a more polar solvent.
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Figure 6.3: Schematic potential energy curves and relaxation pathways for the photochemistry
of NPP in solution. Horizontal solid and dashed black lines indicate the lowest and an excited
vibrational level of an electronic state, respectively.

6.4 Projector based embedding for excited states

Continuum solvent models cannot be used to compute excitations for systems in which non-

bonded interactions between solute and solvent play a significant role in stabilising/destabilising

the excited state.[273] Including explicit solvent molecules in the system can quickly become

expensive, and such calculations would be limited to LR-TDDFT which introduces a functional

dependence and can fail for Rydberg, CT states, and double excitations. It is however possible

to calculate excited state energies using state-of-the-art wave function methods at a reasonable

cost by using projector-based embedding (PBE). This systematically improvable method was first

proposed for ground state systems by Manby et al. in 2012.[248] PBE treats a subsection of the

system with a higher level wave function (or DFT) method polarized by a potential constructed

using a cheaper DFT (or HF) method, thereby allowing WF-in-DFT, DFT-in-DFT, or WF-in-HF

embedding. As well as the improvement in computational cost, PBE can be used to pinpoint the

importance of specific MOs in determining the excitation energy.

Following a Kohn-Sham (KS) DFT calculation, the total density matrix is split into a sum of

active (A) and background (B) parts.

ρ = ρA +ρB

Whether an orbital is part of ρA or ρB can be determined by where it is localised, its Mulliken

population, or by any other sensible criterion. These sets of KS orbitals are used to construct the

reduced one particle density matrices of the two subsystems, γA and γB. The Fock matrix for the

active region A is given in Eqn. 6.2

(6.2) FA =H+J
[
γA +γB

]
+vxc

[
γA +γB

]
+µPB
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where H is the core Hamiltonian, J is the Coulomb potential, vxc is the exchange-correlation

potential, and µPB is the level shift operator. Projection operator PB, and level shift parameter µ,

in the limit of µ→∞, enforce orthogonality between the active and background orbital sets by

elevating the orbitals that construct γB to an inaccessibly high energy, thus enforcing the Pauli

principle. Practically, the level shift parameter µ is typically set to 106–1010. Because subsystem

A is treated independently of B, PBE gives us flexibility in the choice of electronic structure

method for A which is specified by modifying the core Hamiltonian H in the Fock matrix.

Recent applications of this method to excited states include formaldehyde solvated in water

(EOM-CCSD),[249] and an NO-Ruthenium Nitrosyl model complex (SA-CASSCF).[274] A similar,

absolutely localised, embedding approach based on the Huzinaga operator was suggested by

Wen et al..[250] By drastically truncating the basis to only include orbitals localised on the atoms

involved in the excitation, they were able to significantly reduce the cost of the calculation while

maintaining a reasonable level of accuracy.

6.4.1 Benzophenone photochemistry

Benzophenone (Bzp) is a molecule with interesting photophysical properties. Its S1 (nπ∗) and

T2 (ππ∗) state minima are almost isoenergetic, leading to highly efficient inter-system crossing

(ISC). This property has led to its widespread use in sunscreen, as an industrial photocatalyst,

and as a DNA photosensitizer.[3, 275, 276] However, the mechanism of this ISC remains open to

investigation and has been a subject of many experimental and computational studies.[277–281]

There are two main pathways that follow the photoexcitation of Bzp into its S1 state. The

lowest triplet state T1 (nπ∗) could be populated directly, or via a T2 (ππ∗) intermediate, with

subsequent internal conversion to T1. The latter pathway is favoured by El-Sayed’s rule which

forbids direct (nπ∗ →nπ∗) transitions. Recently, Venkataraman et al. highlighted the crucial role

that solvation, specifically hydrogen bonding, plays in determining the relative importance of

the direct and indirect pathways.[278] They showed that a solution of Bzp in methanol can be

selectively photoexcited by using a shorter 340 nm pulse to excite the hydrogen-bonded (HB) Bzp

and a 380 nm pulse to excite the free, "dangling carbonyl" (DC) Bzp. The time constant for ISC is

significantly slower with the shorter 340 nm pulse : 1.7 ps compared to <0.2 ps with a 380 nm

pulse, which is ascribed to HB altering the energies of these states.

Previously, the nonadiabatic dynamics of this reaction were explored with Floating Occupation

Molecular Orbitals Configurations Interaction (FOMO-CI),[280] and CASSCF(12,11),[282] however

solvent was not included in either of these studies. Accurate calculations of the HB and DC Bzp

structures are necessary to understand this mechanism, and in this study I apply PBE to explore

the excited states of Bzp in MeOH solution.
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6.4.2 Computational details

Geometry optimisations of gas-phase Bzp and a hydrogen bonded Bzp-MeOH complex were

performed with B3LYP/cc-pVDZ in Gaussian 16.[64] Firstly, I ran PBE calculations on the gas-

phase Bzp, iteratively increasing the active region from 5 MOs, until it included the whole

molecule. In these calculations, I used the Laplace-transformed local CC2 response method

described in Freundorfer et al. in the active region,[283] and density fitted DFT with the B3LYP

exchange-correlation functional for the background region. I selected LT-CC2 for the calculation

of the first 10 singlet states as this method shows good accuracy against a CASPT2 benchmark for

singlet states, even when they contain double excitation character (0.4 eV average error).[284, 285]

The aug-cc-pVDZ basis was used for both regions, and orbitals were selected on the basis of their

Mulliken populations, as in Bennie et al. For the Bzp-MeOH complex, the additional 6 atoms

increased the cost significantly so I chose to run a preliminary CIS/aug-cc-pVDZ calculation

embedded in density fitted DFT (B3LYP/aug-cc-pVDZ), iteratively increasing the active space

from 8 to 58 MOs. This was to determine if a cheaper PBE calculation can guide us in the choice

of the active region. I then executed CC2-in-DFT PBE calculations for the Bzp-MeOH complex

selecting the active region based on the previous CIS calculation for the first 10 singlet, and first

10 triplet states.

All PBE calculations were performed in Molpro 2019.[286] Molecular orbitals are visualised

using Avogadro V1.2.0.

6.4.3 Results and Discussion

Results of PBE calculations for gas-phase Bzp are given in Fig. 6.4. Initially we see the ordering of

states shift drastically, but when 16 MOs are included in the active region the ordering stabilises,

and the error against the full CC2 result falls to below 0.1 eV when 30 MOs are included in the

active region. This highlights the power of the PBE approach, since the total CPU time required

for the full CC2 calculation was 2.5× that at 30 MOs, and that most MOs do not have a significant

unilateral impact on excitation energy.

The next step is to include a hydrogen bonded MeOH molecule in the system. Preliminary

CIS results shown in Fig. 6.5 tell us that the excitation energies converge to within 0.1 eV of the

full system CIS result when 44 of the total 58 MOs are included in the active region. Since the

B3LYP/aug-cc-pVDZ orbitals that are used in the CIS PBE calculations are the same as those

used in the CC2 calculations, we can use Fig. 6.5 to guide our choice of active region. Looking at

the orbitals that lead to significant jumps in excitation energies shows us that that MOs localised

on the solvent molecule play a crucial role. We see this at points C and E highlighted in Fig. 6.5.

The MO at E is also the HOMO.

The CC2 embedded excitation energies for the Bzp-MeOH complex are shown in Fig. 6.6. Due

to the expense of the method, a full CC2 calculation was not possible – with the largest active

region size being 50 MOs out of 58. However, as with CIS, we see that at 44 MOs the excitation
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Figure 6.4: Convergence of the CC2/aug-cc-pVDZ//df-B3LYP/aug-cc-pVDZ excited state energies
for the first 5 singlet states with increasing embedded region for gas phase Bzp. Molecular orbital
diagrams highlight the orbitals that caused notable jumps in energy when they were added in to
the active region.
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Figure 6.5: Convergence of the CIS/aug-cc-pVDZ//df-B3LYP/aug-cc-pVDZ excited state energies
for the first 5 singlet states with increasing active region for the hydrogen bonded Bzp-MeOH
complex. Molecular orbital diagrams highlight the orbitals that caused notable jumps in energy
when they were added in to the active region.
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Figure 6.6: Left: First 5 singlet excited state energies, convergence with size of active region.
Right: First 5 triplet energies for active regions of 43-45 MOs. The singlet and triplet energies
from a full CC2 gas phase calculation are shown for comparison.

energies are converged to a stable value, and observe a similar jump in energy when the 44th

MO, D, is added. Triplet calculations at the same geometry with active regions of 43-45 MOs also

show that they are converged. The similarities between CIS and CC2 results in their convergence

behaviour imply something quite useful. Lower cost methods can be used to test the convergence

with active region size, as a way to guide the choice of active region for a more expensive method.

These CC2 results also confirm that the T2 state is indeed stabilised by hydrogen bonding, whilst

the S1 state is destabilised by it relative to gas phase Bzp causing the slowing of the ISC rate.

Determining accurate excitation energies at the Franck-Condon geometry is of course only

the first step to fully understanding this mechanism. Other critical points on the PES, including

the S1/T2 MECP and the T2/T1 CI can be optimised using PBE since analytical gradients are

now available.[287] A single MeOH isn’t necessarily representative of solvation, so more explicit

solvent molecules can be included – in fact, a continuum solvent may be necessary to account for

the polarizing nature of the environment. In terms of method development, the algorithm for

molecular orbital selection that uses the Mulliken population criterion works for ground states

but isn’t optimal for excited state properties. The CIS vector could potentially be used to select

the important orbitals for a particular excitation.
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6.5 Conclusion

In the first part of this chapter I discussed continuum solvation approaches, in relation to the

calculation of excitation energies. This approach can be useful for demonstrating that a state is

either stabilised or destabilised by the polarization response of a particular solvent. However,

these models are primarily optimised to return accurate solvation energies which is especially

true of empirical models like SMD. Further work is needed to benchmark existing implicit solvent

methods specifically for different types of excited states, so as to develop a set of guidelines for

researchers seeking to model solution-phase experiments.

In the second part of this chapter projector-based embedding was applied to explore the

excitation energies of a benzophenone molecule in a methanol solution. The role of hydrogen

bonding in stabilising or destabilising electronic states was highlighted by the inclusion of solvent-

localised orbitals as part of the active space in the PBE calculation. Calculating accurate CC2

energies, at a reduced cost, supports the hypothesis that hydrogen bonding is influential in

determining the choice of the photodynamic ISC mechanism in this system.

Although both of the systems discussed in this chapter are not directly relevant to atmospheric

chemistry, the development of reliable methods to treat aqueous solvation – especially at gas-

water interfaces – is important for studying the chemistry of aerosols.[288] For example, the

photochemistry of ozone at the gas-water interface has been shown to be significantly different

from the gas phase.[289] Continuum models cannot capture the hydrogen bonding and solvent

ordering effects which are especially important in water, therefore QM/MM models and projector-

based embedding type approaches will be crucial to describing aqueous photochemistry.
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This thesis reviews a number of computational methods that are frequently used to address

questions of practical interest in photochemical investigations. Presently, the field of nonadiabatic

dynamics is developing very quickly, and its application is becoming more widespread as a way of

interpreting the results of ultrafast experiments. Many electronic structure programs now include

at least a rudimentary implementation of the surface hopping algorithm (Molpro, MOLCAS,

Turbomole, Q-Chem, GAMESS, etc.) and more packages that can be interfaced with common

electronic structure programs to perform on-the-fly nonadiabatic dynamics are being developed

(Newton-X, SHARC, JADE, etc.). The availability of such software for emerging methods that

are able to treat decoherence more accurately than FSSH will play a significant role in their

popularity. Alongside QTSH, there are many competing algorithms that can be based on ideas of

exact factorisation, coupled Gaussians, or even improved efficiency implementations of grid-based

methods derived from MCTDH. However these approaches are still to costly to study long time

photochemical dynamics especially in larger systems. Applying machine learning approaches to

this end is being discussed within the community, however at the moment a significant barrier for

nonadiabatic dynamics on neural network predicted PES is the accuracy of nonadiabatic coupling

vectors that present strong discontinuities in regions of strong coupling since they are difficult to

capture within an ML model. Using a nonadiabatic master equation approach, as discussed in

chapter 3, may yield more accurate results for such systems.

Here I will overview the primary conclusions of each chapter in order and in greater detail.

Methods of generating absorption cross sections with broadened absorption bands were discussed

in chapter 2. Two main types of protocol were described: the Franck-Condon type methods which

generate a vibrational progression, and nuclear ensemble approaches which collate a spectrum

from single point calculations. I conclude that the former are somewhat limited in their scope,
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since they rely on the excited state having a potential minimum near the Franck-Condon region

of the PES and rely on the harmonic approximation. The ensemble type approaches are shown

to be qualitatively successful in reproducing band shape, with one exception. Sampling from

a classical trajectory is likely to underestimate the broadness of the peak because zero-point

energy is neglected, so is not recommended for simulating σ(λ). The Wigner ensemble method

is practical for most cases because the computational cost is often less than that of running a

trajectory, and an understanding of quantum thermostats isn’t required to set up a calculation.

The nonadiabatic energy grained master equation (NA-EGME) was explored as an alternative

approach to modelling slow nonadiabatic phenomena in chapter 3. The photodissociation of a

model bi-chromophoric molecule, C6-HPALD, was used as a test case. Comparing the results

of nonadiabatic dynamics to that of the NA-EGME model showed that both methods captured

important aspects of the dynamics, including kinetic timescales, and diabatic trapping. By

showing that a NA-EGME model can work in the excited state, if a number of criteria are

satisfied, these results open up the possibility of modelling long-time dynamics of photoexcited

molecules with higher-level wavefunction based electronic structure approaches.

As the companion chapter to the previous one, chapter 4 discusses the role of HPALD

photochemistry in the troposphere. An overview of the literature highlights that the quantity

of HPALD produced in the isoprene oxidation cycle is still uncertain. However, we are able to

describe the mechanism of OH loss following photoexcitation based on the nonadiabatic dynamics

simulations described in the previous chapters. Rates of HPALD photolysis are also calculated

from σ(λ) which were simulated using the Wigner ensemble method. This calculated rate of

1×10−4 s−1 is within error of that used in the Master Chemical Mechanism.

In chapter 5 I discuss the challenges of implementing a novel nonadiabatic dynamics method,

Quantum Trajectory Surface Hopping, in Newton-X. I show how it can be derived from the quan-

tum Liouville equation, and explain the approximations necessary to take it to its independent

trajectory limit. My implementation of QTSH is shown to agree with Tully’s surface hopping in

two key model systems.

Two case studies on the influence of solvation effects in excited states were presented in

chapter 6. While continuum solvent models are shown to be useful for making comparative state-

ments about the stabilisation or destabilisation of electronic states due to solvent polarization, as

in the case of N-phenyl phenoxazine, they can fail when there are directional non-electrostatic

interactions between solvent and solute. In such cases, projector-based embedding can be used to

calculate accurate excitation energies of a molecule in a solvent cage at a significantly reduced

cost.

In light of this, the following seem to me to be the most pertinent avenues for future work in

computational atmospheric photochemistry. The first priority is developing electronic structure

methods that can be used to calculate high quality PES and nonadiabatic couplings cheaply –

this is necessary both for accurate dynamics, and for improved kinetic models. Correctly selecting
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a density functional/method is always reliant on thoroughly benchmarking the system against a

higher level method. Advancements in nonadiabatic dynamics algorithms enable us to make ever

more accurate predictions about photochemical mechanisms. However, an open and interesting

question remains about how to initiate dynamics in the limiting case of photoexcitation by

sunlight, or for an arbitrary laser pulse. Lastly it is also necessary to develop protocols for

including the environment in a realistic, possibly atomistic but still low-cost way, in order to

model reactions in aerosols especially at their interfaces.
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APPENDIX A

A.1 Benchmarking excited state methods

In order to determine the best approach for the calculation of nonadiabatic dynamics in C6-HPALD

I tested a number of electronic structure methods which included DFT, LR-TDDFT, CIS, CIS(D),

ADC(2), EOM-CCSD, SA-CASSCF, and MS-CASPT2. All DFT, LR-TDDFT, CIS, and CIS(D)

calculations were performed in Gaussian 16[64]. CC2 and ADC(2) calculations were performed in

Turbomole v7.1[215]. The EOM-CCSD calculation is executed in Molpro 2018[286]. CASSCF and

MS-CASPT2 calculations were performed in OpenMolcas v18.09.[181] In the CASSCF calculations

the active space contained 10 electrons in 8 orbitals which includes σ/σ∗ orbitals at the peroxide

bond, π/π∗ orbitals at the enone chromophore, and lone pairs on all the oxygen atoms.

All benchmarks were calculated for n=5 except CASSCF and CASPT2 which were calculated

for n=3.

A.2 Fitting the survival probability

All fits of the decaying HPALD survival probability are performed using the non-linear curve

fitting utility in qtgrace.[290] Trajectories where HO2 is lost are excluded from the analysis. All

fitted parameters reported to 3 s.f.

Fit 1: Survival probability of HPALD with respect to OH loss for conformer C, FSSH, figure

3.10.

[HPALD]FSSH = 0.742 e−0.536 t +0.306 e−8.67 t
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Method Basis Set S1 S2 S3 S4 S5

CIS
6-31G
6-311+G*
6-311++G**

4.4425
4.6675
4.6457

6.7454
6.4277
6.4155

6.7915
6.9813
6.9665

8.3597
7.9840
7.7852

8.3927
8.2861
8.2444

CIS(D)
6-31G
6-311+G*
6-311++G**

3.9083
3.7471
3.7468

6.6660
6.1951
6.1739

6.8104
6.4346
6.4064

7.7418
6.9162
6.9186

7.9101
7.6128
7.3769

ωB97XD

PBE0

lc-ωPBE

CAM-B3LYP

6-31G
6-311+G*
6-311++G**
6-31G
6-311+G*
6-311++G**
6-31G
6-311+G*
6-311++G**
6-31G
6-311+G*
6-311++G**

3.6468
3.6694
3.6461
3.5260
3.5291
3.5046
3.6944
3.7482
3.7245
3.6584
3.6840
3.6599

5.7016
5.6377
5.6161
4.8622
4.8701
4.8478
6.0125
5.9197
5.9069
5.7352
5.6435
5.6240

6.0060
5.8160
5.8004
5.8700
5.6063
5.5920
6.2462
6.1152
6.0937
5.9908
5.8159
5.7978

6.1120
6.1112
6.0781
5.9635
5.9754
5.9338
6.6052
6.5375
6.5056
6.1034
6.0484
6.0136

6.9943
6.9448
6.9032
6.2205
6.1971
6.1755
7.4603
7.4241
7.2600
7.0161
6.9394
6.8136

CC2 cc-pVDZ 3.8107 5.9433 6.4220 6.4997 7.4003

ADC(2)

cc-pVDZ
cc-pVTZ
cc-pVQZ
aug-cc-pVDZ

3.6180
3.5412
3.5151
3.4504

5.9074
5.7588
5.7238
5.5908

6.3592
6.1160
6.0326
5.8035

6.4981
6.3720
6.2971
5.9428

7.3464
7.1849
7.1033
6.0525

EOM-CCSD aug-cc-pVDZ 3.756 6.114 6.156 6.479 6.852
SA(4)-CASSCF(8/10) 6-31G* 2.63 6.22 6.62 - -
MS(4)-CASPT2(8/10) 6-31G* 3.70 7.15 8.17 - -

Table A.1: Benchmarks for excitation energies at the S0 optimised geometry of conformer B.

Quality of fit: Chi-square: 0.0863563 ; Correlation coefficient: 0.996529 ; RMS per cent error:

6.00237

Fit 2: Survival probability of HPALD with respect to OH loss for conformer C, A-MD, figure

3.10.

[HPALD]A−MD = 0.480 e−0.777 t +0.567 e−19.6 t

Quality of fit: Chi-square: 0.133163 ; Correlation coefficient: 0.982910 ; RMS per cent error:

18.1362
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A.3. SENSITIVITY TESTING THE EGME MODEL

Fit 3: Survival probability of HPALD with respect to OH loss for all conformers, NA-MD,

figure 3.14.

[HPALD]N A−MD = e−0.218 t

Quality of fit: Chi-square: 0.0517129 ; Correlation coefficient: 0.986696 ; RMS per cent error:

4.41419

Fit 4: Survival probability of HPALD with respect to OH loss for all conformers, A-MD, figure

3.14.

[HPALD]A−MD = 0.759 e−0.421 t +0.248 e−17.2 t

Quality of fit: Chi-square: 0.0479623 ; Correlation coefficient: 0.995265 ; RMS per cent error:

5.50479

A.3 Sensitivity testing the EGME model

Some parameters included in the EGME calculation might have a significant impact on the result.

We test the robustness of the EGME model by comparing the result when those parameters are

varied.

An assumption we make is that it is valid to use the average initial energy from FSSH initial

conditions (IC), rather than a distribution. Figure A.1 shows results of an EGME model built to

replicate the original 10 trajectories starting from the S1 minimum of conformer C. An NA-EGME

calculation is performed for each trajectory IC illustrating that the model is robust to modest

variation in initial energy.

EGME results can also be sensitive to frequencies, especially low frequencies that have a

significant impact on the density of states. Figure A.1 also compares EGME results calculated

using critical points optimised with tight convergence conditions and a fine integration grid

against results calculated with a standard grid and convergence criteria. Even with a slight

difference in frequencies the decay rates calculated using a coarse (default) grid are visibly higher.

This highlights the importance of using frequencies calculated in a consistent way for each isomer

when constructing an EGME model.

A.4 Influence of hindered rotor corrections on the EGME
results

Repeating the EGME calculations with the hindered rotor vibrations projected out of the Hessian

produce results shown in Fig. A.2. These calculations use the S1-B and S1-TS geometries, both

optimised with tight convergence criteria and ultra-fine integration grid.
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Figure A.1: Testing EGME robustness to initial energy and sensitivity to frequencies.

A.5 TS diabat fitting parameters

Fitted parameters for ZN transition probabilities calculated with LR-TDDFT potentials are given

in table A.2.

Fitted parameters for ZN transition probabilities calculated with CASPT2 potentials are

given in table A.3.

Analytical forms of the diabatic potentials are given in equations 3.28.

Parameter fitting was performed in Gnuplot v5.2 with resulting parameters are listed in the

following table:

A.6 Critical Points

Table A.4 lists the complete energies, rotational constants, and frequencies used in the EGME

calculations.
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A.6. CRITICAL POINTS
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Figure A.2: EGME results with hindered rotor correction, that were obtained by projecting the
anharmonic rotational modes out of the Hessian.

Parameter Value Standard Error
Aσ∗ 495.051 ± 15.01
βσ∗ -0.119809 ± 0.00349
εσ∗ 11.0345 ± 0.1939
Aπ∗ 66.9186 ± 2.388
βπ∗ 3.76346 ± 1.307
επ∗ -46.4714 ± 2.382
H12 3.00481 ± 0.01141

Table A.2: Parameters for LR-TDDFT/PBE0/6-31G diabats

Parameter Value Standard Error
Aσ∗ 835.318 ± 73.88
βσ∗ -0.113482 ± 0.009752
εσ∗ 9.51291 ± 0.8865
Aπ∗ 50.3379 ± 4.159
βπ∗ 5.85351 ± 0.4645
επ∗ -29.9859 ± 4.144
H12 0.823152 ± 0.04453

Table A.3: Parameters for MS(4)-CASPT2(10,8)/6-31G* diabats
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S1 minimum (B) S1 minimum (C) TS-S1 CI - S1/S2
Energy (a.u.) -459.429938897 -459.429169893 -459.42369136 -459.418027248
ZPE correction (a.u) 0.153697 0.153386 0.150686 0.1619025445
Rotational constants 0.06178 0.07586 0.07539 0.0222

0.03267 0.02710 0.02689 0.0251
0.02342 0.02170 0.02155 0.0938

Frequencies 53.7093 42.3725 -3534.0736 68.62
69.0555 68.6738 63.7551 78.221
91.7755 93.1878 67.9529 84.668
134.5593 112.3241 95.3035 128.213
145.3678 147.5971 110.0446 181.793
171.9759 164.3655 148.6376 223.116
221.3219 210.9118 207.6926 253.395
225.2273 233.587 228.0155 254.783
299.9763 278.9438 253.1427 301.067
352.2649 300.8378 275.4055 329.293
387.0304 388.1045 308.6733 362.679
390.6556 447.713 364.2645 410.98
478.609 461.5256 434.6985 485.264
517.1127 512.0716 456.206 583.909
649.0519 660.1531 497.9537 698.771
709.1161 719.9368 680.2171 771.322
801.9211 789.8532 791.6283 793.207
827.045 829.3933 826.7497 872.964
892.4528 834.7936 865.5645 915.326
906.2169 905.0289 905.0682 960.249
943.5918 944.631 956.5599 1036.699
955.5396 966.1619 959.6579 1058.41
1026.4537 1031.0846 1025.5298 1087.157
1058.011 1061.9474 1071.0154 1093.907
1107.599 1106.8674 1085.7322 1137.154
1180.0393 1172.6581 1110.114 1163.242
1184.4502 1185.0541 1132.9102 1185.308
1214.5041 1216.4378 1162.4788 1262.67
1291.3523 1272.7574 1213.9031 1287.216
1311.938 1296.4804 1274.7914 1310.993
1324.6155 1327.2453 1292.0703 1338.057
1342.4468 1343.5821 1315.029 1352.212
1343.5943 1346.6629 1337.7966 1376.988
1393.5145 1393.9353 1345.5383 1398.868
1428.1916 1425.6609 1379.918 1455.576
1461.3167 1461.0041 1414.6639 1521.33
1499.3381 1502.7229 1461.0081 1539.105
1539.3167 1540.7134 1539.1839 1549.307
1543.0902 1543.8922 1542.1446 1603.235
1550.8704 1550.9794 1549.4011 3018.911
1598.7604 1609.256 1604.491 3067.174
3066.7762 3062.8107 3049.8769 3067.697
3075.598 3064.5537 3050.92 3070.362
3079.3257 3072.6858 3063.5567 3134.348
3091.1291 3075.6386 3078.6837 3153.494
3129.6292 3129.3525 3134.677 3177.919
3156.2406 3152.4157 3154.9103 3209.011
3162.2071 3158.2418 3159.2982 3235.128
3211.1928 3222.2468 3218.3714 3644.865
3237.3168 3238.926 3232.116
3623.5612 3650.8246 3646.0593

Table A.4: Energies, rotational constants, and frequencies at the critical points used in the EGME
calculations.
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Here, I will outline the derivation for the time evolution of the off-diagonal terms ρmn =αmn+iβmn

in the density matrix ρ for an arbitrary number of states. We start the derivation from the

quantum-classical Liouville equation:

i~
∂ρmn

∂t
=

N∑
k=1

Hmkρkn −ρmkHkn +
i~
2

N∑
k=1

{
Hmk,ρkn

}−{
ρmk,Hkn

}
In order to derive ∂αmn

∂t and ∂βmn
∂t we need to separate the k = m,n terms from the sum.

i~
∂ρmn

∂t
=

N∑
k 6=m,n

Hmkρkn −ρmkHkn +
i~
2

N∑
k 6=m,n

{
Hmk,ρkn

}−{
ρmk,Hkn

}
+Hmmρmn −ρmmHmn + i~

2
{
Hmm,ρmn

}− i~
2

{
ρmm,Hmn

}
+Hmnρnn −ρmnHnn + i~

2
{
Hmn,ρnn

}− i~
2

{
ρmn,Hnn

}
Then it should be recalled that Hmn when m 6= n is −i~dmn · p

µ
(where mass is µ), and that

the off-diagonal density matrix terms can be separated into their real and imaginary parts

ρmn =αmn + iβmn. Dividing through by i~:

∂ρmn

∂t
=

N∑
k 6=m,n

(
−dmk ·

p
µ

(αkn + iβkn)+ (αmk + iβmk)dkn ·
p
µ

)

+ i~
2

N∑
k 6=m,n

({
−dmk ·

p
µ

, (αkn + iβkn)
}
−

{
(αmk + iβmk),−dkn ·

p
µ

})
+ 1

i~
(
Hmmρmn −ρmmHmn

)+ 1
2

({
Hmm,ρmn

}−{
ρmm,Hmn

})
+ 1

i~
(
Hmnρnn −ρmnHnn

)+ 1
2

({
Hmn,ρnn

}−{
ρmn,Hnn

})
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Expanding the Poisson brackets in the last two lines allows us to rearrange them in terms of

H0 = Hmm +Hnn.

∂ρmn

∂t
= . . .+ 1

i~
(
Hmmρmn −ρmmHmn +Hmnρnn −ρmnHnn

)
+ 1

2
({

Hmm,ρmn
}−{

ρmm,Hmn
}+{

Hmn,ρnn
}−{

ρmn,Hnn
})

= . . .+ 1
i~

(
Hmmρmn −ρmmHmn +Hmnρnn −ρmnHnn

)
+ 1

2

((
∂Hmm

∂r
+ ∂Hnn

∂r

)
∂ρmn

∂p
− ∂ρmn

∂r

(
∂Hmm

∂p
+ ∂Hnn

∂p

))
+ 1

2

(
∂Hmn

∂r

(
∂ρnn

∂p
+ ∂ρmm

∂p

)
−

(
∂ρnn

∂r
+ ∂ρmm

∂r

)
∂Hmn

∂p

)
= . . .+ 1

i~ (Hmm −Hnn)ρmn + 1
i~

Hmn
(
ρnn −ρmm

)
+ 1

2
{H0,ρmn}

+ 1
2

{Hmn,ρnn +ρmm}

By separating the real and imaginary parts of this expression, it is now possible to get the time

evolution of the quantum coherences

∂αmn

∂t
=

N∑
k 6=m,n

[
αmkdkn ·

p
m

−αkndmk ·
p
m

]
+ {H0,αmn}+ωβmn

+
N∑

k 6=m,n

{
αmk,dkn ·

p
m

}
−

{
dmk ·

p
m

,αkn

}
+dmn · p

m
(
ρnn −ρmm

)
∂βmn

∂t
=

N∑
k 6=m,n

[
βmkdkn ·

p
m

−βkndmk ·
p
m

]
+{

H0,βmn
}−ωαmn

+
N∑

k 6=m,n

{
βmk,dkn ·

p
m

}
−

{
dmk ·

p
m

,βkn

}
− ~

2

{
dmn · p

m
,ρnn +ρmm

}

where ω is the energy gap
Em −En

~
.
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Here I present the results of calculations pertaining to the photochemical mechanism of N-

phenyl phenoxazine. Results of normal mode frequency calculations performed at S0, S1, and T1

geometries optimised with CAM-B3LYP/6-31+G* in implicit solvent are given in Table C.1. These

frequencies have been adjusted with an anharmonicity correction of 0.953, as recommended in

Kashinski et al..[269]

Table C.1: Calculated frequencies at the optimised geometries in cm−1 with applied anharmonic-
ity correction of 0.953; IR intensities (km mole−1). Peaks observed in the TVAS spectra are
highlighted in bold. Only the frequency range observable in TVAS spectra is given in the table
(1300 - 1700 cm−1).

S0 S1 T1
DMF Toluene DMF Toluene DMF Toluene
Freq IR Freq IR Freq IR Freq IR Freq IR Freq IR
1298.87 1.6487 257.78 0.54 1313.63 55.0118 256.46 3.27 1298.94 1.2648 252.47 6.04
1301.45 1.5683 384.67 0.28 1324.15 174.5577 308.1 1.26 1309.41 92.6911 328.7 0.02
1312.27 128.7336 431.25 0.27 1338.98 277.6159 399.76 0.24 1338.05 22.887 393.85 0.28
1318.13 661.9832 494.02 8.06 1364.49 25.187 423.61 70.03 1355.4 63.1953 418.84 0.53
1438.19 4.3755 574.47 15.04 1428.18 53.869 560.5 9.11 1373.12 45.426 490.26 0.1
1438.85 0.4752 609.25 0.16 1437.69 46.4032 600.06 0.22 1378.7 30.5993 579.97 13.09
1450.96 25.9752 689.15 64.36 1440.7 430.2678 627.24 100.43 1424.54 1.3333 609.83 0.02
1476.64 1122.36 733.41 208.02 1463.15 21.7029 688.37 1.88 1433.68 6.7082 662.37 0.26
1485.46 49.7383 781.22 9.29 1471.31 63.849 768.96 0.99 1439.07 5.8156 734.04 0
1504.68 58.6597 839.96 0 1483.41 245.9607 825.73 0.07 1458.01 0.919 769.88 2.02
1577.91 0.5026 910.78 2.35 1486.47 43.436 896.24 0.9 1459.44 12.6056 882.25 0.03
1594.17 4.1055 935.67 5.78 1499.29 4.4928 919.27 4.23 1486.01 46.1927 890.61 1.44
1596.32 66.6992 965.79 0.02 1554.36 1.2256 956.03 0.48 1495.61 30.2436 932.24 65.79
1605.61 59.1303 1014.83 9.23 1575.89 111.8486 983.23 0.9 1513.46 19.9791 985.21 0.05
1611.41 0.6815 1061.08 11.34 1593.78 11.5577 1061.42 12.84 1597.75 3.925 1040.48 1.95
1632.52 34.7571 1133.92 1.17 1601.26 0.3814 1125.13 11.83 1606.81 13.34 1085.59 0.43
3065.01 1.2464 1146.83 0.13 3070.05 0.0429 1147.6 6.26 3069.02 0.1167 1136.91 0.31
3070.03 1.6461 1195.03 21.82 3070.38 2.799 1221.97 4.95 3071.13 0.2725 1203.94 12.18
3070.18 1.3339 1269.69 4.42 3070.87 0.2123 1280.64 47.94 3071.19 2.7862 1276.27 3.64
3070.65 1.768 1302.83 2.2 3076.75 2.3777 1319.59 0.84 3075.33 2.0034 1311.07 69.94
3077.18 19.5702 1438.85 4.16 3077 17.002 1435.73 400 3076.19 2.1576 1375.04 41.01
3079.1 28.2861 1482.51 911.01 3077.89 3.0458 1464.85 14.44 3076.54 11.9954 1435.11 5.24
3079.18 7.6498 1579.52 0.1 3083.41 20.9951 1487.96 34.33 3081.14 17.6899 1459.8 4.98
3083.32 27.6332 1607.73 48.26 3089.04 10.8836 1580.17 100.68 3087.45 19.9004 1509.07 1.99
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To calculate excitations corresponding to the peaks in the TEAS spectrum, LR-TDDFT/CAM-

B3LYP/6-31+G* calculations at the optimised geometries were performed using Orca v4.2.0. The

SMD (continuum) solvent model is used for these calculations. The excitation energies and the

corresponding oscillator strength fosc are given in tables C.2, C.3, and C.4.

Table C.2: First 5 excitation energies and oscillator strengths at the S0 geometry, singlets.

DMF Toluene
E (eV) λ fosc E (eV) λ fosc
4.044 306.6 0.0216 4.036 307.2 0.0167
4.323 286.8 0.1278 4.099 302.5 0.0564
4.214 294.2 0.0290 4.282 289.5 0.0877
4.506 275.2 0.0009 4.51 274.9 0.0013
4.883 253.9 0.0023 4.644 267 0.0302

Table C.3: First 15 excitation energies and oscillator strengths at the S1 geometry, singlets.

DMF Toluene
E (eV) λ fosc E (eV) λ fosc
3.258 380.5 0.0189 3.279 378.2 0.0150
4.055 305.8 0.1592 3.626 341.9 0.0075
3.847 322.3 0.0078 3.989 310.8 0.1374
4.314 287.4 0.0004 4.32 287 0.0000
4.481 276.7 0.0058 4.464 277.7 0.0101
4.353 284.8 0.0295 4.352 284.9 0.0484
5.093 243.5 0.0017 4.981 248.9 0.0016
5.178 239.4 0.0009 5.054 245.3 0.0001
5.279 234.9 0.0049 5.108 242.7 0.0104
5.225 237.3 0.0111 5.221 237.5 0.0018
5.471 226.6 0.1885 5.473 226.6 0.1930
5.515 224.8 0.0107 5.512 224.9 0.0082
5.632 220.1 0.9089 5.642 219.8 0.9252
5.661 219 0.0001 5.532 224.1 0.0002
5.653 219.3 0.0092 5.491 225.8 0.0056

Single point LR-TDDFT calculations can only show the strengths of transitions from the

SCF ground state – however, using tool implemented in “multiwfn”, a program for electronic

wavefunction analysis it’s possible to calculate the transition dipole moment (and therefore the

oscillator strength) between excited states.[270] This means that we can assign some of the peaks

in the TEAS spectrum, although we are limited to qualitative statements since higher Sn states

can be unreliable with TDDFT.

Highlighted in bold are the excitations that may correspond to the peaks observed in the

TEAS spectra. The peak near 530 nm that appears in the DMF TEAS, but is much less prominent

in Toluene, seems to correspond to the S1 → S11 transition with high oscillator strength, 4 times

higher in DMF - although I’m wary that this might well be confirmation bias.
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Table C.4: First 15 excitation energies at the T1 geometry, triplets. No oscillators since S0 → T1
transitions are forbidden.

DMF Toluene
E (eV) λ fosc E (eV) λ fosc
2.236 554.4 - 2.235 554.7 -
3.244 382.2 - 3.232 383.6 -
3.409 363.7 - 3.405 364.1 -
3.434 361 - 3.439 360.5 -
3.598 344.6 - 3.588 345.5 -
3.732 332.2 - 3.58 346.3 -
4.437 279.4 - 4.202 295.1 -
4.439 279.3 - 4.45 278.6 -
4.27 290.3 - 4.438 279.3 -
4.655 266.4 - 4.652 266.5 -
4.745 261.3 - 4.734 261.9 -
4.803 258.2 - 4.8 258.3 -
4.805 258 - 4.805 258 -
5.143 241.1 - 4.953 250.3 -
5.164 240.1 - 5.135 241.4 -

Table C.5: The transitions from the S1 state, with corresponding oscillator strengths at the S1
geometry.

DMF Toluene
E (eV) λ (nm) fosc E (eV) λ (nm) fosc

S1 → S1 0 Inf 0.0000 S1 → S1 0 Inf 0.0000
S1 → S2 0.797 1556 0.0321 S1 → S2 0.347 3573 0.0007
S1 → S3 0.589 2105 0.0020 S1 → S3 0.71 1746 0.0513
S1 → S4 1.056 1174 0.0002 S1 → S4 1.041 1191 0.0010
S1 → S5 1.223 1014 0.0013 S1 → S5 1.185 1046 0.0093
S1 → S6 1.095 1132 0.0000 S1 → S6 1.073 1156 0.0456
S1 → S7 1.835 676 0.0046 S1 → S7 1.702 729 0.0014
S1 → S8 1.92 646 0.0049 S1 → S8 1.775 699 0.0004
S1 → S9 2.021 614 0.0061 S1 → S9 1.829 678 0.0032
S1 → S10 1.967 630 0.0000 S1 → S10 1.942 639 0.0534
S1 → S11 2.213 560 0.4391 S1 → S11 2.194 565 0.1371
S1 → S12 2.257 549 0.0031 S1 → S12 2.233 555 0.0036
S1 → S13 2.374 522 0.0309 S1 → S13 2.363 525 0.0063
S1 → S14 2.403 516 0.0090 S1 → S14 2.253 550 0.0089
S1 → S15 2.395 518 0.0003 S1 → S15 2.212 561 0.0007
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Table C.6: The transitions from the T1 state, with corresponding oscillator strengths at the T1
geometry.

DMF Toluene
E (eV) λ (nm) fosc E (eV) λ (nm) fosc

T1 → T1 0 Inf 0.0000 T1 → T1 0 Inf 0.000
T1 → T2 1.008 1230 0.1229 T1 → T2 0.997 1244 0.015
T1 → T3 1.173 1057 0.0311 T1 → T3 1.17 1060 0.004
T1 → T4 1.198 1035 0.0080 T1 → T4 1.204 1030 0.005
T1 → T5 1.362 910 0.0051 T1 → T5 1.353 916 0.018
T1 → T6 1.496 829 0.0001 T1 → T6 1.345 922 0.000
T1 → T7 2.201 563 0.0044 T1 → T7 1.967 630 0.004
T1 → T8 2.203 563 0.0000 T1 → T8 2.215 560 0.000
T1 → T9 2.034 610 0.0259 T1 → T9 2.203 563 0.003
T1 → T10 2.419 513 0.1342 T1 → T10 2.417 513 0.029
T1 → T11 2.509 494 0.0012 T1 → T11 2.499 496 0.077
T1 → T12 2.567 483 0.0131 T1 → T12 2.565 483 0.043
T1 → T13 2.569 483 0.0000 T1 → T13 2.57 482 0.000
T1 → T14 2.907 427 0.0869 T1 → T14 2.718 456 0.000
T1 → T15 2.928 423 0.0000 T1 → T15 2.9 428 0.019
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