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Abstract

Wheat’s wide-ranging distribution, in addition to its vast levels of production and con-

sumption make it an essential component of global food security. Ever-increasing pop-

ulation sizes necessitate an increase in global wheat yields to match. This thesis aims

to contribute to this goal by addressing a broad range of seemingly disparate themes:

evolution, recombination and segregation distortion. What unites these themes is their

methodological underpinnings - the use of high-density genotyping arrays, which have

undergone considerable development in the past decade.

The genetic diversity of wheat is limited by bottlenecks that have occurred in its evo-

lutionary history, both through polyploidization and domestication. This limitation

presents difficulties for future yield increases, potentially increasing wheat’s susceptibil-

ity to pathogens. One area of interest is the rate of novel polymorphism formation over

time. The results presented here indicate that this question will be difficult to answer

using molecular clock methodology.

Another route to increasing wheat yield may be the manipulation of wheat recombina-

tion distribution, removing large areas of linkage drag in the central regions of chromo-

somes. Previous work in barley suggests that an increase in environmental temperature

could shift recombination distribution inwards. The results presented here suggest that

whilst this might be the case for some chromosomes in wheat, for the majority of chro-

mosomes, recombination distribution is unaffected by changes in temperature.

Segregation distortion, a deviation from Mendelian ratios in progeny of a cross, is

also investigated here, with a focus on current practices of detection in the literature.

My results indicate that many studies have been using inappropriate methods for the

detection of segregation distortion.

Also presented in this thesis are novel methods and tools for wheat research, such as the
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AutoCloner gene-cloning pipeline, allowing researchers to efficiently clone large numbers

of genes in previously unsequenced varieties.
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1 General introduction

1.1 Wheat and the world

1.1.1 Economic importance of wheat

Roughly 9000 years ago in the fertile crescent, located in modern-day Turkey, early

farmers developed hexaploid wheat, a plant that would go on to become a staple of the

human diet, revolutionizing global agriculture in the process (Lev-Yadun et al. 2000;

Salamini et al. 2002; Shewry 2009). In 2018, total wheat production was 734 million

tonnes (FAOSTAT, 2020), making it the third highest food crop in terms of production,

eclipsed only by rice (782 million tonnes) and maize (1.14 billion tonnes). One of the

upcoming challenges of the 21st century is the divergence of human population and

crop yield growth trajectories, which if not addressed will result in a global shortage

of food supplies in the coming decades. The 2017 UN report of world population

prospects projected a global population of 8.5 billion people by 2030, increasing to 9.7

billion by 2050. It is therefore important that society invests into the advancement

of wheat research, facilitating the development of tools, such as the recently released

IWGSC chromosome-level genome sequence (Consortium (IWGSC) et al. 2018), that

will significantly increase our knowledge of wheat, and hopefully allow us to produce

varieties that are suited to meeting this increased demand.

1.2 Wheat Evolution

1.2.1 Phylogenetic placement of wheat and genome nomenclature

Wheat, or more formally Triticum aestivum L., is an allohexaploid species contained

within the Poaceae, or the grass family, which is a large clade containing all three major

food crops (wheat, rice and maize) as well as many other common grasses. Wheat is said

to have an AABBDD genome constitution, a nomenclature originally derived from hy-

bridization experiments between polyploids and diploid grasses (Kihara 1929; Lilienfeld
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1951). Hybridizations in which meiosis proceeded normally, e.g. without nondisjunc-

tion of chromosomes and resulting aneuploidy, were said to have homologous genomes

(Lilienfeld 1951), and the parents were therefore assigned the same letter / genome

designation. From the viewpoint of modern phylogenetics, based on an abundance of

genomic sequence data, this concept could be simplified into the dates of divergence

between genomes or sequences, however these designations are still useful in a plant

breeding context, and have thus remained in widespread usage in the agricultural sci-

entific literature.

1.2.2 Overview of close relatives of wheat and estimated time of origin

Contained within the Poaceae is the Pooideae subfamily, which is comprised of impor-

tant food crops such as barley, oats, rye and wheat. Triticum, the wheat genus, con-

tains many species of varying ploidies and significance to the global economy, including

hexaploid bread wheat (Triticum aestivum L.), used for making bread; tetraploid du-

rum wheat, used for making pasta (Triticum turgidum conv. durum); tetraploid emmer

wheat (Triticum turgidum subsp. dicoccoides), the wild progenitor of modern culti-

vated tetraploid wheats; hexaploid spelt (Triticum spelta), an important crop in the

Bronze age (Salamini et al. 2002) which is now used as a health food; diploid einkorn

wheat (Triticum monococcum L.), one of the first grasses to be actively cultivated by

humans and Triticum urartu, the closest living relative of the A subgenome of bread

wheat. Another genus that played an important role in wheat evolution is Aegilops,

commonly known as goatgrasses, with evidence pointing to Aegilops speltoides being

the closest living relative to the B subgenome of wheat (Petersen and Sutton 2006), and

Aegilops tauschii the closest relative to the D subgenome of wheat (Luo et al. 2017).

A phylogenomic molecular clock analysis of bread wheat and its close diploid relatives

(Marcussen et al. 2014) suggests that the D genome lineage of wheat arose around 5.5

million years ago through homoploid hybridization, i.e. where the hybrid retains the

same number of chromosomes as the parental species, of the B and A genome ances-

tors. Later, less than 0.8 million years ago, the A and B genome progenitors underwent
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allopolyploid hybridization to form the tetraploid AABB plant, which underwent a

subsequent allopolyploid hybridization event with the D genome progenitor. Archaeo-

logical evidence suggests this final hybridization event occurred around 9000 years ago,

with the occurrence of hexaploid free-threshing wheats at Cafer Höyük that have been

radiocarbon-dated to ~8700 years ago (Nesbitt 2001). This order of hybridization is

further supported by the relative lack of SNPs in the D genome of bread wheat com-

pared to A and B genomes (Allen et al. 2016), which is congruent with a more recent

origin.

1.3 Phenotypic changes in wheat domestication

The process of domestication involves the accumulation of traits that are often detrimen-

tal to the selected organism in the wild, but beneficial to humans in terms of agriculture.

The first of such traits to be introduced into cultivated wheat was a non-brittle rachis

(Charmet 2011), which causes the spikelets to be retained on the spike rather than

be dispersed into the environment, meaning yield is increased as much of the edible

material of the plant, the kernel, is retained for harvesting. The gene conferring a non-

brittle rachis, Br, is located on chromosome 2A (Peleg et al. 2011) and has monogenetic

inheritance, and would thus be relatively straightforward to select and breed into a pop-

ulation of wheat plants. The second important gene involved in wheat domestication

is the Tg or Tenacious glume, located on the short arm of chromosome 2D (Sood et al.

2009; Charmet 2011). This controls ease at which the glume, the protective bract cov-

ering each spikelet, separates from the grain, thus plants with recessive tg are easier to

thresh. Perhaps the most important gene involved in the domestication of wheat is the

Q gene, an APETELATA2-like transcription factor located on chromosome 5A (Simons

et al. 2006). This gene is pleiotropic, producing effects on spike length, rachis fragility

(and therefore threshability), glume tenacity, spike emergence time and plant height. Q

is therefore a crucial development in cultivated wheat that significantly enhanced the

efficiency with which farmers could harvest their grain.
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1.3.1 Wheat breeding strategies

Although agricultural practices, including the active cultivation of plants for food, date

to over 10,000 years ago, breeding based on the theoretical foundation of genetics is

very recent. Mendel published his hybridization studies on peas in 1866 (Allen 2003),

which were not regarded seriously until around 1900. This provided breeders with

more concrete knowledge of inheritance, but even so, breeding was still limited to the

selection of plants based on their phenotypic characteristics, and consequently was

largely focussed on the selection of qualitative traits underpinned by a small number of

genes, such as plant height, which notably was the driving factor behind the massive

yield increases of the green revolution. Accurate dissection of quantitative traits, as

well as heterozygotes with recessive alleles remained elusive without knowledge of plant

genotypes.

The transition from using phenotypic traits to inform plant breeding strategies to molec-

ular markers that survey the genetic material was revolutionary, potentially saving

breeders a significant amount of time. Genetic markers allow researchers or breeders to

survey large numbers of plants for the trait of interest without having to grow plants

to late stages of development. Before examining the current state of wheat breeding, it

will be illuminating to review the history of genotyping as a means of providing context.

Genetic markers have undergone significant development in the last few decades. The

first genetic markers were restriction fragment length polymorphism (RFLP) markers,

initially developed in humans (Botstein et al. 1980) and then later for maize (He-

lentjaris et al. 1985) and wheat (Chao et al. 1989). These relied on fragmentation

of the DNA via restriction enzymes, followed by gel electrophoresis and hybridization

of probe sequences to the DNA, which defined polymorphisms. The invention of the

polymerase chain reaction (PCR) then opened up several new techniques for producing

genetic markers, such as random amplified polymorphic DNA (RAPD) (Williams et al.

1990), DNA amplification fingerprinting (Caetano-Anollés and Gresshoff 1994), ampli-

fied fragment length polymorphism (AFLP) (Barrett and Kidwell 1998), microsatellites

(Condit and Hubbell 1991; Devos et al. 1995a). These methods were restricted by their
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reliance on agarose or polyacrylamide gels, which limit the number of polymorphisms

that can be analysed concurrently. Later on it became widely acknowledged that single

nucleotide polymorphisms (SNPs), would become the standard (Henry 2001) for human

and plant genotyping due to their abundance in the genomes of organisms, meaning that

for any particular gene of interest, there would likely be a SNP within close proximity,

allowing the inheritance of the gene to be tracked through generations.

Progress in SNP genotyping in wheat has lagged significantly behind humans and other

crops due to the complexity and size of the wheat genome in comparison, which is

hexaploid and comprises around 16 Gb. The current state of wheat genotyping has

seen the emergence of a small number of dominant technologies for surveying SNPs.

Kompetitive allele specific PCR (KASP) (Allen et al. 2011; Semagn et al. 2014)

provides an efficient, cost-effective method for genotyping samples at a small number of

SNP loci. This method is ideal for the situation in which the researcher already has a

target gene of interest in the genome. In addition, SNP arrays have also been developed

for simultaneous genotyping of large numbers of samples (90; 400) and SNPs (35,000

820,000).

1.4 SNP Array development

SNP arrays are ultimately based on the hybridization of DNA fragments of interest to

allele-specific probes that are immobilized on a surface. Arrays are typically restricted to

biallelic SNPs for ease of detection. Two probes are present for each SNP to be detected,

each of which contains a different base at the SNP position, along with identical flanking

sequences. These probes have different fluorescent tags attached to them (for example

red and green), such that after hybridization, non-hybridized probes will be removed

and the genotype of the sample at that allele will be deduced through the colour of

the fluorescent signal. A mixture of the two colours indicates that the sample was

heterozygous at that locus. The first SNP array for wheat was described in 2013, and

was reliant on the Illumina iSelect technology, comprising 9,000 SNPs (Cavanagh et

al. 2013) discovered through transcriptome sequencing of 26 bread wheat accessions.
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This was later expanded on to produce an array containing 90,000 SNPs (Wang et

al. 2014) based on 19 bread wheat varieties. Subsequently, an array was developed

with a much higher density of SNPs using Affymetrix Axiom technology, containing

820,000 SNPs discovered via exome capture from 43 bread wheat varieties and relatives,

enabling, amongst other typical array applications, the tracking of introgressions from

wide crosses in wheat. These SNPs were then filtered to produce a high-quality set

of 35,000 optimized for elite UK bread wheat varieties, known as the Wheat Breeders

array (Allen et al. 2016). Notably, all of these arrays were built around genic sequences,

whether in their full genomic of transcriptomic forms. To address this, a further array

was designed and released (Rimbert et al. 2018) that contained 280,226 SNPs, many

of which were intergenic, and also utilized the IWGSC RefSeq v1.0 chromosome-level

genome assembly (Consortium (IWGSC) et al. 2018) as a reference for alignment of

sequencing reads.

1.5 Wheat Genome Development

The assembly of a chromosome-level genome for wheat has proven to be a significant

challenge for the scientific community. The first attempt at sequencing a complete

chromosome of wheat, chromosome 3B, which is two-times bigger than the entire rice

genome, came in the form of long insert bacterial artificial chromosome (BAC) libraries

(Paux et al. 2008). The Chinese Spring variety of wheat was chosen on the basis of

its previous use in cytogenetic studies as well as the availability of aneuploid lines for

every chromosome (Endo and Gill 1996). This progressed to a full genome assembly

with the rise of next generation sequencing (Brenchley et al. 2012), albeit a highly

fragmented version with short contigs. Several further assemblies were then produced

((iwgsc) 2014; Chapman et al. 2015; Clavijo et al. 2017; Zimin et al. 2017) before the

canonical assembly, the International Wheat Genome Sequencing Consortium Reference

Sequence v1.0 (Consortium (IWGSC) et al. 2018) was released. As the wheat genome

is highly repetitive, not only with duplicate copies of genes due to hexaploidy but also

due to a large number of transposable elements, de novo assembly of the genome is

6



very difficult. The authors of the IWGSC assembly therefore used a variety of methods

to overcome these difficulties, including traditional next-generation sequencing, Hi-C

(Lieberman-Aiden et al. 2009), Bionano optical maps, radiation hybrid maps, genetic

mapping and BAC libraries with microtitre plate (MTP) Sanger sequencing. Since the

release of the IWGSC assembly, further progress has been made in sequencing other

wheat varieties, with the 10 Wheat Genomes project (Walkowiak et al. 2020) providing

whole genome assemblies of varieties Mace, Lancer, CDC Landmark, Julius, Norin61,

ArinaLrFor, Jagger, Cadenza, Paragon, Robigus and Claire, although at the time of

writing, the latter four assemblies are not chromosome-level, and instead are comprised

of scaffolds.

1.6 Genetic mapping

1.6.1 Origin of genetic mapping

First conceived by Sturtevant in the fruit fly drosophila (Sturtevant 1913), genetic

mapping is a method of deducing the linear order of genes or molecular markers on

a chromosome via their segregation ratios in the progeny of a biparental cross. It is

based on the principle that the number of recombination events that occur between

any pair of loci on a single chromosome is proportional to the distance between those

loci. Whilst in organisms with smaller genomes, such as the model plant Arabidopsis,

genetic mapping has been largely superseded by more advanced techniques such as

whole-genome sequencing, in many crops, including wheat, it remains an important

technique for examining the genome, as whole-genome sequencing remains challenging

and expensive due to the size of the genome. Genetic mapping has progressed over

the years from using phenotypic markers of genes - yellow body, white eyes, vermillion

wings, miniature wings and rudimentary wings were the traits used by Sturtevant - to

using molecular markers such as SNPs (Allen et al. 2016, 2011).
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1.6.2 Producing genetic maps with SNPs

As genotyping technology has advanced, genetic maps have become increasingly large,

now often including thousands of molecular markers per map (Allen et al. 2016). Only

SNPs that are polymorphic between parents can be used for the creation of a map. In

addition, an ideal SNP would be codominant between parents such that the heterozy-

gotes are able to be distinguished, as this provides more information on recombination

events. We can then assign letters to represent the genotype of a sample at any particu-

lar SNP, for example an “A” could represent a sample that is homozygous for the allele

from the first parent of a biparental cross, likewise a “B” could represent a homozygote

of the second parental allele, whilst a “H” could represent a heterozygote. Examination

of the genotypes at any pair of adjacent molecular markers in a biparental cross reveals

whether a recombination event has occurred between them. There are some exceptions

to this, for example when two recombination events occur between a pair of markers

(a double recombination event), or when both of the markers are heterozygous and

both of the gametes that made up the zygote of the sample underwent recombination

between these markers. Genetic mapping becomes feasible when we expand these prin-

ciples to the population level: if a large proportion of individuals in the population

have recombination events between two loci, the loci must be far from each other on

the chromosome. This proportion is known as the recombination fraction r, which, in

absence of sampling error, ranges from 0 < r < 0.5. The upper limit is 0.5 due to

double recombination events: as the distance between two loci increases, odd and even

numbers of crossovers between them become equally likely (Xu 2013).

1.6.3 Computational stages of genetic mapping

After genotyping, genetic mapping involves three primary computational stages, which

are the clustering of markers, ordering of markers, and calculation of genetic distance

between markers. Of these stages, the ordering of markers is the most computationally

intensive, with n!/2 potential orders for n markers (Mester et al. 2003). With modern

computational hardware it is almost impossible to examine every possible order in a
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reasonable amount of time, rendering a brute-force approach invalid and turning this

into a heuristic optimization problem that must be solved algorithmically. A notable

development in this regard is the MSTmap software, which uses an algorithm based on

the minimum spanning tree of a graph to determine the order of markers on the map,

which not only was shown to be significantly faster than previous methods (Wu et al.

2008), but was also released free-of-charge to the community as open source software,

and has since been developed into an R package that simplifies its use even further

(Taylor and Butler 2017). Other algorithms of comparable speed, such as MultiPoint

(Mester et al. 2015) are proprietary software and have cumbersome graphical interfaces

that are difficult to incorporate into automated bioinformatics pipelines. After the

inference of both marker clustering and ordering, the calculation of genetic distances

between markers is trivial, with either the Haldane or Kosambi mapping functions most

often used to convert recombination fractions between markers to units of centiMorgans,

the latter accounting for crossover interference.

1.7 Experimental lines

There are several types of experimental line used commonly in wheat research, each with

its own advantages and disadvantages depending on the research application (illustrated

in figure 1.1). The simplest is an F1 line, which is a cross between two different parental

varieties, and is heterozygous at every locus at which the parents differ. Since wheat

is self-fertilizing, F1 plants can be selfed to produce F2 lines, which unlike the F1

are genetically different due to the difference in recombination position and frequency

between meioses; this difference forms the basis for creation of a genetic map. With

repetition of this selfing process for several generations, the plants eventually become

completely homozygous at every locus, and are referred to as recombinant inbred lines

(RIL). These lines can be more useful than F2 lines for genetic mapping, as the lack

of heterozygosity allows increased detection of recombination events. In addition, they

also have a stable genotype, and will not change significantly over generations, meaning

they could form useful germplasm for further input to breeding programmes. The
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obvious downside is that they take much longer than F2 plants to produce. Doubled

haploid lines allow researchers to expedite this process significantly, achieving complete

homozygosity in a single generation by taking the pollen cells of F1 lines and subjecting

them to a chemical treatment, usually with caffeine or colchicine, that disrupt meiosis

and cause chromosome doubling. A potential downside of this method is that a selection

pressure is applied favouring alleles that allow the pollen to thrive during tissue culture,

which are not necessarily beneficial to agronomic and physiological traits in later stages

of development. It has been noted in the literature that the tissue culture process

during doubled haploid production causes segregation distortion at some loci (Sayed et

al. 2002; Adamski et al. 2014). The final type of experimental line which I will mention

here is the backcross population, which as the name implies is the hybridization of the

progeny of a biparental cross with one of the parents that produced it. Backcrosses have

been utilized, amongst other things, in the study of segregation distortion to discover

segregation distortion loci and to examine whether the effect of distortion is caused in

the female or male gametal development cycle (Kumar et al. 2007).
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Figure 1.1 Overview of types of commonly used experimental lines in wheat research.
Initially, two parental lines with different genotypes (and or phenotypes) are crossed
together to make an F1 line that is heterozygous at every locus at which the parents
differ (chromosomes represented in elipses). F1 lines can then be selfed to produce an F2
population, which are genetically distinct due to recombination occurring in different
locations in their respective gametes, and are heterozygous at roughly half of their
loci (relative to the F1). This process of selfing can be repeated for many generations,
until the wheat line is homozygous at every locus (a recombinant inbred line). The
process of double haploid production skips this repeated selfing, producing lines that
are homozygous at every locus in just one generation, although with less recombination
events compared to RILs. P = parental, F1 = filial generation 1, DH = double haploidy.
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1.8 Segregation Distortion

1.8.1 Mendelian genetics

Mendel’s law of segregation states that when two F1 individuals, both heterozygous

for the same gene, are crossed together, the gametes produced by these individuals will

bear the two alleles in a 1:1 ratio, and furthermore, the progeny of the cross will have

a 1:2:1 ratio of homozygotes for the first allele, heterozygotes, and homozygotes for the

second allele. This is a fundamental law of genetics which many students of biology will

recognise in the form of a Punnett square. With further studies into genetics catalysed

by the highly efficient research organism Drosophila, later followed by the revolution in

molecular genetics enabling detailed study of crop species, it was revealed that there

are many cases in which this law is violated. This violation is referred to as segregation

distortion (SD), or alternatively as meiotic drive. SD is common in wheat and many

other crops, although the exact mechanisms causing it have yet to be fully elucidated.

1.8.2 Causes of segregation distortion and relation to meiotic drive

SD can be caused by simple sampling error, or alternatively by the action of a selection

pressure at some stage of the developmental cycle, such as during meiosis, gametogene-

sis, fertilization or zygotic development (Xu 2013; Rick 1963; Gadish and Zamir 1987).

One much studied cause of segregation distortion is meiotic drive, initially defined as

the manipulation of meiosis (Sandler and Novitski 1957; Buckler et al. 1999), and

later broadened to include all of gametogenesis (Zimmering et al. 1970; Lindholm et

al. 2016), by selfish genetic elements such that their own frequency of transmission

is increased, or conversely, the frequency of transmission of their alleles is decreased.

The literature is not in complete consensus regarding the definitions of meiotic drive

and segregation distortion, with some authors simply indicating that the two terms are

synonymous (Kozielska et al. 2010). In this thesis I will limit the definition of meiotic

drive to the developmental stages preceding or up to the completion of gametogenesis,

which seems most in line with the original proposal of the term (Sandler and Novitski
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1957), differentiating meiotic drive from gamete competition. This could explain the

incongruity in the literature, as all cases of meiotic drive are also cases of segregation

distortion, but all cases of segregation distortion have the potential to be, but are not

necessarily, cases of meiotic drive, requiring further investigation to determine. In any

case, meiotic drive is a fascinating form of intra-genomic conflict that is almost anthro-

pogenic in quality, and as such has provoked almost 50 years of study: “Mendelian

inheritance is a marvellous device for making evolution by natural selection an efficient

process. The Mendelian system works with maximum efficiency only if it is scrupulously

fair to all genes. It is in constant danger however, of being upset by genes that subvert

the meiotic process to their own advantage” (Crow 1979).

1.8.3 Canonical example of segregation distortion

The canonical example of meiotic drive is the segregation-distorter system in Drosophila

(Sandler et al. 1959; Larracuente and Presgraves 2012). This system is comprised pri-

marily of two loci, Segregation distorter (Sd) and Responder (Rsp), both located on

autosomal chromosome 2, with several modifier loci that also play a role by either

enhancing or reducing the intensity of the driving locus. Sd alleles act to distort segre-

gation, whereas their wild-type alleles, Sd+, do not. In addition, Rsp has both sensitive

(Rsps) and insensitive alleles (Rspi). Sd is usually paired with insensitive Rspi, whereas

wildtype Sd+ is usually paired with a sensitive Rsps allele. In heterozygotes containing

Sd/Sd+ and Rspi/Rsps, gametes with Rsps will fail to develop, resulting in close to

100% transmission of the segregation-distorter allele. In addition, individuals with Sd

and Rsps on the same chromosome will self-destruct. The system is maintained due

to the location of both genes in a region of low recombination around the centromere

of chromosome 2, which also contains several chromosomal inversions, which serve to

further link the two loci. The suicidal combination of alleles is therefore rarely gener-

ated. Collectively, these observations indicate an interaction between the two loci that

ultimately produces segregation distortion, however, despite the length of time that

this system has been studied, an exact mechanism for how the two loci interact is not
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entirely clear; there are several competing hypotheses involving nuclear transport and

small RNAs respectively (Larracuente and Presgraves 2012).

1.8.4 Example of segregation distortion in wheat

Could segregation distortion in wheat be caused by meiotic drive systems with similar

mechanisms to the segregation-distorter system of Drosophila? Loegering and Sears

(Loegering and Sears 1963) found evidence of a meiotic drive system in wheat in the

form of the pollen killer gene Ki. Chinese spring was crossed to a substitution line,

Timstein-6B, the latter composed of Chinese spring with chromosome 6B substituted

for the corresponding chromosome in variety Timstein, shown in previous experiments

to contain a resistance gene for stem rust. F1 samples of this cross were then reciprocally

backcrossed into Chinese Spring. Whilst the cross in which Timstein-6B was the female

parent yielded close to a 1:1 ratio of resistant to susceptible plants, the reciprocal cross

showed strong distortion in favour of susceptible plants. Further investigation revealed

that many of the microspores resulting from this cross began to degenerate early in

development, suggesting that a meiotic drive gene, Ki, was highly linked to the gene

conferring stem rust resistance, causing the extreme distortion in plants heterozygous

for this gene. Although discovered over 50 years ago, this remains one of the best

examples of meiotic drive operating in wheat, and illustrates how meiotic drive and

segregation distortion can be detrimental to agronomic aims, in this case reducing the

number of progeny with resistance to stem rust.

1.8.5 Disparity in methods of detection between studies

The increased genotyping capacity in recent years, driven by developments in technol-

ogy, has led to an increase in the number of loci that supposedly exhibit segregation

distortion, with examples found in cotton (Dai et al. 2017), maize (Wang et al. 2012;

Lu et al. 2002), potato (Manrique-Carpintero et al. 2016), chickpea (Castro et al.

2011), barley (Li et al. 2010) and wheat (Allen et al. 2016; Gardner et al. 2016; Win-
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gen et al. 2017). There is however a disparity in the statistical methods used to detect

segregation distortion, with some authors using a simple chi-square test with a alpha

threshold of 0.05, others using multiple alpha thresholds, others using a false-discovery

rate multiple-testing correction procedure, and some using the even stricter Bonferroni

correction. One of the aims of this thesis will be to identify which of these methods is

the most accurate for the detection of segregation distortion when many markers are

being tested simultaneously, as is the case with modern high-density genotyping data

from e.g. arrays or genotyping by sequencing methods.

1.8.6 Distinction between Bonferroni and FDR multiple testing correction

procedures

Statistics is a method of classifying certain experimental results as “significant” if they

pass a specified p-value threshold, which by convention is set to 0.05, although this

choice was an arbitrary one made by the father of statistics, Ronald Fisher. This

value indicates that a result could be significant by chance, e.g. through sampling er-

ror, and the probability of this false-positive result is 1/20. When multiple statistical

tests are performed simultaneously, the probability that one of these tests will have a

false-positive result increases by a factor, the number of tests being performed. The

Bonferroni correction (Bonferroni 1935) is a widely used procedure that accounts for

the increasing probability of a false-positive result with increasing number of tests, oth-

erwise known as the family-wise error rate, by dividing the significance threshold �, by

the number of tests being performed. Although a plausible strategy for small datasets,

the Bonferroni has its downsides; it is highly conservative when the number of hypothe-

ses being tested is large, and has been criticised for its low statistical power in these

cases (Nakagawa 2004). The advent of large biological datasets, initially in the form of

microarray data to assess gene expression, demanded a new multiple testing correction

procedure, as it would often be the case that thousands of hypotheses of differential gene

expression, one for each gene under analysis, were being tested simultaneously (Storey

and Tibshirani 2003). The Benjamini-Hochberg false-discovery rate (FDR) correction
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(Benjamini and Hochberg 1995) rose to meet this demand, with 63,089 citations on

Google Scholar at the time of writing, by reconceptualizing the error to be corrected for

away from the family-wise error rate, i.e. the probability of a false-positive, to instead

focus on the FDR, which is the proportion of significant results that are incorrectly

categorised as significant. It offers a test in which the correction scales to the number

of hypotheses - for small numbers it offers a correction similar to the Bonferroni cor-

rection, whilst for large numbers it becomes more lenient. The FDR correction can be

thought of geometrically as a plot of ranked p-values from smallest to largest. A line

is then drawn through the origin with slope �/m (m being the number of hypotheses

tested), and all p-values beneath the line are retained as significant. Whether this is

the most appropriate test for segregation distortion remains to be seen - I will test this

hypothesis in chapter 4.

1.9 Phylogenetic inference

Like many fields in biology, increasing availability of sequencing and genotyping data,

as well as increasing computational power in recent years, have made viable the field

of molecular phylogenetics - the study of evolutionary history through DNA molecules

themselves rather than phenotypic characteristics. In this thesis I will utilize phyloge-

netic methods to examine the evolutionary history of wheat, particularly the landraces:

locally adapted cultivars from diverse regions around the globe. As with the ordering

of molecular markers in a genetic map, the number of possible rooted topologies for a

bifurcating labelled tree rises dramatically with the number of taxa, with

(2𝑛 − 3)!
2𝑛−2(𝑛 − 2)!

possible trees in a tree with n taxa (Felsenstein 1978). It is therefore impossible to

examine every topology in a reasonable amount of time, and so algorithms must be

used. Two principle methods of phylogenetic inference are generally used, which are

maximum likelihood and Bayesian methods.
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To construct a phylogeny, it is first necessary to estimate the amount of evolution

that has occurred between two sequences (e.g. DNA or amino acid sequences). A

naïve assumption would be to simply calculate the number of differences in homolo-

gous positions between the two sequences, and indeed this is the foundation of simple

phylogenetic methods such as neighbour-joining (Saitou and Nei 1987). However, this

calculation ignores the possibility of multiple nucleotide substitutions, or multiple hits,

at the same sequence site over time, resulting in a number of hidden mutations, and

thus underestimates the total difference between the two sequences (Yang 2014). To ac-

count for this, models of sequence evolution are commonly used in maximum likelihood

and Bayesian inference, which take into account empirically determined properties of

DNA evolution - for example the fact that transversion mutations occur less frequently

than transition mutations. Maximum likelihood methods calculate the likelihood for

any particular tree, which is the probability of the data (D) given then tree (T) and the

model of sequence evolution (M) or P( D | T, M). The likelihood can then be calculated

for many trees using an algorithm, and the tree that has the maximum likelihood is

reported as the most likely phylogeny for those particular sequences and taxa.

1.10 QTL Analysis

Quantitative trait loci analysis, unlike qualitative traits, focusses on phenotypic traits

that are continuously distributed in a population, and are underpinned by the combined

action of many different genes, as well as the effects of environment. Many important

agronomic and physiological traits in wheat are influenced by QTL, such as plant height,

harvest index, thousand grain weight (Tshikunde et al. 2019), recombination frequency,

and recombination distribution (Jordan et al. 2018); the latter two will be investigated

in this thesis. With high-density molecular marker data and genetic mapping of the

genome, it is often the case that some of the molecular markers will be linked to these

underlying genes, visible in the data as a correlation between genotype and phenotype.

In its simplest form, the identification of a QTL significantly associated with a trait of

interest can be done through marker regression, which involves performing an ANOVA
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at each marker, using genotype categories as predictors and the trait of interest as a

response. This method is improved upon by interval mapping, which takes into account

missing genotype data at markers via maximum likelihood estimation. Furthermore,

the standard interval mapping method is made more computationally efficient by the

Haley-Knott regression, which provides a fast and accurate approximation of the results

(Broman 2009).

1.11 Recombination

The importance of crossbreeding in creating offspring with mixtures of parental phe-

notypic traits has long been recognised in agriculture and studies of genetics (Mendel

1865). The molecular process underlying this is meiotic recombination, where chromo-

somes are shuffled to create new, hybrid chromosomes containing a mixture of alleles

from both parents. In wheat and many other important grasses, the distribution of

recombination events is limited to the distal ends of the chromosomes, meaning genes

surrounding the centromere and in the pericentromeric regions stay in linkage disequi-

librium and are not mixed during recombination. One of the foci of this thesis is to test

whether environmental temperature, a factor known to influence recombination, alters

the distribution and frequency of recombination events in wheat in a way that could be

useful to breeders. Does an increased temperature act to induce recombination events

in the pericentromeric regions, breaking up genes that were previously inaccessible to

manipulation by breeders? This question is examined in detail in chapter 4.

1.12 Thesis aims

The unifying factor behind some of the seemingly disparate topics discussed here -

segregation distortion, recombination, wheat evolution - is the methodology used to

investigate them, namely the use of high-density genotyping arrays. The development

of the 35k Wheat Breeder’s array by my lab has catalyzed the production of a wealth of

genotyping data for a variety of experimental wheat populations. The aim of this thesis
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then is to utilize this data, and indeed produce some of my own, to address topics that

are important to the future of wheat research. Key hypotheses that will be investigated

are:

• What is the rate of novel polymorphism accumulation in the evolution of wheat?

• How reliable is wheat genotyping data - are inferences made from genotyping data

consistent between different genotyping platforms?

• Does environmental temperature affect wheat recombination, and if so, is this

effect useful to breeders?

• What is the optimal test for detecting segregation distortion in high-density geno-

typing data?

• Does segregation distortion affect the genetic mapping process?

In addition to investigating these questions the thesis also aims to provide new tools that

are useful to the wheat research community, including the development AutoCloner, a

novel tool designed to aid full-gene cloning in wheat.
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2 The Watkins landraces: their evolutionary his-

tory and congruity of genotyping data between

platforms

2.1 Introduction

Archaeological evidence indicates that hexaploid wheat was first produced around 9000

years ago in the fertile crescent (Nesbitt 2001). This event involved the hybridization of

a tetraploid progenitor containing what are now referred to as the A and B subgenomes

of modern bread wheat with a wild diploid grass related to the modern-day Aegilops

tauschii, now comprising the D subgenome of bread wheat (Marcussen et al. 2014).

Before the inception of modern commercial breeding practices, wheat as a species was

composed of many locally adapted cultivars known as landraces (Jaradat 2012). Recent

research has focussed on the Watkins collection, which consists of landrace cultivars

from a broad range of countries, originally collected in the 1930s (Wingen et al. 2014).

Modern elite bread wheat varieties suffer from a lack of genetic diversity, which makes

them susceptible to evolving biotic stresses such as pathogenic fungi (e.g. karnal bunt,

Tilletia indica (Reif et al. 2005)), as well as changing environmental conditions such

as climate. Research has shown that the Watkins collection is more genetically diverse

compared to modern elite varieties (Wingen et al. 2014; Winfield et al. 2017) and could

therefore serve as a valuable source of novel alleles for wheat breeding programmes.

Much of the current focus within the wheat community is to improve elite wheats

through incorporation of existing genetic variation. The Wheat Improvement Strategic

Programme (WISP) (Moore 2015) aims to utilize three primary sources of variation:

landraces, synthetic wheats and introgression from wild relatives of wheat. There has

however been little investigation thus far into the rate at which wheat accumulates

novel polymorphisms. This is an interesting question both from a historical perspective

as well as in future projections of wheat evolution – if the current pool of genetic diver-
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sity, encompassing landraces, synthetics and wild relative introgressions is exhausted,

what length of time would it take for new beneficial mutations to accumulate in global

germplasm?

This question is fairly straightforward to answer for the D subgenome alone, as we could

simply compare the genome of Aegilops tauschii, for which a whole genome assembly

is available (Luo et al. 2017), to the D subgenome of bread wheat. Assuming a similar

rate of evolution, we could then simply count the number of polymorphisms between

them, using the known time to most recent common ancestor (TMRCA) of 9000 years

ago to calculate the rate of novel allele accumulation. This does not however provide

us with any information regarding the A and B subgenomes of wheat. In this chapter

I attempt to resolve this by using this known TMRCA of wheat and A. tauschii as

calibration for a molecular clock, which can then be used to find the TMRCA of the

Watkins lines themselves, which is currently unknown. As with many projects in wheat,

this is complicated by the wheat’s large genome, for which sequencing is expensive and

difficult. Whole-genome sequences for the Watkins lines are not currently available, and

generating them is far beyond the scope of this PhD project. I will therefore attempt

to answer this question by making use of the most comprehensive dataset currently

available in the literature, which is an exome-capture dataset of 104 Watkins lines

(Gardiner et al. 2018).

The concept of a molecular clock was first proposed by Zuckerkandl and Pauling (Zuck-

erkandl and Pauling 1965), who suggested that constancy in the rate of amino acid

substitution between haemoglobin proteins could provide a mechanism with which to

estimate the time of divergence between species. Knowing the rate of mutation between

two molecules and the number of differences between those molecules, it is possible to

calculate the time at which they diverged from each other. In mathematical form, this

is represented by the equation T = rL/2, where T represents time, r represents the rate

of mutation and L represents the combined branch lengths of the phylogeny leading

to the common ancestor of both molecules. This concept was bolstered by the sugges-

tion of the neutral theory of evolution, which posits that the majority of differences in
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nucleotide sequences are in selectively neutral regions (Kimura 1968). Consequently,

nucleotide substitution in these regions might operate at a constant clock-like rate,

rather than having a rate that shifts over time due to selection. As there is no histori-

cal information on the Watkins lines, including how their distribution has changed over

time, a molecular clock analysis might be the only possible method of inferring their

TMRCA.

In addition to the molecular clock analysis, I will also be using the genotyping data gen-

erated for the Watkins lines to investigate congruity between data sources (i.e. between

array and exome capture). There has been a recent trend towards the use of exome

capture data within the wheat research community (Olohan et al. 2018; Gardiner et al.

2019). Exome capture has the potential to provide information on much more sequence

variation than array genotyping data at the cost of speed and throughput volume. It

would be of interest to compare these two datatypes to examine whether the increased

resolution of exome capture data significantly effects downstream analyses – does it

give increased insight that compensates for the increased cost?

Whilst (Gardiner et al. 2018) made some comparisons of their exome-capture dataset to

the array data of (Winfield et al. 2017), namely noting that European accessions formed

separate clusters to Asian and Middle Eastern accessions, they did not use the same

method to cluster their SNP data, opting for a hierarchical clustering approach rather

than a STRUCTURE-based analysis. STRUCTURE (Porras-Hurtado et al. 2013)

is a population genetics software package which aims to infer population structure

using a Bayesian clustering approach in conjunction with Markov Chain Monte Carlo

estimation. This differs from hierarchical clustering in that the posterior probabilities

for a range of K values, or the number of clusters, must be evaluated. In contrast, the

hierarchical clustering approach initially assigns each individual to its own cluster, then

proceeds to join closely related clusters together. The papers also differ in that only

one of them performs a phylogenetic analysis (Gardiner et al. 2018), only one of them

performs a principle components analysis (Winfield et al. 2017), and the sample sizes

of Watkins lines differ in each. Here I perform a more direct and detailed comparison
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of array and exome capture datasets in both population genetics and phylogenetic

contexts, ensuring the use of the same methodology in each case.

2.2 Methods

2.2.1 Phylogenetic analysis

Alignment of paired-end sequence reads and identification of SNPs in exome-

capture data

Exome capture data for 104 Watkins lines was obtained from the Grassroots Genomics

repository (Gardiner et al. 2018). Non-bisulfite-treated paired-end reads were mapped

to the IWGSC v1.0 genome assembly of wheat using BWAMEM. Processing of mapping

results was performed with Samtools. Reads were filtered so that only mapped reads

and unique reads, defined as reads with a MAPQ value higher than 10, were used.

Duplicate reads were removed from the alignment. VCF files were generated using

samtools mpileup to calculate genotype likelihoods in conjunction with bcftools call for

SNP calling. Only homozygous SNPs with a VCF QUAL value higher than 20 and at

least 20x coverage across all varieties were used.

Obtaining homologous sequences from A. tauschii

After VCF files were generated for each Watkins line, it was then necessary to determine

the genotype values of Aegilops tauschii at orthologous positions to the Watkins SNPs.

Mummer was initially used in an attempt to align the entirety of the A. tauschii genome

sequence to the D genome of the IWGSC assembly, but this approach was found to

be prohibitively slow due to the size of the sequences involved. In addition, I decided

to forgo the use of other commonly used tools for determining orthology such as Or-

thoMCL, as these are typically designed for the identification of families of orthologues

between many species, whereas here we were only dealing with two. My custom pipeline

began with the extraction of D-genome subsequences of the IWGSC assembly based on

positions that had 20x coverage across all Watkins varieties. A BLAST search of these
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subsequences was then performed against the A. tauschii genome assembly. BLAST

does not return full length alignments of query against target, but instead returns a

series of local alignments called high-scoring segment pairs (HSPs). The results of the

initial BLAST search was therefore used to identify regions in which the homologues

was most likely located. HSPs less than 7000 bp apart (a distance determined empiri-

cally) were grouped together and their average bitscore was calculated. The group of

HSPs with the highest bitscore was determined to be the homologous sequence, and

both the lowest and highest base positions of HSPs within the group were used as a

coordinate range for sequence extraction from the genome.

Supermatrix construction and inference of phylogeny using BEAST

These extracted A. tauschii sequences were then aligned to their corresponding IWGSC

query sequences using MUSCLE. The genotypes and positions of SNPs were determined

using R. Unknown genotypes (represented as “N”) and insertions (represented as “-“)

were removed from both Chinese Spring and A. tauschii sequences. Alignments with

more than a 40% difference were excluded as these were likely to be erroneous alignments

between sequences that were not truly homologous. A supermatrix containing all of the

multiple sequence alignments was then generated containing all 104 Watkins varieties

as well as Chinese Spring and A. tauschii, which would be used as input to phylogenetic

inference software. It is well known that phylogenies inferred using only SNPs without

correction for acquisition bias can lead to overestimation of the divergence between

taxa (Leaché et al. 2015); we therefore included both SNPs and invariant loci in the

supermatrix. Insertions and deletions (indels) were not included in any of the sequences

as the differences in source between sequences, namely the full genomic sequence for A.

tauschii and exome capture data for Watkins varieties may have led to a bias in the

length of indels towards A. tauschii. BEAST was used to generate the phylogeny and

estimate divergence times of each node. A strict clock model was used with a calibration

of 9,000 years for the divergence between A. tauschii and the rest of the varieties was

used. More specifically, the prior used for this calibration was a normal distribution with

a mean of 0.009 (measured in millions of years) and a standard deviation of 0.0001. This

24



date was based on the occurrence of hexaploid free-threshing wheats at Cafer Höyük

that have been radiocarbon-dated to ~8700 years ago (Nesbitt 2001).

Although not performed here, this problem could also be approached using *Beast

(Heled and Drummond 2010), which takes into account the multispecies coalescent

model (Edwards et al. 2016), inferring independent phylogenies for each gene.

Bootstrap analysis to assess reliability of inferred subclades

Whilst the phylogeny generated with BEAST allowed the dating of particular nodes,

it was also important to assess the reliability of the tree topology, as clades with low

levels of support would affect the inference of dates of divergence. To do this, a max-

imum likelihood phylogeny was also generated with IQTREE using a HKY+F model

of sequence evolution and 1000 bootstrap trees. Nodes within this tree that had low

bootstrap support values could then be disregarded from the dating analysis, whilst

nodes with higher bootstrap support would indicate that dating was more reliable.

Functional characterization of SNPs

Functional characterization of SNPs, such as whether they would result in a change in

amino acid sequence (non-synonymous mutations) or if they were silent with regards

to the amino acid sequence, was performed with Ensembl Variant Effect Predictor

(McLaren et al. 2016). The predicted effect of non-synonymous mutations on protein

function was evaluated using SIFT (Vaser et al. 2016). This assigns each mutation

a score from 0 to 1, based on how conserved the position is in homologous sequences,

with lower scores representing mutations that are more likely to be deleterious to the

organism (i.e. positions that are highly conserved in most homologues).

Estimation of the rate of novel polymorphisms in wheat

To estimate the rate at which novel polymorphisms occur during the evolution of wheat,

it was first necessary to calculate the TMRCA for each Watkins variety and Chinese
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Spring. This was done by calculating the cophenetic distance between each variety and

CS using the cophenetic.phylo() function of the APE package in R. This distance was

then divided by two to correct for the inclusion of branches leading to both the Watkins

variety and Chinese Spring in the distance value. This calculation returns the period

of time over which the observed mutations, whether non-synonymous, synonymous or

intronic, were estimated to have occurred. The rate of polymorphism can then be

calculated by dividing the number of observed polymorphisms by the time over which

they occurred, then dividing this by the breadth of sequence with the minimum coverage

threshold (20x) in the exome capture dataset to give the number of polymorphisms per

year per bp that occurred in a particular Watkins variety.

2.2.2 Comparison of Exome and Array data

PCO Analysis

Array-based genotyping data of the Watkins lines from the Axiom 35k wheat breeder’s

array (Allen et al. 2016) was obtained from CerealsDB (Wilkinson et al. 2016). To

compare the effect of exome vs array data on population genetic analysis, two methods

were used, PCO and STRUCTURE, as in (Winfield et al. 2017). For the PCO analy-

sis, pairwise genetic dissimilarity was calculated between all combinations of Watkins

varieties by dividing the total number of genotypes in common between two varieties

by the total number of genotypes. Genotypes with missing values were not included in

this calculation. This value was then subtracted from 1 to give the dissimilarity score

for each pair. Principle coordinates were calculated using the cmdscale function in R.

STRUCTURE analysis

Further to this, a STRUCTURE analysis was also performed, giving information on the

number of populations (K). STRUCTURE was automated using StrAuto (Chhatre and

Emerson 2017), which parallelizes STRUCTURE, running each iteration of K on a sep-

arate core for much faster computation. In addition, StrAuto runs StructureHarvester
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(Earl and vonHoldt 2012) as part of the pipeline, which calculates the uppermost bound

for K using the Evanno method (Evanno et al. 2005). STRUCTURE was run with

each individual represented as a diploid to incorporate heterozygosity in the analysis.

Values of K ranging from 1 to 10 were tested, with 5 repeats for each value. The ances-

try model used was admixture, which assumes that each individual inherits fractions

of its genetic composition from a combination of the K populations. A burnin length

of 10000 was used for the Markov chain, and the Markov chain was then run for 10000

iterations. CLUMPAK (Kopelman et al. 2015) was used to align STRUCTURE runs

across multiple values of K, compensating for label-switching.

2.3 Results

2.3.1 Phylogenetic analysis

Coverage of exome-capture data

15.30 Mbp of the Chinese Spring sequence had at least 20x coverage in all Watkins

samples. This equates to 1.28 % of the genomic sequences of the high-confidence gene

set included in the IWGSC RefSeq v1.0 assembly, which is 1196.52 Mb in size. To

assess the quality of the custom pipeline used to determine homologues between Chinese

Spring and Aegilops tauschii, the number of mismatching sites between all sequences

was calculated — 4% — indicating that the alignments were of high quality. The total

number of SNPs found between Chinese Spring and at least one of the other varieties,

including Aegilops tauschii, was 181043. The mean (± s.d.) number of SNPs between

lines in the Watkins collection and Chinese Spring was 5962.06 ± 887.32, whereas the

number of SNPs between A. tauschii and Chinese Spring was 131042.

Estimation of the TMRCA of Watkins lines

The time to the most recent common ancestor (TMRCA) for the clade containing the

wheat varieties, including both Watkins lines and Chinese Spring, was estimated to be

859 years (figure 2.1). The smallest TMRCA for any node in the tree was 237 years
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(varieties USSR_1990753 and Syria_1190045). This is congruent with our expectation

that the dates of divergence should be older than 1930, which is when the Watkins lines

were originally collected (Wingen et al. 2014).

In addition to the general rate of evolution between Watkins varieties, we were also

interested in examining the mutations that could potentially effect protein function,

and therefore influence phenotype. Of the 34582 high-confidence genes in the genome

that were at least partially covered by the exome capture data, 9658 contained non-

synonymous mutations in at least one of the Watkins varieties.

The functional analysis of SNPs between all Watkins varieties and Chinese Spring

revealed a total of 26438 unique non-synonymous mutations. The mean (± s.d.) number

of non-synonymous mutations per variety was 5776.53 ± 753.81. The total number of

non-synonymous mutations shared by all Watkins varieties was 105. In a pairwise

comparison of shared non-synonymous mutations between all Watkins varieties, the

mean ± s.d. number shared was 2142.58 ± 401.73. The maximum number of shared non-

synonymous mutations between any two Watkins varieties was 4895, between Watkins

1190324 from China and 1190326 from Australia. These varieties were sister taxa on

the maximum likelihood phylogenetic tree, indicating that these shared polymorphisms

were the result of shared ancestry rather than convergent evolution or the influence

of recombination and gene flow. The minimum number of shared non-synonymous

mutations between any two Watkins varieties was 1039, from Watkins 1190731 from

India and Watkins 1190698 from China. These two varieties were located in distant

clades on the maximum likelihood phylogeny.
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Figure 2.1 Phylogeny of Watkins lines showing time until most recent common ances-
tor for each node. The phylogeny was dated using a strict molecular clock, which was
calibrated using the estimated divergence of Aegilops tauschii and hexaploid wheat of
9000 years before present. Node labels indicate the location from which each line was col-
lected, as well as the Watkins number of each line in the format Location_Number. Also
included is Chinese Spring from the IWGSC reference sequence (labelled IWGSC_CS).
Scale bar indicates number of base substitutions per site.

Functional SNP analysis

The majority of the non-synonymous mutations were categorised as deleterious by SIFT

with mean ± s.d. SIFT score for all unique non-synonymous mutations among all

varieties of 0.35 ± 0.36. This trend was consistent when examining non-synonymous

mutations within varieties, with the minimummean SIFT score among all the mutations

within a single variety of 0.41 in 1190460, and the maximum of 0.46 in 1190224.

Estimation of rate of novel polymorphism accumulation in wheat

The rate of novel polymorphisms that could affect protein function was estimated by

dividing the number of non-synonymous mutations between each Watkins variety and

Chinese Spring by the respective TMRCA values for each (see methods). The mean ±

s.d. value of this calculation among all Watkins varieties was 6.72 ± 0.88. This can

then be divided by the breadth of the exome that was successfully sequenced in the

exome-capture data (15.3 Mb), giving an estimated rate of 0.44 novel non-synonymous

mutations per Mb per year. Alternatively, if the TMRCA value from the molecular clock

analysis is an underestimation of the true value, we can still provide an estimate of the

range of values that the number of non-synonymous mutations might take by using a

range of values for the TMRCA of the Watkins lines based on what is known about the

global dissemination of wheat. The minimum value for the TMRCA can be assumed

to be 8000 years, since the inception of hexaploid wheat occurred roughly 9000 years

ago. Performing the calculation with this new TMRCA estimate gives 5776.53 / 8000

/ 15.3 = 0.05 novel non-synonymous mutations per Mb per year. On the other hand,
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using a younger estimate for the TMRCA (nonetheless older than the molecular clock

estimate) of 4000 years gives a value of 5776.53 / 4000 / 15.3 = 0.09 non-synonymous

mutations per Mb per year.

2.3.2 Comparison of Exome and Array data

PCO analysis

The PCO plots revealed remarkable similarity between the exome capture and array

datasets (figure 2.2). Both plots show the same broad pattern of clusters, with the

Asian and Middle Eastern varieties separated from the European, Australian, USSR-

originating varieties along the x-axis, and the y-axis separating western European and

North African lines away from Eastern European lines. More specific patterns are also

preserved between datasets, such as the positioning of varieties 300 and 299, which in

both plots occupy their own space in between Middle Eastern and Western European

clusters around 0 on the x-axis, as well as varieties 440 and 749, which lie in between

Asian and Eastern European clusters in both plots. There are some varieties which differ

in positioning between plots, such the variety 753 from the USSR, which in the array

data clusters together with Eastern European lines at the top of the y-axis, whereas

in the exome data clusters with Asian lines along the far right of the x-axis, as well

as variety 326 from Australia, which in the array data clusters with Western European

lines at the bottom of the y-axis, whilst in exome capture data clusters with Eastern

European lines at the top of the y-axis.
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Figure 2.2 PCO plots comparing array (a) to exome capture data (b). Individual
points are labelled with their Watkins variety numeric identifiers. The y-axis on the
right plot has been inverted for visual ease of comparison. Points are coloured and
shaped by region. Represented are varieties from Asia, Australia, Europe (east), Europe
(west), Middle East, North Africa and the USSR. The plots are remarkably similar
considering the use of datasets from different labs using different methods to generate
them. For example, in each plot, varieties 300 and 299 show the same configuration in
relation to the remainder of the varieties, emerging around 0 on the x-axis.

Pairwise differences by variety in genotype values between data types

Pairwise differences in genotype values between varieties were highly correlated between
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data types, as shown in figure 2.3 (Pearson test, t = 123.94, df = 4369, p < 2-15). A

linear regression of exome pairwise differences as a function of array pairwise differences

revealed that 77.86 % of variation in the exome data was explained by the array data

(𝑅2 = 0.7786).
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Figure 2.3 Scatterplot showing pairwise distances between varieties between exome
capture data and array data. Also shown is a regression line.

Comparison of probe distribution

Probe distribution was also highly similar between the array and exome capture data

(figure 2.4). Both datasets contained peaks in numbers of probes at the start of chro-

mosome 1A. Although distribution was similar, exome capture data contained many

more probes than the array data (168440 and 35144 respectively).
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Figure 2.4 Comparison of probe distribution for chromosome 1A for exome capture
data (top) and array data (bottom).

STRUCTURE analysis

The STRUCTURE analysis also revealed a high degree of similarity between exome

capture and array datasets, as shown in figure 2.5. In both datasets, around half of the

Asian varieties have high degree of membership to the third cluster (K3), as do many of

the Middle Eastern, North African and USSR-originating lines. The other two clusters,

K1 and K2, largely correspond to Eastern and Western European lines respectively, but
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also contain varieties from the other regions. Differences between exome capture and

array datasets include Watkins line 753, which in array data has full membership to K1,

whereas in exome capture data has full membership to K3, as well as the Australian

Watkins line 326, which in array data mostly corresponds to K2, whereas in exome

capture data mostly corresponds to K1.These two lines are the same lines that were

highlighted as being different between datasets in the PCO analysis, which indicates

that the STRUCTURE and PCO methods are largely congruent in their results. The

Evanno method (Evanno et al. 2005) for determining the uppermost bound for K in

the data revealed that for the array data, the upper bound was 7, whilst for the exome

data, the upper bound was 5.
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Figure 2.5 Structure plots for K = 3, showing array (top panel) and exome capture
(bottom panel) data. WE = Western Europe, EE = Eastern Europe, U = USSR, ME
= Middle East, AS = Asia, NA = North Africa, A = Australia.

2.4 Discussion

The analyses in this chapter provide novel results covering the evolutionary history of

the Watkins landraces in terms of their divergence times. In addition, a direct com-

parison of two distinct genotyping platforms, high-density arrays and exome-capture
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systems, is performed using genotyping data from Watkins lines in a population genet-

ics context. With regards to the evolutionary analysis, the initial stage was to infer a

maximum likelihood tree to examine the reliability of the tree topology. In this tree,

many of the subclades within the Watkins clade had low bootstrap support values, in-

dicating that the fine-scale topology of the tree is unreliable. This mirrors the findings

of Gardiner et al. (2018). The implication of this is that the TMRCA values for these

subclades in the maximum-clade consensus tree produced using BEAST are not very

useful, as they do not relate to the true topology of the phylogeny. Nonetheless, we

can still use the TMRCA value for the Watkins clade as a whole as a useful benchmark

of the origin of these varieties.

The results of the TMRCA analysis itself are perplexing, in that they don’t conform to

our expectations given what is currently known about the evolutionary history of wheat

varieties. The tree inferred by BEAST along with the calibration of the molecular clock

based on the suspected divergence point of wheat and Aegilops tauschii (~ 9000 ybp),

produced an estimation of 860 ybp for the date of the most recent common ancestor

of all Watkins lines. Taking this at face value, the late divergence of Watkins lines

compared to the divergence of hexaploid bread wheat from the D genome ancestor (860

ybp compared to 9000 ybp) indicates that wheat underwent significant genetic changes

in those preceding 8200 years. This seems unlikely and is probably an underestimation

of the true TMRCA of the Watkins clade, as it is widely believed that the spread of

germplasm leading to global landraces occurred from 8000 to 2300 years ago (Balfourier

et al. 2019). Indeed archaeological evidence in the form of radiocarbon dated wheat

grains has shown that wheat was cultivated in China from at least 4000-5000 years ago

(Bonjean and Angus 2001). Whether these were the ancestors of the lines that went

on to become Chinese Watkins lines is unknown, but it seems unlikely that these lines,

adapted to local environmental conditions, would have been replaced by landraces from

elsewhere in the last 500 years, as suggested by the molecular clock analysis.

In terms of the rate of molecular evolution in total, including all SNPs (both synony-

mous and non-synonymous), BEAST had a median clock.rate parameter of 1.48, which
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measures substitution rate, equating to 1.48 substitutions per site per million years,

or 1.48−6 substitutions per site per year. This seems to be high but not completely

inconceivable, being comparable to rates of substitution in mitogenomes, which at a

high estimated are around 10−7 substitutions per site per year (Tong et al. 2018). This

high rate could perhaps be influenced by incomplete lineage sorting.

What could have caused this dramatic difference between the results and our expecta-

tions? The inference of the TMRCA may be influenced by different rates of evolution

between Aegilops tauschii and Triticum aestivum. Since T. aestivum is a hexaploid

organism, we could hypothesize that the individual sub genomes evolve faster than the

diploid genome of A. tauschii, as the increased redundancy provided by homeologous

copies of each gene reduces the impact of detrimental mutations in individual genes,

causing a reduction in stabilizing selection. This is sometimes referred to as mutational

robustness (Van de Peer et al. 2009). The calibration of the molecular clock was per-

formed by examining the number of differences in genotype between Chinese Spring

and A. tauschii, and then equating these differences to a time of ~ 9000 years, which is

thought to be when hexaploid bread wheat originated.

Following the hypothesis that these two organisms evolve at a different rate, the differ-

ences in genotype then are the result of a mixture of two evolutionary rates, the first,

slower rate, which we will name r1, operating along the branch of the phylogeny leading

to A. tauschii, and the second, faster rate, r2, operating along the branch leading to T.

aestivum. As Watkins lines are wheat varieties, they should evolve under the faster rate

given the mutational robustness hypothesis, and so any differences in genotype between

Watkins lines are the result of r2 operating along each branch leading to each respective

variety. This would lead to an inflation in the difference in genotypes between any pair

of Watkins lines when compared to A. tauschii for the same time period, and should

therefore artificially increase the TMRCA values between pairs of Watkins lines, as the

calibration of the phylogeny was based on a combination of rates r1 and r2, rather than

r2 and r2 (an equal rate of evolution in both species). Whilst the mutational robustness

hypothesis is logical, it actually predicts that the inferred TMRCA should be older
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than the true date, which is the opposite of what is observed here, suggesting that A.

tauschii actually evolved at a faster rate than the landraces of wheat. Why this is the

case is difficult to say, but it is possible that this is due to the constraints on wheat

landrace genetic diversity imposed by farming practices, whereas A. tauschii is a wild

plant free from the constraints of artificial selection. This may have allowed it to accu-

mulate more mutations than wheat landraces, outweighing the mutational robustness

that wheat varieties gained as a polyploids.

It is also possible that the results were negatively influenced by the supermatrix method-

ology, which has the simplistic assumption that every gene follows a fixed genealogy.

In reality, this is likely not the case, with genealogies being influenced by phenomena

such as genetic admixture between varieties and subsequent recombination. In addi-

tion, the varieties may be subject to incomplete lineage sorting (Edwards et al. 2016),

where genes converge at a date older than the origin of hexaploid wheat, such as if

multiple initial hybridizations occurred between the ancestors of Aegilops tauschii and

the tetraploid wheat ancestor to make multiple hexaploid founders with polymorphic D

genomes. If this ancestral standing variation was present in freely recombining regions

of the wheat genome, and therefore evenly spread between individuals where admixture

takes place, it could artificially inflate the genetic distance between the wheat varieties

and the variety of Aegilops tauschii used in this analysis, assuming these genes coa-

lesce at a date older than the speciation event. It would be interesting in future to see

whether an analysis with *Beast produces a result more in line with expectations.

In addition to the molecular clock analysis, this chapter focuses on exome capture and

array based genotyping data - how do they compare to each other in a population

genetics context? Does one provide additional information that is missing from the

other? The large hexaploid genome of wheat presents many opportunities for off-target

hybridization events in arrays and in exome capture, as both use DNA probes to target

specific regions of the genome. Does this affect e.g. array-based data more than exome-

capture data? Another factor to consider is the lack of a complete, chromosome-level

genome assembly at the time of producing one of the more popular wheat arrays, the
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35k Wheat Breeder’s array (Allen et al. 2016), and so it is likely that many of the

probe sequences are actually chimeric, containing sequences from a mixture of wheat’s

three sub genomes. This means that it is common for probe sequences to have lowest

e-value BLAST hits (or highest scoring, best hits) to sequences in a sub-genome that

is not the target of probe hybridization itself in the molecular reaction.

The population genetics analysis as a whole, including both STRUCTURE and PCO

analysis, show that these factors are not overly impactful on array-based data, as the

array and exome capture results were highly similar, both in their broad scale patterns,

e.g. the separation of varieties by region along the axes of the PCO plots (figure 2.2),

as well as in the minute details, such as the placement of Watkins varieties 300 and

299 (figure 2.2). It is clear then that both array and exome capture data contain much

of the same information in a population genetics context even though the array data

contained fewer SNPs. This is because a large number of SNPs in the exome capture

data are likely to exhibit a high degree of linkage disequilibrium, whereas the SNPs on

the array were curated to contain a high degree of genetic information across varieties

by selecting those with the highest polymorphic information score.
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3 Detecting a shift in recombination distribution

using high-density genotyping data

The results described here regarding the effects of temperature on recombination dis-

tribution and frequency have been published in the following manuscript:

Coulton, A., Burridge, A., Edwards, K. 2020. Examining the effects of temperature on

recombination in wheat. Frontiers in Plant Science

Genotyping was performed by Burridge, A. Temperature treatments were performed

by Edwards, K.

3.1 Introduction

Meiosis is a specialised type of cell division that leads to the production of haploid

gametes. A key feature of meiosis is the process of recombination, where parental

genetic material is shuffled together to create chimeric chromosomes, somewhat akin to

shuffling a pack of playing cards. Recombination is crucial to the evolution of species,

facilitating the spread of beneficial combinations of alleles whilst allowing unfavourable

ones to be reduced in the population (Wilkins and Holliday 2009). In addition to

its role in the formation of natural populations, meiosis is also exploited in agriculture,

where breeders cross different varieties of crops or animals together to produce offspring

with a mixture of both parental phenotypic traits (Acquaah 2007). This principle has

previously been exploited to produce dramatic yield increases in staple food crops, such

as during the green revolution, in which short-stemmed Japanese wheat varieties were

crossed with high-yielding American varieties (Russell 1985). This resulted in plants

that were less susceptible to lodging (Rajikumara 2008).

The process of recombination occurs during prophase I of meiosis, preceded by DNA

replication in S phase. In addition to the shuffling of parental DNA, recombination

is also essential to the mechanics of meiosis, both serving to bind homologs together

into bivalents and also ensure their correct segregation (Zickler and Kleckner 2015).
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Bound homologs impart tension on the meiotic spindle during their alignment along

the equator of the cell, triggering chromosome disjunction at anaphase (Zickler and

Kleckner 2015). Initially, each pair of sister chromatids is linked together by a lin-

ear protein axis from which DNA extends in loops, known as the leptotene subphase

of prophase I. During this phase, telomeres cluster together at the nuclear envelope

to form a structure known as the bouquet. The respective axes of each pair of ho-

mologs will go on to become the lateral elements of the synaptonemal complex (SC),

a tripartite, ladder-like structure, visible cytologically, that enables the formation of

bivalents through synapsis of homologous chromosomes, formed during the zygotene

subphase. The lateral elements are joined together along their lengths by transverse fil-

aments. Once the synaptonemal complex is in place, non-sister chromatids are within

close proximity to each other within the cell, allowing the process of recombination

to begin. Recombination is initiated through the formation of double-stranded breaks

(DSBs) in the DNA via the topoisomerase-like protein SPO11 (Neale and Keeney 2006).

Individual DNA strands are then resected, generating overhanging 3‘ tails. Strand in-

vasion of the non-sister chromatid can then occur, forming a Holliday junction, or a

formation in which non-sister chromatid DNA strands are physically crossed over each

other. At this stage, various recombination-intermediate molecules are possible, each

associated with a different outcome. Double Holliday junctions, formations in which

the non-sister chromatid DNA strands cross each other twice, result in crossover (CO)

events, visible cytologically as chiasmata, producing hybrid DNA molecules composed

of long stretches of DNA from each progenitor molecule / parent (illustrated in figure

3.1). In contrast, when only a single Holliday junction is formed, no crossover occurs,

the recombination-intermediate instead being resolved with only a short stretch of DNA

exchanged between the non-sister chromatids, known as a gene conversion. The ratio of

DSBs to CO events is high, with only a minority of DSBs resulting a CO. In addition,

when a CO is formed it prevents further COs occurring in its vicinity, a phenomenon

known as crossover interference. Also possible is a non-crossover (NCO) event, where

neither a gene conversion or a crossover event results from the DSB (Filippo et al.

2008).
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Figure 3.1 Diagram illustrating the process of recombination between non-sister chro-
matids during meiosis, adapted from (Marston and Amon 2004). DNA synthesis is
denoted by the colour red, whilst 3 prime ends are denoted by half-arrows. (a) Spo-11
creates a double stranded break in the DNA, which is then resected at the 5 prime ends
to reveal short overhanging 3 prime tails. (b) One of the overhanging tails begins the
process of strand invasion, forming an unstable interaction that can take one of two
paths, the first leading to a crossover (CO) event (right) and the second leading to a
noncrossover (NCO) event. (c) In the path leading the non-CO event, DNA synthesis
begins on the invading strand but the strand is ejected from the non-sister chromatid.
Following this, DNA synthesis and ligation of the invading strand to its original location
occurs. (d) In contrast to this, in the CO pathway, the interaction between non-sister
chromatids is stabilised to form a single-end invasion (SEI) intermediate, which con-
tains a single Holliday junction. DNA synthesis then occurs from the 3 prime tails,
after which they are annealed to their original location, but with the strands in the
formation of a double Holliday junction (DHJ). The DHJ proceeds to be nicked at the
positions indicated by arrows and recombinant DNA molecules are formed.
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Whilst recombination has previously been harnessed to great effect by breeders, its

utility is limited in important staple food crops such as wheat (Saintenac et al. 2009;

Choulet et al. 2014), maize (He et al. 2017) and barley (Higgins et al. 2014). The

distribution of recombination events in these crops is strongly skewed towards the distal

ends of the chromosomes, with little to no crossovers occurring in the region surround-

ing the centromere, known as the pericentromeric region (Zelkowski et al. 2019). This

contrasts with Arabidopsis, in which the distribution of COs is much more uniform,

with only the centromeric region showing highly reduced numbers of COs (Giraut et al.

2011; Choi et al. 2013). With the advent of a chromosome-level genome assembly for

wheat Consortium (IWGSC) et al. (2018), it is now known that genes are distributed

somewhat evenly along the chromosomes, with many potentially important genes be-

ing found in the pericentromeric region. The limitation in recombination distribution

therefore creates a problem for breeders, as it is not possible to break up large central

linkage blocks. A central area of current research in crops is to examine the cause of this

skewed recombination distribution and, following this, to try and implement measures

to induce recombination in the pericentromeric region (Higgins et al. 2012a; Phillips

et al. 2015).

Much of the salient research on recombination distribution in cereals has been per-

formed in barley (Higgins et al. 2012b; Phillips et al. 2015), Hordeum vulgare, a

diploid member of the pooideae subfamily of poaceae, the grasses. The two primary

avenues with which to investigate this are cytologically, making extensive use of fluo-

rescent staining in various forms (Higgins et al. 2012b), as well as genetically via SNP

genotyping of mapping populations (Phillips et al. 2015). Cytological analysis includes

immunofluorescence and fluorescence in situ hybridization (FISH), the former making

use of fluorescent antibodies targeted at homologues of proteins that have been shown

to be part of the meiotic apparatus in Arabidopsis thaliana, and the latter utilizing

labelled DNA probes to target specific regions of the DNA. Notable among these anti-

bodies are Arabidopsis asynaptic 1 (ASY1), associated with the linear axis formation,

and therefore the early stages of synaptonemal complex formation during the G2 phase

of meiosis (Higgins et al. 2012b), as well as the Arabidopsis SC transverse filament
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protein zipper 1 (ZYP1), which allows the monitoring of synapsis. The research in

(Higgins et al. 2012b) is of special interest as it presents data that forms the beginning

of one of the only mechanistic explanations of the distal distribution of recombination

events in crops. By using a telomere FISH-labelled probe in conjunction with ASY1

and ZYP1 antibodies it was found that early synaptonemal complex formation, and

hence chromosome synapsis, exhibits a spatiotemporal bias towards the distal ends of

the chromosomes. As meiosis proceeds, ASY1 and ZYP1 fluorescent signals extend from

the subtelomeric regions to the interstitial regions of the chromosomes. In addition, an

antibody for the MutL homolog MLH1, which is involved in the resolution of double

Holliday junctions and therefore marks CO sites, was used in conjunction with ZYP1.

The authors suggest that at a temperature of 22°C, MLH1 primarily occurred in the

distal / subtelomeric regions of the chromosomes. They did not perform a stain that

utilized the telomeric FISH-labelled probe in conjunction with the MLH1 antibody, so

this distal localization of MLH1 must be inferred from previous experiments that show

colocalization of ZYP1 and the telomere probe in early prophase.

Overall, these experiments suggest that the distal distribution of recombination events

is primarily due to the spatiotemporal bias of chromosome pairing and synapsis to the

distal regions of the chromosomes, facilitating preferential crossover formation these

regions. The authors further hypothesized that crossover interference (Broman et al.

2002), the phenomenon in which one CO prevents further COs from forming in its

vicinity, could be one of the factors that prevents further CO formation in the pericen-

tromeric region (Higgins et al. 2012a). This is not a recent hypothesis, being suggested

as early as 1993 in a study utilizing C band polymorphism between varieties to assess

recombination distribution (Lukaszewski and Curtis 1993). The immediate question

that follows from this is: why does chromosome pairing and synapsis occur first in the

distal regions of the chromosomes? Interestingly, in a study of rye chromosome 1R

(Lukaszewski 2008), which usually has a distal distribution of recombination events, an

inversion of the long arm resulted in chiasmata proximal to the centromere, indicating

that chiasma formation is not dependent on physical position along the chromosome,

but rather some property of individual chromosome segments themselves, whether that

47



be genetic, epigenetic, or due to the chromatin composition of segments.

Factors shown to be influence meiotic recombination range from internal, genetic factors,

such as the FANCM gene, which limits meiotic crossovers in Arabidopsis Crismani et

al. (2012), to external stresses such as soil magnesium content (Rey et al. 2018)

and environmental temperature (Jain 1957; Loidl 1989). Temperature has recently

been examined more thoroughly in barley with particular focus on its effect on the

distribution of COs (Higgins et al. 2012a; Phillips et al. 2015). Cytological analysis of

meiocytes revealed a small but significant reduction in mean chiasma frequency between

meiocytes grown at 22°C and 30°C, as well as significantly more interstitial chiasmata

for chromosome 5H when grown at 30°C compared to those grown at 22°C (Higgins et

al. 2012a). Further research attempted to expand on these results by utilizing SNP

genotyping of a mapping population in addition to cytological analysis (Phillips et al.

2015). This method has the potential to provide a more precise evaluation of how

large the shift in distribution of recombination events in response to temperature is,

expanding on the categorical assignment of recombination events to either “distal” or

“interstitial” positions in analysis of cytological data, as well as revealing the genes that

are effected by a shift. Unfortunately, the authors did not perform a statistical analysis

of the distribution of events in their SNP data, which was not made available for public

use. In addition, they did not identify individual chromosomes in their cytological data

(Phillips et al. 2015). It is therefore difficult to compare the two studies for consistency

in results; these limitations of the literature provide the incentive to explore this topic

further.

Existing research in wheat suggests that high temperatures prevent normal meiotic

progression and therefore reduces the fertility of plants, with nullisomic lines identifying

5D as one of the chromosomes effecting temperature sensitivity (Draeger and Moore

2017). However, there has yet to be a detailed analysis of the effects of temperature

on recombination distribution in wheat. Here we have utilized a high-density SNP

genotyping array (Allen et al. 2016) and four F2 mapping populations of an Apogee X

Paragon (A x P) cross, each subjected to a different temperature during meiosis (10°C,
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14°C, 26°C and 28°C respectively), to examine whether wheat behaves in the same way

as barley, and to assess the utility of any shift in distribution to breeders.

Recombination is known to be influenced by external factors such as temperature in

many organisms, but are there internal factors also involved, such as particular loci in

the genome? It is possible to extract the recombination frequency of each genotyped

individual in a mapping population by examining changes in the phase of parental geno-

types between clustered, ordered markers in a genetic map. This can then be used as

a phenotype in QTL analysis, allowing potential loci involved in the determination of

recombination frequency to be identified. Several recombination frequency QTL have

already been identified in this manner (Wingen et al. 2017; Gardiner et al. 2019). In

addition, it is also possible to extract the distribution of recombination events as a

phenotype. So far this has been attempted by dividing the chromosomes into sections

comprising the distal (1/3 of chromosome arm away from the centromere) and peri-

centromeric (2/3 of chromosome arms nearer the centromere) regions and counting the

number of events in each (Jordan et al. 2018). In this study, we analyse several map-

ping populations, including Chinese Spring X Paragon, Apogee X Paragon, Avalon X

Cadenza, Opata X Synthetic, Rialto X Savannah, Paragon X Watkins 49 and Paragon

X Watkins 94 to try and identify QTL involved in both frequency and distribution of

recombination events. For our recombination distribution phenotype we use a different

method to the one already mentioned, in which we assign markers positions in the

physical wheat genome assembly (Consortium (IWGSC) et al. 2018). We then take

the average distance of recombination events from the centre (50% mark) of the chro-

mosome and use this as the phenotype for each individual for each chromosome. We

hope that this will allow a more precise estimation of the genetic effects of parental

alleles on recombination distribution.

Although putative QTL have been identified effecting recombination frequency in wheat,

their phenotypic effect is often limited, with a QTL in a Chinese Spring X Paragon

population only explaining 6.037% of phenotypic variance (Gardiner et al. 2019). This

presents the question: how much genetic variation is there between meiotic genes in
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wheat, and is there potential to modify recombination distribution and frequency simply

through coordinated breeding of particular varieties? Here we perform a phylogenetic

analysis of four wheat varieties and a close relative of wheat, barley, including two gene

sets from the IWGSC RefSeq v1.0 genome assembly. The first contains homologues

of genes that have been functionally characterised to be involved in recombination in

Arabidopsis (Alabdullah et al. 2019), whilst the second contains a random selection of

5000 genes. We construct a phylogeny based on a superalignment of these genes to test

the hypothesis that meiotic genes are generally more conserved than a random selection

of genes due to stabilising selection.

3.2 Materials and Methods

3.2.1 Plant cultivation and temperature treatments

F1 seed from a Paragon X Apogee cross were obtained from Dr Peter Jack at RAGT

Seeds Ltd. These were randomly separated into four populations and grown initially in

uniform conditions. Plants were grown in pots filled with peat-based soil and kept in a

glasshouse at 15-25 °C with 16-h light, 8-h dark. Plants were deemed to be undergoing

meiosis when the base of the stem showed visible swelling due to the growth of the

developing head within the flag leaf sheath, often referred to as the ‘booting’ stage of

development (Barber et al. 2015). At this point, they were transferred to temperature-

controlled cabinets at 10 °C, 14 °C, 26 °C & 28 °C respectively for around 3 weeks. They

were then transferred back to the glasshouse to avoid effects of temperature on pollen

tube development. Seeds were then harvested from each of the populations. Leaf-tissue

was harvested from F2 plants 12-14 days post-sowing, when the plants were at an early

seedling stage. The sizes of the F2 populations were 80, 75, 70 and 78 individuals for

temperature treatments of 10°C, 14°C, 26°C and 28°C respectively. DNA was extracted

following the protocol in (Pallotta et al. 2003) with minor modifications.
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3.2.2 Sample genotyping

DNA concentration was assessed using a Qubit 2.0 Fluorometer and was the normal-

ized to 23 ng / µl ready for analysis with the Axiom® Wheat Breeder’s array (Allen

et al. 2016). Sample preparation for array genotyping was performed with the Beck-

man Coulter Biomek FX. Samples were then genotyped using the Axiom® 35K Wheat

Breeders array in conjunction with the GeneTitan® using standard Affymetrix proto-

cols (Axiom® 2.0 Assay for 384 samples P/N 703154 Rev. 2).

Axiom Analysis Suite (version 3.1.51.0) was used to assign genotype calls. Of the 6536

polymorphic SNPs between the two parental varieties present on the array, 2504 codom-

inant SNPs of highest quality were selected through visual inspection of each cluster

plot. Only markers with a clear delineation between genotyping clusters representing

homozygotes for the Apogee allele, heterozygotes and homozygotes for the Paragon al-

lele were used, and borderline markers were recoded as no-calls as a precaution against

genotyping errors that could affect the recombination analysis. A custom R script was

used to assign genotype calls to parental varieties, such that an “A” genotype repre-

sented an allele from Apogee, whilst a “B” genotype represented an allele from Paragon

(supplementary file 1).

3.2.3 Genetic map construction

Data from all four populations was amalgamated and used for initial genetic map con-

struction using MultiPoint Complete (version 4.1). Markers exhibiting large segregation

distortion (�2 > 20), low informativity (LOD < 7), and large amount of missing data

were removed from dataset before proceeding with genetic map construction. Multi-

Point first performs binning of markers that have the same genotype across all individ-

uals. These bins or “skeleton markers” are then clustered based on an initial threshold

recombination fraction, in this case 0.2, which was iteratively increased up to a value

of 0.34. After clustering, the markers were ordered in MultiPoint using a guided evo-

lutionary strategy optimization algorithm (Mester et al. 2015) in conjunction with a
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jackknife resampling strategy to remove any markers that caused unstable regions in

the marker order. Genetic distances of markers were estimated from recombination

fractions using the Kosambi mapping function.

Only the skeleton markers in this initial genetic map were retained, as these are the

only informative markers for evaluating recombination events. The cluster and order-

ing information from this initial genetic map was applied to the genotyping data from

each of the four populations. Assignment of chromosomes to linkage groups was per-

formed both by comparison of linkage groups to previous marker assignments based on

nullisomic lines Winfield et al. (2016), as well as BLASTN searches of probe sequences

to the IWGSC RefSeq v1.0 assembly Consortium (IWGSC) et al. (2018), hereafter

referred to as the IWGSC assembly. In all cases, only BLAST hits with an e-value

smaller than 10-19 were used. Four further genetic maps were then generated, one

for each population, retaining the same clustering and ordering information from the

first map, using the quickEst function in the R package ASMap (version 1.0-2) (Tay-

lor and Butler 2017). This allowed comparison of recombination distribution between

temperature treatments using centimorgan values of markers. To verify the quality of

the genetic maps, we performed a comparison with the Apogee X Paragon F5 map

produced by Allen et al., (2016). As these maps both involve the same parental va-

rieties, they should show close resemblance in their clustering of markers, and should

also approach colinearity in their ordering of markers, allowing for small perturbations

that may be caused by genotyping error or missing data (Hackett and Broadfoot 2003;

Wu et al. 2008).

3.2.4 Detection and processing of recombination events

Recombination events were detected by a change in genotype between consecutive mark-

ers in the genetic map. Transitions from a homozygous allele for one parent to a ho-

mozygous allele for the second parent were scored as two recombination events, as these

would have required recombination to occur in this position in both of the gametes that

formed the zygote. With the inference of recombination events from SNP data, geno-
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typing error has the potential to erroneously inflate the number of events observed.

The magnitude of this effect depends on both where the genotyping error occurs and

what the erroneous assignment is, either homozygous or heterozygous. For instance, let

us consider three markers used to genotype a single individual, M~1, M~2 and M~3.

If the genotypes of the markers are A, A, A, (i.e. homozygous for the allele from the

first parent) and M2 erroneously changes to B (i.e. homozygous for the allele from the

second parent), in an F2 individual, this would indicate that four recombination events

have occurred. In order to compensate for potentially erroneous genotypes, genotypes

conforming to this three marker scenario where M1 and M3 are within 30 Mb of each

other were recoded as no-calls.

3.2.5 Statistical method of detecting differences in recombination distribu-

tion between temperature treatments

To test statistically whether there was a shift in distribution of recombination events

between treatments, it was necessary to take the mean distance of all recombination

events within an individual from the centromere of the chromosome, which we will refer

to henceforth as the mean recombination distance (MRD). Positions of centromeres were

based on previously published ChIP-seq data for centromere specific histone 3 (CENH3)

Consortium (IWGSC) et al. (2018), whilst the position of each recombination event

was taken as the midpoint between the two markers exhibiting the genotype change.

Recombination events cannot be tested individually as events within a sample are not

independent. For example, if two recombination events occur on the same chromosome

during a single meiosis, the position of the second event is likely to be influenced

by the position of the first due to crossover interference. In SNP data derived from

mapping populations, individuals are a product of two meioses, one for each gamete that

contributed to the formation of the individual. It is not possible to assign recombination

events to one or the other meiosis, and it is therefore not possible to determine which

events may have been influenced by crossover interference. For example, if we observe

two events at 2% physical distance either side of the centre, and a third event 10%
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physical distance from one of the telomeres, we know that it is very unlikely that the

two central events occurred in the same meiosis, but we do not know which of them

comes from the same meiosis as the distal event. Using individual recombination events

then in our statistical analysis could cause conflation of the effects of the treatment,

e.g. external temperature during meiosis, on recombination distribution with the effects

of crossover interference.

In addition, since wheat chromosomes are not metacentric, with a mean ± s.d. cen-

tromere position of 40.5 ± 6.14 % of the physical sequence for each chromosome Consor-

tium (IWGSC) et al. (2018), we partitioned our measurement of MRD between chromo-

some arms. Previous work suggests that crossover interference in wheat is strongest at

distances smaller than 10 cM, which in addition to the distal distribution of recombina-

tion events in wheat, should preclude strong inter-arm effects of crossover interference.

MRD was measured in units of percentage physical distance along chromosome arms.

The consequences of using an average measure of recombination distribution rather

than examining individual events is that groups of events between two individuals with

the same mean position but different spreads or variances are indistinguishable. This

means that the measure might fail to capture extreme shifts in position of recombination.

Nevertheless, we felt that it was better to use a conservative measure of recombination

distribution, rather than one that was based on individual events and would perhaps

be more susceptible to error. Extreme shifts that are not captured by MRD would still

be visible when plotting the genetic maps from each treatment and comparing them.

The analysis of recombination distribution was performed using physical distances of

markers along the IWGSC assembly as determined by BLAST. This allows us to relate

shifts in distribution to genomic features such as genes. Wheat has a recombination

distribution that is biased towards the telomeric regions of the chromosomes. This

being the case, it was necessary to ensure that genetic map representations of the

chromosomes had sufficient marker coverage to detect potential shifts away from the

telomeric regions towards the centromeres. To do this, we defined anchor points along

the chromosome at 0, 25, 50, 75 and 100 (% physical distance). We then identified the
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nearest marker to each of these anchor points. If the distance between any of the anchor

points and their nearest markers was greater than 25, the chromosome was excluded

from the analysis. So for example, if a chromosome consisted of markers at 40, 50, 60,

70, and 80%, it would be excluded as the nearest marker to the first anchor point (0),

is 40, which is more than 25% away, precluding the analysis of recombination events

at that end of the chromosome. In addition to ensuring adequate coverage, it was also

necessary to ensure that the order of markers in the genetic maps and the physical

map were concordant, as a discordant order could bias our analysis of recombination

distribution. To do this, the longest increasing subsequence of physical positions of

markers was taken for each chromosome, and all markers not included in this sequence

were removed.

3.2.6 Examination of the influence of genotyping error

The data was also examined for other potential factors that could cause differences in

MRD between temperature treatments. Genotyping error can be assessed with stan-

dard quality control variables produced by Axiom Analysis Suite, such as dish QC,

which is based on the contrast between probe hybridization signals at non-polymorphic

genome locations, and QC call rate, which measures the call rate of a subset of probes

for a particular sample (Affymetrix 2015). To assess whether genotyping error influ-

enced recombination distribution, linear regressions were performed against these two

variables using MRD as the predictor.

3.2.7 Examination of the influence of sample size

Another possible explanation for any observed shifts in MRD is that the sample sizes

of the mapping populations used were too small. The distribution of recombination

events may appear to be skewed towards the centromeres simply due to sampling error,

i.e. if we happened to produce individuals that had more centromere-proximal events

and were not observing the true value of MRD in the population. To test whether

55



this was the case, we utilized simulated genotyping data from PedigreeSim (Voorrips

and Maliepaard 2012). This performs a detailed approximation of meiosis including

the formation of bivalents, chiasmata, and meiotic divisions for a specified population

structure. 200 genotyping datasets were produced, each containing an F2 mapping

population of 500 individuals. These had a marker distribution based on chromosome

3B from the Apogee X Paragon F2 genetic map produced here. Further datasets with

sample sizes of 250, 100 and 30 individuals were then created by randomly subsetting

the original 200 datasets. For each sample size, 100000 random combinations of four

datasets were generated. We then performed a Kruskal-Wallice test on MRD across the

whole chromosome, for every combination, for every sample size, examining whether

there was an increasing number of significant tests as sample size decreased, which

would indicate that sample size has an influence on MRD.

3.2.8 QTL analysis

QTL analysis was performed using the R package rQTL. Marker LOD scores were

calculated using the extended Haley-Knott method, and the LOD threshold for signifi-

cance was calculated though permutation of phenotypes relative to the genotype data,

using 1000 permutations. LOD scores were restricted to the markers themselves, with

no imputation of genotypes between markers. To account for the testing of multiple

phenotypes, a second significance threshold was also calculated which was the initial

threshold after Bonferroni correction at p < 0.05. Where multiple QTLs were detected

for the same phenotype in this initial single QTL model, QTLs were combined into

a multi-QTL model to examine the combined effect on phenotype as well as any po-

tential QTL interactions. The recombination frequency phenotype was calculated by

examining the genetically clustered and ordered genotyping data for changes in geno-

type between consecutive markers. For example, consider three markers, M1, M2, and

M3, with genotypes A, A and B respectively. We can infer that a recombination event

has occurred between markers two and three. If this is an F2 population, this would

be considered as two recombination events as recombination would need to occur in
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both gametes for a transition from being homozygous for the allele from the first par-

ent to homozygous for the allele for the second parent. Likewise, a transition from

heterozygous to homozygous would be considered as one recombination event in an F2

population. For the recombination frequency phenotype, genotype data was did not

undergo the same filtering as for the recombination distribution phenotype (i.e. taking

the subset of markers consisting of the longest increasing subsequence of physical po-

sitions relative to the physical genome assembly), as in this case it is not necessary to

have strict concordance with the IWGSC RefSeq v1.0 physical genome assembly.

Several populations were used in the QTL analysis, including Paragon X Watkins 49

and Paragon X Watkins 94, obtained from (Gardiner et al. 2019), as well as Opata

X Synthetic, Chinese Spring X Paragon, and Apogee X Paragon, all of which are late

filial-stage (> F4) single seed descent populations; described in (Allen et al. 2016).

3.2.9 Phylogenetic analysis

The aim of the phylogenetic analysis was to determine whether genes involved in meio-

sis are generally more conserved among wheat varieties than most other genes in the

genome. Genes potentially involved in meiosis were taken from (Alabdullah et al. 2019),

who searched for orthologues of 103 functionally characterized meiotic genes in model

plant species. A random sample of 4600 genes from the genome was used as a compar-

ison gene set. Homologues of these genes were then obtained from genomes of other

wheat varieties, as well as the barley genome to provide an idea of the evolution of these

genes in a more distantly related grass species. Genome sequences of wheat varieties

Robigus, Paragon, Cadenza and Claire were obtained from the Grassroot genomics web

page (http://www.earlham.ac.uk/grassroots-genomics); the genome for Chinese Spring

was the IWGSC RefSeq v1.0 (Consortium (IWGSC) et al. 2018); the barley genome

was obtained from (Mascher et al. 2017). To obtain homologues from these genomes, a

strategy using BLAST was chosen over bioinformatics packages formally used to map

CDS sequences to genomic sequences, e.g. Exonerate (Slater and Birney 2005), GMAP

(Wu and Watanabe 2005) and genBlastG (She et al. 2011), as these programs were
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found to be prohibitively slow in producing alignments.

First, BLAST searches of genomic sequences for meiotic genes extracted from the

IWGSC assembly against genomic sequences from other samples were performed with

default settings, with the -culling_limit parameter set to 10. BLAST does not return

full length alignments of query against target, but instead returns a series of local

alignments called high-scoring segment pairs (HSPs). The results of the initial BLAST

search was therefore used to identify regions in which the homologues was most likely lo-

cated. HSPs less than 7000 bp apart (a distance determined empirically) were grouped

together and their average bitscore was calculated. The group of HSPs with the highest

bitscore was determined to be the homologous sequence, and both the lowest and high-

est base positions of HSPs within the group were used as a coordinate range for sequence

extraction from the genome. Once all sequences were extracted, a multiple alignment of

genomic sequences was produced using MUSCLE (Edgar 2004), and the exonic regions

of the Chinese spring sequence was determined using the GFF3 file containing exon

coordinates for each gene. These exonic regions were assumed to be the exonic regions

for all sequences. A new multiple alignment was then produced containing only exonic

sequences.

To assess the amount of evolution that had occurred for each gene among samples,

IQTREE was used to produce gene trees. IQTREE was used with default settings, and

therefore for each gene tree inference, an AIC test was performed to identify the best

model of sequence evolution.

3.2.10 Gene distribution analysis

In the analysis of recombination with respect to gene distribution, genes were taken from

the high-confidence annotation of the IWGSC assembly v1.0 (Consortium (IWGSC)

et al. 2018). Centromeres were marked according to ChIP-Seq data (Consortium

(IWGSC) et al. 2018). Where more than one region was specified, the region that

correlated with the highest peak of transcriptome element families Cereba and Quinta

was taken as the position of the centromere.

58



3.3 Results

3.3.1 Gene distribution analysis

Whilst the distribution of recombination events is mainly towards the distal ends of

the chromosomes (figure 3.2), the distribution of genes is much more even along the

chromosomes (figure 3.3). There are also many more genes than probes on the Axiom

35k array. This effect differs among sub-genomes, with the D genome having fewer

probes compared to genes than the other genomes (figure 3.3).
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Figure 3.2 Recombination maps for a Chinese Spring X Paragon F5 mapping popu-
lation. Positions of centromeres are marked by vertical black lines, as determined by
ChIP-Seq data (Consortium (IWGSC) et al. 2018). Recombination is mostly absent in
regions surrounding the centromeres. Marker positions are denoted by circles. Chromo-
somes have been selected based on overall marker coverage, whilst markers have been
filtered, selecting the longest increasing subsequence of markers that are concordant
between genetic and physical maps.
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Figure 3.3 Comparison of gene and probe distribution in wheat. The left column shows
the distribution of high-confidence genes along each of the chromosomes of the IWGSC
RefSeq v1.0 wheat genome assembly, whilst the right column shows the distribution of
Axiom probes from the wheat breeder’s 35k array along the genome.
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3.3.2 Apogee X Paragon Results

Processing the data for concordance between genetic and physical maps

To analyse potential changes in recombination distribution between temperature treat-

ments, it was first necessary to select only the chromosomes that had a sufficient marker

distribution to detect an inward shift in recombination distribution. We found that

chromosomes 1A, 2A, 2D, 3A, 3B, 4A, 5A, 6B, 7A and 7B met our criteria for marker

distribution (figure 3.4). These chromosomes contained a total of 444 markers in the

initial genetic map prior to any filtering. 870 of these markers had valid BLAST hits to

the IWGSC assembly and could therefore be assigned physical positions (figure 3.5a);

the remaining markers were discarded. Markers were then filtered further: any markers

that had a discordant order between the genetic and physical maps were removed (figure

3.4b), leaving 442 markers, or 44.2 ± 12.15 (mean ± s.d.) markers per chromosome for

further analysis (supplementary file 2). We will refer to this map as the filtered genetic

map. Overall marker distribution was generally preserved during this stage, although

the number of markers immediately adjacent to the centromere for chromosomes 2A

and 6B was noticeably reduced (figure 3.4b). The mean ± s.d. distance between mark-

ers (Mb) was 8.9 ± 26.4, 17.33 ± 48.5, 24.39 ± 62.64, 20.58 ± 42.2, 15.78 ± 44.34,

10.71 ± 33.35, 13.4 ± 22.58, 20.69 ± 46.89 and 17.3 ± 39.21 for chromosomes 1A, 2A,

2D, 3A, 3B, 4A, 5A, 6B, 7A and 7B respectively. Marker density was generally highest

at the distal ends of the chromosomes with a drop in the number of markers in regions

surrounding the centromeres (figure 3.4).
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Figure 3.4 Marker distribution for chromosomes that passed our filtering criteria. (a)
Marker distribution before removal of markers with discordant order between genetic
and physical maps via the longest increasing subsequence. (b) Marker distribution after
removal. Vertical lines represent the entirety of the length of each chromosome, taken
from the IWGSC assembly, whilst points represent the positions of markers. Horizontal
red lines mark the position of the centromere on each chromosome.
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Performing comparisons with previously generated F5 Apogee x Paragon

map

Of the 2503 markers selected from Axiom Analysis Suite for the F2 A x P genotyping

data produced here, 1563 were present in the final F5 A x P genetic map produced in

Allen et al., (2016). For comparison to the F5 A x P map, the filtered F2 map was

used due to its importance in subsequent analyses such as assessing MRD. Clustering

between genetic maps was highly consistent; none of the linkage groups from the F2

map contained markers that were present in a linkage group that was identified as a

different chromosome in the F5 map (table 3.1). To test the concordance of marker

distribution and order between maps, linear regressions for each chromosome were per-

formed predicting the genetic position (cM) of a marker in the F5 map based on the

position of the marker in the F2 map. All were highly significant (p < 10-16 for all

chromosomes after Bonferroni correction), with over 96% of the variation in the F5

position being explained by the F2 position for every chromosome tested (figure 3.5).

Chromosomes 1A, 2D, 3B, 4A, 5A and 7B had perfectly colinear marker bins between

maps. In the six cases where marker order did differ between maps, in chromosomes

2A, 3A, 6B and 7A, it did so in adjacent pairs of markers contained within very small

centimorgan windows: the mean ± s.d. distance (cM) between these inverted pairs of

markers was 0.33 ± 0.25 cM. This was expected; it is well known that small genetic dis-

tances between markers can influence map ordering algorithms (Hackett and Broadfoot

2003).
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Table 3.1 Comparison of clustering of markers between the F2 Apogee X Paragon genetic map generated here and the F5
map generated previously. The first column indicates the linkage group / chromosome from the F2 genetic map, whereas the
subsequent “LG” columns indicate linkage groups that share markers with this F2 linkage group. Columns labelled “Num.
markers” indicate the number of markers shared between linkage groups. The final column indicates the number of markers in
the F2 linkage group that were not present in the F5 genetic map.

A x P F2

LG

A x P F5

LG 1

A x P F5

Num

Markers 1

A x P F5

LG 2

A x P F5

Num

Markers 2

A x P F5

LG 3

A x P F5

Num

Markers 3 Not present

1A 1A 44 - - - - 12

2A 2A 24 - - - - 19

2D 2D 12 - - - - 13

3A 3A 28 - - - - 8

3B 3B 35 - - - - 12

4A 4A 34 - - - - 12

5A 5A 34 5A2 11 - - 22

6B 6B 39 - - - - 12

7A 7A 19 7A3 2 - - 11

7B 7B 27 - - - - 12
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Examining the effect of temperature on recombination distribution

To test whether there was a significant difference in the distribution of recombination

events between temperature treatments, the mean recombination distance (MRD; see

methods) was calculated for each individual in each treatment. We first examined MRD

for all chromosomes at once to see if there was a genome-wide effect of temperature

on recombination distribution. In the Apogee X Paragon F2 populations, a Kruskal-

Wallice test of the MRD in the long arms of all chromosomes reveals a highly significant

difference between all four temperature treatments (10°C, 14°C, 26°C and 28°C) (�2 =

25.63, d.f. = 3, p < 0.0001). Likewise, this test was highly significant for the short arms

(�2 = 12.13, d.f. = 3, p < 0.007). Similarly, pairwise 2-sample Kolomogorov-Smirnov

tests for differences in distribution between each treatment combination were significant

for all combinations except the comparison between 10°C and 14°C, 26°C and 28°C in

the short arms, as well as 10°C and 14°C in the long arms.

Temperatures 10°C and 14°C showed evidence of a more distal distribution of recom-

bination events compared to 26°C and 28°C, with mean ± s.d. MRD values (units are

percentage of chromosome arm) of 73.7 ± 15.2, 74.34 ± 15.56, 70.19 ± 18.75 and 70

± 18.03 respectively for long chromosome arms (figure 3.6), and values of 81.48 ± 13.6,

81.19 ± 14.24, 77.87 ± 17.52 and 77.99 ± 16.69 for short chromosome arms (figure 3.6).
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Figure 3.5 Comparison of marker order and distribution between the filtered F2
Apogee X Paragon genetic map and the F5 genetic map produced by Allen et al. (2016).
Points represent markers and their genetic positions (cM) in the respective maps. Some
of the markers present in the F2 map are not present in the F5 map due to a differ-
ence in marker selection procedure between studies. Centimorgan values have therefore
been normalized such that map comparisons start at zero whilst retaining inter-marker
distances. Deviations from the diagonal line represent differences in the recombination
distribution between maps; perfect adherence to the line represents complete coherence
between maps in both marker order and marker distribution. Markers that have an
inverted order between maps (markers deviating from monotonicity) are represented as
grey triangles, whereas markers that are consistent in order represented as black circles.
R2 values of linear regressions of the F5 position as a function of the F2 position are
shown in the upper left corner of each plot. Chromosomes are labeled in grey panels
above each plot.
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Figure 3.6 Recombination distribution of Apogee X Paragon F2 populations for tem-
perature treatments of 10°C, 14°C, 26°C and 28°C respectively at meiosis. Recombina-
tion is measured as the mean distance of recombination events from the centromere of
the chromosome in each individual plant to avoid conflation of crossover interference
with temperature treatment.
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Figure 3.7 Mean MRD for each chromosome for long and short arms.

To examine whether any one treatment was exerting a strong influence on the Kruskal-

Wallice test of MRD, individual treatments were removed before performing the test

again. MRD remained significantly different between temperature treatments when any

of the individual treatments were removed before the test (p < 0.005 for all temperatures

in the long arm; p < 0.05 for all temperatures in the short arm). We then removed

pairs of treatments before performing the test again to examine whether high and low

temperature treatments were clustered in their effect on the test (table 3.2). For the long
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chromosome arms, the test only became insignificant when either both low temperature

treatments (10°C and 14°C) were removed (�2 = 0.5, d.f. = 1, p = 0.48) or when both

high temperature treatments (26°C and 28°C) treatments were removed (�2 = 0.75, d.f.

= 1, p = 0.37). This was also the case for the short chromosome arms (table 3.2).
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Table 3.2 Examining the effect of removal of pairs of temperature treatments before performing the Kruskal-Wallice test on
differences in mean recombination distance (MRD). Significant p-values are highlighted in bold. Bonferroni corrections were
performed within chromosome arms.

Treatments

removed

p-value (long

arm)

chisq

(long

arm)

Bonferroni

corrected

p-value (long

arm)

p-value (short

arm)

chisq

(short arm)

Bonferroni

corrected

p-value (short

arm)

10°C, 14°C 0.4473 0.5776 1 0.7668 0.08797 1

10°C, 26°C 0.00001 19.46 0.00006 0.00627 7.471 0.03762

10°C, 28°C 0.00094 10.95 0.00562 0.02589 4.963 0.1553

14°C, 26°C 0.0003 13.06 0.00181 0.00884 6.854 0.05307

14°C, 28°C 0.00974 6.682 0.05842 0.02821 4.815 0.1692

26°C, 28°C 0.3716 0.7984 1 0.7525 0.09944 1
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In addition to the genome-level analysis of recombination distribution, we also tested for

differences in MRD between temperature treatments for individual chromosomes, which

differed in their response to changes in temperature during meiosis. The long arms of

chromosomes 1A, 3B, as well as the short arms of chromosomes 2A and 7A showed

significant differences in MRD between all temperature treatments as determined by a

Bonferroni-corrected Kruskal-Wallice test (table 3.3). The long arm of chromosome 1A

was most significant, followed by the short arm of 2A (table 3.3).

Table 3.3 Results of Kruskal-Wallice test for difference in MRD between tempera-
ture treatments for individual chromosomes. P-values have undergone a Bonferroni
correction for multiple testing within chromosome arms. The short arm of 1A is not
included as the marker distribution was not sufficient. Significant p-values (p < 0.05)
are highlighted in bold.

Chromosome

p-value (long

arm)

chisq

(long

arm)

p-value

(short arm)

chisq

(short

arm) d.f.

1A 0.00003 28.61 3

2A 0.2165 9.664 0.00032 23.3 3

2D 1 0.5984 1 1.099 3

3A 1 4.971 0.8884 6.281 3

3B 0.04108 13.26 0.9845 6.046 3

4A 1 6.199 0.334 8.477 3

5A 0.3848 8.397 1 2.912 3

6B 1 5.256 1 0.5728 3

7A 0.3354 8.701 0.00485 17.57 3

7B 1 1.95 1 1.74 3

To investigate these chromosome-level differences in recombination distribution between

temperature treatments further, we compared the centimorgan distribution of mark-

ers between genetic maps (figures 3.7 - 3.16). Examination of the chromosome 7B,

which was the least-significant chromosome in our MRD analysis, showed a reduction
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in the number of recombination events between temperatures 10°C and 14°C, with lit-

tle change in the distributions of events between 14°C, 26°C and 28° treatments (figure

3.16). Chromosome 3B on the other hand had a similar distribution of recombination

events between temperatures 10°C and 14°C, before expanding in central regions of

the genetic map between temperatures 14°C and 26°C (figure 3.11). These differences

highlight the fact that temperature does not act equally on all chromosomes during

meiosis.
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Figure 3.8 Comparisons of genetic maps for four different temperature treatments in
Apogee X Paragon F2 populations for chromosome 1A.
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Figure 3.9 Comparisons of genetic maps for four different temperature treatments in
Apogee X Paragon F2 populations for chromosome 2A.
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Figure 3.10 Comparisons of genetic maps for four different temperature treatments in
Apogee X Paragon F2 populations for chromosome 2D.
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Figure 3.11 Comparisons of genetic maps for four different temperature treatments in
Apogee X Paragon F2 populations for chromosome 3A.
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Figure 3.12 Comparisons of genetic maps for four different temperature treatments
in Apogee X Paragon F2 populations for chromosome 3B. Markers closest to the cen-
tromere (the location of which are taken from (Consortium (IWGSC) et al., 2018) are
highlighted as blue triangles.
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Figure 3.13 Comparisons of genetic maps for four different temperature treatments in
Apogee X Paragon F2 populations for chromosome 4A.
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Figure 3.14 Comparisons of genetic maps for four different temperature treatments in
Apogee X Paragon F2 populations for chromosome 5A.
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Figure 3.15 Comparisons of genetic maps for four different temperature treatments in
Apogee X Paragon F2 populations for chromosome 6B.
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Figure 3.16 Comparisons of genetic maps for four different temperature treatments in
Apogee X Paragon F2 populations for chromosome 7A.
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Figure 3.17 Comparisons of genetic maps for four different temperature treatments
in Apogee X Paragon F2 populations for chromosome 7B. Markers closest to the cen-
tromere (the location of which are taken from (Consortium (IWGSC) et al., 2018) are
highlighted as blue triangles.

Whilst we can detect differences in MRD between temperature treatments for some
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chromosomes, it is also important to assess the potential utility of this difference to

wheat breeders in terms of its effect on linkage disequilibrium. To do this, we compared

chromosome 1A recombination distributions for each treatment (figure 3.17, top four

panels), to the distribution of genes along the chromosome (figure 3.17, bottom panel).

Higher temperature treatments of 26°C and 28°C appear to induce recombination in

regions closer to the centromere from 375 Mb to 461 Mb (markers AX-94621604 and

AX-95134433), with a difference of 8.4 cM and 7.7 cM between markers in 26°C and

28°C respectively compared to 1.87 cM and 3.19 cM in 10°C and 14°C treatments.

Despite these differences in recombination distribution between treatments, many genes

remained highly linked regardless of temperature, for example from 280 to 350 Mb

(figure 3.17). Recombination distributions for other chromosomes can be seen in figures

3.18 - 3.26.
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Figure 3.18 Recombination distribution amoung temperature treatments for chromo-
some 1A with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Figure 3.19 Recombination distribution amoung temperature treatments for chromo-
some 2A with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Figure 3.20 Recombination distribution amoung temperature treatments for chromo-
some 2D with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Figure 3.21 Recombination distribution amoung temperature treatments for chromo-
some 3A with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Figure 3.22 Recombination distribution amoung temperature treatments for chromo-
some 3B with high-confidence gene distribution according to the IWGSC assembly for
comparison.

89



AX.95164026

AX.94765269

AX.94715337

AX.95121822

AX.95154887

AX.94532720

AX.94582600

AX.94453350

AX.94933660

AX.94941084

AX.94967489

AX.94929909

AX.94410077

AX.94446106

AX.94493803

AX.95111935

AX.94478215

AX.94674955

AX.95145288

AX.95105252

AX.94720747

AX.94439903

AX.94432315

AX.95183268

AX.94400142

AX.94563364

AX.94407690

AX.94525446

AX.94441175

AX.95191489

AX.94509113

AX.94393859

AX.94583235

AX.94881522

AX.94487773

AX.95025458

AX.94492677

AX.95108463

AX.94439386

AX.94624981

AX.95182838

AX.94503294

AX.94761767

AX.94500554

AX.95068871

AX.95009985

●● ● ●●●● ●● ● ●● ● ●●● ● ● ● ● ● ● ●● ●●●● ●●●●●●●●●●● ●●● ● ● ●●

0 200 400 600

4A Markers

●

●

●

●

●

●●
●
● ●

●

● ●

●

●●

●
● ●

●
●

●
●
●

●
●
●●

●
●

●

●

●
●
●●●

●●

●

●●

●

●
●

●0
5

10
15
20
25

0 200 400 600

28°C

●
●

●

●

●
●●

●

●

●

●

●
● ●

●●
● ●

●

● ●

●
●
●

●

●●●

●

●

●●

●
●
●
●
●

●
●

●

●●

●

●

●

●

0
5

10
15
20
25

0 200 400 600

26°C

●

●

●

●

●●
●

●
● ●

●

● ●
●
●● ●

●
● ● ● ● ●

● ●
●●●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

0
5

10
15
20
25

0 200 400 600

14°C

●
●

●

●

●
●
●

●
●

●

●

●
●

●●
●

●
●

●
● ●

●
●
●

●
●●●

●
●●

●

●●
●●
●

●
●

●

●
●

●

●

●

●0
5

10
15
20
25

0 200 400 600

10°C

0

10

20

30

0 200 400 600

F
re

qu
en

cy

Gene distribution 4A

Physical Position (Mb)

R
ec

om
bi

na
tio

n 
(c

M
 D

iff
)

Figure 3.23 Recombination distribution amoung temperature treatments for chromo-
some 4A with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Figure 3.24 Recombination distribution amoung temperature treatments for chromo-
some 5A with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Figure 3.25 Recombination distribution amoung temperature treatments for chromo-
some 6B with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Figure 3.26 Recombination distribution amoung temperature treatments for chromo-
some 7A with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Figure 3.27 Recombination distribution amoung temperature treatments for chromo-
some 7B with high-confidence gene distribution according to the IWGSC assembly for
comparison.
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Another area of interest was the potential presence of temperature-dependent recom-

bination hotspots, defined here as regions that contained recombination events in the

two high temperature treatments, that also lacked recombination events in both lower

temperature treatments. There was evidence of these hotspots on chromosomes 1A, 2A,

2D, 3A, 3B, 4A and 6B (table 3.4). The inter-marker areas of these hotspots contained

a total of 868 genes. The hotspot with the largest disparity in number of recombination

events between temperatures was found on chromosome 3B, spanning from 485.69 Mb

to 488.53 Mb, with differences in cM values between flanking markers of 0, 0, 24.04

and 4.95 at temperatures of 10°C, 14°C, 26°C and 28°C respectively. Inspection of

the genotype data revealed that these recombination events were not double events,

and visual examination of the SNP cluster plots for both flanking markers revealed

clearly delineated genotype clusters in both cases, indicating that genotyping error was

unlikely to be the cause of this difference. Annotations for the 19 genes within these

two makers include DNA-directed RNA polymerase III subunit RPC3, 50S ribosomal

protein L15 (putative), Ubiquitin-conjugating enzyme E2, NAC domain protein and an

Auxin-responsive protein. The second most notable hotspot was on chromosome 1A,

where the 26°C and 28°C treatments have differences of 2.7 and 0.68 cM respectively

between markers AX-94909603 and AX-94868310 at 370 Mb (figure 3.17).
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Table 3.4 Regions containing potential temperature-dependent hotspots, defined as having recombination events in both high
temperature treatments, whilst lacking recombination events in both low temperature treatments. Also shown are the number of
high-confidence genes within the marker interval from the IWGSC assembly annotation. Negative distances from the centromere
indicate that the hotspot occurs on the short arm of the chromosome. (continued below)

Chromosome Marker before Marker after

Physical

position 1st

marker

Physical

position 2nd

marker Phys difference

3B AX.94485572 AX.94437683 485.7 488.5 2.84

1A AX.94909603 AX.94868310 368.2 370.1 1.9

2D AX.95199672 AX.94641475 73.59 74.94 1.35

1A AX.95255804 AX.94907922 572.4 574.5 2.13

3A AX.94606333 AX.95008057 479.8 485 5.22

4A AX.95111935 AX.94478215 140.7 164.4 23.69

3A AX.95164207 AX.94393045 168.8 391.5 222.7

2D AX.94482198 AX.94457291 620.3 621.1 0.8

6B AX.94451495 AX.94896306 474.2 476.7 2.5

6B AX.95123143 AX.94403686 549.2 556 6.76

1A AX.94445422 AX.94987165 505.7 506.9 1.18

6B AX.94946141 AX.95110233 562.5 563.1 0.58

2A AX.94514944 AX.94536561 605 605.2 0.18
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10°C cM

difference

14°C cM

difference

26°C cM

difference

28°C cM

difference

Number of

genes

Distance from

centromere

0 0 24.04 4.95 19 140.7

0 0 2.7 0.63 28 156.2

0 0 1.42 1.31 16 -194.2

0 0 1.36 2.47 37 360.4

0 0 1.36 0.6 40 164

0 0 1.36 1.89 117 -113.5

0 0 1.34 0.62 508 -38.24

0 0 0.7 0.66 20 352.2

0 0 0.69 1.23 18 150.2

0 0 0.68 0.62 44 227.3

0 0 0.68 0.64 11 293.3

0 0 0.67 0.62 3 237.5

0 0 0.67 0.64 7 264.4
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Examining the effects of temperature on recombination frequency

Recombination frequency varied between temperature treatments, with total map

lengths of 1377.43, 1213.2, 1279.8 and 1071.65 cM for 10°C, 14°C, 26°C and 28°C degree

treatments respectively. Chromosome 5A had the highest number of recombination

events in all temperature treatments (figure 3.27). An ANOVA of recombination fre-

quency in individuals across all chromosomes between populations revealed significant

differences between temperature treatments 10°C and 14°C (p < 0.0001), 10°C and

28°C (p < 0.00001) as well as 26°C and 28°C (p < 0.001) as determined by a Tukey

post-hoc test (figure 3.28). The frequency of recombination events follows a U-shaped

pattern between temperatures 10°C, 14°C and 26°C, before declining between 26°C

and 28°C (figure 3.28). The mean ± s.d. number of recombination events across all

individuals was 21.83 ± 5.32.
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Figure 3.28 Apogee X Paragon genetic map lengths by chromosome across tempera-
ture treatments. Chromosome 5A has the largest map length and therefore the highest
number of recombination events in all temperature treatments. In some chromosomes,
higher temperature treatments have less recombination events overall, such as in chro-
mosome 2D, 6B and 7B.
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Figure 3.29 Mean recombination frequency across all chromosomes for each temper-
ature treatment. Error bars represent ± s.d. from the mean. Significantly different
populations are indicated by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Investigating genotyping error as a possible cause of the observed effects

Genotyping error was found not to influence MRD. Linear regressions of standard sam-

ple quality control metrics (either dish quality control (DQC) or quality control call

rate) as the explanatory variable and MRD as the dependent variable for each chromo-

some were all none-significant. 𝑅2 values for each chromosome were all smaller than

0.026, meaning that less than 2.6% of the variation in MRD was explained by these

variables in every case.

In addition, the simulation experiment indicated that sample size does not influence

MRD either. For sample sizes of 500, 250, 100 and 30, 6.29%, 3.01%, 7.15% and 2.03%

of the 100000 combinations of samples exhibited significant differences in MRD, as

shown by a Kruskal-Wallice test. If sample size had an effect, we would expect these

percentages to show a consistent trend, i.e. increasing or decreasing with sample size.

It should also be noted that these percentages are close to the expected number of

false-positives (5%) at this alpha threshold (0.05).

3.3.3 QTL Analysis

No significant QTL were found for recombination frequency in any of the populations

analysed. Significant QTLs for MRD were found in the Opata X Synthetic popula-

tion on chromosome 1A (phenotype MRD 5A), as well as the Paragon X Watkins 94

population on chromosome 1A (MRD 7A). The increasing effect came from Opata and

Watkins 94 respectively for these QTLs, meaning that these parental genotypes yielded

MRDs that were further away from the centre of the chromosome. The O x S QTL

accounted for the highest phenotypic variance of any single QTL (24.906%). None of

these QTL were significant after Bonferroni correction for the number of phenotypes

tested.
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Table 3.5 Table showing significant QTLs for late-filial generation (> F4) RIL populations. Numbers have been rounded to
three decimal places, so where p-values are listed as 0, represents a value smaller than 0.001. (continued below)

Population Phenotype Chromosome Position (cM) LOD

% Phenotypic

Variance

A x P F5 MRD.6B 4A 28.6 2.833 4.781

O x S MRD.5A 1A 73.97 3.615 24.93

CS x P MRD.2D 6B 72.11 3.057 5.237

CS x P MRD.2D 6B 72.49 3.279 5.626

CS x P MRD.2D 6B 72.68 3.187 5.455

CS x P MRD.2D 6B 74.05 3.053 5.234

CS x P MRD.2D 6B 74.43 3.148 5.392

CS x P MRD.2D 6B 74.62 3.346 5.722

CS x P MRD.2D 6B 75 3.572 6.097

CS x P MRD.2D 6B 75.19 3.671 6.264
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Table continues below

p-value (chi-square) p-value F AA Mean BB Mean AA SE BB SE

Position

Previous

Marker (cM)

0 0 42.03 38.98 0.581 0.589 28.44

0 0 38.49 31.12 1.116 1.244 72.17

0 0 41.13 37 0.737 0.801 71.73

0 0 41.18 36.89 0.732 0.804 72.11

0 0 41.17 36.95 0.736 0.8 72.49

0 0 41.08 36.96 0.73 0.811 72.68

0 0 41.08 36.88 0.725 0.818 74.05

0 0 41.13 36.79 0.721 0.82 74.43

0 0 41.22 36.75 0.724 0.811 74.62

0 0 41.26 36.73 0.726 0.807 75

LOD previous

marker

Physical

position of

marker before

(%)

Physical

position of

marker before

(bp)

Position of

marker after

(cM)

LOD of

next

marker

Physical

position of

next marker

(%)

Physical

position of next

marker (bp)

2.614 80.88 602245890 30.08 2.103 80.97 602911128
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LOD previous

marker

Physical

position of

marker before

(%)

Physical

position of

marker before

(bp)

Position of

marker after

(cM)

LOD of

next

marker

Physical

position of

next marker

(%)

Physical

position of next

marker (bp)

2.058 84.88 504243610 74.83 2.93 86.92 516373177

2.871 89.55 645661984 72.49 3.279 90.35 651418713

3.057 89.89 648086087 72.68 3.187 91.06 656511775

3.279 90.35 651418713 74.05 3.053 91.38 658818903

3.187 91.06 656511775 74.43 3.148 91.44 659233712

3.053 91.38 658818903 74.62 3.346 91.59 660381093

3.148 91.44 659233712 75 3.572 92.03 663531485

3.346 91.59 660381093 75.19 3.671 92.05 663669873

3.572 92.03 663531485 NA NA NA NA
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Figure 3.30 QTL Plots for late-filial generation (> F4) RIL populations. Dashed line
indicates a 0.05 significance threshold for the LOD value based on a permutation test,
whilst the dotted line indicates a 0.05 significance threshold after Bonferroni correction
for the number of phenotypes tested.

3.3.4 Phylogenetic Analysis

The mean ± s.d. length of gene trees for the meiotic gene set and the random gene set

were 0.172 ± 0.221 and 0.227 ± 0.306 respectively. When barley was removed from the

analysis, the mean and ± s.d. length of gene trees decreased in all cases to 0.011 ± 0.051
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and 0.03 ± 0.17 for meiotic and random gene sets respectively. The tree length was

not significantly different between both gene sets (t-test, t = -4.36, d.f. = 476.21, p =

0.00002), and this remained the case when barley was removed from the analysis (t-test,

t = -5.01, d.f. = 1235.78, p = 0, Mann-Whitney U test W = 745407, p = 0.03069).

Boxplots of tree lengths are shown in figure 3.29. In both phylogenies constructed from

superalignments of the respective sets of genes, barley was by far the most distantly

related compared to all of the wheat varieties (figure 3.30). For the tree constructed

from the superalignment of the meiosis gene set, the patristic distances between pairs of

nodes (table 3.5) were mostly shorter than the distances in the random gene set (table

3.6). Phylogenies without barley are shown in figure 3.31.
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Figure 3.31 Box plots of lengths of gene trees, including wheat varieties Chinese
Spring, Paragon, Cadenza, Claire and Robigus as well as Barley (Morex) for meiotic
and random gene sets. The left panel includes barley, the right panel does not.
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Chinese Spring

Cadenza

Robigus

Claire

Paragon

Barley

0.005

Meiosis Gene Set

Chinese Spring

Cadenza

Paragon

Robigus

Claire

Barley

0.005

Random Gene Set

Figure 3.32 Phylogenies contructed from superalignments of all genes for both meiosis
and random gene sets, including barley. Scale bars indicate number of substitutions
per site.
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0.0005

Figure 3.31 Phylogenies constructed from superalignments of all genes for both meiosis
and random gene sets, without barley. Scale bars indicate number of substitutions per
site.

Table 3.6 Patristic distances of nodes in the tree constructed from a superalignment
of the meiosis gene set. Upper triangle has been removed due to redundancy.

Chinese

Spring Cadenza Robigus Claire Paragon Barley

Chinese

Spring

Cadenza 0.004771

Robigus 0.003206 0.003568

Claire 0.003906 0.004269 0.001992

Paragon 0.003563 0.005323 0.003758 0.004458

Barley 0.1786 0.1815 0.1799 0.1806 0.1803
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Table 3.7 Patristic distances of nodes in the tree constructed from a superalignment of
the random gene set. Upper triangle has been removed due to redundancy. Interestingly,
the distances here are longer than in the meiosis gene set.

Chinese

Spring Cadenza Robigus Claire Paragon Barley

Chinese

Spring

Cadenza 0.01274

Robigus 0.01243 0.01079

Claire 0.01272 0.01108 0.007815

Paragon 0.01341 0.00848 0.01146 0.01175

Barley 0.4259 0.4296 0.4293 0.4296 0.4303

3.4 Discussion

The data presented here is the first detailed analysis of the effect of environmental

temperature during meiosis on the distribution and frequency of recombination events

in wheat. Our data, based on high-density SNP genotyping of four Apogee X Paragon

mapping populations, each subjected to a different temperature during meiosis, reveal

a clear effect of temperature on the distribution of recombination events. This effect is

visible, although subtle, in figure 3.6, where higher temperature treatments appear to

have a more distal distribution of events in both short and long arms of the chromo-

somes. In figure 3.6, there are some MRD values that appear to be within 25% of the

centromere, which contrasts with evidence from previous studies (Saintenac et al. 2009;

Choulet et al. 2014) that the distribution of recombination in wheat is limited to the

distal ends of the chromosomes. These MRD values are most likely are artefacts of the

method used here to measure recombination, where the position of recombination is

assigned as the midpoint between two markers, in conjunction with the reduced marker

density in centromeric regions after filtering (figure 2). This should not have any im-

pact on the analysis of the relative difference in recombination distribution between
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temperature treatments, as all treatments used the same genetic map with the same

distribution of markers. The statistical analyses of MRD for individual chromosomes

show that the effect of temperature on recombination distribution is limited to specific

chromosomes/chromosome arms, suggesting that chromosomal structure may influence

the susceptibility of chromosomes to changes in temperature. This mirrors results from

barley (Higgins et al. 2012a; Phillips et al. 2015).

A comparison of the Apogee X Paragon F2 genetic map produced here to the F5 genetic

map of the same cross from Allen et al., (2016) shows a high degree of similarity in

the clustering (table 3.1), ordering (figure 3.5) and genetic distribution (figure 2) of

markers, indicating that the genetic map is robust. Noticeable in the comparison of

clusters however is that some of the chromosomes in the F5 map, such as 5A and

7A, are split into multiple linkage groups. This could explain the markers that are

present in our map that are not present in the map of Allen et al., as these were most

likely resolved as smaller linkage groups in the latter, which were then discarded. Our

marker selection process was more stringent than in Allen et al., (2016) as we only

used codominant markers that were categorized as “Poly high resolution”, the highest

quality marker categorization in Axiom Analysis Suite Bassil et al. (2015), whereas

multiple categories of marker were used in the map of Allen et al. In addition, in this

study the SNP cluster plots for each marker were visually inspected and only markers

with a clear delineation between genotyping clusters representing homozygotes for the

Apogee allele, heterozygotes and homozygotes for the Paragon allele were used.

Our confidence in the validity of the results are increased by the fact that differences

in MRD between treatments only become non-significant when two treatments are

removed, either both of the low temperature treatments (10°C and 14°C) or both of

the high temperature treatments (26°C and 28°C). This effect was less pronounced in

the short arms of chromosome, indicating that perhaps temperature have less of an effect

on these regions. However, this could also simply be the result of lower marker density

in short chromosome arms. It is clear the observed shifts in recombination distribution

are not due to genotyping error, as the results of linear regressions of standard quality
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control metrics against MRD were all non-significant. Furthermore, the results of the

simulation experiment show that the differences in MRD observed in the Apogee X

Paragon crosses were not the result of sampling error due to small population size.

In order to perform a statistical analysis on the differences in distribution of recombi-

nation events between temperature treatments, it was necessary to associate genetic

maps to the physical wheat genome assembly. To do this we devised a method that uti-

lizes the longest increasing subsequence of BLAST positions of marker sequences to the

IWGSC assembly, allowing the measurement of MRD in each individual. This unfortu-

nately comes with a caveat, in that markers that do not conform to this sequence must

be removed, which reduces the density of markers in certain regions (figure 3.4). This is

one of the primary limitations of using MRD and means that our ability to precisely lo-

calize certain recombination events is reduced. The reason for the reduction in marker

density is likely due to structural differences between varieties Apogee and Paragon,

used here to generate the genetic maps, and Chinese Spring, the only wheat variety

currently to have a completely publicly-available, chromosome-level genome assembly.

A reanalysis of the data could provide further information should a chromosome-level

genome assembly of either Apogee or Paragon be released in the future. Despite these

caveats, the data has sufficient marker density to inform our picture of recombination

distribution in many chromosomal regions (figure 3.4). The process used in this study

conforms closely to the process that a wheat breeder might implement in their develop-

ment of new varieties, and so has direct bearing on the applications of temperature in

wheat.

In addition to the effect of temperature on the distribution of recombination events,

we also observed an effect on the frequency of recombination events. The pattern of

recombination frequency is partially consistent with results from Arabidopsis (Lloyd

et al. 2018), with frequency showing a U-shaped response from 10° to 26°C. It must

be noted however that at 28°C, recombination frequency dips, ending the U-shaped

pattern. Lloyd et al. (2018) suggest that this effect is primarily produced by changes

in class I interfering crossovers and speculate that recombination may be minimized
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in organisms that are already well-adapted to their environment and living in optimal

conditions.

The number of recombination events that occurred in each gamete can be estimated by

dividing the mean number of recombination events across all individuals by the number

of chromosomes, then dividing that by two (as each zygote is composed of two gametes).

This gives us an estimate of 1.09 recombination events per gamete. This is lower than

published counts of chiasmata per bivalent in wheat, which are around 2.3 (Miller and

Reader 1985). There are several factors that contribute to this underestimation. Firstly,

double recombination events that occur in between marker positions are not detectable

using SNP data. In addition, in a sequence of heterozygous genotypes, if both gametes

have a recombination event between the same two markers, the recombination event

will not be detected. Finally, in some of the chromosomes analysed, there were a lack of

markers at the very distal ends of the chromosomes (figure 3.5), and so recombination

events that occurred in these regions could not be detected.

Our data indicate that increasing the temperature during meiosis could have some

limited use to breeders in breaking up centromeric linkage blocks. We observed four

chromosome arms with significant shifts in recombination distribution between tem-

perature, and several putative temperature-dependent recombination hotspots (table

3.4). Included in the 3B temperature-dependent hotspot were putative genes influenc-

ing plant development, including a NAC domain protein (Puranik et al. 2012) as well

as an auxin-responsive protein (Teale et al. 2006). Despite these points, there are

still many genes that remain highly linked in regions closer to the centromere on many

chromosomes. To achieve thorough mixture of these genes in progeny of crosses, it

will be important for breeders to explore other avenues of manipulating recombination

distribution. One potential option is to produce fusion proteins linking SPO-11, the

protein that initiates recombination through production of double-stranded breaks in

the DNA, to other DNA targeting proteins, such as Zinc finger elements, Transcription

activator-like elements or dead Cas9. Research in yeast using these methods revealed a

2.3 to 6.3-fold increase in COs near targeted regions (Sarno et al. 2017). Applications
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of this technique to agriculture outside of research could however be limited due to

increasingly strict legislation, such as the 2018 European Union ruling in case C-528/16

that organisms edited using directed mutagenesis methods such as CRIPR-Cas9 will

be officially classified as genetically modified organisms.

If breeders do decide to utilize temperature as a means of altering recombination dis-

tribution, they will also have to consider the loss in fertility of wheat plants at higher

temperatures of meiosis (Draeger and Moore 2017). These elevated temperatures would

therefore need to be employed strategically and transiently in between generations that

are grown at lower temperatures. It would be of interest to examine the epigenetic

effects of elevated temperature during meiosis, such as whether there are any lasting

changes inherited by progeny, and whether these changes are detrimental to plant

growth.

Interestingly, the results of our QTL analysis yielded no significant QTLs for recom-

bination frequency or MRD after Bonferroni correction for the number of phenotypes

tested. This is in contrast to other studies such as (Gardiner et al. 2019), where a

significant QTL, albeit accounting for only a small proportion of phenotypic variance

(6.037%), was found in the same Chinese Spring X Paragon population analysed here.

This difference between studies suggests that the processing performed in (Gardiner

et al. 2019) in which markers were grouped into large bins might have effected the

analysis, and indeed no difference was found when the authors attempted to validate

their CO frequency QTL using Cadenza TILLING populations containing knockout

mutations for the most likely gene candidate driving this QTL. There are two possible

explanations for the lack of QTL detected, either our method is lacking in statistical

power or that there is no genetic component involved in either recombination frequency

or distribution in the varieties tested. To assess the latter hypothesis, we performed a

phylogenetic analysis of homologues of genes that have been functionally characterized

to be involved in meiosis in Arabidopsis. On the whole, the meiotic gene set was more

conserved than the random gene set. However, when barley was included in the anal-

ysis, we observed far more variation in meiotic genes between barley and wheat than
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between any two wheat varieties. This suggests that the conservation of wheat genes

involved in meiosis is largely due to the fact that they diverged fairly recently. The

difference between meiotic and random gene sets in the phylogenies where barley was

excluded suggests that stabilising selection also plays a role.

The phylogenetic analysis provides insight into the evolutionary constraints (or lack

thereof) operating on meiotic genes, and therefore the potential for genetic control of

recombination in wheat. The fact that the meiotic genes are similarly distant between

barley and wheat in both meiotic and random gene sets indicates that there is poten-

tial for genetics to influence recombination, as if there was strong stabilizing selection

operating at these loci we would expect barley to be more closely related to wheat in

the meiotic gene set compared to the random gene set. However, the closeness of the

meiotic genes in wheat varieties suggests that there simply hasn’t been enough time in

the history of wheat for this deviation to occur, which could explain the lack of QTL

influencing recombination. This would be congruent with evidence on the inception of

all modern bread wheat at a relatively recent point in history around 10,000 years ago.

In conclusion, the work here shows that temperature has a subtle effect on the frequency

and distribution of recombination events in wheat. The analysis of recombination distri-

bution in comparison to gene distribution indicates that the utility of this effect may be

limited, with large amounts of genes remaining under strong linkage, and thus inacces-

sible to manipulation by breeders. Future work involving cytological analysis of wheat

meiocytes subjected to different temperatures would be of interest, as the principle of

consilience asserts that confidence in a result increases when reached independently

through different methods.
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4 Segregation distortion: utilizing simulated geno-

typing data to evaluate statistical methods

All results described here have been published in the following manuscript:

Coulton, A., Przewieslik-Allen, A., Burridge, A., Shaw, D., Edwards, K., Barker, G.,

2020. Segregation distortion: Utilizing simulated genotyping data to evaluate statistical

methods. PLoS ONE

4.1 Abstract

Segregation distortion is the phenomenon in which genotypes deviate from expected

Mendelian ratios in the progeny of a cross between two varieties or species. There

is not currently a widely used consensus for the appropriate statistical test, or more

specifically the multiple testing correction procedure, used to detect segregation dis-

tortion for high-density single-nucleotide polymorphism (SNP) data. Here we examine

the efficacy of various multiple testing procedures, including chi-square test with no

correction for multiple testing, false-discovery rate correction and Bonferroni correction

using an in-silico simulation of a biparental mapping population. We find that the

false discovery rate correction best approximates the traditional p-value threshold of

0.05 for high-density marker data. We also utilize this simulation to test the effect

of segregation distortion on the genetic mapping process, specifically on the formation

of linkage groups during marker clustering. Only extreme segregation distortion was

found to affect genetic mapping. In addition, we utilize replicate empirical mapping

populations of wheat varieties Avalon and Cadenza to assess how often segregation

distortion conforms to the same pattern between closely related wheat varieties.
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4.2 Introduction

Segregation distortion is the phenomenon in which alleles in the progeny of a cross

between two varieties or species deviate from expected Mendelian ratios. In an F2 pop-

ulation originating from a biparental cross, the expected ratio of genotypes AA:AB:BB

(progeny homozygous for the allele from the first parent, heterozygotes and progeny

homozygous for the allele from the second parent) in absence of segregation distortion

is 1:2:1. Segregation distortion is observed across a wide range of taxa, including ani-

mals such as Drosophila (Lyttle 1993; Phadnis and Orr 2009) and mice (Silver 1993),

as well as crop species, including cotton (Dai et al. 2017), maize (Wang et al. 2012; Lu

et al. 2002), potato (Manrique-Carpintero et al. 2016), chickpea (Castro et al. 2011),

barley (Liu et al. 2010) and wheat (Allen et al. 2016; Gardner et al. 2016; Wingen et

al. 2017). The primary explanation of the cause of segregation distortion is a selection

pressure operating against one of the parental alleles at some stage of the development

cycle, whether at meiosis through meiotic drive (Lyttle 1993), through male gamete

competition (Dai et al. 2017), or at the level of the zygote. An example of this is the

pollen killer gene in wheat (Loegering and Sears 1963), for which there is an allele that

causes pollen cells to degenerate until unviable, leading to an over representation of the

non-deleterious allele.

Segregation distortion can be problematic for crop breeders, who wish to generate

varieties with novel genotypic compositions that are better suited to meeting the various

aims of modern agriculture, such as increased yields or improved resistance to biotic or

abiotic stresses. Distorted segregation at a locus could skew most lines in a recombinant

inbred line population (RIL) away from the desired genotype, requiring breeders to

create larger numbers of lines to compensate. It would be useful if we could attribute

regions of segregation distortion to causative loci in the genome, as this would allow

breeders to plan for the occurrence ahead of time. One important obstacle to this

goal is another potential cause of segregation distortion: sampling error. With small

RIL population sizes, it is possible that a specific parental allele is, by chance, sampled

more often than its alternative in the progeny, leading to a distorted ratio of segregation.
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Conflating this for distortion caused by a selective pressure would be problematic, as the

same pattern of distortion in the progeny would not be repeated if the RIL population

was recreated. Planning for this distortion in breeding programmes would therefore be

counterproductive. How much of the segregation distortion typically observed in RIL

populations is due to chance?

Distinguishing distortion caused by selection from that caused by chance is difficult, be-

cause both have the potential to produce similar patterns of segregation in the progeny

of a cross. What we can assume though is that if the selection strength is high enough,

the intensity of distortion produced would be unlikely to have occurred by chance. This

is complicated by the fact that the effects of chance change with population size, being

more prevalent when population size is small, and eventually evening out as population

size becomes larger. Our sole detection criterion for separating selection from chance

as the cause of segregation distortion then is the amount of distortion as a function

of the population size. This leads to an important question: at what stage do we say

that enough distortion is present for the event to be caused by selection? If we make

our detection criteria too lenient, then we increase the risk of type I errors (false posi-

tives), whilst stricter criteria increase the risk of type II errors (false negatives). What

is the optimal place to draw this proverbial line in the sand when detecting segregation

distortion?

The diversity of criteria used in the literature reflect the difficulty of answering this

question. Some authors settle for a simple chi-square test with the minimum significance

threshold of p < 0.05 (Li et al. 2015; Allen et al. 2016; Lu et al. 2002; Takumi et al.

2013; Avni et al. 2014), others report multiple significance thresholds (Thompson et al.

1991; Peng et al. 2000; Singh et al. 2007; Adamski et al. 2014; Manrique-Carpintero

et al. 2016), whilst others use corrections for multiple testing, including false discovery

rate (FDR) (Gardner et al. 2016; Wingen et al. 2017; Seymour et al. 2017) and the

even stricter Bonferroni correction (Manninen 2000; Dai et al. 2017). This inconsistency

has the further implication that many of the studies on segregation distortion are not

comparable, which is problematic for the general advancement of our knowledge of
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segregation distortion. It interferes with our ability to assess hypotheses such as: (i)

levels of segregation distortion differ between different species, (ii) segregation distortion

increases with the genetic distance between parents.

To circumvent the conflation between selection and chance, it would be useful if we could

observe the processes that lead to the final genotypic composition of a RIL population.

Whilst this is infeasible to achieve with real organisms, it is possible in an in-silico

simulation of a RIL population. Here we utilize PedigreeSim (Voorrips and Maliepaard

2012), which computationally models single-nucleotide polymorphism (SNP) genotype

data from a RIL population, starting with recombination between homologues during

meiosis, generation of gametes and fusion of gametes to form a zygote. This process

can be repeated for the desired number of filial generations. The simulation allows us

to control multiple parameters that could influence segregation distortion, such as the

number of SNP markers used, the position of selection in the genome, the strength of

selection in the genome, the distribution of SNP markers, and the size of the population.

We can also examine the interaction between different parameters, such as population

size and selection. With knowledge of the parameters that produced the final genotyping

dataset, we can then attempt to identify the appropriate threshold to detect segregation

distortion by examining the performance of various statistical tests. For example, when

a selection pressure of strength X is applied at a locus, in what proportion of simulated

populations is this locus identified as being significantly distorted for a given statistical

test and population size?

In addition to the simulation experiments performed, we also wanted to investigate how

much of the purported segregation distortion typically observed in real populations is

the result of random chance rather than a consistent selection pressure. To examine

this, we produced replicate populations of the same cross between varieties Avalon and

Cadenza. These consisted of two F2 populations with Avalon as the female parent,

and two F2 populations with Cadenza as the female parent, with each population

containing around 96 lines. We were then able to compare replicate populations and test

whether they showed any consistency in the regions exhibiting segregation distortion,
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which if they did would imply that the distortion was the result of a selection pressure

rather than random chance. There is a trend in the literature of removing markers

exhibiting segregation distortion before the construction of a genetic map (Allen et

al. 2016; Roorkiwal et al. 2018; Liu et al. 2016). It has already been shown by a

previous simulation that segregation distortion does not affect the order of a genetic

map (Hackett and Broadfoot 2003). High levels of segregation distortion can however

effect the estimation of recombination frequency between a pair of markers (Lorieux et

al. 1995), which is used in the clustering stage of genetic map construction. Here we

use our simulation to examine whether clustering of markers is significantly affected by

segregation distortion in modern genetic mapping software such as MSTMap (Wu et al.

2008).

Finally, after identifying appropriate statistical tests for the detection of segregation

distortion from these experiments, we perform a reanalysis of some existing genotyping

datasets from populations of hexaploid and tetraploid wheat (Allen et al. 2016; Avni et

al. 2014). This allows us to highlight important regions of segregation distortion that

could be the subject of further investigation, potentially leading to the identification of

the genomic position and mechanism of a causative locus of segregation distortion in

wheat.

4.3 Materials and Methods

4.3.1 Plant cultivation

For the replicate empirical mapping populations, we generated F2 plants using bread

wheat (Triticum aestivum L.) varieties Avalon and Cadenza in reciprocal crosses. All

plants were grown in uniform conditions at the same time using pots filled with peat-

based soil and kept in a glasshouse at 15-25 °C with 16-h light, 8-h dark. Leaf-tissue

was harvested from F2 plants two weeks after sowing. DNA was extracted following

the protocol in (Pallotta et al. 2003) with minor modifications.
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4.3.2 Sample genotyping

DNA concentration was assessed using a Qubit 2.0 Fluorometer and was the normalized

to 23 ng / µl ready for analysis with the Axiom® Wheat Breeder’s array. Sample

preparation for array genotyping was performed with the Beckman Coulter Biomek

FX. Samples were then genotyped using the Axiom® 35K Wheat Breeders array in

conjunction with the GeneTitan® using standard Affymetrix protocols (Axiom® 2.0

Assay for 384 samples P/N 703154 Rev. 2).

4.3.3 Genetic Map Construction

Axiom Analysis Suite (version 3.1.51.0) was used to assign genotype calls using the Ax-

iom Best Practices Genotyping Workflow. There were 3044 SNPs polymorphic between

the parental varieties, Avalon and Cadenza, that were deemed suitable for genetic map-

ping. These were designated as PolyHighResolution, which is the category assigned to

markers that are clearly codominant, by Axiom Analysis Suite and had a minor allele

frequency > 0.1. The minor allele frequency criterion served as a simple metric to

remove markers with highly erroneous cluster plots from the analysis. Cluster plots of

the probes that did not meet the minor allele frequency criterion were inspected by eye

to ensure that no genuine cases of segregation distortion were omitted.

To create the genetic map, the genotyping data from the Cadenza X Avalon population

was used. The ASMap package in R, an implementation of the MSTmap algorithm,

was used for clustering, ordering and calculation of genetic distance between mark-

ers. Various values for the clustering parameter were tested during the creation of the

genetic map. The final value used was 10-25, which returned several linkage groups

that contained around 200 markers, which is in accordance with other genetic maps of

wheat produced with the 35k Wheat Breeder’s array (Allen et al. 2016). Chromosome

assignment to linkage groups was based on information from nullisomic lines from Ce-

realsDB (Wilkinson et al. 2016) as well as a BLAST search of probe sequences against

the IWGSC RefSeq v1.0 sequence (Consortium (IWGSC) et al. 2018) (hereafter re-
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ferred to as the IWGSC assembly). Markers were assigned physical locations based

on a BLAST search of probe sequences against the IWGSC assembly. Any linkage

groups that spanned less than 80% of the physical distance of the chromosome were

removed from the analysis, as we were interested in observing patterns of segregation

along the entire length of the chromosome. Linkage groups representing the following

chromosomes were retained: 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B,

7A.

4.3.4 Simulation of genotyping data

Genotyping data from a single seed descent population were simulated using Pedi-

greeSim (Voorrips and Maliepaard 2012) in conjunction with a custom wrapper script

written in R (Coulton 2019). The R script provides the capability to apply a selec-

tion pressure of a specified strength on gametes of a parental genotype at a locus. For

example, we could apply a negative selection pressure of strength 1/20 at marker 200

against gametes with a “B” genotype, meaning that these gametes would be 5% less

viable than gametes with an “A” genotype at this locus. We would therefore expect this

selection pressure to produce a 100:95 ratio of A:B gametes. PedigreeSim allows the

input of markers at specified centimorgan positions, meaning that we were able produce

simulations that had the marker distribution of wheat chromosomes. For many of the

simulations, we used the existing genetic map from the Cadenza X Avalon population

to provide these marker positions so that the segregation distortion data were compa-

rable to empirical populations of wheat. When performing simulations, we ran 1000

simulations for each unique set of parameter values unless otherwise stated.

To examine the effect of segregation distortion on genetic map construction, we sim-

ulated two chromosomes using the centimorgan positions from chromosomes 1A and

6B of the Cadenza X Avalon genetic map, which were chosen based on marker den-

sity. Before genetic map construction, the order of markers in the genotyping data was

scrambled to ensure that this information was not being used by the mapping software.

Firstly, we tested clustering when one selection pressure resulting in the highest level
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of distortion (0:0:1 ratio of AA:AB:BB genotypes) was applied to chromosome 1A at

marker 200. We then tested clustering when each chromosome had a selection pressure

applied at marker 30 and 200 of chromosomes 6B and 1A respectively in favour of the

same parental allele. We also tested the effect of segregation distortion on map length

using selection pressures of varying strengths at the positions previously mentioned.

4.3.5 Measurement of segregation distortion and p-value adjustment

To measure segregation distortion, we used a variety of methods. These include the

magnitude of distortion, referred to here as M, which is defined as a/(a + b) where a

and b represent the number of plants with homozygous A and B genotypes respectively

at an arbitrary locus. M ranges from 0 to 1, with 0 meaning no A genotypes are

present and 1 meaning no B genotypes are present. For F2 populations, we use a

chi-square goodness-of-fit test to measure deviation from a 1:2:1 ratio of AA:AB:BB

genotypes, whilst for F6 populations, we measured deviation from a 1:1 ratio of AA:BB

genotypes. Adjusted p-values were produced using the p.adjust function in R with

either the Benjamini-Hochberg procedure for false discovery rate (FDR) correction or

the Bonferroni correction.

4.4 Results

4.4.1 Validation of Simulation

Simulated data closely resembled empirical data from the Cadenza X Avalon mapping

population. The mean (± s.d.) number of crossover events per plant for chromosome

1A was 2.72 ± 3.31, and 2.59 ± 1.31 in empirical and simulated populations respectively,

each population containing 96 individuals. There was no significant difference between

the number of crossover events in individuals between empirical and simulated data

as determined by a Mann-Whitney U test (p = 0.07). The mean (± s.d.) length of

simulated genetic maps over 1000 simulations, using 96 individuals and the marker

distribution from chromosome 1A of the Cadenza X Avalon genetic map, was 130.9
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± (7.3) centimorgans (cM), whilst the length of the empirical map was 130.48 cM.

Simulated data closely conformed to the expected levels of heterozygosity for each filial

generation (which should reduce by half for each generation in selfing organisms), with

mean (± s.d.) values over 1000 simulations of 49.96 (± 1.73)%, 25 (± 1.42)%, 12.47

(± 0.97)%, 6.24 (± 0.7)%, 3.13 (± 0.48)% for F2, F3, F4, F5 and F6 generations

respectively.

In the recombination frequency heatmaps (figure 4.1) of empirical and simulated data,

the regions of low recombination between closely linked markers along the diagonal are

largely preserved, whilst in the simulation, recombination frequency rises faster than in

the empirical data with increasing distance between markers. This is to be expected,

as recombination frequency (or a proxy measure, in this case the hamming distance for

MSTmap) is used in the clustering stage of genetic map construction, meaning we do

not expect to see pairs of markers above a particular recombination frequency threshold

together in a single linkage group of the empirical data. Segregation of genotypes across

markers in the simulated data are more autocorrelated than in empirical data, with

values of 0.95 ± 0.03 (averaged over 1000 simulations with populations of 96 individuals

and no selection) and 0.875 respectively (figure 4.2). This is expected as the empirical

data contains both genotyping errors and missing data whilst the simulated data does

not.
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Figure 4.1 Comparison of recombination fraction heatmaps for both empirical (a)
(Avalon X Cadenza 1A) and simulated data (b). The large central red block most likely
represents the centromeric region of the chromosome, as wheat is known to have a lack
of recombination in this area. The pattern of recombination cold spots (represented by
red squares) is largely conserved between empirical and simulated data. The empirical
data has low to medium levels of recombination between distant markers (represented
by yellow regions), whilst the simulated data shows high levels of recombination (rep-
resented by blue regions)
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Figure 4.2 Comparison of empirical data (a) from chromosome 1A of a Cadenza X
Avalon F2 mapping population with 96 individuals to simulated data (b - d). The simu-
lations each have 96 individuals and were produced using the marker distribution from
the empirical data. The y-axis shows the segregation ratio of homozygous genotypes,
shown here as a proportion of the total number of homozygous genotypes ((a )/(a +
b)). The black horizontal line indicates an even 1:1 ratio of homozygous genotypes.
Included are simulations of both F2 (b, c) and F6 (d, e) single seed descent populations
for comparison, as well as simulations exhibiting the least (b, d) and the most (c, e)
amount of segregation distortion out of 1000 simulations. None of the simulations have
any selection pressure applied, so these plots indicate the effect of sampling error on
segregation. Sig. = significance threshold (chi-square test)
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4.4.2 Simulation experiments

Initially, we ran simulations using the marker distribution for chromosome 1A of the

Cadenza X Avalon cross for population sizes of 96, 300, 1000 and 10000, all with 224

markers and no selection applied. M decreased with increasing population size, whilst

the proportion of simulations that contained markers exhibiting significant segregation

distortion stayed relatively constant, as shown in Table 4.1. To test the effect of marker

binning on the detection of segregation distortion, simulated genotyping datasets with

a reduced marker set (93 markers) containing only skeleton markers were produced.

Only the FDR and Bonferroni corrections showed any differences between marker sets

(table 4.1). Increasing population sizes decrease the variance in segregation between

simulations, but also make chi-square significance criteria more sensitive (figure 4.3).

Filial generation did not influence the number of simulations that exhibited significant

segregation distortion (table 4.1) according to a chi-square test, (comparison of F2 and

F6 with population size 300, 𝜒2 = 0.004, df = 1, p = 0.95).
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Figure 4.3 Effect of population size on the magnitude of distortion. Indicated in the
header of each panel is the population size. Segregation ratio is calculated as (a)/(a
+ b), and each data point is the mean value over 1000 simulations. The simulations
have no selection and use the marker distribution from chromosome 1A of the Cadenza
x Avalon cross. The shaded area represents the mean segregation ratio value ± the
standard deviation over 1000 simulations. The dashed lines mark the 5% significance
threshold for a chi-square test, whilst the dotted line marks a 1:1 segregation ratio. The
effect of sampling error on segregation ratio decreases as population size increases
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Table 4.1 Measures of segregation distortion for simulations with 224 markers and marker distribution taken from chromosome
1A of a Cadenza X Avalon F2 cross. The last column indicates the mean value across all simulations of the magnitude of
distortion at its highest value. Shown in the p-value columns are the number of simulations (out of 1000 performed) that
contain significantly distorted markers. Marker set A refers to the full marker set of 224 markers, whilst marker set B refers to
the skeleton marker set of 93 markers.

Population

Size

Marker

set

Filial

Generation

P <

0.05

P <

0.01

P <

0.001

P < 0.05 (FDR

Correction)

P < 0.05

(Bonferroni

Correction)

Mean

magnitude of

peak distortion

96 A 2 561 162 16 18 4 0.1415

300 A 2 561 163 28 26 4 0.08122

1000 A 2 557 177 24 27 7 0.04366

10000 A 2 557 183 28 28 6 0.01377

96 A 6 602 179 27 30 7 0.1099

300 A 6 563 167 19 33 1 0.06153

1000 A 6 570 215 35 38 5 0.0343

10000 A 6 583 208 26 28 3 0.01085

96 B 2 561 162 16 22 8 0.1415

300 B 2 561 163 28 25 13 0.08122

1000 B 2 557 177 24 26 15 0.04366

10000 B 2 557 183 28 29 17 0.01377
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In simulations containing a single marker for a population size of 1000, 5.2% exhibited

significant segregation distortion, which is concordant with a chi-square alpha threshold

of 0.05. Where two markers were placed near each other at centimorgan positions of 59

and 60, 5.4% of simulations contained markers with significant segregation distortion.

Increasing the distance between these two markers by placing them at 20 and 60 centi-

morgans resulted in 9.2% of simulations containing markers with significant segregation

distortion. The difference in number of simulations containing segregation distortion

between these proximal and distal marker distributions was significant (𝜒2 = 9.89, df

= 1, p = 0.002).

To assess the effects of population size and selection strength on deviation from a 1:1

ratio of homozygous genotypes, and therefore segregation distortion, we ran a set of

simulations in which both these parameters varied (figure 4.4). Population size ranged

from 10 to 2000, whilst selection strength ranged from 1/20 to ½. As selection strength

increases, the effect of population size on the deviation from 1:1 decrease. Simulations

with population sizes less than 80 are very susceptible to distortion regardless of the

selection strength.
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Figure 4.4 Heatmap of deviation from 1:1 segregation of homozygotes at various pop-
ulation sizes and selection strengths. Lower selection strengths are highly dependent
on population size. As population size decreases, the influence of sampling error on
segregation ratios increases, leading to high segregation distortion even in the case of
weak selection. Each tile is an average value over 20 simulations with 20 markers at
evenly spaced intervals, totalling 100 centimorgan. Deviation is calculated as Σ(y -
0.5)ˆ2 where y is the ratio of homozygous genotypes (a )/(a + b) at an arbitrary locus;
a is the number of homozygous genotypes from parent 1, b is the number of homozygous
genotypes from parent 2 at an arbitrary locus

We examined the performance of various p-value thresholds and multiple testing proce-

dures on the detection of segregation distortion at a range of selection strengths, with
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a population of 1000 individuals per simulation (figure 4.5). 56.1% of simulations con-

tained significantly distorted markers when a p-value threshold of 0.05 was used with

no selection, compared to 3% at p-value thresholds of p < 0.001, p < 0.05 (FDR cor-

rected) and p < 0.05 (Bonferroni corrected). As shown in Fig 4.5, p < 0.001 and p <

0.05 (FDR corrected) are almost equivalent for this distribution of markers. All the

detection criteria reach saturation (100% of simulations having markers with significant

segregation distortion) at a selection strength of 0.25. As expected, the Bonferroni test

is strictest regardless of selection strength.
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Figure 4.5 Proportion of 1000 simulations containing significantly distorted markers
as a function of selection strength for various p-value threshold criteria. Simulations
contain 1000 individuals and used the marker distribution of chromosome 1A from the
Cadenza X Avalon F2 population. The position of selection was at locus 200 of 224
markers Sim = simulations, sig. = significant, pop. = population

In addition to the type of statistical test used, population size also influences the num-

ber of simulations exhibiting significant segregation distortion. As population size in-

creases, so does the ability to reliably detect smaller selection strengths (figure 4.6).

At a selection strength of 1/20, 60.3%, 66.2%, 85% and 100% of simulations contained

markers exhibiting significant segregation distortion under a chi-square test with alpha

threshold 0.05 for population sizes of 96, 300, 1000 and 10000 respectively (figure 4.7).
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Figure 4.6 Effect of selection strength and population size on the number of simula-
tions containing distorted markers (as determined by a chi-square test with significance
threshold of 0.05 after correction for multiple testing with FDR). Sim = simulations,
sig. = significant, pop. = population
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Figure 4.7 Simulation of an F5 RIL population with a selection pressure of strength 1/20 at locus 200. Indicated in the header
of each panel is the population size. As the population size increases, the influence of sampling error on segregation of marker
decreases, providing increased resolution of genuine selection events. (a) shows the mean magnitude of distortion ((a)/(a + b))
over 1000 simulations. The shaded area represents ± the standard deviation of the magnitude of distortion over 1000 simulations.
The dashed lines mark the 5% significance threshold for a chi-square test, whilst the dotted line marks a 1:1 segregation ratio.
(b) shows the number of simulations in which the peak of distortion occurs at the specified marker. As population size increases,
so do the number of simulations in which the genuine selection event emerges as the peak of distortion. Num. = Number, sim.
= simulations, dist. = distortion.
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To test whether local recombination rate in the region of selection effected the detection

of segregation distortion, we performed additional simulations with selection at marker

100 of chromosome 1A. This marker is located in a region of low recombination (figure

4.8), which contrasts with previous simulations where selection was at marker 200,

located in a region of high recombination. The only statistical test that was affected

by recombination rate in the region of selection was the FDR correction, which was

consistently more powerful at all values of selection strength for population sizes 96,

300 and 1000 (figure 4.9).
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Figure 4.8 Recombination for chromosome 1A of the Avalon X Cadenza cross. The
amount of recombination is represented by the slope of the line.
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Figure 4.9 Examining the effect of selection position on the number of simulations
containing significantly distorted markers. Position 100 is in a region of low recombina-
tion, whereas position 200 is in a region of high recombination. Columns are separated
by the type of statistical test performed, whereas rows are separated by population size.
The FDR correction has consistently more power when selection is in position 100. sig.
= significant, dist. = distorted, S. = selection, Pos. = position.

These results contrast with the effect of local recombination rate on the detection of

segregation distortion regions (SDRs), defined here as 2 or more consecutive markers ex-

hibiting significant segregation distortion. The total number of SDRs generated among

all 1000 simulations is generally higher when selection is positioned at marker 100 com-
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pared to marker 200 (figure 4.10 (a)). An exception to this occurs at very high selection

strengths (0.5), as these cause the entire chromosome to become one SDR at position

100, resulting in fewer, albeit larger in number of markers, SDRs overall. Changing

the measure of SDRs to the number of simulations containing at least one SDR (figure

4.10 (b)). causes both selection positions to perform almost analogously when using no

multiple testing correction and a detection threshold of p < 0.001. In comparison, the

FDR correction for multiple testing results in a greater difference between positions.
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Figure 4.10 Comparison of the effect of selection position on formation of segregation
distortion regions (SDRs). Selection position 100 is in a region of low recombination,
whereas position 200 is a region of high recombination. (a) shows the total number of
SDR among 1000 simulations as a function of selection strength, whereas (b) shows the
number of simulations with at least 1 SDR. Shown in the panel titles are the thresholds
/ type of statistical tests used to detect segregation distortion. num. = number, sim.
= simulations.

To examine the effect of selection strength on the position of maximum distortion, we

performed simulations with a selection pressure at locus 200 of 224, using the marker

distribution from Cadenza X Avalon 1A and a population size of 300 individuals. Selec-
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tion strength ranged from 1/20 to ½. As expected, the number of markers exhibiting

significant segregation distortion increased with the selection pressure, with mean values

of 30.83 and 177.45 at selection pressures of 1/20 and ½ respectively. The percentage

of simulations at which the peak of segregation distortion occurred within 10 markers

of the applied selection pressure was 52% for a selection pressure of 1/10, which grad-

ually increased: 64.9%, 78.2%, 92.7% and 99.7% for pressures of 1/8, 1/6, 1/4, and ½

respectively. This was also affected by population size, with higher population sizes

having an increasing number of simulations exhibiting peak segregation distortion at

the selection locus when selection strength was fixed to 1/20 (figure 4.7 (b)).

4.4.3 Effect of segregation distortion on genetic mapping

In the simulations with a single selection pressure of strength 1 at locus 30 of chromo-

some 6B and no selection pressure on 1A, yielding a genotype ratio of 0:0:300 at the

locus under selection, MSTMap was able to construct the genetic map with perfect clus-

tering and ordering of marker bins using a clustering parameter of 10−43. The second

simulation contained two selection pressures, one positioned at marker 30 of chromo-

some 6B and the other positioned at marker 200 of chromosome 1A, both favouring

the same parental genotype. MSTMap was able to construct genetic map with perfect

clustering and ordering of marker bins (using clustering parameter 10−45) up to a se-

lection pressure of 1/1.11, which yielded genotype ratios of 1:31:268 (test of deviation

from 1:2:1 ratio: 𝜒2 = 664.07, df = 2, p < 10−15) and 2:32:266 (test of deviation from

1:2:1 ratio: 𝜒2 = 650.29, df = 2, p < 10−15) for the markers under selection respectively.

When the selection strength for this configuration was increased to 1/1.105, yielding

genotypes ratios of 0:27:273 and 1:28:271 respectively, MSTMap was unable to cluster

markers correctly for any of the clustering parameters tested, which ranged from 10−40

to 10−50. For example, using a clustering parameter of 10−45 yielded two linkage groups,

the first consisting of markers 1 to 167 of chromosome 1A, the second consisting of a

concatenation of 1A markers 168 to 223 and all the markers on 6B (figure 4.11).
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Figure 4.11 Effect of segregation distortion on genetic mapping. (a) When no selection is applied, two linkage groups represent-
ing simulated chromosome 1A and chromosome 6B are formed with perfect order of marker bins. (b) When a strong selection
pressure of 1/1.11 is applied at locus 30 and 200 of 6B and 1A respectively, the recombination fractions between markers at these
loci and surrounding markers are lowered, but not enough to disrupt clustering or ordering of the markers. (c) When a strong
enough selection pressure of 1/1.105 is applied such that one of the loci has zero A genotypes, the recombination frequencies of
markers under selection are low enough such that chromosomal fragments experiencing segregation distortion are concatenated
into the same linkage group. White lines delineate linkage groups
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Moving the position of one of the two selection pressures from a region of high recombi-

nation (marker 200 on chromosome 1A, (figure 4.8)) to a region of low recombination

(marker 100 on chromosome 1A, (figure 4.8)), had little effect on genetic map construc-

tion, with MSTMap producing a map with perfect clustering and ordering of marker

bins at a selection strength of 1/1.2, yielding genotype ratios of 2:50:248 and 2:55:243 at

marker 30 of chromosome 6B and marker 100 of chromosome 1A respectively. MSTMap

was unable to cluster markers correctly when selection strength was increased to 1/1.1,

yielding genotype ratios of 0:29:271 and 0:31:269 for the respective markers under selec-

tion. When the position of selection on chromosome 6B was also moved to a region of

low recombination (from marker 30 to marker 110, (figure 4.12)), MSTMap produced

a map with perfect clustering and ordering of marker bins at a selection strength of

1/1.2, and failed to cluster markers correctly when the strength was increased to 1/1.1.
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Figure 4.12 Recombination for chromosome 6B of an Avalon X Cadenza cross. The
amount of recombination is indicated by the slope of the line.

Similarly to the results from the F2 population, in a simulation of an F8 SSD population

with the same selection positions and a selection strength of 1/1.3, which yielded AA:BB

genotype ratios of 28:272 (chi-square test of deviation from 1:1 ratio, 𝜒2 = 198.45, df

= 1, p < 10−15) and 31:269 (chi-square test of deviation from 1:1 ratio, 𝜒2 = 188.81,

df = 1, p < 10−15) for the respective markers under selection, MSTmap was able to

produce perfect clustering and ordering of marker bins with a clustering parameter of

10−42.
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Extreme segregation distortion caused a significant shortening of map length for sim-

ulated chromosome 6B (t-test, t = -27.57, df = 176.43, p < 10−15) by around 20 cM,

with a selection pressure of 1 producing a map length of 140.14 ± 3.92 compared to

159.07 ± 5.64 with no selection applied. Less extreme selection pressures of 1/3, 1/5,

1/7 and 1/9 produced mean map lengths over 100 simulations of 153.04 ± 4.64, 155.08 ±

4.4, 155.39 ± 4.68 and 156.77 ± 3.95 respectively. Likewise, for simulated chromosome

1A, extreme distortion shortened the map length significantly (t-test, t = -5.17, df =

197.72, p < 10−6), but with a smaller effect size than for 6B, with selection pressure of

1 producing a mean map length of 127.39 ± 4.81 compared to 130.84 ± 4.64 cM with

no selection.

4.4.4 Reanalysis of existing data

We reanalysed data from (Allen et al. 2016; Avni et al. 2014), both of which used the

minimum chi-square threshold of p < 0.05 to detect regions of segregation distortion

(table 4.2). As expected, in both cases we observe a large reduction in the number

of markers exhibiting significant segregation distortion when corrections for multiple

testing are applied.
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Table 4.2 Reanalysis of genotyping data from existing studies with corrections for
multiple testing. Indicated in columns 3–5 are number of markers exhibiting significant
segregation distortion with no correction for multiple testing, the FDR correction and
the Bonferroni correction respectively.

Author

Mapping

Population

P <

0.05

P < 0.05

(FDR)

P < 0.05

(Bonferroni)

Allen et al.,

2016

Avalon X Cadenza 487 5 5

‘ ’ Savannah X Rialto 230 0 0

‘ ’ Opata X Synthetic 346 0 0

‘ ’ Apogee X Paragon 320 35 21

‘ ’ Chinese Spring X

Paragon

774 0 0

Avni et al.,

2014

Svevo X Zavitan 3789 1771 150

Markers that were still classified as significantly distorted in the Avalon X Cadenza

population under Bonferroni correction were located on chromosomes 2A and 2D, whilst

in the Apogee X Paragon population these were found on chromosomes 2D, 3B, 6A and

6B. Likewise, for the Svevo X Zavitan population, markers still significantly distorted

under Bonferroni correction were found on chromosomes 2B and 3B.

4.4.5 Cadenza X Avalon Replicates

In the Cadenza X Avalon F2 replicates, there are 453 (14.88%) markers that exhibit

significant segregation distortion (p < 0.05) in at least one of the replicates. Only

14 markers showed significant segregation distortion in both replicates. When both

datasets were combined, 253 markers showed significant distortion. In the combined

dataset, 173 of the 253 distorted markers were also distorted in one of the two original

replicate datasets, whilst 80 were not. In the first and second replicates, 187 and 280
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markers exhibited significant distortion respectively. In the first replicate, there were

22 SDRs, comprised of 161 markers in total. The mean ± sd length of the SDRs was

7.32 ± 5.57 markers. In the second replicate, there were 31 SDRs comprised of 238

markers in total. The mean ± s.d. length of the SDRs was 7.68 ± 10.46. Three of the

SDRs on chromosomes 1D, 5B and 1A respectively overlapped between replicates; the

lengths of the overlaps were 4, 2 and 2 markers respectively.

4.4.6 Avalon X Cadenza Replicates

In the Avalon X Cadenza F2 replicates, there are 510 (16.75%) markers that exhibit

significant segregation distortion (p < 0.05) in at least one of the replicates. Only

38 markers showed significant segregation distortion in both replicates. When both

datasets were combined, 173 markers showed significant distortion. In the combined

dataset, 120 of the 173 distorted markers were also distorted in one of the two original

replicate datasets, whilst 53 were not. In the first and second replicates, 193 and 355

markers exhibited significant distortion respectively. In the first replicate, there were

15 SDRs comprised of 155 markers total. The mean ± s.d. length of the segregation

distortion regions was 10.33 ± 8.81. In the second replicate, there were 20 SDRs

comprised of 328 markers total. The mean ± s.d. length of the segregation distortion

regions was 16.4 ± 32.49. Six of the SDRs overlapped between replicates, these were all

located on chromosome 6B and had widths of 8, 4, 8, 2, 4 and 4 markers respectively,

(figure 4.13). The overlapping region did not have a skew towards the same parental

genotype in each replicate.
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Figure 4.13 Comparison of segregation ratios on chromosome 6B for Cadenza X Avalon
(a, b) and Avalon X Cadenza (c, d) replicates. Markers exhibiting significant segregation
distortion as determined by a chi-square goodness of fit test for deviation from a 1:2:1
ratio of AA:AB:BB genotypes are highlighted by asterisks at the base of each plot.
Black horizontal lines mark the expected transition from one genotype to the next
under a 1:2:1 ratio. Markers are ordered on the x-axis as in the genetic map produced
from the first replicate Cadenza X Avalon population

4.5 Discussion

Comparisons between the simulated data and the empirical data from the Cadenza X

Avalon F2 mapping population show that the simulator is accurate in terms of map
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length produced, number of recombination events per individual, degree of segregation

distortion and recombination frequency heatmap. We can therefore be confident that

the subsequent simulation experiments are an adequate representation of reality.

It is clear a priori that when we test for segregation distortion, the probability of a

false-positive result increases with the number of markers, as multiple inferences are

being made simultaneously. What complicates the calculation of how much more likely

a false-positive result is with increasing number of markers, and therefore how strict

our correction for multiple testing should be, is the marker distribution along the chro-

mosome. All markers are ultimately linked together to varying degrees by the process

of recombination, so not all the statistical tests performed are completely independent.

Markers adjacent to each other at short genetic intervals along the chromosome segre-

gate in a highly linked manner. This is confirmed by our simulation experiments with

different distributions of two markers, one in which the markers are close together and

one in which they are further apart, with the latter yielding almost double the amount

of simulations containing markers that were significantly distorted. Interestingly, the

chi-square test performs as expected when only one marker is used on the chromosome

with no selection, with around 5% of simulations showing a false-positive result, which

corresponds to the traditional alpha threshold of 0.05.

The FDR correction procedure reassuringly produced an alpha threshold that is only

slightly stricter than the traditional 5% in the simulated chromosome 1A described ear-

lier, as shown in table 1. The Bonferroni correction is only appropriate when statistical

tests are completely independent from one another, which is not the case for highly

linked markers. The Bonferroni test would therefore be appropriate if markers were on

different chromosomes, or if they were located at large distances from each other on

the same chromosomes. For high-density SNP data obtained from microarrays this is

often not the case, and therefore the Bonferroni correction is often too strict, as shown

by the results in table 1, where in the F2 population of 300 individuals only 4 simula-

tions show significant segregation distortion, where we would expect around 50 if the

test corresponded to the usual 0.05 alpha threshold. The fact that 56% of simulations
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without any selection pressure show significant segregation distortion according to the

chi-square test at the minimum p-value threshold (p < 0.05) should definitively rule out

the use of chi-square without correction for multiple testing, or inclusion of lower thresh-

olds, in future studies that utilize high-density genotyping data. The perfect multiple

testing procedure for segregation distortion would be one that considers the distribution

of markers on the chromosome such that the alpha threshold is adjusted depending on

the degree of linkage between each marker. However, seeing as the FDR correction for

multiple testing is only marginally more conservative than the traditional alpha thresh-

old of 0.05, and taking into account the fact that the traditional alpha threshold was

chosen arbitrarily (Wasserstein et al. 2019), the use of FDR as a new standard for the

detection of segregation distortion seems appropriate.

One focus in the literature is the identification of segregation distortion loci. Our simu-

lation experiments with a range of selection strengths show that resolution of selection

events is increased with population size. This is because the effects of sampling error

are neutralized as population size increases. Sampling error could lead to the erroneous

conclusion that a segregation distortion locus is present by shifting the segregation of a

marker away from expected Mendelian ratios. Conversely, it can make markers under

true selection pressures appear as normally segregating. It can also skew the peak of

segregation distortion away from a true selection locus at smaller selection strengths.

To correctly identify the causative locus in this case then would require a wider search

than is initially implied by the segregation data. These results emphasize the signifi-

cance of sampling error in segregation distortion studies. In addition, our results show

that local recombination rates in the region of selection have little influence on the

detection of segregation distortion.

It has long been known that segregation distortion affects the estimation of recombi-

nation fraction between markers (Lorieux et al. 1995). Indeed, Bailey constructed a

maximum-likelihood estimation of recombination frequency under the influence of seg-

regation distortion as early as 1949 (Bailey 1949). However, there does not seem to be

a practical guide in the literature that can assist researchers in knowing what degree
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of distortion will affect the mapping process. Our simulation experiments on the effect

of segregation distortion on genetic mapping show that only very extreme distortion

effects the formation of linkage groups during the clustering of markers, as well as

map length, meaning that markers experiencing moderate distortion can be retained

in genetic maps. This conclusion persists regardless of selection position, whether in

a region of high or low recombination. This result will be useful to future studies, as

markers that would have previously been discarded will give us more information on

potentially useful genomic regions of many crop species. In the re-analysis of data from

Allen et al (Allen et al. 2016) and Avni et al (Avni et al. 2014), it is interesting to note

that the latter had many more markers exhibiting segregation distortion both before

and after corrections for multiple testing. The former study used varieties of bread

wheat (Triticum aestivum L.) whilst the latter involved a cross between durum wheat

(Triticum turgidum L. subsp. durum) and a wild relative of durum wheat, wild emmer

(Triticum turgidum L. subsp. dicoccoides). It has been noted elsewhere in the litera-

ture that the degree of segregation distortion often increases with genetic distance of

the parents (Liu et al. 2010). One hypothesis is that with increasing genetic distances,

the fitness benefits conferred to the progeny of biparental crosses become increasingly

different between parental alleles. If this is indeed the case, the description of a true

segregation distortion locus in closely related crop varieties, including its mechanism

of action, is a much more difficult task than in more distantly related crosses. Indeed,

our best descriptions of segregation distortion loci are from crosses between rice (Oryza

sativa L.) subspecies indica and japonica (Yang et al. 2012), as well as Drosophila pseu-

doobscura subspecies pseudoobscura and bogotana (Phadnis and Orr 2009). To detect

a true segregation distortion locus in closely related wheat varieties then would require

population sizes large enough to detect much smaller selection strengths, as indicated

in figure 4.6, as well as replicate populations to confirm the effect on segregation is

due to selection. An exception to this statement may be in the production of doubled

haploid mapping populations, where differences in amenability to doubled haploidy be-

tween closely related varieties has the potential to produce segregation distortion that

is stronger than in an SSD population structure (Sayed et al. 2002).
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When identifying segregation distortion in empirical populations, it is often convenient

to assess segregation in terms of SDRs, as multiple consecutive markers exhibiting

significant segregation distortion provide us with more confidence that the distortion

observed is not due to erroneous genotype assignment. The fact that we only observed

a few SDR overlaps that were distorted towards the same parent between replicates in

our empirical populations shows that legitimate segregation distortion between varieties

of wheat is rare. Our simulation experiments also confirm the intuitive deduction

that the number of SDRs should increase when selection occurs within regions of low

recombination. In conclusion, the results presented here emphasize the importance of

using appropriate statistical methods when detecting segregation distortion. We must

be sure that the observed distortion is due to a genuine selection pressure before we can

commence further research into identifying the loci that are driving the distortion. We

recommend that studies utilizing high-density genotyping data use an FDR correction

for multiple testing when checking for segregation distortion, and that population size

should be as high as possible to increase the chances of discovering genuine segregation

distortion loci. Figure 4.6 serves as a guide for the appropriate population size to detect

various selection strengths. For example, to reliably detect a selection strength of 1/10

at the 0.05 p-value threshold, a population size slightly bigger than 1000 individuals is

required. As a result of our reanalysis of existing data based on these principles, we

have discovered a candidate segregation distortion region on chromosome 3B of a cross

between wheat varieties Apogee and Paragon that is likely to be caused by a genuine

selection event. We hope that future studies of segregation distortion will also consider

the findings presented here.
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5 AutoCloner: automatic primer design for full-

gene cloning in polyploids

All results described here have been published in the folllowing manuscript:

Coulton, A., Edwards, K., 2020. AutoCloner: automatic homologue-specific primer

design for full-gene cloning in polyploids. BMC Bioinformatics

5.1 Abstract

Obtaining full-gene sequences in wheat and other polyploid crops is complicated signif-

icantly by the presence of multiple homologues in the genome. As such, it is necessary

to design PCR primers such that their 3‘ bases land on a single nucleotide variant that

is unique to the homologue of interest. This process has long been performed in a man-

ual fashion among wheat researchers. Here we present AutoCloner, a fully automatic

bioinformatics pipeline that simplifies the process of gene cloning in wheat by design-

ing primers that take into account these single nucleotide variants. In addition, we

present an easy-to-use web interface that allows researchers to run the pipeline without

installing any additional software.

5.2 Introduction

Polymerase chain reaction (PCR) is a procedure that allows the amplification of small

amounts of DNA into millions or billions of copies, originally conceived by Kary Mullis

in the 1980s (Mullis 1990). There are four primary reagents required for the PCR. The

first of these is the template sequence to be amplified, which is usually obtained using

a simple DNA extraction procedure (e.g. (Edwards et al. 1991)). In addition, two

short oligonucleotide sequences, ranging from 15 - 30 bases in length, are also required.

These must be complementary to the template sequence, as well as positioned such

that they are flanking the template sequence. The first hybridizes at the start of the
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sequence to the sense strand of the DNA double helical structure, whilst the second

hybridizes at the end of the sequence, to the anti-sense strand. For this reason these

oligonucleotides are referred to as the forward primer and the reverse primer respectively.

The third key reagent for PCR is a thermostable DNA polymerase, originally isolated

from thermophilic bacterium Thermus aquaticus. Finally, PCR also requires a pool of

free nucleotides that serve as base material for DNA synthesis.

The reaction itself consists of three stages: denaturation, annealing, and extension.

The basis of change between these stages is a change in temperature of the reaction

tube, done using a thermocycler machine. During the denaturation stage, temperature

increases to around 94°C for 1 minute, which is enough to separate the individual

strands of the DNA double helix, and thus making them free for hybridization to their

respective primers (Lorenz 2012). Following this, temperature is lowered to around 52°C

for 30 seconds to allow annealing of primers to the template DNA. Finally, during the

extension stage, temperature is raised to around 75°C, which is the optimal temperature

for the thermostable DNA polymerase to synthesize the new DNA strands. These three

stages are cycled through and repeated many times during the PCR, such that by the

end of the reaction, the concentration of the target DNA outnumbers the concentration

of the sample DNA by many orders of magnitude.

Cloning of genetic sequences via polymerase chain reaction (PCR) is a routine opera-

tion in biological research. In agricultural research specifically, this procedure facilitates

the connection between varietal sequence differences and important phenotypic traits

such as disease resistance, yield, and abiotic stress tolerance. This process is signifi-

cantly complicated in polyploid crops due to the presence of multiple closely-related

subgenomes, meaning that allele-specific primers must be used to prevent cloning of

non-target sequences such as homeologues and paralogues. Although there already ex-

ists a tool for designing primers for use in Kompetitive allele specific PCR (KASP)

assays in polyploids, PolyMarker (Ramirez-Gonzalez et al. 2015), this only considers

flanking sequences of 100 bases either side of a varietal SNP. This limitation means that

it cannot used to clone entire genes, as the mean ± s.d. length of a high-confidence gene
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in the IWGSC RefSeq v1.0 (Consortium (IWGSC) et al. 2018) wheat genome assembly

is 3065 ± 3957 bases. There are currently no software packages to assist allele-specific

primer design for the cloning of entire genes or other genomic sequences of interest,

and indeed current practice within the community is to carry out this lengthy process

manually (Babben et al. 2015, 2018; wheat-training.com).

For example, consider the situation in which a researcher has a gene sequence from

a single wheat variety and is interested in how this sequence differs between varieties.

To assess this, they could design several pairs of allele-specific primers whose prod-

ucts overlap, covering the entire gene region, and then sequence these products after

performing PCR. This primer design process involves several stages. First, the wheat

genome must be queried for closely related alleles to the sequence of interest. Once

homologues have been identified and extracted, they must be arranged into a multiple

sequence alignment. This alignment must then be scanned for SNPs to serve as the

3‘ bases of primers, which can then be designed using the appropriate primer-design

software. In total, this is a lengthy process that would be significantly improved via

the use of an automated tool. Here we present AutoCloner, (illustrated in figure 5.1)

a fully automated allele-specific primer design pipeline that includes a simple web in-

terface for users. Although developed in the context of wheat, AutoCloner can easily

be configured to work with any species for which a genome assembly is available. It

requires only a single input, the sequence of interest to clone.
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CTAATGGGTGTGTGGAGCGCG ... AAGTCGATGCTAGCTAGGCG

 IS with �anking regions

Homeologue 1

Homeologue 2

SNP unique to 
input sequence

 IS with �anking regions

(a)

(b)

(c)

Input sequence (IS)

IS

Forward primer Reverse primer

IS

Product

Figure 5.1 Schematic detailing AutoCloner, a homologue-specific primer design
pipeline for polyploids. (a) The user inputs a DNA sequence which they wish to clone
in a variety for which this sequence is unknown. (b) AutoCloner finds flanking regions
and homologues through BLAST, generates a multiple sequence alignment with Muscle
and scans the alignment for SNPs. (c) The best possible combination of primers, whose
overlapping products span the entire input sequence, are returned by the pipeline via
Primer3.

5.3 Materials and methods

5.3.1 Acquisition of homologous sequences via BLAST

AutoCloner first searches for homologues of the user input sequence by performing

a BLASTN search of the input sequence against the latest IWGSC (International

Wheat Genome Sequencing Consortium) RefSeq wheat genome assembly (Consortium

(IWGSC) et al. 2018). Alternatively, AutoCloner can use any genome that the user

has specified in the configuration file, and could therefore be used for any species where

homologous sequences with high similarity are common. The tabular output files of

the BLAST search are parsed and used as a basis for sequence extraction from the

genome assembly (for code see appendix A.1). BLAST breaks up query sequences into

high-scoring pairs (She et al. 2011), and as such it is necessary to examine groups

of hits when using BLAST to extract homologues rather than individual hits. Here
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a group of BLAST hits are defined as hits with the same query and subject sequence

that are within 1000 bases of each other (figure 5.2). The group of BLAST hits that is

most closely related to the input sequence is assumed to be the genomic representation

of that sequence and is used to obtain the flanking regions of DNA. The next three,

or alternatively the number specified by the user, best groups of hits are also used for

sequence extraction and are assumed to be close homologues of the input sequence,

providing their within-group average bitscore exceeds 200. This threshold means that

only hits with a reasonable amount of sequence similarity are retained.

Homologue 1

Homologue 2

BLAST Hit

Figure 5.2 Schematic detailing BLAST parser. Although BLAST has returned three
separate hits between these two homologues, these hits are actually within 1000 bases
of each other, and so are grouped together, including the interstitial bases between hits,
as one homologue by AutoCloner for sequence extraction.

Further input parameters to the pipeline include the amount of sequence to extract

that flanks the input sequence, namely the start buffer (-s) and end buffer (-e) param-

eters, which default to 1000 nucleotides. The maximum product length and minimum

product length parameters specify the maximum and minimum sizes of overlapping

PCR products enclosed by the primers produced by the pipeline. To ensure memory

is used efficiently during sequence extraction, AutoCloner makes fasta indices of any

genome assemblies that are specified in the configuration file. AutoCloner also has the

capability to include more than one genome if there are genome sequences available for

more than one variety within the species. If this is the case, one sequence from each of

the additional genomes is also extracted to increase the reliability of SNP identification

in later stages, ensuring that varietal SNPs are not used as a basis for primer design.
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5.3.2 Extraction of homologues and multiple sequence alignment

The extracted sequences must then be arranged into a multiple sequence alignment,

which is used to identify SNPs between the sequence of interest and its homologues.

AutoCloner uses Muscle (Edgar 2004), or alternatively Dialign (Al Ait et al. 2013),

to achieve this. Dialign is useful when multiple homologues and partial homologues,

i.e. sequences of different lengths, are present in the sequence set extracted from the

BLAST results, as it allows specification of anchors that inform the alignment. A single-

nucleotide mismatch at the 3‘ end of the primer significantly decreases the efficacy of

Taq polymerase in the PCR reaction (Ayyadevara et al. 2000), and so the SNP locations

can be evaluated as potential primer locations. It is unlikely that each of these locations

will have the ideal sequence characteristics for a primer, such as adequate GC content,

low probability of hairpin structures and an ideal melting temperature (TM). When

performing this process manually, it is common for a researcher to evaluate multiple

locations before finding one that is adequate for a primer. This is time consuming and

can also produce sub-optimal results due to human error. It is for this reason that

AutoCloner integrates Primer3 to evaluate each possible primer.

5.3.3 SNP Identification

Once the multiple sequence alignment has been produced, it can then be scanned for

SNPs that could serve as potential locations for homologue-specific primers. Each SNP

is evaluated based on various criteria, including whether the SNP provides complete

chromosome specificity, and whether the SNP is in a suitable location. If more than

one genome has been included in the sequence extraction process, varietal SNPs will

also be identified. For example, if producing primers in wheat for the Apogee variety,

the primary genome could be Chinese Spring (Consortium (IWGSC) et al. 2018),

whilst the secondary genome could be Paragon (Walkowiak et al. 2020). If the SNP is

chromosome-specific and is present in both varieties, it is more likely to also be present

in Apogee. A diagram of the SNP selection process is shown in figure 5.3.
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Figure 5.3 Detailed overview of the SNP categorisation and primer selection process in AutoCloner. Shown is a hypothetical
multiple sequence alignment (MSA) containing the sequence to clone (first row), two homeologues (rows 2-3), and a homologue
from a second variety (row 4). AutoCloner identifies SNPs in the MSA and identifies which might be suitable for potential
primer locations. The SNP at sequence site 3 is a varietal SNP rather than a homeologous SNP and is therefore not suitable.
The SNP at sequence site 5 only provides partial specificity and is also not suitable. Whilst the SNP at sequence site 11 provides
specificity, however is not present in the second variety, meaning it could be unique to the first variety, and therefore not present
in the variety under investigation. The SNP at sequence site 105 does not flank the desired region to clone and is therefore not
suitable. Shown at the bottom of the figure are potential primers with 3’ ends placed on SNPs deemed viable. Note that some
of these include primers that are placed on the same SNP but are different lengths. Primer3 evaluates each of these primers,
ultimately assigning each a penalty score. The primers with the lowest penalties are returned to the user. Note that the reverse
primers are shown as the reverse complement of the sequence in the MSA.
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5.3.4 Evaluation of potential primer combinations using Primer3

AutoCloner evaluates all possible combinations of primers at the SNP loca-

tions that fall within the user-specified minimum and maximum product size

ranges by utilizing Primer3 (Untergasser et al. 2012). The Primer3 out-

put parameter PRIMER_PAIR_PENALTY is used to select the best primers.

PRIMER_PAIR_PENALTY is a composite score calculated for each primer that

corresponds to the overall quality of the primers: the lower the value the better. This

is score is made up of several factors. Primer melting temperature, the temperature at

which primers dissociate from the template DNA, is calculated using thermodynamic

formulae that take into account factors such as the concentration of divalent cations

in the solution (Koressaar and Remm 2007). This value is compared to the optimal

melting temperature (set at 60°C), with large deviations resulting in higher penalties.

Primer melting temperature is used to derive the primer annealing temperature, the

temperature at which oligos bind to the template DNA. Sub- and super-optimal an-

nealing temperatures have a negative effect on primer specificity to the target sequence

(Rychlik et al.). Primer length is also taken into account, which optimally should be

20 bases. This is long enough to provide target specificity and short enough not to

dramatically effect the efficiency of primer annealing (Dieffenbach et al. 1993). Primer

GC content is closely linked to melting temperature, and should be around 60%. The

probability of the formation of primer-dimers and hairpin structures (intermolecular

and intramolecular secondary structures respectively) is another important factor that

could negatively effect the reaction, and therefore the penalty score.

Using these principles, it is therefore possible to predict the likelihood of a successful

PCR ahead of time. The PRIMER_PAIR_PENALTY metric allows AutoCloner to

select optimal sets of forward and reverse primers. These sets are chosen such that

they have overlapping products that cover the entire input sequence. These overlapping

products allow the input sequence to be cloned and sequenced in its entirety. In addition

to the primers intended for PCR, several within-product primers are also selected for

Sanger sequencing of large products. AutoCloner also allows the user to input their own
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multiple sequence alignment instead of a single sequence using the -a option; in this case

the initial stages of the pipeline are skipped and the alignment is immediately scanned

for SNPs. Note that if this is the case, AutoCloner expects the multiple alignment to

1) be in Fasta format with gaps indicated by “-“ and 2) for the sequences to be in

the following order: sequence to be cloned, same sequence but with flanking regions

included, then any homologues.

5.3.5 Using Primer3 efficiently

One aspect that had to be considered when writing the AutoCloner pipeline was how

to call Primer3 in a manner that would be most computationally efficient. This task

is constrained by the options presented by the Primer3 developers that determine

Primer3’s mode of operation, namely the PRIMER_TASK configuration tag. The

relevant values for PRIMER_TASK include “generic”, which gives Primer3 free rein

to pick and return only the best primer pairs it finds in the provided input sequence,

unconstrained by position. This can be further modified to suit our needs (i.e. forcing

the 3’ ends of primers to be located at SNPs) by SEQUENCE_FORCE_LEFT_END

and SEQUENCE_FORCE_RIGHT_END parameters. An additional possible value

for PRIMER_TASK is the “pick_primer_list” option, which causes Primer3 to return

a list of all possible primers in the input sequence.

Given these possibilities, a naive view would suggest that first the multiple sequence

alignment should be scanned for SNPs, then a new instance of Primer3 should be

called for each one of these SNPs using the “generic” value for PRIMER_TASK.

This could be achieved using the SEQUENCE_FORCE_LEFT_END and SE-

QUENCE_FORCE_RIGHT_END parameters for forward and reverse primers

respectively. This could save on the unnecessary computation of primers at invalid,

non-SNP locations. This approach works when the number of SNPs is low, however

was found to be poor in practice, as the inefficiency of calling Primer3 in separate

instances significantly lengthened the computation when the number of SNPs, and

therefore potential primer locations, was high. A better approach is simply to force
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Primer3 to generate primers at every single base location of the input sequence using

the “pick_primer_list” value for PRIMER_TASK, then perform filtering of these

primers to include only those that are in valid locations. This is much faster in the

case where the number of SNPs is high, and only slightly slower than running separate

Primer3 instances when the number of SNPs is low. This is largely due to the fact that

Primer3 is written in C / C++, compiled languages optimized for faster computation.

Figure 5.4 shows the AutoCloner control flow.
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5.3.6 Choosing sets of overlapping primers

Sanger sequencing and PCR both become less accurate after a certain number of bases.

To clone large genes then, it is necessary to perform sequencing and PCR with smaller,

overlapping subsections of the gene which can be pieced together later using sequence

alignment software. To achieve this, AutoCloner uses the following while loop algorithm

(for code see appendix A.2):

Variables:

• Minimum SNP coordinate (Sm)

• Maximum SNP coordinate (SM)

• Maximum product size (P)

• Forward primer coordinate (SF)

• Reverse primer coordinate (SR)

Algorithm:

• Set Sm = 0

• Set SM = Position of the start of the gene

• Set SR = Position of the start of the gene

• While SR < Position of the end of the gene:

– Find SNP within interval (Sm, SM) with minimum primer penalty score. This

is the position of the first forward primer (SF).

– Find SNP within interval (SF, SF + P) with minimum primer penalty score.

This is the position of the first reverse primer (SR).

* While no SNPs within interval (SF, SF + P) and P < sequence length,

set P = P + 10

– Set Sm = SF

– Set SM = SR
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Figure 5.4 Flowchart showing the control flow of the AutoCloner pipeline. Names of
software packages are shown in italics; box types are indicated in the legend.
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5.3.7 Web interface

In order to maximise ease-of-use for wheat researchers, we designed a web interface

for AutoCloner using the Django web development framework for Python. This site

integrates into the popular wheat-resource website CerealsDB (Wilkinson et al. 2016).

The web interface requires either a single sequence to be input by the user, or a multiple

sequence alignment. The user can also specify all other pipeline parameters via the

web interface, such as start and end buffers, minimum and maximum product sizes,

and which alignment software to use. Once submitted, the sequence is entered into

a queue for processing by AutoCloner. When the pipeline has finished processing the

sequence, the user is forwarded to the Details page (figure 5.5) in which the details

of their primers are displayed, with options to download the primer information as a

CSV file as well as download the multiple sequence alignment in either fasta or clustal

format. As well as showing optimal primer pairs chosen by the pipeline, a list of all

possible primers (at all SNP locations) is also shown in case any of the primers do not

work. The multiple sequence alignment is displayed directly on the website using MSA

(Yachdav et al. 2016), a Javascript web component (figure 5.6). To maximise ease of

use, the website was designed not to require any login details or personal information

from the user. The website features two modes of running the pipeline. The first is a

fully automatic mode in which all stages of the pipeline are run without user interaction.

The second is a guided mode in which the user can inspect all found homologues and

the multiple sequence alignment and choose to remove any unwanted homologues from

the alignment before designing primers. This is useful as it gives the user more control

over the primer design process, allowing them to debug errors in the pipeline when

homologue classification is too lenient.
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Figure 5.5 Picture of the AutoCloner website job details page. The user has the option
to view the BLAST results themselves, as well as choose from all possible primers should
the primers selected by AutoCloner not work.

Figure 5.6 Picture of the AutoCloner website job details page. The AutoCloner website
presents the multiple sequence alignment, containing the input sequence, homologues,
SNPs and primers, to the user for their own inspection.
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5.4 Results and Discussion

5.4.1 Using AutoCloner to investigate segregation distortion

It is well established that a DNA mismatch at the 3‘ end of the primer significantly

reduces the efficiency of Taq polymerase in a PCR, with previous research suggesting

the magnitude of this effect could as much as a 100-fold decrease (Ayyadevara et al.

2000). This principle serves as the basis for the design of homologue-specific primers.

We used AutoCloner to investigate potential gene candidates underpinning a region of

segregation distortion on chromosome 5A of a Chinese Spring X Paragon F5 mapping

population (Allen et al. 2016). This region lacked distortion in an Apogee X Paragon

F5 mapping population (Allen et al. 2016). Sequences for this region in both Chinese

Spring and Paragon were available, whilst no sequencing data was available for Apogee.

We therefore formulated the hypothesis that since there was a lack of distortion in the

Apogee X Paragon population, any potential causative gene would have the similar

or identical sequences between Apogee and Paragon, and different sequences between

Chinese Spring and Paragon. Therefore, sequencing data for Apogee could highlight

(or eliminate) genes worthy of further investigation.

5.4.2 Cloning TraesCS5A01G531300 in Apogee

The first gene we cloned was TraesCS5A01G531300, a 2.4 kb High Confidence gene

from the IWGSC assembly (Consortium (IWGSC) et al. 2018), with a BLAST search

identifying 2 homeologues on chromosomes 4B and 4D (the result of a well-known

translocation between 5A and 4A (Devos et al. 1995b)), as well as a partial homologue

on 5B, with homology beginning 325 bases into the gene and extending throughout

the gene until ~10 bases downstream. Sequence identity, not including regions of out-

side of the HSPs identified by BLAST, between TraesCS5A01G531300 and each of the

three homologues was 93.36%, 93.91% and 80.58% respectively, whereas GC content

for TraesCS5A01G531300 and each of the homologues was 49.67%, 49.51%, 49.67%

and 49.4% respectively. These GC values are close the average GC percentage of all
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110790 HC genes in the IWGSC assembly (Consortium (IWGSC) et al. 2018), which

is 51.43% ± 10 (mean ± s.d). AutoCloner returned four overlapping pairs of primers

whose products covered the entire gene length (table 5.1). DNA was extracted follow-

ing the protocol in (Edwards et al. 1991). All of the primers produced amplicons from

the desired locus in the genome (figure 5.7), and the entire gene sequence was obtained

via Sanger sequencing of these products. The resulting sequence was identical to the

sequence in Chinese Spring apart from one non-synonymous single nucleotide variant.

Table 5.1 List of primers designed by AutoCloner to amplify and sequence
TraesCS5A01G531300 in Apogee. Oligo names succeeded by an F are forward primers,
whilst an R indicates a reverse primer. Both primers for PCR and primers for Sanger
sequencing are included.

Oligo Name Type Sequence (5’->3’)

T.300.577-1989.F PCR AGACTTCCTGAACACGGCACAA

T.300.577-1989.R PCR CTTCTTGATGGCGCGGCATATAT

T.300.1904-3138.F PCR TAGGTTGACGTCATCGAAGCAG

T.300.1904-3138.R PCR CGGGTGAGAAGCAAGGACTC

T.300.2632-3437.F PCR CCATGGTGAGGTTGAGGTCC

T.300.2632-3437.R PCR GGTGCAGCAAGAGTACGGAG

T.300.2888-4219.F PCR CGGACGATGACAACAGGGAG

T.300.2888-4219.R PCR CCCTGCTCTCTCTCTCTCTCT

T.300.577-1989.split2.F Sanger CTCGAACTCGCTATTGGGCT

T.300.577-1989.split3.F Sanger AGTCAAGGTACAATATGTGACTGA

T.300.1904-3138.split2.F Sanger CCGTGAAGTACCGAAACCCA

T.300.1904-3138.split3.F Sanger TAACGAACCTGGTGCCTTCG

T.300.2632-3437.split2.F Sanger TCAGGTCCTTGGCCAGTTTC

T.300.2888-4219.split2.F Sanger GTGGAGACATGGAGGAGCAC

T.300.2888-4219.split3.F Sanger ACCAACACTCAAGCAAAGGGA
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Figure 5.7 Agarose gels showing amplified PCR products for the TraesCS5A01G531300
gene using primers designed by AutoCloner. Details of the primers are shown in table 1.
The DNA ladder used was the Quick-Load® Purple 2-log DNA ladder, manufactured
by New England Biolabs, containing DNA fragments ranging from 0.1 kb to 10 kb in
size. The expected product sizes for T.300.577-1989, T.300.1904-3138, T.300.2632-3437
and T.300.2888-4219 were 1412, 1234, 805 and 1331 bases respectively. A subsequent
PCR (not shown) in which the annealing temperature was increased from 58 °C to 60
°C increased the specificity of the T.300.2888-4219 set of primers.

5.4.3 Cloning TraesCS5A01G531700.1 in Apogee

The second gene cloned in Apogee was TraesCS5A01G531700.1, a 3.6kb gene on chro-

mosome 5A with homeologues on 4B and 4D, as well as a partial 2kb paralogue on
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chromosome 5A, and smaller 600 bp homologous regions on 2D and 5D. We obtained

a complete sequence of the coding region (introns defined by pairwise alignment to the

IWGSC gene model) using four sets of overlapping primers produced by AutoCloner.

All the amino acid substitutions present between the Chinese Spring and Paragon

coding sequences of TraesCS5A01G531700.1 are also present between the Apogee and

Paragon sequences. The Apogee sequence also contains some additional substitutions

with Paragon between positions 35-69 (table 2).

Table 5.2 Amino acid substitutions between Paragon and Chinese Spring coding se-
quences of TraesCS5A01G531700.1. AA = Amino acid; “first variety” refers to the first
variety listed in the corresponding “Comparison” column for each row.

Comparison Position AA in first variety AA in second variety

Paragon & Chinese

Spring

270 M T

Paragon & Chinese

Spring

292 Q P

Paragon & Chinese

Spring

552 I V

Paragon & Chinese

Spring

731 P H

Paragon & Chinese

Spring

760 A V

Paragon & Apogee 35 L F

Paragon & Apogee 64 F V

Paragon & Apogee 66 E K

Paragon & Apogee 69 E A

Paragon & Apogee 270 M T

Paragon & Apogee 292 Q P

Paragon & Apogee 552 I V

Paragon & Apogee 731 P H

Paragon & Apogee 760 A V
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Comparison Position AA in first variety AA in second variety

Chinese Spring &

Apogee

35 L F

Chinese Spring &

Apogee

64 F V

Chinese Spring &

Apogee

66 E K

Chinese Spring &

Apogee

69 E A

5.4.4 Cloning TraesCS5A01G530800 in Apogee

Also cloned was TraesCS5A01G530800, a 551 bp gene on chromosome 5A. The gene

was cloned using a single set of flanking primers produced by AutoCloner, and the gene

sequence was found to be identical between Apogee, Paragon and Chinese Spring. This

sequence had homologues that encompassed the entire gene on chromosomes 5D, 4B

and 4D, as well as 17 small sequences of around ~250 bases with high similarity to the

flanking region downstream of the input sequence.

5.4.5 Running AutoCloner on 85,040 high-confidence genes

In addition to the sequences evaluated in the context of segregation distortion, Auto-

Cloner was also run using all high-confidence gene sequences from the IWGSC assembly

under 10,000 bases, amounting to a total of 85,040 genes. These alignments and primer

sets are available to view on the AutoCloner website. For 30,186 of the genes, the top

two homologous sequences identified by the pipeline were homeologues from the corre-

sponding subgenomes and chromosomes (e.g. for an input sequence on 3A, sequences

from 3B and 3D were most closely related). Also of interest was the composition of

these alignments in terms of number of regions, not strictly limited to homeologues,
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that contained high sequence identity to the input sequence. The mean ± s.d. number

of these highly similar sequences, detected via BLAST HSPs, was 10.4 ± 7.47 per align-

ment. When limited to sequences that covered over 70 % of the input sequence, flanking

regions of 1 kb upstream and downstream included, this number reduced to 2.4 ± 2.24

per alignment, indicating that the majority of genes only have a few close homologues

that extend over large regions. The smaller regions with high sequence identity should

not be problematic for allele-specific cloning if they do not fully encompass the PCR

product. Even so, the AutoCloner web interface includes a “Guided Mode”, allowing

the user to manually inspect alignments and remove (or retain) sequences before SNP

calling and primer design should these regions be of interest.

5.5 Conclusions

Whilst the scientific community has made incredible progress in producing genomic

sequences for many different crop species, we are a long way from having a complete

pangenome encompassing every single variety within each species. Until this time,

cloning of genes will remain an important technique for assessing genetic variation, and

AutoCloner makes this process significantly faster and easier than current methods.
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6 General Discussion and Conclusions

Presented in this thesis are analyses of wheat evolution (Chapter 2), recombination

(Chapter 3) and segregation distortion (Chapter 4). These seemingly disparate topics

are linked by their methodological underpinnings, namely the combined use of mapping

populations and high-density genotyping arrays to investigate genetic features at a

genomic scale. Interest in array development for wheat has seen a significant increase

in recent years, resulting firstly in the development of the lower density 9k iSelect

(Cavanagh et al. 2013), before progressing on to more advanced, denser arrays with

90k (Wang et al. 2014), 820k (Winfield et al. 2016) 35k (Allen et al. 2016) and 280k

(Rimbert et al. 2018) SNPs respectively. These new genotyping technologies have in

turn catalysed the production of a wealth of new genotyping data for wheat, making

much of this thesis possible.

The findings presented here should help direct future research themes, prompting inves-

tigation into other avenues of influencing wheat recombination (in addition to tempera-

ture), as well as correct misconceptions among some researchers regarding the detection

of segregation distortion, emphasizing the importance of correction for multiple testing.

Additionally, the comparison of exome-capture and array-based genotyping data in

Chapter 2 should add to general confidence around array usage, with high concordance

between datasets from disparate technologies. Finally, the methods and tools gener-

ated during this thesis, including AutoCloner (Chapter 5), should be useful to other

students of crop genetics, making common research processes such a full-gene cloning

more efficient.
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6.1 A lack of known divergence points between the inception

of wheat and the proliferation of modern landraces makes

dating via molecular clock difficult

One of the central foci of contemporary wheat research is the species’ limited genetic

diversity compared to wild relatives. This is largely the result of the various genetic

bottlenecks that have occurred during the history of wheat, including several initial

polyploidization events, e.g. the hybridization of tetraploid and diploid ancestors, as

well as strong selection pressures during domestication, imbuing wheat with desirable

agronomic traits such as a non-brittle rachis and free-threshing characteristics (Dub-

covsky and Dvorak 2007). This limited diversity has the potential to stifle future

yield increases as well as increase susceptibility to pathogens. Related to this limited

genetic diversity is the question of novel allele accumulation: at what rate do novel

polymorphisms accumulate in wheat over time? Answering this question could allow

us to predict future levels of genetic diversity, potentially informing breeding practices.

Whilst there are many studies aiming to assess the overall levels of genetic diversity in

wheat (Allen et al. 2011; Lai Kaitao et al. 2014; He et al. 2019; Pont et al. 2019), few

have attempted to assess changes in genetic diversity over time.

In chapter 2, scientific interest in the Watkins lines has been leveraged to try and

estimate the rate of novel allele accumulation in wheat. The Watkins lines are an

ideal collection to examine this question as they are comprised of landraces, locally

grown cultivars that have not been subjected to modern breeding practices designed

to artificially induce novel variation, such as X-ray mutagenesis. In absence of a series

of time-separated wheat samples stretching back to wheat’s origin, I’ve attempted to

answer this question using one of the only well-estimated divergences in wheat’s history,

the hybridization of tetraploid and diploid ancestors to make up hexaploid wheat. It

has been shown through both hybridization experiments and genome analysis that this

diploid progenitor was most closely related to modern day goat grass, Aegilops tauschii.

In theory then, if we compare the D genome of the Watkins wheat varieties to A.
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tauschii and use the date of their divergence, estimated to be ~ 9000 years ago based

on archaeological data, to calibrate a molecular clock, we can estimate the rate of novel

polymorphism.

Whilst the logical nature of this method is enticing, in reality, the assumption of an

equal evolutionary rate between the D genome of wheat and A. tauschii is too simplistic,

resulting in an estimate of TMRCA for the Watkins lines that seems too young based

on what we know of historic wheat trade. Further insight into this question will need

to arise through different methodologies, perhaps involving longitudinal study design

with time-series genotyping data.

6.2 Population genetics inferences in wheat are consistent be-

tween different sources of genotyping data

Many of the conclusions generated in this thesis stem from SNP genotyping data gen-

erated from arrays, either in their 35k (Allen et al. 2016) or 820k (Winfield et al.

2017) formats. This data is produced initially through complex procedures in the lab,

including DNA extraction, amplification and hybridization, followed by extensive bioin-

formatics pipelines that calculate quality control metrics both at the level of the sample

and at the level of the probe, subsequent clustering of probe groups based on their flu-

orescent signals and assignment of genotypes informed by probe-specific priors. Also

performed is extensive filtering of probes depending on the analysis, such as the ex-

clusion of those with monomorphic genotypes across all samples in a recombination

analysis, and more generally the exclusion of probes with signs of off-target hybridiza-

tion, an important consideration in wheat due to its hexaploid nature, and therefore

presence of homeologues within the genome. This long, complicated pipeline increases

the opportunity for error compared to simpler procedures such as a PCR, and indeed

previous authors have assessed the reliability of microarrays (Jaksik et al. 2015), finding

problems with the assignment of probes to genes (Dai et al. 2005), errors in evaluation

of background signal (Kroll et al. 2008), and effects of distinct probe features on data
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processing algorithms (Wu et al. 2004).

With these considerations in mind, Chapter 2 includes an investigation into the re-

liability of array data by performing common population genetics analyses, PCO and

STRUCTURE, with datasets generated using different genotyping methods, both array

and exome-capture. These genotyping methods have been performed independently by

different groups on the same set of lines, the Watkins collection. We would therefore

expect that if the genotyping method did have an influence on the results that the

PCO and STRUCTURE plots would show clear differences, whether that be in the

placement of individual samples, or in the overall clustering of samples. This however

did not turn out to be the case, with PCO and STRUCTURE plots appearing highly

similar to each other between datasets. Both datasets produced similar broad patterns

of clusters by region, with Asian and Middle Eastern varieties separated from Euro-

pean, Australian and USSR-originating varieties along the x-axis (figure 2.2), as well

as similar placement of individual lines such as the positioning of Watkins lines 299

and 300 between Western European and Middle Eastern clusters (figure 2.2). Overall,

the results of this analysis are highly reassuring, showing the arrays produce reliable,

reproducible results.

6.3 The influence of temperature on recombination distribu-

tion in wheat is limited

Wheat, along with many other staple food crops such as barley and maize, has recom-

bination events that are distributed in an inverted bell curve along the chromosomes,

the nadir typically occurring in the region surrounding the centromere (Zelkowski et al.

2019). In contrast, recent advances in wheat genome knowledge, including the devel-

opment of multiple chromosome-level genome assemblies (Consortium (IWGSC) et al.

2018; Walkowiak et al. 2020), highlight the comparatively even distribution of genes

along the chromosomes. These contrasting distributions present a problem for breeders:

how is it possible to manipulate genes in the central regions of the chromosomes without
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bringing along large amounts of unwanted genetic material in the process, i.e. to avoid

linkage drag? To achieve this, the distribution of recombination events would need to

be modified.

There are multiple avenues with which this could be achieved. Environmental effects,

such as soil magnesium content (Rey et al. 2018), and temperature (Jain 1957; Loidl

1989), have long been known to influence recombination. Recent research on barley us-

ing immunofluorescent staining techniques suggests that temperature could be effective

in shifting the distribution of recombination inwards in cereals (Higgins 2013; Higgins

et al. 2012a), however research in wheat specifically remains limited. The primary aim

of chapter 3 was to examine this effect in wheat.

As with much of the thesis, the analysis of recombination was achieved through the

utilization of high-density array genotyping data. After treating F2 Apogee X Paragon

lines with four respective temperatures during meiosis, their progeny were genotyped

and polymorphic markers were clustered and ordered to create a genetic map. In this

way, recombination events can be observed via the transition between parental geno-

types in neighbouring markers on the map. The results revealed that recombination

distribution on the majority of chromosomes was not affected by changes in environ-

mental temperature, with only long arms of 1A and 3B, as well as the short arms of 2A

and 7A showing significant changes in distribution (table 3.3). Closer examination of

chromosome 1A showed that higher temperature treatments had a slight inward shift

in the distribution of recombination events, although much of the region immediately

surrounding the centromere remained highly linked regardless of temperature (figure

3.18). In addition to changes in distribution, recombination frequency was also shown

to be significantly affected by environmental temperature, with a U-shaped curve ob-

served from temperatures 10°C to 26°C before a dip at 28°C (figure 3.29). Future work

in the area will involve a similar investigation using immunofluorescent techniques, as

has been done in barley (Higgins 2013), to compliment the methodology used here.

Whilst environmental factors have been shown to play an important role in the dis-

tribution and frequency of recombination events in many species, also important are
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internal, genetic factors, such as the FANCM gene, which limits meiotic crossovers in

Arabidopsis (Crismani et al. 2012). In light of this, in chapter 3 I conducted a search

for novel genetic factors influencing recombination frequency and distribution using a

QTL analysis of previously published genetic maps (Allen et al. 2016). Whilst this

search highlighted some potential candidates initially, after statistical correction for

the number of phenotypes tested, none of the QTL appeared to be significant. Addi-

tionally, I attempted to assess the maliability of genes involved in meiosis. Are meiotic

genes subject to harsher stabilizing selection than the rest of the genome due to their

important function within wheat, or is there room for novel polymorphisms in these

genes, and consequently potential for the manipulation of recombination through ge-

netic modification? The results of this analysis showed that appear to be slightly more

conserved in wheat compared to a random sample of genes, when we examine homo-

logues of these genes in barley, they have accumulated many new polymorphisms since

the divergence of barley and wheat. This indicates that there is room for genetic mod-

ification of meiotic genes without disastrous consequences for the organism, and that

perhaps this could be a future route to the manipulation of recombination.

6.4 Misconceptions around the analysis of segregation distor-

tion are common in scientific literature

Mendel’s law of segregation states that gametes have an equal chance of inheriting

either of the two parental alleles for a particular gene. Exceptions to this law occur

when selection operates in favour of one parental allele during the developmental cycle,

causing deviation from the Mendelian ratio of offspring, known as segregation distortion.

This phenomenon is common in wheat and many other species, and is often highlighted

in studies of high-density genotyping data (Allen et al. 2016; Gardner et al. 2016).

Initially, my study of segregation distortion was aimed at finding potential causative

genes underlying these regions in wheat. However, during my evaluation of the literature

I noticed inconsistencies between authors in their methods of detecting segregation

distortion.
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Segregation distortion data consists of counts of categories, specifically genotypes,

amongst samples in a breeding population. The statistical test used to assess this

is therefore a chi-squared test. In the age of single-gene genetics assessed through

phenotype, this test alone would be entirely sufficient to examine segregation distortion.

However, the development of high-density arrays means that thousands to hundreds

of thousands of molecular markers are now genotyped simultaneously. A chi-squared

test must be performed for each marker, and therefore we are now faced with the

problem of correcting for multiple testing. This is further complicated by the fact

that markers are subject to different degrees of genetic linkage depending on their

position relative to each other on the chromosome. Markers that are closer together

exhibit strong genetic linkage, i.e. a small chance of an inter-marker recombination

event, and therefore often show the same pattern of segregation, and as such are not

independent in a statistical sense. My analysis into the literature showed that there

was no consensus among authors on the most appropriate multiple-testing procedure

to account for this - Chapter 4 aims to elucidate.

The primary means used to investigate this was simulated genotyping data. This al-

lowed a selection pressure of known strength to be applied to a particular marker,

followed by an examination of how effective detection of segregation distortion was

with various statistical procedures. The results indicate that the false-discovery rate

(FDR) procedure is most effective, offering a balance between no correction for multiple

testing, and the more extreme control of familywise error rate offered by the Bonferroni

procedure. This is ideal for data in which events are linked to varying degrees rather

than fully independent, such as markers on a chromosome. When I reanalysed datasets

from published studies that had not used multiple-testing correction procedures in their

analyses, I found that much of the reported segregation distortion was caused by sam-

pling bias rather than a genuine selection pressures in the developmental cycle (table

4.2). These results were reinforced by an examination of replicate empirical populations,

which had few regions of segregation distortion in common.

Another interesting outcome of my investigation into segregation distortion were the
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results on the effects of segregation distortion on genetic mapping. It is common for

authors to remove markers exhibiting segregation distortion before the genetic mapping

process (Allen et al. 2016; Roorkiwal et al. 2018; Liu et al. 2016), as it is thought

that they may interfere with the clustering or ordering processes of mapping. I found

that contrary to this belief, segregation distortion only effects genetic mapping at ex-

treme selection pressures, meaning that many markers that would have previously been

removed before the mapping process can now be retained.

6.5 Wheat research can be made more efficient by the devel-

opment of novel bioinformatics pipelines

PhD theses typically aim to investigate novel questions, making original contributions

to the field of study. In the process of doing this, it is often the case that existing

methods, whether laboratory procedures or bioinformatics pipelines, are not fit for

purpose. In my search for a causative gene underlying regions of segregation distortion

in wheat, I devised an experiment that would eliminate candidates based on sequence

differences between varieties. This required the sequencing of a large number of genes

that were not available in public sequence repositories.

The process of gene cloning in wheat is complicated by wheat’s hexaploid genome, mean-

ing that PCR primers must be orientated such that their 3’ tail lands on a SNP unique

to the homologue of interest, preventing similar sequences from other subgenomes from

also being amplified. This process involves various stages, including extraction of the

sequence of interest and all homologues from an existing wheat genome assembly, mul-

tiple sequence alignment of these homologues, scanning of the alignment for SNPs,

evaluation of all possible primer locations to optimize PCR-specific variables, and fi-

nally choosing optimal combinations of forward and reverse primers for gene cloning.

Previous practice within the wheat community was to carry out each of these stages

manually, a very time-consuming process when applied to a large number of genes. To

make this more efficient, I developed AutoCloner, a fully-automated gene-cloning bioin-
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formatics pipeline with a convenient web interface for use by the research community.

I utilized AutoCloner to successfully sequence various genes from the Apogee wheat

variety, shedding light on the potential causes of segregation distortion in a region of

chromosome 5A.

6.6 Final remarks

Most salient of the findings presented here are the results of the recombination analysis,

which highlight the future importance of gene-editing technologies such as CRISPR-

Cas9 in addressing linkage drag in wheat. If these technologies can be recognized

as safe both by science and by legislation, they could play a crucial role in future

yield improvement. In addition, the work on segregation distortion should educate

researchers on the most appropriate methods for detection of distortion, ensuring only

regions of true distortion are investigated. I also hope that other researchers wishing to

clone genes in wheat find AutoCloner as useful as I did when seeking to clone a large

number of genes in unsequenced varieties.

Another important outcome of this PhD is my own personal growth as a scientist and

an independent thinker. Research rarely conforms to the course set out in initial plans,

and it is during these deviations that we uncover the questions of real interest, and

begin to design solutions to elucidate them.
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7 Appendix A - AutoCloner R Code

7.1 A.1 AutoCloner BLAST Scaffold parser

The primary purposes of the following script are to perform two actions. Firstly, the

BLAST tabular output is parsed to identify which groups of hits correspond to ho-

mologues of the input sequence, primarily achieved by the parse.scaffold.blast func-

tion. These homologues are then extracted from the genome of interest by the ex-

tract.sequence function. Additionally, if Dialign is to be used for the multiple sequence

alignment, an anchor file is setup based on BLAST coordinates to inform Dialign of the

relative positions of the sequences in the alignment.

1 # BLAST PARSER FOR SCAFFOLDS

2 write("blast.scaffold.parser.rscript.R", p("jobs/", opt$sequence.name, "↩
/pipeline.checkpoint.txt"))

3 gene.name <- opt$sequence.name

4 fa.path1 <- opt$fasta.path

5 input_sequence <- readDNAStringSet(p("jobs/", gene.name, "/seq/extended/↩
seqs/input_seq.fa"))

6

7 # ↩
____________________________________________________________________________↩

8 # DEFINE FUNCTIONS ↩
####

9

10 sort.blastdf <- function(blastdf) {

11 # first clusters BLAST hits by chromosome, then sorts by the start ↩
location of each hit within clusters

12 # blastdf - a dataframe containing BLAST output in tabular format

13 sorted <- newdf(colnames(blastdf), no.rows = T)

14 blastdf$orientation <- "F"

15 rev.coords <- which(blastdf$sstart > blastdf$send)
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16 blastdf$orientation[rev.coords] <- "R"

17

18 rev.starts <- blastdf$sstart[rev.coords]

19 rev.ends <- blastdf$send[rev.coords]

20

21 blastdf$sstart[rev.coords] <- rev.ends

22 blastdf$send[rev.coords] <- rev.starts

23

24 # do some sorting

25 for (i in unique(blastdf[, 2])) {

26 temp <- blastdf[blastdf[, 2] == i, ]

27 temp <- temp[sort(as.numeric(temp[, 9]), index.return = T)$ix, ]

28 sorted <- rbind(sorted, temp)

29 }

30 return(sorted)

31 }

32

33 parse.scaffold.blast <- function(blastdf1, dist.threshold) {

34 # parses a BLAST dataframe of a short query sequence against a genome ↩
assembly

35 # composed of scaffolds or chromosomes. If the assemblie is ↩
chromosomal, the parser will split

36 # the chromosome up into groups of hits where hits are more than ↩
dist.threshold bp apart.

37 # returns a dataframe containing the best groups of hits (average ↩
bitscore higher than 200, individual hits no more than ↩
dist.threshold bp apart)

38 # args:

39 # blastdf1 - a BLAST dataframe imported using read.blast()

40 # dist.threshold - Integer; the maximum number of bases between two ↩
hits for them to be considered part of the same group

41

42 blastdf_orig <- blastdf1

43 blastdf1 <- sort.blastdf(blastdf1)

44

45 unique.groups <- convert.to.character.data.frame(unique(blastdf1[, ↩
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1:2]))

46

47 potential.homeologues <- newdf(c("query", "scaffold", "start", "end", ↩
"length", "rev.comp", "avg.bitscore"), no.rows = T)

48

49 count1 <- make.counter()

50

51 for (i in 1:nrow(unique.groups)) {

52 temp.df <- filter(blastdf1, qseqid == unique.groups[i, 1], sseqid ==↩
unique.groups[i, 2])

53

54 split.numeric.vectorv2 <- function(sstart, send, threshold) {

55 sstart <- sstart[-1]

56 send <- send[-length(send)]

57

58 g <- data.frame(send, sstart)

59 g.diffs <- abs(g$sstart - g$send)

60

61 cons1 <- function(x) {

62 # get consecutive integer ranges / integer runs

63 diffs <- c(1, diff(x))

64 start_indexes <- c(1, which(diffs > 1))

65 end_indexes <- c(start_indexes - 1, length(x))

66 g <- data.frame(x[start_indexes], x[end_indexes])

67 colnames(g) <- c("start", "end")

68 g

69 }

70

71 group.coords <- which(g.diffs < threshold)

72 if (length(group.coords) > 0) {

73 groups1 <- cons1(group.coords)

74 groups2 <- list()

75 for (i in 1:nrow(groups1)) {

76 groups2 <- c(groups2, list(c(groups1[i, 1]:groups1[i, 2], ↩
groups1[i, 2] + 1)))

77 }
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78

79 all.rows <- 1:(length(sstart) + 1)

80 all.rows <- all.rows[-which(all.rows %in% unlist(groups2))]

81 all.groups <- lapply(all.rows, function(x) x)

82 all.groups <- c(all.groups, groups2)

83 } else {

84 all.rows <- 1:(length(sstart) + 1)

85 all.groups <- lapply(all.rows, function(x) x)

86 }

87

88 all.groups

89 }

90

91 split.temp.df <- function(temp.df, orientation1) {

92 temp.df.corrected <- temp.df[which(temp.df$orientation == ↩
orientation1), ]

93 # determine whether there is more than one locus involved in this ↩
group of hits

94 correct.groups <- split.numeric.vectorv2(temp.df.corrected$sstart,↩
temp.df.corrected$send, dist.threshold)

95 for (x in 1:length(correct.groups)) {

96 temp.df.corrected$sseqid[correct.groups[[x]]] <- paste0(↩
temp.df.corrected$sseqid[correct.groups[[x]]], ".!!$", ↩
orientation1, x)

97 }

98

99 temp.df.corrected

100 }

101

102 rev.orientation.coords <- which(temp.df$orientation == "R")

103 forward.orientation.coords <- which(temp.df$orientation == "F")

104 if (length(rev.orientation.coords) > 0) {

105 temp.df[rev.orientation.coords, ] <- split.temp.df(temp.df, "R")

106 }

107

108 if (length(forward.orientation.coords) > 0) {
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109 temp.df[forward.orientation.coords, ] <- split.temp.df(temp.df, "F↩
")

110 }

111 # if two groups of hits are present in the same scaffold / ↩
chromosome,

112 # these hits will no longer be ordered by bitscore due to ↩
sort.blastdf()

113 # at the start of the script. Here we calculate mean bitscore for ↩
these newly identified

114 # groups of hits, and sort groups of hits by this in descending ↩
order.

115

116 temp.df.unique.scaffolds <- unique(temp.df$sseqid)

117 mean.bitscores <- unlist(lapply(temp.df.unique.scaffolds, function(x↩
) {

118 temp.df.filtered <- filter(temp.df, sseqid == x)

119 mean(as.numeric(temp.df.filtered$bitscore))

120 }))

121

122 transformation.coords <- sort(mean.bitscores, decreasing = T, ↩
index.return = T)$ix

123

124 transformation.coords2 <- unlist(lapply(temp.df.unique.scaffolds[↩
transformation.coords], function(x) {

125 which(x == temp.df$sseqid)

126 }))

127

128 temp.df <- temp.df[transformation.coords2, ]

129

130 check.group.orientation <- split(temp.df, factor(temp.df$sseqid, ↩
levels = unique(temp.df$sseqid)))

131

132 check.group.orientation <- lapply(check.group.orientation, function(↩
x) {

133 # if HSPs are near to each other but in different orientations, ↩
separate them into different groups
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134 same.orientation <- (length(unique(x$orientation)) == 1)

135 if (same.orientation == F) {

136 group1 <- x[which(x$sstart < x$send), ]

137 group1$sseqid <- paste0(group1$sseqid, "_1")

138 group2 <- x[which(!x$sstart < x$send), ]

139 group2$sseqid <- paste0(group2$sseqid, "_2")

140 x <- bind_rows(group1, group2)

141 }

142 x

143 })

144

145 temp.df <- bind_rows(check.group.orientation)

146 blastdf1[which(blastdf1$qseqid == unique.groups[i, 1] & blastdf1$↩
sseqid == unique.groups[i, 2]), ] <- temp.df

147

148 for (i2 in 1:length(unique(temp.df$sseqid))) {

149 # CONCATENATE GROUPS OF HITS TOGETHER INTO potential.homeologues ↩
DATAFRAME

150 temp.df2 <- filter(temp.df, sseqid == unique(temp.df$sseqid)[i2])

151 temp.df2$qseqid <- as.character(temp.df2$qseqid)

152 temp.df2$sseqid <- as.character(temp.df2$sseqid)

153

154 group.orientation <- temp.df2$orientation[1]

155

156 # populate potential.homeologues dataframe where average bitscore ↩
is higher than 200

157 if (mean(temp.df2$bitscore) > 200) {

158 # if this is in normal orientation, do x...

159 potential.homeologues <- add_row(potential.homeologues)

160 potential.homeologues$query[nrow(potential.homeologues)] <- ↩
temp.df2[1, 1]

161 potential.homeologues$scaffold[nrow(potential.homeologues)] <- ↩
temp.df2[1, 2]

162 potential.homeologues$start[nrow(potential.homeologues)] <- min(↩
temp.df2$sstart)

163 potential.homeologues$end[nrow(potential.homeologues)] <- max(↩
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temp.df2$send)

164 potential.homeologues$avg.bitscore[nrow(potential.homeologues)] ↩
<- mean(temp.df2$bitscore)

165 potential.homeologues$max.bitscore[nrow(potential.homeologues)] ↩
<- max(temp.df2$bitscore)

166 potential.homeologues$avg.percent.identical[nrow(↩
potential.homeologues)] <- mean(temp.df2$↩
percentage.identical)

167 if (group.orientation == "F") {

168 potential.homeologues$rev.comp[nrow(potential.homeologues)] <-↩
F

169 } else {

170 potential.homeologues$rev.comp[nrow(potential.homeologues)] <-↩
T

171 }

172

173 potential.homeologues$query.start[nrow(potential.homeologues)] ↩
<- min(temp.df2$qstart)

174 potential.homeologues$query.end[nrow(potential.homeologues)] <- ↩
max(temp.df2$qend)

175 potential.homeologues$num_hsp[nrow(potential.homeologues)] <- ↩
nrow(temp.df2)

176 }

177 }

178 }

179

180

181

182 potential.homeologues$length <- as.numeric(potential.homeologues$end) ↩
- as.numeric(potential.homeologues$start)

183 potential.homeologues$groupid <- potential.homeologues$scaffold

184 potential.homeologues$scaffold <- multi.str.split(↩
potential.homeologues$scaffold, "\\.\\!\\!\\$", 1)

185 potential.homeologues$homo_length <- potential.homeologues$query.end -↩
potential.homeologues$query.start

186
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187 # try and identify the matching genomic sequence to the input sequence↩
- avg.bitscore sometimes fails here

188 # e.g. if there is a small exon seperated by an intron from the main ↩
sequence, it will bring the avg.bitscore down

189 identi.coord <- which.max((potential.homeologues$homo_length / length(↩
input_sequence[[1]])) * (potential.homeologues$↩
avg.percent.identical / 100))

190 g <- 1:nrow(potential.homeologues)

191 g <- g[-identi.coord]

192 potential.homeologues <- potential.homeologues[c(identi.coord, g), ]

193

194 if (length(input_sequence[[1]]) > 1500) {

195 # this will remove all blast hits for small sequences. need an if ↩
statement

196 coord_to_rm <- which(potential.homeologues$length < 500)

197 if (length(coord_to_rm) != nrow(potential.homeologues)) {

198 if (length(coord_to_rm) > 0) potential.homeologues <- ↩
potential.homeologues[-coord_to_rm, ]

199 }

200 }

201

202 existing.homeologue.files <- grep("potential_homeologues", list.files(↩
p("jobs/", gene.name, "/blast.results/")))

203 if (length(existing.homeologue.files) == 0) {

204 write.csv(potential.homeologues, p("jobs/", gene.name, "/↩
blast.results/potential_homeologues1.csv"), row.names = F)

205 } else {

206 write.csv(potential.homeologues, p("jobs/", gene.name, "/↩
blast.results/potential_homeologues", (length(↩
existing.homeologue.files) + 1), ".csv"), row.names = F)

207 }

208

209

210

211 list(potential.homeologues, blastdf1)

212 }
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213

214

215

216 extract.sequence <- function(genome1, blast.df.parsed, row.coords, ↩
start.buffer, end.buffer) {

217 # extracts a related sequence from a genome assembly

218 # args:

219 # genome1 - DNAStringSet object containing the genome assembly of ↩
interest

220 # blast.df.parsed - dataframe produced by parse.scaffold.blast()

221 # row.coords - Numeric vector; the row coordinates of the sequences to↩
used in blast.df.parsed

222 # start.buffer - Integer; how much extra sequence before the start ↩
indicated in blast.df.parsed to extract

223 # end.buffer - Integer; how much extra sequence after the end ↩
indicated in blast.df.parsed to extract

224

225 # parse the original scaffold name from blastdf1.parsed (remove the ↩
appended position in kb)

226 original.scaf.names <- multi.str.split(blast.df.parsed$scaffold, ".$!"↩
, 1)

227

228 genome2 <- genome1[match(original.scaf.names[row.coords], names(↩
genome1))]

229

230 for (i in 1:length(row.coords)) {

231 # check if start.buffer reaches before the start of the scaffold, ↩
and likewise if end.buffer extends bigger than the total length

232 extract.start <- (as.numeric(blast.df.parsed$start[i]) - ↩
start.buffer)

233 if (extract.start < 1) extract.start <- 1

234 extract.end <- (as.numeric(blast.df.parsed$end[i]) + end.buffer)

235 if (extract.end > length(genome2[[i]])) extract.end <- length(↩
genome2[[i]])

236 print("extract.start")

237 print(extract.start)
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238 genome2[[i]] <- genome2[[i]][extract.start:extract.end]

239 if (blast.df.parsed$rev.comp[i] == T) genome2[[i]] <- ↩
reverseComplement(genome2[[i]])

240 }

241

242 # append the start coordinate (in kb) of the blast hit to the name of ↩
the sequence for identification later

243 names(genome2) <- paste(blast.df.parsed$scaffold[row.coords], ".$!", ↩
round((as.numeric(blast.df.parsed$start[row.coords]) / 1000)), sep↩
= "")

244 print("genome2")

245 print(genome2)

246 genome2

247 }

248

249 # ↩
____________________________________________________________________________↩

250 # BEGIN PROCESSING ↩
####

251

252

253 number.genomes <- max(na.omit(unique(as.numeric(multi.str.split(↩
config.variables, "_", 2)))))

254

255 main.processing <- function() {

256 extract.sequence.w.flanking.regions <- function(genome.number) {

257 # read the configuration file

258

259 config.variables <- multi.str.split(config.file, "=", 1)

260 # begin by parsing the config file for the genome name, fasta file ↩
path and blastdb path

261 config.settings <- config.file[grep(genome.number, config.variables)↩
]

262

263 config.settings.temp <- config.settings[[1]]
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264 genome.name <- strsplit(config.settings.temp[1], "=")

265 genome.name <- genome.name[[1]][2]

266

267 config.settings.temp <- config.settings[[2]]

268 fa.path <- strsplit(config.settings.temp[1], "=")

269 fa.path <- fa.path[[1]][2]

270

271 config.settings.temp <- config.settings[[3]]

272 blastdb.path <- strsplit(config.settings.temp[1], "=")

273 blastdb.path <- blastdb.path[[1]][2]

274

275 blast.files <- list.files(p("jobs/", gene.name, "/blast.results"), ↩
pattern = paste0(genome.number, ".*?.blast"))

276

277 blastdf1 <- tryCatch(read.blast(p("jobs/", gene.name, "/↩
blast.results/", blast.files[1])), error = function(e) {

278 write("No BLAST hits for this sequence", p("jobs/", gene.name, "/↩
primers/error.txt"))

279 stop("No BLAST hits for this sequence")

280 })

281

282 blastdf1$sstart.mb <- blastdf1$sstart / 1000000

283 blastdf1$send.mb <- blastdf1$send / 1000000

284 blastdf_orig <- read.blast(p("jobs/", gene.name, "/blast.results/", ↩
blast.files[1]))

285

286 # read the fasta index for this particular genome

287 fasta.index1 <- read.csv(p("./fasta.indexes/", genome.name, ".fa.idx↩
"), stringsAsFactors = F, header = T)

288

289 print("opt$cds.max.intron.size")

290 print(opt$cds.max.intron.size)

291

292 blastdf1.parsed_orig <- parse.scaffold.blast(blastdf1, opt$↩
cds.max.intron.size)[[1]]

293 blastdf1.parsed <- parse.scaffold.blast(blastdf1, opt$↩
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cds.max.intron.size)[[1]]

294

295 original.scaf.names <- multi.str.split(blastdf1.parsed$scaffold, ".$↩
!", 1)

296

297 fasta.index1$offset <- as.numeric(fasta.index1$offset)

298

299 genome.assembly.subset.genomic.match <<- readDNAStringSet(↩
fasta.index1[match(original.scaf.names[1], multi.str.split(↩
fasta.index1$desc, " ", 1)), ])

300 names(genome.assembly.subset.genomic.match) <- multi.str.split(names↩
(genome.assembly.subset.genomic.match), " ", 1)

301 template_sequence_genomic <- extract.sequence(↩
genome.assembly.subset.genomic.match, blastdf1.parsed[1, ], 1, ↩
opt$start.buffer, opt$end.buffer)

302

303 opt$fasta.path <<- p("jobs/", gene.name, "/seq/extended/seqs/↩
input_w_flanking.fa")

304 query.fa.path <- p("jobs/", gene.name, "/seq/extended/seqs/↩
input_w_flanking.fa")

305 writeXStringSet(template_sequence_genomic, p("jobs/", gene.name, "/↩
seq/extended/seqs/input_w_flanking.fa"))

306

307 input_sequence <<- readDNAStringSet(p("jobs/", gene.name, "/seq/↩
extended/seqs/input_seq.fa"))

308

309 # SECOND BLAST WITH FLANKING REGIONS OF INPUT SEQUENCE INCLUDED

310 source("scripts/perform.blast.rscript.R")

311 }

312

313 extract.homologues <- function(genome.number, number.to.extract, ↩
setup.dialign.anchors) {

314 if (missing(setup.dialign.anchors)) setup.dialign.anchors <- T

315 if (missing(number.to.extract)) number.to.extract <- "all"

316

317 config.variables <- multi.str.split(config.file, "=", 1)
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318 config.settings <- config.file[grep(genome.number, config.variables)↩
]

319

320 config.settings.temp <- config.settings[[1]]

321 genome.name <- strsplit(config.settings.temp[1], "=")

322 genome.name <- genome.name[[1]][2]

323

324 # read the fasta index for this particular genome

325 fasta.index1 <- read.csv(p("./fasta.indexes/", genome.name, ".fa.idx↩
"), stringsAsFactors = F, header = T)

326

327 #### ITERATION TWO ####

328 blast.files <- list.files(p("jobs/", gene.name, "/blast.results"), ↩
pattern = paste0(genome.number, ".*?.blast"))

329

330 blastdf0 <- read.blast(p("jobs/", gene.name, "/blast.results/", ↩
blast.files[grep(paste0(genome.number, ".*?w_flanking"), ↩
blast.files)]))

331

332 # SEQUENCE EXTRACTION WITH FULL TEMPLATE (INCLUDING FLANKING REGIONS↩
)

333 blastdf1.parsed <- parse.scaffold.blast(blastdf0, opt$↩
cds.max.intron.size)

334

335 fasta.index1$offset <- as.numeric(fasta.index1$offset)

336 genome.assembly.subset.genomic.match <<- readDNAStringSet(↩
fasta.index1[match(unique(blastdf1.parsed[[1]]$scaffold), ↩
multi.str.split(fasta.index1$desc, " ", 1)), ])

337 names(genome.assembly.subset.genomic.match) <- multi.str.split(names↩
(genome.assembly.subset.genomic.match), " ", 1)

338 sequences <- DNAStringSet()

339 if (number.to.extract == "all") number.to.extract <- nrow(↩
blastdf1.parsed[[1]])

340

341 # SEQUENCE EXTRACTION

342 for (i in 1:number.to.extract) {
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343 # MASKING OF INTER-HSP DISTANCES WITHIN THE SAME GROUP WITH Ns

344 rev.comp <- blastdf1.parsed[[1]][i, ]$rev.comp

345 rchr <- blastdf1.parsed[[1]][i, ]$scaffold

346 temp.df <- blastdf1.parsed[[2]][which(blastdf1.parsed[[2]]$sseqid ↩
== blastdf1.parsed[[1]]$groupid[i]), ]

347 chr <- blastdf1.parsed[[1]]$scaffold[i]

348 # remove any _ concatenations that distinguished groups in ↩
orientation check

349 # chr = strsplit(chr, "_")

350 # chr = chr[[1]][1]

351

352 if (nrow(temp.df) == 1) {

353 # if only 1 HSP, just add it to the list of sequences

354 if (rev.comp == F) sequences <- c(sequences, DNAStringSet(↩
genome.assembly.subset.genomic.match[[chr]][temp.df$sstart↩
[1]:temp.df$send[1]]))

355 if (rev.comp == T) sequences <- c(sequences, DNAStringSet(↩
reverseComplement(genome.assembly.subset.genomic.match[[chr↩
]][temp.df$sstart[1]:temp.df$send[1]])))

356 } else {

357 if (opt$mask.inter.hsp.distances == F | i == 1) {

358 # extract sequences without masking inter HSP distances with ↩
Ns if this option is false

359 if (rev.comp == F) sequences <- c(sequences, DNAStringSet(↩
genome.assembly.subset.genomic.match[[chr]][min(temp.df$↩
sstart):max(temp.df$send)]))

360 if (rev.comp == T) sequences <- c(sequences, DNAStringSet(↩
reverseComplement(genome.assembly.subset.genomic.match[[↩
chr]][min(temp.df$sstart):max(temp.df$send)])))

361 } else {

362 temp.df <- temp.df[sort(temp.df$sstart, index.return = T)$ix, ↩
]

363

364 if (rev.comp == T) temp.df <- temp.df[sort(temp.df$sstart, ↩
index.return = T, decreasing = T)$ix, ]

365
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366 group.subsequences <- DNAStringSet()

367 subseq.differences <- as.numeric()

368 for (x in 1:nrow(temp.df)) {

369 if (all(temp.df$sstart < temp.df$send)) {

370 if (nrow(temp.df) == 0) browser()

371 if (rev.comp == F) group.subsequences <- c(↩
group.subsequences, DNAStringSet(↩
genome.assembly.subset.genomic.match[[chr]][temp.df$↩
sstart[x]:temp.df$send[x]]))

372 if (rev.comp == T) group.subsequences <- c(↩
group.subsequences, DNAStringSet(reverseComplement(↩
genome.assembly.subset.genomic.match[[chr]][temp.df$↩
sstart[x]:temp.df$send[x]])))

373 }

374

375 if (x != nrow(temp.df)) {

376 # calculate how far apart the HSPs are

377 subseq.differences <- c(subseq.differences, abs(temp.df$↩
send[x] - temp.df$sstart[(x + 1)]))

378 }

379 }

380

381 # combine HSPs with interleaving regions masked by Ns

382 subseq.gaps <- lapply(subseq.differences, function(x) ↩
DNAStringSet(DNAString(paste(rep("N", 100), collapse = "")↩
)))

383 subsequences.w.gaps <- DNAStringSet()

384 for (x in 1:length(group.subsequences)) {

385 subsequences.w.gaps <- c(subsequences.w.gaps, ↩
group.subsequences[x])

386 if (x != length(group.subsequences)) subsequences.w.gaps <- ↩
c(subsequences.w.gaps, subseq.gaps[[x]])

387 }

388

389 masked.subsequence <- DNAStringSet(DNAString(do.call(paste0, ↩
lapply(subsequences.w.gaps, as.character))))
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390 sequences <- c(sequences, masked.subsequence)

391 }

392 }

393 }

394

395 if (nrow(blastdf1.parsed[[1]]) <= 1 & genome.number == 1) {

396 write("No homologues found", p("jobs/", gene.name, "/error.txt"))

397 stop("No homologues found")

398 }

399 # else if(nrow(blastdf1.parsed[[1]] < 1)){

400 # write('No homologues found', p("jobs/", gene.name, "/error.txt"))

401 # stop('No homologues found ')

402 # }

403

404 names(sequences) <- paste0(blastdf1.parsed[[1]]$scaffold, "_", ↩
blastdf1.parsed[[1]]$query.start)[1:number.to.extract]

405

406 # sequences = c(DNAStringSet(input_sequence), sequences)

407

408 if (setup.dialign.anchors == T) {

409 # SETUP ANCHOR POINTS FOR DIALIGN

410 coord.query.start <- c(1, sort(blastdf1.parsed[[1]]$query.start[2:↩
number.to.extract], index.return = T)$ix + 1) # order the ↩
sequences by query start position

411 blastdf1.parsed[[1]] <- blastdf1.parsed[[1]][coord.query.start, ]

412

413 sequences <- sequences[coord.query.start]

414

415 dialign.df1 <- blastdf1.parsed[[1]]

416 dialign.df1$dialign1 <- 1 # position of the first sequence to be ↩
anchored

417 dialign.df1$dialign2 <- 1:nrow(dialign.df1) # position of the ↩
second sequence to be anchored

418 dialign.df1$dialign3 <- dialign.df1$query.start # beginning ↩
position of the anchor point in sequence 1

419 dialign.df1$dialign4 <- 1 # beginning position of the anchor point↩
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in sequence 2

420 dialign.df1$dialign5 <- 5 # length of anchor

421 dialign.df1$dialign6 <- 20 # anchor priority

422 dialign.df1 <- dialign.df1[-1, ]

423

424 dialign.df1 <- dialign.df1[, grep("dialign", colnames(dialign.df1)↩
)]

425 new_dialign_anchors <- dialign.df1

426

427 new_dialign_anchors[, 1] <- new_dialign_anchors[, 1]

428 new_dialign_anchors[, 2] <- new_dialign_anchors[, 2]

429 } else {

430 new_dialign_anchors <- "No anchors"

431 }

432

433 # system(p("scripts/run.dialign.sh jobs/", gene.name, "/"))

434 return(list(sequences, new_dialign_anchors))

435 }

436

437

438 sequences <- lapply(1:number.genomes, function(genome.number) {

439 if (genome.number == 1) {

440 extract.sequence.w.flanking.regions(genome.number)

441 return(extract.homologues(genome.number))

442 } else {

443 return(extract.homologues(genome.number, number.to.extract = 1, ↩
setup.dialign.anchors = F))

444 }

445 })

446

447 if (number.genomes > 1) {

448 # combine genome sequences from the other genomes

449 other.genome.seq <- lapply(sequences[2:number.genomes], function(x) ↩
{

450 x[[1]]

451 })
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452

453 other.genome.seq <- do.call(c, other.genome.seq)

454

455 # all.seq = c(input_sequence, sequences[[1]][[1]][1], ↩
other.genome.seq, sequences[[1]][[1]][2:length(sequences↩
[[1]][[1]])])

456

457 all.seq <- c(input_sequence, other.genome.seq)

458

459 dialign_anc <- sequences[[1]][[2]]

460 dialign_anc$dialign1 <- dialign_anc$dialign1 + 1

461 dialign_anc$dialign2 <- dialign_anc$dialign2 + length(↩
other.genome.seq) + 1

462 } else {

463 all.seq <- c(input_sequence, sequences[[1]][[1]])

464 dialign_anc <- sequences[[1]][[2]]

465 dialign_anc$dialign1 <- dialign_anc$dialign1 + 1

466 dialign_anc$dialign2 <- dialign_anc$dialign2 + 1

467 }

468

469

470 write.table(dialign_anc, p("jobs/", gene.name, "/seq/extended/seqs/↩
all.anc"), quote = F, sep = " ", col.names = F, row.names = F)

471 writeXStringSet(all.seq, p("jobs/", gene.name, "/seq/extended/seqs/↩
all.fa"))

472 }

473

474

475 main.processing()
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7.2 A.2 AutoCloner primer selection script

The following listing is an excerpt from the primer selection script of AutoCloner, show-

casing two functions, grab.homeologous.snps_new (line 1) and find.best.primers (line

111). The first scans the multiple sequence alignment and returns coordinates of SNPs

between the various homologues. The latter is used for primer selection, acting as an

interface to Primer3, both through generation of input files and parsing of output files,

as well as containing the algorithm that generates sets of overlapping PCR products

through selection of optimal primers.

1 grab.homeologous.snps_new <- function(input.row, template.row, ↩
homologue.rows, multiple.alignment,

2 perform.masking, mask.bin.size, ↩
mask.threshold, ↩
allow.hyphens.in.mask, ↩
allow.hyphens.for.snp.detection↩
) {

3 # gets homeologous snps when there is only one genome

4 # takes a DNAMultipleAlignment object and returns a numeric vector of ↩
the column coordinates containing homeologous SNPs

5 # args:

6 # input.row - Integer; the row of the sequence inputted by the user (↩
usually 1)

7 # template.row - Integer; the row of the sequence to design primers ↩
from (usually 2)

8 # homologue.rows - numeric vector containing the row coordinates of ↩
the homologous sequences (either paralogous or homeologous)

9 # multiple.alignment - DNAMultipleAlignment class

10 # perform.masking - Boolean, indicates whether sequences of low ↩
similarity to template should be masked

11 # allow.hyphens.for.snp.detection - Boolean, indicates whether hyphens↩
in homologues (not the template sequence) will be considered SNPs

12 if (missing(perform.masking)) perform.masking <- opt$perform.masking

13 if (missing(mask.bin.size)) mask.bin.size <- opt$mask.bin.size

200



14 if (missing(mask.threshold)) mask.threshold <- opt$mask.threshold

15 if (missing(allow.hyphens.in.mask)) allow.hyphens.in.mask <- opt$↩
allow.hyphens.in.mask

16 if (missing(allow.hyphens.for.snp.detection)) ↩
allow.hyphens.for.snp.detection <- opt$↩
allow.hyphens.for.snp.detection

17

18 # NB. Insertions "-" in the template sequence cannot be allowed when ↩
classifying SNPs, as these

19 # will be subsequently removed by ↩
get.coordinates.after.removing.hyphens(), meaning that the

20 # program maps the primers to the wrong locations in the final ↩
multiple sequence alignment output.

21

22 mult.align.mat1 <- convert.to.character.data.frame(as.data.frame(↩
as.matrix(multiple.alignment)))

23

24 perform.masking.function <- function(msa.matrix1, mask.bin.size, ↩
mask.threshold, allow.hyphens.in.mask) {

25 # mask.threshold - integer, underneath what percentage of similarity↩
should masking be performed?

26 # e.g. 40 - when bins have less than 40% nucleotides in ↩
common, mask them

27 if (missing(mask.bin.size)) mask.bin.size <- 10

28 if (missing(mask.threshold)) mask.threshold <- 40

29 if (missing(allow.hyphens.in.mask)) allow.hyphens.in.mask <- F

30

31 msa.matrix1.orig <- msa.matrix1

32 start.sequence.bins <- seq(1, ncol(msa.matrix1), mask.bin.size)

33 end.sequence.bins <- c((start.sequence.bins[2:length(↩
start.sequence.bins)] - 1), ncol(msa.matrix1))

34

35 # performing masking of regions with low sequence identity (in bins ↩
of 10)

36 bin.dfs1 <- lapply((2 + number.genomes):nrow(msa.matrix1), function(↩
z) { # lapply across rows
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37 bin.similarities <- unlist(Map(function(x, y) {

38 template.bin.seq <- msa.matrix1[2, x:y]

39 target.bin.seq <- msa.matrix1[z, x:y]

40

41 if (allow.hyphens.in.mask == F) {

42 if ((length(which(template.bin.seq == "-")) > 3) | length(↩
which(target.bin.seq == "-")) > 3) {

43 return(10)

44 } # don't include bins with hyphens in masking

45 }

46

47 length(which(msa.matrix1[2, x:y] == msa.matrix1[z, x:y]))

48 }, start.sequence.bins, end.sequence.bins))

49

50 bin.df1 <- data.frame(start.sequence.bins, end.sequence.bins, ↩
bin.similarities)

51 colnames(bin.df1) <- c("sbin", "ebin", "nsim")

52

53 # mask bins with less than 4 nucleotides in common with the ↩
template sequence

54 mask.threshold2 <- (mask.bin.size / 100) * mask.threshold

55 bin.df1 <- bin.df1[which(bin.df1$nsim < mask.threshold2), ]

56

57 unlist(Map(function(x, y) {

58 seq(x, y, 1)

59 }, bin.df1$sbin, bin.df1$ebin))

60 })

61

62 print("Performing sequence masking")

63 # mask regions with low sequence identity

64 for (i in 1:length(bin.dfs1)) {

65 msa.matrix1[(i + 2), bin.dfs1[[i]]] <- "U"

66 }

67

68 msa.matrix1

69 }
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70

71 if (perform.masking == T) mult.align.mat1 <- perform.masking.function(↩
mult.align.mat1, mask.bin.size, mask.threshold, ↩
allow.hyphens.in.mask)

72

73 counter1 <- 1

74 g <- lapply(mult.align.mat1, function(x) {

75 if (x[2] == "-") {

76 return(0)

77 } # return 0 if template sequence has an insertion

78

79 if (allow.hyphens.for.snp.detection == F) {

80 if ("-" %in% x[3:length(x)]) {

81 return(0)

82 }

83 }

84

85 if (number.genomes == 1) {

86 if (x[template.row] %in% x[homologue.rows]) {

87 snp <- 0

88 } else {

89 snp <- 1

90 }

91 } else {

92 if (length(unique(x[template.row:(template.row + number.genomes - ↩
1)])) == 1) { # if all varieties have the same base

93 if (x[template.row] %in% x[homologue.rows]) {

94 snp <- 0

95 } else {

96 snp <- 1

97 }

98 } else {

99 snp <- 0 # no SNP if varietal genomes have different bases

100 }

101 }

102 counter1 <<- counter1 + 1
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103 snp

104 })

105

106 unlist(g)

107 }

108

109

110

111 find.best.primers <- function(multiple.alignment, ↩
template.sequence.row.number, snp.coords.after.filter, ↩
start.coord.after.filter, end.coord.after.filter, ↩
product.size.range, span.whole.gene, start.buffer, homologous.snps, ↩
coords) {

112 # Automatically obtains primer sequences

113 # args:

114 # multiple.alignment - a DNAMultipleAlignment object

115 # template.sequence.row.number - Integer; the multiple alignment row ↩
of the sequence to use as a template in primer3

116 # snp.coords.after.filter - Numeric vector; obtained using ↩
grab.homeologous.snps() and then ↩
get.coordinates.after.removing.hyphens()

117 # start.coord.after.filter - Integer; position of the first base of ↩
the start codon after removing hyphens

118 # end.coord.after.filter - Integer; position of the final base in the ↩
coding sequence after removing hyphens

119 # product.size.range - a numeric vector with two elements, the first ↩
being the minimum product size, the second the maximum

120 # span.whole.gene - Boolean; should the product size span the entire ↩
gene with only one set of primers?

121 # start.buffer - Integer; how many bases before the start of the gene ↩
should be allowed in the product?

122

123 if (missing(span.whole.gene)) span.whole.gene <- F

124 if (missing(start.buffer)) start.buffer <- start.coord.after.filter

125

126 list.best.primer.start.coords <- as.numeric()
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127 list.best.primer.end.coords <- as.numeric()

128 mult.align2 <- conv.mult.align.dnastringset(multiple.alignment)

129

130 generate.primer3.input.files <- function(template.sequence2, p3.seqid,↩
product.size.min, product.size.max, left.end.coord,

131 right.end.coord, f.or.r) {

132 # args:

133 # template.sequence2 - a DNAString object without inserts ("-"s)

134 # p3.seqid - character string indicating name of sequence (used both↩
inside the primer3 input file and in the title of the primer3 ↩

input file)

135 # f.or.r - "F" for forward primer, "R" for reverse primer

136

137 # primer3 variables:

138 p3.template <- as.character(template.sequence2)

139 p3.product.size.range <- "100-10000"

140

141 # note here that line breaks "\n" have to be added in manually as

142 # writeLines automatically adds a line break to the end of every ↩
line,

143 # whilst primer3_core will not accept a file in which the last line

144 # has a line break on it

145 if (f.or.r == "F") {

146 primer3.input <- c(

147 p("SEQUENCE_ID=", p3.seqid, "\n"),

148 p("SEQUENCE_TEMPLATE=", p3.template, "\n"),

149 p("PRIMER_PRODUCT_SIZE_RANGE=", p3.product.size.range, "\n"),

150 p("SEQUENCE_FORCE_LEFT_END=", left.end.coord, "\n"),

151 "="

152 )

153 } else if (f.or.r == "R") {

154 primer3.input <- c(

155 p("SEQUENCE_ID=", p3.seqid, "\n"),

156 p("SEQUENCE_TEMPLATE=", p3.template, "\n"),

157 p("PRIMER_PRODUCT_SIZE_RANGE=", p3.product.size.range, "\n"),

158 p("SEQUENCE_FORCE_RIGHT_END=", right.end.coord, "\n"),
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159 "="

160 )

161 } else {

162 primer3.input <- c(

163 p("SEQUENCE_ID=", p3.seqid, "\n"),

164 p("SEQUENCE_TEMPLATE=", p3.template, "\n"),

165 p("PRIMER_PRODUCT_SIZE_RANGE=", p3.product.size.range, "\n"),

166 p("SEQUENCE_FORCE_RIGHT_END=", right.end.coord, "\n"),

167 p("SEQUENCE_FORCE_LEFT_END=", left.end.coord, "\n"),

168 "="

169 )

170 }

171 if (f.or.r == "F" | f.or.r == "R") {

172 output.filepath <- file(p(project.path, "jobs/", gene.name, "/↩
primers/input/primer3.", p3.seqid, ".", f.or.r, ".txt"), "wb")

173 } else {

174 output.filepath <- file(p(project.path, "jobs/", gene.name, "/↩
primers/input/primer3.", p3.seqid, ".txt"), "wb")

175 }

176 writeLines(primer3.input, output.filepath, sep = "")

177 close(output.filepath)

178 "Done"

179 }

180

181 # make primers for all possible SNPs, then evaluate

182 template.sequence <- mult.align2[[template.sequence.row.number]]

183

184 template.sequence2 <- remove.inserts(template.sequence)

185 generate.all.primer.penalites <- function(x) {

186 print("Generating primer3 files")

187 print("Running primer3")

188

189 primer3.forward.input <- c(

190 p("SEQUENCE_ID=AllForwardPrimers"),

191 p("SEQUENCE_TEMPLATE=", template.sequence2, ""),

192 "PRIMER_TASK=pick_primer_list",
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193 "PRIMER_PICK_RIGHT_PRIMER=0",

194 p("PRIMER_NUM_RETURN=", (length(template.sequence2) * 6)),

195 "="

196 )

197

198 writeLines(primer3.forward.input, p("jobs/", gene.name, "/primers/↩
input/forwardprimers.txt"))

199

200 primer3.reverse.input <- c(

201 p("SEQUENCE_ID=AllReversePrimers"),

202 p("SEQUENCE_TEMPLATE=", template.sequence2, ""),

203 "PRIMER_TASK=pick_primer_list",

204 "PRIMER_PICK_LEFT_PRIMER=0",

205 p("PRIMER_NUM_RETURN=", (length(template.sequence2) * 6)),

206 "="

207 )

208

209 writeLines(primer3.reverse.input, p("jobs/", gene.name, "/primers/↩
input/reverseprimers.txt"))

210

211 system(p(project.path, "jobs/", gene.name, "/primers/run.primer3.sh ↩
", "jobs/", gene.name))

212 print("Finished")

213

214 # PARSE LEFT PRIMERS

215

216 primer3.forward.output <- readLines(p("jobs/", gene.name, "/primers/↩
output/forwardprimers.txt.output.txt"))

217 pos1 <- primer3.forward.output[grep("PRIMER_LEFT_[0-9]*=", ↩
primer3.forward.output)]

218

219 pos2 <- multi.str.split(pos1, "=", 2)

220 pos3.1 <- multi.str.split(pos2, ",", 1)

221 pos3.2 <- multi.str.split(pos2, ",", 2)

222 pos4 <- as.numeric(pos3.1) + (as.numeric(pos3.2)) - 1 # translate ↩
primer3 coordinate to SNP coordinate (add length to starting pos↩
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- 1)

223

224 PRIMER_LEFT_X_PENALTY <- as.numeric(multi.str.split(↩
primer3.forward.output[grep("PRIMER_LEFT_[0-9]*_PENALTY=", ↩
primer3.forward.output)], "=", 2))

225 PRIMER_LEFT_X_SEQUENCE <- multi.str.split(primer3.forward.output[↩
grep("PRIMER_LEFT_[0-9]*_SEQUENCE=", primer3.forward.output)], "↩
=", 2)

226 PRIMER_LEFT_X <- pos2

227 PRIMER_LEFT_X_TM <- multi.str.split(primer3.forward.output[grep("↩
PRIMER_LEFT_[0-9]*_TM=", primer3.forward.output)], "=", 2)

228 PRIMER_LEFT_X_GC_PERCENT <- multi.str.split(primer3.forward.output[↩
grep("PRIMER_LEFT_[0-9]*_GC_PERCENT", primer3.forward.output)], ↩
"=", 2)

229 PRIMER_LEFT_X_SELF_ANY_TH <- multi.str.split(primer3.forward.output[↩
grep("PRIMER_LEFT_[0-9]*_SELF_ANY_TH", primer3.forward.output)],↩
"=", 2)

230 PRIMER_LEFT_X_SELF_END_TH <- multi.str.split(primer3.forward.output[↩
grep("PRIMER_LEFT_[0-9]*_SELF_END_TH", primer3.forward.output)],↩
"=", 2)

231 PRIMER_LEFT_X_HAIRPIN_TH <- multi.str.split(primer3.forward.output[↩
grep("PRIMER_LEFT_[0-9]*_HAIRPIN_TH", primer3.forward.output)], ↩
"=", 2)

232 PRIMER_LEFT_X_END_STABILITY <- multi.str.split(↩
primer3.forward.output[grep("PRIMER_LEFT_[0-9]*_END_STABILITY", ↩
primer3.forward.output)], "=", 2)

233

234 left.parsed <- data.frame("name1", pos4, PRIMER_LEFT_X_PENALTY, ↩
PRIMER_LEFT_X_SEQUENCE, PRIMER_LEFT_X, PRIMER_LEFT_X_TM, ↩
PRIMER_LEFT_X_GC_PERCENT, PRIMER_LEFT_X_SELF_ANY_TH, ↩
PRIMER_LEFT_X_SELF_END_TH, PRIMER_LEFT_X_HAIRPIN_TH, ↩
PRIMER_LEFT_X_END_STABILITY)

235 colnames(left.parsed)[1:2] <- c("p.name", "pos")

236 left.parsed <- left.parsed[sort(left.parsed$pos, index.return = T)$↩
ix, ]

237 left.parsed <- left.parsed[which(left.parsed$pos %in% ↩
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snp.coords.after.filter), ]

238 nrow(left.parsed)

239 left.parsed2 <- split(left.parsed, left.parsed$pos)

240 left.parsed2 <- lapply(left.parsed2, function(x) {

241 x[which.min(as.numeric(x$PRIMER_LEFT_X_PENALTY)), ]

242 })

243

244 left.parsed3 <- bind_rows(left.parsed2)

245

246 left.parsed3$MSA.pos <- which(homologous.snps == 1)[which(↩
snp.coords.after.filter %in% left.parsed3$pos)]

247 left.parsed3 <- left.parsed3[, c(1, 2, 12, 3:11)]

248 colnames(left.parsed3)[4] <- "pen"

249 colnames(left.parsed3)[5:ncol(left.parsed3)] <- gsub("X", "0", ↩
colnames(left.parsed3)[5:ncol(left.parsed3)])

250

251 # PARSE RIGHT PRIMERS

252

253 primer3.reverse.output <- readLines(p("jobs/", gene.name, "/primers/↩
output/reverseprimers.txt.output.txt"))

254 pos1 <- primer3.reverse.output[grep("PRIMER_RIGHT_[0-9]*=", ↩
primer3.reverse.output)]

255

256 pos2 <- multi.str.split(pos1, "=", 2)

257 pos3.1 <- multi.str.split(pos2, ",", 1)

258 pos3.2 <- multi.str.split(pos2, ",", 2)

259 pos4 <- (as.numeric(pos3.1) - as.numeric(pos3.2)) + 1 # translate ↩
primer3 coordinate to SNP coordinate

260

261 PRIMER_RIGHT_X_PENALTY <- as.numeric(multi.str.split(↩
primer3.reverse.output[grep("PRIMER_RIGHT_[0-9]*_PENALTY=", ↩
primer3.reverse.output)], "=", 2))

262 PRIMER_RIGHT_X_SEQUENCE <- multi.str.split(primer3.reverse.output[↩
grep("PRIMER_RIGHT_[0-9]*_SEQUENCE=", primer3.reverse.output)], ↩
"=", 2)

263 PRIMER_RIGHT_X <- pos2
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264 PRIMER_RIGHT_X_TM <- multi.str.split(primer3.reverse.output[grep("↩
PRIMER_RIGHT_[0-9]*_TM=", primer3.reverse.output)], "=", 2)

265 PRIMER_RIGHT_X_GC_PERCENT <- multi.str.split(primer3.reverse.output[↩
grep("PRIMER_RIGHT_[0-9]*_GC_PERCENT", primer3.reverse.output)],↩
"=", 2)

266 PRIMER_RIGHT_X_SELF_ANY_TH <- multi.str.split(primer3.reverse.output↩
[grep("PRIMER_RIGHT_[0-9]*_SELF_ANY_TH", primer3.reverse.output)↩
], "=", 2)

267 PRIMER_RIGHT_X_SELF_END_TH <- multi.str.split(primer3.reverse.output↩
[grep("PRIMER_RIGHT_[0-9]*_SELF_END_TH", primer3.reverse.output)↩
], "=", 2)

268 PRIMER_RIGHT_X_HAIRPIN_TH <- multi.str.split(primer3.reverse.output[↩
grep("PRIMER_RIGHT_[0-9]*_HAIRPIN_TH", primer3.reverse.output)],↩
"=", 2)

269 PRIMER_RIGHT_X_END_STABILITY <- multi.str.split(↩
primer3.reverse.output[grep("PRIMER_RIGHT_[0-9]*_END_STABILITY",↩
primer3.reverse.output)], "=", 2)

270

271 right.parsed <- data.frame("name1", pos4, PRIMER_RIGHT_X_PENALTY, ↩
PRIMER_RIGHT_X_SEQUENCE, PRIMER_RIGHT_X, PRIMER_RIGHT_X_TM, ↩
PRIMER_RIGHT_X_GC_PERCENT, PRIMER_RIGHT_X_SELF_ANY_TH, ↩
PRIMER_RIGHT_X_SELF_END_TH, PRIMER_RIGHT_X_HAIRPIN_TH, ↩
PRIMER_RIGHT_X_END_STABILITY)

272 colnames(right.parsed)[1:2] <- c("p.name", "pos")

273 right.parsed <- right.parsed[sort(right.parsed$pos, index.return = T↩
)$ix, ]

274 right.parsed <- right.parsed[which(right.parsed$pos %in% ↩
snp.coords.after.filter), ]

275 nrow(right.parsed)

276 right.parsed2 <- split(right.parsed, right.parsed$pos)

277 right.parsed2 <- lapply(right.parsed2, function(x) {

278 x[which.min(as.numeric(x$PRIMER_RIGHT_X_PENALTY)), ]

279 })

280

281 right.parsed3 <- bind_rows(right.parsed2)

282
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283 right.parsed3$MSA.pos <- which(homologous.snps == 1)[which(↩
snp.coords.after.filter %in% right.parsed3$pos)]

284 right.parsed3 <- right.parsed3[, c(1, 2, 12, 3:11)]

285 colnames(right.parsed3)[4] <- "pen"

286 colnames(right.parsed3)[5:ncol(right.parsed3)] <- gsub("X", "0", ↩
colnames(right.parsed3)[5:ncol(right.parsed3)])

287

288 #######################################

289 if (!file.exists(p(project.path, "jobs/", gene.name, "/primers/↩
penalties"))) dir.create(p(project.path, "jobs/", gene.name, "/↩
primers/penalties"))

290 write.csv(left.parsed3, p(project.path, "jobs/", gene.name, "/↩
primers/penalties/forward.all.pen.csv"), row.names = F)

291 write.csv(right.parsed3, p(project.path, "jobs/", gene.name, "/↩
primers/penalties/reverse.all.pen.csv"), row.names = F)

292

293 return(list(left.parsed3, right.parsed3))

294 }

295

296 generate.best.primer.set <- function(forward.all.pen, reverse.all.pen,↩
forward.coord.used, reverse.coord.used, iteration) {

297 if (missing(forward.coord.used)) forward.coord.used <- as.numeric()

298 if (missing(reverse.coord.used)) reverse.coord.used <- as.numeric()

299 if (missing(iteration)) iteration <- 1

300

301 if (length(forward.coord.used) > 0) forward.all.pen <- ↩
forward.all.pen[-which(forward.all.pen$pos %in% ↩
forward.coord.used), ]

302 if (length(reverse.coord.used) > 0) reverse.all.pen <- ↩
reverse.all.pen[-which(reverse.all.pen$pos %in% ↩
reverse.coord.used), ]

303

304 best.primer.file.end.coord <- as.numeric(start.coord.after.filter)

305

306 forward.primer.positions <- list()

307 reverse.primer.positions <- list()
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308

309 minimum.snp.coord <- 0

310 maximum.snp.coord <- start.coord.after.filter

311

312 # run loop to get pairs of primers

313

314 while (best.primer.file.end.coord < end.coord.after.filter) {

315 valid.fwd.coords <- which(forward.all.pen$pos < (maximum.snp.coord↩
- 1) & forward.all.pen$pos > minimum.snp.coord)

316

317 while (length(valid.fwd.coords) == 0) {

318 maximum.snp.coord <- maximum.snp.coord + 10

319 valid.fwd.coords <- which(forward.all.pen$pos < (↩
maximum.snp.coord - 1) & forward.all.pen$pos > ↩
minimum.snp.coord)

320 print("No SNPs found for forward primer, expanding start buffer"↩
)

321

322 # add stop condition

323 if (maximum.snp.coord > max(coords$snp.coords)) {

324 if (iteration == 1) {

325 write("No valid forward primer coordinates", p("jobs/", ↩
gene.name, "/primers/error.txt"))

326 return(as.numeric())

327 } else {

328 return(as.numeric())

329 }

330 }

331 }

332

333 f.primer.candidates <- forward.all.pen[which(forward.all.pen$pos <↩
(maximum.snp.coord - 1) & forward.all.pen$pos > ↩

minimum.snp.coord), ]

334 f.primer.candidates <- f.primer.candidates[which(↩
f.primer.candidates$pen == min(f.primer.candidates$pen)), ]

335
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336 # debugging

337 valid.rev.coords <- which(reverse.all.pen$pos > (↩
f.primer.candidates$pos + product.size.range[1]) & ↩
reverse.all.pen$pos > best.primer.file.end.coord & ↩
reverse.all.pen$pos < (f.primer.candidates$pos + ↩
product.size.range[2]))

338

339 while (length(valid.rev.coords) == 0) {

340 product.size.range[2] <- product.size.range[2] + 10

341 valid.rev.coords <- which(reverse.all.pen$pos > (↩
f.primer.candidates$pos + product.size.range[1]) & ↩
reverse.all.pen$pos > best.primer.file.end.coord & ↩
reverse.all.pen$pos < (f.primer.candidates$pos + ↩
product.size.range[2]))

342 print("No SNPs found for reverse primer, expanding maximum ↩
product size")

343

344 # add stop conditions

345 if (product.size.range[2] > length(template.sequence)) {

346 if (iteration == 1) {

347 write("No valid reverse primer coordinates", p("jobs/", ↩
gene.name, "/primers/error.txt"))

348 return(as.numeric())

349 } else {

350 return(as.numeric())

351 }

352 }

353 }

354

355 r.primer.candidates <- reverse.all.pen[which(reverse.all.pen$pos >↩
(f.primer.candidates$pos + product.size.range[1]) & ↩

reverse.all.pen$pos > best.primer.file.end.coord & ↩
reverse.all.pen$pos < (f.primer.candidates$pos + ↩
product.size.range[2])), ]

356 r.primer.candidates <- r.primer.candidates[which(↩
r.primer.candidates$pen == min(r.primer.candidates$pen)), ]
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357

358 forward.primer.positions <- c(forward.primer.positions, list(↩
f.primer.candidates))

359 reverse.primer.positions <- c(reverse.primer.positions, list(↩
r.primer.candidates))

360

361 best.primer.file.start.coord <- as.numeric(f.primer.candidates$pos↩
)

362 best.primer.file.end.coord <- as.numeric(r.primer.candidates$pos)

363

364 minimum.snp.coord <- best.primer.file.start.coord

365 maximum.snp.coord <- best.primer.file.end.coord # The name of this↩
variable originates from the first iteration. Of cause this ↩

is not truly the start.coord.after.filter on subsequent ↩
iterations

366 }

367

368 library(dplyr)

369

370 forward.primer.positions <- lapply(forward.primer.positions, ↩
function(x) x[1, ])

371 forward.primer.positions <- bind_rows(forward.primer.positions)

372 forward.primer.positions$orient <- "F"

373

374 reverse.primer.positions <- lapply(reverse.primer.positions, ↩
function(x) x[1, ])

375 reverse.primer.positions <- bind_rows(reverse.primer.positions)

376 reverse.primer.positions$orient <- "R"

377

378 p3.input.files.to.rm <- list.files(p(project.path, "jobs/", ↩
gene.name, "/primers/input/"), full.name = T)

379 p3.output.files.to.rm <- list.files(p(project.path, "jobs/", ↩
gene.name, "/primers/output/"), full.name = T)

380

381 lapply(p3.input.files.to.rm, file.remove)

382 lapply(p3.output.files.to.rm, file.remove)
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383

384 Map(function(f.primer1, r.primer1) {

385 generate.primer3.input.files(template.sequence2, p((f.primer1 + 1)↩
, "-", (r.primer1 + 1)), 100, 750, f.primer1, r.primer1, "B")

386 }, forward.primer.positions$pos, reverse.primer.positions$pos)

387

388 system(p(project.path, "jobs/", gene.name, "/primers/run.primer3.sh ↩
", "jobs/", gene.name))

389

390 output.files <- list.files(p(project.path, "jobs/", gene.name, "/↩
primers/output/"))

391

392 output.files <- output.files[sort(as.numeric(multi.str.split(↩
multi.str.split(output.files, "-", 1), "\\.", 2)), index.return ↩
= T)$ix]

393 output.files.numbered <- paste0(1:length(output.files), output.files↩
)

394

395 list.best.primer.start.coords <- c(list.best.primer.start.coords, ↩
forward.primer.positions$pos)

396 list.best.primer.end.coords <- c(list.best.primer.end.coords, ↩
reverse.primer.positions$pos)

397

398 # see if any sets have already made, if so make new set directory

399 i <- max(as.numeric(multi.str.split(list.files(p(project.path, "jobs↩
/", gene.name, "/primers/best.primers/")), "set", 2))) + 1

400 if (is.na(i) | i == -Inf) i <- 1

401

402 if (!dir.exists(p(project.path, "jobs/", gene.name, "/primers/↩
best.primers/set", i))) {

403 dir.create(p(project.path, "jobs/", gene.name, "/primers/↩
best.primers/set", i))

404 }

405

406 Map(function(x, best.primer.file, fpos1, rpos1) {

407 file.copy(p(project.path, "jobs/", gene.name, "/primers/output/", ↩
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x), p(project.path, "jobs/", gene.name, "/primers/best.primers↩
/set", i, "/", best.primer.file))

408 multiple.alignment.coord1 <- which(homologous.snps == 1)[which(↩
fpos1$pos == coords$snp.coords)]

409 multiple.alignment.coord2 <- which(homologous.snps == 1)[which(↩
rpos1$pos == coords$snp.coords)]

410 # add multiple sequence alignment coordinates to the best primer3 ↩
output file

411 system(p("echo multiple.alignment.forward.coord=", ↩
multiple.alignment.coord1, " >> ", project.path, "jobs/", ↩
gene.name, "/primers/best.primers/set", i, "/", ↩
best.primer.file))

412 system(p("echo multiple.alignment.reverse.coord=", ↩
multiple.alignment.coord2, " >> ", project.path, "jobs/", ↩
gene.name, "/primers/best.primers/set", i, "/", ↩
best.primer.file))

413 system(p("echo SEQUENCE_TEMPLATE_REV_COMP=", as.character(↩
reverseComplement(template.sequence2)), " >> ", project.path, ↩
"jobs/", gene.name, "/primers/best.primers/set", i, "/", ↩
best.primer.file))

414 system(p("echo gene.start.coord=", start.coord.after.filter, " >> ↩
", project.path, "jobs/", gene.name, "/primers/best.primers/↩
set", i, "/", best.primer.file))

415 system(p("echo gene.end.coord=", end.coord.after.filter, " >> ", ↩
project.path, "jobs/", gene.name, "/primers/best.primers/set",↩
i, "/", best.primer.file))

416 }, output.files, output.files.numbered, split(↩
forward.primer.positions, forward.primer.positions$pos), split(↩
reverse.primer.positions, reverse.primer.positions$pos))

417

418 # convert primer3 coordinates (coordinates from the sequence without

419 # insertions) to coordinates in the multiple sequence alignment

420 return(list(list.best.primer.start.coords, ↩
list.best.primer.end.coords))

421 }

422
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423 print("Performing best primer selection")

424 # if(1 == 2){ #toggle to skip caching

425 if (file.exists(p(project.path, "jobs/", gene.name, "/primers/↩
penalties/forward.all.pen.csv")) & file.exists(p(project.path, "↩
jobs/", gene.name, "/primers/penalties/reverse.all.pen.csv"))) {

426 forward.all.pen <- read.csv(p(project.path, "jobs/", gene.name, "/↩
primers/penalties/forward.all.pen.csv"), stringsAsFactors = F, ↩
header = T)

427 forward.all.pen <- forward.all.pen[, 1:4]

428 reverse.all.pen <- read.csv(p(project.path, "jobs/", gene.name, "/↩
primers/penalties/reverse.all.pen.csv"), stringsAsFactors = F, ↩
header = T)

429 reverse.all.pen <- reverse.all.pen[, 1:4]

430 } else {

431 penalties1 <- generate.all.primer.penalites(1)

432 forward.all.pen <- penalties1[[1]][, 1:4]

433 reverse.all.pen <- penalties1[[2]][, 1:4]

434 }

435 used.coords1 <- generate.best.primer.set(forward.all.pen, ↩
reverse.all.pen)

436 if (length(used.coords1) > 0) generate.best.primer.set(↩
forward.all.pen, reverse.all.pen, used.coords1[[1]], used.coords1↩
[[2]], 2)

437 }
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8 Appendix B - Bioinformatic methods

8.1 B.1 Computing environment and the R programming lan-

guage

The large amount of data produced from high-density SNP arrays necessitate a bioin-

formatics approach to processing and analysing the data. Since such a large proportion

of the work done during the PhD was done in a computational context, it might be

illuminating to discuss the choices made in terms of computational environment and

hardware used. To support computations, I utilized various high-performance servers,

including a computing cluster located in the Life Sciences building at Bristol, and most

importantly a powerful server dubbed “Wilkins”, with ~750 Gb RAM, ~60 simultaneous

threads and over 20TB total hard drive space. For the majority of the data analysis I

chose the R programming language, an object-oriented, interpreted language, which al-

lows inspection and manipulation of objects in a dynamic manner without compilation

of the script being worked on. R offers significant advantages over other languages typ-

ically used for data manipulation such as Python, providing native support for tabular

data in the form of its dataframe class, and making vectorized computation a central

feature of the language - Python requires additional libraries to implement these fea-

tures. The consequence of this is that computations over entire columns of tabular data

are very simple to implement, not even requiring a for loop, and are quick to execute,

as the underlying vector calculation is performed in a basic linear algebra subprogram

(BLAS) written in a compiled language, such as C++. Finally, R has a wealth of pack-

ages that extend its functionality significantly, such as ggplot for plotting, qtl for qtl

analysis, ASMap for genetic mapping and Bioconductor for handling genetic sequence

data.
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