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Abstract 

Non-infectious uveitis is an autoimmune disease characterised by infiltrating leukocytes such 

as T cells due to loss of immune tolerance to retinal proteins. Experimental autoimmune 

uveitis (EAU) is an animal model of non-infectious uveitis that shares many features with 

human disease and can be induced in mice by the transfer of autoantigen specific 

lymphocytes. The purpose of this thesis was to look at leukocyte trafficking specifically CD4+ 

T cells during initiation of clinical disease and throughout active clinical disease. 

The data presented uses an adoptive transfer to induce clinical disease. This was developed 

to study antigen specific and non-antigen specific recruitment during EAU. This robust 

technique also allows investigation into the role of specific chemokine and cytokine receptors 

during EAU by using knockout mice.  

The results demonstrate that antigen specific CD4+ T cells that initiate disease or their 

progeny persist within the tissue during active clinical disease and after active clinical disease 

has subsided. At day 2 after transfer, increased recruitment of endogenous CD4+ T cells and 

retention of transferred CD4+ T cells was observed, this was further investigated using non 

antigen specific cell transfers using ovalbumin specific CD4+ T cells which showed that the 

pathogenic stimulus needed to be present locally to initiate clinical disease in recipients. 

Further to this ovalbumin specific cells are recruited to the eye if the antigen is introduced to 

the ocular tissue or if a pathogenic stimulus is present. Using the adoptive transfer technique 

further analysis using chemokine knockout mice showed that during active clinical disease 

CX3CR1 is expressed on CD4+ T cells which are selectively retained within the eye. Using 

cytokine receptor knockout mice IL-27Rα-/- cells were found to be more potent in nature to 

drive a more persistent and severe disease phenotype. 
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1. Introduction 

Humans are constantly exposed to pathogenic and non-pathogenic microbes. Whilst the 

immune system is eliminating pathogens and toxic or allergenic proteins it must avoid 

responding in a way that produces excessive damage to tissues or which eliminate beneficial 

microbes (2). The three essential properties of the immune system are determined by 

function: recognition of self and non-self and the ability to discriminate between the two; 

activation of pathways that eliminate pathogens and the development of long lasting memory 

(3). The immune system can be divided into the non-specific innate immune response and the 

highly specific adaptive immune response (3).  

The innate immune system can be defined as hard-wired responses that are encoded by 

genes in the host’s germ line, thus allowing recognition of molecular patterns shared by many 

microbes and toxins that are not found within the mammalian host (2). Although the main 

role of the innate immune system is defence against infection, the effects of the response 

allow for surveillance of host tissue damage and protection against progression of malignancy 

due to mutation (3).  

The adaptive immune system uses antigen-specific lymphocyte responses to give successful 

immune protection (4). The adaptive immune response is composed of cells with specificity 

(through receptors) for an individual pathogen, allergen or toxin, the responding cells after 

antigen encounter will then proliferate in order to attain sufficient cell numbers for an 

effective immune response. An important feature of the adaptive immune response is the 

production of long-lived cells that are capable of persisting in a dormant state but possess the 

ability to re-express effector functions quickly after further encounters with the same antigen 

ensuring the adaptive immune system to manifest immune memory (2).  

 

1.1 Innate immune response 

The innate immune system is the first defence mechanism against pathogens and is 

comprised of cellular components and physiological and chemical barriers to protect against 

pathogen entry, replication and survival (3). This is achieved by establishing a protective 

response that has the ability to develop at a rapid pace from initiation to a full inflammatory 

response, followed by resolution to restore tissue integrity (5). The initial phase of the 

inflammatory response is focused on the destruction of pathogens that is followed by a phase 
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of dead and dying cells and cellular debris being eliminated from the site of inflammation. The 

final phase is a restoration phase in which tissue appears to be repaired and in a healthy 

condition (5). 

1.1.1 Physiological, physical, and chemical barriers of the innate immune system 

Anatomical barriers of the innate immune system are comprised of epithelial layers including 

mucous membranes and the skin which prevent the entry of pathogens into the host (3). 

Pattern recognition receptors (PPRs) allow recognition of invading organisms and are 

expressed on various immune cells, they are responsible for the recognition of non-

mammalian molecular patterns known as pathogen associated molecular patterns (PAMPs) 

(6). Activation of protective inflammatory cellular responses can be achieved by binding of 

PAMPs such as bacterial and fungal cell-wall components and viral nucleic acid (6) to PRRs on 

the surface and within the cytoplasm of the host cells (3, 7). The recognition of pathogens by 

PRRs plays a vital role in the generation of an effective innate immune response (7). The 

sensing of microbes by PRRs expressed on antigen-presenting cells, in particular dendritic cells 

leads to the activation of adaptive immune responses (6). 

1.1.2 Inflammatory mediators and cellular components of innate immunity 

Cellular components of the innate immune system include several polymorphonuclear cells 

such as; neutrophils, eosinophils, basophils, mast cells, phagocytic cells (such as: monocytes, 

macrophages), dendritic cells and natural killer (NK) cells (3).  

Neutrophils are major players during acute inflammation, they are typically the first 

leukocytes to be recruited to the site of inflammation and are capable of eliminating 

pathogens by several mechanisms (8). They are continuously generated in the bone marrow 

from myeloid precursors and during inflammation the neutrophil number within tissues 

increases. Over time these cells die and are removed by macrophages and dendritic cells. 

Neutrophils can eliminate pathogens by multiple mechanisms both intracellularly and 

extracellularly, when microorganisms are encountered phagocytosis occurs, or highly 

activated neutrophils are capable of eliminating microorganisms by releasing neutrophil 

extracellular traps (NETs) (8).  

Monocytes can be found circulating in the blood, bone marrow and spleen making up roughly 

10% of total leukocytes within humans and 2-4% in mice. They can remain in the circulation 

for up to 1-2 days. If an inflammatory response has not initiated recruitment to the tissue in 

this time the cells will die and be removed (5). The physiological role of monocyte subsets in 
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vivo are yet to be fully defined but they are suggested to play roles in inflammation and tissue 

repair due to their capacity to be activated and secrete inflammatory cytokines, immune 

defence mechanisms, antigen processing and presentation, pro-angiogenic and patrolling 

behaviour and also in maintaining homeostasis (5).  

Macrophages are professional phagocytes defined as mobile cells with the ability to engulf 

and digest pathogens, particles and dead cells (9). Resident macrophages are heterogeneous 

and versatile cells found in tissue in adult mammals, they represent up to 10-15% of total cell 

number when the tissue is non-inflamed (5). The long-term persistence of adult tissue 

macrophages relies on replenishment by bone-marrow derived monocytes (10) especially 

during inflammation (11). 

Dendritic cells are a distinctive group of specialised antigen-presenting cells that have the 

ability to influence both the innate and adaptive immune response (12, 13). Although 

dendritic cells are only present in a small population within lymphoid tissues, they are also 

considered important in terms of the initiation of antigen-specific immunity and the T cell 

mediated response, as well as the induction of immunological tolerance (13). DCs support 

immunity or tolerance by antigen-presentation to T cells and delivering immunomodulatory 

signals through cell to cell contact and cytokines (12). 

Eosinophils are a minor component of circulating leukocytes that develop and differentiate in 

the bone marrow; they can be long-lived granulocytes involved in a variety of regulatory 

functions (14). In normal conditions, eosinophils can be found within the thymus, spleen, 

blood, lung, uterus, adipose tissue, mammary gland, and lamina propria of the 

gastrointestinal tract, suggesting a physiological function in each organ. Eosinophils have the 

ability to regulate lymphocyte recruitment and function but are not known to have the 

capacity to function as an antigen-presenting cell to T cells. Immunologic regulation of 

eosinophils has been suggested to extend from innate immunity to adaptive immunity and 

can involve non-immune cells (14). 

Basophils are the least frequent granulocyte population within the mammalian body. The 

accumulation of basophils has been observed in allergic disease, organ rejection, 

autoimmunity, and cancer (15). Unlike other granulocyte populations the lifespan of mature 

basophils is quite short and estimated to be between 1-2 days, therefore the constant 

presence of basophils in periphery is thought to be down to continuing development and 

replenishment of the population (15). 
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Natural Killer (NK) cells are important immune cells with an essential role in tumour immunity, 

antibacterial immune response, anti-viral immune response and human pregnancy (6). NK 

cells are now included as a group 1 innate lymphoid cell (ILC) along with ILC1 cells (16). NK 

cells are recognised as a separate lineage of lymphocytes with effector functions that are 

considered both cytotoxic and cytokine producing. Accordant with their main function as 

innate sentinels, NK cells can be found within both lymphoid and nonlymphoid tissues. 

However, NK cells represent a small fraction of total lymphocytes in most tissues (~2% of 

murine splenocytes and between 2-18% of lymphocytes detected within human blood). 

Subsets of NK cells can be distinguished in mice and humans based on their phenotype and 

anatomical and functional features (17). 

 

1.2 Innate control of adaptive immunity 

The innate and adaptive immune systems have been described as two separate contrasting 

arms of the immune response; however, they are usually found to act together. The host’s 

initial defence being the innate immune response, and the adaptive response becoming the 

more prominent through clonal expansion of antigen-specific T and B cells after several days 

(2). Control of adaptive immunity by the innate immune system is considered to be a firmly 

established paradigm. Microbial pathogens are recognised by the innate immune system 

using pattern recognition receptors (PRRs) that have the ability to detect conserved  

pathogen-associated molecular patterns (PAMPs) which are present in bacterial and fungal 

cell-wall components and viral nucleic acids (6). PAMPs detected by PRRs induces an 

inflammatory response of innate host defences, the recognition of microbes by PRRs 

expressed on antigen-presenting cells initiates adaptive immune responses (6). 

 

1.3 Adaptive immune Response 

The innate immune system has evolved to sense and eliminate a wide range of pathogens, 

but the variety of common pathogenic molecular patterns it has the ability to recognise is 

limited. The variation present in antigenic structures combined with pathogens mutating to 

avoid host detection can be paralleled with the evolution of the adaptive immune response 

(18). Unlike the recognition receptors of the innate immune response that are all encoded in 

the germline genome in their fully functional form, the adaptive immune response depends 
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on receptors that are specific and selected by somatic recombination of a large array of gene 

segments (18). After initial pathogen encounter, cells with expression of specific immune 

receptors can persist in the host for life, thus providing immunological memory and giving the 

capacity for a highly targeted, rapid response in the event of re-exposure to the same 

pathogen (3, 18). In response to the inflammatory environment created by the innate immune 

response, cells of the adaptive immune system (including B and T cells) are stimulated to 

proliferate and differentiate into cells with various functions that are useful for immunological 

challenge (19). After the invading pathogen is removed, most of the cells recruited from the 

adaptive immune response die but leave behind an array of memory subsets against the 

pathogen within the host (19). 

Following host pathogen exposure, cells, and inflammatory mediators from the site of 

infection travel to local lymph nodes. Non-host antigens presented using MHC molecules on 

antigen-presenting cells (APCs) are recognised by B and T lymphocyte receptors present in 

the host (3). Clonal selection involves the processes of clonal deletion and the expansion of 

lymphocytes to create a population of specific cells capable of targeting the original pathogen 

(3). Although the adaptive immune response is more specific than the innate response to the 

pathogen (18).  

The principle cells of the adaptive immune response include two major lineages of 

lymphocytes that have the ability to specifically recognise and respond to antigenic 

determinants of pathogens and toxins (20). These cells develop in the primary lymphoid 

organs such as the bone marrow and thymus, then traffic to secondary lymphoid organs 

which include the lymph nodes and spleen. These organs serve to capture circulating antigens 

from lymph and blood respectively (18). The cells are named T (thymus-derived) and B (bone-

marrow derived) lymphocytes, similar to other blood cells early T and B cells are derived from 

hematopoietic stem cells (20).  

In early stages of development T and B lymphocyte progenitors reorganise various sets of 

prototypic immunoglobulins (Ig) diversity (d), joining (j) and variable (v) gene segments to 

produce antigen binding regions of their T cell receptors (TCRs) and B cell receptors (BCRs) 

(20). The antigen binding regions of the various V(D)J combinations are further diversified 

through enzymatic addition of nonencoded nucleotides in the joints made during V(D)J 

assembly. The random nature of this diversification process generates receptors that are 

capable of recognising self-antigens (20).  
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Non-host antigens found on antigen-presenting cells can be identified by B and T cell 

receptors. Clonal selection of lymphocytes gives a population of specific cells that are capable 

of targeting the original pathogen presented (3).  

 

1.4 Cells of the adaptive immune response 

1.4.1 B cell response 

The humoral response is mediated by B lymphocytes that are produced in the bone marrow. 

On activation by T cells they differentiate into plasma cells, memory cells or antigen-

presenting cells (21). Memory B cells represent the outcome of the humoral response, these 

cells express high affinity antigen-specific B cell receptors for specific antigens so that the 

second response on re-exposure is much quicker and heightened (21, 22).  

1.4.2 B cells 

B cells are classified by their anatomic localisation and ontogeny. Three main classes exist 

B1a, B1b and B2 B lymphocytes in both mice and humans, including marginal zone and 

follicular B cells (23). B1 progenitors develop into B1 lymphocytes present from the foetal 

liver and survive beyond the neonatal period as a self-renewing population. Whereas B2 

lymphocytes are produced from BM precursors that develop from transitional 2 (T2) B cells 

and continue output throughout life (23). A crucial function of B lymphocytes is antibody 

production (23). 

BCR antigen receptors are present on mature B cells. They are comprised of glycosylated 

proteins known as membrane-bound or surface immunoglobulins, specifically IgM and IgD 

classes of antibody (24). Alternatively, antibodies are released from the B cell to target 

antigens within the extracellular space to bind and neutralise them efficiently (23). Plasma 

cells secrete antibodies which consist of two similar heavy chains distinguished by the C-

terminus regions, which are sustained and do not partake in antigen binding.  These chains 

determine the type of antibody e.g. IgA, IgD and IgE, IgG and Ig(M) with two similar light 

chains (21, 23). There are four subclasses of IgG antibodies in humans IgG1, IgG2, IgG3 and 

IgG4 (23), and is the principle mediator of opsonisation, IgA is involved in mucosal immunity, 

IgD is cell bound and IgE is involved in mast cell degranulation (21). Antibodies apply effector 

functions in three ways: they activate immune cells including macrophages by binding to the 

Fc receptor to allow recognition of the constant regions of specific antibody classes, binding 
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to a specific target to neutralise it and therefore preventing it from entering a cell, or binding 

to C1q to activate the complement immune response, specifically the classic pathway (23). 

The chosen effector mechanism of the cell is determined by both the cells affinity to bind and 

activate the Fc receptor present on immune cells and the isotype of the heavy chain (23).  

Follicular B cells are activated after antigen recognition by the BCR and critical helper signals 

derived from antigen specific CD4 T cells (23). When bound to antigen, the BCR initiates two 

processes, firstly necessary gene expression programmes are triggered by signals sent from 

the BCR to the cell, and secondly, the antigen is internalised and brought into the endosomal 

compartments to be broken down in order to be presented by MHC class II complexes in 

peptide form to the B cell (23). Recognition of peptide MHC class II complexes by antigen 

specific CD4+ T cells is achieved through intimate contacts with B cells to form an interaction 

known as ‘cognate’ or ‘linked’ T-B interactions (23). 

1.4.3 T cell response 

In order to become a mature thymocyte, bone marrow derived precursor cells must go 

through a highly regulated program of intrathymic development to then leave the thymus 

and form the peripheral T cell pool (25). The early stages of thymocyte development are 

defined by a number of molecular events; expression of RAG1 and RAG2 gene products, 

expression of CD4 and CD8 coreceptor molecules, somatic rearrangement of the T cell 

receptor β locus and recombination of TCR α locus (25). For a T cell to develop from a 

haemopoietic progenitor to a mature TCRα/β+ T cell a series of commitment events take place 

including TCR V(D)J gene rearrangement, TCR β selection and positive/negative selection of 

thymocytes (26). 

T lymphocytes produced in the bone marrow migrate to the thymus and undergo selection 

(21). During development, the DNA undergoes rearrangement and the T cell receptors (TCRs) 

become specific for foreign antigens. This is  by a process of education that allows the cell to 

distinguish between self and non-self (21). The ability to recognise self from foreign or non-

self is achieved through selection by cell surface molecules known as major histocompatibility 

complex (MHC) (21). T cells are able to recognise antigen that has been processed and 

presented to them by MHC molecules on APCs. There are two types of MHC molecules: MHC 

class I and MHC class II (21). All parenchymal cells express MHC class I molecules and therefore 

have the capabilities to present internal peptide molecules. Monocytes, macrophage, B cells, 
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dendritic cells, and endothelial cells express MHC class II and can present external peptides 

that are processed by APCs (21). 

During embryonic development immature T cells interact with epithelial cell surface 

molecules such as MHC class I and II molecules when passing through the thymus. This is to 

ensure the T cells are both reactive and specific. From this, immature T cells are processed by 

functional or positive selection in the thymic cortex, then in the medulla the cells undergo 

negative selection to ensure elimination of autoreactive T cells (21). In the periphery, 

regulation of co-stimulation molecules and cytokines control if T cells remain quiescent or 

become activated; on activation, T cells become either T-helper cells, T-suppressor cells or 

cytotoxic T cells (21).  

1.4.4 T cell activation 

Each unique T cell in the periphery carries a TCR that is made up of an α chain and a β chain. 

The TCR has the potential to recognise a small number of peptide antigens in combination 

with MHC. These cells are actively surveying but are in a resting state unless they encounter 

cognate antigen. The generation of the TCR occurs by genomic DNA sequences undergoing 

recombination during the development of T cells, each TCR is unique and highly specific (19). 

Recombination to form a functional TCR gives rise to a resting T cell that emerges from the 

thymus gives. The resting T cell is capable of migrating through secondary lymphoid tissues 

which include the lymph nodes and spleen or the periphery but cannot yet produce a 

response that would protect the host from infectious challenge (19).  

In order to produce a T cell with the capabilities of mediating immune responses the naïve T 

cell must be activated, this is achieved through coordinated interactions between the APC 

and the molecules that are present on the surface of T cells (19). An APC is capable of carrying 

an antigenic peptide bound to an MHC class molecule non-covalently from an infectious 

agent. The TCR recognises a peptide antigen when bound to the correct MHC class I or class 

II molecule (19). In the T cell plasma membrane, the alpha/beta TCR connects with CD3 which 

is a complex membrane protein comprised of δ-, ε- γ-, and ζ- subunits, an intracellular signal 

is produced following ligation of the TCR by the cytosolic region of this complex (19). CD4 or 

CD8 coreceptor together with the TCR bind to class I or class II MHC class molecules; class I 

for CD8 cells and class II for CD4 cells,  this is to stabilise the interaction between the T cell 

and APC (19). After the recognition of the cognate peptide bound to a MHC molecule by the 

specific corresponding TCR, the APC and T cell begin forming an immunological synapse by 
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undergoing actin-mediated membrane reorganisation to facilitate grouping of the TCR on the 

surface of the cell (19, 27).  

However, to induce T cell activation, stimulation with cognate antigen alone is not sufficient 

and will instead produce a refractory T cell to any further stimulus. The identification of T cell 

activation needing the primary costimulatory pathway of CD28 confirmed T cell activation 

requires two signals, firstly association of CD3 with antigenic proteins followed by ligation of 

CD28 (19).  

1.4.5 T cell types 

The support that T cells provide to immune responses can be separated in to two categories; 

generation of T helper cells and generation of cytotoxic T cells, T helper function is associated 

with CD4 T cells and cytotoxic function is associated with CD8 T cells (19).  

Helper CD4+ T cell responses generate cytokines and chemokines to support the immune 

system. These interact with each other to activate neighbouring T helper cells to perform 

specific functions including the recruitment of immune cells to encounter pathogen at sites 

of inflammation (19). The main function of cytotoxic CD8+ T cells is specific elimination of host 

cells infected by a pathogen by cytotoxic methods, but they are also capable of a producing a 

diverse array of cytokines. This is done by delivering cytotoxic granules into the cytosol of the 

infected cell, this process is initiated by TCR binding to specific peptide/MHC molecules on 

the target cell (19).  

Naïve T cells express a specific TCR which allows specificity of the T cell population, however 

until the TCR is engaged and molecular signals downstream of their cytokine receptor is 

integrated they remain uncommitted to their T helper fate (19). T cells stimulated with 

antigen have the potential to differentiate into a variety of effector cell subsets depending on 

the cytokine milieu present and further modified by the nature of  pathogen (19). Helper T 

cell responses can be classified into T helper subsets such as; Th1, Th2, Th17, Th9, Tfh, Tr1 

and Tregs (19).  

1.4.6 Th1 Response 

Differentiation into Th1 cells is regulated by  signal transducer and activator of transcription-

4 (STAT-4) and T-bet (28), and cytokines including; interleukin 12 (IL-12), interleukin 18 (IL-

18), interferon-γ (IFN-γ) and interferon-α (IFN-α) (Figure 1) these all favour the development 

of Th1 cells but will inhibit development of Th2 response (28). Th1 cells produce interferon-

gamma (IFN-γ), interleukin 2 (IL-2) and tumour necrosis factor (TNF) (Figure 1). The 



11 
 

production of these cytokines initiates macrophage activation that are responsible for 

phagocyte-dependent protective responses (29).  

1.4.7 Th2 Response 

 In contrast, Th2 development is dependent on STAT-6, GATA-3 and c-maf (30), Th2 cells 

produce interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 10 (IL-10) and interleukin 13 (IL-

13) (Figure 1) that promote B cells to produce IgE and IgA isoforms of antigen-specific 

antibody which circulate to mucosal surfaces and neutralise future threats of parasitic 

encounter (19).  

1.4.8 Th17 Response 

In response to extracellular bacteria and fungi, innate immune cells produce  IL-6 and TGFβ, 

when naïve T cells receive these signals with additional and constant interleukin 21 (IL-21) 

and interleukin 23 (IL-23) they differentiate into Th17 helper cells under the control of RORγT 

(19) (Figure 1), this particular T cell subset is characterised by the expression of the cytokine 

interleukin 17 (IL-17A and IL-17F), interleukin 22 (IL-22), interleukin 21 (IL-21) and interleukin 

10 (IL-10) (Figure 1). 

1.4.9 Tregs and Tr1 cells 

Unchecked or persistent immune responses lead to immunopathology. To control this, the 

immune system produces a regulatory subset of T cells (Tregs) that provide negative feedback 

to terminate the inflammatory process (19). Tregs are produced directly from thymic 

selection (tTregs), from this FoxP3+ CD4+ T cells can be differentiated from naïve FoxP3- CD4+ 

T cells in the periphery and are known as induced Tregs (iTregs) or peripheral Tregs (pTregs) 

(19, 31). 

Tr1 cells were first described in 1997 by Roncarolo et al (32). It was demonstrated that a 

specific subset of CD4+ Tregs were of a FoxP3- phenotype that were capable of suppressing 

antigen-specific responses and preventing the development of colitis (32, 33). This CD4+ 

FoxP3+ subset appeared to exert their immunosuppressive functions through IL-10 (33). Tr1 

cells express CD49b and LAG3 along with normal levels of co-stimulatory molecules including 

CD40L, CD69,CD28, CTLA4 and HLA-DR and increased levels of glucocorticoid induced 

transcription factor (GITR), CD134 (OX40), Tumour necrosis factor receptor TNFRSF9, CD18 

and inducible costimulator (ICOS) (33). 
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1.4.10 T Follicular helper cell 

Follicular helper T cells (Tfh) are found in lymph nodes, specifically the germinal centres. 

Cognate interaction between Tfh, B cells and IL-21 induces proliferation of B cells to 

differentiate into plasma cells and induce the production of antibody (34). Tfh cells and IL-21 

are involved in immunodeficiencies, infectious and autoimmune diseases, cancer and 

vaccination (34).  

 

 

 

 

 

 

 

 

1.4.12 T Cell Memory 

After the primary response is finished and the infection cleared there is a drastic contraction 

in the T cell population, leaving a population of T cells known as memory T cells that carry the 

‘memory’ of a specific pathogen that has previously invaded the host and altered functional 

abilities (19). In comparison to naïve T cells, memory T cells are more easily activated and 

Figure 1.1: T cell subsets in the adaptive immune response. Naïve T cells can differentiate 

into various CD4+ T cell subsets depending on the cytokine environment and by the signals 

the cells receive. After differentiation, the cells will produce specific cytokines to mediate the 

immune response. Figure adapted from Palmer et al. 2010. 
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have an increased proliferative potential when they come into contact with an antigenic 

stimulus or costimulatory receptors in order to cause a more rapid response to specific 

pathogens. They are maintained as a population by a homeostatic proliferation (19). Two 

main subclasses of memory CD4+ and CD8+ T cells exist: effector-memory (TEM) T cells and 

central memory (TCM) T cells. TCM cells can be defined by high expression of the adhesion 

marker CD44 and interleukin 7 (IL-7) receptor (CD127) and high levels of chemokine receptor 

C-C chemokine receptor type 7 (CCR7), combined with low levels of the adhesion marker 

CD62L, low levels of the surface marker killer cell lectin-like receptor subfamily G member 1 

(KLRG-1) (19). 

1.4.12 Antigen-presenting cells 

Stimulation of mature T cells requires the presence of a specialised antigen-presenting cell 

(APC) including macrophages and dendritic cells, however macrophages are unable to initiate 

a primary immune response which is the principle role of the dendritic cell (35). Dendritic cells 

express receptors that detect microbial molecules in their environment and then act to 

promote an adaptive immune response interfacing the innate and adaptive arms of immunity 

(35). Both macrophages and dendritic cells are strategically placed in T cell dependent areas 

within lymphoid tissue and express costimulatory molecules at high levels that are required 

for optimal signalling by T cells (36).  

In order to present antigen to T cells, APCs must first degrade native proteins into peptides 

which are then loaded on to MHC molecules; MHC class I for CD8+ T cells and MHC class II to 

present to CD4+ T cells (36). Loading of peptide for class I molecules occurs mainly within the 

endoplasmic reticulum and for class II molecules in the endosomes. When displayed on the 

cell surface, peptide-bound MHC molecules on APCs are recognised by an antigen-specific αβ 

T-cell receptor (36). Specialised APCs also express a number of costimulatory molecules 

including CD28 and CTLA4, high levels of expression of these molecules is mostly restricted to 

professional APCs such as dendritic cells (36). 
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1.5 Cytokines and Chemokines  

1.5.1 Cytokines 

Cytokines are proteins secreted by cells to induce a specific effect on the way cells interact 

and communicate with each other (37).  

The name cytokine can be interchanged with names such as; interleukin (cytokines made by 

one leukocyte, acting on other leukocytes),  lymphokines (cytokines made by lymphocytes), 

and monokines (cytokines made by monocytes) (37). Cytokines can act in various ways 

including on cells that produce and secrete them (autocrine action) or neighbouring cell 

populations (paracrine action) or on faraway cell populations (endocrine action).  

It is not unusual for the same cytokine to be secreted by different cell types or several 

different cell types to be influenced by a single cytokine. They often act in a cascade as one 

cytokine stimulates its target cell to make additional cytokines that can act synergistically or 

antagonistically. Cytokines can be produced by many different cell populations, often by 

helper T cells but also by activated neutrophils, macrophages and non-immune cells such as 

fibroblasts and endothelial cells during cell injury, infection, invasion and inflammation (37). 

Major pro-inflammatory cytokines include interleukin 1β (IL-1β), interleukin 6 (IL-6) and 

tumour necrosis factor-α (TNF-α) and are often associated with inflammasome activation. The 

pro-inflammatory cytokine response is controlled by a series of immunoregulatory molecules 

known as anti-inflammatory cytokines.  

Specific cytokine inhibitors and soluble cytokine receptors act in harmony with cytokines in 

order to regulate the immune response. Major anti-inflammatory cytokines include 

interleukin 1 receptor antagonist, interleukin 4 (IL-4), interleukin 10 (IL-10), interleukin 11 (IL-

11) and interleukin 13 (IL-13) (37). 

In this thesis the role of IL-27 is interrogated in the mouse model of uveitis. Interleukin 27 (IL-

27) is a newly discovered cytokine that belongs to the IL-6/IL-12 cytokine family (38, 39). 

Similarly, to members of the IL-12 and IL-6 family, IL-27 is a heterodimeric cytokine. It consists 

of two subunits known as p28 and Epstein-Barr virus-induced gene 3 (EBI3) (39). EBI3 can exist 

in three forms a homodimer, p35 heterodimer and a p28 heterodimer (39). Secretion of EBI3 

is not necessary for the secretion of IL-27p28 and therefore promotion of T cell and NK cell 

activation can be achieved by the heterodimerisation of IL-27p28 to cytokine-like factor (CLF) 
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(40). However, there is little evidence of heterodimers being formed between IL-27p28 and 

IL-12p40 naturally (40).  

IL-27 plays a role in the innate and adaptive immune response. In innate immunity, IL-27 has 

been demonstrated to induce production of IL-1, TNF-α, IL-18 and IL-12 in monocytes and IL-

1 and TNF-α in mast cells (39). IL-27 was first described as a proinflammatory cytokine due to 

its ability to promote IFN-γ production by CD4, CD8 T cells and NKT cells and has been 

identified as an early initiator of Th1 differentiation but inhibits Th17 responses (39, 41, 42). 

However, further studies have highlighted the role of IL-27 as a negative regulator of IL-2 and 

can therefore restrict the development of immune responses (42). Further immunoregulatory 

functions of IL-27 include the generation of IL-10 producing Tr1 cells and the suppression of 

the pathogenic Th17 response (43). 

1.5.2 Chemokines 

A variety of cytokines are known to play a role in chemotaxis (37). Chemokines are small 

molecules that are related structurally and are capable of regulating cell trafficking of various 

cell types by interacting with a subset of seven-transmembrane, G protein coupled receptors. 

In humans roughly 40 chemokines have been identified that mainly act on eosinophils, 

lymphocytes, monocytes and neutrophils (44). Studies have shown that chemokines play 

fundamental roles in homeostasis, development, and function of the immune system. They 

have a wide range of effects on many different cell types beyond the immune system 

including endothelial cells and various cells of the central nervous system where the effects 

are angiogenic or angiostatic (44).  

Chemokines can be divided into two major subfamilies based on arrangement of the two N-

terminal cytosine residues, that is whether the first two cysteine residues have an amino acid 

between them (CXC) or are adjacent (CC). Further to this two more classes of chemokines 

have been described; lymphotactin which unlike the typical chemokine structure lacks 

cysteines one and three so can be described as C or SCϒc and fractalkine which is the only 

chemokine to act through a mucin like stalk to bind to membranes, the structure of fractalkine 

differs from stereotypical chemokines by the presence of three amino acids between the first 

two cysteines and can therefore be described as CX3C or SCϒd (44). 

Regulation of T helper responses by chemokines has been demonstrated. They are known to 

have several functions and exert chemotactic activity on cell types such as Th1, Th17 and Th2 

cells (28). The selective recruitment of Th1 cells to inflamed tissue is usually independent of 
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Th2 cells, however, some chemokines appear to be able to influence the polarisation of Th1 

or Th2 responses by direct interaction with these cells as precursors and/or favouring the 

production of Th1 or Th2 specific cytokines (28).  

Specific chemokines and their ligands play a central role in the recruitment of inflammatory 

cells, Th1 lymphocytes are attracted to the site of inflammation by CXCL9, CXCL10 and CXCL11 

which are all secreted by damaged cells (45). The Th1 lymphocytes that are recruited to the 

inflamed tissue will enhance production of IFN-γ and TNF-α from the tissue which in turn 

induces production of Th1 chemokines by different cells, causing an amplification loop (45).  

In this thesis the role of the chemokine receptor CX3CR1 in the mouse model of uveitis is 

investigated. CX3CL1 (fractalkine) is a pro-inflammatory chemokine capable of inducing 

chemotaxis of circulating monocytes and inducing the selective recruitment of Th1 

lymphocytes through interaction with the CX3CL1 receptor CX3CR1 (46). CX3CR1 has been 

further implicated in the recruitment of monocytes to sites of inflammation. Studies have 

illustrated a population of CX3CR1 positive monocytes patrolling the endothelium in its steady 

state but when signs of infection occur, this population are able to rapidly infiltrate the tissue 

(47). 

B-cell antigen encounter takes place within the lymphoid follicles present in the 

compartments of lymphoid organs that are known to be rich in B cells (48). Chemokines can 

be considered organising factors of the immune system and co-ordinate microenvironmental 

architecture of primary and secondary lymphoid organs during physiological and pathological 

conditions (49). 

 

1.6 Immune tolerance 

Immunological tolerance describes a diverse range of host processes that can prevent 

potentially harmful immune responses from developing within the host tissue (50). Therefore 

the immune system is not normally activated by self-antigens (51). Tolerance is generated at 

an ‘upper’ level and a ‘lower’ level; the upper level is known as central tolerance and the 

lower level of peripheral tolerance, a faulty central tolerance and peripheral tolerance 

initiates  an autoimmune disease (51). 

Central tolerance is involved in the differentiation of immature thymocytes in primary 

lymphoid organs including the bone marrow and thymus. The major mechanisms involved in 
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central tolerance include clonal deletion and inactivation of clonal lymphocytes (52). 

Peripheral tolerance deals with mature B and T lymphocytes that have left the primary 

lymphoid tissues which are found in the secondary lymphoid tissue including lymph nodes 

and the blood (53). When mature lymphocytes have left the primary lymphoid tissues the 

antigen that would be of concern would be detected within the tissues instead of the primary 

lymphoid tissues (52). Positive selection is the process of maturation of immature double 

positive thymocytes that express T cell receptors with an intermediate affinity or avidity for 

self-peptide complexes by differentiation into single positive thymocytes (54), It further 

shapes the T cell repertoire. Negative selection or clonal deletion is the elimination of single 

or double positive expressing thymocytes within the thymus that express high affinity T cell 

receptors that are specific for self-antigen (54). Negative selection is efficient for deleting T 

cell precursors that have high avidity TCRs for self MHC complexes present on DCs. This 

suggests that peripheral tolerance mechanisms occur after central tolerance and are 

important for the control of mature T cells that bear a TCR with a lower avidity for self MHC 

molecules that have escaped central tolerance and are present in the periphery (55). 

Mechanisms of peripheral tolerance include deletion of cells, inducing anergy or by clonal 

ignorance (56) 

To achieve tolerance there are a number of categories of adaptations that the immune system 

makes; firstly, newly differentiated T cells and B cells test their receptors for recognition of 

autoantigens. Strongly reactive T cells are censored by a deletional mechanism, these 

processes are termed ‘negative selection’ and ‘central tolerance’ (57) (Figure 1.2). A mature 

lymphocyte will move into the circulation and encounter new antigens, but the lymphocyte 

will require co-stimulation in addition to an antigen-specific response to make a positive 

response, without this response the cell will become hyporesponsive or die (57). In addition 

to this, natural T regulatory cells (nTregs) that have been selected for recognition of self-

antigens can dampen early immune response. When a positive response from the lymphocyte 

against a self-antigen is made Tregs can modify this by inactivating further responses. 
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To prevent tissue destruction, induction of unresponsiveness or changes to the nature of the 

effector class involved in the response are made. New cells mediate immunoregulation by 

using cytokine release and bystander suppression to inhibit effector cell generation of a 

specific type (57).  

The organism is known to be tolerant so long as the immune system does not cause any 

damage. By this definition of tolerance, an intact immune system does not react in a 

Figure 1.2: Overview of central tolerance. Induction of autoimmune disease due to failure 

of tolerance. Central tolerance is a censor mechanism to stop autoreactive T cells from 

entering the periphery to induce autoimmune disease, failure of tolerance combined with 

environmental and genetic effects leads to autoimmune disease. Figure adapted from 

Mackay (2000). 
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destructive manner against the host, in this instance equilibrium is seen as a physiological 

state (57).  

 

1.7 Autoimmunity 

Autoimmune disease is a significant and growing clinical problem, it is chronic in nature 

leading to high healthcare costs, and is prevalent in the younger population effecting prime 

working and reproductive years (58).  

Autoimmune disease can be defined as organ-specific or non-organ specific, several diseases 

fit into these two groups, but some diseases fall into the spectrum in between. Autoimmune 

disorders range from those in which antibodies and T cells react to self-antigens localised 

within a specific tissue, to systemic conditions which can be characterised by reactivity against 

a specific antigen or antigens spread throughout several tissues within the body (59). 

However, classification of autoimmune disease is complex and continues to evolve as our 

understanding of the underlying mechanisms increases, for example by the understanding of 

inflammatory conditions. 

 Current therapies to treat autoimmune disease include cytokine antagonists such as TNF 

antagonists. Most therapeutic interventions target the terminal phase of inflammation and 

don’t address the problems causing initiation and progression of the disease (58). An immune 

response to a specific antigen involves the same components as an autoimmune response to 

an autoantigen, including APCs, B lymphocytes and T lymphocytes; messenger molecules 

including chemokines and cytokines and their corresponding receptors; and molecules 

present on the cell surface including signalling and costimulatory molecules (51).  

All autoimmune diseases are thought to have three sequential phases of initiation, 

propagation and resolution (58) (Figure 1.3). Disruption of regulatory mechanisms are 

associated with each of the phases, the resolution phase occurs when the balance of effector 

and regulatory mechanisms has occurred this is normally a partial and short term ability (58). 

Significant parts of the disease process are clinically silent, making diagnosis of early disease 

difficult (Figure 1.3). 

1.7.1 Initiation of autoimmune disease 

Most patients will start showing symptoms after abnormal immune interactions have taken 

place, therefore it is often difficult to accurately depict which factors are responsible for the 
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initiation of disease in humans (58). Strong evidence shows that autoimmune disease arises 

from a combination of genetic and environmental factors. Environmental agents can trigger 

autoimmunity, but only in people with a permissive set of immune response genes go on to  

develop an autoimmune disease (51).  

Environmental factors  

Infection is strongly connected as it has the capability to breakdown cellular or vascular 

barriers to expose antigen to the immune system, induce bystander activation of T 

lymphocytes and macrophages to provide costimulatory signals and superantigen effects of 

bacterial products and induce cell death by necrosis instead of apoptosis, all these effects are 

capable of disrupting peripheral tolerance (51). 

There is also the process of molecular (antigenic) mimicry, this involves an antigen of a 

microorganism that sufficiently resembles a self-molecule that can induce a cross-reactive  

autoreactive response (51). Other environmental initiators that can break tolerance act like 

infections to cause tissue damage (51). 

Genetic factors 

Many genome wide association studies (GWAS) have identified genetic polymorphisms that 

are associated with autoimmune disease. Most polymorphisms are in non-coding  regions of 

genes, especially enhancers, but many associations are with genes that play a role in the 

immune response (51). Of all the genes associated with autoimmune disease, the strongest 

associations are with MHC alleles, however genes that are associated with autoimmune 

disease are often not specific to a single disease but are instead associated with multiple 

autoimmune diseases (60).  

1.7.2 Propagation of autoimmune disease  

Most patients present with clinical disease during the propagation phase characterised by 

progressive inflammation and tissue damage, as positive feedback amplifies the disease (58). 

Firstly the self-antigen that initiates autoimmunity often cannot be eliminated by the host, 

and the problem is intensified by the emergence of new autoantigenic epitopes as tissue 

damage and alterations in self-proteins occur, in a process that is known as epitope spreading 

(58) (Figure 1.3). 

When newly generated antigenic epitopes activate different specificities of lymphocyte a 

recruitment of leukocytes to the site of inflammation occurs, this creates more damage to the 

tissue and gives rise to even more novel epitopes to be targeted by autoreactive lymphocytes 
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thus epitope spreading creates a vicious cycle that influences inflammation within the tissue 

(58). An inflammatory environment is created by the production of cytokines and cellular 

mediators by numerous immune cell types within an autoimmune reaction, these serve to 

amplify the reaction. However the driving force behind the autoimmune reaction could be 

due to the increase in the number of effector cells in comparison to the number of regulatory 

cells present (58). After the induction of a pathological immune reaction, there is increasing 

accumulation of effector T cells to the inflamed tissue that are driving the immune reaction, 

this is accompanied by a decrease in the number of Tregs or increased number of 

dysfunctional Tregs (58). 

1.7.3 Resolution of autoimmunity 

It is likely that the control of immune reactions involves the induction and activation of 

regulatory mechanisms that dampen the effector response to restore the effector 

cell/regulatory cell balance (58) (figure 1.3). 

Autoimmune disorders are a result of the breakdown of immunological tolerance which leads 

to an immune response against the host’s self-molecules (59).  

 

 

 

 

 

 

 

Figure 1.3: The sequential phases of autoimmune disease. Initiation includes the genetic 

predisposition of the individual combined with environmental triggers imitates clinical 

symptoms within patients. Propagation involves the immune response amplifying within 

the individual such as cytokine production and epitope spreading. These steps are then 

followed by regulatory mechanisms dampening the effector response to initiate resolution 

of the autoimmune disease. Figure adapted from Rosenblum et al (2015). 
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1.7.4 The role of CD4+ T cells in autoimmunity 

In organ-specific autoimmunity, CD4+ T cells are essential to the autoimmune response. 

Pathogenic antigen-activated CD4+ T cells can adopt several different phenotypes depending 

on external cues and the transcription factors that they induce (61).  

Th1 cells are predominantly involved in inducing macrophage activation to clear intracellular 

pathogens and inducing immunoglobulin class switching to complement-fixing antibodies 

through production of large quantities of IFN-γ (62). They are involved in cell-mediated and 

delayed-type hypersensitivity responses but have been implicated in the development of 

organ-specific autoimmune disease and more specifically in organ-specific T cell driven 

autoimmune diseases whereas Th2 cells reportedly exerted inhibitory effects (62).  

However, the hypothesis that Th1 cells exclusively drive autoimmune tissue damage was 

challenged when blocking IFN-γ signalling did not protect mice from the induction of 

autoimmune disease and in fact caused a more severe disease phenotype (62). 

The Th17 subset of T helper cells were discovered after the IL-17 family of cytokines was 

discovered. This was further supported by the finding of mediation of expansion of IL-17 

producing cells by IL-23. Th17 cells require specific transcription factors and cytokine 

mediation to differentiate (63). Studies have shown that Th17 cells are generated from CD4+ 

T cells by stimulation from cytokines such as interleukin-6 (IL-6), transforming growth factor-

β (TGF-β), interleukin-21 (IL-21) and interleukin-23 (IL-23) which all play an integral role in the 

induction of the autoimmune disease process (63).  

Increased IL-17 was found in human autoimmune diseases such as multiple sclerosis and 

rheumatoid arthritis and in the corresponding mouse models of disease, which has caused 

much research to be focused on defining what role Th17 cells plays in the pathogenic process 

of tissue inflammation (62). The importance of Th17 cells in the pathogenesis of organ-specific 

autoimmunity has been demonstrated in several animal studies showing Th17 cells and Th1 

cells are capable of inducing disease. These studies illustrate a role for both Th1 and Th17 

cells in autoimmune disease.  

 

1.8 Immune maintenance of the eye 

The anatomy of the eye can be described as a fibrovascular sphere that contains an aqueous 

humor, lens, vitreous body and is lined with a retina (64). The cells of the retina are highly 
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diverse containing various neuronal cell types. It is considered to be a vital component for the 

production of nerve activation from light (64, 65). The retina is protected by a blood-retina 

barrier (BRB) and similarly to the brain and spinal cord is part of the central nervous system. 

It is made up of an intricate network of specialised cells that can be described as 

interconnected and heterozygous neuronal in nature such as bipolar cells, photoreceptors 

and ganglion cells (66). These cells present within the retina play an important role in creating 

neural impulses that are relayed to the brain by converting light from the outside 

environment that are then perceived as visual information by the individual. (66). To ensure 

regular neural conduction the neural retina is given support from glial cells including 

astrocytes and Mϋller cells (66).  

Specialised members of the immune cell family of macrophages that reside within the retina 

are known as microglia, they are yolk sac derived and are found throughout the neural retina. 

The neural retina is a hemispherical sheet that curves towards the centre of the eye made up 

of neural tissue, it sits next to retinal pigment epithelium (RPE) and the retina.  Tight junctions 

are important between vascular endothelial cells at retinal vessels and within the BRB 

between the RPE  (66).  

The layer that separates the choroid from the neural retina is known as the RPE, it is a 

monolayer of pigmented cells and is of neuroectoderm origin so is included as part of the 

retina (67). 

The mammalian retina is made up of ~60 different cell types which all play a role in the 

processing of visual images (68), it is highly specialised with specific metabolic and 

physiological needs, to meet the demands of the extracellular environment and facilitate 

rapid neural conduction. The outer retina receives nourishment from the vascular choroid 

which receives its blood supply from the inner retina. The retinal blood supply is able to 

regulate the environment by excluding leukocytes (including, lymphocytes, granulocytes and 

myeloid derived cells) erythrocytes and large molecular weight proteins and therefore acts as 

a highly specialised blood barrier (66). 

 The normal retina is considered an immune privileged tissue due to the exclusion of immune 

cells, a property of a tissue to display highly attenuated responses to alloantigens (66). 

1.8.1 Immune privilege  

The term used to describe the relationship the eye has with the immune system is immune 

privilege, a term coined by Sir Peter Medawar in the 1940’s who observed that foreign tissue 
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grafts placed in the anterior chamber of the eye were not rejected (69, 70). The concept of 

immune privilege may appear simple but research into this area has illustrated that multiple 

mechanisms are required to maintain the state of immune privilege within the ocular tissue 

(69). These mechanisms include; stopping the free movement of larger molecules into and 

out of the eye by the presence of the BRB and the absence of efferent lymphatics, the 

presence of cell-bound and soluble factors of an immunosuppressive nature to create an 

inhibitory ocular environment to stop the activity of immune-competent cells and the eye 

actively regulates systemic immune responses (69).  

An unregulated innate immune response has potential to inflict significant damage to the eye, 

granulocytes and macrophages elaborate a variety of proteases and reactive oxygen species 

that can damage bystander cells (71).   

The adaptive immune response is characterised by antigen specificity and memory, 

antibodies produced by B cells and T cells are both capable of inducing inflammation and 

injury to the eye (71). Membrane bound molecules that inhibit T cell proliferation or induce 

apoptosis of infiltrating immune cells are secreted by cells of the BRB that line the interior of 

the eye. In response to viral infections FasL is expressed throughout the ocular tissue to 

remove activated T cells and neutrophils (71, 72).  

Sites considered to be of immune privilege such as the eye use membrane-bound and soluble 

molecules to reduce immune-mediated inflammation within the tissue, they also promote 

the dampening of the adaptive immune response by generating immunoregulatory processes 

(71). In the late 1970s studies performed by Streilein and colleagues introduced the paradigm 

of anterior chamber-associated immune deviation (ACAID) and described the concept of 

deflecting the adaptive immune response from effector type mechanisms that could impose 

severe injury to the tissue to sustain immune privilege (71). This was achieved by the injection 

of allogenic lymphoid cells into the anterior chamber of rat eyes and noted that alloantigens 

introduced into the eye were detected by the systemic immune apparatus and elicited an 

aberrant immune response characterised down regulation of cell-mediated alloimmunity by 

an antigen specific response and a concomitant activation of humoral antibody responses (73-

75). Since the original experiments by Streilein and Kaplan, ACAID has further been 

demonstrated with a number of antigens including viruses, haptenated cells, tumour 

antigens, histocompatibility antigens and soluble proteins (75). 
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Multiple mechanisms contribute to ocular immune privilege including the inhibition of T cell 

proliferation by factors such as TGF-β2, VIP, Mueller cells and retinal epithelial cells, inhibition 

of Delayed-Type Hypersensitivity by ACAID, TGF-β, CGRP and α-MSH, deletion of infiltrating 

inflammatory cells by FasL, inhibition of NK cells by MIF, TGF-β2 and inhibition of complement 

by membrane bound regulatory proteins and soluble complement regulatory proteins (75). 

Since these findings, the definition of ocular immune privilege has become broader to 

encompass induction of ACAID after antigenic induction and the capacity of the ocular tissue 

microenvironment to suppress immune effector responses and ocular inflammation (76).  

1.8.2 Immune Surveillance 

No organ is exempt from autoimmune disease, although immune privilege influences the 

nature and tempo of immune surveillance in the tissue (77). The main role of immune 

surveillance is to determine if the immune effector response is needed in order to address an 

invading pathogen, a cancerous cell or tissue injury (78).  

Studies of human CSF obtained from healthy individuals allow further understanding of 

normal immunosurveilance of immune privileged tissue; mainly CD4+ T cells of the effector 

memory phenotype were detected (77, 79). Although anatomical and functional barriers 

protect the tissues of the brain and eye from the circulation in health, profound changes occur 

locally within the tissue when an immune response is triggered; the modification of the 

processes of immunosurveilance when local inflammation becomes established is still yet to 

be determined (77). 

1.8.3 Immune mechanisms within the eye 

The immune response appears to be customised to the organ in which it is initiated as well as 

being specialised for the region where it functions (80). There are also differences in 

responses based on route of antigen administration for example injection into the eye is used 

to induce tolerance but subcutaneous injection can be used to produce inflammation (80). 

The eye is filled with immunosuppressive factors such as neuropeptides, somatostatin, 

cytokines and complement inhibitors. There is also low expression of MHC class II molecules 

to limit antigen-presentation within the eye, furthermore stromal cells from the iris, ciliary 

body and retina within the eye have the capacity to convert immune T cells into regulatory T 

cells (Tregs) and RPE cells that line the borders of the eye can directly inhibit primed T cells. 

Lastly, death inducing molecules such as FasL are expressed by stromal cells within the eye to 

induce apoptosis of immune cells that pass the ocular boundary (80). 
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1.8.4 Endothelium within the eye 

The cells that supply and drain the neural retina are the retinal endothelial cells, these cells 

line the microvasculature, anatomically and physiologically. The characteristics of these cells 

suit the nutritional requirements and protection of the tissues critical for vision (81). The 

endothelium allows the access of circulating cells and must ensure the oxygen supply to the 

metabolically active retina. This is necessary to maintain the vasculature and survey the retina 

for the presence of pathogens (81). The endothelium is considered a part of the blood-retina 

barrier that is involved in protection of the retina by excluding circulating molecular toxins, 

microorganism and pro-inflammatory leukocytes, thus the retinal endothelial cells are an 

important component in retinal ischemic vasculopathies and retinal inflammation such as 

posterior uveitis (81). 

1.8.5 The endothelium during inflammation 

When a tissue is injured or an infection occurs, endothelial cells are responsible for 

coordinating the recruitment of inflammatory cells. Endothelial cells produce communication 

signals, including cytokines and growth factors as well as a range of adhesion molecules and 

integrins to facilitate recruitment of inflammatory cells (82). Under stimulation with agents 

such as IL-1b and TNFα, the phenotype, morphology, and function of endothelial cells 

changes, to allow involvement in the immune response, this is known as endothelial 

activation. 

The term was coined in the 1960’s by investigators who observed that the endothelium 

became plump and leaky in DTH, with the term activated illustrating a change in function and 

morphology. The main changes of endothelial cell activation are loss of vascular integrity, 

expression of leukocyte adhesion molecules and cytokine production (83). Loss of vascular 

integrity can expose sub endothelium and permit the efflux of fluids from the intravascular 

space, upregulation of leukocyte adhesion molecules, including E-selectin, ICAM-1, and 

VCAM-1 allows leukocytes to adhere to the endothelium and move into the target tissues (83, 

84).  

Tethering and Rolling- Firstly, leukocytes adhere to the endothelium that lines the blood 

vessel walls in order to pass through to reach the inflamed tissue, the vascular leakage follows 

haemoconcentration in the early stages of the inflammatory response will slow the blood flow 

enough so leukocytes have the ability to make contact with the endothelium (85). The initial 

contact of leukocytes to the endothelium serve to tether, these interactions are mediated by 
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the selectin family which are found on both leukocytes and endothelial cells (82, 85). For cells 

to tether, interactions between adhesion molecules must form rapidly, in contrast, for cells 

to roll these interactions must break rapidly (86). Rolling adhesion is an important checkpoint 

for cells to encounter tissue-specific signals before entering a specific organ (86). 

Arrest and Adhesion- In vivo, leukocytes will tether and roll along the endothelium. Both 

these processes are reversible and many of these leukocytes will not remain tethered to the 

vessel surface, they will instead re-enter the bloodstream all while still rolling throughout the 

entire process (86). Rolling of leukocytes can be stopped by high affinity adhesion of 

leukocytes to the surface of endothelial cells, which replaces the low affinity transient 

interactions that are made due to leukocyte rolling (85, 86). Chemokines and integrins can 

promote leukocytes to form a high affinity adhesion bond with the endothelium. ICAM-1 and 

-2 and VCAM-1 are receptors expressed on the endothelial cells that activated leukocytes can 

bind to using integrins, when no inflammation is present within the tissue these receptors are 

expressed at low levels particularly in the vascular beds, however inflammatory cytokines 

increase their expression drastically (85). 

Migration on the Endothelial Surface- For a leukocyte to migrate into the tissue it must first 

adhere to the endothelium, the leukocyte may roll over several endothelial cells before 

arresting and forming a high affinity adhesion bond. To enter the tissue the leukocyte must 

then cross the border of the endothelial cell which it has adhered to (85).  

 

1.9 Intraocular inflammation 

Although inflammation of the eye is unusual, immune privilege within the eye can be 

overcome and allow the infiltration of proinflammatory immune cells including; T cells, B cells, 

macrophages/monocytes, natural killer cells, neutrophils and dendritic cells that invade the 

retina, choroid and vitreous along with anterior chambers of the eye (87).  

1.9.1 Classification of Uveitis 

Uveitis is a group of sight-threatening, intraocular inflammatory diseases (88). The term 

uveitis means inflammation of the uvea, in particular the choroid, ciliary body and iris but 

surrounding structures including the optic nerve, retina, and sclera are also effected (89). 

Uveitis encompasses a diverse group of ocular disorders classified as; anterior, intermediate, 

posterior or panuveitis based on the anatomical location within the eye (90). Classifying 
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uveitis into specific subgroups helps a clinical scientist to take a logical approach to diagnosis 

of the patient and management of disease (89). Anterior uveitis is the inflammation of the 

anterior chamber and is the most common form of uveitis, intermediate uveitis can be 

defined as the presence of inflammatory cells in the vitreous humor including; pars planitis, 

posterior cyclitis and hyalitis (90). Retinal and choroidal inflammation (choroiditis, 

chorioretinitis and hyalitis) is known as posterior uveitis, whereas panuveitis involves 

inflammation of all parts of the uvea i.e. retina, choroid, vitreous humor and the anterior 

chamber, (90). Uveitis can be classified based on anatomical involvement of the uveal tract 

but can also be classified by the etiology of inflammation (90).  

The main causes of uveitis are infection, systemic immune-mediated disease, tissue-specific 

autoimmune disease and autoinflammatory disease, other causes include; post-traumatic, 

post-surgical and drug-induced uveitis (90).  

1.9.2 Etiology of Uveitis  

Infectious causes of uveitis can normally be treated with antimicrobials, with the remaining  

cases being of autoimmune origin or immune-mediated despite having different 

presentations within patients (91). Infectious agents, specifically viruses, have been proposed 

as one of the environmental triggers of autoimmune disease including uveitis through 

mechanisms that have not yet been fully characterised (91). There are instances when 

molecular mimicry can account for the development of autoimmune disease within the eye 

however potential bystander activation is thought to be limited due to the 

immunosuppressive nature of the eye but this kind of activation should not be ruled out (91). 

1.9.3 Epidemiology of Uveitis  

Uveitis accounts for 5-20% of legal blindness in both the United States and Europe and up to 

25% of cases in the developing world (89, 92). The incidence of uveitis has been estimated to 

be between 17 to 52 cases per 100,000 per year with a prevalence of 38-714 cases per 

100,000 population (93). Uveitis mostly has an equal gender distribution but in some studies 

a slight female predominance can be observed (93).  

Uveitis can occur at any age, but the mean age incidence is between 30-40 years of age with 

60-80% of uveitis cases occurring between the ages of 20-50 years (93). The prevalence of 

anterior uveitis is reported to be 24.5-52.3%, panuveitis 11.8-52.9%, posterior uveitis 7.1-46% 

and intermediate uveitis 6.3-19.3% observed in several studies (93-96). 
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1.9.4 Clinical features of Uveitis 

Uveitis is a term that is used to describe a number of etiologies and disease phenotypes, in 

order to effectively manage the disease, correct anatomical location, assessment of disease 

activity, etiological diagnosis, identification of any potential complications and presence of 

any systemic disease associations are very important to identify (89, 97). Symptoms of acute 

forms of uveitis include ocular pain, photophobia, lacrimation and redness (98).  

Uveitis is a disease that varies in phenotype and visual prognosis, inflammation can range 

from mild to  severe (89). When a patient starts displaying symptoms, complications that 

could affect or threaten their sight may have already occurred. The severity of the symptoms 

displayed by the patient often effect the decision making in relation to determining the 

correct treatment as not all uveitic diseases require treatment. If the anterior chamber is 

involved in the disease process patients can be very symptomatic including vitritis with 

several floaters and macular edema. Patients who present with mild or intermediate uveitis 

may not require treatment as the risks associated with treatment outweigh the visual benefit 

for the patient (89). 

Treatments are not curative, but suppress inflammation and need to be administered until 

the disease is observed to be in remission (89). 
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CLASSIFICATION OF 
UVEITIS 

  

INFECTIOUS 
CAUSES 

  

 

Toxoplasmosis 
 

 

Toxocariasis 
 

 

Tuberculosis (TB) 
 

 

Syphilis 
 

 

Bartonella 
 

 

Viral  (Including Herpes Simplex and 
Cytomegalovirus)  

Human immunodeficiency virus 
(HIV) related eye disease 

 

NON-INFECTIOUS 
CAUSES 

Acute posterior multifocal placoid 
pigment epitheliopathy 

(APMPPE) 

 
Multiple evanescent white dot 
syndrome 

(MEWDS) 

 
Geographic helicoid peripapillary 
choroidopathy 

(GHPC) 

 
Multifocal choroiditis  (MFC)  
Punctate inner choroidopathy (PIC)  
Birdshot choroidopathy 

 
 

Presumed ocular histoplasmosis 
syndrome 

(POHS) 

 
Subretinal fibrosis and uveitis 
syndrome 

(SFU) 

 
Diffuse unilateral and subacute 
neuroretinitis  

(DUSN) 

 
Retinla pigment epithelitis (Krill's 
disease) 

 

 

Sarcoidosis 
 

   

   

CLINICAL 
CHARACTERISTICS 

Choroiditis 
 

 

Retinochoroiditis/chorioretinitis 
 

 

Retinitis 
 

 

Neuroretinitis  
 

 

Granuloma 
 

 

 

 

 

 

Table 1.1: Classification of Human Uveitis. Posterior uveitic disease can be classified based on both 

etiology and clinical characteristics. If the disease is caused by an infectious or non-infectious agent 

(Etiology) or the clinical characteristics of a lesion present within the eye. Table adapted from 

Sudharsham et al (2010). 
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1.9.5 Current treatments for Uveitis  

Treating the systemic disease in patients that is associated with the presence of uveitis can 

sometimes control the uveitis, first line systemic treatments are usually based on 

corticosteroids and some patients being treated with steroids alone for posterior uveitis can 

control their symptoms (89, 99, 100). 

Conventional second-line immunosuppressive agents have been used for several years, 

cytotoxic drugs such as chlorambucil (101) and cyclophosphamide (102) have been reported 

to be useful in treatment of uveitis, but the side effects associated with this course of 

treatment creates difficulties for patients when managing uveitis long-term, especially in 

cases of chronic uveitis in a young, healthy population (89).  

These drugs although effective can take many weeks to months in order to be properly 

effective and can have severe side effects that can become intolerable so will therefore switch 

to a second-line immunosuppressant (89).  

Efficacy of biological agents such as anti-tumour necrosis factor (anti-TNF) based drugs 

including; adalimumab, etanercept and infliximab, etanercept and have been reported in 

several studies (89). Most biologics are recombinant antibodies to or antagonists of specific 

cytokines or cell-surface receptors but they also include recombinant cytokines, they were 

first used to treat ocular inflammation in the early 1990’s (103). Biologics are an attractive 

therapy to control the disease process by targeting individual molecules within the 

inflammatory process (103).  

TNF is a key inflammatory cytokine that is involved in the pathogenesis of several 

inflammatory disorders which includes non-infectious uveitis; in the EAU model studies have 

shown a substantial role in the pathogenesis of non-infectious posterior uveitis and similarly 

in ocular fluids from patients with uveitis (103). There are a number of anti-TNF agents 

available including; etanercept, infliximab and adalimumab, both adalimumab and infliximab 

are capable of binding with soluble and transmembrane forms of TNF effectively, but in 

contrast etanercept is less capable of forming stable bonds with TNF, specifically the 

transmembrane form (103). 

The experimental model of posterior uveitis (EAU) has implicated IL-1 and IL-2 in the 

pathophysiology, thus antiinterleukin therapies are also used for patient treatment (103, 

104). Therefore, a recombinant version of human IL-1 receptor antagonist (IL-1RA) (a 
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naturally occurring inhibitor of IL-1) was developed into a biologic agent to be used as 

treatment (103). 

Interferon-α (IFN-α) is a naturally occurring cytokine that is secreted by plasmacytoid 

dendritic cells during viral infections; IFN-α is proposed as the primary pathogenic cytokine in 

‘systemic’ autoimmune disease, whereas TNF-α in organ-specific autoimmune disease is seen 

as a more pathogenic cytokine. The separation between TNF-α and IFN-α is not absolute due 

to cross reactivity to regulate each other, if either become unbalanced there is the potential 

for an autoimmune reaction (103). In vitro studies have illustrated reduced IFN-α expression 

in plasmacytoid dendritic cells in comparison to healthy controls, in addition to this, TNF-α 

reduces IFN-α levels by inhibiting the number of plasmacytoid dendritic cells along with the 

function (103). Recombinant human IFNα-2a and IFNα-2b have both been successful in 

treatment of posterior uveitis (103). 

1.9.6 Breakdown of blood ocular barrier 

Ocular disease is usually treated with a topical administration of drugs in the form of a 

solution but due to the many anatomical and physiological barriers present within the eye 

these treatments have limited ocular bioavailability  (105). Due to the presence of the BRB 

other routes of drug administration such as intravenous, oral or subcutaneous are not often 

utilised because satisfactory drug concentration cannot enter the intraocular tissue (105-

107). The blood-retinal barrier (BRB) and blood-aqueous barrier comprise the blood ocular 

barrier which ensures homeostatic control of the tissue by protecting from entry of toxic 

substances.  

The blood-aqueous barrier is made up of endothelial and epithelial cells including; the 

endothelium of Schlemm’s canal, the endothelium of the iris vessels with tight junctions of 

the leaky type, the posterior iris epithelium and the non-pigmented epithelium of the ciliary 

body (105). Similarly, the BRB is also made up of endothelial and epithelial cells that form an 

ocular barrier which is the retinal pigment epithelium and an inner barrier which is the 

endothelial membrane of the retinal vessels, both have nonleaky tight junctions (105).  

Both functional barriers act to restrict movement of blood elements to the intraocular 

chambers which is what causes the drugs administered orally, subcutaneously and 

intravenously to only reach the tissue in low levels (105). In uveitis, immune mechanisms 

affect the integrity of the BRB and permit leukocyte infiltration into the eye. For this to occur, 
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changes are needed in both the leukocytes themselves and the cell that form the barrier 

(108). 

 

1.10 Disease models of uveitis 

1.10.1 Understanding disease processes 

Uveitis is a heterogeneous disease with both polygenic and environmental influences (109). 

Most forms of immune-mediated uveitis are due to an imbalance in the regulatory 

mechanisms that inhibit the immune response and inflammatory mechanisms which can 

result in chronic disease if activated outside an infection (109). Further understanding of the 

pathogenesis of the disease will influence therapies and treatments (110). Human samples 

for study to explore the pathology of this complex human disease are largely unavailable, so 

instead experimental autoimmune uveitis (EAU) has been (87) established in vivo that shares 

many pathological features with human uveitis (88). 

1.10.2 Experimental Autoimmune Uveitis 

Experimental autoimmune uveitis (EAU) is a T-cell mediated, organ specific autoimmune 

disease model that targets the neural retina and related tissues, it is often induced by 

immunisation with ocular antigens or by the adoptive transfer of uveitogenic T cells (111-

113). The model can be used to investigate a range of human uveitic diseases of an 

autoimmune or auto inflammatory etiology as it appears to share numerous immunological 

mechanisms with human uveitis. It can resemble the presentation of these diseases both 

clinically and histopathologically in a number of aspects (112) (114, 115).  

The EAU model in particular is very useful for the study of posterior uveitis as many of the 

clinical signs in humans such as vasculitis and vitritis are found in the EAU model (116). The 

model has become an invaluable tool for aiding in the development of conventional 

therapeutic strategies and novel immunotherapies. The model is also useful  for the study of 

basic mechanisms of organ-specific antigens in immunologically privileged tissue (such as the 

eye or the CNS) including tolerance and autoimmunity; thus the EAU model is a very useful 

model for both basic and clinical research into ocular and organ-specific autoimmune disease 

(117). 
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1.10.3 Experimental Autoimmune Uveitis (EAU) Induction 

Peptides for Induction 

EAU can be induced in susceptible animals by immunisation with uveitogenic peptides in 

adjuvant or by adoptive transfer of antigen specific lymphocytes (117-119). The uveitogenic 

proteins most commonly used are retinal soluble antigen (S-Ag), retinal binding protein-3 

(RBP3, also known as Interphotoreceptor retinoid-binding protein (IRBP)), Rhodopsin, 

Recoverin and Phosducin (117).  

Retinal soluble antigen is a 48 kDa intracellular photoreceptor protein found in rod outer 

segments and is involved in the photo-transduction cascade by binding to the photo-activated 

phosphorylated rhodopsin thereby preventing the transducin-mediated activation of 

phosphodi-esterase and is often used in rat models of EAU (120, 121). 

Interphotoreceptor retinoid-binding protein (RBP3) is a large glycoliprotein that can be found 

in the inter-photoreceptor matrix (IPM) between the neural retina and retinal pigment 

epithelium, it is capable of binding retinoids and fatty acids with retinol bound in a light-

dependent manner (121, 122). Based on these characteristics, transport between retinal 

photoreceptors and pigment epithelial cells, the protein can induce EAU in rats, monkeys, 

mice and may be involved in the induction of human uveitic conditions (123, 124). 

Rhodopsin and opsin, this 40-kDa membrane protein is found in rods present in the retina, 

pathogenicity of the protein seems to be conformation dependent as rhodopsin is more 

pathogenic than opsin (121, 125).  

Recoverin is a 23-kDa calcium-binding protein, it controls phosphorylation of the visual 

receptor rhodopsin by inhibition of rhodopsin kinase in photoreceptor cells (121, 126). 

Phosducin is a 33-kDa soluble cytosolic photoreceptor protein and regulates the G-protein 

mediated signalling in the retina. From all the peptides mentioned above the most commonly 

used for EAU induction are S-Ag and RBP3 (121, 127). 

Induction in animals 

EAU can be induced by active immunisation or by adoptive transfer of uveitogenic leukocytes 

in several species of animal including mice and rats, guinea pigs, rabbits, monkeys, and horses, 

unfortunately no animal model fully represents the spectrum of human disease, but each 

model allows the study of a unique characteristic from human disease course. The rat, in 

particular is a useful model due to the detailed characterisation of the model both immune 

genetically and immunologically as well as being average in size (117). The most susceptible 
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strain in the mouse model is the B10.R111 followed by B10.A. However, the C57BL/6 mouse 

strain is a very useful model for studies into the basic mechanism of uveitis (121), and a strain 

where many genes have been targeted. 

Inbred mouse strains have identical MHC complexes, and only a few mouse strains are 

susceptible to EAU, early studies have illustrated that for a mouse strain to be susceptible to 

EAU induction it has to have both a susceptible haplotype and a permissive background (121, 

128). The haplotypes that have been identified range from highly to moderately susceptible; 

H-2r being the most susceptible such as a B10.R111 mouse, then H-2k from a B10.BR mouse 

followed by H-2b from a C57BL/6 background that is moderately susceptible to disease 

induction (121). If the uveitic response in mice involves T lymphocytes expressing specific V-

gene elements, clonal deletion of such populations might result in resistance to disease in the 

corresponding background or MHC combinations (128). For all the EAU-susceptible 

haplotypes the most ‘permissive’ background was the B10 mouse which is not known to 

delete any TCR Vβ elements, however in some genetic backgrounds, factors controlling 

cytokine and hormonal responses could also be an important element in susceptibility (128). 

Methods for Induction of EAU 

The classic EAU model in mice was reported in 1988 and further modified for efficacy of 

induction, the protein used was RBP3 as S-Ag is poorly uveitogenic in mice (121, 129). RBP3 

is emulsified in complete Freund’s adjuvant (CFA) that consists of a suspension of tuberculosis 

bacteria in a mineral oil (121). CFA plays an integral part in disease induction in both mice and 

rats, many strains also require an additional inflammatory stimulus in the form of pertussis 

toxin (121, 129). Less susceptible strains to EAU induction can be rendered non-resistant by 

treatment with pertussis toxin (PTX) at the time of immunisation (117). This is thought to 

enhance vascular permeability disrupting the blood retina barrier to allow leukocytes to 

accumulate in the target organ (130). Subcutaneous injection of the (RBP3) peptide emulsified 

in CFA with a concurrent intraperitoneal injection of pertussis toxin induces uveitis in 

susceptible mouse strains within 2-3 weeks. The role of the adjuvant is to trigger a Th1 like 

response (121). Both Th1 and Th17 cells can initiate EAU, strains that are naturally high Th1 

and Th17 responders tend to be susceptible to immunisation with uveitogenic peptides such 

as the C57BL/6 and B10.RIII mouse strains (117, 131).  

An alternate method of EAU induction is known as adoptive transfer, this technique induces 

disease by inoculating animals with lymphocytes specific for retinal antigen, these cells are 
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taken from genetically compatible donors who had been immunised for EAU and are cultured 

in vitro with the same antigen (121, 132). 

One of the advantages of using the adoptive transfer technique is that the recipients do not 

require adjuvant to induce disease and the disease resembles the clinical situation in a 

patient. It more effectively portrays a uveitic disease that arises because of circulating 

lymphocytes that have been exposed to retinal Ags (121). Specifically, knowing which cells 

within the recipient mice have been previously exposed to antigen and how the recipient’s 

endogenous immune system interacts with these cells, with the added bonus of no adjuvant 

means controlled priming of the endogenous immune response apart from the presence of 

the antigen specific cells. 

1.10.4 Other models of human uveitis 

Humanised model of experimental autoimmune uveitis in human leukocyte antigen class II 

transgenic mice 

This model uses mice that lack the murine MHC class II molecule I-A and are made transgenic 

(Tg) for the human leukocyte antigen HLA class II molecules HLA DR3, HLA DR4, HLA DQ6 or 

HLA DQ8, of these strains the HLA-DR3 mice develop the most severe disease when 

immunised with S-Ag (121, 133). Normally, several HLA class II molecules are expressed 

together, and it has been observed that transgenic mice expressing two HLA alleles are more 

susceptible than a single transgenic model; this is an indicator that different HLA molecules 

can influence each other for the development of the disease process (121, 133). Humanised 

EAU models show promise in helping identify the antigenic molecules that are responsible for 

human uveitis (121, 133). 

Experimental melanin induced uveitis 

To induce a disease that affects the uvea, melanin antigenic extracts are used. The disease 

presents as recurrent anterior uveitis (RAU) with choroiditis (121). Experimental autoimmune 

anterior uveitis (EAAU) and experimental melanin induced uveitis are induced by injecting 

crude fractions of bovine ciliary body, iris and RPE; EAAU is a well-established model of 

anterior uveitis that resembles the human disease both clinically and pathologically (121, 134, 

135). 

Endotoxin induced uveitis 

Endotoxin-induced uveitis is a useful model of anterior uveitis, it is not an autoimmune based 

model but is triggered by the intravitreal, subcutaneous, or intraperitoneal injection of 
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bacterial endotoxin lipopolysaccharides (LPS) (121, 136). Breakdown of the blood-aqueous 

barrier occurs within 2 hours after LPS injection. By histology, leukocyte infiltration is 

observed in the iris and ciliary body from 8-12 hours after injection with cell numbers reaching 

their maximum by ~24 hours (136). Most cells are polymorphonuclear leukocytes but in 

addition to this a significant increase in the mononuclear cell component of the infiltrate 

(136). Leukocytes can also appear in the anterior chamber with eosinophilic material, very 

low levels of neutrophilic infiltrate is sometimes present within the conjunctiva (136). 

Although EIU is considered to be an inflammation predominantly of the anterior uvea, 

posterior segment inflammation such as choroiditis, vitritis, vitreous haemorrhage, retinal 

vasculitis, retinal haemorrhage and inflammatory cell infiltration of the retina with focal 

destruction of photoreceptor cells (136, 137) is also seen. 

An alternate model of EAU induced with inter-photoreceptor retinoid-binding peptide 

presented by dendritic cells 

Dendritic cells are the main antigen presenting cells that have the capabilities of stimulating 

naive T-cells. A model of EAU induced by the infusion of antigen loaded DCs has been 

developed by harvesting the spleens of mice injected with Flt3L DNA and which are later 

matured in vitro with LPS and anti CD40 antibody the cells are then pulsed with RBP3 peptide 

161-180, this model differs from the classical EAU model immunologically, clinically and 

pathologically (121).  

Spontaneous uveitis models 

Human transgenic mice including the HLA-A29 Tg mouse developed by Szpak et al (138) 

spontaneously develop posterior uveitis that resembles birdshot choroidoretinopathy (121). 

Another model of spontaneous ocular inflammation is the R161H mouse that express a Tg T-

cell receptor specific for RBP3 residues 161-180 that spontaneously develop ocular 

inflammation by 6 weeks of age (121, 139). 

Autoimmune regulator (AIRE) knockout mice spontaneously develop ocular inflammation 

(140). AIRE-deficient mice fail to express many tissue antigens in the thymus, among them 

are RBP3, S-Ag and other retinal antigens, therefore over time AIRE deficient mice develop 

spontaneous antibodies to RBP3 and therefore uveitis (53, 128). 
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1.11 Immune mechanisms of EAU 

1.11.1 EAU Disease mechanisms  

Clinically, EAU is characterised by photoreceptor loss and the infiltration of lymphocytes and 

monocytes into the retinal tissue (141). The inflammatory process that occurs after disease 

induction involves the massive infiltration of lymphocytes along with mononuclear and 

polymorphonuclear cells and therefore causes a loss in vision (110). As seen in figure 1.4, it is 

useful to split EAU disease progression into 3 phases, a prodromal phase followed by a 

primary peak phase then a phase of secondary regulation (1).  Histology in early disease has 

shown extensive large numbers of cellular infiltrate including T cells, macrophages, and 

neutrophils, within the choroid, anterior uvea, retina. This type of infiltration is also often 

associated with large exudative retinal detachments (116, 142, 143).  

In mice, MHC and non-MHC gene control influences susceptibility to immunisation with RBP3. 

MHC control is suggested to be connected to the ability of the mouse strain to bind to and 

present uveitogenic epitopes whereas, it is assumed that non-MHC control is more 

complicated (117). Another important factor is the type of effector response that each strain 

of mouse is genetically programmed to mount towards the uveitogenic epitope.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: EAU disease progression seen in the mouse strain B10.RIII immunised with RBP 

161-180. Illustrating leukocyte dynamics within the literature. Figure adapted from Kerr et al 

2008. (1). 
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1.11.2 Cellular mechanisms in EAU 

Autoreactive effector CD4+ T cells have been associated with the pathogenesis of a number 

of autoimmune disorders (144). A number of animal models have been used to transfer 

autoreactive T cells to illustrate induction of autoimmune disease such as EAU and the 

multiple sclerosis model (EAE), thus the pathogenic importance of autoreactive T cells can be 

formally demonstrated (145, 146).  

EAU is a CD4 T-cell mediated disease model. It has been established in EAU models that 

immunisation with a peptide that is uveitogenic in nature triggers a peripheral immune 

response characterised by the activation and clonal expansion of pathogenic autoreactive 

CD4+ T cells (1). The activated T cell population are capable of crossing the BRB to interact 

with local APCs present within the tissue and induce a mixed population of leukocytes to 

localise within the eye and cause retinal disruption (1). 

 Autoreactive CD4+ T lymphocytes of a Th1 phenotype are critical in the pathogenesis of EAU 

alongside another CD4+ effector cell type known as Th17, which can be characterised by the 

secretion of IL-17 (147), Th17 cells have also been found to cause pathology in a number of 

other autoimmune diseases (1).  

It is difficult to determine the individual roles of Th1 and Th17 cells when they are combined 

in the establishment and maintenance of EAU, as it appears that both cell types can 

independently promote disease onset and without the use of fate mapping we cannot be sure 

of the origin of the cells causing disease (148). Long lasting changes occur within the eye after 

inflammation in the retina due to EAU these include changes in the dynamics of leukocyte 

recruitment and phenotype. The breakdown of the BRB allows antigen specific T cells to enter 

the circulation but this is not the sole trigger to cause the recruitment of lymphocytes and 

leukocytes in high numbers to the target organ (1).  
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1.12 Thesis Objectives 

EAU has provided information on lymphocyte subsets entering the tissue at different times 

during the inflammatory process of the disease. In order to study the role of pathogenic CD4+ 

T cells that initiate disease, the adoptive transfer model will be utilised in naive C57BL/6 

animals not treated with adjuvant. 

 This model can be used to induce disease with uveitogenic T cell lines from an allelically 

marked donor animal into a naïve recipient, this enables the understanding of the relative 

contribution of endogenous and transferred cells in each eye by quantification by flow 

cytometry at various time points in disease progression and more generally, allows sensitive 

studies of pre-clinical disease. To track the transferred cells the mouse strains used will carry 

the allelic marker CD45.1 or CD45.2 so endogenous and transferred CD45+ cells can be 

separated.  

Within this study several genetically modified mouse models on the C57BL/6 background are 

utilised as donors and recipients within the adoptive transfer protocol. Firstly, the 

C57BL/6B6.SJL-PtprcaPepcb/BoyJ which is allelically marked Ly5.1 (also known as CD45.1).  

Using susceptible mouse strains, transgenic knock in mice have become very useful in vivo 

and in vitro research including the C57BL/6 CX3CR1 +/GFP for study of resident microglia cells 

within the eye and the brain (149).  The C57BL/6 CX3CR1 +/GFP mouse is allelically marked with 

CD45.2, within this model one of the CX3CR1 alleles has been replaced with a green 

fluorescent protein (GFP) gene. Chemokines are small proteins that are chemoattractant and 

recruit inflammatory cells to the site of inflammation (150). CX3CL1 also known as fractalkine 

exists in two forms; a membrane bound form and a soluble form (150). CX3CR1 is the specific 

receptor for CX3CL1 which makes it an attractive possibility for therapeutic intervention 

(151). The high affinity interaction of CX3CL1 with CX3CR1 mediated leukocyte arrest under 

flow conditions (152, 153).  

The third mouse model used is the RAG2-/- model allelically marked CD45.2. This model carries 

a germline mutation which results in a large portion of the RAG2 coding region being deleted. 

The homozygous mutant mice are viable but lack the ability to produce T and B lymphocytes 

(154). Therefore, this model has no endogenous adaptive lymphocyte cell compartment, so 

the only T cells present within the model will be the transferred uveitogenic T lymphocytes.  



41 
 

Another model used within this study is the TCR transgenic, C57BL/6 Ly5 OTII model allelically 

marked CD45.1. T cell receptor transgenic mouse models have had a big impact on the 

understanding of T cell biology and immunity (155). The OTII transgenic mouse have CD4+ T 

cells that express transgenic  αβ-TCRs that recognise OVA (155). This mouse strain is useful 

for transferring activated non-antigen specific leukocytes into naïve recipients.  

The final model used is the C57BL/6 IL27R- (WSX-1-/-) mouse allelically marked CD45.2. IL-27 

is a member of the IL-12 family and is produced by antigen- presenting cells, it is important in 

the regulation of CD4+ T cell differentiation and immune response (156). There are now 

studies that highlight the inhibitory effects of IL-27 on differentiation of Th17 cells and Tregs 

but will promote the differentiation of Th1 cells (156, 157). IL-27R is a heterodimer composed 

of IL-27Rα also known as T- cell cytokine receptor (TCCR) or WSX-1 and a signal transducing 

chain glycoprotein 130 (gp130) (156). This model is useful to understand further the 

complicated biology underlying IL-27 and IL-27R within autoimmune diseases. It has been 

suggested in recent studies that IL-27/IL-27R could be a useful therapeutic target to suppress 

inflammatory diseases (158). 

 

STRAIN CD45 ALLELIC MARKER 

C57BL/6 LY5 CD45.1 

C57BL/6 CX3CR1+/GFP CD45.2 

C57BL/6 CX3CR1 GFP/GFP CD45.2 

C57BL/6 OTII LY5 CD45.1 

C57BL/6 OTII LY5 CX3CR1+/GFP CD45.1 + .2 

C57BL/6 RAG2-/- CD45.2 

C57BL/6 IL-27RΑ-/- CD45.2 

 

Table 1.2: C57BL/6 mouse strains with allelic marker used for tracking cells using the adoptive 

transfer technique. 
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In summary, interrelated hypotheses within this thesis relate to the tracking of antigen-

specific disease-causing immune cells at different stages of clinical disease and using the 

retinal-antigen induced model of uveitis to look for potential targets for translatable 

treatments. 

 

Allelically marked uveitogenic CD4+ T cells will initiate and drive clinical disease by 

recruitment to the ocular tissue. Do these cells concurrently stimulate an endogenous 

response causing infiltrate to be recruited to the ocular tissue throughout clinical disease 

from the endogenous compartment. 

Uveitogenic transferred cells that are recruited to the ocular tissue by an antigen-specific 

mechanism initiate clinical disease which activates the endothelium. Investigate the role of 

non-specific T cell activation.  

CX3CR1 is upregulated on CD4+ T cells in inflammatory disorders, suggesting a more long-

lived phenotype that survives in the tissue throughout disease course and could therefore 

play a role on CD4+ T cells during EAU. 

IL27Rα-/- CD4+ T cells will cause a more severe and persistent clinical disease phenotype using 

the adoptive transfer technique of CD4+ T cells from IL27R α-/- donors. 
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In order to test these hypotheses, this thesis aimed to: 

 

Optimise an adoptive transfer technique to induce disease, develop a standardised method 

of imaging using optical coherence tomography to compare between eyes and experiments, 

optimise a sensitive method of quantifying cellular infiltrate by flow cytometry (chapter 3 and 

4) 

Transfer allelically marked CD4+ T cells into naïve recipients to track pathogenic cells 

throughout disease course and assess the endogenous response to the pathogenic stimulus 

(chapter 4) 

Investigate the recruitment of uveitogenic vs activated CD4+ T cells to the eye and disease 

initiation by the introduction of OVA antigen to the ocular tissue and track activated CD4+ T 

cells specific for that antigen within the recipient and the recruitment of these cells to the 

ocular tissue to induce disease (chapter 5) 

Using CX3CR1+/GFP and CX3CR1GFP/GFP mice to look at the effect of loss of CX3CR1 in recipient 

tissue on clinical disease and the effect of CX3CR1 loss on transferred cells during clinical 

disease (chapter 6).  

Analyse CX3CR1 expression on CD4+ T cells after adoptive transfer of EAU using the 

CX3CR1+/GFP mice as donors denoting CX3CR1 expression as GFP positive cells (chapter 6) 

Using the IL27Rα-/- mice, look at the effect of the loss of the receptor on transferred cells and 

the effect on disease (chapter 7).  

Characterise the effect on disease phenotype in both active immunisation and adoptive 

transfer and quantify immune infiltrate of naïve mice (chapter 7). 
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Materials and Methods 
 

2.1 Reagents 

2.1.1 Immunising Peptides 

RBP-3 peptide 629-643 (EAHYARPEIAQRARA) (159) was obtained from Severn Biotech Ltd 

(Worcestershire, UK). Peptide purity was determined by HPLC. Peptide was prepared with 

distilled water and aliquoted and stored at -80°C. 

 

2.1.2 Peptides used for Intravitreal Injection 

Chicken Ovalbumin peptide (OVA) (ISQAVHAAHAEINEAGR) (159) and L144/R147 

(HSLGKLLGHPDKF) (160) was obtained from Severn Biotech Ltd (Worcestershire, UK).Peptide 

purity was determined by HPLC. Peptide was prepared with distilled water and aliquoted and 

stored at -80°C. 

 

2.1.3 Recovery Anaesthetic 

Mice were anaesthetised to perform experiments using an intraperitoneal (i.p.) injection of 

90μl/10μg of body weight of a solution containing 6mg/ml ketamine (Ketavet, Zoetis Ireland 

Ltd. Dublin, Ireland) and 2mg/ml Xylazine (Rompun, Bayer plc. Newbury UK) mixed with sterile 

water. 

 

2.1.4 Topical Eyedrops 

In order to perform clinical imaging or intravitreal injections pupils were dilated using 

tropicamide 1% and phenylephrine 2.5% (Minims, Chauvin Pharmaceuticals. UK). For corneal 

anaesthesia oxybropucaine 0.4% (Minims) was administered and Viscotears (Novartis 

Pharmaceuticals. UK) were used as a further barrier of protection 
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2.2 Mouse Models 

Several strains of C57BL/6 mice were utilised for this work including the CX3CR1 GFP/GFP, 

CX3CR1 +/GFP, Ly5, Ly5 OTII, Ly5 OTII CX3CR1+/GFP, RAG2-/- and IL-27Rα-/-.  

 

STRAIN NAME BACKGROUND IN-HOUSE 
NAME 

SUPPLIER 

CX3CR1-GFP C57BL/6J CX3CR1+/GFP/ 
CX3CR1GFP/GFP 

A gift from 
Heping Xu 

B6.SJL-PTPRCBPEPCB/BOYJ (LY5 MICE; 
CD45.1) 

B6/SJL (Ly5) Ly5 JAX 

B6.CG-TG (TCRATCRB)425CBN/J  B6/SJL (Ly5) OT-II Ly5 JAX 
B6.CG-THY1 
B6N.129P2-IL27RATM1MAK/J 

C57BL/6J 
C57BL/6J 

RAG2-/- 

IL-27Rα-/- 
JAX 
JAX 

 

 

Table 2.1: Mouse strains and backgrounds used in this thesis 

Breeding colonies were established within the Animal Services Unit at University of Bristol, 

UK for experimentation. All mice were housed under specific pathogen-free conditions with 

continuous food and water available. Ear notches from CX3CR1GFP/GFP and CX3CR1+/GFP were 

genotyped using PCR to test the mice were of the correct genotype before experiments 

began. Blood was obtained from Ly5 OTII and Ly5 OTII CX3CR1+/GFP for phenotyping using flow 

cytometry to check the transgenic TCR before experimentation. Disease was induced in 

female mice aged between 6-8 weeks. Treatment of animals conformed to the ARVO 

statement for the use of animals in ophthalmic and vision research. 

All procedures had local ethical approval and performed in accordance with home office project 

licence (30/139) and personal licence (I073AB938) under the United Kingdom Animals (Scientific 

Procedures) Act (1986). 

 

Genetic variation has been detected in widely used C57BL/6 J CD45.2 model and the C57BL/6 

SJL CD45.1 model based on the vendor source of the mouse strains (161), however the mice 

in these studies were all obtained from the same vendor and bred within the facilities at the 

University of Bristol.  
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Figure 2.1: Overview of the mouse models and allelic markers utilised in this thesis 
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2.3 Induction of EAU 

EAU was induced in a susceptible mouse strain (C57BL/6) using active immunisation or 

adoptive transfer of uveitogenic cells. 

 

2.3.1 Active Immunisation  

Female mice were immunised subcutaneously (s.c) in both flanks with 200μl of emulsion 

containing peptide immersed in CFA (Mycobacterium Tuberculosis) was injected 

subcutaneously into C57BL/6 mice to induce EAU. 400μg/mouse RBP-3629-643 peptide in dH20 

was emulsified in Complete Freund’s Adjuvant (CFA) (1mg/mL; 1:1 vol/vol) supplemented 

with Mycobacterium tuberculosis complete H37 Ra (BD Biosciences). Bordetella pertussis 

toxin (Sigma- Aldrich) was given intraperitoneally (i.p) at 1.5μg per mouse. 

 

2.3.2 Adoptive Transfer of EAU 

Mice were immunised using the protocol described for active immunisation, 11 days after 

immunisation mice were culled by schedule 1 and spleen and various lymph nodes harvested 

in Dulbecco’s modified medium (DMEM). 

After harvest spleen and lymph nodes were mashed in DMEM using the base of a 10ml syringe 

under sterile tissue culture conditions and filtered through a 70μm filter. Cells were then 

counted and plated down in 75cm3 flasks at 1-2x106 cells per 1cm3 in complete media.  

Complete media was further supplemented with 10μg/ml RBP 629-643 peptide and 10ng/ml 

IL-23 (R&D Abingdon, UK). Cells were cultured in the incubator hydrated at 37°C and 4% CO2.  

At 24 hours, cells were removed from the incubator and supplemented further with 10ng/ml 

IL-2 (Peprotech London, UK) in a further 10ml of complete medium. Then replaced in the 

incubator in the same conditions. 

At 72 hours, flasks were removed from the incubator and washed using the medium 

containing the cells, then all media was removed from flasks. Supernatant was removed and 

the cell pellet washed in complete medium. Cells were then resuspended in 12ml of complete 

medium and split into two 15ml falcon tubes, 4ml of 1044 Histopaque (Sigma-Aldrich) was 

then layered underneath each cell suspension. The suspension was spun at 1800rpm for 20 

minutes at 21°C with 1 acceleration and 0 brake to avoid the Histopaque and cells mixing 

when spun.  



49 
 

Cells were removed using a 5ml Pasteur pipette and washed in complete medium. Cells were 

then counted using a haemocytometer and transferred at 2x106 per recipient in 100μl of PBS 

via intraperitoneal (i.p) injection. 

 

2.3.3 Adoptive Transfer using MACS separated CD4+ T cells and other leukocytes 

 Leukocytes were stimulated as previously described for adoptive transfer. After isolation 

using Histopaque, leukocytes were then separated using MACS. Whole leukocyte populations 

were run through MACS columns (Miltenyi Biotec. Ltd. Surrey, UK) in MACS wash buffer (PBS 

supplemented with 10% BSA) selecting for a CD4 negative population.  

After the column was run the CD4+ and CD4- population were both counted and transferred 

into naïve recipients at 2x106 cells per mouse in 100μl of PBS. 

 

2.3.4 Adoptive Transfer using MACS sorted cells followed by fluorescence sorting 

Leukocytes were stimulated as previously described and separated using MACS columns. The 

CD4+ and CD4- population were then counted and stained using the protocol for flow 

cytometry staining (Described in 2.6). Specifically staining for CD4+ and CD8+ T cells, the 

leukocytes from the CD4+ and CD4- populations were then run through the BD InfluxTM (BD 

Cytometry Systems. Oxford, UK) to sort for CD4+ T cells in the CD4+ MACS population and 

CD8+ T cells in the CD4- MACS population. CD4+ or CD8+ populations were then transferred 

into naïve recipients at ~50,000 cells per recipient. 

 

2.3.5 Adoptive Transfer using OTII TCR transgenic cells 

Splenocytes from OTII TCR transgenic mice were cultured in the presence of 1μg/ml of the 

OVA peptide. 

After the 72-hour cell culture, cells were prepared for transfer, in some experiments 

recipients were anaesthetised in order to perform an intravitreal injection of 2μl of OVA 

peptide at 1μg/ml. After the mice have recovered from the anaesthesia leukocytes isolated 

from cell cultures were transferred using i.p injection at 2x106 cells per mouse in 100μl of PBS. 
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Figure 2.2: Adoptive transfer technique of uveitogenic leukocytes to induce EAU 
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2.4 Clinical Imaging  

To monitor clinical disease course after disease induction two techniques were used: Topical 

Endoscopic Fundal Imaging (TEFI) and Optical Coherence Tomography (OCT). 

2.4.1 Topical Endoscopic Fundal Imaging (TEFI) 

Using a method previously developed in the lab (162), adapted from Paques et al,(163) an 

endoscope with a 5cm long telescope of 3mm outer diameter (1218AA; Karl Storz. Tuttlingen, 

Germany) was connected to a Nikon D80 digital camera with a 10-million-pixel charge-

coupled device image sensor and Nikkor AF 85/F1.8 D (Nikon. Tokyo, Japan.), with an 

additional +4.00 dioptre magnifying lens. This system was used through pupils dilated by 

topical tropicamide 1% and phenylephrine 2.5% and topical oxybropucaine 0.4% and 

Viscotears were used for corneal anaesthesia. 

Images were obtained by direct contact of the cornea to the endoscope. Images were then 

processed using Adobe Photoshop (Adobe Corporation. Mountain View, CA). Using an 

adapted clinical grading system fundal images were scored according to inflammatory 

changes to the optic disc and retinal vessels along with any retinal lesions and structural 

damage that has occurred. Scores were calculated using the clinical scoring criteria presented 

in Table 2.1.  

 

2.4.2 Optical Coherence Tomography (OCT) 

Mice were anaesthetised using recovery anaesthetic by intraperitoneal injection and pupils 

were dilated using tropicamide 1% and phenylephrine 2.5% to prepare for imaging.  

Optical coherence tomography (OCT) scans and brightfield and fluorescence images were 

obtained using the Micron IV retinal imaging microscope (Phoenix Research Laboratories. 

Pleasanton, CA). Prior to beginning imaging the eyes the Micron IV CCD and OCT were fully 

calibrated according to the manufacturer’s protocol. The gain was set to +4 dB and the frames 

per second (FPS) set to 15 for brightfield imaging and +15dB for green fluorescence imaging. 

For green fluorescence protein imaging a filter within the Micron IV system was utilised. 

Settings for acquisition of the OCT scans were defined according to the manufacturers 

protocol, and scans were taken 30 times in rapid succession with the final image being an 

average from these images. Full-length B-scans were taken vertically and horizontally through 

the optic disc centred and one circle around the optic disc. A 3D cube scan is also taken 
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consisting of 512 images centred around the optic disc. All images were stored in TIFF file 

format, where cube images can be rendered into 3D cube videos using image processing 

techniques. 

 

2.5 Analysis of EAU 

2.5.1 Clinical Scoring of Disease  

A scoring system obtained from (Table 2.2) previously published within the group (164) was 

used to accurately score the clinical disease in recipients using the TEFI fundal images 

acquired in chapter 3 and the OCT fundus images. The single OCT line scans acquired with 

corresponding fundus imaging were scored independently by individuals experienced with 

scoring and masked to the origin of the data (Table 2.2). 

Fundal images were scored for changes due to an inflammatory response effecting the optic 

disc, retinal vessels, retinal lesions, and causing structural damage. All scores were added 

together to give a total disease score which is then averaged for the number of criteria scored.  
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Table 2.2: Clinical scoring overview for TEFI and OCT Fundal images. Table taken from Kerr et al 2008 

(114). 

 

2.5.2 Sample preparation for analysis 

Retinal Preparation for Flow Cytometry 

Retinal and vitreous infiltrating cells were isolated by dissection of retina and vitreous from 

enucleated eyes. The suspensions including the retina were then mechanically disrupted and 

passed through a 40-μm cell strainer to obtain a single cell suspension for staining for analysis 

by flow cytometry. 

Retinal Preparation for Flatmounting and Lightsheet imaging 

Enucleated eyes were pierced using a needle and left in fresh CytofixTM (BD Biosciences. 

Franklin Lakes, NJ) for 2 hours at room temperature (RT). The anterior chamber was then 

removed, and the eyes were placed back into the Cytofix solution overnight at RT. Retinal 
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whole mounts were then prepared by peeling the retina from the choroid under a dissecting 

microscope ready for immunofluorescence staining. 

Preparation of whole eyes for immunohistochemistry 

Mice were sacrificed at pre-defined time points and eyes were enucleated and snap-frozen, 

oriented in optimal cutting temperature (OCT) compound (R. Lamb Ltd. East Sussex, UK). After 

they were prepared and stored at -80°C, serial 12-μm sections were prepared for antibody 

staining. 

Preparation of whole organ samples for Flow Cytometry 

To further analyse transferred cells during disease more tissues were obtained from each 

recipient. These tissues include spleen, lymph node, kidney, liver, and blood.  

Spleen, kidney, and liver were prepared by mechanical dissociation of the tissue which is then 

filtered through a 70μm strainer before lysing red blood cells present within the suspension 

using ammonium-chloride-potassium buffer (ACK buffer). Cells were then resuspended in 

FACS buffer for staining. Blood samples were treated with the ACK buffer to lyse red blood 

cells and then resuspended in FACS buffer for staining. 
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2.6 Flow Cytometric Analysis 

2.6.1 Cell surface staining of Flow Cytometry samples 

Single cell suspensions were incubated with purified rat anti-mouse CD16/32 Fc block (Clone 

2.4G2, BD Biosciences. Oxford UK) for 10 minutes at RT before incubation with fluorochrome-

conjugated monoclonal antibodies (mAbs) against a panel of cell surface markers including: 

CD45.2, CD4, CD8 and CD11b with a biotin mAbs CD45.1 antibody. Cells were stained with the 

live dead marker 7AAD and the secondary streptavidin for 15 minutes before suspending in 

200μl of FACS wash buffer to run samples. 

Cell suspensions were acquired using a 4-laser BDTM Fortessa X-20 flow cytometer (BD 

Cytometry systems. Oxford UK). Gating strategy is presented in figure 2.3 and analysis was 

performed using FlowJo software (Treestar. San Carlos, California). FMOs were used when 

necessary to help set gates for analysis and for confirmation of specificity of antibody staining. 

 

2.6.2 Cell counting 

Cell numbers were calculated by reference to a known cell-standard similarly to a previously 

published method from the group (114). Splenocyte suspensions of known concentration 

were acquired using a fixed and stable flow rate for 90 seconds per sample. Based on the 

number acquired using the known dilutions a standard curve was generated and from this the 

unknown total cell number from tissue samples can be interpolated if acquired at the same 

flow rate and time. 

 

2.6.3 Intracellular cytokine staining 

Single cell suspensions were incubated in complete medium supplemented with 25ng/ml 

PMA and 1μg/ml ionomycin (Sigma-Aldrich. Poole, UK) and 1μg/ml Golgi stop (BD Biosciences. 

UK) for 4 hours at 37°C in 5% CO2.  

Cells were resuspended in a fixable live dead 405 (ThermoFisher. UK) for 30 minutes at 4°C. 

The cells were then washed and stained using the previously described extracellular staining 

protocol. Stained cells were fixed using Cytofix for 15 minutes at RT and kept in the fridge for 

up to 7 days to run on the cytometer. 

When the samples were to be run on the flow cytometer, the fixed cells were washed using 

1x Perm wash for 15 minutes at 4°C and then stained using intracellular antibodies such as  
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IL-17, IFN-γ and FoxP3 for 30-45 minutes at 4°C. To run on the flow cytometer as previously 

described cells were resuspended in FACS buffer. 

 

Figure 2.3: Flow cytometry gating analysing transferred and endogenous CD4+ populations. 

Allelically marked cells were transferred into naïve recipients, eyes were enucleated at pre-defined 

time points and a single cell suspension isolated using the retinal and vitreous cells and infiltrating 

leukocytes. Lymphocytes, single cells, and live cells were gated in to give the populations of interest. 

Live cells were then separated to give the CD4+ T cell population. Through the CD4+ gate the 

transferred and endogenous allelically marked populations are then distinguishable. 
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Figure 2.4: Further leukocyte gating for flow cytometry to identify different populations within the 

retinal infiltrate. Along with identification of endogenous and transferred populations specifically in 

the CD4+ T cell compartment within the retinal and vitreal infiltrate, analysis of a variety of other 

leukocytes present within the eye during clinical disease was also obtained. Lymphocytes, single cells, 

and live cells were gated in to give the populations of interest. Then from this population CD11b+ 

leukocytes can be isolated and further analysed using Ly6G and Ly6C markers. The CD4- and CD11b- 

population can also be further analysed by looking at markers such as CD8 and CD19. 
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2.7 Immunofluorescence techniques 

2.7.1 Immunofluorescence whole eye sections staining 

After sections were prepared (as previously described in section 2.5), sections were fixed in 

4% PFA for 10 minutes at RT, washed and incubated in blocking buffer (5% bovine serum 

albumin/ normal goat serum) for 3 hours at RT. Sections were then stained with rat-anti 

mouse conjugated monoclonal CD3e (Alexa Fluor 647), CD4 (FITC) or CD8a (Alexa Fluor 594) 

antibodies (BioLegend. San Diego, California) overnight at 4°C.  

Sections were then washed in PBS and stained with DAPI for 3 minutes before washing again 

and mounting using Vectashield to image on the EVOS fluorescence microscope 

(ThermoFisher. Waltham MA USA). 

 

2.7.2 Ce3D media preparation 

Ce3D media was prepared to clear and fix samples for both confocal microscopy and light 

sheet microscopy and to run the samples on the light sheet microscope. Firstly a ~29% N-

methylacetamide solution was made by mixing 13.6ml N-methylacetamide (Sigma. Poole, UK) 

with 34ml PBS. N-methylacetamide is solid at room temperature so was warmed in a water 

bath for half an hour before use. To the N-methylacetamide 50g of Histodenz powder was 

added in small quantities while solution was being stirred and kept warm. The solution was 

then left overnight. The following day 0.1% v/v Triton X-100 and 0.5% v/v 1-thioglycerol were 

added and left to mix for 4 hours. The refractive index was then checked to be around 1.47. 

The media is based on protocol used in a study by Li et al (165). 

 

2.7.3 Whole mount preparation and staining for Confocal Microscopy 

After isolation, the whole retinal mounts were washed in 1x Perm Wash (BD Biosciences. 

Franklin Lakes, NJ) tissues were then incubated in Ce3D block (1% BSA + 1% NGS in 1x Perm 

Wash) for 5 hours at 4°C. 

The Ce3D block was then replaced with the primary antibody stain composed of Ce3D block 

containing the CD3e, CD4 and CD8a antibodies previously described for section 

immunofluorescence staining and kept at 4°C for two days. The whole mounts were then 

washed using 1x Perm Wash four times over a 2-hour period. The whole mounts were then 

incubated in DAPI for 24 hours before mounting to image.  
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Retinas were spread on clean glass slides as flat as possible cutting into the tissue if necessary 

(vitreous side up), under coverslips with Ce3D media. 

 

2.7.4 Preparation of retinal tissue for Lightsheet imaging 

Whole retinas were washed in 1x Perm Wash and incubated in Ce3D block as previously 

described. The Ce3D block (1% BSA + 1% NGS in 1x Perm Wash) was then replaced with 

primary antibodies in Ce3D block including the previously described CD3e, CD4 and Cd8a 

antibodies with an additional primary unconjugated antibody for Isolectin B4 (IB4) (Sigma 

Aldrich) and kept at 4°C for two days. The whole mounts were washed using 1x Perm Wash 

four times over a 2-hour period and incubated in secondary antibody Alexa Fluor 405 

(Molecular probes, ThermoFisher. Waltham MA USA) in Ce3D block for 3 hours at 4°C.  

Retinas were washed in 1x Perm Wash before clearing using Ce3D media over the tip of a PCR 

microtube to maintain the shape. The tube with the tissue was placed into a 500μl Eppendorf 

tube filled with 200μl of the Ce3D media to keep the tissue hydrated before imaging. 

 

2.7.5 Confocal Microscopy 

Whole mounts described using the protocol in 2.7.2 were examined using confocal scanning 

laser imaging system fitted with krypton-argon lasers and a motorised XYZ stage to allow 

multiple site imaging (Leica TCS-SP2-AOBS, Leica Microsystems. Wetzlar, Germany). For 3D 

image preparation of tissues, the upper and lower limit of the tissues were determined before 

sequential z-scans at 1.5μm increments were taken through the whole thickness of the tissue 

using a 63x 1.4 aperture oil immersion lens. 

 

2.7.6 Lightsheet Microscopy 

Whole retinas obtained using the protocol in 2.7.3 were examined using Lightsheet 

fluorescence microscopy (Zeiss Z.1 Lightsheet 7. Germany). It is a multi-laser, turnkey system 

that can be used to image whole retinas suspended in Ce3D media within the tank in the 

system. Lightsheet images are collected using two high resolution sCMOS cameras using a 

range of filter modules and objectives including 20x and 40x. Automated imaging can be 

achieved to provide 3D and 4D rendering. When images were acquired the Zeiss Zen, software 

was used (Zeiss, Germany) but for further secondary analysis for 3D and 4D rendering the 

Arivis vision4D (Arivis. Munich, Germany) software was used. 
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2.8 In vitro assays 

2.8.1 Complete medium 

Complete medium used for in vitro assays such as the adoptive transfer cell culture consisted 

of Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat inactivated 

fetal calf serum (TCS Cellworks. UK), 100U/ml penicillin-streptomycin, and 2mmol/L L-

glutamine (Invitrogen. Paisley, UK).  

 

2.8.2 Antigen specificity assay 

Spleens and lymph nodes were collected from RBP3 629-643 immunised donors 11 days after 

immunisation and mechanically disrupted through a 70μm filter and red blood cells lysed. 

Cells were seeded into 96-well round bottom plates at 1x105 cells/well and stimulated with 

different concentrations (100μg/ml, 10μg/ml, 1μg/ml and 0.1μg/ml) of OVA RBP3 1-20 or RBP 

629-643. 

After 72 hours, supernatant was removed and stored at -20°C until used for LegendPlex 

analysis. 

 

2.8.3 Legendplex assay 

Cytokine production in adoptive transfer cell culture supernatants and the antigen specificity 

assay were measured using a LegendplexTM kit (BioLegend. San Diego, CA). Briefly, the 

Legendplex is a bead-based immunoassay that uses the same principle as a sandwich-based 

immunoassay. Bead populations are distinguished from one another based on APC 

fluorescence and size with each bead set being conjugated to a specific antibody to serve as 

a specific capture bead for that analyte being present within the sample. After washing a 

biotinylated detection antibody is added to the sample to bind to the specific analyte bound 

to the capture beads, Streptavidin-phycoerythrin (SA-PE) was added to bind to the 

biotinylated detection antibody to provide a fluorescent signal with intensities that 

represents the proportion of analyte within the sample.  

The PE signal can then be picked up by a flow cytometer (BD FACS Canto II (BD Biosciences)) 

and concentrations of each analyte quantified using a known standard curve using the 

LegendplexTM data analysis software provided. 
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2.9 Statistical analysis 

Animal numbers are assessed such that the experiments are powered to a probability of 80% 

that a statistically significant result is observed. Statistical analysis was performed using 

GraphPad Prism software.  

Where studies comprised of two experimental groups, for data that was not normally 

distributed a Mann- Whitney U- test was used to determine statistical significance. 

To identify statistical significance between multiple groups a one-way ANOVA with Dunnett’s 

multiple comparison test was used. 

For OCT disease scoring, Area under the curve (AUC) was calculated and then tested using a 

Mann Whitney U- test to compare the calculated AUC numbers. 

A p<0.05 was considered statistically significant. Graphs are presented as mean+ standard 

error of the mean (SEM) unless indicated otherwise. 

 

2.10 Figure adaptation 

Some figures from this thesis were adapted from previously published work using clipart 

images obtained from ‘Smart servier medical art’ (https://smart.servier.com/, France). 
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Table 2.3 Flow Cytometry Antibodies 

Name Isotype Format Dilution Supplier Catalogue 

number 

CD45.1 Mouse IgG2a Unconjugated 1/200 Becton 

Dickinson 

553774 

CD45.2 Mouse IgG2a BV605 1/200 BioLegend 109841 

CD45 Rat IgG2b AF700 1/200 BioLegend 103128 

CD3e IgG1 APC 1/200 Becton 

Dickinson 

553066 

CD3e American 

Hamster IgG 

BV786 1/200 BioLegend 100355 

CD4 Rat IgG2a APC 1/200 Becton 

Dickinson 

Pharmingen 

553051 

CD4 Rat IgG2b BV421 1/200 BioLegend 100437 

CD8 Rat IgG2b PE-CY7 1/500 BioLegend 126616 

CD11b Rat IgG2b APC-CY7 1/500 Becton 

Dickinson 

557657 

LY6G Rat IgG2a PE 1/200 BioLegend 127608 

LY6C Rat IgG2c AF700 1/200 BioLegend 128024 

CD19 Rat IgG2a BV510 1/200 BioLegend 115545 

IFN-γ Rat IgG1 APC 1/200 Becton 

Dickinson 

557735 

FoxP3 RatIgG2b PE 1/200 Becton 

Dickinson 

560408 

IL-17 Rat IgG1 BV605 1/200 Becton 

Dickinson 

564169 

Vα2 Rat IgG2a PE 1/200 Becton 

Dickinson 

127808 

Streptavidin 
 

V450 1/500 Becton 

Dickinson 

560797 

Each dilution factor is used for samples of no more than 5x106 cells 
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2.4 Immunofluorescence Antibodies 

Name Isotype Format Dilution Supplier Catalogue 
number 

CD3 Rat IgG2b AF647 1/200 BioLegend 100209 

CD4 Rat IgG2a FITC 1/200 BioLegend 100532 

CD8a Rat IgG2a AF594 1/200 BioLegend 100758 

CD19 Rat IgG2a AF594 1/200 BioLegend 115552 

IB4 
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3.1 Introduction 

 
Animal models of uveitis have proven very useful for the study of the underlying mechanisms 

of intraocular inflammation and as a pre-clinical model for treatments of human uveitis (159). 

Retinal antigens can be used as targets to induce EAU, they are typically derived from retinal 

photoreceptor cells that can function in the visual cycle and are highly evolutionary conserved 

(166).  

In the C57BL/6 model, mice are immunised with adjuvants (CFA and pertussis toxin) combined 

with interphotoreceptor retinoid binding protein (RBP3) derived peptides, specifically in this 

thesis using the 629-643 peptide sequence to induce EAU (159, 167).  

Alternatively, EAU can be induced using the adoptive transfer technique by transfer of primed 

uveitogenic cells (159, 167, 168). RBP-3 is a key protein in establishing ocular tolerance, the 

transfer of uveitogenic T cells from RBP-3 knockout animals illustrates the importance of RBP-

3 in the shaping of the T cell repertoire (159).  

 

3.1.1 Adoptive Transfer Technique 

Several animal models have successfully used the adoptive transfer of autoreactive T cells to 

induce autoimmune disease (146).  

To induce autoimmune disease by using the adoptive transfer model, T cells isolated from 

spleen and lymph nodes of immunised animals, are stimulated in vitro with cognate antigen 

to produce an activated phenotype. Upon transfer these T cells have the capacity to 

proliferate, produce cytokines, interact with APCs and induce cytotoxicity (169). The 

transferred T cells use all these mechanisms to induce and control disease (169).  

One of the advantages of the adoptive transfer technique is that T cells encounter the antigen 

for the first time before transfer into naïve recipients, thus the kinetics of responses of specific 

T cells to the self-antigen can be monitored from earliest encounter i.e. from point of transfer 

(170). Specifically in this study the main advantage of the adoptive transfer technique is the 

ability to track disease causing pathogenic cells throughout disease and compare it with the 

endogenous response throughout clinical disease. 
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3.1.2 Adoptive Transfer of EAU 

Passive transfer was first demonstrated in EAU in 1971 by Aronson and McMaster using 

guinea pigs as the experimental model (171). The transfer technique was originally developed 

using guinea pigs with chronic uveitis as donors, cells were transferred intravenously (i.v) or 

intraperitoneally (i.p) with all recipients developing clinical disease by day 4 post transfer, 

determined by histology and uveal photography (172). This method used high numbers of 

donor cells to effectively induce disease in naïve recipients (173). When the adoptive transfer 

of lymphocytes was performed in rats, donors immunised with S-antigen were unable to 

induce EAU when injected at x108 or x109 per recipient, so the protocol was adapted to use 

an in vitro cell culture step to enhance the immunological capacities of lymphocytes, thus 

causing them to become highly uveitogenic by preincubating with the specific antigen 

required to induce disease. When subsets of T cells are purified to perform adoptive transfer, 

CD4+ T cells and T cell lines could induce EAU with an in vitro cell culture whereas CD8+ T cells 

alone were not capable of inducing the disease (173) 

Current protocols for adoptive transfer in mice uses lymphocytes from animals immunised 

with uveitogenic antigen as donors, cells are isolated from spleen and lymph nodes and to 

transfer disease after cells are activated in vitro before transfer (174). The EAU model that is 

induced by RBP3 is a useful system to study migration and the fate of autoreactive T cells that 

mediate chronic EAU.(172). The addition of IL-23 has recently been used in both EAE (175) 

and EAU (176) adoptive transfer protocols to drive a highly pathogenic CD4+ T cell population 

that are highly essential for the induction of inflammation or autoimmune disease of the CNS 

(175). To yield the highest number of pathogenic CD4+ T cells I decided to further supplement 

the cultures with IL-2 to encourage cell expansion. 

In this thesis, a more robust adoptive transfer technique was optimised for use in the C57BL/6 

mouse model using the 629-643 RBP3 peptide to induce disease, which has not yet been used 

for disease induction by adoptive transfer.  

Further to this, optimisation of the in vitro cell culture step such as the addition of IL-23 and 

IL-2 provides a pathogenic, expanded transfer population capable of inducing disease in lower 

numbers than found within the literature. The use of allelic markers in this study more easily 

allows tracking of uveitogenic T cells throughout clinical disease.  
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3.1.3 Distinguishing Transferred from Endogenous Cells 

A major goal in study of the adaptive immune system and its responses is to understand the 

development and progression of antigen-specific T cells from naïve precursors to activated 

effector cells and long-lived memory cells (177, 178). In order to achieve this investigators 

need to track distinct populations of T cells with specificity to a single antigen (such as RBP3) 

throughout the course of an immune response (178). Discrimination of donor T cells from the 

endogenous T cells is dependent on donor T cells expressing a marker that is unique but 

doesn’t provide a target that would cause the recipient mouse to reject the transferred cells 

(178).  

A number of allelic variations of surface receptors have been bred into transgenic mice, the 

most common are CD45.1/2 and CD90.1/2 (177). T cells expressing the CD45.1 allele can be 

adoptively transferred into C57BL/6 mice which express the CD45.2 allele (177-179). Using 

antibodies specific to the different allelic forms of these markers can then be used to identify 

the donor and recipient populations (177). The flexibility of using the allelic markers CD45.1 

and CD45.2 can be used to investigate both transferred and endogenous cells. This therefore 

allows for monitoring of antigen-specific transfer cells throughout disease course not only in 

the eye but in other organs within the recipient and how the recipient’s own immune 

response interacts with the transferred cell population. 

 

3.1.4 Analysis of Clinical Disease in vivo 

Analysis of clinical disease in vivo is a very useful tool to understand clinical disease course in 

recipients. Retinal imaging has been revolutionised by the development of optical coherence 

tomography (OCT) in both mouse and humans (180). Quantification of changes within the 

retinal layers has relied upon histology but histology is labour intensive and does not allow 

for the same mouse to be monitored for disease over time (180).             

OCT recognises structures in the retina based on the scatter of reflected light and reaches 

axial resolutions down to 4μm, advancing the prospect of observing histological detail in vivo 

throughout disease (181). One of the most important benefits of using OCT for clinical scoring 

of EAU similar to the detail of histology would permit the same staging of disease over time 

on the same eye, from this dynamic intraretinal changes can be monitored and defined in vivo 

(181). 
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To develop a scoring system for analysing disease, a standardised method would allow 

comparison of images not just through disease in one eye but comparison of eyes across 

experiments and between experiments.  

 

This aim of this chapter is to on develop a robust adoptive transfer technique that allows in 

vivo clinical imaging to monitor clinical disease course and tracking of the transferred 

population. 
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3.2 Materials and Methods 

 
3.2.1 Adoptive Transfer Technique 

Pathogenic polyclonal antigen specific cells were produced by immunising different donor 

strains with RBP3 peptide, these donor cells were then transferred using i.p injection into 

C57BL/6 recipients at variable cell concentrations to determine the optimum number of cells 

needed to induce a disease. 

C57BL/6 Ly5 (CD45.1) were immunised and cells transferred into RAG2 deficient mice as a 

leukocyte population or sorted cells. 

 

3.2.2 Flow Cytometry Analysis 

Flow cytometry was used to identify subsets of cells within the transferred cell population 

and retinal infiltrate using extracellular and intracellular staining. 

Within transferred recipients’ allelic markers CD45.1 and CD45.2 were used to identify 

endogenous and transferred populations of cells within the retina. 

 

3.2.3 MACS Sorting and Fluorescent Associated Cell Sorting 

CD4- MACS sorting was used to isolate a CD4+ population from a total leukocyte cell 

population from WT C57BL/6 mice, the CD4+ and CD4- population were then transferred into 

RAG2-/- mice. A purer population was required after MACS sorting so additional FACS was 

used to obtain a purer population of CD4+ and CD8+ T cells for transfer into RAG2-/- recipients. 

 

3.2.4 Legendplex 

Legendplex analysis is a bead-based immunoassay that utilises the same principles of 

sandwich immunoassays, where a soluble analyte is captured between two antibodies 

(Biolegend,2019). 

Legendplex analysis was used on supernatant from splenocyte cultures taken from 

immunised donors stimulated with different peptides to identify and quantify cytokines 

expressed by cells present within the culture supernatant. 

Supernatant from cultures of transferred cells were also analysed using LegendPlex and 

compared across recipient genotype.  
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3.2.5 Clinical Imaging 

TEFI was used to study onset of disease and disease severity without anaesthetising the 

animal, this was then followed by OCT scans and fundus images standardised across recipients 

during transfer optimisation to study disease course at each cell concentration transferred. 
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3.3 Results 

3.3.1 Optimisation of cell culture for use in adoptive transfer protocol to 

induce EAU 

Useful information about immunopathogenic mechanisms of autoimmune disease have been 

obtained from studies of the adoptive transfer of serum or lymphoid cells from immunised 

donors (132).  More reproducible attempts to induce EAU have been made by transferring 

lymphoid cells (132, 171, 182). The efficacy of the transfer of disease by lymphoid cells was 

increased greatly by preculturing the cells with the organ-specific antigen such as RBP3, a 

number of studies demonstrated this in models of EAE using the pMOG peptide but this effect 

has also been shown in the EAU transfer model (132). 

Cells were transferred as total leukocyte populations, to determine optimal cell density, the 

concentration of cells was then compared with the cell yield (Figure 3.1a) for transfer, that 

concurrently can provide the greatest percentage of CD45+ CD3+ (Figure 3.1b) and  CD4+ cell 

numbers (Figure 3.1c) to allow more transfers to be performed. The density most suited in 

terms of yield from cells plated down and highest percentage of CD4+ T cells yielded from the 

culture is at 1x106 cells plated down per 1cm3 (figure 3.1a and figure 3.1c).  

To further increase the efficacy of the cell culture conditions, the T cell growth factor IL-2 to 

maximise cell viability and the cytokine IL-23 was used to select a pathogenic cell population 

of IL-17 and IFN-γ producing phenotype. Therefore, experiments investigating the time point 

of cytokine addition of IL-23 and IL-2 to cultures can affect percentage yield of CD45+ CD3+ 

(Figure 3.1d) and CD4+ and CD8+ (Figure 3.1e). Yield also changed with the concentration of 

the cytokine IL-23 (Figure 3.2a) and origin of the IL-2 (mouse or human) (Figure 3.2b).  Further 

analysis considered the percentage of CD4+, CD8+ and CD11b+ cells present within the 

cultures using different IL-23 concentrations and species origin of IL-2 (Figure 3.2e and 3.2f). 

The highest percentage yield of CD4+ T cells was addition of IL-23 at 0 hours followed by IL-2 

at 24 hours (figure 3.1e). Study of the species origin of the IL-2 highlighted a greater total cell 

yield per flask and a greater disease incidence when using murine IL-2 when compared to 

human IL-2. The addition of 10ng/ml IL-23 gave a high enough cell yield that cells could be 

used at and a good disease incidence and severity when transferred into recipients, whereas 

the 20ng/ml gave a doubled cell yield compared to the 10ng/ml of IL-23 but a similar disease 
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incidence suggesting no added effect on pathogenicity was caused by doubling IL-23 

concentration in the cell cultures. 

After analysis of cell culture and analysis of disease in recipients comparing cell cultures 

(Figure 3.2c and 3.2d) it was identified which conditions will give the most robust disease 

across recipients. This analysis is useful as reliable disease incidence and severity allows the 

use of the adoptive transfer protocol.  
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Figure 3.1: Optimisation of culture conditions analysis for in vitro step of adoptive transfer 

protocol. (A)  Cell yield from culture based on cell density plated down at 1x106, 2x106 and 4x106 

(Mean + SEM) (B) Percentage of CD45+ CD3+ cells obtained from cell cultures at densities 1x106, 2x106 

and 4x106  (Mean + SEM) (C) Percentage of CD4+ and CD8+ cells obtained from cell cultures at densities 

1x106, 2x106 and 4x106  (Mean + SEM) (D) Percentage of CD45+ CD3+ cells obtained from cell cultures 

with different time points for addition of IL-23 and IL-2 (Mean + SEM) (E) Percentage of CD4+ and 

CD8+ cells obtained from cultures with different time points for addition of IL-23 and IL-2 (Mean + 

SEM). Cell cultures performed in 3-6 replicates. 
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Figure 3.2: Effects of cytokines added to the in vitro step of adoptive transfer protocol 

(A) Quantification of cells recovered from cultures with varying concentrations of IL-23 (10ng/ml and 

20ng/ml) (Mean + SEM) (B) Quantification of cells from cultures with murine or human IL-2 species 

origin (10ng/ml) (Mean + SEM) (C) Representative OCT time course of clinical disease in recipients that 

received cell transfers from cultures primed with varying concentrations of IL-23 (10ng/ml or 20ng/ml) 

2x106 transferred per recipient. OCT image acquired through optic disc (green line on fundal image) 

(D) Representative OCT time course of clinical disease in recipients that received cell transfers from 

cultures primed with murine or human IL-2 at 10ng/ml 2x106 transferred per recipient. OCT image 

acquired through optic disc (green line on fundal image) (E-H) Corresponding cell culture analysis of 

cells transferred into naïve recipients from cultures used to optimise cytokine addition, percentage of 

CD4+ T cells, CD8+ T cells, CD11b+ cells and other leukocytes from the transferred population. 

Cell cultures and transfers performed in 3-6 replicate. 
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3.3.2 Analysis of clinical disease using OCT  

OCT is very useful in monitoring clinical disease progression in recipients and matching 

disease severity across recipients. 

In order to compare disease across recipients in one experiment and compare recipients 

across experiments, a standardised way of acquiring OCT needed to be developed.  

Firstly, day 0 OCT was acquired before inducing disease to check if recipients are normal 

before cell transfer. At this stage the retinal layers are clearly visible and easily distinguished 

(Figure 3.3). The corresponding fundal imaging shows by the green scanning line where the 

OCT is taken and a clear fundus before disease induction (Figure 3.3). In the OCT image (Figure 

3.3) the vitreous has no infiltrate and the optic disc is not swollen. 

OCT was taken from each mouse at exactly the same points in each experiment for each eye 

which include a 0° horizontal line through the optic disc, a 90° vertical line through the optic 

disc, a circle around the optic disc and a volume scan around the optic disc (Figure 3.4b, Figure 

3.5a).  

In comparsion to the day 0 OCT (Figure 3.3), a diseased OCT (Figure 3.4a) shows lots of retinal 

infiltrate and a swollen optic disc along with a fundal image containing vitreal haze (Figure 

3.4b). The line scans allow acquisition of a 2D image through the optic disc but in order to 

obtain more information for quantification of disease a 3D cube around the optic disc allows 

a more complete assessment of the inifltrate within diseased retinas.  

A 3D volume scan was taken around the optic disc of the recipients at each time point to 

quantify disease course between different disease groups and at different time points, each 

cube was then made into a 3D video showing retinal infiltrate (Figure 3.5a-b). 

 
 
 
 
 
 
 
 
 
 



77 
 

 



78 
 

 
 
 
 
 
 
 
 
 
 
Figure 3.3: Baseline OCT images for standardisation throughout and across experiments. 

Baseline normal OCT taken at day 0 (A), corresponding fundus imaging taken with OCT image, the 

green line denotes where the OCT is taken from (B). Full description of retinal layers observed within 

the OCT image (C). 
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Figure 3.4: Diseased OCT of adoptive transfer recipients illustrating full OCT acquisition 

method. Retinal infiltrate is observed within the vitreous corresponding with a thickening retina and 

swollen optic disc with corresponding fundus image showing a vitreous haze and sheathing of immune 

infiltrate along vessels (A-B). Along with a 0° line scan a 90°-line scan and a circle around the optic disc 

are also taken at each time point (C-D). 
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Figure 3.5: 3D volume OCT acquisition and video. To acquire a 3D volume the optic disc is once 

again used as a reference point to acquire around a fundus image was also taken to illustrate cube 

placement on each eye (A). The cube is the acquired by the OCT made up of 512 individual slices which 

can be made into a video of a 3D model and eyes compared (B). 
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3.3.3 Preliminary analysis of clinical disease produced by using the optimised 

adoptive transfer model  

Optimisation of the cell culture step in the adoptive transfer protocol produced disease with 

an incidence and severity that allowed preliminary analysis of the disease induced in naïve 

recipients. In previous studies, induction of disease using adoptive transfer in C57BL/6 mice 

needed a cell transfer of ~50-100x106 total leukocytes to cause disease that developed at day 

7 by fundal imaging and histopathology (117, 183).  

Using the conditions optimised from figure 1 and 2, preliminary analysis of disease induced 

by adoptive transfer could be done using techniques such as TEFI, OCT, Flow Cytometry and 

Immunohistochemistry (Figures 3.6-3.8).  

Cells were transferred as total leukocyte populations into naïve C57BL/6 mice at different cell 

numbers intraperitoneally, resuspended in PBS ranging from 5x104 – 4x106 cells per recipient 

(figure 3.6a-i). The cell number that gave a high disease incidence and a moderate clinical 

disease phenotype was 2x106 per recipient (figure 3.6b and figure 3.6j and 3.6k).  

Flow cytometric analysis of recipients at peak disease (day 7 and day 14) using allelic markers 

illustrated the ability to track cells in the endogenous and transferred cells using the markers 

(Figure 3.8a).  

The percentages of CD4+ and CD8+ T cells that are endogenous and transferred at each of the 

time points during clinical disease (Figure 3.8b-3.8e) can be calculated using the gating 

strategy in figure 3.8a. 

Further analysis of sections of whole eyes can be achieved using immunohistochemistry 

staining for CD3, CD4 and CD8 to analyse where in the tissue the cells reside (Figure 3.7a and 

3.7b) 

All methods combined can allow for in vivo analysis of clinical disease by imaging followed by 

quantitative analysis of endogenous and transferred cells at specific time points as well as 

frozen sections taken from OCT embedded whole eyes or whole mounts to analyse location 

of cells within the tissue. 
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Figure 3.6: Analysis of disease severity and incidence using TEFI and OCT after adoptive cell 

transfer of primed uveitogenic cells into naïve recipients. (A-C) Representative TEFI time course 

from day 3 to day 7 after transfer of uveitogenic cells into naïve recipients, cells are transferred as 

total leukocytes at 4x106, 2x106 or 1x106 per recipient. (D-F) Representative TEFI time course from day 

5 to day 11 after transfer of uveitogenic cells into naïve recipients, cells are transferred at 1x106, 

250,000 or 50,000 per recipient. (G-I) Corresponding OCT time course of clinical disease illustrating 

clinical features of disease using OCT imaging alongside fundal imaging.  (J) Percentage of disease 

incidence in recipients that received 4x106, 2x106 or 1x106 transferred uveitogenic cells calculated 

using TEFI imaging throughout clinical disease. (K) Percentage of disease incidence in recipients that 

received 1x106, 250,000 or 50,000 transferred uveitogenic cells. 

Transfer recipients >3 per group. 
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Figure 3.7: Immunohistochemistry allows detection of CD3+ CD4+ and CD3+ CD8+ T cells 

within sections of whole tissue. (A) Co-staining of CD3+ CD8+ T cells within sections of eyes from 

recipients of adoptive transfer of uveitogenic cells at day 7 (Magenta-CD3, Red-CD8) (B) Co-staining 

of CD3+ CD4+ T cells within sections of eyes from recipients of adoptive transfer of uveitogenic cells 

at day 7 (Magenta-CD3, Green-CD4). (100μm scale bars). 
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Figure 3.8: Preliminary analysis of disease induced using adoptive transfer using flow 

cytometry. (A) Exemplar gating strategy used for flow cytometry analysis, firstly gate for CD4+ and 

CD8+ cells then gate using allelic markers CD45.1+ and CD45.2+ to detect endogenous and transferred 

CD4+ and CD8+ T cells. (B-C) Percentage of total CD4+ and CD8+ T cells that express CD45.1 

(Endogenous) or CD45.2+ (Transferred) at day 7. (D-E) Percentage of total CD4+ and CD8+ T cells that 

express CD45.1+ (Endogenous) or CD45.2+ (Transferred) at day 14. 

 

 

 

 



88 
 

3.3.4 Characterisation of transferred cells using extracellular and intracellular 

staining  

When cells were transferred into naïve recipients using the optimised cell culture conditions 

disease was induced with as few as 50,000 cells but the most robust cell number for disease 

incidence and severity was 2x106 cells transferred per recipient. 

A more detailed analysis of transferred cells (Figure 3.9) and supernatant from the cell 

cultures (Figure 3.10) allowed further study of the phenotype of disease-causing cells that 

were being injected into the recipients.  

As EAU is mediated by CD4+ T cells specific for retinal antigens that secrete cytokines and 

chemokines within the eye during disease (184), analysing the concentration of cytokines that 

are secreted within the supernatant of the cultures before transfer (Figure 3.9) specifically 

that are involved in polarising the culture especially CD4+ T cells to a Th1 and Th17 phenotype 

such as IFN-γ and IL-17 are valuable for understanding what cells are being transferred in the 

total leukocyte population. 

Flow cytometric analysis of cells from different donor mice using extracellular staining to look 

for markers such as CD4, CD8 and CD11b alongside intracellular cytokine staining to analyse 

CD4 T cell phenotype for cytokines such as IFN-γ, IL17 and FoxP3 was used to investigate 

transferred T cell phenotypes (Th1, Th17 or Treg). 
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Figure 3.9: Extracellular and intracellular analysis of adoptive transfer cell cultures from 

different donor mice. (A-D) Extracellular staining of cultures obtained spleen and lymph nodes from 

different donor mice at day 11 after immunisation and 72 hours in vitro culture. (A) Donor cells 

obtained from a CX3CR1 heterozygous knockout (B) Donor cells obtained from a CX3CR1 knockout (C) 

Donor cells obtained from OTII TCR transgenic mouse (D) Donor cells obtained from Ly5 (WT). (E-H) 

Intracellular staining of cultures obtained from spleen and lymph nodes from different donor mice at 

day 11 after immunisation and 72 hours in culture, cells were re-stimulated with PMA and Ionomycin 

for 4 hours at 37°C before extracellular staining was performed then cells were fixed and intracellular 

staining performed for FACS analysis. Populations shown include, CD4+, CD4+ IL-17+, CD4+ IFN-γ+ and 

CD4+ FoxP3+. (E) Donor cells obtained from CX3CR1 heterozygous knockout (F) Donor cells obtained 

from CX3CR1 knockout (G) Donor cells obtained from OTII TCR transgenic mouse (H) Donor cells 

obtained from Ly5 (WT).  

Cells obtained from >5 cell cultures per strain. 
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Figure 3.10: Legend Plex analysis of culture supernatant from donor cells. (A-M) Supernatant 

acquired from cell cultures from different donors: Ly5 (WT), CX3CR1 heterozygous knockout, CX3CR1 

knockout which were pathogenic on transfer and OTII (TCR transgenic) cells which are activated used 

for adoptive transfer to induce EAU and analysed using 13-plex Legend Plex assay. (A) Concentration 

of IL-23 in supernatant of donor cell cultures (pg/ml) (B) Concentration of IL-1α in supernatant of 

donor cell cultures (pg/ml) (C) Concentration of IFN-γ in supernatant of donor cell cultures (pg/ml) (D) 

Concentration of TNF-α in the supernatant of donor cell cultures (pg/ml) (E) Concentration of MCP-1 

in supernatant of donor cell cultures (pg/ml) (F) Concentration of IL-12p70 in supernatant of donor 

cell cultures (pg/ml) (G) Concentration of IL-1β in supernatant of donor cell cultures (pg/ml) (H) 

Concentration of IL-10 in supernatant of donor cell cultures (pg/ml) (I) Concentration of IL-6 in 

supernatant of donor cell cultures (pg/ml) (J) Concentration of IL-27 in donor cell cultures (pg/ml) (K) 

Concentration of IL-17A in donor cell cultures (pg/ml) (L) Concentration of IFN-β in donor cell cultures 

(pg/ml) (M) Concentration of GM-CSF in donor cell cultures (pg/ml). 

Supernatant analysed from 3 cultures of each mouse strain. 
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3.3.5 Analysis of cross reactivity between peptides causing upregulation of 

cytokines in splenocytes in vitro after immunisation  

The diversification of the immune response that is induced by a tissue to a new T cell and/or 

antibody specificities during an autoimmune disease is known as epitope spreading (185). 

Epitope spreading can be defined as the development of immune responses to endogenous 

epitopes after the release of antigens during an autoimmune response. Evidence has been 

found to support a major role of epitope spreading in the pathogenesis of chronic EAE (186). 

Multiple factors are involved in the induction of epitope spreading including enhanced display 

of previously cryptic determinants under the local inflammatory and cytokine environment. 

These follow tissue damage alongside differences in the size of the epitope specific T cell 

subsets (185). Evidence from studies in autoimmune disease shows that disease progression 

may be due to an activation of autoreactive lymphocytes, regardless of the event that 

initiated them (186, 187). These autoreactive lymphocytes are specific to epitopes that are 

distinct from and non-cross-reactive with disease inducing epitopes that result in chronic 

tissue damage (186, 187). The broadening of the immune response can target epitopes either 

within the same antigen known as intramolecular spreading or another antigen known as 

intermolecular spreading (185).  

Mice were immunised with RBP3 peptide and spleens isolated at day 11, all cultures were 

stimulated in culture with IL-23 (10ng/ml) at 0 hours and IL-2 (10ng/ml) at 24 hours. At this 

stage it may be considered too early to observe epitope spreading as the immunised mice 

have not reached peak clinical disease. The cultures were split at 0 hours and one of 3 

peptides were added OVA, RBP3 629-643 or RBP3 1-20 at varied concentrations of 0.1μg/ml, 

1μg/ml, 10μg/ml or 100μg/ml. This data shows no evidence of epitope spreading at the time 

of adoptive transfer but further experimentation into the transferred and endogenous CD4+ 

populations present in the eyes of recipients during peak disease could be used to further 

look into epitope spreading when using the adoptive transfer technique. 

Overall, stimulation in vitro with RBP3 629-643 gives an increase in secretion of IFN-γ and IL-

17 compared to OVA and RBP3 1-20. There is also a correlation between increase of 

concentration of peptide causing increase in secretion of IFN-γ and IL-17 suggesting an 

increase of Th1 and Th17 CD4+ T cells within the culture (Figure 3.11a and 3.11b). The same 

response is observed in several cytokines not associated with CD4+ T cell phenotype (Figure 

3.11). 
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Figure 3.11: Analysis of antigen specificity in splenocytes obtained from C57BL/6 mice 11 

days after immunisation with RBP3 (629-643) peptide using 13-plex Legend Plex analysis. 

(A-M) Supernatant obtained from 72 hour splenocyte culture from mice immunised with RBP3 (629-

643) at day 11, supplemented with 10ng/ml IL-23 and 10ng/ml IL-2 and either RBP3 (629-643) (blue) 

RBP 1-20 (purple) or OVA (red) peptide. (A) Concentration of IFN-γ in splenocyte cultures 

supplemented with each peptide (pg/ml) (B) Concentration of IL-17A in splenocyte cultures 

supplemented with each peptide (pg/ml) (C) Concentration of IL-12p70 in splenocyte cultures with 

each peptide (pg/ml) (D) Concentration of TNF-α in splenocyte cultures with each peptide (pg/ml) (E) 

Concentration of GM-CSF in splenocyte cultures with each peptide (pg/ml) (F) Concentration of IL-1β 

in splenocyte cultures with each peptide (pg/ml) (G) Concentration of MCP-1 in splenocytes in cultures 

with each peptide (pg/ml) (H) Concentration of IL-1α in splenocyte cultures with each peptide (pg/ml) 

(I) Concentration of IL-10 in splenocyte cultures with each peptide (pg/ml) (J) Concentration of IL-6 in 

splenocyte cultures with each peptide (pg/ml) (K) Concentration of IL-23 in splenocyte cultures with 

each peptide (pg/ml) (L) Concentration of IL-27 in splenocyte cultures with each peptide (pg/ml) (M) 

Concentration of IFN-β in splenocyte cultures with each peptide (pg/ml). 

Supernatant obtained from 3 separate samples for each peptide concentration. 
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3.3.6 Transfer of pathogenic cells into immunocompromised mice causes 

severe clinical disease 

When uveitogenic T cells are transferred into wildtype mice, the recipients develop clinical 

disease that peaks at day 7-10 (Figure 3.6). Analysis of retinal infiltrate by flow cytometry 

illustrates a recruitment of both endogenous and transferred CD4+ T cells in similar numbers 

to the eye during peak clinical disease (Figure 3.8). But in the CD8+ compartment a large 

number of endogenous cells are recruited but transferred cells do not appear to survive or 

proliferate and recruit to the eye during active clinical disease (Figure 3.8). 

To understand if the transferred cells alone are sufficient to cause clinical disease without 

recruiment of endogenous T cells, a pathogenic transfer into immunocomprimised mice was 

undertaken. 

RAG2-/- mice lack mature T and B cells so will not have an endogenous repsonse to the transfer 

of pathogenic T cells. 

When  a whole leukocyte population of pathogenic wildtype cells are transferred into       

RAG2-/- mice, clinical disease is induced by day 7 similar to the previous transfers (Figure 3.6) 

but by day 14 a more severe disease is observed in the RAG2-/- recipients in comparison to 

the wildtype recipients. When retinal infiltrate was analysed by flow cytometry, an increase 

of CD4+ T cells is observed between day 7 and day 14. In the CD8+ T cell compartment an 

expansion and recruitment of transferred cells is observed at day 7 and day 14 within the 

retinal infiltrate, showing that CD8+ T cells survive within recipients that are 

immunocompromised and may play a part in the disease process, but this is not the case 

within wildtype recipients (Figure 3.12).  

Due to the expansion of CD8+ T cells within RAG2-/- recipients, to assess if CD4+ T cells alone 

were sufficient to induce disease, a pure population of CD4+ T cells were transferred to these 

mice. A CD4 negative MACS isolation was used to isolate CD4+ T cells, when the population 

was analysed by flow cytometry a small population of other leukocytes such as CD8+ cells was 

detected within the transferred cell population (Figure 3.13) the CD4+ population was >65% 

compared to previous cultures with no MACS isolation where the percentage of CD4+ cells 

was ~35% (Figure 3.6). After transfer, clinical disease incidence and severity was analysed 

using in vivo imaging. By day 7 both the CD4+ and CD4- transfers developed clinical disease 

(Figure 3.13h), at day 22 eyes were analysed by flow cytometry to quantify leukocyte 

populations within the retina (Figure 3.13i-k).  
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Due to the RAG2-/- recipients developing clinical disease after MACS isolation of a CD4- 

leukocyte population (Figure 3.13), a purer CD4- CD8+ cell population was prepared using a 

CD4- MACS seperation that was then sorted using fluorescent associated cell sorting to isolate 

a CD8+ population for adoptive transfer. Recipients were monitored using clinical imaging to 

day 28, the CD4+ transferred population caused clinical disease to occur by day 7 after 

transfer with disease continuing through to day 28. Whereas, the CD8+ transfer did not induce 

clinical disease observed by clinical imaging fom day 7 through to day 28 (Figure 3.14a-h) 

when retinal infiltrate was analysed by flow cytometry at day 28 a small CD4+ population 

could be detected in the CD8+ transfer suggesting an expansion of the small CD4+ population 

that after MACS isolation and FACS sorting still was present in the CD4- CD8+ population 

transferred into RAG2-/- recipients (Figure 3.14i-k). 

Finally to  study, leukocyte trafficking of CD4+ T cells within the eyes of recipients in RAG2-/- 

mice intravitreal injections of MACS isolated CD4+ T cells were injected into the left eye of 

recipients. The recipients were then monitored using the micron IV with fluorescent filters to 

track transferred CAG GFP expressing cells from the left eye to the right eye over time (Figure 

3.15a-i). Clinical disease was not observed through clinical imaging to day 28 (Figure 3.15a-i), 

at day 28 analysis of retinal infiltrate illustrated a small population of CD4+ T cells was present 

in both eyes along with blood, spleen and lymph node (Figure 3.15j-n) but an increased 

number of CD4+ T cells were found in the eye that received the CD4+ population transfer in 

comparison to the contra lateral eye as expected. 
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AVERAGE CELL NUMBER 
  

 
Day 7 Day 14 

CD4 11000 25033 

CD8 172 835 

CD11B 57720 56339 

 
 

Figure 3.12: Analysis of transfer of 2x10
6
 Ly5 uveitogenic cells as a whole population of 

leukocytes isolated using Ficoll density centrifugation into RAG2
-/-

 mice at day 7 and day 14. 

(A) OCT and fundus imaging of RAG2
-/-

 recipients at day 7 after transfer of uveitogenic cells (B) Fundus 

imaging of RAG2
-/-

 recipients at day 14 after transfer of uveitogenic cells (C-E) Analysis of eyes taken 

from RAG2
-/-

 recipients at day 7 and day 14 after transfer using flow cytometry to identify immune cell 

infiltrate using extracellular markers and absolute numbers to quantify infiltrate. (C) Total number of 

CD4+ T cells present within the eyes of recipients at day 7 and day 14 after transfer using extracellular 

staining and absolute numbers protocol (D) Total number of CD8+ T cells present within the eyes of 

recipients at day 7 and day 14 after transfer using extracellular staining and absolute numbers protocol 

(E) Total number of CD11b+ cells present in retinal infiltrate of recipients at day 7 and day 14. 
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AVERAGE CELL NUMBER 
  

 
CD4+ MACS CD4- MACS 

CD4 13864 5926 

CD8 155 1329 

CD11B 13036 13001 

 

Figure 3.13: Adoptive transfer of MACS isolated leukocytes using a CD4 negative MACS 

isolation into RAG2
-/-

 recipients at 2x10
6
 CD4+ or 2x10

6
 CD4- cells per mouse. (A-D) Analysis 

of cells transferred into RAG2
-/-

mice (A) Extracellular analysis of CD4+ cells isolated by CD4 negative 

MACS isolation for cell transfer (B) Extracellular analysis of CD4- cells isolated by CD4 negative MACS 

isolation for cell transfer (C) Intracellular analysis of CD4+ T cells isolated for transfer by CD4 negative 

MACS isolation (D) Intracellular analysis of CD4+ population present within the CD4- population 

obtained using CD4 negative MACS isolation. (E-H) OCT and fundus imaging following clinical disease 

in both CD4+ and CD4- groups of recipients (E) Fundus imaging of CD4+ transfer at day 7 after cell 

transfer at 2x10
6
 cells transferred per mouse, no OCT is shown due to severity of cellular infiltrate (F) 

OCT and fundus imaging of CD4+ transfer at day 22 after transfer (G) OCT and fundus imaging of CD4- 

transfer at day 7 after cell transfer at 2x10
6
 cells transferred per mouse (H) OCT and fundus imaging 

of CD4- transfer at day 22 after transfer (I-K) Flow Cytometry analysis of eyes from RAG2
-/-

 recipients 

at day 22 after transfer of CD4+ or CD4- populations. (I) CD4+ populations present within the eyes of 

the groups of CD4+ and CD4- transfer recipients at day 22 (J) CD8+ populations present within the 

eyes of the groups of the groups of CD4+ and CD4- transfer recipients at day 22 (K) CD11b+ populations 

present within the eyes of the groups of CD4+ and CD4- transfer recipients at day 22 after transfer. 
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AVERAGE CELL NUMBER 
  

 
CD4+ Sort CD8+ Sort 

CD4 70566 111 

CD8 1157 66 

CD11B 28374 1762 

 

Figure 3.14: OCT and flow cytometry analysis of transfers of MACS isolated CD4+ and CD4- 

leukocytes. Populations are stained using flow cytometry antibodies and sorted using a fluorescence 

cell sorter to obtain a purer population of CD4+ and a purer population of CD8+ T cells which are then 

transferred at 500,000 cells per mouse into RAG2
-/-

 recipients. (A-H) OCT and fundus imaging of CD4+ 

and CD8+ transfer following disease course from day 7 to day 28. (A) Representative clinical imaging 

at day 7 by fundus and OCT of recipients that received a CD4+ T cell transfer (B) Representative clinical 

imaging at day 15 by fundus and OCT imaging of recipients that received a CD4+ T cell transfer (C) 

Representative clinical imaging at day 22 fundus and OCT of recipients that received a CD4+ T cell 

transfer (D) Representative clinical imaging at day 28 by fundus and OCT of recipients that received a 

CD4+ T cell transfer (E) Representative clinical imaging at day 7 by fundus and OCT of recipients that 

received a CD8+ T cell transfer (F) Representative clinical imaging at day 15 by fundus and OCT of 

recipients that received a CD8+ T cell transfer (G) Representative clinical imaging at day 22 by fundus 

and OCT of recipients that received a CD8+ T cell transfer (H) Representative clinical imaging by fundus 

and OCT of recipients that received a CD8+ T cell transfer. (I-K) Analysis by flow cytometry of eyes from 

CD4+ and CD8+ transfer recipients at day 28 using extracellular staining and absolute numbers to 

quantify immune infiltrate. 
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AVERAGE CELL NUMBER 
     

 
Blood Lymph Node Spleen Invit eye (LE) RE 

CD4 1223 2289 14194 151 132 

CD8 26 74 887 117 166 

 
 

Figure 3.15: OCT and flow cytometry analysis of RAG2-/- recipients of CD4+ and CD8+ MACS 

then FACS sorted populations. CD4+ or CD8+ cell populations were isolated from cell cultures of 

CAG GFP tagged donor cells firstly using a CD4- MACS isolation, then after antibody stains for CD4 or 

CD8 cells are sorted using fluorescent associated cell sorting for pure populations of CD4+ or CD8+ T 

cells. Recipients then received an intravitreal injection of 50,000 CD4+ or CD8+ T cells into the left eye. 

RAG2-/- recipients were monitored using the micron IV camera with fluorescent filters to track GFP 

tagged cells in the left and right eyes (A-I). 

At day 28, retinal infiltrate was analysed in all recipient eyes and CD4+ and CD8+ numbers quantified 

(J-K). To analyse leukocyte migration from the eye to the blood (L) and lymphoid organs such as 

spleen(N) and lymph node(M) CD4+ and CD8+ were also quantified to look at expansion of T cell 

populations. 
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3.4 Discussion 

This chapter outlines a robust adoptive transfer technique using total leukocyte populations 

to induce EAU along with preliminary analysis of recipients at peak disease after transfer and 

of the cell populations transferred. It also illustrates the use of allelic markers to track 

transferred and endogenous cells throughout disease using allelic markers. 

Before proceeding with full analysis of clinical disease course after adoptive transfer, I 

characterised a transfer technique using a novel RBP3 peptide to induce disease for analysis. 

This involved inducing a phenotype that could be easily monitored using clinical imaging, the 

protocol was adopted from the method developed by the Caspi group (176). The first step of 

the protocol is immunisation with RBP3 peptide which has already been optimised within our 

group (188) followed by a 72 hour cell culture which was optimised in terms of addition of 

antigen and cytokines. The addition of the immunising antigen to the cell culture is used to 

re-stimulate the CD4+ T cells in vitro, the cells may also be propagated in vitro using the 

addition of IL-2 (189). The addition of IL-23 has been demonstrated to play a pivotal role in 

establishment and maintenance of organ-specific inflammatory autoimmune disease (175). It 

has also been shown in vitro that IL-23 promotes a T cell population characterised by 

production of IL-17A, IL-17F, TNF and IL-6, when these cells are used for adoptive transfer into 

naïve recipient mice IL-23 dependent T cell subsets invade the target organ and can promote 

the development of organ-specific autoimmune inflammation (175). So, the optimisation of 

the addition of IL-23 and IL-2 to the transfer cell cultures to give the most effective leukocyte 

population for cell transfer was a necessary step in the adoptive transfer protocol. Each 

culture was then analysed for percentage of cell populations specifically CD4+ T cells, 

cytokines expressed by CD4+ T cells and cytokines within the culture supernatant. Future 

chapters will discuss the sole surviving population of the total leukocyte cell transfers to be 

CD4+ T cells. 

Secondly, the number of cells needed to induce disease was optimised to allow full analysis 

of disease in vivo and in vitro, using cell titration experiments the optimum cell number to 

use to induce consistent disease across all recipients was 2x106 of which ~20% are CD4+, 

which is significantly lower than the paper by the Caspi group originally published which was 

50x106-100x106 total cells which has been reduced to 5x106 total cells but still uses 
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significantly more cells than this optimised adoptive transfer technique to induce clinical 

disease  (117, 176). 

After the cell number for transfer was optimised, the identification of transferred cells within 

recipients during clinical disease could be validated. Congenic mouse strains with allelic 

variants of CD45, including CD45.1 and CD45.2 can be differentiated using flow cytometry and 

are used routinely in experiments to track populations of immune cells (190). Allelic markers 

can be used to track where transferred cell populations have been recruited not only to the 

target tissue but also to lymphoid and non-lymphoid tissue and blood. Disease is defined by 

increased number of cells infiltrating the eye, thickening of the retina, swelling of the optic 

disc by OCT imaging and large numbers of leukocytes present in flow cytometric and 

histological analysis.  

During clinical disease, a large percentage of the CD4+ T cells present within the eye are from 

the transferred population based on allelic markers, thus suggesting that the antigen specific 

transferred cells are driving the disease process and being recruited to the eye. Although the 

transferred cells make up a large compartment of the CD4+ T cells present within the eye, 

endogenous CD4+ T cells from the recipient are also recruited during clinical disease and 

contribute to the disease progression as the percentage of endogenous cells are present in 

the eye increase at day 14 compared to day 7.  

Due to this recruitment of endogenous CD4+ T cells, the question stood of whether 

transferred cells alone are enough to drive clinical disease with no recruitment of 

lymphocytes from the endogenous compartment of the recipients. Therefore, experiments 

were carried out using RAG2-/- mice that lacked mature T and B cells so the only CD4+ T cells 

present within the recipient were the transferred cells. By day 7, clinical disease can be 

observed by increased cell infiltrate and increased presence of hyperintense regions in the 

retina as measured by OCT which persists through to day 14 with no resolution, this illustrates 

that transferred pathogenic cells are able to drive disease without recruitment of endogenous 

T cells. 

In summary, this chapter describes the optimisation of an adoptive transfer technique and 

preliminary analysis to study the recruitment of pathogenic T cells to the target tissue and 

induction of clinical disease. At the time of transfer there is a mixed Th1 and Th17 CD4+ 

phenotype present in the cell cultures based on cytokines present in the supernatant and 

intracellular cytokine staining. The main difference in CD4+ phenotype is observed within the 
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supernatant of the transferred cell cultures where an increase in IFN-γ is observed in the 

C57BL/6 Ly5 cultures in comparison to the OTII, CX3CR1 heterozygous and the CX3CR1 

knockout suggesting an increased Th1 phenotype is present in these cultures. The FoxP3 

staining illustrates a limited number of Tregs is present when cells are transferred. Further to 

this there is no evidence of epitope spreading to the RBP3 1-20 peptide when transfer donors 

are culled for cell culture which can be seen later and has been published previously by the 

group (159).  This approach utilising allelic markers allows tracking of transferred cells 

throughout clinical disease and to study the role of antigen-specific transferred cells in clinical 

disease induction and disease course that will be used in further chapters throughout this 

thesis. 

 

 
 
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 
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4.1 Introduction 
Autoimmune diseases are a result of a breakdown in immunological tolerance against self-

molecules creating an adaptive immune response against a self-antigen (59, 61). Three major 

mechanisms are offered to explain the development and progression of autoimmunity: 

molecular mimicry, bystander activation and dysfunctional Tregs (191). The majority of 

autoimmune diseases develop through complex mechanisms due to a number of factors 

including genetic, molecular, cellular and environmental elements (192). This results in 

alterations at many checkpoints that combine to cause a breakdown in immune tolerance, 

and manifests as harmful inflammatory responses in peripheral tissues amplified by an innate 

immune response and self-antigen specific T and B cells (192). Research suggests that T cells 

play the central role in organ specific autoimmune disease both in initiation of disease and 

persistence (193). It is believed that the immune privilege can leave the eye susceptible to an 

attack by primed lymphocytes of an autoimmune nature from elsewhere within the body by 

a random or chance encounter with a self-antigen or a mimic antigen (194). 

 

4.1.1 Immune tolerance 

Central tolerance is sometimes inefficient therefore another mechanism known as peripheral 

tolerance to regulate potentially harmful autoreactive T and B cells that have been released 

into the periphery (192). Tissue specific autoimmune disease is the main consequence of the 

activation of a population of self-reactive T cells that cause destruction of single or multiple 

target tissues (170). Identifying the target antigens that are recognised by autoreactive T cells 

in autoimmune disease would allow further studies of the mechanisms involved in tolerance 

and autoimmunity. These are currently considered a challenge and therefore allow further 

study of specific lymphocyte responses to these autoantigens (170). 

Autoreactive T lymphocytes can act as both regulatory and effector cells, playing a key role in 

autoimmune diseases (146). Autoreactive memory T cells mediate autoimmune diseases of 

the CNS including multiple sclerosis where the cells recognise the myelin sheath and uveitis 

where the cells recognise the retinal tissues, in contrast to memory T cells which are known 

to be associated with a protective immunity (172). T lymphocytes can be divided into two 

major subsets based on their function, CD4+ T helper cells and CD8+ cytotoxic T cells (173). 

Peripheral blood responses against autoantigens in CD4+ and CD8+ T cells has been 
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demonstrated, using technologies such as ELISPOT and MHC-tetramer to demonstrate in vitro 

CD4+ T cell reactivities against self-antigens (195). The coexistence of both autoreactive and 

protective T cells is supported by multi-organ autoimmunity when naïve CD4+ T cells are 

transferred into immune deficient mouse strains (196). 

CD4+ T cells are involved in the adaptive immune response and play the key role in 

development of autoimmunity (61), they can be subdivided into subsets based on a network 

of transcriptional regulators and unique cytokine profiles (197). As highlighted in chapter 1, 

most organ-specific autoimmune diseases including multiple sclerosis and uveitis are 

mediated by autoreactive CD4+ T cells and can be characterised by unpredictable, explosive 

inflammatory responses which become less active with clinical features of disease subsiding 

spontaneously without treatment, but then return with repetitive attacks. It is known that 

between attacks reduced inflammation can be detected in the target tissue (172). 

Understanding the mechanisms by which autoimmunity evolves and its links to tolerance is a 

great challenge (170). 

Transgenic mouse models have become valuable tools to understand mechanisms involved 

in the pathogenesis of autoimmune disease as they provide both defined, tissue specific 

cognate antigens along with well characterised T cell receptors that recognises these 

antigens, two major approaches utilise transgenic mouse models, one of which is the adoptive 

transfer of T cells into naïve recipients (170). 

 

4.1.2 Tolerance to retinal antigens 

Central tolerance to retinal antigens is similar to the central tolerance of other tissue specific 

antigens (194). Retinal antigens such as RBP3 have been detected in the thymus to produce 

central tolerance and are under the control of the AIRE transcription factor (53, 194). 

Different mouse strains express different amounts of RBP3 in the thymus, the amount of RBP3 

expressed is linked to the susceptibility of the mouse strain to EAU induction which is inversely 

correlated (167, 194).  

As mentioned previously, within the thymus negative selection occurs to eliminate all 

autoreactive T cells, unfortunately this process is not 100% effective that is where the 

peripheral tolerance aids by controlling the autoreactive thymic migrants that have escaped 

thymic negative selection  (194). Resident retinal antigens within the healthy eye are isolated 
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behind the blood-retina barrier and are not readily available to circulating lymphocytes, 

whereas during ocular inflammation when the blood ocular barrier is compromised can lead 

to exposure of retinal antigens to circulating lymphocytes in the periphery (194).  

 

4.1.3 Bystander CD4+ T cell activation  

Antigen specific CD4+ T cell clonal expansion plays an important role in both organ-specific 

and systemic autoimmune disease  (198). Studies of T cell responses to several antigens 

illustrate that all variable components of the αβ TCR contribute to the binding of conventional 

peptide antigens with products of the MHC. Further work coined the term super antigen for 

a second group of antigens that stimulates T cells at very high frequencies, the group 

encompasses self-antigens (199). T cell clones that accumulate within the eye during clinical 

disease are qualitatively different depending on what stage of disease they are recruited, for 

example, T cells that have accumulated within the eye at early disease will be different from 

those that are found within the eye during the advanced phase of disease. Therefore, the T 

cells that are found within the eye at each disease phase are involved in disease pathogenesis 

in different ways (198).  

The first description of bystander activation was by Tough et al in 1996, it was used to attempt 

to understand in the context of cytokine secretion the large clonal CD8+ T cell expansion after 

viral infection (191). Non-antigen specific lymphocytes are activated in a heterologous 

manner to mediate the signals that indirectly favour an inflammatory milieu including 

chemokines, cytokines, extracellular vesicles, ligands of co-signalling receptors, PAMPs and 

microbial particles (191, 200).  

Classical T cell activation is mediated mainly through engagement of TCR and costimulatory 

signalling pathways which promote signalling cascades that induce cytokine production, 

proliferation, differentiation and/or apoptosis (191).  

4.1.4 Bystander T cell accumulation in autoimmune disease 

The development of autoimmunity is potentially due to the mechanism of bystander effects, 

this mechanism is different from the mechanisms of molecular mimicry and microbial agents 

(191, 201, 202). The notion of bystander activation can be described as the disturbance of 

self-tolerance due to an encounter with a pathogen, this causes the activation of resting 

autoreactive T cells that are then recruited to the tissue to cause inflammation, these cells 
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are antigen specific, however not all cells recruited to the tissue will be antigen specific some 

are known to be recruited non-specifically (202). The immunological pathways associated 

with bystander effects are not antigen-specific whether they be by effects of activation or 

suppression. The recruitment of non-specific cells can be induced by the initiation of cell 

death to cause the release of cellular antigens, perturbing of the cytokine balance or by 

increasing the antigen abundance or visibility (202). 

4.1.5 Bystander activation and recruitment after adoptive transfer  

A study conducted by Arata et al (202) using the adoptive transfer model of experimental 

autoimmune thyroiditis illustrated using GFP+ transferred T cells to study the fate of these 

cells during the development of thyroiditis (202). Immunohistochemistry staining of the 

thyroid tissue of recipient mice showed the development of thyroiditis after adoptive transfer 

of Tg-primed GFP+ cells, this was demonstrated by intrathyroidal accumulation of GFP+ T cells 

(202). GFP+ cells are also observed in the periphery of recipients such as blood, bone marrow 

and spleen but these cells are not present early within disease (202). However, a rapid 

disappearance of GFP+ T cells was observed, this may have been due to a secondary immune 

response potentially to the transgene product (202). The presence of activated GFP+ 

transferred T cells within the thyroid was observed along with the presence of infiltration 

from the host, which can be assumed to be initiated by the recruitment of transferred T cells. 

This study suggests that in this model of adoptive transfer the activated GFP+ cells may have 

initiated bystander activation of the host’s immune response by TCR-mediated activation 

such as; increasing the effect and attraction of host APCs and by causing cell death to induce 

cellular antigens to be released, or by non TCR mediated activation such as; disruption of the 

cytokine balance within the host (202). Using depletion of CD8+ cells the disease severity 

decreased, showing a necessity for the endogenous compartment to drive disease course 

(202).  

The adoptive transfer technique is a useful tool for EAU disease induction. Using allelically 

marked cells (as shown in chapter 3) allows tracking of uveitogenic primed CD4+ T cells after 

transfer including during the pre-clinical phase of disease, peak clinical disease and as disease 

resolves.  Cell counts are normalised to eyes from naïve animals. 

The aims of this chapter are to quantify total retinal cellular infiltrate after adoptive transfer 

of leukocytes before clinical disease, during and post disease. Further to this, analyse 
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endogenous and transferred cells within each leukocyte population at each time point during 

EAU. Transferred cells were also quantified within the periphery of each recipient to 

determine tissue specific recruitment to the ocular tissue and any non-specific recruitment in 

lymphoid and non-lymphoid tissues. 
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4.2 Materials and Methods 
 

4.2.1 Adoptive transfer technique 

EAU was induced in C57BL/6 CX3CR1+/GFP (CD45.2) using RBP3 peptide 629-643, after a 72-

hour cell culture these donor cells were then transferred using i.p injection into C57BL/6 ly5 

(CD45.1) recipients at 2x106 total leukocytes per recipient. 

 

4.2.2 Flow cytometry analysis 

Flow cytometry was used to identify and quantify subsets of cells within the transferred cell 

population and retinal infiltrate using extracellular staining. 

Within transferred recipients’ allelic markers CD45.1 and CD45.2 were used to identify 

endogenous and transferred populations of cells within the retina. 

 

4.2.3 Clinical imaging 

OCT scans and fundus images standardised across recipients during transfer optimisation to 

study disease course at each cell concentration transferred. 
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4.3 Results 
4.3.1 Flow cytometric analysis of naïve eyes 

An important aspect of Immune surveillance is local recruitment and retention of immune 

cells within healthy tissue (203). Peripheral tissue immune surveillance compartments are 

composed of cells from both the innate and adaptive immune system, the diversity of their 

composition reflects the specialised need for immune surveillance tailored to distinct 

locations within the body (203).  

Therefore, healthy mice will have a population of CD4+ T cells present within the eye without 

any disease induction due to maintenance of the tissue by immune surveillance. Studies have 

suggested that T cells present in a healthy or steady-state in peripheral tissues do not simply 

mirror the image of circulating T cells (203).  

Pre-clinical changes in CD4+ T cell number can be an early sign of disease initiation, therefore 

quantification of the  CD4+ T cell population present within the eye before disease induction 

is a useful measure of the small to moderate increase in CD4+ T cells within the eye before 

disease is observed by clinical imaging. Baseline numbers also set a threshold for 

distinguishing, after active disease has resolved, if the number of leukocytes present within 

the retina and vitreous remain persistently elevated. 

Total CD4+ T cells, CD8+ T cells, CD11b+. LY6G+ and LY6C+ cells (figure 4.1) were quantified 

as described in the methods in naïve C57BL/6 mice to give a baseline to compare with pre- 

and post-clinical disease leukocyte numbers. 
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  LOWEST VALUE HIGHEST VALUE MEAN 

CD4 3 68 22 

CD8 0 58 18 

CD11B 184 2251 791 

LY6G+ 0 42 24 

LY6C+ 20 99 46 

 

Figure 4.1: Quantified leukocyte infiltrate present in the retina and vitreous in naïve mice 

before manipulation or disease induction. Retinas were dissected and vitreous flushed to prepare 

for quantification of leukocytes. Using a standard curve of known cell number CD4+, CD8+, CD11b+, 

LY6G+ and LY6C+ cell numbers were calculated. Data expressed as Mean +SEM. Table shows range 

and mean of data presented. Data obtained from 7-30 eyes. 
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4.3.2 Disease course within the adoptive transfer model of EAU 

After transfer of uveitogenic leukocytes clinical disease was monitored using optical 

coherence tomography and compared with studies from the literature where disease was 

produced by active immunisation. Clinical disease follows a sequential  pattern of prodrome, 

primary peak, then secondary regulation (1).  The RBP-3 subunit 3 (629-643 peptide 

sequence) induces clinical disease in ~90% of C57BL/6 mice immunised (188). Peak disease is 

observed between days 21-27 where there is the largest number of CD45+ cells present within 

the retina and vitreal infiltrate, at day 40-45 CD45+ cell number has decreased but remains 

increased in comparison to naïve animals and is accompanied by an increase in the 

percentage of CD8+ T cells at this time point (188). 

To understand disease course more fully in the adoptive transfer model recipients were 

monitored by OCT to assess severity and disease kinetics. Figure 4.2a shows a naïve eye in a 

Ly5 recipient. The fundus is clear, and the optic disc and vessels show no signs of inflammation 

within the fundal image. In the OCT image the retinal layers are well demarcated, no swelling 

is present around the optic disc and no retinal infiltrate is detectable.  

At day 2, the fundal image remains clear of any signs of clinical disease. In the OCT image the 

retinal layers are visible and there is no obvious swelling of the optic disc. However, early 

signs of retinal infiltrate appear around the optic disc within the vitreous (figure 4.2b).  

By day 6, obvious signs of clinical disease manifestation are present within the fundal and OCT 

imaging (figure 4.2c). In the fundal image a vitreal haze is present and swelling around the 

optic disc is observed. The OCT image further confirms the onset of clinical disease, thickening 

of the retina and swelling of the optic disc and obvious cellular infiltrate within the vitreous is 

present (figure 4.2c). 

At day 13, clinical disease is still active in the eyes of the transfer recipients but is less severe 

than at day 6. The reduction in disease severity suggests that peak disease occurs between 

day 6- 12. In the fundal image, the inflammation is reduced around the optic disc and the 

vitreal haze has reduced. The OCT image shows a reduction in thickness of the retina and 

swelling of the optic disc and the infiltrate within the vitreous has reduced (figure 4.2d). 

By day 21, disease is active but has mostly resolved with minimal cell infiltrate observed, 

although the eye looks similar to day 0 in retinal thickness and optic disc thickness (figure 4.2a 

and 4.3a). The layers of the retina are visible, and the optic disc has returned to a normal 
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state. Vitreal infiltrate has further reduced, although some cells appear to persist within the 

vitreous (figure 4.3a).  

Disease continues to resolve from an active phase dominated by infiltration to a persistent 

phase characterised by retinal thinning and degenerative lesions from day 21 to day 67. 

Retinal infiltrate is not present within the OCT image at day 35 and clear retinal layers are 

present (figure 4.3b). This is reflected also in the fundal image, with no vitreal haze or swelling 

around the optic disc or sheathing of the vessels. At day 51 and 67, the OCT remains clear of 

vitreal infiltrate, but a thinning of the retina is observed. In the fundal image loss of definition 

of vessels is observed and haziness with distinct colour changes are present (figure 4.3c and 

4.3d). 

This full-time course of disease and corresponding disease scores (figure 4.4) illustrates a 

primary peak of disease at day 6-12 followed by a resolution of active clinical disease from 

day 21, that persists to day 67. 
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Figure 4.2: OCT clinical imaging throughout peak disease, day 0-13 after adoptive transfer 

of uveitogenic leukocytes. Baseline imaging was taken at day 0 before manipulation of Ly5 

(wildtype) recipients (A). 2 days after transfer of uveitogenic leukocytes recipients were imaged at a 

pre-clinical disease timepoint (B). At day 6, peak disease occurs, and recipients had maximal infiltrate 

and retinal and optic disc swelling when imaged using OCT (C). By day 13, disease is still active but has 

reduced in severity. Reduced vitreal infiltrate is present and swelling of the retina and optic disc has 

begun resolving (D). (Images taken from different eyes throughout the time course due to quality and 

length of experiments). 
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Figure 4.3: OCT clinical imaging throughout post-peak clinical disease, days 21-67 after 

adoptive transfer of uveitogenic leukocytes. After peak clinical disease, recipients are still 

monitored for signs of a relapse of active disease. (A) Day 21 after disease induction recipients no 

longer have active disease, the retina has reduced to a thickness similar to day 0 and the vitreal 

infiltrate has reduced but is still visible by OCT. At day 35 after transfer, there are no longer signs of 

active clinical disease (B). At days 51 and 67 post transfer, signs of active clinical disease have gone 

but the retina remains scarred from disease progression (C+D). (Images taken from different eyes 

throughout the time course due to quality and length of experiments). 
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Figure 4.4: Average clinical scores of recipients over full disease course. OCT imaging was used 

to acquire corresponding fundal images throughout disease course. The images were then scored 

blind using the criteria described in chapter 2 and the average score taken from each eye at each time 

point. Data expressed as Mean +SEM. Data obtained from 8-78 eyes per time point. 
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4.3.3 Flow cytometric analysis of CD4+ T cell populations present within the 

eyes of recipients  

Recipients were monitored using clinical imaging to establish the disease course, and at 

different points retina and vitreous were isolated from recipient’s eyes for flow cytometric 

analysis to quantify leukocyte infiltrate at several time points throughout the disease.  

In the first part of the analysis, the aim is to quantify endogenous and transferred CD4+ T cell 

number at each time point through pre-clinical disease to active disease and through post 

active clinical disease, to assess total cell number and the ratio of endogenous and transferred 

CD4+ T cells present within the retina and vitreous of the eyes of the recipients. 

Day 0 is the baseline CD4+ T cell number quantified previously and shown in figure 4.1. This 

population allows comparison with pre-clinical disease. At day 2, transferred CD4+ T cells can 

be detected within the eye (figure 4.5) and there is increased recruitment of endogenous 

CD4+ T cells in comparison to the day 0 baseline CD4 cell number. 

By day 7, when peak disease is detected by clinical imaging (figure 4.2c), eyes were taken for 

analysis by flow cytometry. Quantified cell number illustrate an increase from an average of 

97 at day 2 to an average of 3967 at day 7 in the endogenous CD4+ compartment and an 

increase from an average of 62 at day 2 to an average of 822 at day 7 in the transferred CD4+ 

compartment present within the isolated retina and vitreous (figure 4.5). The ratio of 

endogenous to transferred CD4+ cells is close to 1:1 in some recipients (figure 4.5). 

At day 14, active disease is still present within the eyes of the recipients when using clinical 

imaging to assess disease progression (figure 4.2d). At this time point, the mean transferred 

CD4+ T cell number has increased in some recipients in comparison to day 7 (822-817) , 

whereas the endogenous CD4+ T cell number remains constant and has decreased in some 

recipients (3967-1384) (figure 4.5).  

Active disease is still observed at day 21, although it has mostly resolved, cellular infiltrate is 

still present within the vitreous when the eyes are clinically imaged (figure 4.3a). When 

vitreous and retina from recipient animals was analysed by flow cytometry a decrease in both 

the endogenous (1384-128) and transferred (817-115) CD4+ T cell populations was observed. 

Transferred CD4 cells have become the largest of the CD4+ populations in many recipients 

(figure 4.5). 
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By day 35, active disease has resolved by clinical imaging and no cellular infiltrate is detected 

within the vitreous of the recipients (figure 4.3c). The transferred CD4+ T cell population has 

persisted in the eyes of the recipients as a smaller portion of the CD4+ T cell population 

present in the eye. Endogenous CD4+ T cells are still increased in comparison to the 

population of CD4+ T cells present at baseline day 0 (figure 4.5).  

Clinical disease continues to exhibit features of secondary regulation by OCT at day 51 (figure 

4.3c) and day 67 (figure 4.3d). The retina has thinned, but there is no obvious infiltrate 

observed. When recipients’ eyes were analysed by flow cytometry at day 67 (figure 4.5), 

transferred cells are still present within the retinas of the recipients. Also, in comparison to 

baseline at day 0, the endogenous CD4+ T cell number remains increased in the recipient’s 

eyes at day 67 and have not returned to baseline that is observed in a 6-8-week old C57BL/6 

mouse. 

The data was log transformed to achieve a normal distribution and statistical analysis 

performed using one-way ANOVA (Fig 4.5). Multiple comparisons were made between 

endogenous and transferred populations throughout the time course using a Dunnett’s test. 

When the test is performed across time points throughout disease course all endogenous 

CD4+ populations are statistically significantly increased (P<0.01**-P<0.0001****). 

Comparisons between the day 2 transferred population and the transferred population 

present within the eye at day 7 and day 14 by one way ANOVA are also statistically significant 

(P<0.0001****). 
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ENDOGENOUS 
   

CD4 Lowest Value Highest Value Mean 

D0 3 68 22 

D2 15 241 97 

D7 105 13320 3967 

D14 74 4034 1384 

D21 34 891 128 

D35 55 166 95 

D67 12 132 68 

 

TRANSFER 
   

CD4 Lowest Value Highest Value Mean 

D0 n/a n/a n/a 

D2 5 154 62 

D7 24 3165 822 

D14 69 6727 817 

D21 6 287 115 

D35 6 40 19 

D67 4 46 18 



129 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Total endogenous and transferred CD4+ T cells present within the retina and 

vitreous at each clinical imaging time point. Quantified CD4+ T cell infiltrate in recipients’ eyes 

throughout clinical disease in both the endogenous and transferred compartment. Baseline day 0 

CD4+ T cell number allows detection of subtle pre-active clinical disease and post-active clinical 

disease. At day 2, (pre-active clinical disease) endogenous and transferred CD4+ cell number was 

quantified to compare to the day 0 baseline. Day 7 and Day 14 illustrate endogenous and transferred 

CD4+ T cell recruitment during peak disease. Day 21, active clinical disease has begun to resolve but 

infiltrate is still observed by OCT. Active clinical disease has resolved at time points day 35 to day 67, 

endogenous and transferred CD4+ T cells are quantified in this post active clinical disease stage to 

detect differences to the baseline day 0 data. Data expressed as mean + SEM. All endogenous 

populations are statistically significantly different to the normal baseline. Statistical analysis 

performed: One-Way ANOVA multiple comparisons of against naïve for the endogenous cell 

compartment and Mann-Whitney non-parametric test between each endogenous and transferred 

population *p<0.05, ***p<0.001. 

Table shows range and mean of data presented. 
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4.3.4 Flow cytometric analysis of leukocyte populations present within the 

eyes of recipients during clinical disease 

EAU is a CD4+ T cell mediated disease model, but throughout disease course other leukocytes 

are recruited to the eye and are involved in the disease process. 

As seen in figure 4.1, baseline leukocyte number was quantified from naïve unmanipulated 

eyes to establish the sensitivity of the analysis to small changes in cell number and therefore 

pre-clinical disease and post-clinical disease changes in leukocyte number. 

At day 2, unlike endogenous CD4+ T cell number, there was no increase in other endogenous 

leukocyte numbers quantified by flow cytometry, including CD11b+ cell number, Ly6G+ cell 

number, Ly6C+ cell number and Ly6C- cell number (figure 4.6a-e).  

Transferred cells from each leukocyte compartment are detected within the ocular tissue by 

day 2, similarly to the transferred CD4+ T cells (figure 4.6a-e). 

As previously described in figure 4.2, 4.3 and 4.4, peak clinical disease occurs at day 7 after 

transfer of uveitogenic leukocytes. As seen in figure 4.5, a large increase in recruitment of 

CD4+ T cells occurs. Similarly, to this, the endogenous compartment of other leukocytes also 

reaches peak at day 7. In contrast to the CD4+ T cell data presented in figure 4.5, transferred 

cell recruitment to the eye during peak disease does not increase from day 2 in the CD11b+ 

cell compartment, Ly6G+ and Ly6C- compartments (figure 4.6b 4.6c and 4.6e). An increase in 

transferred cell number is observed in the CD8+ T cell compartment and the Ly6C+ 

compartment (figure 4.6a, 4.6b, 4.6d). Although a small increase was observed in transferred 

cell number in some leukocyte compartments, overall transfer cell number remains low in all 

leukocytes in comparison to CD4+ T cells. The transferred leukocytes are also not found in 

other lymphoid organs such as spleen and lymph node, and non-lymphoid organs such as 

kidney and liver along with blood suggesting the transferred leukocytes that are not CD4+ do 

not survive long term in the recipients after adoptive transfer. 

At day 14, transferred cell numbers within all leukocyte compartments remain constant from 

day 7. Within most leukocyte compartments bar CD11b+ (figure 4.6b), the endogenous cell 

number similarly remains constant from day 7 to day 14. This is due to a continuation of active 

disease from day 7 to day 14. 

At day 21, a minimal number of transferred leukocytes are still present within the eye in 

similar numbers at day 2 through to day 14. Whereas in the endogenous compartment 
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leukocyte number decreases (figure 4.6) due to resolution of active disease, a similar effect 

that is observed in the CD4+ T cell number (figure 4.5). Minimal transferred leukocytes persist 

within the ocular tissue after active disease has resolved at day 35 and day 67. 

 

 

 

 

 

 



132 
 

0

2

4

6

8

10

ln
 C

D
8

+
 C

e
ll
 N

u
m

b
e
r

D2 D7 D14 D21D0

Day post transfer

CD8+

D35 D67

*

****

****

0

2

4

6

8

10

ln
 C

D
1
1
b

+
 C

e
ll
 N

u
m

b
e
r

CD11b+

D2 D7 D14 D21D0

Day post transfer

D35 D67

**
****

**

****

0

2

4

6

8

10

ln
 L

y
6
G

 N
u

m
b

e
r

D2 D7 D14 D21D0

Day post transfer

LY6G+

D67

*

0

2

4

6

8

10

ln
 L

y
6
C

 N
u

m
b

e
r

D2 D7 D14 D21D0

Day post transfer

LY6C+

D67

*

*

****

0

2

4

6

8

10

ln
 L

y
6
C

- 
N

u
m

b
e
r

LY6C-

D2 D7 D14 D21D0

Day post transfer

D67

0

2

4

6

8

10

ln
 C

D
1
9
 N

u
m

b
e
r

D7 D14 D21

Day post transfer

CD19+

 

 

 

 

 



133 
 

ENDOGENOUS 
    

TRANSFER 
   

CD8 Lowest 

Value 

Highest 

Value 

Mean 
 

CD8 Lowest 

Value 

Highest 

Value 

Mean 

D0 0 58 18 
 

D0 n/a n/a n/a 

D2 0 176 81 
 

D2 0 205 50 

D7 29 5094 1554 
 

D7 0 222 23 

D14 2 6129 1027 
 

D14 0 30 8 

D21 3 488 183 
 

D21 0 26 11 
         

ENDOGENOUS 
    

TRANSFER 
   

CD11B Lowest 

Value 

Highest 

Value 

Mean 
 

CD11b Lowest 

Value 

Highest 

Value 

Mean 

D0 184 2251 791 
 

D0 n/a n/a n/a 

D2 286 2750 1239 
 

D2 0 134 34 

D7 1766 73685 27429 
 

D7 0 192 21 

D14 76 24042 7412 
 

D14 2 313 132 

D21 340 8552 2083 
 

D21 3 185 68 
         

ENDOGENOUS 
    

TRANSFER 
   

LY6G Lowest 

Value 

Highest 

Value 

Mean 
 

Ly6G Lowest 

Value 

Highest 

Value 

Mean 

D0 0 42 24 
 

D0 n/a n/a n/a 

D2 4 228 43 
 

D2 0 14 2 

D7 9 353 116 
 

D7 0 16 6 

D14 0 290 61 
 

D14 0 14 3 

D21 2 27 9 
 

D21 0 10 5 
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ENDOGENOUS 
    

TRANSFER 
   

LY6C Lowest 

Value 

Highest 

Value 

Mean 
 

Ly6C Lowest 

Value 

Highest 

Value 

Mean 

D0 20 99 46 
 

D0 n/a n/a n/a 

D2 4 33 16 
 

D2 8 50 24 

D7 18 952 217 
 

D7 8 32 22 

D14 14 113 55 
 

D14 0 56 14 

D21 13 209 44 
 

D21 20 80 40 
         

ENDOGENOUS 
    

TRANSFER 
   

LY6C- Lowest 

Value 

Highest 

Value 

Mean 
 

Ly6C- Lowest 

Value 

Highest 

Value 

Mean 

D0 1936 2762 2279 
 

D0 n/a n/a n/a 

D2 550 1583 989 
 

D2 0 0 0 

D7 779 2758 1561 
 

D7 0 0 0 

D14 1919 5455 2930 
 

D14 0 0 0 

D21 354 2876 1330 
 

D21 0 0 0 
         

ENDOGENOUS 
    

TRANSFER 
   

CD19 Lowest 

Value 

Highest 

Value 

Mean 
 

CD19 Lowest 

Value 

Highest 

Value 

Mean 

D7 701 2395 1278 
 

D7 0 15 4 

D14 4 600 273 
 

D14 0 0 0 

D21 155 652 407 
 

D21 0 7 2 
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Figure 4.6: Total endogenous and transferred leukocytes present within the retina and 

vitreous at each clinical imaging time point. Quantified leukocyte numbers present within the 

retina and vitreous at each clinical imaging time point during clinical disease. In the endogenous and 

transferred compartment. Full time course of CD8+ T cell number present within the eye during 

disease (A).  Full time course of CD11b+ cell number present within the eye during disease (B). Full 

time course of Ly6G+ (neutrophil) cell number present within the eye during disease (C). Full time 

course of Ly6C+ (inflammatory monocytes) cell number present within the eye during disease (D). Full 

time course of Ly6C- cell number present within the eye during disease (E). Full time course of CD19+; 

B cell number present within the eye during disease (F). Data expressed as mean + SEM. One-Way 

ANOVA multiple comparisons of against naïve for the endogenous cell compartment and against day 

2 for transferred cells *p<0.1, **p<0.01, ***p<0.001, p<0.0001. Stats not performed for day 35 as only 

one experiment, data shown to represent time course. 

Tables shows range and mean of data presented. 
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4.3.5 Adoptive transfer of CX3CR1 heterozygous cells into RAG2-/- recipients 

causes recruitment of antigen-specific CD4+ T cells to ocular tissue by day 2 

As illustrated previously (figure 4.5), the recruitment of uveitogenic transferred CD4+ T cells 

to the ocular tissue is detectable by day 2 after transfer this is associated with an increased 

number of endogenous CD4+ T cells that accumulate in the eye at this time point. To analyse 

if the endogenous T cell compartment is needed for the retention of transferred cells to occur, 

this compartment was eliminated from the experiment by using RAG2-/- mice as recipients of 

uveitogenic cell transfer.  

Cells were transferred into Ly5 recipients or RAG2-/- recipients. When the two groups are 

compared (figure 4.7) recruitment of transferred CD4+ and CD8+ T cells to the eye two days 

after adoptive transfer is comparable.  

Recruitment of transferred CD4+ T cells is observed in both groups at day 2 after adoptive 

transfer is shown in figure 4.7a. There is no significant difference between recruitment of 

transferred cells within the two recipient groups. The same affect is also present within the 

CD8+ compartment (figure 4.7b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  LOWEST VALUE HIGHEST VALUE MEAN 

CD4 HET-RAG 14 128 67 

CD4 HET-LY5 5 154 62 

CD8 HET-RAG 10 70 43 

CD8 HET-LY5 0 205 50 
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Figure 4.7: Total endogenous and transferred leukocytes present within the retina and 

vitreous at each clinical imaging time point. Leukocytes were transferred into Ly5 (wildtype) mice 

and RAG2-/-mice.  Two days after adoptive transfer vitreous and retinas were assessed by flow 

cytometry. CD4+ (A) and CD8+ (B) transferred cell populations present within the eye were quantified 

and comparisons across the two groups made. Data expressed as mean + SEM. 

Table shows range and mean of data presented. 
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4.3.6 Selective recruitment of CD4+ T cells to the ocular tissue during active 

clinical disease  

Recruitment of transferred CD4+ T cells to the ocular tissue during active clinical disease was 

illustrated in figure 4.5. To determine if this is a selective recruitment to the ocular tissue, 

other organs were analysed and endogenous and transferred CD4+ T cells quantified. 

Within the eye (figure 4.8), transferred cells are detected by day 2 after adoptive transfer 

(highlighted in figure 4.5), by day 7 this population has increased due to peak disease. The 

transferred population then persists through active clinical disease to day 14 and continues 

to persist through to day 21 when active disease has resolved. The transferred cells further 

persist through to day 67 where disease can be considered to be quiescent. 

In contrast within recipient’s blood (figure 4.8), transferred CD4+ T cells are detected at day 

2 but by day 7 (peak disease) the frequency of transferred CD4+ T cells detected within the 

blood has decreased. This effect is further seen at day 14 and day 21 with transferred cells 

making up a smaller frequency of the total CD4+ populations. 

In a sample taken from a whole liver at each time point (figure 4.8), transferred CD4+ T cells 

are detected at day 2, the ratio of transferred and endogenous CD4+ T cells remains 

consistent throughout disease course but in contrast to the blood the frequency of CD4+ 

transferred cells present within the liver at day 7 increases in comparison to day 2 this 

increase in the frequency of transferred CD4+ T cells coincides with peak clinical disease in 

the eye. At day 14 and day 21, the frequency of transferred cells continues to decrease as 

active disease resolves which is also seen in the blood. 
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Figure 4.8: Frequency of transferred CD4+ T cells in the periphery of recipients during EAU. 

To determine if the recruitment of transferred CD4+ T cells to the eye to cause clinical disease is a 

selective recruitment, transferred populations within non-lymphoid tissues such as blood and liver 

were quantified. (A) Recruitment of endogenous and transferred CD4+ T cells present within the eye 

during clinical disease. (B) Recruitment of endogenous and transferred CD4+ T cells present within the 

blood during clinical disease. (C)) Recruitment of endogenous and transferred CD4+ T cells present 

within the liver during clinical disease. Data expressed as Mean cell number. 
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4.4 Discussion 

This chapter uses the adoptive transfer technique developed in chapter 3 to induce EAU and 

interrogate disease course.  

In order to understand disease, eyes were monitored using an optimised OCT clinical imaging 

technique following disease progression from day 2 to day 67. At different time points 

vitreous and retinas were isolated and analysed to quantify leukocyte infiltrate, specifically 

endogenous and transferred CD4+ T cells. 

To establish pre-clinical changes of leukocyte number, leukocytes present within the eyes of 

naïve non-manipulated mice were quantified to give a baseline. 2 days after adoptive transfer 

recipients’ eyes were imaged, where no clinical changes can be identified by OCT. When the 

retina and vitreous is isolated and leukocytes quantified using flow cytometry transferred 

cells are detected within the tissue (figure 4.4 and 4.5). Disease scoring was obtained by 

analysing fundal images at each time point. The mean score is obtained from the set of criteria 

described in chapter 2 (Table 2.2), hence why increased scores are observed at peak disease 

due to the high levels of infiltrate and at late disease where minimal infiltrate is present but 

structural damage is greatest. Peak active clinical disease is observed at day 7 to 10 within the 

recipients and persists in an active phenotype through to day 14. Resolution of the active 

stage of disease occurs from day 21 and disease remains in a quiescent state from this time 

point. Although minimal retinal infiltrate is observed, due to the severity of the active disease 

stage the eye remains scarred and the structure damaged. 

This chapter presents the kinetics of disease in comparison to naïve control eyes, however in 

future chapters mice that have received a PBS intraperitoneal injection are used as the 

baseline control for comparison. 

In the CD4+ T cell compartment at day 2, a small population of transferred CD4+ T cells were 

detected, along with an increase within the endogenous CD4+ T cell compartment. This 

observation suggests an increased recruitment of endogenous CD4+ T cells after adoptive 

transfer of uveitogenic antigen specific leukocytes. Whether they are sticking in the eye due 

to non-specific tissue activation or whether an antigen-specific response is required is 

addressed within the next chapter. To understand if the recruitment of transferred cells to 

the eye at day 2 required an endogenous T cell response within the recipient, uveitogenic 

leukocytes were transferred into RAG2-/- mice that have no endogenous T or B cells. Retinas 
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and vitreous were isolated from recipients from the RAG2-/- group. CD4+ transferred T cells 

were quantified to analyse differences in transferred cell recruitment (figure 4.6). No 

difference in transferred CD4+ T cells was observed between the two groups at day 2 after 

adoptive transfer, demonstrating that endogenous lymphocytes are not required for the 

recruitment of transferred cells to be recruited and retained in the eye at this time point. We 

conclude that the transferred cells are sufficient to cause disease.  

In wild type recipients, throughout active clinical disease course (day 7-21), recruitment of 

both endogenous and transferred CD4+ T cells increases within the retinal and vitreous 

infiltrate in comparison to day 2 infiltrate (figure 4.4). As seen at the day 2 time point 

transferred CD4+ T cells are recruited to the eye accompanied by increased endogenous CD4+ 

T cells, this is followed by further increased recruitment of both endogenous and transferred 

CD4+ T cells to obtain a peak in clinical disease at day 7 (figure 4.4). The ratio of endogenous 

and transferred CD4+ T cells at this time point is at roughly 1:1, but in some recipients a 

slightly larger endogenous population is observed.  

At day 14, the endogenous and transferred populations have persisted to continue active 

disease. The ratio of endogenous to transfer CD4+ T cells remains at 1:1 in most recipients. 

This highlights the persistence of a large, transferred population within the tissue during 

active clinical disease. However, the larger population in some recipients continues to be the 

endogenous population due to activation within the inflammatory environment of the ocular 

tissue. When T cells encounter antigen within the eye  they have to capabilities to become 

anergic or undergo apoptosis, secrete TGF-β and release soluble regulatory factors including 

the TCR α chain (204). Antigen taken up by cells originating from the eye, escape the tissue 

and are recruited to the spleen to activate a population of antigen-specific B and T cells (204). 

Anergic cells can be differentiated from naive and activated cells by CTLA4 and PD-1 staining 

(205). 

By day 21, active disease has begun to resolve, and overall infiltrate has reduced when the 

eyes are imaged using OCT (figure 4.3). This is mirrored in the CD4+ T cell number an overall 

reduction in total CD4+ T cells is observed by flow cytometry.  

Overall, following the induction of clinical disease, the ratio of transferred to endogenous cells 

remains ~1:1 through the duration of the experiment. Therefore, the disease process sustains 

the original pathogenic cells and their progeny indefinitely. Also, using clinical scoring alone 

disease does not appear to resolve, this is due to increased tissue damage after the high levels 
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of retinal infiltrate present throughout active clinical disease. When correlating flow 

cytometry data with OCT clinical scoring it is obvious the differences in disease activity and 

tissue damage, however with the imaging data alone this is not easily distinguishable. 

At day 35 through to day 67, active clinical disease has resolved but transferred CD4+ T cells 

persist within the eye. The persistence of the original uveitogenic transferred CD4+ T cells 

within the eye throughout clinical disease suggest these cells are long lived and although may 

not be driving active disease they are persisting within the eye after active disease has 

resolved. The persistent increase in endogenous CD4+ T cells within the eye after active 

clinical disease suggests that changes in the tissue due to disease course have resulted in the 

increased retention of endogenous CD4+ T cells patrolling the tissue. In studies previously 

undertaken within the group a change in the nature of immune surveillance of the retina was 

observed following inflammation suggesting it is more likely a relapse of autoimmune disease 

is triggered by intercurrent activation of the immune system (114).  

In comparison, CD8+, CD11b+ and CD19+ cells, which are components of the cell line, do not 

survive in the long term after adoptive transfer in the recipients and minimal cell numbers 

are detected within the eye. However, in the CD8+ transfer population an increase in the 

transferred population was observed at peak disease (day 7) but decreases in numbers and 

does not persist within the tissue throughout disease.  The endogenous compartment does 

contribute cells from these lineages during active clinical disease where the changes in their 

cell numbers parallel those of the CD4+ infiltrate. 

To further interrogate the behaviour of the transferred CD4+ population within the recipients, 

lymphoid and non-lymphoid organs were also analysed by flow cytometry through clinical 

disease to calculate the frequency of transferred CD4+ T cells within lymphoid and non-

lymphoid tissue. In the blood, transferred CD4+ T cells are detected in the largest frequency 

at day 2 and as clinical disease develops the frequency is reduced (4.8). In the liver although 

a small increase in transferred CD4+ cells is observed at day 7 this could be due to the cells 

proliferating within the tissue. The frequency of transferred cells reduces from this timepoint 

(figure 4.8). BrdU staining could be used to understand if the cells are proliferating within the 

tissue between day 2 and day 7 or if the cells are being recruited from the periphery between 

these time points. The reduction in frequency of transferred CD4+ T cells in non-lymphoid 

tissue through clinical disease is in contrast to the eye where the transferred CD4+ population 
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increases through active clinical disease and persists through post-clinical disease suggesting 

a selective recruitment of the RBP3 specific transferred CD4+ T cells. 

In conclusion, adoptive transfer of antigen specific pathogenic cells induces EAU in naïve 

recipients. Transferred CD4+ cells are detectable within the eye at day 2 after transfer 

concurrently with an increase of endogenous CD4+ T cells. The recruitment of transferred 

CD4+ T cells by day 2 to the eye is not reliant on the presence of endogenous CD4+ T cell 

recruitment. Endogenous and transferred CD4+ T cell recruitment increases by day 7 when 

peak disease is observed by OCT and quantification of leukocyte infiltrate. At this time point, 

endogenous and transferred CD4+ T cells are at a ratio of ~1:1 in some recipients but with a 

slightly larger endogenous population present within the eyes of other recipients. Active 

clinical disease persists to day 14 and endogenous and transfer populations persist within the 

eye. By day 21, active disease has resolved so total CD4+ T cell number reduces. Elevated 

endogenous CD4+ T cell population persists within the eye. By this time point transferred 

CD4+ T cells are now the larger population within the eye and have persisted throughout 

active clinical disease. By day 35 through to day 67 clinical disease has resolved but elevated 

endogenous CD4+ T cells in comparison to the naïve baseline remain present within the eye. 

Transferred CD4+ T cells persist in the eye through to day 67 in a small population even with 

no active disease present. Suggesting that the tissue never returns to its original state and 

immune surveillance of the tissue is permanently altered after active clinical disease. 
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5.1 Introduction 

 
The structure of the vasculature and lymphatic system are lined with endothelium, which is a 

single layer in thickness, this semipermeable layer lies between the vessel walls and the 

circulation. The endothelium acts as a barrier between vessels present in the blood and lymph 

and the tissues that surround them (206). The endothelium is essential in a number of 

physiological processes. It is considered a highly dynamic organ spread throughout the body 

to perform highly specialised functions. In total, in humans there are roughly 1-6x1013 

endothelial cells that make up the endothelium with a total surface area of more than 1000 

square metres (206). The heterogeneity of endothelial cells enables them to adapt their 

functions in different vascular sites (206). 

 

5.1.1 Functions of the endothelium 

The endothelium was once thought to have no specific functions other than the wrapping of 

the vasculature allowing selective permeability to water and electrolytes (207). But now it is 

understood that endothelial cells are paramount to vascular biology. The main functions of 

the endothelium are thrombosis and thrombolysis, coagulant mechanisms, regulation of 

vascular tone and growth, cell proliferation and angiogenesis and platelet and leukocyte 

interaction (207). 

 

5.1.2 The resting endothelium and how it becomes activated in inflammation 

The main site of leukocyte trafficking from the blood into non-inflamed tissues are the 

vascular endothelial cells, these cells are also responsible for maintaining the fluidity of blood 

and regulation of blood flow, and are capable of controlling the permeability of vessel walls 

(208). Interactions between leukocytes and endothelial cells influence immune surveillance 

and mediate wound repair and acute and chronic inflammation. Leukocytes accumulate 

within the tissue due to excessive adhesive interactions between the endothelium and 

patrolling leukocytes (209). Weibel-Palade bodies are secretory vesicles used by resting 

endothelial cells to accumulate leukocyte interactive proteins including P-selectin and 

chemokines to stop any interactions with patrolling leukocytes. Transcription of adhesion 

molecules is also suppressed by resting endothelial cells including vascular cell-adhesion 
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molecules (VCAM1), intracellular adhesion molecule (ICAM1) and E-selectin (208-211). 

Vascular endothelial cells will then change their phenotypes depending on the phase of the 

inflammatory process (208).  

During non-infectious posterior uveitis, activated T cells recruited to the eye contributing to 

the inflammatory response produce cytokines and chemokines that are capable of activating 

retinal vessels (212). Activation of the retinal vessels induces a change in the phenotype of 

the endothelial cells present within the eye, upregulation of adhesion molecules including P-

selectin, ICAM-1 and VCAM-1 concurrently with a downregulation of tight junction protein 

(212). This response leads to recruitment of a wide range of leukocytes that are directly 

responsible for damage to the tissue, this causes the BRB to become increasingly permeable 

to allow more immune infiltrate into the eye to create an amplification loop of the pathogenic 

process (212). 

In studies of EAU in the B10 RII mouse, Heping et al described the sequence of events after 

EAU induction to be the focal adhesion of leukocytes on postcapillary venules in discrete sites 

followed by upregulation of adhesion molecules that induces breakdown of the blood retina 

barrier (213). 

Activation of endothelial cells consists of two stages, endothelial cell activation type I and 

endothelial cell activation type II. Endothelial cell activation type I is rapidly occurring and 

stimulates endothelial cells without the need for gene upregulation or de novo protein 

synthesis, however endothelial cell activation type II takes time to have an effect on 

endothelial cells by gene transcription or protein synthesis as the stimulating agent needs 

time to take effect (83). The effects of endothelial cell activation type I are the expression of 

P selectin, the release of von Willebrand factor and the retraction of endothelial cells. the 

genes that are involved are those for adhesion molecules, cytokines and tissue factor (83). In 

order to migrate through the endothelium into the circulation, leukocytes first must adhere 

to the endothelium at preferential sites with specialised functions to undergo 

transendothelial migration within blood vessels. In non-lymphoid tissues these specialised 

sites are found at post capillary sites and in lymphoid tissue at high endothelial venules. 

Leukocytes moving through the blood will make contact with the wall of the vessel to interact 

with the endothelium, the cells will then slow and begin to roll along the endothelium and 

either disengage and re-enter flow of blood or will stop and remain stuck on the endothelium 

(84). 
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5.1.3 The endothelium as an antigen-presenting cell 

It has been demonstrated both in vitro and in vivo that T cells can recognise antigen on the 

surface of endothelial cells (214). In vitro, it has been demonstrated that IFN-γ induces 

expression of MHC class II molecules on endothelial cells which results in T-cell activation and 

proliferation after interaction (214). In vivo, circulating T cells have also been observed to 

recognise antigens on the surface of endothelial cells which trigger endothelial cell activation 

causing a release of mediators (214, 215).  

In rat models studying the endothelium presenting antigen within the eye during EAU, antigen 

was detected within the retinal vessels when early signs of retinal infiltrate was observed 

(216).  Further to this, studies have also shown gamma interferon expression within the eye 

induce vascular endothelium to express class II antigens at comparable levels to a 

macrophage (217). 

 

5.1.4 Antigen specific T cell recruitment during disease 

When using the adoptive transfer model that is discussed in chapter 4, T cells are stimulated 

in vitro with the cognate antigen to give an activated phenotype. Thus, when the cells are 

transferred into the recipient and enters the ocular tissue the T cell has the capacity to 

proliferate, produce cytokines, interact with APCs and induce cytotoxicity to promote 

inflammation (169).  

From data collected and presented in chapter 4, an increased recruitment of endogenous 

CD4+ T cells is observed at day 2 after transfer. From this observation the hypothesis that the 

endothelium is becoming activated by the transferred pathogenic CD4+ T cells, causing 

endogenous cells to tether to the endothelium to initiate clinical disease was considered. The 

aim of this chapter is to understand if the activation of the endothelium depends on an 

antigen specific response initiated by the pathogenic transferred T cells or a non-antigen 

specific response caused by the activation status of the transferred T cells. 
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5.2 Materials and Methods 

 
5.2.1 Activation of OTII TCR Transgenic splenocytes 

Splenocytes were isolated from OTII CD45.1 TCR transgenic mice or OTII CX3CR1+/GFP CD45.1.2 

mice and activated in cell culture with 1μg/ml OVA peptide antigen, 10ng/ml IL-23 and 

10ng/ml IL-2 (added at 24 hours). Leukocytes were isolated after 72 hours of culture using 

Ficoll centrifugation and transferred by intraperitoneal injection at 2x106 total leukocytes per 

recipient. 

 

5.2.2 Generation of uveitogenic leukocytes for adoptive transfer 

C57BL/6 CX3CR1+/GFP CD45.2 mice were immunised with RBP3 peptide 629-643, spleen and 

lymph nodes were isolated at day 11 and cultured for 72 hours supplemented with RBP3, 10 

no/ml IL-23 and 10ng/ml IL-2 (added at 24 hours). Leukocytes were then isolated using Ficoll 

centrifugation and transferred into naïve CD45.1 Ly5 WT recipients by intraperitoneal 

injection at 2x106 cells per mouse.  

 

5.2.3 Clinical imaging 

OCT was used to acquire clinical imaging for a disease time course from day 0 to day 25 using 

the standardised method developed and described in data chapter 3.   

 

5.2.4 Flow cytometry 

At predefined time points after adoptive transfer, retinas were analysed by flow cytometry to 

quantify total cell number for each leukocyte population. Allelic markers were used as seen 

previously to identify transferred and endogenous populations including CD45.1, CD45.2 and 

CD45.1.2.  

 

5.2.5 Statistical Analysis 

Cell numbers were calculated from the standard curve (n) and were log transformed (ln(n+1) 

and expressed as Mean + SEM. Statistical analysis such as a Mann Whitney test (for 2 sample 

groups) or a one-way ANOVA for sample groups of more than two was performed. 
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5.3 Results 

5.3.1 Intraperitoneal injection of PBS causes an increase in endogenous cells 

present within the eye 

In order to establish the sensitivity of the analysis to small changes between total CD4+ and 

CD8+ T cells in naïve unmanipulated recipients and changes in cell number before clinical 

disease is observed, cell numbers in the eye were quantified using standard methods 

previously used in the group (data first shown in chapter 4) (114).  

The optimised adoptive transfer technique uses an intraperitoneal injection to transfer the 

cells into the recipients. To account for the trauma from any injection, a baseline analysis of 

the effect this might have on cell numbers is useful when studying small differences in CD4+ 

and CD8+ cell numbers between naïve animals, animals receiving PBS only and those receiving 

PBS plus an aliquot of cells. 

Naïve mice received an intraperitoneal injection of 200μl of PBS alone but with no cell 

transfer. At day 2 after injection retinas were analysed to quantify CD4+ cell numbers and 

CD8+ cell numbers. 

A statistically significant increase in CD4+ T cell number within the eye is observed at day 2 

after intraperitoneal injection of PBS (Figure 5.1) compared with naïve cell numbers, this 

shows that injection trauma effects the number of CD4+ T cells that adhere in the eye. 

In contrast, the procedure does not appear to influence the CD8+ T cell number due to the 

larger dynamic range in the naïve CD8+ dataset therefore no change in cell number can be 

detected (Figure 5.1).  
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Figure 5.1: Intraperitoneal injection of PBS causes a statistically significant increase in CD4+ 

T cells sticking in the eye. Mice were age-match naïve or were given a 200μl intraperitoneal 

injection of tissue culture grade PBS. At day 2, eyes were dissected and total CD4+ and CD8+ numbers 

quantified. Data are expressed as Mean +SEM. Statistical analysis performed: unpaired non-

parametric Mann-Whitney Test **p<0.01. 
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5.3.2 Activated and non-activated OTII cells do not activate the endothelium 

and remain in the eye after adoptive transfer 

To investigate whether the recruitment of endogenous cells at day 2 after pathogenic 

adoptive transfer requires an antigen specific response to activate the endothelium or is 

solely due to a non-specific accumulation of activated transferred cells induced by the 

intraperitoneal injection, OVA specific activated cells were transferred into naïve recipients 

and leukocytes quantified to determine changes in endogenous and transferred leukocyte 

cell number retained within the eye after transfer. 

Antigen presentation by the endothelium leads to recruitment of specific T cells. Interactions 

between circulating T cells and the endothelium could influence the development of a local 

immune response. Due to the continuous interaction of circulating T cells with endothelial 

cells full competency of the endothelium as an APC could create problems in the regulation 

of autoimmune reactivity (218). The possibility that antigen presentation by the endothelium 

can directly influence the extent of lymphocyte recruitment at the site of inflammation has 

been demonstrated in EAE (218). 

TCR transgenic OTII cells were activated in vitro with OVA antigen and then transferred into 

naïve recipients (figure 5.2) because as seen in figure 5.1, i.p injection increases ocular CD4+ 

cell numbers, analysis were carried out using i.p injections as a baseline.  

At day 2 after transfer of 2x106 activated or non-activated OTII cells, there is no significant 

increase in endogenous CD4+ T cell recruitment to the eye in comparison to a PBS 

intraperitoneal injection (data originally shown in figure 5.1) whereas at day 7 the CD4+ T cell 

number had dropped to similar numbers to a naïve unmanipulated mouse (Figure 5.2a). 

Although the number of endogenous CD4+ T cells increases at day 2 after transfer the number 

of transferred cells remaining within the eye is low and not activation state dependent, this 

continues to day 7 when the endogenous cell number decreases  to the level seen in samples 

from naïve animals (Figure 5.2b) activated and non-activated OTII cells do not reach statistical 

significance. 

Whereas in the CD8+ T cell compartment there is no significant increase in the endogenous 

cell number and very few transferred cells stick in the eye at day 2 and day 7 (Figure 5.2c and 

5.2d). 
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 At day 2 after transfer of 5x106 activated cells an increased number of CD4+ transferred cells 

can be seen in the eyes of recipients in comparison to the transfer of 2x106 cells (Figure 5.2b 

and 5.3b). The number of activated transferred cells that stick in the eye is statistically 

significantly increased in comparison to the non-activated transferred cells after transfer. 
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Figure 5.2: Adoptive transfer of activated or non-activated 2x106 TCR transgenic cells into 

naïve recipients. Naïve recipients received an intraperitoneal injection of activated or non-activated 

OTII cells at 2x106 cells per mouse. Retinas were dissected and analysed using flow cytometry at day 

2 or day 7 to quantify the endogenous and transferred CD4+ and CD8+ T cell populations present 

within the eye. (A+C) Endogenous CD4+ or CD8+ T cell number present within the eye in naïve 

recipients, recipients that received a PBS intraperitoneal injection (data originally shown in figure 5.1), 

recipients that received a 2x106 activated cell transfer analysed at day 2, recipients that received a 

2x106 non-activated cell transfer analysed at day 2 or recipients that received a 2x106 activated cell 

transfer analysed at day 7. (B+D) Corresponding analysis of transferred CD4+ or CD8+ OTII TCR 

transgenic cells present within the eyes of recipients after activated or non-activated transfer at day 

2 or day 7. Data are expressed Mean +SEM. Statistical analysis performed: One-Way ANOVA multiple 

comparisons against PBS (A+C) or against D2 activated (B+D). *p<0.05 
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Figure 5.3: Adoptive transfer of activated or non-activated 5x106 TCR transgenic cells into 

naïve recipients. Naïve recipients received a transfer of 5x106 activated or non-activated OTII cells. 

Retinas were dissected and endogenous and transferred CD4+ and CD8+ T cells were quantified at day 

2. (A+B) Endogenous and transferred CD4+ T cells present within the eye. (C+D) Endogenous and 

transferred CD8+ T cells present within the eye. Data are expressed as Mean +SEM. Statistical analysis 

performed: One-Way ANOVA multiple comparisons against PBS (A+C). Statistical analysis performed: 

unpaired non-parametric Mann-Whitney Test (B+D) *p<0.05. 
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5.3.3 Intravitreal injection of OVA with OTII cell transfer causes large amounts 

of retinal infiltrate  

As seen in figure 5.2, transfer of activated or non-activated OTII TCR transgenic cells does not 

initiate clinical ocular disease or recruitment of transferred and endogenous cells. Suggesting 

that the recruitment of endogenous cells by day 2 after pathogenic transfer is due to an 

antigen-specific response.  

To further investigate if the introduction of antigen would lead to the recruitment of OTII cells 

to the eye, OVA antigen was injected intravitreally into one eye. Activated OTII cells were then 

transferred by intraperitoneal injection.  

At day 2, there is no difference by clinical imaging of retinal infiltrate within the OVA injected 

and PBS injected eyes (Figure 5.4a and 5.4b). Flow cytometry demonstrated that transferred 

CD4+ T cells can be detected in both eyes in similar numbers as the activated cell transfer 

alone (Figure 5.2b) (Figure 5.6b). However, when the eye receives the OVA intravitreal 

injection (figure 5.6b) active disease develops after day 2, whereas when OVA specific cells 

are transferred with no intravitreal injection, at day 7 no active disease is present and minimal 

transferred cells are present in the eye. 

The increase in endogenous CD4+ cell number in both eyes is within the range seen in CD4+ 

cell numbers after PBS intraperitoneal injection (Figure 5.6a). A similar response can also be 

seen in the CD8+ and CD11b+ compartments (Figure 5.7a-d and Figure 5.8a-d). In contrast 

within the Ly6G+ and Ly6C+ cell compartment the greatest number of cells is observed at day 

2 due to the injection trauma (Figure 5.9a-d and Figure 5.10a-d). Transferred Ly6C+ cell 

number is the highest number of transferred cells recruited to the eye by that time point 

(Figure 5.10b and 5.10d). 

Whereas, at day 4 by OCT obvious retinal infiltrate was observed around the optic disc in both 

eyes of the recipients (Figure 5.4c and 5.4d) corresponding flow cytometry analysis illustrated 

a recruitment of transferred CD4+ cells to the left eye that received OVA and some non-

specific sticking of the transferred CD4+ T cells in the right eye that received the control 

injection (Figure 5.7b and 5.7d). Whereas, in the endogenous compartment the CD4+ cell 

number in both eyes remains the same as day 2 (Figure 5.6a and 5.6c). In the CD8+ and 

CD11b+ cell compartment endogenous recruitment is within the same limits as day 2, and 
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transferred cells are recruited in low cell number which corresponds with the CD4+ 

compartment (Figure 5.7a-d and 5.8a-d).  

At day 8, OCT shows peak clinical disease characterised by severe retinal infiltrate within the 

vitreous, thickening of the retina and swelling of the optic disc by OCT and vitreal haze and 

perivascular sheathing within the fundus (Figure 5.4e) in the left eye which received the OVA 

antigen in comparison to the right eye which received PBS which continues to look normal 

(figure 5.4f). 

At day 15, clinical disease continued although retinal infiltrate is visibly reduced within the 

vitreous and the retina and optic disc have thinned (Figure 5.6g) suggesting that at this time 

point the disease is past peak. In contrast the right eye still shows no clinical signs of disease 

by OCT and remains normal (Figure 5.4h). When retinal infiltrate is analysed by flow 

cytometry recruitment of endogenous to transferred CD4+ T cells is occurring at a ~1:1 ratio 

in large cell numbers (in the left eye that received the OVA antigen Figure 5.6a-b). Whereas, 

in the right eye endogenous recruitment remains constant from day 4 (Figure 5.6c), in the 

transferred compartment some CD4+ T cells stick non-specifically in the eye but this is not 

statistically significantly higher than day 2 before induction of clinical disease (Figure 5.6d). 

Recruitment of CD8+ T cells to the left eye are significantly higher than seen at day 2 in the 

left eye illustrating a recruitment of endogenous CD8+ T cells to the eye with clinical disease 

(Figure 5.7a) whereas in the right eye where no clinical disease is seen by OCT there is no 

increased recruitment of CD8+ cells (Figure 5.7c). In the transferred compartment cells are 

not recruited to either eye irrespective of clinical disease status, this effect is similarly seen in 

the recruitment of CD11b+ cells (Figure 5.8a-d). In contrast, the increase seen in the Ly6G+ 

cell number at day 2 persists in the inflamed eye (left eye) but does not increase (Figure 5.9a) 

in the non-inflamed eye (right eye) the Ly6G+ cell number decreases significantly by day 15 

(Figure 5.9c). Ly6G+ transferred cells are not recruited to the eye during clinical disease 

(Figure 5.9b and 5.9d). Both endogenous and transferred Ly6C+ cell number decreases by day 

15 (Figure 5.10a-d). 

Clinical disease persists through to day 25 in the left eye after transfer but shows signs of 

resolving by OCT such as reduced cellular infiltrate within the vitreous, and the retinal 

thickness and optic disc have returned to pre disease thickness, in the fundal image the 

vitreous haze has resolved and the perivascular sheathing is no longer visible (Figure 5.4i and 

5.4j). In the left eye, total CD4+ cell number reduces between day 15 and day 25, subsequently 
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the transferred and endogenous populations have also decreased (Figure 5.6a 5.6b). 

Endogenous CD8+ T cell number persists in both eyes, but increased cell numbers were seen 

in the left eye of the recipients in comparison to the right eyes (Figure 5.7a-d). In the CD11b+, 

Ly6G+ and Ly6C+ compartment transferred cells are not recruited to the eye, but endogenous 

cells persist throughout disease, in the left eye that received the OVA peptide there is a more 

severe clinical disease thus cell numbers are increased across all leukocyte populations in 

comparison to the right eye (Figures 5.8a-d, 5.9a-d and 5.10a-d). 
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Figure 5.4: OCT imaging after intravitreal injection of OVA or PBS to day 25. Time course from 

day 2 after intravitreal OVA injection with concurrent intraperitoneal transfer of activated OTII cells at 

2x106 cells per mouse. Left eye received an intravitreal injection of OVA antigen, Right eye received 

an intravitreal injection of PBS. (A-J) Representative OCT images with concurrent fundal imaging from 

day 2 and day 25. Clinical disease is characterised by retinal infiltrate within the vitreous, swelling of 

the optic disc and thickening of the retina on the OCT image and vascular sheathing and vitreal haze 

on the fundal image. 
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Figure 5.5: Average OCT disease scores throughout clinical disease course. Fundal images 

acquired concurrently with OCT images at each time point were scored blind using the criteria 

detailled In chapter 2. Average score was calculated for each eye, data expressed as mean + SEM. Left 

eye received OVA intravitreal injection, right eye received control (PBS/L144) intravitreal injcetion. 
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Figure 5.6: Flow cytometric quantification of CD4+ retinal infiltrate. Retinas were dissected 

and prepared for flow cytometry at pre-defined time points. Total CD4+ cell numbers were quantified 

and then endogenous and transferred cell populations calculated. (A) Total endogenous CD4+ T cells 

present within the left eye of recipients at each time point (B) Total transferred CD4+ T cells present 

within the left eye of recipients at each time point (C) Total endogenous CD4+ T cells present within 

the right eye of recipients at each time point (D) Total transfer CD4+ T cells present within the right 

eye of recipients at each time point. Data are expressed as Mean +SEM. Statistical analysis performed: 

One-Way ANOVA multiple comparisons against PBS (previously shown in figure 5.2) (A+C), 

comparisons against day 2 (B+D). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 5.7: Flow cytometric quantification of CD8+ retinal infiltrate. Retinas were dissected 

and prepared for flow cytometry at pre-defined time points. Total CD8+ cell numbers were quantified 

and then endogenous and transferred cell populations calculated. (A) Total endogenous CD8+ T cells 

present within the left eye of recipients at each time point (B) Total transferred CD8+ T cells present 

within the left eye of recipients at each time point (C) Total endogenous CD8+ T cells present within 

the right eye of recipients at each time point (D) Total transfer CD8+ T cells present within the right 

eye of recipients at each time point. Data are expressed as Mean +SEM. Statistical analysis performed: 

One-Way ANOVA multiple comparisons against PBS (previously shown in figure 5.2) (A+C), 

comparisons against day 2 (B+D). *p<0.05, ****p<0.0001. 
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Figure 5.8: Flow cytometric quantification of CD11b+ retinal infiltrate. Retinas were dissected 

and prepared for flow cytometry at pre-defined time points. Total CD11b+ cell numbers were 

quantified and then endogenous and transferred cell populations calculated. (A) Total endogenous 

CD11b+ cells present within the left eye of recipients at each time point (B) Total transferred CD11b+ 

cells present within the left eye of recipients at each time point (C) Total endogenous CD11b+ cells 

present within the right eye of recipients at each time point (D) Total transfer CD11b+ cells present 

within the right eye of recipients at each time point. Data are expressed as Mean +SEM. Statistical 

analysis performed: One-Way ANOVA multiple comparisons against day 2 (A-D). **p<0.01, 

***p<0.001 
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Figure 5.9: Flow cytometric quantification of Ly6G+ retinal infiltrate. Retinas were dissected 

and prepared for flow cytometry at pre-defined time points. Total Ly6G+ cell numbers were quantified 

and then endogenous and transferred cell populations calculated. (A) Total endogenous Ly6G+ cells 

present within the left eye of recipients at each time point (B) Total transferred Ly6G+ cells present 

within the left eye of recipients at each time point (C) Total endogenous Ly6G+ cells present within 

the right eye of recipients at each time point (D) Total transfer Ly6G+ cells present within the right eye 

of recipients at each time point. Data are expressed as Mean +SEM. Statistical analysis performed: 

One-Way ANOVA multiple comparisons against day 2 (A-D). *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 
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Figure 5.10: Flow cytometric quantification of Ly6C+ retinal infiltrate. Retinas were dissected 

and prepared for flow cytometry at pre-defined time points. Total Ly6C+ cell numbers were quantified 

and then endogenous and transferred cell populations calculated. (A) Total endogenous Ly6C+ cells 

present within the left eye of recipients at each time point (B) Total transferred Ly6C+ cells present 

within the left eye of recipients at each time point (C) Total endogenous Ly6C+ cells present within 

the right eye of recipients at each time point (D) Total transfer Ly6C+ cells present within the right eye 

of recipients at each time point. Data are expressed as Mean +SEM. Statistical analysis performed: 

One-Way ANOVA multiple comparisons against day 2 (A-D). *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 
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5.3.4 Selective recruitment of transferred cells to the retinal tissue throughout 

clinical disease 

The recruitment of transferred activated CD4+ T cells to the eye is due to an antigen-specific 

response. As OVA is not present within the ocular tissue naturally, an intravitreal injection of 

the OVA peptide allows local presentation of that antigen to the OTII TCR carried by the 

transferred activated OTII T cells.  

When OVA antigen is present within the ocular tissue (similarly to the uveitogenic cell transfer 

where the antigen the leukocytes have been primed to recognise is present within the ocular 

tissue) a large number of cells are recruited to the tissue of both a transferred and 

endogenous phenotype which is not observed when the antigen is not present.  

At day 15, clinical disease is observed (Figure 5.5g and 5.5h) and the ratio of endogenous to 

transferred CD4+ T cells within the eye is ~1:1 (Figure 5.6a and 5.6b). At this time point within 

lymphoid and non-lymphoid tissues and blood transferred cells were also seen in comparable 

populations to the eye (Figure 5.11b).  

The transferred cell population persists within the lymphoid and non-lymphoid tissue through 

to day 25 (figure 5.11d) but transferred cell number within the left eyes (that received the 

OVA peptide) of recipients has begun to decrease as clinical disease by OCT is resolving 

(Figure5.5i) (Figure 5.11d). 
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Figure 5.11: Recruitment of OVA specific cells to lymphoid and non-lymphoid tissue. After 

intravitreal injection of OVA transferred CD4+ T cells were tracked in eyes, blood, lymphoid 

tissue (spleen and lymph node) and non-lymphoid tissue (liver and kidney). A) endogenous 

CD4+ T cells present within each tissue at day 15 B) transferred CD4+ T cells present within 

each tissue at day 15. C) endogenous CD4+ T cells present within the tissues at day 25 D) 

transferred CD4+ T cells present within the tissues at day 25.  

Data expressed as ln (1+ cell number) with error bars illustrating minimum and maximum 

cell number within data set. 
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5.3.5 Non-specific recruitment of non-antigen specific activated cells during 

clinical disease 

Cellular infiltrate is a distinctive feature of infection, in many types of inflammation the role 

T cells have to play has been well documented but the specific impact of the accumulation of 

other effector cells and migration of T cells to the tissue due to antigen recognition is still 

needing to be investigated (219). In a study carried out by Ghani et al 2009, a model driven 

by an inflammatory effector phase using TCR transgenic T cells found that, (i) increased 

recruitment of effector T cells and other leukocytes was due to antigen specific T cells playing 

a critical role as ‘pioneer cells’ to prepare the tissue, (II) infiltration of T cells is not reliant 

upon antigen specificity (219). It was further demonstrated that a minimal number of antigen-

specific cells recruited to the tissue are capable of inducing a large number of cells to migrate 

to the antigen-loaded site (219). Accumulation of T cells is independent of T cell reactivity to 

antigen during the early stages of inflammation despite it being a process driven by antigen 

later on in disease course, after initial arrival both transgenic and wild-type T effector cells 

show levels of increased recruitment to the site of antigen challenge and further activation of 

antigen-specific pioneer cells (219). This study further suggests that bystander activation of 

non-specific effector/memory T cells is a general feature of inflammation (219). 

As illustrated in previous chapters, adoptive transfer of uveitogenic cells induces EAU (figure 

4.5). By day 2, antigen-specific transferred cells can be detected in the eye, by day 7 as peak 

disease is reached a selective accumulation of antigen-specific transferred cells are present 

within the eye (figure 4.5). This continues through to day 14. In contrast, adoptive transfer of 

non-antigen specific activated cells causes limited CD4+ T cells stick in the ocular tissue (Figure 

5.3a and 5.3b), if the antigen is then added to the tissue using an intravitreal injection a 

recruitment of transferred CD4+ T cells occurs and clinical disease ensues (Figure 5.6a and 

5.6b) including recruitment of endogenous cells in large numbers to the eye containing the 

antigen (Figure 5.6c).  

Further to these observations the adoptive transfer of antigen-specific leukocytes and non-

antigen specific OT-II activated leukocytes at a 1:1 ratio was performed. Clinical disease 

course followed the same pattern as the previous antigen-specific transfers (figure 4.4 and 

4.5). Clinical imaging was used to monitor recipients (Figure 5.12) from day 0 to day 14, eyes 

were then analysed by flow cytometry at ay 2, day 7/8 and day 14 to analyse cellular infiltrate 
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and using allelic markers detect the endogenous CD4+, CD8+ and CD11b+ cells (Figure 5.13a, 

5.14a and 5.15a), transferred antigen-specific CD4+, CD8+ and CD11b+ cells (Figure 5.13b, 

5.14b and 5.15b) and transferred activated OTII CD4+, CD8+ and CD11b+ cells that are non-

antigen specific (Figure 5.13c, 5.14c and 5.15c).  
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Figure 5.12: OCT imaging of recipients from day 0 (baseline) to day 14 after transfer. (A) 

Baseline fundal and OCT imaging of recipients before manipulation. (B) Fundus and OCT at day 5 after 

adoptive transfer; increased levels of cellular infiltrate is observed within the vitreous, thickening of 

the retina and swelling of the optic disc in the OCT image, within the fundal image a vitreal haze has 

formed due to cellular infiltrate and whitening around the optic disc. (C) Fundus and OCT imaging at 

day 14 after adoptive transfer; traits observed are still observed but disease is past peak and clinical 

signs of diseases have started to resolve. 
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Figure 5.13: Flow cytometry quantification of allelically marked CD4+ T cells. Allelic markers 

allow detection and quantification of different populations of CD4+ T cells. (A) Total endogenous CD4+ 

T cells quantified using flow cytometry at different time points throughout clinical disease. (B) Total 

transferred antigen specific CD4+ T cells quantified using flow cytometry at each time point 

throughout clinical disease. (C) Total transferred OTII non-antigen specific activated CD4+ T cells 

quantified using flow cytometry at different time points throughout clinical disease.  

Data are expressed as Mean +SEM. Statistical analysis performed: One-Way ANOVA multiple 

comparisons against naive (A), comparisons against day 2 (B+C). *p<0.05, ****p<0.0001. 
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Figure 5.14: Flow cytometry quantification of allelically marked CD8+ T cells. Allelic markers 

allow detection and quantification of different populations of CD8+ T cells. (A) Total endogenous CD8+ 

T cells quantified using flow cytometry at different time points throughout clinical disease. (B) Total 

transferred antigen specific CD8+ T cells quantified using flow cytometry at each time point 

throughout clinical disease. (C) Total transferred OTII non-antigen specific activated CD8+ T cells 

quantified using flow cytometry at different time points throughout clinical disease.  

Data are expressed as Mean +SEM. Statistical analysis performed: One-Way ANOVA multiple 

comparisons against naive (A), comparisons against day 2 (B+C). *p<0.05, ****p<0.0001. 
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Figure 5.15: Flow cytometry quantification of allelically marked CD11b+ cells. Allelic markers 

allow detection and quantification of different populations of CD4+ T cells. (A) Total endogenous 

CD11b+ cells quantified using flow cytometry at different time points throughout clinical disease. (B) 

Total transferred antigen specific CD11b+ cells quantified using flow cytometry at each time point 

throughout clinical disease. (C) Total transferred non-antigen specific activated CD11b+ cells 

quantified using flow cytometry at different time points throughout clinical disease.  

Data are expressed as Mean +SEM. Statistical analysis performed: One-Way ANOVA multiple 

comparisons against naive (A), comparisons against day 2 (B+C). *p<0.05, ****p<0.0001. 
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5.4 Discussion 

The work presented in this chapter demonstrates that both non-antigen specific and antigen 

specific stimuli induce recruitment of CD4+ T cells to the ocular tissue, although to very 

different levels.  

Intraperitoneal injection of PBS initiated a change in the numbers of endogenous CD4+ T cells 

to the eyes of recipients, compared with age matched naïve mice at day 2 after injection 

(Figure 5.2). This procedure provides a baseline for recipients after cell transfer. This increase 

in CD4+ T cells within the ocular tissue could be due to endotoxin release from the injection 

site activating endothelial cells within the eye encouraging retention of CD4+ T cells.  

In the endotoxin induced uveitis model, LPS is injected directly into the ocular tissue to initiate 

a cascade of signalling reactions, increased expression of inflammatory markers results in the 

breakdown of the blood-ocular barrier and the infiltration of leukocytes into ocular tissue 

causing clinical disease (220).  

Toll like receptor 4 (TLR4) recognises the bacterial component LPS and is ubiquitously 

expressed in the vasculature (221). The small release of endotoxin from the injection site 

induces a lesser effect and recruitment of cells in comparison to EIU induction by intravitreal 

injection of LPS. Endothelial cells can be involved in the coordination of the recruitment of 

inflammatory cells to the tissue after injury or infection to produce and release cytokines and 

growth factors to communicate with immune cells entering the tissue. The activation of 

endothelial cells through TLRs can be direct through interaction with ligand molecules or may 

require a prior inflammatory stimulus such as IFN-γ, LPS or TNF-α (221). It has been observed 

in various models of inflammation that LPS leads to cell arrest in the tissue. On the other hand, 

TLR4 activation has been demonstrated to enhance survival and proliferation of CD4+ T cells 

(222). 

To assess if the recruitment of endogenous cells observed at day 2 in the pathogenic transfer 

is due to more than a non-antigen specific response stimulating endothelial activation, 

adoptive transfer of antigen specific activated cells was contrasted with non-antigen specific 

activated OTII cells and non-antigen specific non activated OTII cells that were transferred 

into naïve recipients. Analysed by flow cytometry at day 2 and day 7 (Figure 5.3 and 5.4) the 

increase in endogenous CD4+ T cells in the non-antigen specific OTII cell transfer is 

indistinguishable from the PBS intraperitoneal injection alone at day 2 and declines by day 7. 
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In the transferred CD4+ T cell compartment, very small numbers of cells are recovered from 

the eye, showing that without an antigen specific response in the eye, T cell activation alone 

leads to very low levels of cell retention at day 2.  

As the OVA-specific T cells are not recruited to the eye of recipients when no local stimulus is 

present, two experiments were carried out. Firstly, a transfer of OVA-specific T cells 

concurrently with an intravitreal injection of OVA into one eye and a control intravitreal 

injection into the other eye of each recipient showed selective recruitment to the OVA 

injected eye. Several studies have described the disappearance of antigen-specific 

effector/memory T cells from the periphery and their accumulation within antigen-challenged 

sites (219, 223). Accumulation of autoantigen specific T cells was observed in these studies in 

lymphoid organs that specifically expressed the autoantigen (219). It has been further 

demonstrated that antigen-specific CD4 T cells also migrate to non-lymphoid organs in large 

numbers after systemic exposure to antigen (224, 225) but here it was not possible to 

determine whether T cells migrated preferentially to the antigen-containing organs (225). 

Data presented in chapter 4 supports the accumulation of CD4+ T cells to non-lymphoid 

organs and suggests that the transferred auto-antigen specific T cells were selectively 

recruited to the eye which contains the target antigen, as well as being retained in lymphoid 

tissues such as the spleen and lymph nodes.  

In a study by Reinhardt et al (225) the group were able to confirm by confining antigen to a 

local site injection of OVA peptide/IFA subcutaneously to mouse tails with a concurrent 

transfer of OVA specific T cells, that by day 5 after subcutaneous injection of OVA peptide 

large numbers of OTII cells were present within the tail tissue (225). In the data presented in 

this chapter, at day 4 after adoptive transfer of OTII cells with an intravitreal injection of OVA, 

transferred OTII cells can be detected within the eyes of recipients providing evidence that 

the local site of antigen deposition is the major non-lymphoid tissue in which activated 

antigen-specific CD4 T cells accumulate during a primary response. A small population of 

transferred OTII cells is also observed in lymphoid and non-lymphoid tissues such as spleen, 

lymph node, liver and kidney suggesting that local antigen presentation is not the only factor 

that determines the distribution of antigen-specific T cells in lymphoid and non-lymphoid 

tissue, also in agreement with the results of the Reinhardt study (225).  

When activated TCR transgenic OVA specific OTII cells are transferred into recipients with no 

pathogenic stimulus, endogenous cells do not stick in the eye in greater numbers than just a 
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PBS injection alone and very low levels of transferred cells stick non-specifically in the eye 2 

days after transfer. When OVA antigen is then injected into one eye of each recipient an 

antigen-specific recruitment was observed to the OVA injected eye over the control injected 

eye, inducing an increase in the endogenous compartment and clinical disease by OCT. Within 

the control eye, no increase in endogenous cells compared to a PBS intraperitoneal injection 

is observed, increased numbers of transferred OTII cells stick non-specifically in the eye in 

comparison to the activated OTII cell transfer. This non-specific sticking of OTII cells within 

the eye that received no antigen could be due to cells recirculating after encountering the 

OVA antigen within the contralateral eye. 

The recruitment of endogenous cells to the eyes of pathogenic transfer recipients at day 2 is 

not significantly increased in comparison to the mice that received an OTII cell transfer or OTII 

transfer with intravitreal OVA injection. However, the recruitment of pathogenic transferred 

cells to the eyes of recipients by day 2 is significantly increased (p<0.001****) in comparison 

to the OTII transfer and the OTII transfer with intravitreal OVA injection. Thus, suggesting that 

the retinal antigen present in the eye is facilitating the recruitment of the transferred 

population and by injecting OVA into the eye does not induce transferred cell recruitment this 

early after cell transfer which could be due to the APCs not presenting the antigen to the CD4+ 

T cells by this time point. 

The adoptive transfer of a mixture of pathogenic and non-pathogenic activated T cells at a 

ratio of 1:1 allowed further assessment of the recruitment of these cells to the eye. Several 

studies have shown that T cells were recruited irrespective of their antigen-specificity, into 

acute T-cell dependent inflammatory sites (219, 226, 227). Activated OTII cells behave 

differently in tissues that are ‘vulnerable’ due to an ongoing antigen specific response, which 

could have the effect of focussing recently activated cells to a target tissue increasing the 

likelihood of them catching the infection.  

The data presented in this chapter illustrates a recruitment of antigen-specific pathogenic 

cells to the eye to initiate clinical disease, when non-pathogenic (OVA specific) activated cells 

are transferred with no OVA peptide injection there is low levels of recruitment in the 

endogenous compartment but not significantly different from recipients who received a PBS 

intraperitoneal injection along with minimal numbers of transferred cells are detected within 

the eye. Therefore, the recruitment of large numbers of OVA specific cells to the eye occurs 
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when a pathogenic stimulus is present or if the antigen has been introduced into the ocular 

tissue. 

In conclusion, intraperitoneal injection alone causes changes in the number of CD4+ T cells 

retained in ocular tissue, this number is not significantly increased if the injection includes 

activated non-ocular-antigen specific T cells. The data that co-transfer of pathogenic and non-

pathogenic cells together leads to much greater retention of both populations suggests that 

an antigen specific signal from the pathogenic cell transfer induces a qualitatively different 

activation of the endothelium than intraperitoneal injection alone.  
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Chapter 6. The role of CX3CR1 in EAU 
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6.1 Introduction 
 

Leukocyte trafficking is a thoroughly regulated process, the breakdown of the fundamental 

control mechanisms can contribute to conditions such as immunodeficiency and autoimmune 

disease (228). Migration profiles can greatly vary between types of leukocytes and are known 

to have a direct effect on leukocyte retention at sites of immune defence and inflammatory 

diseases, it is now recognised that chemokines and chemokine receptors working alongside 

adhesion molecules are the main controllers of leukocyte migration and are critical to 

fundamental biological processes including embryonic development early in life, immune 

surveillance, host defence and wound repair throughout life (228, 229). 

 

6.1.1 Chemokines 

Chemokines are a family of small, highly conserved proteins involved in numerous biological 

processes including chemotaxis, leukocyte degranulation, haematopoiesis and angiogenesis 

and are the largest family of cytokines in human immunophysiology (230-235). The proteins 

are sized roughly 8 to 12 kDa, and are able to induce chemotaxis in a variety of cell types 

including, neutrophils, monocytes, lymphocytes, eosinophils, fibroblasts and keratinocytes 

(236). Chemokines provide a wide range of functions and can be naturally inclined to create 

a homeostatic environment. They are produced constitutively and secreted to mediate 

lymphocyte trafficking to lymphoid tissues, and are also known to play a role in 

immunosurveillance (237). The role chemokines play in immunosurveillance involves T and B 

cell localisation with APCs from the lymphatic system presenting antigen, however not all 

chemokines are produced in a resting state some chemokines are considered to be 

inflammatory in nature and are only secreted when infection is present or due to a pro-

inflammatory stimulus (237). In order to mount an immune response chemokines induce 

leukocytes to migrate to the site of inflammation where injury or infection is present and 

inflammatory cytokines are aiding in mounting an immune response by activating cells (237). 

 

6.1.2 Chemokine receptors 

Chemokines are secreted proteins that travel in the circulation, they move through the 

parenchyma and extracellular matrix of tissues and bind to and activate the extracellular 
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domain of their cognate receptors present on individual cell types (237, 238), they act on 

leukocytes by interactions with seven-transmembrane G protein-coupled receptors which are 

localised on target cells (239). Chemokine activity is initiated by the binding of the chemokine 

against the specific corresponding G protein-coupled receptor, in order to activate a 

chemokine receptor two steps need to be undertaken, firstly binding of the receptor to the 

specific chemokine agonist it recognises, followed by the flexibility of the N terminus allowing 

a conformational change to take place. This change is necessary to allow the N terminus to 

form interactions with the specific chemokine receptor to induce activation (240). After the 

receptor has been activated, GDP bound to the α sub-unit of the G proteins is changed for 

GTP (240). Chemokines interact with both chemokine receptors  and with glycosaminoglycans 

to promote migration and impact directionality to cell movement (241).  

Ten CC-receptors and six CXC-receptors have been identified, single XCR1 and CX3CR1 

receptors have also been described (239). Most chemokine receptors recognise several 

ligands and multiple chemokines are able to bind to more than one receptor, additionally, 

some chemokines act as natural antagonists of specific receptors (239). 

The functions of chemokine receptors are vast but they can be grouped depending on if they 

are predominantly involved in response to infection and inflammation or maintaining 

homeostasis within the host (242). By inducing chemotaxis and therefore directing cells to 

the source of chemokine gradients, allows chemokines to control the position and trafficking 

of leukocyte within the host. Specifically, mobilisation of leukocytes to the site of 

inflammation in response to chemokine secretion is due to the significant role inflammatory 

chemokine receptors play in the hosts defence and their ability to trigger leukocyte 

movement (242).  

 

6.1.3 Chemokine interactions with chemokine receptors 

Mechanisms affecting the chemokine or chemokine receptor modulate a leukocytes ability to 

respond to chemokines. Modulation of levels of the receptor molecules on a cellular basis or 

functionally active receptors being presented at the cell surface are methods of control 

exerted on the chemokine receptor (242).  By affecting the activation state, cellular location 

or signalling ability of a functional chemokine receptor at the cell surface tight control is 
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achieved, an essential method of rapid control in response to cross-talk from other receptors 

or due to ligand binding (242).  

 

6.1.4 Fractalkine (CX3CL1)  

CX3CL1 also known as fractalkine is the only known member of the CX3C chemokine subclass 

(150, 243). Fractalkine is unique within the chemokine family due to its synthesis as a 

transmembrane molecule, it is made up of 373 total amino acids including: at residues 1-76 

an extracellular terminal domain, 77-317 a mucin like stalk, 318-336 a transmembrane helix 

and at 337-373 a short cytoplasmic tail (150). Fractalkine can exist in a membrane bound or 

soluble form. The soluble form of fractalkine has chemoattractive functions that act on T cells, 

NK cells and monocytes, it is generated by disintergrin-like metalloproteinases ADAM 10 and 

ADAM 17/TACE, and is made up of a and extracellular mucin-like stalk and the chemokine 

domain. The membrane bound form acts as an adhesion molecule and assists integrin-

independent adhesion induced by IL-1, IFN-γ and TNF-α on primary endothelial cells (150, 

243). The membrane bound form of CX3CL1 also promotes the friction and interlocking of 

CX3CL1 leukocytes (150).  

 

6.1.5 CX3CR1  

The highly specialised receptor for CX3CL1 and CCL26 in humans is known as CX3CR1 (244). 

CX3CR1 can be found on the surface of cytotoxic effector lymphocytes including CD8 T cells, 

NK cells and γδ cells as a marker due to the expression of large amounts of granzyme B and 

perforin no matter what the mode of target recognition or cell lineage (150).  

During inflammation fractalkine is expressed by monocytes within the peripheral blood, it can 

also be expressed on endothelial cells, fibroblasts, dendritic cells, and macrophages during 

autoimmune inflammation such as during the autoimmune disease rheumatoid arthritis (150, 

245). A role for interactions between fractalkine and its specific receptor have been suggested 

in immune-related inflammatory disease due to their presence on lymphocytes and increased 

cellular expression during inflammatory conditions (150). In both humans and mice CX3CR1 

is expressed on monocytes, macrophages, mucosal dendritic cells , natural killer cells, mast 

cells, CD8+ T cells and a subset of CD4+ T cells (151). 
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6.1.6 CX3CR1 expression on CD4+ T cells 

Chemokine receptors expressed on lymphocytes can vary based on different subtypes and 

specific development stage so as to facilitate chemotaxis to different tissues (246). Studies 

have illustrated in humans that expression of CX3CR1 is predominantly seen in Th1 cells that 

respond chemotactically to fractalkine (246), CX3CL1 upregulation during inflammation is 

suggested to be a contributing factor of inflammatory disease by the promotion of 

transmigration of CX3CR1 expressing cells to sites of inflammation (151).  

In a study by Mionnet et al (151), CX3CR1-associated survival was observed on Th1 cells upon 

airway inflammation but not under homeostatic conditions or peripheral inflammation (151). 

In vitro, differentiated Th1 cells did not express CX3CR1 unless incubated with lung cells or 

injected into sensitised mice exposed to aerosols of their cognate antigens, therefore CX3CR1 

expression in T helper cells is inducible under specific conditions in vivo and in vitro (151). It 

was also shown that CX3CR1 does not play an integral role in T cell migration to the lung but 

is instead required for maintenance and survival within inflamed airways (151). Whereas in a 

study by Staumont-Sallé (247) in an adoptive transfer model of atopic dermatitis CX3CR1 Th1 

cells are established as a key regulator of CD4+ T cells retention at the inflamed site, which 

indicates a new function for the fractalkine ligand and receptor (247).  

 

6.1.7 CX3CR1 in EAU 

The role of CX3CR1 in EAU is not yet defined. Dagkalis et al has suggested CX3CR1 deficiency 

generates a more severe EAU disease phenotype (47). To understand the role of CX3CR1 in 

regulating function of monocytes and microglia, using CX3CR1 deficient mice (47) it was found 

that in comparison to CX3CR1 positive mice, CX3CR1 negative mice had a more severe disease 

phenotype 23 days post immunisation, based on increased cellular infiltrate and increased 

monocyte/macrophage clustering (47). 

In contrast, Kezic et al (248), reported no impact on the pathogenesis of EAU when comparing 

CX3CR1 positive and CX3CR1 negative mice, demonstrating the lack of a significant role for 

CX3CR1 in this particular study compared to previous studies suggesting a role in other retinal 

and neurodegenerative conditions (248). This perhaps may reflect a differential role for 

CX3CR1 expression on different cell types such as T cells versus macrophages. These studies 
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highlight a need to investigate soluble mediators in various disease states and tissue 

microenvironments (248). 

 

6.1.8 CX3CR1 Knockout mice  

CX3CR1+/GFP mice were produced by targeted inactivation of the CX3CR1 gene with cDNA 

encoding EGFP (Clontech) (152). In the construct (and mutant locus) the EGFP gene replaces 

the first 390 bp of the second CX3CR1 exon encoding the N-terminus of the seven-

transmembrane receptor specific for CX3CL1 (152). Germ line transition of the mutant allele 

yielded heterozygous CX3CR1+/GFP mice, which were inter-crossed to generate CX3CR1GFP/GFP 

mice (152) on a C57BL/6 background screened for rd8 mutations. 

CX3CR1+/GFP mice can serve as a source of unmanipulated, in vivo labelled cell populations 

that could be instrumental in high-resolution studies on the development and dynamic 

properties of CX3CR1 (152), whereas CX3CR1GFP/GFP mice are usual to understand what effect 

deleting CX3CR1 has on disease course. 

This chapter focuses on utilising the adoptive transfer technique to induce EAU using C57BL/6 

CX3CR1+/GFP (CD45.2) or CX3CR1GFP/GFP (CD45.2) as donors or recipients to analyse the role 

CX3CR1 plays on disease pathogenesis in donor CD4+ T cells and within recipient tissue. 

Secondly, the use of CX3CR1+/GFP mice allows tracking of the transferred population and using 

GFP expression to monitor CX3CR1 expression on CD4+ T cells throughout clinical disease. In 

the early sets of experiments presented in this chapter minimal effects of CX3CR1 on disease 

course is observed but work later in the chapter marks an important phenotype change of 

cells in an autoimmune environment. 

 

 

 

 

 

 

 

 

 



191 
 

6.2 Materials and Methods 

 
6.2.1 Adoptive transfer technique 

EAU was induced in C57BL/6 CX3CR1+/GFP (CD45.2) or C57BL/6 CX3CR1GFP/GFP (CD45.2) using 

RBP3 peptide, these donor cells were then transferred using i.p injection into C57BL/6      

RAG2-/-  to analyse differences in disease through donor cells. 

C57BL/6 Ly5 (CD45.1) were immunised and donor cells were then transferred using i.p 

injection into C57BL/6 CX3CR1+/GFP (CD45.2) or C57BL/6 CX3CR1GFP/GFP (CD45.2) mice to 

analyse differences in disease in recipient tissue.  

C57BL/6 CX3CR1+/GFP (CD45.2) were immunised and donor cells were then transferred using 

i.p injection into or C57BL/6 Ly5 (CD45.1) mice to analyse expression of CX3CR1 on CD4+ T 

cells during clinical disease.  

 

6.2.2 Clinical imaging 

OCT was used to acquire clinical imaging for a disease time course from day 0 to day 25 using 

the standardised method developed during data chapter 3.   

 

6.2.3 Flow cytometry 

At predefined time points after adoptive transfer, retinas were analysed by flow cytometry to 

quantify total cell number for each leukocyte population. Allelic markers were used as seen 

previously to identify transferred and endogenous populations including CD45.1, CD45.2 and 

expression of GFP denoting CX3CR1 expression. 

 

6.2.4 Absolute numbers quantification 

Splenocytes were counted to form a 7-fold serial dilution from 20x106-312,500. All samples 

including the standard curve are resuspended in the same volume and acquired at the same 

speed for the same amount of time. Unknown sample numbers were then interpolated from 

the standard curve drawn using the known serial dilution samples. 
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6.2.5 Statistical analysis 

Data is presented as log transformed  to normalise the data(ln (1+)) and expressed as Mean 

+ SEM. Statistical analysis such as a Mann Whitney test (for 2 sample groups) or a one-way 

ANOVA for sample groups of more than two was performed. 
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6.3 Results 

 
6.3.1 CX3CR1 deficiency on donor cells affects initiation of disease in RAG2-/- 

mice 

In order to investigate the effect of CX3CR1 on donor T cells on EAU disease course, we used 

the adoptive transfer technique to transfer uveitogenic T cells into RAG2-/- recipients using 

cells with different CX3CR1 expression.  

Cells were transferred from either Ly5 (Wild type mice), CX3CR1+/GFP (CX3CR1 heterozygous) 

or CX3CR1GFP/GFP (CX3Cr1 Knockout) into RAG2-/- (CX3CR1 WT) recipients. RAG2-/- recipients 

do not have endogenous T or B cells so the effect of changing CX3CR1 expression on the donor 

T cells on the recipient, can be analysed based on disease initiation, disease severity and 

quantification of retinal infiltrate. 

Ly5 CD4+ transferred cells induced disease at day 7, as seen by OCT imaging (Figure 6.1) in 

comparison to the CX3CR1 heterozygous and CX3CR1 knockout transfers (Figure 6.1c and 

6.1g). By day 13 all cell transfer groups have clinical disease by OCT at reasonably consistent 

severity across the three groups (Figure 6.1b, 6.1d and 6.1h).  

In the CX3CR1 heterozygous and CX3CR1 knockout group, disease was monitored through to 

day 28, both groups appeared by OCT to have similar clinical disease phenotype (Figure 6.1f 

and 6.1j). 
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Figure 6.1: OCT clinical imaging of disease of each group of recipients Ly5, CX3CR1 

heterozygous and CX3CR1 knockout. A+B Disease course from day 6 to day 14 in RAG2-/- mice that 

received a Ly5 wildtype transfer of uveitogenic cells. C-F Disease course from day 0 to day 28 in      

RAG2-/- mice that received a CX3CR1 heterozygous transfer of uveitogenic cells. G-J Disease course 

from day 6 to day 28 in RAG2-/- mice that received a CX3CR1 knockout transfer of uveitogenic cells. 
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Figure 6.2: Average OCT disease scoring across all three recipient groups during active 

disease. Fundal images were acquired with OCT at various time points throughout disease course. 

The images were then collated and scored blind using the clinical disease scoring criteria presented in 

chapter 2. Averages for each were then calculated. Data expressed as Mean + SEM. 

 

 

 

 

 

 

 

 

 

 

 

 



197 
 

6.3.2 CX3CR1 deficiency on donor cells does not affect disease phenotype after 

disease initiation  

Analysis of retinas during clinical disease allowed quantification of retinal infiltrate. Due to 

the lack of endogenous B and T cells, the cells driving the disease are from the transferred 

population. 

At day 7 after adoptive transfer (as highlighted previously in figure 6.1), severe clinical disease 

is present in the imaging of the wildtype Ly5 transfer eyes of the RAG2-/- mice. This is 

confirmed by the flow cytometry quantification of CD4+ T cells (figure 6.3a). There is a 

statistically significant difference between the total CD4+ T cells present in the retinas of the 

Ly5 wildtype transfer and the retinas of the two other groups; CX3CR1 heterozygous and 

CX3CR1 knockout (Figure 6.3a). In the CD8 compartment, the transferred cells have survived 

and been recruited to the retinas of all groups of animals (figure 6.4a) and in similar numbers 

across the groups. The CD11b+ endogenous infiltrate illustrated a statistically significant 

(****p<0.0001) increase between the Ly5 wildtype RAG2-/- recipients and the RAG2-/- 

recipients that received a CX3CR1 heterozygous or CX3CR1 knockout groups (figure 6.5a).  

By day 14, the total number of CD4+ T cells in the retinas of each group has reached similar 

levels (figure 6.3b), similarly observed in the OCT imaging at day 13 in figure 6.1. This pattern 

is also observed within the CD8+ and CD11b+ cell numbers (figure 6.4b and 6.5b) 

At day 21, only the CX3CR1 heterozygous and CX3CR1 knockout RAG2-/- recipients remain and 

disease between the two groups is still comparable (figure 6.1), this observation is backed up 

by the retinal infiltrate in CD4, CD8 and CD11b cell number (figure 6.3c, 6.4c and 6.5c). 

Disease still has not resolved by day 28 the pattern follows from day 21 with equal disease 

severity and retinal infiltrate observed across the two groups (figure 6.1, 6.3d, 6.4d and 6.5d). 
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AVERAGE 

CELL NUMBER 

      

  Ly5 CX3CR1 Heterozygous CX3CR1 Homozygous 

D7 11000 543 452 

D14 25033 23967 22972 

D21 
 

31333 14596 

D28   12337 33086 

 

Figure 6.3: Analysis of total CD4+ T cell number within the retinal infiltrate at different time 

points throughout clinical disease. RAG2-/- recipients received an intraperitoneal transfer of 

uveitogenic cells from one of three donor types Ly5, CX3CR1 heterozygous or CX3CR1 knockout. As 

seen in figure 6.1 clinical disease was monitored using OCT clinical imaging throughout clinical disease. 

To correlate with the clinical imaging at each time point retinas were dissected and prepared for flow 

cytometric analysis and CD4+ T cells numbers were quantified. Data expressed as Mean +SEM. 

Statistical analysis performed: One-Way ANOVA multiple comparisons compared to wildtype transfer 

(A+B) unpaired non-parametric Mann-Whitney Test (C+D) ****p<0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



200 
 

 



201 
 

 
 

AVERAGE CELL 

NUMBER 

      

  Ly5 CX3CR1 Heterozygous CX3CR1 Homozygous 

D7 172 123 106 

D14 835 14583 21688 

D21 
 

13977 4841 

D28   1883 8831 

 

Figure 6.4: Analysis of total CD8+ T cell number within the retinal infiltrate at different time 

points throughout clinical disease. RAG2-/- recipients received an intraperitoneal transfer of 

uveitogenic cells from one of three donor types Ly5, CX3CR1 heterozygous or CX3CR1 knockout. To 

correlate with the clinical imaging at each time point retinas were dissected and prepared for flow 

cytometric analysis and CD8+ T cells numbers were quantified. Data expressed as Mean +SEM. 

Statistical analysis performed: One-Way ANOVA multiple comparisons compared to wildtype transfer 

(A+B) unpaired non-parametric Mann-Whitney Test (C+D). 
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AVERAGE CELL 

NUMBER 

      

  Ly5 CX3CR1 Heterozygous CX3CR1 Homozygous 

D7 57720 2244 1788 

D14 56339 74716 64884 

D21 
 

31030 26325 

D28   47830 43620 

 

Figure 6.5: Analysis of total CD11b+ cell number within the retinal infiltrate at different time 

points throughout clinical disease. RAG2-/- recipients received an intraperitoneal transfer of 

uveitogenic cells from one of three donor types Ly5, CX3CR1 heterozygous or CX3CR1 knockout. To 

correlate with the clinical imaging at each time point retinas were dissected and prepared for flow 

cytometric analysis and CD11b+ cell numbers were quantified. Data expressed as Mean +SEM. 

Statistical analysis performed: One-Way ANOVA multiple comparisons compared to wildtype transfer 

(A+B) unpaired non-parametric Mann-Whitney Test (C+D). ****p<0.0001. 
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6.3.3 CX3CR1 deficiency in recipient tissue does not affect EAU disease onset 

The transfer of CX3CR1 deficient cells into RAG2-/- recipients saw a late onset of EAU in 

comparison to wildtype transfers (figure 6.1 and 6.3). 

From this we wanted to understand if CX3CR1 deficiency within recipients had a similar effect. 

In order to investigate the affect CX3CR1 deficiency within the recipient tissue has on disease 

initiation, wildtype (Ly5) cells were transferred into CX3CR1 heterozygous (CX3CR1+/GFP) or 

CX3CR1 (CX3CR1GFP/GFP) knockout recipients. In previous studies using active immunisation of 

CX3CR1 heterozygous mice or CX3CR1 knockout mice, CX3CR1 was found to not have an 

effect on disease onset (248).  

At day 0, the fundus and OCT images are both similar and normal before disease induction 

(figure 6.6a and 6.6f). At day 2, clinical disease cannot be observed by OCT imaging in both 

groups of recipients (figure 6.6b and 6.6g).  

By day 7, severe clinical disease can be seen in both groups by OCT (figure 6.6c and 6.6h), 

severe retinal infiltrate (vitritis) is present within the vitreous of the animals in both groups. 

Obvious swelling of the retina and optic disc is also observed within the OCT image and a 

vitreal haze is present within the fundus image with obvious swelling around the optic disc. 

At day 14, active clinical disease has begun to resolve (figure 6.6d and 6.6i). In the OCT image 

swelling of the retina and optic disc has resolved but retinal infiltrate is still seen within the 

vitreous. The fundus images still show a swelling around the optic disc and some perivascular 

sheathing but the vitreal haze has subsided.  

At day 21, active disease has further resolved with minimal retinal infiltrate present within 

the OCT. Although active disease appears to be resolving within the OCT image in the fundal 

imaging retinal scarring remains and mild inflammation is observed around the optic disc 

(figure 6.6e and 6.6j). 
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Figure 6.6: OCT imaging of clinical disease course using a Ly5 transfer of uveitogenic cells 

into CX3CR1 heterozygous or CX3CR1 knockout mice. Clinical imaging was taken throughout 

clinical disease to observe disease initiation and progression within the two groups. Day 0 baseline 

illustrates the two groups of recipients have similar characteristics as other wildtype naives (A+F). At 

day 2, clinical disease is not observed, and the OCT and fundus imaging is comparable to the baseline 

at day 0 (B+G). From day 7, clinical disease is observed in both the fundal images and OCT (C+H). By 

day 14, inflammation has begun to resolve (D+I) this resolution continues through to day 21 (E+J).   
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Figure 6.7: Average OCT scores of CX3CR1 heterozygous and CX3CR1 knockout recipients 

after adoptive transfer. Fundal images were obtained throughout clinical disease from both 

recipient groups. Images were then scored blind using the criteria described in chapter 2. Average 

scores were calculated for each recipient and each recipient group. Data expressed as Mean + SEM. 
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6.3.4 CX3CR1 deficiency in recipient tissue does not affect leukocyte 

recruitment to the eye throughout disease  

CX3CR1 deficiency on recipient tissue does not affect disease induction and by OCT imaging 

does not appear to affect the disease course within the two groups.  

To further analyse the differences in disease course across the two groups of recipients that 

received Ly5 uveitogenic cells (CX3CR1 heterozygous and CX3CR1 knockout) flow cytometric 

analysis was performed at several time points throughout clinical disease course to support 

the OCT imaging collected. 

At day 2, endogenous recruitment of CD4+ T cells to the eye is similar between the two groups 

this is also seen within the transferred population at this time point (figure 6.6a and 6.6d). 

Within the CD8 T cell compartment endogenous recruitment and transferred recruitment is 

comparable across the two recipient groups (figure 6.8b and 6.8e), this is also seen within the 

CD11b+ cell compartment (figure 6.8c and 6.8f).  

As observed within the OCT imaging in figure 6.6 and 6.7 clinical disease has developed in the 

recipients of both groups illustrated by severe retinal infiltrate, made up of several different 

leukocyte populations including CD4+ T cells, CD8+ T cells and CD11b+ cells. CD4+ T cell 

recruitment has increased in both groups to mediate disease. Transferred CD4 T cell number 

has increased and the ratio of endogenous to transferred cells is ~1:1 illustrating recruitment 

of both uveitogenic transferred CD4+ T cells and endogenous CD4+ T cells (figure 6.8a and 

6.8d). At peak disease, endogenous CD8+ T cells are found in increased numbers in the retinal 

infiltrate (figure 6.8a), but in contrast transferred CD8+ T cells have a small increase in number 

at peak disease which has also been observed in previous chapters (chapter 4) (figure 6.8b). 

The same pattern is observed in the CD11b+ compartment, many endogenous cells within the 

retinal infiltrate but minimal transferred cells (figure 6.8c and 6.8f). 

At day 14 total CD4+ retinal infiltrate in the endogenous compartment has remained from 

day 7 (figure 6.8a) but within the transferred compartment there is now a statistically 

significant difference between the transferred CD4+ T cell population within the eyes of the 

CX3CR1 heterozygous recipients and the CX3CR1 knockout recipients. This is due to a 

decrease in transferred cells in the CX3CR1 knockout recipients in comparison to the CX3CR1 

heterozygous recipients (figure 6.8d). Endogenous CD8+ T cells have persisted through to day 

14 in the CX3CR1 heterozygous group (figure 6.8b), whereas in the CX3CR1 knockout group a 
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drop in endogenous CD8+ numbers is observed (figure 6.6b). In the transferred CD8+ 

population a minimal population is still observed in both groups of recipients (figure 6.8e). 

CD11b+ cell number is reduced in both groups in the endogenous compartment, but no 

statistical difference is observed between the two groups (figure 6.6c). As seen at day 7, the 

transferred CD11b+ cell number continues to be minimal through peak disease with very little 

recruitment of transferred cells (figure 6.8f).  

Finally, at day 21 when active disease has begun to resolve based on OCT clinical imaging 

(figure 6.6).  Endogenous CD4+ T cell numbers have dropped in both groups in comparison to 

day 14 but no statistically significant difference between the two groups is observed (figure 

6.6a). Whereas in the transferred CD4+ T cell population a reduction in cell number in both 

groups of recipients is observed but a statistically significant difference between the two 

groups based on cell number is present. Similarly, to day 14 a statistically significant difference 

between the two recipient groups based on transferred CD4+ T cell number due to a larger 

decrease of transferred CD4+ cells in the CX3CR1 knockout group when compared to the 

CX3CR1 heterozygous group (figure 6.8d). 

CD8+ T cell number at the day 21 time point appears to be similar in total endogenous cell 

number across the two recipient groups (figure 6.8b). As seen throughout clinical disease, 

very little recruitment of the transferred CD8+ population is seen. This pattern continues 

through to day 21 (figure 6.8e). 

Endogenous CD11b+ cell number decreases at day 21 back to a similar number that is seen at 

day 2 (figure 6.c8). Transferred CD11b+ cells were recruited in small numbers throughout the 

disease and this persists through to day 21 (figure 6.8f). 

Overall, the only difference between disease in the two recipient groups is observed in the 

transferred CD4+ T cell number at day 14 and day 21. 
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CD4 ENDOGENOUS 
  

  CX3CR1 

Heterozygous 

CX3CR1 

Homozygous 

D2 225 231 

D7 6004 5997 

D14 2802 2721 

D21 1496 588 

   

CD8 ENDOGENOUS 
  

  CX3CR1 

Heterozygous 

CX3CR1 

Homozygous 

D2 53 38 

D7 1538 1931 

D14 801 1846 

D21 686 1016 

   

CD11B ENDOGENOUS 
  

  CX3CR1 

Heterozygous 

CX3CR1 

Homozygous 

D2 3296 2330 

D7 38502 29860 

D14 6344 3796 

D21 3645 1579 

CD4 TRANSFER 
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Figure 6.8: Flow cytometric analysis of retinal infiltrate throughout clinical disease in 

CX3CR1 heterozygous or CX3CR1 knockout recipients that received a Ly5 uveitogenic cell 

transfer. Retinas from CX3CR1 heterozygous recipients or CX3CR1 knockout recipients were taken 

and processed at each clinical imaging time point to analyse leukocytes present within the retinal 

infiltrate. Time course of endogenous CD4+ retinal infiltrate through clinical disease (A). Time course 

of transferred CD4+ retinal infiltrate through clinical disease (D). Time course of endogenous and 

transferred CD8+ T cell number through clinical disease (B+E). Time course of endogenous and 

transferred CD11b+ cell number through clinical disease (C+F). Data expressed as Mean +SEM. 

Statistical analysis performed: One-Way ANOVA multiple comparisons (A-F). **p<0.01. 
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6.3.5 CX3CR1 upregulation on CD4+ T cells in the eye during EAU  

In a model studied by Mionnet et al, expression of CX3CR1 on CD4+ T cells is required for the 

development of clinical asthma, suggesting that expression by Th2 cells is required for airway 

disease (151). Further to this, expression of CX3CR1 denoted by GFP is highly increased on T 

cells in the inflamed lung (20-30%) in comparison to T cells in naïve CX3CR1 heterozygous 

mice (0.5%) (151). The studies further highlighted that CX3CR1 gives a selective advantage to 

Th2 cells, inflammation was not enough to induce infiltrating Th2 cells to express CX3CR1 but 

also required TCR engagement (151). And finally, CX3CR1 provided a survival signal to lung 

Th2 cells (151). 

To analyse the role of expression of CX3CR1 on CD4+ T cells in EAU, uveitogenic CX3CR1 

heterozygous cells were adoptively transferred into Ly5 recipients. Disease course was 

monitored using OCT imaging (figure 6.9) and CX3CR1 expression quantified by flow 

cytometric analysis at each time point by GFP expression on CD4+ T cells. Leukocyte infiltrate 

data and OCT imaging and scoring was previously presented in chapter 4. 

Figure 6.10a illustrates the frequency of transferred CD4+ cells expressing CX3CR1 from pre-

clinical disease at day 2 through peak disease to day 21. At day 2 GFP therefore CX3CR1 

expression was at 10% on the small number of recruited transfer cells at this time point. By 

day 7, CX3CR1 expression on CD4 T cells has increased slightly to ~20%. Peak frequency of 

transferred CD4+ T cells expressing CX3CR1 occurs at day 14 where 40% of the transferred 

population is GFP+ which then plateaus off at day 21. 

To support the large CX3CR1 CD4+ T cell population present within the eye during clinical 

disease figure 6.10b illustrates an increased population of CX3CR1 CD4+ T cells present within 

the eye in comparison to the other organs analysed including blood and liver. 

Throughout clinical disease, CX3CR1 expression on CD4+ T cells present within the liver and 

blood is reduced in comparison to the eye. 
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Figure 6.9: Clinical imaging of disease course after CX3CR1 heterozygous transfer of 

uveitogenic cells into Ly5 mice. As previously described in figure 4.5, clinical disease course after 

uveitogenic cell transfer. Peak disease is present at day 7-10, but by day 14 infiltrate has reduced and 

is not visible by OCT at day 21. 
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Figure 6.10: Frequency of CX3CR1+ CD4+ T cells in the eye throughout disease, and total 

number of CX3CR1+ CD4+ T cells in the eye in comparison to blood and liver. (A) CD4+ 

CX3CR1+ transferred cells as a fraction of the total CD4+ transferred population recruited to the eye 

at each time point through EAU. (B) Comparison of CD4+ CX3CR1+ cells present within the eye, blood, 

and liver throughout EAU. (A) frequency calculated by dividing total CD4+ CX3CR1+ cell number by 

total transferred CD4+ T cell number at each time point. (B) Total CX3CR1+ CD4+ cell number (log 

transformed). Data expressed as Mean + SEM. 
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6.3.6 Pathogenic cells express CX3CR1 during EAU but when transferred 

together non-pathogenic cells do not express CX3CR1 during EAU 

As illustrated in figure 6.10, CX3CR1 is expressed on transferred uveitogenic CD4+ T cells 

during EAU. As peak disease progresses, the frequency of CX3CR1 expression on CD4+ T cells 

increases to ~40% (figure 6.10a).  

To further investigate if the upregulation of CX3CR1 on CD4+ T cells is observed solely on 

pathogenic transferred CD4+ T cells, CX3CR1 expression was quantified from the double cell 

transfer (described in figure 5.13).  Pathogenic CX3CR1 heterozygous leukocytes and OTII 

activated non-pathogenic leukocytes were transferred in a 1:1 mixture into Ly5 recipients. 

Leukocyte infiltrate data and OCT imaging was previously presented in chapter 5. 

OCT imaging (figure 6.11) shows a similar clinical disease course as the CX3CR1 heterozygous 

transfer alone into Ly5 recipients (figure 6.9). From data presented in chapter 5, CD4+ 

infiltrate during peak disease was quantified and 3 populations were observed: endogenous, 

antigen-specific (pathogenic) and non-antigen specific OTII (TCR transgenic activated with 

OVA peptide). In both the transferred antigen-specific and the activated non-antigen specific 

OTII populations there is a heterozygous CX3CR1 GFP tag present. Using GFP expression as a 

measure of CX3CR1 expression on both these populations total CD4+ CX3CR1+ retinal 

infiltrate is quantifiable in each recipient.  

At day 5-7, peak disease is observed by OCT clinical imaging (figure 6.11b), retinas were then 

isolated from recipients and CX3CR1 expression on CD4+ T cells quantified in the antigen-

specific and non-antigen specific OTII transferred populations. Figure 6.12 shows a difference 

in the frequency of CX3CR1 expression on CD4+ T cells on the transferred antigen-specific 

pathogenic cells in comparison to the activated non-antigen specific OTII transferred cell 

population.  

At day 14, active disease appears to have begun to resolve by OCT imaging (figure 6.11c). But 

a statistically significant difference between CX3CR1 expression on CD4+ T cells is observed 

between the transferred antigen-specific and the transferred non-antigen specific OTII cells 

(figure 6.12).  
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Figure 6.11: OCT Clinical imaging of EAU disease course after double transfer of antigen -

specific and non-antigen specific leukocytes. Recipients were imaged from day 0 to day 14 to 

monitor clinical disease course. Peak clinical disease was observed by day 5, denoted by swelling of 

the retina and optic disc combined with high levels of retinal infiltrate (B). At day 14, active disease is 

still present within the eyes of recipients, but disease is post-peak so retinal infiltrate is mildly reduced 

and retinal layers are again visible by OCT (C).  
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Figure 6.12: Flow cytometric analysis of retinal infiltrate at day 7 and day 14 quantifying 

CX3CR1+ CD4+ cells as a frequency of total transferred RBP3 antigen specific or RBP3 non-

specific (OVA specific) populations. CX3CR1 expression was measured using the GFP tag on the 

CX3CR1 heterozygous antigen-specific (pathogenic cells) and the CX3CR1 knockout cross onto OTII 

TCR transgenic mouse OVA specific (Non-pathogenic cells). The frequency of CD4+ CX3CR1+ was 

calculated for both the RBP3 specific (pathogenic) cell population and the OVA specific (activated) cell 

population. Data expressed as Mean + SEM. Statistical analysis performed unpaired non-parametric 

Mann-Whitney Test **p < 0.01 
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6.3.7 CX3CR1 upregulation on CD4+ T cells is due to an antigen-specific signal 

to the cells in vivo 

As seen in figure 6.12, more than 35% of antigen specific, pathogenic transferred CD4+ T cells 

express CX3CR1 during clinical disease, in comparison ~4% of the transferred non-pathogenic, 

OVA specific CD4+ T cells expressed CX3CR1 during clinical disease.  

To further investigate this observation that an antigen specific component is involved in 

CX3CR1 expression on CD4+ T cells. CX3CR1 expression was measured using the OVA 

intravitreal transfers described previously into C57BL/6 CX3CR1 heterozygous knockout mice. 

Leukocyte infiltrate data and OCT imaging was previously presented in chapter 5. 

Recipients firstly received an intravitreal injection of ovalbumin into the left eye and a PBS or 

L144 intravitreal control injection into the right eye. OTII TCR transgenic leukocytes were then 

transferred by intraperitoneal injection after activation by ovalbumin. Recruitment of 

leukocytes to both eyes were then monitored by OCT and endogenous and transferred 

leukocytes quantified by flow cytometry.  

At day 2, by clinical imaging no infiltrate is observed by OCT and overall, the fundus and OCT 

images look normal (figure 6.13a and 6.13b). By flow cytometry, endogenous recruitment to 

both eyes are comparable with low numbers of CX3CR1 expression, minimal transferred cell 

recruitment is observed at this time point.  

At day 4, some retinal infiltrate is observed by OCT in the left eye but not within the right 

(figure 6.13c and 6.13d), when CX3CR1 expression is analysed in the infiltrate from both eyes, 

no difference is observed in the total number of CX3CR1 CD4+ T cells expressing in both eyes 

at this time point (figure 6.14a and 6.14b). 

By day 8 after intravitreal injection of ovalbumin peptide and cell transfer, peak disease is 

present within the left eye (that received the OVA peptide) of the recipients, whereas in the 

right eye minimal infiltrate is observed (figure 6.11e and 6.11f). This continues to day 15 

where obvious infiltrate and retinal swelling is present within the left eye but not within the 

right eye (figure 6.13g and 6.13h). Total CD4+ CX3CR1+ T cells were increased in the 

endogenous and transferred compartment of the left eye, but in the right eye remained at 

similar reduced numbers as at day 4 (figure 6.14a and 6.14b). 

At day 25, retinal infiltrate is still observed within the left eye, but disease is past peak at this 

time point (figure 6.13i). The right eye of each recipient has not changed throughout the 



224 
 

disease course of the left eye by clinical imaging (6.13j). CX3CR1 is also still increased in the 

left eye over the right eye, although total CX3CR1+ CD4+ T cells does decrease after peak 

disease (figure 6.14a and 6.14b). CX3CR1 expression on CD4+ T cells is increased in the left 

eye in comparison to the right eye throughout the whole disease course.  

CX3CR1 expression on CD4+ T cells during EAU is observed when an antigen-specific 

interaction in vivo has taken place and therefore activation alone with a non-specific antigen 

is not sufficient to induce expression, the data presented in this chapter supports this 

hypothesis. 
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Figure 6.13: OCT clinical imaging of disease course after cell transfer and intravitreal 

injection of OVA or L144 control peptide Disease was monitored in both eyes from day 2-day 25. 

Disease was observed in the left eye (A,C.E,G,I). But no clinical disease was seen in the right eye (B, D, 

F, H, J) (Data presented with average disease scores in Chapter 5) 
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Figure 6.14: Total CX3CR1+ CD4+ T cells within the retinal infiltrate at each time point. Flow 

cytometric analysis at each time point during clinical disease of total CD4+ CX3CR1+ T cells present 

within the endogenous compartment of each eye (A) and transferred CX3CR1+ CD4+ T cells (B). (Left 

eye received OVA intravitreal injection, Right eye received control peptide L144 or PBS) Data 

Expressed as Mean + SEM. Data obtained from 3 experiments and 8-17 eyes per time point 
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6.4 Discussion 

The role of CX3CR1 in EAU is controversial. A study by Kezic et al (248) suggests that the 

CX3CR1 receptor does not play a significant role in the pathogenesis of EAU (248), this was 

based on disease scores following active induction of disease between wildtype, CX3CR1 

heterozygous and CX3CR1 knockout mice not being significantly different at disease onset 

(248). Conversely, a study by Dagkalis et al (47)  defined an association between CX3CR1-

deficiency and increased severity of disease in EAU in the active immunisation model. CX3CR1 

knockout mice had increased disease severity at day 23 post-immunisation in comparison to 

CX3CR1 heterozygous mice, with increased recruitment of monocytes to the retina in 

response to EAU induction (47). 

The studies presented in this chapter extend these findings by illustrating a role for CX3CR1 

expression on CD4+ T cells during EAU using the adoptive transfer technique of disease 

induction, showing that there is a selective retention or recruitment of CX3CR1+ CD4+ T cells 

during active clinical disease. 

To investigate the role of CX3CR1 expression has on disease initiation and progress in the 

adoptive transfer model of EAU, cells of different CX3CR1 expression (wildtype, CX3CR1 

heterozygous and CX3CR1 knockout) were transferred into RAG2-/- mice. These experiments 

allow the analysis of the effect of CX3CR1 deficiency on donor cells with CX3CR1 intact in the 

recipient tissue.  

Wildtype cells initiate disease within the RAG2-/- recipients by day 7, whereas disease 

initiation within the CX3CR1 heterozygous and CX3CR1 knockout transfer recipients occurred 

at the later time point of day 14. The delay in disease induction in the CX3CR1 deficient 

transfers (figure 6.1 and 6.2) is consistent with a role for CX3CR1 on the transferred 

population that even in the heterozygote animals influences efficacy of recruitment during 

disease initiation but does not limit maximum severity of the disease. Because normal Treg 

function is deficient, it is not possible to interpret disease duration. 

To complement this set of experiments, CX3CR1 deficiency in recipient tissue was 

investigated.  Wildtype cells were transferred into CX3CR1 heterozygous and CX3CR1 

knockout mice. No difference was observed in disease initiation or course by OCT imaging 

(figure 6.5) but there was a statistically significant difference in the transferred WT CD4+ T 

cell number within the retinal infiltrate at day 14 and day 21 (figure 6.6). Which indicates that 



230 
 

CX3CR1 expression within the tissue can have an effect on CD4+ T cell recruitment throughout 

active clinical disease. 

These data sets illustrate a role for CX3CR1 in disease initiation in donor uveitogenic cells, but 

not disease severity. Further to this the wildtype transferred cells preferentially survived 

during clinical disease in CX3CR1 heterozygous mice over the CX3CR1 knockout mice.  

As demonstrated in chapter 4, within the leukocyte population that is transferred into naïve 

recipients the surviving population is CD4+ T cells. This suggests that the effect on disease 

within donor CX3CR1 deficient cells is based on CX3CR1 being expressed on CD4+ T cells 

during EAU. 

Mionnet et al (151), suggested a role for CX3CR1 expression on CD4+ T cells in survival and 

maintenance during airway inflammation (151). Further to this, a study conducted by 

Staumont-Sallé et al concluded that CX3CR1 deficiency does not affect antigen presentation 

or T cell proliferation upon skin sensitisation in experimental models of atopic dermatitis and 

that expression of CX3CR1 by both Th1 and Th2 cells was required for induction of disease 

(247). The study also used adoptive transfer experiments to establish CX3CR1 as a key 

regulator of CD4+ T cell retention in inflamed skin (247). However, the role of CX3CR1 on CD4+ 

T cells in EAU has not yet been published. 

Adoptive transfer of CX3CR1 heterozygous cells into Ly5 (wildtype) C57BL/6 recipients 

investigated expression of CX3CR1 using the GFP on CD4+ T cells. At day 7 which is considered 

to be peak disease, CX3CR1 expression is observed on transferred CD4+ T cells recovered from 

the eye at a frequency of ~0.2 on total transferred CD4+ T cells, when followed to day 14 the 

frequency increases to ~0.4 showing an increase in the relative frequency of transferred CD4+ 

T cell expressing CX3CR1 within the ocular tissue. The increase in CX3CR1 expression could be 

due to a selective recruitment of transferred CX3CR1 expressing cells, specific retention, and 

survival of CX3CR1 expressing CD4+ T cells or stimuli within the eye causing local CX3CR1 

upregulation.  

To investigate if the local environment was sufficient to drive CX3CR1 expression by recruited  

CD4+ T cells, experiments were performed using pathogenic antigen specific cell transfers 

mixed  with an activated non-antigen specific OTII transfer (non-pathogenic cells that do not 

cause uveitis alone as described in chapter 5). Both transferred cell populations were CX3CR1 

heterozygous, so CX3CR1 expression was monitored on both antigen specific and non-antigen 

specific CD4+ T cells recruited to the ocular tissue during active disease using GFP expression. 
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CX3CR1 expression on the antigen-specific population is at a frequency of ~0.2 of the 

pathogenic transfer population at day 7 but increases to >0.4 by day 14. Confirming as 

previously observed that there is a local enrichment of CX3CR1 CD4+ transferred T cells. In 

contrast, the non-antigen specific transferred cell population had minimal CX3CR1 expression 

on CD4+ T cells at both time points. These findings demonstrate that the local environment 

alone is not sufficient to stimulate CX3CR1 on CD4+ T cells during the disease course. 

To determine if expression of CX3CR1 on CD4+ T cells is due to antigen-specific stimulus within 

the tissue, ovalbumin peptide was injected intravitreally into the eye (described in chapter 5) 

TCR transgenic ovalbumin specific leukocytes (OTII) were then transferred intraperitoneally.  

As shown in chapter 5 figure 5.2 activated OTII cells do not localise to the retina following 

transfer in the absence of uveitis, however, when the antigen is present within ocular tissue, 

recruitment of the ovalbumin-specific T cells is observed to the eye that received the 

ovalbumin peptide compared with the eye that received PBS or L144 (data presented in 

chapter 5, figures 5.6-5.10). CX3CR1 expression was then quantified on the endogenous and 

transferred recruited CD4+ T cells using GFP expression. There is a significant difference 

between the two eyes both in terms of recruitment of endogenous and transferred cells and 

also in CX3CR1 expression on CD4+ T cells between the endogenous and transferred 

population. A significant increase in CD4+ T cell recruitment is observed in the eye that 

received the OVA intravitreal injection throughout disease course and an increase in CX3CR1 

expression is also observed, whereas in the contralateral eye where no disease progression is 

observed and no OVA antigen is present CX3CR1 expression is minimal within the CD4+ T cells 

that are present. The data produced further supported the hypothesis that an antigen-specific 

stimulus is involved in the expression of CX3CR1 on CD4+ T cells.  

In conclusion, as expected from previous studies, CX3CR1 expression is not necessary either 

for CD4+ uveitogenic cells to cause uveitis or to provide an ocular environment in which it can 

develop. Partial or complete CX3CR1 deficiency in donor T cells delays disease initiation in 

comparison to WT cells but does not then affect disease course. While deficiency of CX3CR1 

in the recipient animals supports greater persistence of the WT cell population in the 

heterozygous background (figure 6.8). This is consistent with the findings Dagkalis et al (47) 

that the knockout background had more severe disease. However, before cells are transferred 

the culture supernatant of the CX3CR1 heterozygous and CX3CR1 deficient mice show similar 

levels of IFN-γ production whereas the wildtype supernatant shows an increase in IFN-γ 
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production and therefore a more Th1 phenotype is present within the cell culture (figure 3.7). 

Due to the transferred CD4+ population being the sole surviving population this data 

suggested a role for CX3CR1 on CD4+ T cells.  

To investigate the mechanism of CX3CR1 expression within the uveitogenic antigen specific 

transferred population. The double transfer of antigen specific and non-antigen specific cells 

suggested an antigen specific mechanism and TCR engagement is involved in CX3CR1 

expression on CD4+ T cells. This was further confirmed by the transfer of non RBP specific TCR 

transgenic OTII leukocytes concurrently with an intravitreal injection of ovalbumin peptide 

illustrating CX3CR1 expression on transferred CD4+ T cells recruited to the ovalbumin injected 

eye. This data demonstrates that bystander activation in the target tissue is not sufficient to 

induce CX3CR1 expression on CD4+ T cells, but instead it requires an antigen specific signal. 

However, before transfer antigen specific in vitro activation leads to only very  limited CX3CR1 

expression (less than 5%), it is only when the cells come back into contact with the same 

antigen during active clinical disease that CX3CR1 expression is seen at higher frequencies on 

CD4+ T cells. Together this data illustrates the maintenance of CX3CR1 expressing CD4+ T cells 

in the eye throughout active EAU when they are in the presence of their cognate antigen. 
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Chapter 7. The effect of IL-27Rα on 

clinical disease course of EAU  
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7.1 Introduction 

Cytokines are involved in most biological processes including disease pathogenesis, non-

specific response to infection, specific responses to antigen, embryonic development, 

changes in cognitive function and the degenerative process of ageing (249). Cytokines can be 

divided into functional classes such as lymphocyte growth factors, pro-inflammatory 

cytokines, anti-inflammatory cytokines or cytokines involved in polarising the response to a 

specific antigen (249).  

Polymorphisms in cytokines and cytokine receptors are associated with susceptibility to 

disease in many autoimmune conditions (249). After autoimmunity is initiated, it results in a 

persistent inflammatory response against self-tissue with the release of inflammatory 

mediators such as cytokines, the production of autoantibodies, the formation of immune 

complexes and the extravasation and activation of cytotoxic T cells, natural killer cells, 

macrophages and polymorphonuclear leukocytes (250).  

 
7.1.1 Cytokines in Experimental Autoimmune Uveitis 

T cell cytokines in uveitis 

Th1 cells can be defined by their expression of the transcription factor T-bet and secretion of 

IFN-γ (251). IL-12 produced by dendritic cells and macrophages, plays a key role in inducing 

Th1 cells, the roles of IL-12 and IFN-γ (the main signature cytokine of the Th1 lineage) have 

been intensively studied in models of EAU (252).  

Th2 cells are defined by the transcription factor GATA binding protein 3 and secretion of IL-4, 

IL-13 and IL-5 and are responsible for developing the humoral response, the timing and 

cellular source of Th2 cytokines can determine whether Th2 cells play a pathogenic or 

protective role in the progression of uveitis (251, 252).  

Tregs are important for peripheral tolerance and the control of autoimmune disease and are 

identifiable by forkhead box P3 (FoxP3) transcription factor expression and production of 

transforming growth factor beta (TGFβ), IL-10 and IL-35 (251). 
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Th17 cells and IL-17 in uveitis 

IL-17 is part of the IL-17 family of cytokines, including IL-17 (IL17A), IL-17B, IL-17C, IL-17D, IL-

25 and IL-17F. In uveitis Th17 cells produce IL-17A and IL-17F and have an important role for 

driving inflammation. Pathogenic Th17 cells are capable of inducing uveitis alone and 

treatment with anti-IL-17 antibody can block development of EAU (251, 253). 

IL-23 and its roles in uveitis 

The IL-12 superfamily of cytokines consists of ; IL-12, IL-23, IL-27 and IL-35 (251). IL-23 is made 

up of the unique subunit p19 (only found in IL-23) and the shared subunit p40 (also comprising 

IL-12). Due to IL-23 comprising of two subunits it is known as a heterodimeric protein (251, 

254). In the maturation and development of a population of pathogenic Th17 cells IL-23 is a 

very important checkpoint, if IL-23 is not present the population will not be pathogenic when 

developed (251, 254). Lack of the IL-12p40 or IL-23p19 subunits in mice has shown protection 

against the development of EAU (255). Increased serum levels of IL-23 in humans has been 

linked to increased risk of uveitic disease (251). 

IL-6 and its roles in uveitis 

IL-6 is an established innate cytokine and a principal mediator of autoinflammatory disease 

which includes uveitis. IL-6 family cytokines include cardiotrophin-1 (CT-1), ciliary 

neurotrophic factor (CNTF), leukaemia inhibitory factor (LIF), oncostatin M (OSM), 

osteopontin (OPN), IL-11 and IL-31 (251, 256).  

In EAU, IL-6 deficient animals have a significantly attenuated disease phenotype and 

treatment with intravitreal anti- IL-6 reduces inflammation (251, 256). Elevated IL-6 levels in 

humans have been detected in the aqueous humor, similarly to the mouse model intravitreal 

anti-IL-6 is capable of reducing inflammation (251).  

 

7.1.2 Interleukin 6 and Interleukin 12 family of cytokines  

Interleukin 6 (IL-6) 

Type-I cytokines include IL-6 and IL-12 families that are both made up of proteins related 

structurally due to the presence of four-helix proteins. Members of the IL-6 family of 

cytokines are secreted in the form of single-subunit monomers (257). The dimeric IL-12 family 

α subunits, including p19, p28 and p35 pair with potential β subunits for example p40 and 
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EBI3. The α subunits are structurally homologous to IL-6 cytokines while the β subunits can 

be compared structurally to membrane-bound receptors of IL-6 cytokines (257).  

The IL-6 cytokine family comprises of a number of cytokines including IL-6 and IL-11, these 

cytokines have been implicated to play important roles in autoimmunity, cancer, chronic 

inflammation and infectious diseases (258). The defining characteristic of this family of 

cytokines is many of the cytokines share the common cytokine receptor subunits. Further to 

this, phylogenetic analysis suggests a close relationship between the IL-6 and IL-12 cytokine 

families  (257, 258).  

Interleukin 12 (IL-12)  

IL-12 was first purified in 1989, it was discovered to have the unique molecular structure of a 

covalently linked heterodimer composed of p40 and p35 (259, 260).  The sequence of p35 is 

homologous to that of IL-6 and G-CSF  comprised of a four-α- helix structure that is typically 

seen in cytokines (260). The sequence of the p40 chain is structurally similar to the IL-6 

receptor-α chain and ciliary neurotrophic factor receptor which are both members of the 

hemopoietin family. The similarities found in these chains are present in the extracellular 

portion of specific members of the hemopoietin family (260). The extracellular portion of the 

receptor α chain of the IL-6 family is capable of being secreted as a soluble molecule to form 

complexes with cytokines, these complexes can bind to transmembrane chains of the 

receptor complex to induce signal transduction. The membrane receptor complex of IL-12 is 

composed of two chains IL-12Rβ1 and Il-12Rβ2 that are both homologous to gp130, IL12Rβ1 

binds to IL-12p40 and is associated with Tyk2, whereas IL-12Rβ2 recognises the heterodimer 

or the p35 chain and is associated with Jak2 (260). The production of IL-12 is mostly found by 

activated innate cells such as neutrophils and dendritic cells and adaptive immune cells 

including macrophages and monocytes. The production of IL-12 by these activated cell types 

is capable of inducing IFN- γ  production in populations of T cells including Th1 cells and NK 

cells (260). Most biological responses to IL-12 are mediated by STAT4 but signalling through 

the IL-12 receptor complex also includes a number of STAT transcription factors such as: 

STAT1, STAT3 and STAT5 inducing nuclear translocation, phosphorylation and dimerisation in 

these transcription factors (260).  

IL-12 was originally thought to be the only heterodimeric cytokine, however IL-23, IL-27 and 

IL-35 have been determined to have a similar structure to form part of the family of 
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heterodimeric cytokines (260). IL-23 and IL-27 affect the production of IFN-γ by T and NK cells, 

and in the case of IL-23 share part of the IL-12 receptor complex (figure 7.1) 

 

Figure 7.1: IL-12 family of cytokines and their receptors. Architecture of the IL-12 family of 

cytokines and their receptors. Figure adapted from Vignali et al (2012) (261). 

 

7.1.4 Role of interleukin 27 (IL-27) and Interleukin 27 Receptor (IL-27R) in vivo 

IL-27 is a heterodimeric cytokine made up of EBI3 and IL-27p28. Receptors of class I cytokines 

are made up of α and β heterodimers. The α subunit being a primary cytokine in the case of 

IL-27 receptor (IL-27R) this is the IL-27Rα (also known as WSX-1 or TCCR) and a β subunit that 

is used for high affinity binding and signal transduction which in the case of IL27R is gp130 

(39).  

WSX-1 consists of 2 tyrosine residues that can be phosphorylated in humans whereas in mice 

there are 3 tyrosine residues including one residue that is conserved (39). WSX-1 contains a 

Trp-Gly-Glu-Trp-Ser (WGEWS) fitting with other proteins from the same family (WSXWS 

motif) (262). IL-27Rα is expressed highly in spleen, thymus, and lymph nodes, specifically in 

the CD4+ T cell compartment.  

The IL-6 receptor family of cytokines shares the gp130 subunit with several other receptor 

partners (39), IL-27Rα is capable of forming homodimers that are capable of activating the 

JAK-STAT pathway that is associated with myeloid cell transformation but gp130 is considered 

to be the main partner of the IL-27Rα (40, 263). In memory B cells IL-27 mainly signals through 

STAT1 in humans whereas activated T cells signal mainly through STAT3 (39, 264).  

Upon activation of CD4+ T cells increased surface expression of Il-27Rα has been observed 

this is significantly different to naïve T cells where minimal expression is present (40).  
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Studies have illustrated both naïve and activated CD8+ T cells are responsive to IL-27, however 

downregulation of gp130 expression render memory CD8+ T cells non-responsive to IL-27 and 

therefore do not produce an IL-10 response(265). A study by Perona-Wright et al (265), 

showed mice lacking in IL-10 down regulated the cytokine receptor gp130 due to the 

persistent loss of IL-27 responsiveness in memory CD8+ T cells. Impaired IL-27 responsiveness 

on human memory CD8+ T cells has shown the same effects as the mouse models (265). 

In order to study the effect of IL-27Rα in vivo, IL-27Rα knockout mice were generated.  

A study by Wang et al (266) have shown when administered in recombinant heterodimer form 

to mice with EAU it was able to inhibit cellular infiltrate including Th1 and Th17 responses and 

stimulated an expansion in the Treg population to decrease disease (40, 266). Dominant 

cellular sources of IL-27 include myeloid cell populations such as; macrophages, inflammatory 

monocytes, microglia and dendritic cells but it has also been observed to be expressed by 

plasma cells, endothelial cells and epithelial cells (40). Specifically, within the eye, IL-27 is 

produced by the microglia, retinal ganglion cells and throughout the neuroretina especially 

during peak EAU (267).  

 In a study by Chihara et al (268), the co-inhibitory receptor protein C receptor and podoplanin 

were functionally validated and are co-expressed in both CD4+ and CD8+ T cells, that forms 

part of a larger programme that is driven by IL-27 of a co-inhibitory nature shared by non-

responsive T cells in many physiological contexts(268), illustrating the role of IL-27 as an 

immunoregulatory cytokine.  

The immunoregulatory properties of IL-27 centre around the idea of its ability to induce T 

cells to perform functions necessary for suppressing ongoing inflammation (40). Il-27 

promotes Th1-type immune responses while inhibiting Th17 responses, inducing Il-10 

expression and the promotion of a Treg specific population specialised to limit the Th1 

response. Further to this IL-27 is also capable of limiting IL-2 production while increasing IFN-

γ production during an immune response (40). 

 

7.1.5 IL-27Rα-/-/ WSX-1-/- mice 

IL27Rα-/- mice were generated in 2001 by Yoshida et al. (262). The mice were produced by 

homologous recombination and have been used in studies to define the role of IL-27Rα-/- in 

vivo (262).  
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Development of hematopoietic and lymphoid systems in the mice appeared normal but 

isolated T cells from the knockout animals produced reduced levels of IFN-γ when treated in 

vitro with IL-12 and concanavalin A (ConA) or anti-CD3 antibody (262). When fully 

differentiated, if cells from IL-27Rα-/- are subjected to a secondary stimulation they produce 

similar levels of IFN-γ to wild type mice (262). 

Studies in arthritis using this mouse model in the experimental model adjuvant induced 

arthritis (AIA) have illustrated that IL-27Rα-/- mice displayed a more severe inflammatory 

arthritis indicated by increased leukocyte infiltration, synovial exudate, hypertrophy and 

hallmarks of cartilage and bone erosion (269).  

Along with a more severe inflammatory arthritis, IL27Rα-/- mice with AIA showed heightened 

synovial T cell infiltration and the presence of discrete CD3+ aggregates (ectopic lymphoid 

structures (ELS)) within the synovium (269). In this study by Jones et al (269), at day 3 after 

AIA induction a small portion of the IL-27Rα-/- mice presented with small CD3+ aggregates but 

by day 10 all IL-27Rα-/- mice had developed multiple CD3+ aggregates throughout the 

synovium, in contrast wildtype mice developed fewer lymphoid aggregates and a less severe 

infiltrate in the synovium (269).  

These studies have suggested a role for IL-27 in regulating autoimmune disease, further 

studies in the EAE model using the IL-27Rα-/- mouse gave severe neuroinflammation and a 

more severe Th17 response (270). Further studies support this hypothesis when autoimmune 

disease is treated with IL-27, limited immunopathology associated with a Th17 response is 

present. This occurs in models of uveitis including EAU, collagen induced arthritis (CIA),EAE 

and colitis (270). 

IL-27Rα-/- mice are a useful tool to study interactions and properties of IL-27 receptor in vivo, 

and the role of IL-27 in disease processes in autoimmune models such as models of arthritis 

(AIA) and uveitis (EAU). 

 

7.1.6 Anti-inflammatory properties of IL-27 

A role for IL-27 in the promotion of Th1-type immunity has been suggested in early studies of 

the cytokine but further studies have instead highlighted a function for IL-27 in limiting 

immune hyperactivity (40). One report that illustrated this was using IL27Rα-/- mice that were 

infected by Toxoplasma gondii. Parasite replication was efficiently controlled but was not 
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capable of downregulating the response of CD8+ and CD4+ T cells induced by infection and 

instead the mice developed increased levels of IFN-γ and a lethal CD4+ T cell mediated 

immune pathology (40, 271). Similarly, in a model of Trypanosoma cruzi infection IL27Rα-/- 

mice had exacerbated IFN-γ production and lethal inflammatory disease (40, 272).   

 

7.1.7 Pro-inflammatory properties of IL-27 

IL-27 is considered a growth and survival factor for T cells that has a positive affect on many 

aspects of T cell function (40, 273). Upregulation of expression of lymphocyte function-

associate antigen-1, ICAM-1 and sphingosine-1-phosphate has been linked to IL-27 but 

inhibition of CCR5 expression has also been observed, this illustrates a need for further study 

of IL-27 on trafficking and behaviour of lymphocyte populations (40).  

Using IL-27Rα-/- mice this chapter aims to compare disease course assessed using OCT and 

total retinal infiltrate in groups of animals that have received either wildtype pathogenic cell 

transfer or IL-27Rα-/- pathogenic cell transfer. The fate of transferred IL27Rα-/- and wildtype 

cells will be analysed using allelic markers. The adoptive transfer model was used as a way of 

specifically studying the effect of the knockout phenotype on T cells in an environment where 

there is normal IL27Rα regulation in the tissue. 
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7.2 Materials and Methods 
 

7.2.1 Adoptive transfer technique 

EAU was induced in C57BL/6 or IL-27Rα-/- CD45.2 donors using RBP3 peptide,  donor cells 

were then transferred using i.p injection into C57BL/6 CD45.1 recipients at variable cell 

concentrations to determine the optimum number of cells needed to induce a disease. 

 

7.2.2 Flow cytometry analysis 

Flow cytometry was used to identify subsets of cells within the endogenous and transferred 

cell population present in the retinal infiltrate using extracellular and intracellular staining. 

Within transferred recipients, allelic markers CD45.1 and CD45.2 were used to identify 

endogenous and transferred populations of cells within the retina. 

 

7.2.3 Clinical imaging 

OCT scans and fundus images standardised across recipients during transfer optimisation 

were taken weekly for both groups to study disease course. 

 

7.2.4 Immunohistochemistry  

Eyes were frozen in OCT and kept at -80°C before being sectioned at ~20 microns. Sections 

were then stained for CD3, CD4 and CD8 or CD3, CD4 and CD19 to identify leukocyte infiltrate. 

 

7.2.5 Fluorescence Microscopy 

Whole retina mounts were isolated and fixed for analysis by light sheet fluorescence 

microscopy or confocal microscopy. Retinas were stained using CD3, CD4 and CD8 antibodies.  
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7.3 Results 
7.3.1 Flow cytometric analysis of naïve mice 

As previously discussed in chapter 4 naïve baseline quantification of leukocytes in 

unmanipulated mice is a useful tool in understanding leukocyte presence in the eye before 

induction of EAU. 

IL27Rα-/- mice do not display major defects in mounting a Th1 response, but in a limited 

number of scenarios the Th1 response is delayed in these animals (274). These mice have 

exacerbated inflammation in response to a wide variety of immune challenges, including 

pathogens that cause a Th1 and Th2 response in models of inflammation that rely on Th2 and 

Th17 activity (274). Several mechanisms have been suggested to be linked to the role of IL-27 

in immunomodulatory activities including; IL-27 is known to antagonise Th17 development 

(275), induce IL-10 production (276) and suppress IL-6-induced T cell proliferation under 

inflammatory conditions (275).  

To determine at baseline if there are any changes within leukocyte recruitment to the eyes of 

IL27Rα-/- mice, leukocyte infiltration was quantified in naïve IL27Rα-/- mice. This data was then 

compared to the C57BL/6 naïve leukocyte data previously presented in chapter 4 figure 4.1. 

The CD4+ T cells present within the naïve eyes of both the C57BL/6 and Il27Rα-/- mice are 

similar in number (figure 7.2a). However, there is a statistically significant increase in CD8+ T 

cell number and CD11b+ cell number present within the eye in the Il27Rα-/- mice in a naïve 

state in comparison to the naïve C57BL/6 group (figure 7.2b and 7.2c). No effect is seen 

between the two groups when looking at Ly6G+ cell number and Ly6C+ cell number (figure 

7.2d and 7.2e). 
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Figure 7.2: Quantified leukocyte cell number in naïve eyes of unmanipulated C57BL/6 or 

C57BL/6 IL-27Rα-/- mice. Using a standard curve acquired by flow cytometry leukocytes present 

within the eyes of naïve mice were quantified. CD4+ T cell number within the two groups is 

comparable (A). A statistically significant difference is observed between the two groups in the CD8+ 

and CD11b+ cell compartment (B+C). The final leukocyte populations quantified, Ly6C+ and Ly6G+ cell 

number in the two groups are also similar (D+E). Numbers expressed as Mean +SEM. Unpaired non-

parametric Mann-Whitney Test ***p<0.001, ****p<0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 

IL-27RΑ-/- LOWER LIMIT UPPER LIMIT MEAN 

CD4 3 102 41 

CD8 22 204 106 

CD11B 598 3028 1786 

LY6G 4 35 12 

LY6C 9 103 55 
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7.3.2 Analysis of adoptive transfer donor C57BL/6 eyes vs C57BL/6 IL-27Rα-/- 

eyes at day 11 after active immunisation. 

In order to perform the adoptive transfer of uveitogenic leukocytes into naïve recipients, 

donors are immunised using RBP3 peptide emulsified in CFA administered subcutaneously 

with a concurrent intraperitoneal injection of pertussis toxin. After 11 days, spleen and lymph 

nodes were isolated for cell culture to produce leukocytes for adoptive transfer. 

To quantify disease severity of the donors at cell harvest, donor eyes were analysed across a 

number of experiments to quantify total leukocyte populations present within the eye at day 

11 after immunisation and intracellular cytokine staining in the two groups immunised 

(C57BL/6 mice and the C57BL/6 IL-27Rα-/- mice).  

Eyes from donor mice 11 days after immunisation were analysed by extracellular staining to 

isolate the CD4+ T cell population then further analysed based on cytokine secretion within 

the isolated CD4+ T cell population (figure 7.3). Overall in the Il-27Rα-/- immunised donors 

have an increase in cytokine production in comparison to the C57BL/6 immunised donors and 

a statistically significant increase in IFN-γ secretion within the Il-27Rα-/- is also observed (figure 

7.3). The increase in IFN-γ production is accompanied by an increased percentage of IFN-γ in 

the eyes of the donors (presented underneath) an increased overall percentage of IL-17 

production is also observed in the IL-27Rα-/- donor mice. 

CD4+, CD8+ and CD11b+ cells were quantified to determine disease stage in both groups of 

immunised animals (figure 7.4). Overall, there is a statistically significant increase in the 

number of leukocytes present within the eyes of the IL-27Rα-/- in comparison to the C57BL/6 

control group. Specifically, a statistically significant increase in CD4+, CD8+ and CD11b+ cell 

number is observed in the IL-27Rα-/- mice in comparison to wildtype, suggesting a more severe 

clinical disease is present within the eyes of the IL-27Rα-/- mice.  
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2 .2 9 %   IF N -  y +

7 .7 4 %   IL -1 7 +

1 .3 8 %   IF N -y  IL -1 7 +

8 8 .5 9 %   IF N -y  IL -1 7 -

7 .3 6 %   IF N -y +

1 6 .7 8 %   IL -1 7 +

2 .1 9 %   IF N -y   IL -1 7 +

7 3 .6 7 %   IF N -y  IL -1 7 -
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Figure 7.3: Intracellular staining of CD4+ T cells to detect cytokines expressed at day 11 after 

immunisation. Extracellular staining was performed on retinal and vitreous infiltrate, gating through 

CD4+ cells to analyse cytokine production in this compartment. IFN-γ, IL-17 and double positive 

expression was analysed in both sets of eyes from the donor groups. Numbers expressed as Mean 

+SEM. One-Way ANOVA multiple comparisons **p<0.01. 
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C57BL/6 LOWER LIMIT UPPER LIMIT MEAN 

CD4 219 9096 2542 

CD8 79 910 327 

CD11B 1586 47396 13821 

 

IL-27RΑ-/- LOWER LIMIT UPPER LIMIT MEAN 

CD4 7434 62711 21655 

CD8 703 6955 2321 

CD11B 41414 242324 91789 

 

Figure 7.4: Quantified leukocyte numbers present within the eyes of the donor mice at day 

11. At day 11, 8-10 eyes were analysed from both donor groups and leukocytes quantified. CD4+ T 

cell number was quantified and compared across the two donor groups (A). CD8+ T cell number was 

quantified and compared across the two donor groups (B). CD11b+ cell number quantified and 

compared across the two donor groups (C). Numbers expressed as Mean +SEM. Unpaired non-

parametric Mann-Whitney Test ***p<0.001, ****p<0.0001. 
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7.3.3 Clinical disease onset in IL-27Rα-/- mice  

Because the clinical disease within the immunised IL-27Rα-/- adoptive transfer donors was 

more severe when analysed by leukocyte quantification in comparison to the control C57BL/6 

donor this suggested that disease induction in the IL-27Rα-/- mice has an earlier onset when 

compared to other C57BL/6 mice. This contrasts with EAE studies which reported that the 

induction of disease in IL-27Rα-/- mice is not accelerated. 

To characterise the initiation of clinical disease in IL-27Rα-/- mice, IL-27Rα-/- were immunised 

and analysed by clinical imaging and flow cytometry at day 7 after immunisation.  

A statistically significant increase in leukocyte number is observed by day 7 in the eyes of the 

IL-27Rα-/- mice. When quantified, CD4+ T cell number is significantly increased in the                    

IL-27Rα-/- mice after immunisation in comparison to the baseline obtained from mice of the 

same phenotype (figure 7.5a).  

The same affect is observed within the CD8+ compartment, where a  significant increase is 

observed in comparison to a naïve baseline (figure 7.5b), similarly in CD11b+, Ly6G+ and 

Ly6C+ cell number is also  increased (figure 7.5c, 7.5d and 7.5e).  

The statistically significant increase shows that initiation of clinical disease occurs earlier 

within the IL-27Rα-/- animals and early clinical disease is seen by day 7 after active 

immunisation. 
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Figure 7.5: Early onset of EAU in actively immunised IL-27Rα-/- mice. To further analyse onset 

of clinical disease in IL-27Rα-/- mice, active immunisation was performed. 8 eyes were analysed by flow 

cytometry at day 7. Overall leukocyte recruitment appeared to be increased in comparison to baseline 

(day 0). (A-E) Quantified leukocyte cell number at day 0 and at day 7 after active immunisation. 

Numbers expressed as Mean +SEM. Unpaired non-parametric Mann-Whitney Test **p<0.01, 

***p<0.001, ****p<0.0001. 

 

 

 

 

 

 

 

 

 

 

 

IL-27RΑ-/- LOWER LIMIT UPPER LIMIT MEAN 

CD4 176 534 400 

CD8 135 745 320 

CD11B 1725 4574 3445 

LY6G 78 581 226 

LY6C 64 611 256 
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7.3.4 Analysis of donor supernatant and donor cells before adoptive transfer  

Due to the early onset of clinical disease in IL-27Rα-/- and statistically significant differences 

between leukocyte recruitment in the donor IL-27Rα-/- mice in comparison to the C57BL/6 

control group, analysis of the leukocyte population used for adoptive transfer was carried out 

using a Legendplex assay. 

At day 11 after active immunisation, spleen and lymph nodes were processed for cell culture 

to prepare for adoptive transfer into naïve recipients. At this time point, eyes were also 

obtained from the donors and analysed by flow cytometry (figure 7.3 and figure 7.4). The 

differences in leukocyte infiltration suggested differences in clinical disease course.  

To determine the cytokine secretion of the whole culture supernatants, supernatant was 

taken at the end of the 72-hour cell culture before transfer. Cytokine secretion was then 

measured using a LegendPlex assay to determine differences between the two cultures. 

Overall, the IL-27Rα-/- culture was determined to be secreting increased levels of cytokines. 

Specifically, a statistically significant increase in IL-1α, IFN-γ, TNF-α, MCP-1, IL-10, IL-6, IL-17A 

and GM-CSF (figure 7.6b, 7,6c, 7.6d, 7.6e, 7.6h, 7.6i, 7.6k, 7.6m) is observed in the IL-27Rα-/- 

cultures suggesting a more potent cell phenotype present within the cell cultures denoted by 

increased cytokine expression per cells and in the fraction of cells present within the culture 

expressing cytokine. Although a statistically significant increase in specific cytokines 

quantified within the IL-27Rα-/- cultures in comparison to the control C57BL/6 cultures, other 

cytokines analysed including: IL-23, IL-12p70, IL-1β, IL-27 and IFN-β (figure 7.6a, 7.6f, 7.6g, 

7.6j and 7.6l) although not statistically significant has a general effect of increased cytokine 

secretion within the IL-27Rα-/- cultures raising the possibility that a more pathogenic type of 

cell is present within the culture. 

Another observation made about the difference in the IL-27Rα-/- cultures in comparison to 

the C57BL/6 culture is the difference in total cell number yield from the cultures. Comparable 

numbers of mice were originally immunised to create the same number of flasks at the same 

cell density at 0 hours of cell culture. After leukocytes were isolated using Ficoll density 

centrifugation at 72 hours of cell culture a large difference in leukocyte number obtained from 

the two cell cultures is observed. The IL-27Rα-/- cultures yield more than double the cell 

number of the C57BL/6 cultures. 
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For cell transfer we used equivalent numbers of CD4+ T cells , so it was important when 

analysing the transferred leukocyte population to determine the percentage of a number of 

leukocyte populations present within the transferred populations including; CD4+ T cells, 

CD8+ T cells, CD11b+ cells and other leukocytes (figure 7.7). Despite the overall increase in 

cell numbers, the transferred CD4+ T cell population isolated from each cell culture is 

comparable in percentage in both C57BL/6 and IL-27Rα-/- leukocyte populations (figure 7.7). 

The same is also seen within the CD8+ and CD11b+ cell compartment (figure 7.7). Thus 

suggesting that although the leukocytes present within the IL-27Rα-/- cultures expand more 

than the C57BL/6 control, the total percentage of CD4+ T cells present within each culture is 

comparable so there is no difference at disease induction in CD4+ T cell number transferred. 
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Figure 7.6: Analysis of supernatant obtained from cultures of C57BL/6 leukocytes or               

IL-27Rα-/- leukocytes. To analyse cytokine secretion within both cultures a sample of supernatant 

was obtained from each culture and analysed using LegendPlex analysis. Overall, increased levels of 

cytokines are observed with the analysed IL-27Rα-/- culture in comparison to the C57BL/6 cultures. (A-

L) Cytokine expression within the supernatant of the C57BL/6 culture in comparison to the IL-27Rα-/-. 

Numbers expressed as Mean +SEM. One-Way ANOVA multiple comparisons **p<0.01, ***p<0.001, 

****p<0.0001. 
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Figure 7.7: Flow cytometric analysis of transferred leukocyte populations from C57BL/6 

cultures and IL-27Rα-/- cultures. After leukocytes were isolated for adoptive transfer a sample was 

analysed by flow cytometry to determine the percentage of CD4+ T cells, CD8+ T cells and CD11b+ 

cells transferred into the naïve recipients by extracellular staining. Data expressed as Mean 

percentage. 3-10 samples per donor group. 
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7.3.5 OCT imaging throughout clinical disease in the C57BL/6 and IL-27Rα-/- 

adoptive transfer recipients  

At day 7 both groups of recipients have peak disease, but differences are observed in the 

severity of the peak disease in each group of recipients that received either the C57BL/6 

leukocyte transfer or the IL-27Rα-/- leukocyte transfer. The disease within the recipients that 

received C57BL/6 cells (figure 7.8c) is severe with obvious retinal and optic disc swelling 

within the OCT image coinciding with the large cell numbers present in the vitreous stopping 

a clear signal within the OCT image. Within the fundal image cellular infiltrate causes a 

reflection of light also causing the image to be blurry. 

However, in the IL-27Rα-/- recipients the disease is so severe that an OCT image cannot be 

obtained due to the severity of the disease present (figure 7.8d). Due to the severity of the 

cellular infiltrate the OCT cannot give a clean image of the optic disc, retina or vitreous 

including the infiltrate. This is supported by the fundus image which due to the severity of the 

cellular infiltrate the image is unclear, and the optic disc or blood vessels are no longer 

obviously present (as seen in figure 7.8a and 7.8b). 

By day 13, disease is resolving and is less severe in comparison to the disease present at day 

7 but is still active and of a severe phenotype. At this time point the OCT images are 

comparable between the two recipient groups (figure 7.8e and 7.8f), although the thickness 

of the retina has reduced in both groups, the optic disc is still swollen and severe vitreal 

infiltrate is present. When looking at the fundus image there is obvious differences between 

the two groups. In the C57BL/6 recipients the vitreal haze is not obscuring the optic disc and 

blood vessels, whereas, within the IL-27Rα-/- transfer recipients the fundus remains full of 

leukocyte infiltrate and the vessels and optic disc are not clear due to the presence of this 

infiltrate within the vitreous. 

At day 28, active disease has mostly resolved within the C57BL/6 recipients (figure 7.8g) with 

minimal cellular infiltrate present within the vitreous in the OCT image, the retina and optic 

disc has thinned and is now thinner than the OCT images taken  at baseline day 0 (figure 7.8a). 

The fundus image is much clearer due to reduced infiltrate present within the vitreous. In the 

IL-27Rα-/- transfer recipients the OCT image shows continued active disease including severe 

infiltrate present within the vitreous. However, the retina appears to have thinned and 

swelling of the optic disc has resolved (figure 7.8h).  
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Based on the resolution of active clinical disease in the C57BL/6 recipients the OCT disease 

course has been split into two stages the early disease highlighted in figure 7.8 and the later 

stages of disease observed in figure 7.9. 

At day 40, the disease remains inactive in the C57BL/6 recipients (figure 7.9a). In the OCT 

image, there is a lack of infiltrate present within the vitreous, the retina remains thin but the 

optic disc has returned to its original thickness observed at baseline. In the fundus image the 

vitreal haze has completely resolved and the retina, blood vessels and optic disc are now seen 

clearly within the image. In the IL-27Rα-/- recipients, the OCT image shows that active disease 

has persisted to this time point, vitreal infiltrate remains present within the eyes of the 

recipients. Although the retina remains thinned, the optic disc appears slightly swollen (figure 

7.9b). The fundus image is still blurry due to the vitreal infiltrate, the retina and vessels are 

visible but not defined and the optic disc remains swollen with infiltrate. 

By day 51, the disease continues to be quiescent and not active within the C57BL/6 recipients, 

a small amount of infiltrate is observed within the OCT image but not enough to suggest any 

active disease (figure 7.9c). The retina remains thinned due to scarring from disease severity 

and has not returned to a baseline state and the optic disc has remained similar to baseline 

state that was observed at previous time points. In the IL-27Rα-/- recipients active disease 

persists to this time point (figure 7.9d). The infiltrate present within the vitreous has further 

persisted to this stage in disease, the retina remains thinned, but the optic disc is swollen due 

to the infiltrate.  

At day 67, eyes were analysed by flow cytometry to quantify leukocyte infiltrate present 

within the eyes of both groups of recipients. Before the eyes were analysed, they were imaged 

using OCT at this time point to deduce disease severity in the two groups before flow 

cytometric analysis.  

The C57BL/6 group continues to be quiescent in the recipients by studying the OCT image 

(figure 7.9e). The number of leukocytes present within the vitreous is minimal, the retina 

remained thinned and the optic disc consistent with the baseline OCT image. The fundus 

image shows some retinal scarring, but the image is clear, and the optic disc and blood vessels 

are clearly present within the image. The IL-27Rα-/- recipients as seen in previous time points 

still has persistent active disease that has shown no signs of resolution throughout the entire 

disease course. There is obvious swelling of the optic disc and infiltrate present within the 
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vitreous (figure 7.9f). In the fundus image, the fundus remains blurry due to the cells present 

within the vitreous, because of this the blood vessels and the optic disc remain out of focus. 
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Figure 7.8: OCT time course of early clinical disease in C57BL/6 transfer recipients and           

IL-27Rα-/- transfer recipients. OCT and fundus imaging from baseline through to day 28 to monitor 

early clinical disease in both recipient groups. (A+B) Baseline day 0 imaging illustrates the naïve eyes 

showing no signs of clinical disease in both groups before disease induction by leukocyte transfer. 

(C+D) Day 7 imaging illustrating peak disease in both groups with severe vitreal infiltrate and swelling 

of the retina and optic disc visible in the OCT. (E+F) Day 14 imaging illustrating early disease resolution 

in both groups but still with severe clinical disease present within both groups. (G+H) Day 28 imaging 

of the recipient groups illustrating further resolving in the C57BL/6 transfer group but active disease 

persisting in the IL-27Rα-/- group. 

(A+C+E+G) C57BL/6 transfer recipients 

(B+D+F+H) IL-27Rα-/- transfer recipients 
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Figure 7.9: OCT time course of late clinical disease in C57BL/6 transfer recipients and               

IL-27Rα-/- transfer recipients. OCT and fundus imaging from day 40 through to day 67 to monitor 

late clinical disease in both recipient groups. (A+B) Day 40 imaging of both groups to illustrate disease 

severity and persistence in each group at this time point. (C+D) Day 51 imaging of both groups of 

recipients to compare disease severity and persistence within the two groups of recipients. (E+F) Day 

67 imaging was obtained before eyes were analysed by flow cytometry to quantify leukocytes present 

within the eye. The imaging allows a final comparison of disease severity to correlate with leukocyte 

numbers obtained by flow cytometry. 

(A+C+E) C57BL/6 transfer recipients 

(B+D+F) IL-27Rα-/- transfer recipients 
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7.3.6 Flow cytometric analysis of leukocyte infiltrate at day 67 after adoptive 

transfer of uveitogenic leukocytes into C57BL/6 or IL-27Rα-/- recipients 

Disease course was monitored in the two recipient groups using OCT imaging from baseline 

through to day 67 (figure 7.8 and 7.9). At day 67, disease within the IL-27Rα-/- recipients 

remains active in the OCT image with large levels of vitreal infiltrate (figure 7.9f), whereas in 

the C57BL/6 recipients active disease resolved by day 28 (figure 7.8g) and remained in a 

quiescent state through to day 67 (figure 7.9e). Data from the C57BL/6 recipients previously 

presented in chapter 4. 

One eye from each recipient was isolated and prepared for analysis by flow cytometry and 

the corresponding eye was used for light sheet analysis, flat mount analysis by confocal 

microscope or sectioned for staining by immunofluorescence.  

Retinas and vitreous were isolated from one eye from each recipient in both groups. CD4+, 

CD8+, CD11b+, Ly6G+ and Ly6C+ cells were quantified in the endogenous and transferred 

compartment of each eye using allelic markers.  

Figure 7.10a illustrates endogenous and transferred CD4+ T cells present within recipients’ 

eyes at day 67. In recipients that received the C57BL/6 transfer, a small population of 

transferred CD4+ T cells persists within the eye to day 67 which corresponds with a small 

increase in the endogenous population. In the IL-27Rα-/- recipient group a large group of 

transferred CD4+ T cells have persisted through to day 67 driving disease to continue; this is 

accompanied by a large endogenous CD4+ T cell population within the ocular tissue at day 67. 

The large CD4+ T cell number present within the IL-27Rα-/- recipients supports the observation 

made by the OCT images taken at day 67.  

There is a statistically significant difference between the endogenous populations of CD4+ T 

cells within the recipients of each group which coincides with a statistically significant 

difference between the transferred populations present within the eyes of recipients at day 

67 due to differences in disease state. 

Figure 7.10b shows the endogenous and transferred CD8+ T cell number at day 67 in both 

groups of recipients. Transferred CD8+ T cells in both groups do not survive within the eye, 

this was previously observed in chapter 4 from day 14. Due to the transferred cells not 

persisting within the eye there is a statistically significant difference between the endogenous 

and transferred populations. But no statistically significant difference is observed between 
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the endogenous populations of the two groups. This observation suggests that differences in 

disease are driven by the CD4+ compartment by both the endogenous and transferred 

population and other endogenous leukocyte compartments such as macrophages and 

neutrophils. 

Figure 7.10c shows the endogenous and transfer CD11b+ populations present within the eye 

of the two groups of recipients at day 67. Similarly, to the transferred CD8+ T cell population 

the CD11b+ does not persist within the eye in both groups of recipients so there is a large 

statistically significant difference between the endogenous and transferred populations in 

both groups. There is also a small statistically significant increase in the CD11b+ cell number 

present within the eyes of the IL-27Rα-/- recipients in comparison to the C57BL/6 recipients.  

Figure 7.11a represents the Ly6G+ cell number present within the eyes of the recipients in 

both groups at day 67. In both groups the transferred leukocyte population is not present 

within the ocular tissue at day 67, this causes a large statistically significant difference 

between the endogenous and transferred populations in each group of recipients. In the 

C57BL/6 recipients a small population of Ly6G+ cells are observed within the eye, whereas 

within the IL-27Rα-/- a statistically significant increase in the Ly6G+ population is present 

within the eyes of recipients at day 67.  

Ly6C+ and Ly6C- numbers are expressed in figure 7.11b and 7.11c. As observed previously the 

transferred population does not survive within the eye, therefore a statistically significant 

difference between the endogenous and transferred populations is present in both recipient 

groups. There is also a statistically significant increase in the Ly6C+ cell number between the 

two groups, specifically an increase is present within the IL-27Rα-/- recipients in comparison 

to the C57BL/6 recipients. The same effect is also seen within the Ly6C- population present 

within the eyes of the recipients. The IL-27Rα-/- recipients have an increased Ly6C- population 

present within the eye in comparison to the C57BL/6 recipients. 

Overall the IL-27Rα-/- recipients have increased endogenous leukocyte recruitment in 

comparison to the C57BL/6 control group. Transferred CD4+ T cells persist in high numbers 

to drive active disease in the IL-27Rα-/- recipients due to the transferred population not being 

shut down, whereas the transferred CD4+ T cells in the C57BL/6 recipients persist in low 

numbers that do not drive an active disease phenotype which suggests the cells are more 

readily shut down to limit active disease. 
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ENDOGENOUS 
    

TRANSFER 
   

IL-27RΑ-/- Lower Limit Upper Limit Mean 
 

IL-27Rα-/- Lower Limit Upper Limit Mean 

CD4 92 6148 2602 
 

CD4 71 3900 1441 

CD8 25 1748 808 
 

CD8 0 45 16 

CD11B 1021 19482 9730 
 

CD11b 0 14 5 

LY6G 147 3101 1884 
 

LY6G 0 0 0 

LY6C 311 5673 1989 
 

LY6C 0 0 0          

C57BL/6 Lower Limit Upper Limit Mean 
 

C57BL/6 Lower Limit Upper Limit Mean 

CD4 12 132 68 
 

CD4 4 46 18 

CD8 20 1175 390 
 

CD8 0 32 11 

CD11B 1242 2756 1660 
 

CD11b 0 25 10 

LY6G 7 108 40 
 

LY6G 0 0 0 

LY6C 21 149 73 
 

LY6C 0 0 0 

 

Figure 7.10: Leukocytes present within eyes of recipients processed at day 67 after adoptive 

transfer of C57BL/6 cells or IL-27Rα-/- cells. Leukocytes were quantified from retinas and vitreous 

in one eye of each recipient at day 67 after adoptive transfer of C57BL/6 or IL-27Rα-/-leukocytes into 

naïve C57BL/6 recipients. (A) Quantification of CD4+ T cell infiltrate present in eyes of recipients at 

day 67, using allelic markers endogenous and transferred population can be deduced. (B) 

Quantification of CD8+ T cell infiltrate present in eyes of recipients at day 67. Endogenous and 

transferred populations are quantified in each recipient within each group. (C) CD11b+ cell 

quantification at day 67 after adoptive transfer. Endogenous and transferred populations are 

quantified in each recipient within each group. Numbers expressed as Mean +SEM. One-Way ANOVA 

multiple comparisons **p<0.1 and ****p<0.0001. 
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ENDOGENOUS 
    

TRANSFER 
   

IL-27RΑ-/- Lower Limit Upper Limit Mean 
 

IL-27Rα-/- Lower Limit Upper Limit Mean 

CD4 92 6148 2602 
 

CD4 71 3900 1441 

CD8 25 1748 808 
 

CD8 0 45 16 

CD11B 1021 19482 9730 
 

CD11b 0 14 5 

LY6G 147 3101 1884 
 

LY6G 0 0 0 

LY6C 311 5673 1989 
 

LY6C 0 0 0          

C57BL/6 Lower Limit Upper Limit Mean 
 

C57BL/6 Lower Limit Upper Limit Mean 

CD4 12 132 68 
 

CD4 4 46 18 

CD8 20 1175 390 
 

CD8 0 32 11 

CD11B 1242 2756 1660 
 

CD11b 0 25 10 

LY6G 7 108 40 
 

LY6G 0 0 0 

LY6C 21 149 73 
 

LY6C 0 0 0 

 

Figure 7.11: Leukocytes present within eyes of recipients processed at day 67 after adoptive 

transfer of C57BL/6 cells or IL-27Rα-/- cells. Leukocytes were quantified from retinas and vitreous 

from one eye from each recipient at day 67 after adoptive transfer of C57BL/6 or IL-27Rα-/-leukocytes 

into naïve C57BL/6 recipients. (A) Quantification of Ly6G+ cell number present within the eyes of 

recipients at day 67 after disease induction by adoptive transfer. Endogenous and transferred 

populations were quantified individually in each eye. (B) Quantification of Ly6C+ cell number present 

within the eyes of recipients at day 67 after disease induction by adoptive transfer. Endogenous and 

transferred populations were quantified individually in each eye. (C) Quantification of Ly6C- cell 

number present within the eyes of recipients ta day 67 after disease induction by adoptive transfer. 

Endogenous and transferred populations were quantified individually in each eye. Numbers expressed 

as Mean +SEM. One-Way ANOVA multiple comparisons ****p<0.0001. 
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7.3.7 Lightsheet, Confocal and EVOS imaging of immunofluorescence staining 

of whole eyes or retinas from C57BL/6 or IL-27Rα-/- recipients 

At day 67, recipient’s eyes were analysed by OCT to determine disease severity. One eye from 

each recipient was then analysed by flow cytometry to quantify differences in cellular 

infiltrate between the two groups.  

Imaging techniques were used to analyse the differences between groups using the remaining 

eye from each recipient. Firstly, one eye from each recipient group was used for analysis by 

Lightsheet fluorescence microscopy (Zeiss Z.1 Lightsheet microscope). 

Lightsheet fluorescence microscopy (LSFM) uses a thin plane of light to optically section 

transparent tissue of whole organisms that have been labelled by a fluorophore (277). An       

IL-27Rα-/- recipient was imaged using lightsheet microscopy, as seen in figure 7.12 the retina 

holds its shape whilst being imaged using the lightsheet and the leukocytes present within 

the retina are visible due to the fluorophore staining. CD4+ T cells (figure 7.12a) are present 

throughout the retinal tissue indicating active clinical disease as previously described in OCT 

and flow cytometry data presented in figures 7.8, 7.9, 7.10 and 7.11. CD8+ T cells are 

dispersed throughout the retina in high numbers (figure 7.12b) as previously highlighted by 

the flow cytometry analysis presented in figure 7.10. The CD3e stain indicates high levels of T 

cell infiltrate present in the retina (figure 7.12c). Figure 7.14d merges the stains together to 

create a complete image of the retina, unfortunately due to the active state of disease the 

vessel stain was not possible to image due to leaking.  

2 eyes from each recipient group were also prepared for flat mount imaging by confocal 

microscopy. Confocal microscopy is capable of providing high-resolution microscopic images 

of cells within tissues under inspection especially using z-axis scans (278). The eyes were 

punctured and placed into fixative for two hours before the anterior was removed and the 

eye placed into fixative overnight. The retina is then removed carefully to keep fully intact. 

The retina was stained with antibodies conjugated to fluorophores to stain for leukocytes 

present within the retina such as CD3e, CD4 and CD8 and a DAPI cellular stain was also used 

to orientate the eye when imaging. The retina is the petallated and mounted onto a slide for 

imaging. 

Figure 7.13 are images taken using a confocal microscope of a retina taken from a C57BL/6 

leukocyte transfer recipient. CD4+ T cells are detected in low numbers within the retina of 
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the C57BL/6 recipient (figure 7.13), this supports the OCT imaging data and the flow 

cytometry data previously presented in figure 7.8, 7.10 and 7.11 that no active disease was 

present in the eyes of the C57BL/6 recipients. Increased CD8+ infiltrate in comparison to the 

CD4+ infiltrate is detected within the flat mounted retina by confocal microscopy (figure 7.13) 

which supports the flow cytometry data obtained and presented in figure 7.10. Figure 7.13 

illustrates the CD3e stain to detect all T cells present within the retina. As the greatest number 

of T cells present within the retina are CD8+ T cells this stain is predominantly staining the 

CD8+ T cells.  

Figure 7.14 contains images taken using a confocal microscope of a retina taken from an          

IL-27Rα-/- leukocyte transfer recipient. As previously discussed, the stains for the flat mount 

are also present in figure 7.13. CD4+ T cells (figure 7.14) are present in high numbers in the 

retina of the IL-27Rα-/- recipients, further indicating active disease that was previously 

suggested in previous figures. CD8+ T cell number is detected in figure 7.14, supporting the 

flow cytometry data previously presented in figure 7.10. The CD8+ T cell number present in 

the retinas of both groups are comparable, this is detected by flow cytometry and confocal 

microscopy. Figure 7.14 also illustrates CD3e staining within the retina to detect all T cells 

present within the retina.  

The final imaging technique used for analysis of eyes at day 67 after adoptive transfer with 

C57BL/6 leukocytes or IL-27Rα-/- leukocytes is by cryostat slicing of the eyes to image using 

the EVOS fluorescence microscope. Firstly, eyes are frozen in OCT medium using liquid 

nitrogen and then stored at -80°C until sectioned. Sections were then obtained from the eyes 

using a cryostat to obtain 20micron sections through the eye. The sections were then stained 

using fluorescently conjugated antibodies specific for CD3e and CD4 along with a DAPI stain 

for orientation of the eye when imaging. Sections were then mounted onto slides for imaging. 

Fluorescence microscopy requires that the objects of interest fluoresce (279). The sections 

were then imaged using a fluorescence microscope.  

Representative images are observed in figure 7.15, figure 7.15a is a section from a C57BL/6 

transfer recipient stained with a CD3e stain to detect all T cells present within the section. 

The CD3e+ cells within the section are low in number which was also illustrated in previous 

figures regarding disease severity and leukocyte infiltrate. 
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Figure 7.15b is a section from an IL-27Rα-/- leukocyte transfer recipient stained with a CD3e 

stain to detect all T cells within the section. The large levels of CD3+ T cells present within the 

section support the active disease present in the eye described in previous figures. 
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Figure 7.12: Images taken using lightsheet fluorescence microscopy to image a whole retina 

of an IL-27Rα-/- leukocyte transfer recipient. Whole retina imaging using lightsheet fluorescence 

microscopy was used to detect leukocytes throughout the retina. (A) CD4+ AF488 stain to indicate 

disease severity based on CD4+ T cell infiltrate. (Green) (B) CD8+ AF594 stain to determine infiltrate 

within the whole retina (Red)  (C) CD3e AF647 stain to illustrate all T cell infiltrate within the retina at 

day 67 (Magenta) (D) Merged image to analyse all T cell infiltrate within the retina. 20x Magnification. 
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Figure 7.13: Images taken by confocal microscopy of a flat mount of a retina obtained from 

a C57BL/6 transfer recipient at day 67. Images obtained using confocal microscopy of a whole flat 

mounted retina. DAPI cellular stain used to orientate the retina to image specific sections of the retina. 

The CD3+, CD4+ and CD8+ stain illustrates total T cell infiltrate within the sections observed to 

compare across the two recipient groups. 40x Magnification. 
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Figure 7.14: Images taken by confocal microscopy of a flat mount of a retina obtained from 

an IL-27Rα-/- transfer recipient at day 67. Images obtained using confocal microscopy of a whole 

flat mounted retina. DAPI cellular stain used to orientate the retina to image specific sections of the 

retina. The CD3+, CD4+ and CD8+ stain illustrates total T cell infiltrate within the sections observed to 

compare across the two recipient groups.40x Magnification. 
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Figure 7.15: Images taken from 40micron sections obtained from frozen whole eyes of 

C57BL/6 or IL-27Rα-/- transfer recipients. Sections from whole eyes frozen in OCT medium were 

obtained from eyes of both groups of recipients. (A) CD3e AF647 stain on sections obtained from 

C57BL/6 transfer recipients. Reduced infiltrate is present in comparison to the IL-27Rα-/- recipients 

due to resolution of active disease within the recipient at day 67. (B) CD3e AF647 stain on sections 

obtained from IL-27Rα-/- transfer recipients. Increased infiltrate is present within the eyes due to 

persistent active disease. Images show retinal infiltrate from both eyes.10x Magnification. 
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7.3.8 Analysis of leukocyte transfer recipients by OCT and flow cytometry 

through to day 144 after adoptive transfer. 

After analysis of transfer recipients at day 67 and differences in disease activity observed, 

further recipients were then taken through to day 144 to determine differences in disease 

activity by disease monitoring using OCT imaging and final time point analysis by flow 

cytometry leukocyte quantification. 

C57BL/6 and IL-27Rα-/- recipients were monitored to assess clinical disease across the two 

groups using OCT from day 76 to day 143. Figure 7.16a demonstrates that the active clinical  

disease within the C57BL/6 recipients remains resolved at day 76 as described previously in 

figure 7.9 where active disease resolution occurred within this recipient group at day 28 and 

continued to be in a quiescent state through the time course to day 67. Whereas at day 76 in 

the IL-27Rα-/- recipients (figure 7.16b) some signs of active disease are still present, obvious 

vitreal infiltrate and cells are present around the optic disc. At day 84, disease continues to 

be in a quiescent state in the C57BL/6 recipients (figure 7.16c) that is previously seen in figure 

7.16a. No vitreal infiltrate is observed and no swelling of the retina or optic disc. At day 84 in 

the IL-27Rα-/- recipients (figure 7.16d) obvious vitreal infiltrate is present suggesting active 

disease is persisting. There are obvious cells around the optic disc and retinal folds present 

within the OCT. The fundus image is slightly hazy due to cellular infiltrate. 

At day 123, the disease continues to be in a quiescent state in the C57BL/6 transfer recipients 

(figure 7.16e), in the OCT image no cellular infiltrate is present and there is no obvious 

swelling of the retina or infiltrate present around the optic disc. The fundus image is clear due 

to lack of infiltrate. In comparison, the IL-27Rα-/- recipient mice still show some signs of clinical 

disease in the OCT image such as swelling or fluid accumulation within the retina and vitreal 

infiltrate present. The fundus image remains slightly hazy due to vitreal infiltrate. 

Day 143 is the final OCT time point for both groups of recipients, the C57BL/6 recipients 

remains in a quiescent state (figure 7.16g). The fundus image remains clear due to the lack of 

active disease present in the recipients. As seen throughout the time course, active disease 

persists within the IL-27Rα-/- transfer recipients (figure 7.18h), in the OCT image cellular 

infiltrate remains present within the vitreous and cells are surrounding the optic disc. The 

corresponding fundus image remains hazy due to persistent active disease.  
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At day 144, eyes were dissected to isolate the retina and vitreous to quantify specific 

leukocyte infiltrate within the recipient’s eyes. Total CD4+ T cells were quantified from each 

of the recipient’s eyes (figure 7.19a) and compared to naïve baseline CD4+ T cell number. The 

total number of CD4+ T cells recovered from eyes of C57BL/6 animals at D144 was within the 

normal range established in naïve eyes (3->68) of which transferred cells comprised 25-30% 

in the C57BL/6 recipient transfer suggesting the CD4+ T cell number had returned to naïve 

baseline limits. The transferred population persisted within the C57BL/6 recipients in small 

numbers, a mean of 10 transferred cells per eye (data shown as total CD4+ T cell population).  

In contrast, the IL-27Rα-/- transfer recipients (figure 7.18a) have an increase in total CD4+ T 

cells present within the eyes of the recipients at day 144 in comparison to naïve baseline. 

Active disease was clear in 2/5 animals and CD4+ cells were above normal levels in a further 

2/5 of the recipients with one animal appearing as if infiltrative disease had resolved. 

Transferred cells were present in the majority of eyes. 

The same pattern is also seen in the CD8+ T cell compartment, no significant change is seen 

within the C57BL/6 recipients in comparison to the naïve baseline number (figure 7.19b). But 

as seen in the CD4+ compartment, an increase is observed between the naïve baseline and 

the total CD8+ T cell population present within the IL-27Rα-/- recipients. As previously 

discussed, transferred CD8+ T cells do not persist in either transfer model. 

In the CD11b+ cell compartment, total cell numbers are comparable between the two 

recipient groups. Transferred CD11b+ cells do not survive throughout disease course as 

mentioned in previous figures. 

Overall, transferred IL-27Rα-/- CD4+ T cells cause a more severe clinical disease phenotype and 

drive a more persistent active disease in comparison to the C57BL/6 transfer. Increased 

endogenous leukocyte recruitment is also seen in the IL-27Rα-/- recipients including 

neutrophils and macrophages. 
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Figure 7.16: OCT imaging between day 76 to day 143 to monitor disease course between 

the two recipient groups. Disease course was monitored using OCT imaging across the two recipient 

groups that received a C57BL/6 leukocyte transfer or IL-27Rα-/- leukocyte transfer. (A-H) OCT and 

fundal imaging obtained from day 76 after transfer from C57BL/6 or IL-27Rα-/- donors into wildtype 

recipients. 
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Figure 7.17: Average clinical scores of recipients over full disease course. OCT imaging was 

used to acquire fundal images of wildtype and IL-27Rα-/- recipients throughout disease course. The 

images were then scored blind using the criteria described in chapter 2 and the average score taken 

from each eye at each time point. Data expressed as Mean +SEM. Area under the curve calculated and 

statistical significance determined by an unpaired T test **p<0.05 
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C57BL/6 LOWER LIMIT UPPER LIMIT MEAN 

CD4 37 59 48 

CD8 43 60 50 

CD11B 2227 3381 2852 
    

IL-27RΑ-/- LOWER LIMIT UPPER LIMIT MEAN 

CD4 10 872 270 

CD8 26 437 182 

CD11B 1761 6068 3607 

 
 
Figure 7.18: Quantification of leukocytes present within the vitreous and retina in transfer 

recipients at day 143 after adoptive transfer of C57BL/6 leukocytes or IL-27Rα-/- leukocytes. 

Quantification of leukocytes present in the eyes of recipients at day 143 after adoptive transfer. (A) 

Total CD4+ T cells present in the eyes of C57BL/6 and IL-27Rα-/- recipients in comparison the naïve 

baseline (B) Total CD8+ T cells present in the eyes of C57BL/6 recipients and IL-27Rα-/- recipients in 

comparison to the naïve baseline (C) Total CD11b+ cells present in the eyes of C57BL/6 recipients and 

IL-27Rα-/- recipients. Total eyes analysed at D143 3 per recipient group. Stats was not performed due 

to low numbers of eyes at D143. 
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7.4 Discussion 

Studies have shown that IL-27 plays an important role in a variety of autoimmune diseases 

(156). IL-27Rα is quite widely expressed, therefore, to investigate the effect of IL-27Rα 

specifically on T cell pathogenicity and disease the adoptive transfer model was used. 

In mouse models of autoimmune diseases IL-27Rα deficiency has been implicated in a more 

severe disease phenotype. In the murine model of rheumatoid arthritis,  formation of ectopic 

lymphoid tissues has been reported (269) and in the experimental model of multiple sclerosis, 

using a Treg conditional knockout of IL-27Rα-/-, a more severe disease phenotype due to 

dysregulated Tregs was seen (280). 

This chapter presents work showing the effect of the IL-27Rα knockout in EAU, on disease 

induction analysed in the actively immunised model and in disease progression and severity 

analysed in the previously optimised adoptive transfer model. 

In the eyes of unmanipulated IL-27Rα-/- mice total CD8+ T cells recovered (day 0 baseline) are 

significantly increased when compared to naïve C57BL/6 mice. The same effect was observed 

within the kidney of the IL-27Rα-/- mice (appendix 3) but not the liver. This could be caused 

by slower leukocyte trafficking throughout the periphery in comparison to the wildtype 

group, perhaps associated with tight endothelial barriers or potential differences in MHC 

expression within the tissue of the IL-27Rα-/- mice but more study is needed to determine the 

exact cause.  

It has been previously published that in the IL-27Rα-/- mouse a more severe and persistent 

disease is present in comparison to a control C57BL/6 group in models such as AIA and EAE 

(269, 275). Following from this observation, donor eyes from both immunised recipient 

groups at day 11 were analysed by extracellular staining of cell markers and intracellular 

staining of cytokines. In the mouse model of arthritis using the IL-27Rα-/- mice robust Th1 

responses are characterised by IFN-γ and IL-2 production (281). In EAU there is an increase in 

leukocyte number and disease severity in the IL-27Rα-/- mice (figure 7.4) and a statistically 

significant increase in overall IFN-γ production in the IL-27Rα-/- donors is observed. A further 

observation at day 11, is accelerated disease onset in the IL-27Rα-/- donors particularly within 

the CD4+ T cell compartment. This statistically significant increase in CD4+ T cells in the             

IL-27Rα-/- immunised donors in comparison to the C57BL/6 immunised donors demonstrates 

an earlier onset of clinical disease in the IL-27Rα-/- mice in comparison to the C57BL/6 control 
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group. This is further supported by data acquired at day 7 (figure 7.5) showing a more fast-

moving clinical disease.  

Considering the differences observed within the eyes of the donor mice, cytokine secretion 

and leukocyte cell number was analysed within the cell cultures before the adoptive transfer 

of leukocytes into recipients. Overall, the IL-27Rα-/- cultures expressed increased levels of 

numerous cytokines including IFN-γ and IL-17 reflecting the larger number of CD4+ T cells are 

present within the cultures. To understand further if the increase in cytokine secretion is 

purely per culture or if there are more cytokines produced by individual cells                                

intra-cytoplasmic staining of cell cultures could be obtained. The increase in overall cytokine 

secretion in the IL-27Rα-/- culture suggests a more pathogenic or potent phenotype present. 

The total cell number in the IL-27Rα-/- cultures is nearly doubled in comparison to the 

C57BL/6, but the percentage of CD4+ T cells is comparable in both,  equal cell numbers were 

then transferred into recipients, therefore any difference in disease is due to the difference 

in the pathogenicity of the leukocytes transferred not any difference in cell number. Further 

analysis of growth factors present within the cultures would explain the increase in total 

leukocytes present in the IL-27Rα-/- cultures. 

Whereas early onset of clinical disease was observed in immunised IL-27Rα-/- mice in 

comparison to the C57BL/6 immunised group, in the adoptive transfer model of IL-27Rα-/- or 

C57BL/6 T cells into C57BL/6 Ly5 recipients, no difference is observed in the two groups. This 

could be due to the cells being transferred already having an activated, antigen-specific 

phenotype whereas the immunisation of mice in both groups has had no pre-priming of CD4+ 

T cells and therefore when the two groups were immunised the more rapid expansion of the 

IL-27Rα-/- causes an earlier onset and more severe disease phenotype. 

OCT of early disease shows no differences between clinical disease onset and a similar disease 

severity at peak disease in both groups.  Resolution of active clinical disease in the C57BL/6 

group occurs by day 28, whereas in the IL-27Rα-/- recipient group clinical disease remains 

active. When studying late disease by OCT, clinical disease in the C57BL/6 recipient group 

remains generally inactive throughout the time course. In the IL-27Rα-/- recipient group 

disease is generally more severe and clinical infiltration remains through to day 67. This 

observation further confirms that T cells isolated from an IL-27Rα-/- mouse are more potent 

and drive a more severe persistent disease phenotype consistent with active immunisation 

models of AIA and EAE (269, 275). 
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At day 67 the recipient’s eyes from both groups were isolated and analysed by flow cytometry 

or fluorescence microscopy.  

The data obtained from quantification of leukocytes by flow cytometry supports the 

observations made by OCT in relation to disease severity across the two groups. Firstly, total 

number of leukocytes within the eyes of the IL-27Rα-/- recipients is increased in comparison 

to the C57BL/6 recipient group.  

When studying the ratio of endogenous and transferred leukocytes present within the eyes 

of both groups of recipients in these long-term experiments most transferred leukocyte 

populations, except CD4+ cells, did not survive from the donor groups. In the CD4+ T cell 

compartment, transferred C57BL/6 CD4+ T cells are found in low numbers in the eyes of 

recipients at all time points studied. The decrease in transfer cell number is consistent with 

the resolution of active clinical disease in these recipients. In the eyes of the IL-27Rα-/- 

recipients a large transferred CD4+ T cell population persists within the eyes of recipients 

through to day 67. This is the only transferred leukocyte population to persist long-term 

within the eyes of recipients suggesting that it is the absence of IL-27Rα specifically on CD4+ 

T cells that is required to drive a more severe persistent disease. Even with intact Treg 

function within recipients, the transferred cells are still highly pathogenic, driving active 

clinical disease and causing recruitment of endogenous CD4+ T cells.  

To study if during clinical disease any ectopic lymphoid tissue aggregates form, fluorescence 

microscopy was performed on whole retinas by flat mount or lightsheet microscopy. Both 

forms of analysis showed no signs of ectopic lymphoid structures being present using a CD3 

stain to mark formation. Further analysis was performed using whole eye sections stained 

with fluorescence, but this further analysis also showed no ectopic lymphoid structure 

formations. However, the differences in CD4+ T cell number between the two groups is 

further supportive of the OCT and flow cytometry analysis at the same time point, illustrating 

more active disease in the IL-27Rα-/- recipient mice. The CD8+ population present within the 

retinas are larger and therefore suggests an active environment, specifically in the IL-27Rα-/- 

recipients where an increased number of larger more activated CD8+ T cells are present in 

comparison to the C57BL/6 transfer. 

To extend the analysis of the effect of IL-27Rα-/- on transferred CD4+ T cells, in a small number 

of animals, disease was monitored through to day 144. As previously observed in earlier OCT 

images the recipients of the C57BL/6 transfer show no signs of active clinical disease from day 
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28 and disease appears to be quiescent through to day143 (figure 7.17) when eyes are 

analysed by flow cytometry to quantify total CD4+ T cell number (figure 7.18) the total 

number is not increased when compared to a naïve control, although damage to the retina is 

present in the OCT the disease does not remain active. In contrast in the OCT images of the 

IL-27Rα-/- recipients active disease is present but has reduced in severity when compared to 

previous OCT acquired at day 67. However, the disease, remains active in some animals 

through to day 144. Flow cytometric quantification shows an increase in the total CD4+ T cell 

number present within the eyes at day 144 and persistence of transferred IL-27Rα-/- CD4+ T 

cells.  Overall, using the adoptive transfer technique has highlighted the IL-27Rα knockout 

CD4+ T cells persist throughout clinical disease and continue to recruit endogenous cells 

including CD4+ T cells and neutrophils specifically to drive active disease to persist. Suggesting 

that in the active immunisation model the effect observed is based on the presence of a more 

pathogenic and potent CD4+ T cell. 

In conclusion, IL-27Rα knockout on leukocytes causes a more potent pathogenic phenotype 

that induces a more severe and persistent autoimmune disease in models of active 

immunisation. Using the adoptive transfer technique highlights that IL-27Rα-/- specifically 

within the CD4+ T cell population is sufficient to induce a more severe and persistent disease 

phenotype even in the presence of functional Tregs. This data also supports IL-27 as an 

immunoregulatory cytokine as active clinical disease persists within the IL-27Rα-/- recipients 

but within the C57BL/6 recipients with functional IL-27 present active clinical disease has 

resolved by day 28. The IL-27Rα-/-  CD4+ T cells are also more long lived and continue to drive 

clinical disease in comparison to the small numbers found in the C57BL/6 transfer group 

suggesting a more pathogenic and potent phenotype of CD4+ T cell. 
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8. Discussion 

8.1 General Discussion 

CD4+ T cells are important mediators and drivers of autoimmune disease. To induce EAU it is 

well established that immunisation of susceptible animals with a uveitogenic peptide triggers 

an immune response within the periphery of the animal, characterised by the activation and 

clonal expansion of pathogenic autoreactive T cells. T cells then cross the blood-retinal barrier 

this induces leukocyte recruitment and retinal disruption (1). 

Research presented in this thesis investigated the role of antigen-specific pathogenic T cells 

in the EAU model of uveitis. The effects of upregulation of specific chemokines and knock-out 

of cytokine receptors on transferred antigen-specific T cells was also investigated using the 

model. In coordination with these studies non-antigen specific recruitment to the ocular 

tissue was analysed with or without an antigen-specific stimulus and the work demonstrated 

the effects of antigen-specific T cell recruitment on the endothelium of the ocular tissue. Key 

findings were: 

• Transfer of pathogenic leukocytes causes increased retention of endogenous CD4+ 

cells to the eye in addition to sticking of transferred CD4+ T cells. (chapter 5) 

• Active uveitis enhances the recruitment of non-antigen specific activated T cells. 

(chapter 5) 

• CX3CR1 is upregulated on CD4+ T cells in the eye during EAU. The upregulation of 

CX3CR1 is due to antigen-specific response by CD4+ T cells. (chapter 6) 

• IL-27Rα-/- CD4+ T cells cause a more severe persistent clinical disease when adoptively 

transferred into wildtype C57BL/6 recipients. CD4+ T cells that are IL-27Rα-/- are more 

pathogenic and persist long term within the eye driving clinical disease. (chapter 7) 

Thus, this work provides new insights into the role of antigen-specific uveitogenic CD4+ T 

cells, disease-associated non-antigen-specific CD4+ T cells and the important role of IL-27 

in the regulation of disease.  
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8.2 Induction of EAU by adoptive transfer 

The work presented in this thesis uses the adoptive transfer of antigen-specific or non-

antigen-specific leukocytes. The adoptive transfer of antigen-specific uveitogenic 

leukocytes efficiently induces EAU in naive C57BL/6 recipients. As demonstrated in RAG2-/- 

mice in Chapter 3, disease induction and progression are CD4+ T cell mediated. Using the 

adoptive transfer of whole leukocyte populations allows the transferred and endogenous 

T cell populations to be distinguished and therefore gives us the ability to determine the 

long-term fate of the initial transferred cells, including the CD4+ transferred population. 

 

8.2.1 The fate of transferred antigen specific CD4+ T cells throughout clinical disease 

Transferred pathogenic antigen-specific cells are capable of inducing clinical disease in 

wildtype C57BL/6 (Ly5) recipients. The transferred CD4+ T cells give rise to a population 

that persists within the eye throughout clinical disease course this is highlighted in 

Chapter 4. This leads to a recruitment of endogenous CD4+ T cells that is observed from 

day 2 and increases as peak disease is reached at day 7-10 thus suggesting the host’s own 

immune response responds to the pathogenic stimulus of the transferred antigen-specific 

T cells.  

At day 2, the number of endogenous CD4+ T cells present within the eyes of recipient mice 

increases concurrently with the presence of transferred CD4+ T cells at this time point, 

suggesting an activation of the endothelium has occurred due to the transfer of antigen 

specific activated CD4+ T cells. We hypothesised that activation of the endothelium could 

be due to an antigen-specific stimulus due to the pathogenic nature of the transferred 

CD4+ T cells or alternatively due to the activation status of the transferred CD4+ T cells. 

This question will be discussed later on in this section. 

Analysis of clinical disease course after adoptive transfer was achieved by OCT imaging 

and by quantification of leukocyte number by flow cytometry. These methods of analysis 

allowed active clinical disease to be monitored and the proportion of endogenous and 

transferred cells. It has previously been reported that initial disease causing CD4+ T cells 

or the progeny of these cells do not persist within the inflamed tissue throughout active 

disease and go through apoptosis as active clinical disease is resolving (282), however the 

data presented in chapter 4, suggests that in EAU the original antigen specific transferred 
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CD4+ T cells or their progeny have persisted within the eyes of the recipient mice and 

have driven the disease process or have been recruited to the eye during the disease 

process and have persisted within the tissue past active clinical disease. This finding is in 

contrast to a study by Oh et al where they describe the fate of autoreactive T cells that 

mediate uveitis to reside in the bone marrow after acute uveitic disease and not the ocular 

tissue (283).  However, fate mapping would be required to understand the population of 

transferred cells that have survived within the tissue. 

 

8.2.2 Transferred cells activate the endothelium after adoptive transfer causing a 

recruitment of both endogenous and transferred CD4+ T cells 

After adoptive transfer of leukocytes, recipients were monitored using OCT imaging to 

assess early signs of clinical disease. Active disease was not detected on OCT before day 

5, at this point swelling of the optic disc was a sign of early active clinical disease. 

Although changes are not detectable by OCT at day 2 in many recipients, quantification of 

leukocytes at day 2 after adoptive transfer is a more sensitive measure of active clinical 

disease. As highlighted in Chapter 4 at day 2 after adoptive transfer an increase in 

endogenous CD4+ T cell number is observed. Concurrently with this observation a 

population of transferred CD4+ T cells is detected within the ocular tissue which is not 

seen after transfer of non-antigen specific cells.  

The presence of transferred CD4+ T cells and the increased number of endogenous CD4+ 

T cells suggests a mechanism involved in disease induction has already begun to impact 

the ocular tissue. We hypothesised that the recruitment of transferred CD4 cells to the 

ocular tissue by day 2 after adoptive transfer is due to an activation of the endothelium 

due to the activation status or antigen-specific nature of the transferred cells.  

The role of endothelial cells in the recruitment of lymphocytes, monocytes, neutrophils 

and dendritic cells into lymph nodes and tissues depends on an intimate relationship 

between endothelial cells and immune cells (284). The recruitment of immune cells is 

selective and can be influenced by an immune stimulus to trigger the trafficking process 

along with mediators produced by endothelial cells (284). Therefore, the endothelium can 

play a vital role in the immune response and in the adoptive transfer model of EAU a role 

in disease initiation.  
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Further investigation into the immune stimulus linked to the recruitment of transferred 

CD4+ T cells that induces the increased recruitment and sticking of endogenous CD4+ T 

cells will be discussed with the relevant data presented from chapter 5. 

 

8.3 Antigen specific and non-antigen specific CD4+ T cell recruitment in EAU 

8.3.1 Increased recruitment and retention of endogenous CD4+ T cells at day 2 after 

adoptive transfer of CD4+ T cells is due to an antigen-specific stimulus  

At day 2 after adoptive transfer of uveitogenic, antigen specific CD4+ T cells there is an 

increase in recruitment and retention of endogenous CD4+ T cells.  

Further experimentation investigated whether the endothelium becomes activated in 

response to the transferred CD4+ T cells being in an activated state or due to their antigen 

specificity. Therefore, using OVA TCR transgenic leukocytes allowed us to address the 

question of activation versus antigen-specificity facilitating increased endogenous CD4+ T 

cell recruitment and transferred cells sticking within the ocular tissue to cause clinical 

disease.  

Adoptive transfer of activated non retinal antigen specific leukocytes from an OVA TCR 

transgenic mouse does not initiate activation of the endothelium to the level seen with 

an antigen specific response, this is suggested by no increase in endogenous CD4+ T cell 

recruitment and almost no retention of the transferred OVA- specific activated. However, 

previous studies have highlighted the ability of activated T cells to migrate across normal, 

non-inflamed endothelium at day 1 ~44 cells had infiltrated the eyes of recipient mice 

when 10x106 activated T cells are transferred (285). 

An i.p injection of PBS, without activated or unactivated cells will still initiate a measurable 

and statistically significant increase in recruitment and retention of endogenous CD4+ T 

cells at day 2 after injection, this effect could be caused by endotoxin release at the site 

of injection that stimulates the endothelium to upregulate molecules that retain CD4+ T 

cells at this early time point. Increased trafficking does not lead to initiation of uveitic 

disease and by day 7 has resolved, thus suggesting that without a pathogenic stimulus the 

endothelium does not become activated to recruit and retain endogenous and transferred 

cells that cause disease.  
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Therefore, this data suggests a local antigen-specific response is required to induce 

disease progression through endothelial activation that leads to endogenous and 

transferred CD4+ T cell recruitment. This conclusion was further confirmed using the OVA 

TCR specific cell transfer of activated OVA antigen-specific OTII cells with a concurrent 

intravitreal injection of OVA given just prior to cell transfer presented in chapter 5. This 

data confirmed that the recruitment of transferred and endogenous cells observed at day 

2 after adoptive transfer is not retinal antigen specific but an antigen-specific response to 

any antigen in the local environment and has the ability to induce recruitment of 

endogenous and transferred CD4+ T cells.  

 

8.3.2 Antigen-specific transferred CD4+ T cells initiate recruitment of antigen and non-

antigen specific CD4+ T cells throughout ocular inflammation 

As previously discussed, activated non-antigen specific CD4+ T cells are not capable of 

inducing endothelial activation defined by significant endogenous cell recruitment and do 

not remain within the ocular tissue past day 2 after adoptive transfer. Although the 

endogenous CD4+ T cell number does increase due to the release of endotoxin at the site 

of injection.  

Data has demonstrated an antigen-specific stimulus induces the activation of the 

endothelium. However, further experiments including the co-transfer of retinal antigen 

specific activated CD4+ T cells with OVA specific activated CD4+ T cells at a 1:1 ratio. These 

experiments allowed for tracking of transferred ‘pathogenic’ retinal antigen specific CD4+ 

T cells, ‘activated’ OVA specific CD4+ T cells and endogenous CD4+ T cells.  

The concurrent transfer of ‘pathogenic’ and ‘activated’ CD4+ T cells illustrated a 

recruitment and retention of ‘activated’ OVA specific CD4+ T cells that are not specific for 

retinal antigen, which is compatible with a non-antigen specific CD4+ T cell role in active 

clinical disease. However, what this data also suggests is that activation alone on T cells is 

not sufficient enough to induce clinical disease. 

However, an antigen specific stimulus is capable of inducing disease and when the 

stimulus is present in the form of ‘pathogenic’ cells to facilitate, recruitment of the OVA 

specific ‘activated’ CD4+ T cells occurs. Therefore, suggesting a non-specific recruitment 

of CD4+ T cells throughout clinical disease that is contributing to clinical disease course. 

Looking at the total cell number of the endogenous, ‘pathogenic’ and ‘activated’ 
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populations, it illustrates that the number of activated cells is proportionate to the other 

CD4+ T cell population present within the eye during active clinical disease.  

Further to this the endogenous cells accumulating within the eye at this time point may 

also be of an activated phenotype. Due to the size of this ‘activated’ non-retinal specific 

CD4+ T cell population it suggests these cells play a role in clinical disease progression and 

that the recruitment of these cells suggest a non-retinal antigen specific drive takes place 

during disease course, the minimal CX3CR1 expression present on this population 

supports the hypothesis that these cells are recruited non-specifically. This data also 

suggests that without the pathogenic stimulus activated non-retinal specific CD4+ T cells 

don’t remain within the ocular tissue, whereas with a pathogenic retinal antigen specific 

stimulus present activated non-retinal antigen specific cells are recruited to the eye and 

they or their progeny remain within the eye throughout clinical disease and contribute to 

active disease progression. 

 

8.4 CX3CR1 in EAU 

8.4.1 CX3CR1 deficiency does not affect disease severity in donor cells or recipient tissue 

After determining disease course using the adoptive transfer technique in chapter 3, 

experiments investigated how knocking out both or one of the alleles of the CX3CR1 

receptor effected disease course. The literature surrounding the effect of CX3CR1 on 

disease course in EAU is conflicted. 

Firstly, comparing CX3CR1 heterozygous or total CX3CR1 allelic knockout transferred cells 

in RAG2-/- recipient mice. In comparison to the wildtype transferred cell control group, the 

data presented in chapter 6 suggests no effect on severity of disease caused in recipients 

between the three groups, although differences in timing of disease induction is observed 

within the three groups. Active clinical disease is observed in the wildtype group at day 7 

whereas in both the CX3CR1 heterozygous and knockout groups, active disease was not 

observed until day 14 after adoptive transfer. The delay in disease onset suggests that 

CX3CR1 heterozygous or knockout cells have reduced or slower trafficking in comparison 

to the wildtype control group. 

On the other hand, when wildtype cells were transferred into CX3CR1 heterozygous 

knockout or CX3CR1 knockout recipient mice no difference in disease induction, severity 
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or incidence was observed. Therefore, suggesting CX3CR1 has a modest effect on disease 

when one or both alleles are knocked out on the transferred population in contrast to 

being knocked out on the endogenous population. CX3CR1 is known to be involved in 

leukocyte trafficking and therefore by knocking out the chemokine trafficking is slowed to 

the ocular tissue in the transferred population, whereas due to CX3CR1 receptor being 

intact on the transferred wild type cells trafficking of the cells to the ocular tissue is not 

effected and the host responds to the trafficking of the transferred population.  However 

more experimentation is needed to further investigate this effect. 

 

8.4.2 CX3CR1 is upregulated on CD4+ T cells throughout active EAU 

CX3CR1 is known to be expressed on cells of myeloid lineage, but recent studies have 

started to investigate a role for CX3CR1 expression on CD4+ and CD8+ T cells in models of 

inflammation. 

CX3CR1 heterozygous knockout leukocytes were transferred into wildtype Ly5 recipients 

to assess using the GFP present in place of one CX3CR1 allele to track CX3CR1 expression. 

Data presented in chapter 6 suggests that in EAU disease progression CX3CR1 is expressed 

on CD4+ T cells present within the eye during disease. The proportion of transferred cells 

expressing CX3CR1 increases as disease progresses and reaches its peak in the eye at day 

14 after adoptive transfer of leukocytes in comparison to non-lymphoid tissue. Thus, 

suggesting that these cells have switched on CX3CR1 expression when recruited to the 

eye and then have been retained throughout disease making up by day 14 a larger 

population of the transferred CD4+ T cells.  

Previous studies have suggested that CX3CR1 upregulation on CD4+ T cells has led to 

increased survival and retention in the inflamed tissue. The data presented in this thesis 

suggests a similar potentially selective retention in the diseased tissue during active EAU 

of the CX3CR1 expressing CD4+ T cells. However, the mechanism for the switching on of 

expression of CX3CR1 requires further investigation. 
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8.4.3 CX3CR1 is not expressed on CD4+ T cells unless the cognate antigen is present 

within the tissue 

The previous observation that CX3CR1 is expressed on CD4+ T cells during active clinical 

disease specifically in the ocular tissue in contrast to non-lymphoid tissues suggested the 

involvement of TCR activation directly or indirectly in CX3CR1 expression. 

In chapter 5 a double transfer technique was described utilising pathogenic retinal antigen 

specific CD4+ T cells transferred concurrently with a population of CD4+ T cells that are 

activated, OVA antigen specific. Both cell populations had one allele of the CX3CR1 locus 

replaced by a green fluorescent protein so in both populations CX3CR1 expression on 

CD4+ T cells can be monitored throughout disease course.  

Data presented in chapter 6 using this method of disease induction illustrates a specific 

expression of CX3CR1 on CD4+ T cells that are retinal antigen specific within the eyes in 

comparison to minimal CX3CR1 expression on activated OVA specific CD4+ T cells that 

remain in the eye sticking non-specifically during active disease. This observation suggests 

that activation alone is not sufficient to induce CX3CR1 expression on CD4+ T cells. Further 

to this, activation using an antigen in vitro (RBP or OVA) does not induce CX3CR1 

expression on CD4+ T cells in both populations. However in vivo CX3CR1 expression is 

upregulated on retinal antigen specific CD4+ T cells that have been re-exposed to retinal 

antigen present in the eye, in contrast the OVA specific activated CD4+ T cell population 

present within the eye express minimal levels of CX3CR1. This data supports a model that 

when antigen specific cells are re-exposed to the antigen in vivo the response engages the 

TCR and therefore induces CX3CR1 on CD4+ retinal antigen specific cells that enter the 

eye. At time of transfer CX3CR1 expression on CD4+ T cells is <2% of the population. 

Whereas in the OVA specific activated CD4+ T cells, the OVA antigen is not present within 

the recipient mice so therefore the cells do not come into contact with the antigen in vivo. 

Minimal CX3CR1 expression is observed on these cells suggesting that because the cells 

are not re-exposed to the antigen CX3CR1 expression is not induced in these cells. 

This data suggests that activation alone with the antigen is not sufficient to induce CX3CR1 

expression, however when re-exposed to the antigen in vivo, CX3CR1 expression on CD4+ 

T cells is present. 
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8.4.4 CX3CR1 expression on CD4+ T cells is due to re-exposure to antigen in vivo 

To determine if the expression of CX3CR1 on CD4+ T cells is retinal antigen specific in vivo, 

the experimental design described in chapter 5 was used, OVA specific CD4+ CX3CR1 

heterozygous cells were activated in culture similarly to the uveitogenic cell transfer 

technique but are stimulated using OVA peptide instead of the RBP3. After the cell culture 

stage recipient CX3CR1 heterozygous mice receive an intravitreal injection of OVA peptide 

when cells are transferred. Data presented in chapter 5 illustrates a peak in disease at day 

7/8 using clinical imaging and flow cytometry and the presence of both endogenous and 

transferred CD4+ T cells within the eye.  

Analysis of CX3CR1 expression on CD4+ T cells using the OVA intravitreal transfer is 

presented in chapter 6. The eye injected with OVA peptide gets clinical disease that 

recruits both endogenous and transferred CD4+ T cells whereas the eye that receives PBS 

or control peptide has elevated endogenous CD4+ T cell numbers in comparison to naïve 

eyes but minimal transferred CD4+ are detected throughout active disease in the ocular 

tissue.  

CX3CR1 expression is observed on both the transferred and endogenous CD4+ T cell 

population especially within the eye that received the intravitreal OVA. The expression of 

CX3CR1 on transferred CD4+ OVA specific cells support the hypothesis that CX3CR1 is 

expressed on CD4+ T cells in the presence of the antigen the cells are familiar with and 

therefore the TCR is involved in the expression of CX3CR1. However, upregulation of 

CX3CR1 on the endogenous CD4+ T cell population suggests expression of CX3CR1 on the 

endogenous CD4+ population indicates at least some of this population are interacting in 

the eye with cognate antigen. Therefore, suggesting CX3CR1 expression on endogenous 

CD4+ T cells is switched on when cells are recruited to the eye during active disease where 

they encounter the ocular antigen and are activated which switches CX3CR1 expression 

on in CD4+ T cells. In the transferred compartment it can be concluded that CX3CR1 

expression is not just retinal antigen specific but specific to any antigen the CD4+ T cells 

are able to recognise within the tissue when activated. 
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8.5 The role of IL-27 in EAU 

8.5.1 Disease onset is earlier in the IL-27Rα-/- after active immunisation 

Using the adoptive transfer technique described in chapter 3 combined with the data 

presented in chapter 4 that describes a conventional disease course gives a robust 

technique and comparable data set to manipulate donor or recipient leukocytes (as 

previously demonstrated using the CX3CR1 heterozygous or CX3CR1 knockout). Due to 

recent studies in models of arthritis and multiple sclerosis illustrating an effect on clinical 

disease when inducing disease in the IL-27Rα-/- mouse, experiments were designed to 

utilise these mice as donors for adoptive transfer. 

Firstly, eyes and organs from naïve IL-27Rα-/- mice were analysed to give a baseline for the 

study to detect changes in leukocyte number within the eyes of immunised mice. At day 

7 after immunisation, increased leukocyte recruitment is observed in immunised mice in 

comparison to the naïve baseline obtained from naïve IL-27Rα-/- mice. Further to this, eyes 

from donor mice immunised for adoptive transfer from IL-27Rα-/- and C57BL/6 mice were 

analysed, and leukocytes quantified using flow cytometry. By day 11 after immunisation 

the IL-27Rα-/- mice have leukocyte numbers similar to that of peak disease in a C57BL/6 

whereas in the eyes of C57BL/6 mice at day 11 after immunisation elevated leukocyte 

numbers are present within the eye but not comparable to peak clinical disease. In 

contrast to studies of EAE this data demonstrates that uveitis onset is accelerated in           

IL-27Rα-/- animals when using the active immunisation method. This could be down to the 

pathogenicity of the CD4+ T cells that lack the IL-27Rα-/- initiating a more severe response 

when immunised with the RBP3 antigen. Studies (280) have also suggested dysfunction of 

the Treg population due to the lack of the IL-27Rα  could contribute to disease induction 

and severity due to lack of regulation.   

 

8.5.2 IL-27Rα-/- leukocytes are more pathogenic and cause a more severe and persistent 

disease phenotype when disease is induced using the adoptive transfer technique 

The evidence presented in this thesis leads to the conclusion that CD4+ T cells are more 

pathogenic from an IL-27Rα-/- mouse in comparison to CD4+ T cells from a wildtype 

C57BL/6. Firstly, after immunisation leukocytes were isolated and stimulated in cell 

culture, after this step supernatant from the cell cultures was obtained and analysed using 



302 
 

the LegendPLex platform. Concentration of cytokines within the supernatant of both the 

IL-27Rα-/- and wildtype C57BL/6 cell cultures were calculated. There is a significant 

increase in the concentration of cytokines present within the IL-27Rα-/- leukocyte cultures 

in comparison to the wildtype C57BL/6 cultures. The increase in cytokine production in 

the IL-27Rα-/- culture supernatant suggests a more pathogenic phenotype is present.  

This is further supported by observations made about disease phenotype after the 

adoptive transfer of IL-27Rα-/- leukocytes into wildtype C57BL/6 recipients. At early time 

points a more severe disease is present within the eyes of recipients in comparison to the 

wildtype transfer with the same number of CD4+ T cells. The differences in disease 

severity between the two groups cannot be attributed to Tregs as the recipient wildtype 

mice have intact Treg populations. But no difference was observed in disease initiation 

between the two groups which was observed within the active immunisation group of     

IL-27Rα-/- mice, which further supports the hypothesis that dysfunctional Tregs due to      

IL-27Rα-/- initiates early onset disease.  

Using OCT imaging to follow clinical disease course allows analysis of disease throughout 

active disease and during disease resolution. The imaging data illustrates a persistent and 

more severe disease phenotype in the IL-27Rα-/- transfer recipients in comparison to the 

C57BL/6 transfer. IL-27Rα-/- has been implicated in causing a more severe and persistent 

disease phenotype in other models of autoimmune disease including adjuvant induced 

arthritis and experimental autoimmune encephalitis. AIA was induced in IL-27Rα-/-mice 

and disease monitored in comparison to a wildtype group, exacerbated joint pathology 

denoted by increased leukocyte infiltration, synovial exudate, hypertrophy and hallmarks 

of cartilage and bone erosion (269). This data suggests IL-27 is a key mediator of immune 

response homeostasis in autoimmune conditions such as arthritis. The same pattern of 

more severe disease pathology is observed within the adoptive transfer model of EAU. 

Further to this using the clinical imaging to monitor clinical disease, the IL-27Rα-/- 

recipients illustrate no disease resolution and persistence of active clinical disease 

through to day 67. Analysis of clinical disease from day 67 to day 144 using clinical imaging 

illustrates active disease resolution in some recipients however in others active disease 

persisted to day 144 after adoptive transfer when samples were taken for flow cytometric 

analysis. 
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8.5.3 IL-27Rα-/- CD4+ T cells persist within the eyes of recipients through to day 144 after 

adoptive transfer 

Clinical imaging allows disease monitoring throughout active disease and to compare 

disease phenotype across recipient groups. Combined with quantification of leukocytes 

present within the eyes of recipient’s differences in leukocyte infiltration can be 

attributed to differences in disease severity or phenotype. 

At day 67 after adoptive transfer the only population to persist within the eyes of the        

IL-27Rα-/- recipients are transferred CD4+ T cells, and in large enough numbers to drive 

clinical disease whereas in the wildtype transfer group minimal numbers of transferred 

and endogenous leukocytes are present within the recipient tissue. This data suggests 

that the persistence of the IL-27Rα-/- CD4+ T cells is driving active disease and initiating 

recruitment of endogenous CD4+ T cells along with other endogenous leukocytes such as 

neutrophils and myeloid cells. 

Continuing disease course through to day 144 illustrates a further persistence of the          

IL-27Rα-/- CD4+ T cells. With many recipients still with active clinical disease at this time 

point due to the persistence of this CD4+ T cell population driving disease. 

This collated data suggests a more potent and persistent phenotype of CD4+ T cell that 

can survive within the tissue and drive disease through to day 144 after adoptive transfer. 

 

8.6 Final Discussion 

This study investigates the basic mechanisms underlying the induction and progression of 

EAU. The basic mechanism underpinning clinical symptoms is poorly understood within 

human uveitis, in order to develop new treatments for the disease it is important to 

understand how and why disease develops. The work in this thesis can help with further 

understanding on the disease process. 

The work in this thesis illustrates manipulation of disease using IL-27Rα-/- and CX3CR1+/GFP 

and CX3CR1GFP/GFP knockout mice, therefore using the adoptive transfer model optimised 

in previous chapters more detailed investigation of how these targets affect disease 

course and determine further targets for treatment of uveitis can be determined. Further 

studies of the effects of different cytokines and chemokines on disease course could be 
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achieved by combining different knockout mouse strains or by CRISPR/Cas9 knockout of 

genes of interest. 

Overall, the data in this thesis gives an optimised method of tracking antigen specific cells 

that drive disease and non-retinal antigen specific cells which are non-specifically 

recruited throughout disease course. The adoptive transfer technique further allows 

expression of chemokines to be monitored throughout disease and how receptor 

knockouts influence disease course.  

Further to this from the original hypothesis set out for this thesis we have developed and 

optimised sensitive method of analysis of naïve and diseased ocular tissue and used this 

method to track allelically marked CD4+ T cells that drive disease and persist within the 

tissue after active clinical disease has resolved along with the recruitment of endogenous 

CD4+ T cells and studied their role in disease. The mechanism of recruitment of 

endogenous and transferred cells to the ocular tissue has been observed to be of antigen-

specific nature but recruitment of transferred non-antigen specific cells is observed when 

a pathogenic cell stimulus is present. Upregulation of CX3CR1 in increased frequencies 

was observed during active clinical disease due to an antigen-specific response and finally 

IL-27Rα-/- T cells cause a more long-lived and severe disease phenotype and persist within 

the ocular tissue in increased numbers for longer to drive active clinical disease. 
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Figure 8.1: Overview of thesis findings 
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9. Future Directions 

9.1 Nonspecific recruitment of CD4+ T cells throughout clinical disease 

As illustrated in chapter 5 recruitment of non-antigen specific CD4+ T cells when a uveitogenic 

stimulus is present was observed throughout active clinical disease. Further experimentation 

into what is causing the retention of non-specific CD4+ T cells within the eye could be 

achieved by the use of endothelial cell markers that are upregulated during active disease 

course that would influence retention of non-antigen specific CD4+ T cells. Distribution within 

the tissue of the antigen-specific and non-specific cells are retained specifically if they are 

resting on the endothelium or dispersed throughout the retina and vitreous. 

Further to this, the CRISPR/Cas9 system of gene editing could be utilised to knock out genes 

that effect disease progression and could be involved in the non-specific retention of CD4+ T 

cells. Firstly, to test if virally transduced cells survive in vivo and are capable of causing 

disease. Using a retroviral construct of F-tractin tagged GFP. CRISPR/Cas9 can then be utilised 

to knockout genes that can be assumed to cause a more severe disease phenotype including 

CTLA-4 or from the work presented in this thesis IL-27Rα or knockout genes that can be 

assumed to cause a less severe disease phenotype including CD28. After optimisation of this 

platform specific genes can be selected to target on OVA antigen specific CD4+ T cells before 

concurrent adoptive transfer with retinal antigen specific CD4+ T cells to monitor if the OVA 

specific cells are retained throughout active disease after specific genes are knocked out to 

manipulate disease course and reduce disease severity. 

 

9.2 The role of initial disease-causing antigen specific cells in EAU disease 

course 

The persistence of the disease initiating antigen specific CD4+ T cells throughout clinical 

disease is highlighted within this thesis (chapter 4). Using RNA sequencing at a number of late 

disease time points could identify genes present in the total CD4+ and CD8+ T cell population 

to identify differences in gene expression in cells retained in the eye past active clinical 

disease. This technique allows comparisons between clinical disease points past active 

disease but also could be used to analyse differential gene expression in endogenous and 

transferred CD4+ T cell populations during active disease. 
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 The role of the transferred antigen specific cells in disease initiation by activation of the 

endothelium was highlighted in (chapter 4) but further analysis into how transferred cells are 

involved in the initiation and progression of clinical disease can be investigated using antibody 

depletion of the transferred population before active peak disease occurs. This experiment 

will determine the role of transferred antigen specific cells in continuing active disease course 

and whether the endogenous compartment of CD4+ T cells is capable of continuing disease 

course without the presence of the antigen specific pathogenic transferred CD4+ T cells. 

Further to this the proliferation status of the transferred CD4+ population during active 

disease. Using a Ki67 antibody stain we can determine if the cells are in the active phase of 

the cell cycle and are therefore proliferating or the increase in transferred number present in 

the eye during active clinical disease is due purely to recruitment of transferred cells from the 

blood, spleen and lymph nodes. 

 

9.3 CX3CR1 expression on CD4+ T cells throughout clinical disease  

The expression of CX3CR1 on CD4+ T cells due to an antigen specific response is presented in 

chapter 6. To investigate if CX3CR1 is also expressed on CD4+ T cells in vitro cultures, OVA 

specific CD4+ T cells cocultured with antigen and CD3 CD28 stimulation to quantify CX3CR1 

expression on CD4+ T cells.  

Further experiments include utilising the RAG2-/- mice to transfer cells from transfer recipients 

at peak disease in Ly5 recipients. CD4+ transferred T cells from recipient eyes at peak disease 

can be sorted into CX3CR1+ CD4+ T cells and transferred into one group of recipients and sort 

CX3CR1- CD4+ T cells to transfer into another group of recipients. This experiment will allow 

differences in disease course based on CX3CR1 expression of CD4+ T cells with the hypothesis 

that CX3CR1+ CD4+ T cells are more capable of causing disease and persisting during active 

disease in comparison to the CX3CR1- CD4+ T cell population. 

Analysis of differential gene expression in these recipients could be investigated by focussed 

analysis of the expression of functional gene sets that are associated with changes in T cell 

effector potential specifically analysing intracellular cytokine expression including IFN-γ, IL-17 

and TNF. Regulatory and activation threshold markers including; FoxP3, CD5, CD39 and CD73, 

coinhibitory markers BTLA, TIM3, CTLA4, LAG3, PD1 and TIGIT and costimulatory markers 

(41BB, CD25, CD28, GITR, ICOS and OX40 using flow cytometry antibody panels. 



309 
 

Further to this RNA seq analysis of levels of mRNA followed by unsupervised analysis of 

differential gene expression will complement the previous study. Using total cell count of 

CD4+ T cells at different time points throughout disease course and with differing CX3CR1 

expression levels to compare cross different disease-causing cells. 

Due to the antigen specific nature of CX3CR1 expression on CD4+ T cells analysis of the TCR 

of CX3CR1+ CD4+ T cells using single cell sequencing. This platform allows single cell analysis 

at the transcript level with concurrent analysis of the TCR repertoire of each individual cell. 

Firstly, using the OTII transfer model with intravitreal OVA followed by analysis of the 

uveitogenic transfer model. 

 

9.4 IL-27Rα-/- causes a more potent CD4+ T cell phenotype 

 As described in chapter 7 knocking out the IL-27Rα in transferred CD4+ T cells causes a more 

severe cell phenotype that persists throughout active disease and continues to drive disease 

to cause a longer more severe disease within the recipients. Further experimentation could 

include phenotyping the CD4+ T cell populations within both groups of recipients to identify 

the role of CD4+ T cell phenotype in disease progression including early disease time points 

and late disease time points such as staining for IFN-γ, IL-17 and FoxP3 using flow cytometry 

antibodies before including analysis of differential gene expression in recipients by 

quantifying expression of functional gene sets that are associated with changes in T cell 

effector potential specifically analysing intracellular cytokine expression including IFN-γ, IL-17 

and TNF. Regulatory and activation threshold markers including FoxP3, CD5, CD39 and CD73, 

coinhibitory markers BTLA, TIM3, CTLA4, LAG3, PD1 and TGIT and costimulatory markers 

(41BB, CD25, CD28, GITR, ICOS and OX40. 

The effect of IL-27Rα knockout on CD4+ T cells has contributed to differences in disease 

phenotype but how this difference in clinical disease affects the structure and function of the 

tissue. Using histological sections to analyse the structures present within the eye to 

determine any abnormalities across disease groups, alternatively further analysis using whole 

retina flat mounts allows study of dispersion within the retina of immune infiltrate. 

• T cells to the eye in addition to sticking of transferred CD4+ T cells. (chapter 5) 

• Active uveitis enhances the recruitment of non-antigen specific activated T cells. 

(chapter 5) 
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• CX3CR1 is upregulated on CD4+ T cells in the eye during EAU. The upregulation of 

CX3CR1 is due to antigen-specific response by CD4+ T cells. (chapter 6) 

• IL-27Rα-/- CD4+ T cells cause a more severe persistent clinical disease when adoptively 

transferred into wildtype C57BL/6 recipients. CD4+ T cells that are IL-27Rα-/- are more 

pathogenic and persist long term within the eye driving clinical disease. (chapter 7) 

Thus, this work provides new insights into the role of antigen-specific uveitogenic CD4+ T 

cells, disease-associated non-antigen-specific CD4+ T cells and the important role of IL-27 

in the regulation of disease.  

 

 

 

 

 

8.2 Induction of EAU by adoptive transfer 

The work presented in this thesis uses the adoptive transfer of antigen-specific or non-

antigen-specific leukocytes. The adoptive transfer of antigen-specific uveitogenic 

leukocytes efficiently induces EAU in naive C57BL/6 recipients. As demonstrated in RAG2-/- 

mice in Chapter 3, disease induction and progression are CD4+ T cell mediated. Using the 

adoptive transfer of whole leukocyte populations allows the transferred and endogenous 

T cell populations to be distinguished and therefore gives us the ability to determine the 

long-term fate of the initial transferred cells, including the CD4+ transferred population. 

 

8.2.1 The fate of transferred antigen specific CD4+ T cells throughout clinical disease 

Transferred pathogenic antigen-specific cells are capable of inducing clinical disease in 

wildtype C57BL/6 (Ly5) recipients. The transferred CD4+ T cells give rise to a population 

that persists within the eye throughout clinical disease course this is highlighted in 

Chapter 4. This leads to a recruitment of endogenous CD4+ T cells that is observed from 

day 2 and increases as peak disease is reached at day 7-10 thus suggesting the host’s own 

immune response responds to the pathogenic stimulus of the transferred antigen-specific 

T cells.  
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At day 2, the number of endogenous CD4+ T cells present within the eyes of recipient mice 

increases concurrently with the presence of transferred CD4+ T cells at this time point, 

suggesting an activation of the endothelium has occurred due to the transfer of antigen 

specific activated CD4+ T cells. We hypothesised that activation of the endothelium could 

be due to an antigen-specific stimulus due to the pathogenic nature of the transferred 

CD4+ T cells or alternatively due to the activation status of the transferred CD4+ T cells. 

This question will be discussed later on in this section. 

Analysis of clinical disease course after adoptive transfer was achieved by OCT imaging 

and by quantification of leukocyte number by flow cytometry. These methods of analysis 

allowed active clinical disease to be monitored and the proportion of endogenous and 

transferred cells. It has previously been reported that initial disease causing CD4+ T cells 

or the progeny of these cells do not persist within the inflamed tissue throughout active 

disease and go through apoptosis as active clinical disease is resolving (282), however the 

data presented in chapter 4, suggests that in EAU the original antigen specific transferred 

CD4+ T cells or their progeny have persisted within the eyes of the recipient mice and 

have driven the disease process or have been recruited to the eye during the disease 

process and have persisted within the tissue past active clinical disease. This finding is in 

contrast to a study by Oh et al where they describe the fate of autoreactive T cells that 

mediate uveitis to reside in the bone marrow after acute uveitic disease and not the ocular 

tissue (283).  However, fate mapping would be required to understand the population of 

transferred cells that have survived within the tissue. 

 

8.2.2 Transferred cells activate the endothelium after adoptive transfer causing a 

recruitment of both endogenous and transferred CD4+ T cells 

After adoptive transfer of leukocytes, recipients were monitored using OCT imaging to 

assess early signs of clinical disease. Active disease was not detected on OCT before day 

5, at this point swelling of the optic disc was a sign of early active clinical disease. 

Although changes are not detectable by OCT at day 2 in many recipients, quantification of 

leukocytes at day 2 after adoptive transfer is a more sensitive measure of active clinical 

disease. As highlighted in Chapter 4 at day 2 after adoptive transfer an increase in 

endogenous CD4+ T cell number is observed. Concurrently with this observation a 
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population of transferred CD4+ T cells is detected within the ocular tissue which is not 

seen after transfer of non-antigen specific cells.  

The presence of transferred CD4+ T cells and the increased number of endogenous CD4+ 

T cells suggests a mechanism involved in disease induction has already begun to impact 

the ocular tissue. We hypothesised that the recruitment of transferred CD4 cells to the 

ocular tissue by day 2 after adoptive transfer is due to an activation of the endothelium 

due to the activation status or antigen-specific nature of the transferred cells.  

The role of endothelial cells in the recruitment of lymphocytes, monocytes, neutrophils 

and dendritic cells into lymph nodes and tissues depends on an intimate relationship 

between endothelial cells and immune cells (284). The recruitment of immune cells is 

selective and can be influenced by an immune stimulus to trigger the trafficking process 

along with mediators produced by endothelial cells (284). Therefore, the endothelium can 

play a vital role in the immune response and in the adoptive transfer model of EAU a role 

in disease initiation.  

Further investigation into the immune stimulus linked to the recruitment of transferred 

CD4+ T cells that induces the increased recruitment and sticking of endogenous CD4+ T 

cells will be discussed with the relevant data presented from chapter 5. 

 

8.3 Antigen specific and non-antigen specific CD4+ T cell recruitment in EAU 

8.3.1 Increased recruitment and retention of endogenous CD4+ T cells at day 2 after 

adoptive transfer of CD4+ T cells is due to an antigen-specific stimulus  

At day 2 after adoptive transfer of uveitogenic, antigen specific CD4+ T cells there is an 

increase in recruitment and retention of endogenous CD4+ T cells.  

Further experimentation investigated whether the endothelium becomes activated in 

response to the transferred CD4+ T cells being in an activated state or due to their antigen 

specificity. Therefore, using OVA TCR transgenic leukocytes allowed us to address the 

question of activation versus antigen-specificity facilitating increased endogenous CD4+ T 

cell recruitment and transferred cells sticking within the ocular tissue to cause clinical 

disease.  

Adoptive transfer of activated non retinal antigen specific leukocytes from an OVA TCR 

transgenic mouse does not initiate activation of the endothelium to the level seen with 
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an antigen specific response, this is suggested by no increase in endogenous CD4+ T cell 

recruitment and almost no retention of the transferred OVA- specific activated. However, 

previous studies have highlighted the ability of activated T cells to migrate across normal, 

non-inflamed endothelium at day 1 ~44 cells had infiltrated the eyes of recipient mice 

when 10x106 activated T cells are transferred (285). 

An i.p injection of PBS, without activated or unactivated cells will still initiate a measurable 

and statistically significant increase in recruitment and retention of endogenous CD4+ T 

cells at day 2 after injection, this effect could be caused by endotoxin release at the site 

of injection that stimulates the endothelium to upregulate molecules that retain CD4+ T 

cells at this early time point. Increased trafficking does not lead to initiation of uveitic 

disease and by day 7 has resolved, thus suggesting that without a pathogenic stimulus the 

endothelium does not become activated to recruit and retain endogenous and transferred 

cells that cause disease.  

Therefore, this data suggests a local antigen-specific response is required to induce 

disease progression through endothelial activation that leads to endogenous and 

transferred CD4+ T cell recruitment. This conclusion was further confirmed using the OVA 

TCR specific cell transfer of activated OVA antigen-specific OTII cells with a concurrent 

intravitreal injection of OVA given just prior to cell transfer presented in chapter 5. This 

data confirmed that the recruitment of transferred and endogenous cells observed at day 

2 after adoptive transfer is not retinal antigen specific but an antigen-specific response to 

any antigen in the local environment and has the ability to induce recruitment of 

endogenous and transferred CD4+ T cells.  

 

8.3.2 Antigen-specific transferred CD4+ T cells initiate recruitment of antigen and non-

antigen specific CD4+ T cells throughout ocular inflammation 

As previously discussed, activated non-antigen specific CD4+ T cells are not capable of 

inducing endothelial activation defined by significant endogenous cell recruitment and do 

not remain within the ocular tissue past day 2 after adoptive transfer. Although the 

endogenous CD4+ T cell number does increase due to the release of endotoxin at the site 

of injection.  

Data has demonstrated an antigen-specific stimulus induces the activation of the 

endothelium. However, further experiments including the co-transfer of retinal antigen 



314 
 

specific activated CD4+ T cells with OVA specific activated CD4+ T cells at a 1:1 ratio. These 

experiments allowed for tracking of transferred ‘pathogenic’ retinal antigen specific CD4+ 

T cells, ‘activated’ OVA specific CD4+ T cells and endogenous CD4+ T cells.  

The concurrent transfer of ‘pathogenic’ and ‘activated’ CD4+ T cells illustrated a 

recruitment and retention of ‘activated’ OVA specific CD4+ T cells that are not specific for 

retinal antigen, which is compatible with a non-antigen specific CD4+ T cell role in active 

clinical disease. However, what this data also suggests is that activation alone on T cells is 

not sufficient enough to induce clinical disease. 

However, an antigen specific stimulus is capable of inducing disease and when the 

stimulus is present in the form of ‘pathogenic’ cells to facilitate, recruitment of the OVA 

specific ‘activated’ CD4+ T cells occurs. Therefore, suggesting a non-specific recruitment 

of CD4+ T cells throughout clinical disease that is contributing to clinical disease course. 

Looking at the total cell number of the endogenous, ‘pathogenic’ and ‘activated’ 

populations, it illustrates that the number of activated cells is proportionate to the other 

CD4+ T cell population present within the eye during active clinical disease.  

Further to this the endogenous cells accumulating within the eye at this time point may 

also be of an activated phenotype. Due to the size of this ‘activated’ non-retinal specific 

CD4+ T cell population it suggests these cells play a role in clinical disease progression and 

that the recruitment of these cells suggest a non-retinal antigen specific drive takes place 

during disease course, the minimal CX3CR1 expression present on this population 

supports the hypothesis that these cells are recruited non-specifically. This data also 

suggests that without the pathogenic stimulus activated non-retinal specific CD4+ T cells 

don’t remain within the ocular tissue, whereas with a pathogenic retinal antigen specific 

stimulus present activated non-retinal antigen specific cells are recruited to the eye and 

they or their progeny remain within the eye throughout clinical disease and contribute to 

active disease progression. 

 

8.4 CX3CR1 in EAU 

8.4.1 CX3CR1 deficiency does not affect disease severity in donor cells or recipient tissue 

After determining disease course using the adoptive transfer technique in chapter 3, 

experiments investigated how knocking out both or one of the alleles of the CX3CR1 
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receptor effected disease course. The literature surrounding the effect of CX3CR1 on 

disease course in EAU is conflicted. 

Firstly, comparing CX3CR1 heterozygous or total CX3CR1 allelic knockout transferred cells 

in RAG2-/- recipient mice. In comparison to the wildtype transferred cell control group, the 

data presented in chapter 6 suggests no effect on severity of disease caused in recipients 

between the three groups, although differences in timing of disease induction is observed 

within the three groups. Active clinical disease is observed in the wildtype group at day 7 

whereas in both the CX3CR1 heterozygous and knockout groups, active disease was not 

observed until day 14 after adoptive transfer. The delay in disease onset suggests that 

CX3CR1 heterozygous or knockout cells have reduced or slower trafficking in comparison 

to the wildtype control group. 

On the other hand, when wildtype cells were transferred into CX3CR1 heterozygous 

knockout or CX3CR1 knockout recipient mice no difference in disease induction, severity 

or incidence was observed. Therefore, suggesting CX3CR1 has a modest effect on disease 

when one or both alleles are knocked out on the transferred population in contrast to 

being knocked out on the endogenous population. CX3CR1 is known to be involved in 

leukocyte trafficking and therefore by knocking out the chemokine trafficking is slowed to 

the ocular tissue in the transferred population, whereas due to CX3CR1 receptor being 

intact on the transferred wild type cells trafficking of the cells to the ocular tissue is not 

effected and the host responds to the trafficking of the transferred population.  However 

more experimentation is needed to further investigate this effect. 

 

8.4.2 CX3CR1 is upregulated on CD4+ T cells throughout active EAU 

CX3CR1 is known to be expressed on cells of myeloid lineage, but recent studies have 

started to investigate a role for CX3CR1 expression on CD4+ and CD8+ T cells in models of 

inflammation. 

CX3CR1 heterozygous knockout leukocytes were transferred into wildtype Ly5 recipients 

to assess using the GFP present in place of one CX3CR1 allele to track CX3CR1 expression. 

Data presented in chapter 6 suggests that in EAU disease progression CX3CR1 is expressed 

on CD4+ T cells present within the eye during disease. The proportion of transferred cells 

expressing CX3CR1 increases as disease progresses and reaches its peak in the eye at day 

14 after adoptive transfer of leukocytes in comparison to non-lymphoid tissue. Thus, 
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suggesting that these cells have switched on CX3CR1 expression when recruited to the 

eye and then have been retained throughout disease making up by day 14 a larger 

population of the transferred CD4+ T cells.  

Previous studies have suggested that CX3CR1 upregulation on CD4+ T cells has led to 

increased survival and retention in the inflamed tissue. The data presented in this thesis 

suggests a similar potentially selective retention in the diseased tissue during active EAU 

of the CX3CR1 expressing CD4+ T cells. However, the mechanism for the switching on of 

expression of CX3CR1 requires further investigation. 

 

 

 

 

8.4.3 CX3CR1 is not expressed on CD4+ T cells unless the cognate antigen is present 

within the tissue 

The previous observation that CX3CR1 is expressed on CD4+ T cells during active clinical 

disease specifically in the ocular tissue in contrast to non-lymphoid tissues suggested the 

involvement of TCR activation directly or indirectly in CX3CR1 expression. 

In chapter 5 a double transfer technique was described utilising pathogenic retinal antigen 

specific CD4+ T cells transferred concurrently with a population of CD4+ T cells that are 

activated, OVA antigen specific. Both cell populations had one allele of the CX3CR1 locus 

replaced by a green fluorescent protein so in both populations CX3CR1 expression on 

CD4+ T cells can be monitored throughout disease course.  

Data presented in chapter 6 using this method of disease induction illustrates a specific 

expression of CX3CR1 on CD4+ T cells that are retinal antigen specific within the eyes in 

comparison to minimal CX3CR1 expression on activated OVA specific CD4+ T cells that 

remain in the eye sticking non-specifically during active disease. This observation suggests 

that activation alone is not sufficient to induce CX3CR1 expression on CD4+ T cells. Further 

to this, activation using an antigen in vitro (RBP or OVA) does not induce CX3CR1 

expression on CD4+ T cells in both populations. However in vivo CX3CR1 expression is 

upregulated on retinal antigen specific CD4+ T cells that have been re-exposed to retinal 

antigen present in the eye, in contrast the OVA specific activated CD4+ T cell population 

present within the eye express minimal levels of CX3CR1. This data supports a model that 
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when antigen specific cells are re-exposed to the antigen in vivo the response engages the 

TCR and therefore induces CX3CR1 on CD4+ retinal antigen specific cells that enter the 

eye. At time of transfer CX3CR1 expression on CD4+ T cells is <2% of the population. 

Whereas in the OVA specific activated CD4+ T cells, the OVA antigen is not present within 

the recipient mice so therefore the cells do not come into contact with the antigen in vivo. 

Minimal CX3CR1 expression is observed on these cells suggesting that because the cells 

are not re-exposed to the antigen CX3CR1 expression is not induced in these cells. 

This data suggests that activation alone with the antigen is not sufficient to induce CX3CR1 

expression, however when re-exposed to the antigen in vivo, CX3CR1 expression on CD4+ 

T cells is present. 

 

 

8.4.4 CX3CR1 expression on CD4+ T cells is due to re-exposure to antigen in vivo 

To determine if the expression of CX3CR1 on CD4+ T cells is retinal antigen specific in vivo, 

the experimental design described in chapter 5 was used, OVA specific CD4+ CX3CR1 

heterozygous cells were activated in culture similarly to the uveitogenic cell transfer 

technique but are stimulated using OVA peptide instead of the RBP3. After the cell culture 

stage recipient CX3CR1 heterozygous mice receive an intravitreal injection of OVA peptide 

when cells are transferred. Data presented in chapter 5 illustrates a peak in disease at day 

7/8 using clinical imaging and flow cytometry and the presence of both endogenous and 

transferred CD4+ T cells within the eye.  

Analysis of CX3CR1 expression on CD4+ T cells using the OVA intravitreal transfer is 

presented in chapter 6. The eye injected with OVA peptide gets clinical disease that 

recruits both endogenous and transferred CD4+ T cells whereas the eye that receives PBS 

or control peptide has elevated endogenous CD4+ T cell numbers in comparison to naïve 

eyes but minimal transferred CD4+ are detected throughout active disease in the ocular 

tissue.  

CX3CR1 expression is observed on both the transferred and endogenous CD4+ T cell 

population especially within the eye that received the intravitreal OVA. The expression of 

CX3CR1 on transferred CD4+ OVA specific cells support the hypothesis that CX3CR1 is 

expressed on CD4+ T cells in the presence of the antigen the cells are familiar with and 

therefore the TCR is involved in the expression of CX3CR1. However, upregulation of 



318 
 

CX3CR1 on the endogenous CD4+ T cell population suggests expression of CX3CR1 on the 

endogenous CD4+ population indicates at least some of this population are interacting in 

the eye with cognate antigen. Therefore, suggesting CX3CR1 expression on endogenous 

CD4+ T cells is switched on when cells are recruited to the eye during active disease where 

they encounter the ocular antigen and are activated which switches CX3CR1 expression 

on in CD4+ T cells. In the transferred compartment it can be concluded that CX3CR1 

expression is not just retinal antigen specific but specific to any antigen the CD4+ T cells 

are able to recognise within the tissue when activated. 

 

 

 

8.5 The role of IL-27 in EAU 

8.5.1 Disease onset is earlier in the IL-27Rα-/- after active immunisation 

Using the adoptive transfer technique described in chapter 3 combined with the data 

presented in chapter 4 that describes a conventional disease course gives a robust 

technique and comparable data set to manipulate donor or recipient leukocytes (as 

previously demonstrated using the CX3CR1 heterozygous or CX3CR1 knockout). Due to 

recent studies in models of arthritis and multiple sclerosis illustrating an effect on clinical 

disease when inducing disease in the IL-27Rα-/- mouse, experiments were designed to 

utilise these mice as donors for adoptive transfer. 

Firstly, eyes and organs from naïve IL-27Rα-/- mice were analysed to give a baseline for the 

study to detect changes in leukocyte number within the eyes of immunised mice. At day 

7 after immunisation, increased leukocyte recruitment is observed in immunised mice in 

comparison to the naïve baseline obtained from naïve IL-27Rα-/- mice. Further to this, eyes 

from donor mice immunised for adoptive transfer from IL-27Rα-/- and C57BL/6 mice were 

analysed, and leukocytes quantified using flow cytometry. By day 11 after immunisation 

the IL-27Rα-/- mice have leukocyte numbers similar to that of peak disease in a C57BL/6 

whereas in the eyes of C57BL/6 mice at day 11 after immunisation elevated leukocyte 

numbers are present within the eye but not comparable to peak clinical disease. In 

contrast to studies of EAE this data demonstrates that uveitis onset is accelerated in           

IL-27Rα-/- animals when using the active immunisation method. This could be down to the 
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pathogenicity of the CD4+ T cells that lack the IL-27Rα-/- initiating a more severe response 

when immunised with the RBP3 antigen. Studies (280) have also suggested dysfunction of 

the Treg population due to the lack of the IL-27Rα  could contribute to disease induction 

and severity due to lack of regulation.   

 

8.5.2 IL-27Rα-/- leukocytes are more pathogenic and cause a more severe and persistent 

disease phenotype when disease is induced using the adoptive transfer technique 

The evidence presented in this thesis leads to the conclusion that CD4+ T cells are more 

pathogenic from an IL-27Rα-/- mouse in comparison to CD4+ T cells from a wildtype 

C57BL/6. Firstly, after immunisation leukocytes were isolated and stimulated in cell 

culture, after this step supernatant from the cell cultures was obtained and analysed using 

the LegendPLex platform. Concentration of cytokines within the supernatant of both the 

IL-27Rα-/- and wildtype C57BL/6 cell cultures were calculated. There is a significant 

increase in the concentration of cytokines present within the IL-27Rα-/- leukocyte cultures 

in comparison to the wildtype C57BL/6 cultures. The increase in cytokine production in 

the IL-27Rα-/- culture supernatant suggests a more pathogenic phenotype is present.  

This is further supported by observations made about disease phenotype after the 

adoptive transfer of IL-27Rα-/- leukocytes into wildtype C57BL/6 recipients. At early time 

points a more severe disease is present within the eyes of recipients in comparison to the 

wildtype transfer with the same number of CD4+ T cells. The differences in disease 

severity between the two groups cannot be attributed to Tregs as the recipient wildtype 

mice have intact Treg populations. But no difference was observed in disease initiation 

between the two groups which was observed within the active immunisation group of     

IL-27Rα-/- mice, which further supports the hypothesis that dysfunctional Tregs due to      

IL-27Rα-/- initiates early onset disease.  

Using OCT imaging to follow clinical disease course allows analysis of disease throughout 

active disease and during disease resolution. The imaging data illustrates a persistent and 

more severe disease phenotype in the IL-27Rα-/- transfer recipients in comparison to the 

C57BL/6 transfer. IL-27Rα-/- has been implicated in causing a more severe and persistent 

disease phenotype in other models of autoimmune disease including adjuvant induced 

arthritis and experimental autoimmune encephalitis. AIA was induced in IL-27Rα-/-mice 

and disease monitored in comparison to a wildtype group, exacerbated joint pathology 
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denoted by increased leukocyte infiltration, synovial exudate, hypertrophy and hallmarks 

of cartilage and bone erosion (269). This data suggests IL-27 is a key mediator of immune 

response homeostasis in autoimmune conditions such as arthritis. The same pattern of 

more severe disease pathology is observed within the adoptive transfer model of EAU. 

Further to this using the clinical imaging to monitor clinical disease, the IL-27Rα-/- 

recipients illustrate no disease resolution and persistence of active clinical disease 

through to day 67. Analysis of clinical disease from day 67 to day 144 using clinical imaging 

illustrates active disease resolution in some recipients however in others active disease 

persisted to day 144 after adoptive transfer when samples were taken for flow cytometric 

analysis. 

 

8.5.3 IL-27Rα-/- CD4+ T cells persist within the eyes of recipients through to day 144 after 

adoptive transfer 

Clinical imaging allows disease monitoring throughout active disease and to compare 

disease phenotype across recipient groups. Combined with quantification of leukocytes 

present within the eyes of recipient’s differences in leukocyte infiltration can be 

attributed to differences in disease severity or phenotype. 

At day 67 after adoptive transfer the only population to persist within the eyes of the        

IL-27Rα-/- recipients are transferred CD4+ T cells, and in large enough numbers to drive 

clinical disease whereas in the wildtype transfer group minimal numbers of transferred 

and endogenous leukocytes are present within the recipient tissue. This data suggests 

that the persistence of the IL-27Rα-/- CD4+ T cells is driving active disease and initiating 

recruitment of endogenous CD4+ T cells along with other endogenous leukocytes such as 

neutrophils and myeloid cells. 

Continuing disease course through to day 144 illustrates a further persistence of the          

IL-27Rα-/- CD4+ T cells. With many recipients still with active clinical disease at this time 

point due to the persistence of this CD4+ T cell population driving disease. 

This collated data suggests a more potent and persistent phenotype of CD4+ T cell that 

can survive within the tissue and drive disease through to day 144 after adoptive transfer. 

 

8.6 Final Discussion 
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This study investigates the basic mechanisms underlying the induction and progression of 

EAU. The basic mechanism underpinning clinical symptoms is poorly understood within 

human uveitis, in order to develop new treatments for the disease it is important to 

understand how and why disease develops. The work in this thesis can help with further 

understanding on the disease process. 

The work in this thesis illustrates manipulation of disease using IL-27Rα-/- and CX3CR1+/GFP 

and CX3CR1GFP/GFP knockout mice, therefore using the adoptive transfer model optimised 

in previous chapters more detailed investigation of how these targets affect disease 

course and determine further targets for treatment of uveitis can be determined. Further 

studies of the effects of different cytokines and chemokines on disease course could be 

achieved by combining different knockout mouse strains or by CRISPR/Cas9 knockout of 

genes of interest. 

Overall, the data in this thesis gives an optimised method of tracking antigen specific cells 

that drive disease and non-retinal antigen specific cells which are non-specifically 

recruited throughout disease course. The adoptive transfer technique further allows 

expression of chemokines to be monitored throughout disease and how receptor 

knockouts influence disease course.  

Further to this from the original hypothesis set out for this thesis we have developed and 

optimised sensitive method of analysis of naïve and diseased ocular tissue and used this 

method to track allelically marked CD4+ T cells that drive disease and persist within the 

tissue after active clinical disease has resolved along with the recruitment of endogenous 

CD4+ T cells and studied their role in disease. The mechanism of recruitment of 

endogenous and transferred cells to the ocular tissue has been observed to be of antigen-

specific nature but recruitment of transferred non-antigen specific cells is observed when 

a pathogenic cell stimulus is present. Upregulation of CX3CR1 in increased frequencies 

was observed during active clinical disease due to an antigen-specific response and finally 

IL-27Rα-/- T cells cause a more long-lived and severe disease phenotype and persist within 

the ocular tissue in increased numbers for longer to drive active clinical disease. 
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Figure 8.1: Overview of thesis findings 
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9. Future Directions 

9.1 Nonspecific recruitment of CD4+ T cells throughout clinical disease 

As illustrated in chapter 5 recruitment of non-antigen specific CD4+ T cells when a uveitogenic 

stimulus is present was observed throughout active clinical disease. Further experimentation 

into what is causing the retention of non-specific CD4+ T cells within the eye could be 

achieved by the use of endothelial cell markers that are upregulated during active disease 

course that would influence retention of non-antigen specific CD4+ T cells. Distribution within 

the tissue of the antigen-specific and non-specific cells are retained specifically if they are 

resting on the endothelium or dispersed throughout the retina and vitreous. 

Further to this, the CRISPR/Cas9 system of gene editing could be utilised to knock out genes 

that effect disease progression and could be involved in the non-specific retention of CD4+ T 

cells. Firstly, to test if virally transduced cells survive in vivo and are capable of causing 

disease. Using a retroviral construct of F-tractin tagged GFP. CRISPR/Cas9 can then be utilised 

to knockout genes that can be assumed to cause a more severe disease phenotype including 

CTLA-4 or from the work presented in this thesis IL-27Rα or knockout genes that can be 

assumed to cause a less severe disease phenotype including CD28. After optimisation of this 

platform specific genes can be selected to target on OVA antigen specific CD4+ T cells before 

concurrent adoptive transfer with retinal antigen specific CD4+ T cells to monitor if the OVA 

specific cells are retained throughout active disease after specific genes are knocked out to 

manipulate disease course and reduce disease severity. 

 

9.2 The role of initial disease-causing antigen specific cells in EAU disease 

course 

The persistence of the disease initiating antigen specific CD4+ T cells throughout clinical 

disease is highlighted within this thesis (chapter 4). Using RNA sequencing at a number of late 

disease time points could identify genes present in the total CD4+ and CD8+ T cell population 

to identify differences in gene expression in cells retained in the eye past active clinical 

disease. This technique allows comparisons between clinical disease points past active 

disease but also could be used to analyse differential gene expression in endogenous and 

transferred CD4+ T cell populations during active disease. 
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 The role of the transferred antigen specific cells in disease initiation by activation of the 

endothelium was highlighted in (chapter 4) but further analysis into how transferred cells are 

involved in the initiation and progression of clinical disease can be investigated using antibody 

depletion of the transferred population before active peak disease occurs. This experiment 

will determine the role of transferred antigen specific cells in continuing active disease course 

and whether the endogenous compartment of CD4+ T cells is capable of continuing disease 

course without the presence of the antigen specific pathogenic transferred CD4+ T cells. 

Further to this the proliferation status of the transferred CD4+ population during active 

disease. Using a Ki67 antibody stain we can determine if the cells are in the active phase of 

the cell cycle and are therefore proliferating or the increase in transferred number present in 

the eye during active clinical disease is due purely to recruitment of transferred cells from the 

blood, spleen and lymph nodes. 

 

9.3 CX3CR1 expression on CD4+ T cells throughout clinical disease  

The expression of CX3CR1 on CD4+ T cells due to an antigen specific response is presented in 

chapter 6. To investigate if CX3CR1 is also expressed on CD4+ T cells in vitro cultures, OVA 

specific CD4+ T cells cocultured with antigen and CD3 CD28 stimulation to quantify CX3CR1 

expression on CD4+ T cells.  

Further experiments include utilising the RAG2-/- mice to transfer cells from transfer recipients 

at peak disease in Ly5 recipients. CD4+ transferred T cells from recipient eyes at peak disease 

can be sorted into CX3CR1+ CD4+ T cells and transferred into one group of recipients and sort 

CX3CR1- CD4+ T cells to transfer into another group of recipients. This experiment will allow 

differences in disease course based on CX3CR1 expression of CD4+ T cells with the hypothesis 

that CX3CR1+ CD4+ T cells are more capable of causing disease and persisting during active 

disease in comparison to the CX3CR1- CD4+ T cell population. 

Analysis of differential gene expression in these recipients could be investigated by focussed 

analysis of the expression of functional gene sets that are associated with changes in T cell 

effector potential specifically analysing intracellular cytokine expression including IFN-γ, IL-17 

and TNF. Regulatory and activation threshold markers including; FoxP3, CD5, CD39 and CD73, 

coinhibitory markers BTLA, TIM3, CTLA4, LAG3, PD1 and TIGIT and costimulatory markers 

(41BB, CD25, CD28, GITR, ICOS and OX40 using flow cytometry antibody panels. 
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Further to this RNA seq analysis of levels of mRNA followed by unsupervised analysis of 

differential gene expression will complement the previous study. Using total cell count of 

CD4+ T cells at different time points throughout disease course and with differing CX3CR1 

expression levels to compare cross different disease-causing cells. 

Due to the antigen specific nature of CX3CR1 expression on CD4+ T cells analysis of the TCR 

of CX3CR1+ CD4+ T cells using single cell sequencing. This platform allows single cell analysis 

at the transcript level with concurrent analysis of the TCR repertoire of each individual cell. 

Firstly, using the OTII transfer model with intravitreal OVA followed by analysis of the 

uveitogenic transfer model. 

 

9.4 IL-27Rα-/- causes a more potent CD4+ T cell phenotype 

 As described in chapter 7 knocking out the IL-27Rα in transferred CD4+ T cells causes a more 

severe cell phenotype that persists throughout active disease and continues to drive disease 

to cause a longer more severe disease within the recipients. Further experimentation could 

include phenotyping the CD4+ T cell populations within both groups of recipients to identify 

the role of CD4+ T cell phenotype in disease progression including early disease time points 

and late disease time points such as staining for IFN-γ, IL-17 and FoxP3 using flow cytometry 

antibodies before including analysis of differential gene expression in recipients by 

quantifying expression of functional gene sets that are associated with changes in T cell 

effector potential specifically analysing intracellular cytokine expression including IFN-γ, IL-17 

and TNF. Regulatory and activation threshold markers including FoxP3, CD5, CD39 and CD73, 

coinhibitory markers BTLA, TIM3, CTLA4, LAG3, PD1 and TGIT and costimulatory markers 

(41BB, CD25, CD28, GITR, ICOS and OX40. 

The effect of IL-27Rα knockout on CD4+ T cells has contributed to differences in disease 

phenotype but how this difference in clinical disease affects the structure and function of the 

tissue. Using histological sections to analyse the structures present within the eye to 

determine any abnormalities across disease groups, alternatively further analysis using whole 

retina flat mounts allows study of dispersion within the retina of immune infiltrate. 
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Chapter 10. Appendix 
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Appendix 1: Control experiment OVA and L144 control invit with no cell transfer performed to 

monitor changes in endogenous cell number 
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Appendix 2: Pathogenic or OTII activated intravitreal injection of cells into the left eye of RAG2-/- 

mice. Eyes were then analysed by flow cytometry at day 7 and 14 to quantify presence of transferred 

cells in each eye. 
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Appendix 3: Leukocytes quantified in organs from IL-27Rα-/- mice to compare to leukocyte numbers 

present within the eye. 
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Appendix 4: Leukocytes quantified in organs from C57BL/6 mice to compare to leukocyte numbers 

present within the eye. 
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