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Abstract

We present discrete models of special biserial (SB) algebras and their string modules, drawing inspiration
from cellular automata, and cast new light on patterns among syzygies. We explore applications of our
models to open questions in homological algebra regarding certain triangulated subcategories of derived
categories, with implications for the finitistic dimension conjectures.

More pertinently, ourmodels provide the innerworkings for a new, originalGAP package calledSBStrips,
written and implemented by the author. Its source code is freely available online and its documentation
is included as an appendix. The package calculates syzygies ΩkX of string modules X (and much more
besides) using specialised methods much more efficient than the general methods currently employed by the
QPA package.
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Chapter 1

Introduction

Special biserial (SB) algebras arose in the twentieth century in the modular representation theory of groups.

History has shown they are easy to define and nontrivial to study, yet still prove a rich source of interesting

behaviour.

They have been a frequent testing ground for the latest developments through the years in the repre-

sentation theory of finite-dimensional algebras. An early example: shortly after Drozd proved his famed

trichotomy result about representation type [Dro80], SB algebras were duly proven to be tame algebras by

Wald and Waschbüch [WW85] using the techniques of Gel’fand and Ponomarev [GP68]. More recently,

Huisgen-Zimmermann [HZ16] demonstrated that these representation-tame algebras nonetheless display

behaviour that is not "homologically-tame", this meaning that there exist SB algebras on which the dif-

ference between big and little finitistic dimensions is arbitrarily large. Schröer [Sch00] gives an excellent

historic overview of additional uses of SB algebras.

SB algebras are perhaps the best-studied class of algebras for which two homological questions remain

open. These questions concern the satisfaction of properties nicknamed injectives generate (IG) and

projectives cogenerate (PC) and are both phrased in terms of triangulated subcategories of the derived

category [Ric19]. The initial aim of this thesis was to prove IG and PC for SB algebras; the final aim was

the following conjecture.

Conjecture. Over SB algebras, projective modules have finite cosyzygy type and injective

modules have finite syzygy type.

These two conditions respectively imply IG and PC (but neither is a necessary condition). Extensive

calculations on the author’s part have unearthed no counterexamples.

These two conjectured conditions are equivalent to one another when dealing with finite-dimensional

modules (as we mostly do). It suffices to focus on only one; we choose the latter for the superficial reason
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that syzygies seem to appear in the literature more frequently than cosyzygies. That being said, we do not

believe the previous exploration of syzygy behaviour over SB algebras to be truly thorough. It appears to

this author that researchers in the field currently lack the requisite conceptual and computational tools.

To fill this absence, this thesis provides a novel, original approach to string modules and their syzygies

over SB algebras that draws inspiration from cellular automata. This means introducing a model for this

process and – more philosophically but no less importantly – giving a language with which to recognise and

describe syzygy patterns and phenomena. Our model formalises and disambiguates the informal graphical

approaches that have historically sufficed. We strongly recommend the reader consult Subsection 4.2.0 for

an extended, illustrative example of our model in action.

This formality has enabled us to implement the key parts of our model in theGAP programming language

as the SBStrips package, for which the source code and download instructions are freely available online

[All21]. We highlight that the specialised algorithms underlying our package dramatically outperform the

current syzygy techniques implemented for general finite-dimensional algebras by the QPA package for

GAP. Our package also implements other useful tools for string modules in SB algebras.

The main results of this thesis are as follows. (For reference, the pin graph Φ is a quiver we associate

to a SB algebra A, whose vertex set equals that of the defining quiver Q of A.) Firstly, we prove the above

conjecture for SB algebras A under certain conditions.

Theorem 5.2.28(b). The conjecture holds if A has acyclic pin graph.

Proposition 5.2.57. The conjecture holds if A has at most two simple modules.

Secondly, we prove a result very specific to our framework: in a technical sense, the symbols with which

we denote injective (string) modules appear inconsistent with those modules having infinite syzygy type.

Proposition 5.2.54. No tail of a∇-orbit of an injective syllable contains only interior syllables.

For the final result, let us mention again that the IG and PC properties are phrased in terms of particular

triangulated subcategories of the derived category. We show that certain simple modules belong to these

subcategories under mild assumptions.

Theorem 5.2.19. If A = kQ/I is special biserial, if Q is 2-regular and if Ψ is an acyclic

connected component of the pin graph of A having vertex set Ψ0, then Si ∈ Coloc(Proj-A)

and Si ∈ Loc(Inj-A) for all i ∈ Ψ0.

In Chapter 2 we give relevant background material. Nothing here is original. Our purpose is to

contextualise this thesis and establish notation.

In Chapter 3, we provide a combinatorial model for SB algebras in terms of posets of paths on certain

2



1-regular quivers. Our approach makes clear the connection with combinatorial tools used in the study of

Nakayama algebras.

In Chapter 4, we provide a model for string modules and their syzygies over SB algebras. The syzygies of

a SB algebra are arranged as (rigid) arrays of symbols. Strips – our formulation of string graphs/modules –

are the rows of this array. The columns are, thanks to our formalism, largely just the orbits of a single partial

operation on a finite set.

This reduction to finiteness is employed in Chapter 5, where we prove the main results mentioned above

as well as some related results that appear stated or implied in the literature but whose proofs are nowhere

to be found (until now).

One of our results concerns SB algebras with at most 2 simples. This requires a brute force calculation

that encompasses the analysis of dozens of cases. The gory details are relegated to Appendix A. Appendix

B is then the documentation of the most recent version of our SBStrips package. Aside from the requisite

information befitting a technical manual, it also features an extended chapter of worked examples. These

demonstrate the capabilities of SBStrips – which extend notably beyond just the syzygies treated in the

thesis – as well as the integration of SBStrips with the QPA package.
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Chapter 2

Background

Our ambient set theory is ZFC (in case it matters). We fix once and for all an algebraically closed field k (of

arbitrary characteristic).

We write 2X for the power set of X , we write X − Y for the set difference {x ∈ X : x /∈ Y } and we

write ω for the cardinality of the natural numbers N := {0, 1, 2, . . . }.

Where possible we write fg for the composition of functions X Y
f and Y Z

g and xf for the

image in f of an element x; this makes xfg the image in the composition. However we defer to the more

traditional notations f(x) when convenient or when firmly entrenched in the literature, an example being

s(α) and t(α) for the sources and target of an arrow α in a quiver. We accordingly write g ◦ f for the

composition and (g ◦ f)(x) for the image. We try to feature as few hybrids of these conventions as we can;

when they do appear, careful use of brackets will always make the order of composition unambiguous.

Our categories are locally small; that is, the classC(X,Y ) of morphisms of any two objectsX,Y ofC

is a set.

2.1 Miscellaneous mathematical prerequisites

2.1.1 Partial functions

2.1.1. Partial functions can be described in two synonymous ways, each with its own jargon and notation,

both encapsulating the notion of being “functions not necessarily defined on all domain elements”.

Since we use them both interchangeably in this thesis, we outline both approaches below.

To be more specific we present two categories, the morphisms of either of which we believe deserve to

be called partial functions. We demonstrate the well-known equivalence between them.
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Both of these categories are underpinned by the familiar category Set of sets. Recall that in Set we can

write the composition “f then g” as fg and the image of x in f as xf , or we can write that composition as

g ◦ f and that image as f(x). We prefer the first notation.

2.1.2. Support approach to partial functions. Let PartSet be the category with the following data.

(a) The objects are sets.

(b) AmorphismX Y
f is a quadruple (X,Y, supp f, F ) of sets comprising the domainX , the codomain

Y , the support supp f ⊆ X and the graph set F ⊆ (supp f) × Y . The graph set has the property

that for every x ∈ supp f there is a unique y ∈ Y with (x, y) ∈ F . We call this y the image of x and

denote it xf .

The supported elements of the domain of f are those in supp f .

The identity morphisms X Xid have support X and graph set {(x, x) : x ∈ X}.

(c) The composition of two morphisms X Y
f and Y Z

g , having data f = (X,Y, supp f, F ) and

g = (Y,Z, supp g,G) respectively, is the morphism X Z
fg with domain X , codomain Z, support

supp fg := {x ∈ X : x ∈ supp f and xf ∈ supp g} and graph

{(
x, (xf)g

)
∈ (supp fg)× Z : x ∈ supp fg

}
.

2.1.3. Basepoint approach to partial functions. Let BasedSet be the category with the following data.

(a) The objects are pairs (X,x?) comprising a set X and a member x? ∈ X .

We call the pair a based set and x? the basepoint or distinguished element.

(b) A morphism (X,x?) (Y, y?)
f is a function f (ie, a morphism of Set) such that x?f = y?.

The support supp f of a morphism (X,x0) (Y, y0)
f is {x ∈ X : xf 6= y?}.

The identity morphisms (X,x?) (X,x?) are those of Set.

(c) The composition of (X,x?) (Y, y?)
f and (Y, y?) (Z,Z?)

g is then (X,x?) (Z,Z?)
fg ; ie,

PartSet inherits its composition law from Set.

2.1.4. Equivalence of PartSet and BasedSet. Any set X gives rise to a based set (X ∪ {x?}, x?) by

freely adjoining a new element x? /∈ X , for example x? := X itself, to ensure that the union is disjoint.

(That X /∈ X is a consequence of the foundation axiom for sets.) Any morphism X Y
f of PartSet

gives rise to a morphism (X ∪ {x?}, x?) (Y ∪ {y?}, y?)
f ′ in BasedSet by defining xf := y? for all

x /∈ supp f . The assignments induce a functor PartSet BasedSet.
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Conversely, to a based set (X,x?) we assign the setX−{x?}, and to a morphism (X,x?) (Y, y?)
f of

BasedSet we assign the morphism
(
X − {x?}, Y − {y?}, supp f,

{
(x, xf) : x ∈ supp f

})
of PartSet.

These too give rise to a functor BasedSet PartSet.

These functors are mutually inverse equivalences of categories [Rie14, Example 1.5.6].

2.1.5. Defining a partial function. Now that we are acquainted with PartSet and BasedSet, we can

stipulate that by partial functionwe formallymean amorphism in either category. Partial functionsmodelled

one way can be translated into one modelled the other way using the equivalences outlined above. We do

this freely.

2.1.6. Particular partial functions. To obtain “partial” variants of familiar concepts like surjectivity, we

describe supported elements rather than domain elements.

A partial function X Y
f is a partial injection if xf 6= x′f for any x, x′ ∈ suppX with x 6= x′. It is

a partial surjection if for any y ∈ Y there exists x ∈ supp f with y = xf .

A partial function X X
g is a partial involution if for all x ∈ supp g we have xg ∈ supp g and

xg2 = x. It is fixpointfree if further there is no x ∈ supp g with xg = x.

2.1.2 Order theory

2.1.7. Orders. A partial order6, or simply order, on a setX is a binary relation such that for all elements

x, x′, x′′ ∈ X we have

(a) x 6 x (reflexivity),

(b) x 6 x′ and x′ 6 x implies x = x′ (antisymmetry), and

(c) x 6 x′ and x′ 6 x′′ implies x 6 x′′ (transitivity)

and, if additionally

(d) x 6 x′ or x′ 6 x (totality)

for all x, x′ ∈ X , then it is a total order. A (totally- or partially-) ordered set is a pair (X,6) comprising

a set X and a (total or partial) order 6 on it. We sometimes abbreviate totally- and partially-ordered set to

toset and poset.

(We normally use the terms partial order and partially-ordered set to emphasise that the order is not

total and use order and ordered set when the distinction is unimportant. Any relation denoted6 is an order.)

Being no more perfect than our forebears we indulge in common abuses, such as writing x > x′ to

mean x′ 6 x when convenient, writing x < x′ to mean that x 6 x′ and x 6= x′ (and similarly x > x′), and
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referring just to the set X of a pair (X,6) as the poset.

Two elements x, x′ of a poset are comparable if x 6 x′ or x′ 6 x, and incomparable otherwise.

Comparability is a symmetric relation; the equivalence classes it generates are the comparability components

of the ordered set, or simply components for short.

Subsets of a poset inherit its order in an obvious fashion.

2.1.8. Poset elements and their relations. An element x of a poset X is

(a) (i) minimal if there is no x′ ∈ X with x′ < x,

(ii) maximal if there is no x′ ∈ X with x < x′,

(iii) extremal if it is minimal or maximal,

(b) (i) a minimum if x 6 x′ for all x′ ∈ X , in which case we denote it minX ,

(ii) a maximum if x′ 6 x for all x′ ∈ X , in which case we denote it maxX ,

(iii) an extremum if it is a minimum or a maximum.

(The plural forms of these terms are minima, maxima and extrema.)

We see that any poset has at most one minimum element and at most one maximum element.

If x < x′ and there is no y ∈ X with x < y < x′, then we say that x is covered by x′ and, reciprocally,

x′ covers x.

We will consider several posets that readily lend themselves to illustration, such as the set of paths in a

given quiver. These can be visualised in a Hasse diagram: a quiver (oriented graph) with members of the

poset for vertices and with arrows x y when x is covered by y. Figure 2.1 gives an example.

2.1.9. Bounds and divergence. Suppose (X,6) is an ordered set and Y ⊆ X . We say x ∈ X is an upper

bound for Y if y 6 x for all y ∈ Y . If Y has an upper bound, then we say Y is bounded above (by any of its

upper bounds). The supremum sup(Y ) of Y is min{x ∈ X : x is an upper bound for Y } if this minimum

exists. We define lower bounds, boundedness below and the infimum inf Y of Y dually, and we say that Y

is bounded if it is bounded above and below.

Suppose that X is the toset N. We say that a sequence (xk)k>0 of positive integers is bounded if

{xk > 0: k > 0} is bounded, and we say the sequence diverges to +∞ if for all N > 0 there existsK > 0

such that xk > N for all k > K.

2.1.10. Chains and antichains. A subset Y ⊆ X of a posetX is a chain if all elements of Y are comparable

(in the inherited order) and an antichain if no two distinct elements are comparable.

2.1.11. Order ideals. An (order) ideal I ⊆ X of a poset is a subset such that if x, x′ ∈ X satisfy x′ ∈ I
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and x 6 x′, then x ∈ I .

2.1.12.Monotone functions. A (set-theoretic) functionX Y
f between ordered sets is (weakly)monotone

if x 6 y implies xf 6 yf ; it is strictly so when x < y implies xf < yf .

Again, we only use the term weakly when underscoring that the monotone function is not strictly

monotone.

2.1.3 Graph theory

We define graphs and associated notions. Note that our framework permits loops and multiple edges in a

graph.

2.1.13. Graphs. A graph Γ is a triple Γ = (Γ0,Γ1, e) comprising a set Γ0 of vertices, a set Γ1 of edges and

an incidence function e; that is, a function e : Γ1 2Γ0 such that 1 6 | e(e)| 6 2 for all edges e ∈ Γ1.

The graph is finite if both Γ0 and Γ1 are finite.

2.1.14. Incidence, adjacency and loops. We say that an edge e ∈ Γ1 is incident to v ∈ Γ0 if v ∈ e(e). A

loop is an edge with | e(e)| = 1.

Two vertices v, v′ ∈ Γ0 are adjacent if there is some edge e ∈ Γ1 with e(e) = {v, v′}.

In the standard formulation, the valency of a vertex v is 2a+ b, where a is the number of loops and b the

number of nonloop edges incident to v.

2.1.15. Subgraphs. A subgraph ∆ of Γ is a graph (∆0,∆1,d) such that ∆0 ⊆ Γ0 and ∆1 ⊆ Γ1 and such

that d(e) := e(e) is a well-defined function d = e|∆1
: ∆1 2∆0 .

The full subgraph specified by V ⊆ Γ0 is the subgraph ∆ where ∆0 = V and where ∆1 comprises

exactly those edges incident only to members of V . In general, a subgraph is full if there is some subset of

vertices that specify it in the above sense.

2.1.16. Graph homomorphisms. A graph homomorphism f = (f0, f1) : Γ ∆ is a pair comprising

(set-theoretic) functions f0 : Γ0 ∆0 and f1 : Γ1 ∆1 respecting incidence. This means that the square

Γ1 2Γ0

∆1 2∆0

e

f1 f0

d

commutes, where we abuse notation and also denote by f0 : 2Γ0 2Γ1 the map induced by f0 : Γ0 ∆0.

2.1.17. Paths and cycles. A path of length l > 0 in Γ is a sequence (v0, e1, v1, . . . , e`, v`) alternately

comprising vertices vj and edges ej and such that e(ej) = {vj−1, vj} for each 1 6 j 6 `. (We identify any
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such path with its reverse (v`, e`, v`−1, . . . , e1, v0), since the graph is undirected.) It is a simple path if the

vertices {v0, . . . , v`} visited are all distinct.

A cycle of length ` > 0 is a path (v0, e1, v1, . . . , e`, v`) whose extremal vertices v0 and v` are the same.

It is a simple cycle if all of the visited vertices are distinct, save for v0 = v`. A graph that has no cycles is

acyclic.

2.1.18. The integers Z as a graph. We model the graph
(
· · · ◦ ◦ ◦ ◦ ◦ · · ·

)
using

the integers
(
· · · (−2) (−1) 0 1 2 · · ·

)
.

2.1.19. Connectedness for graphs. Two vertices of a graphΓ are connected if they are the extremal vertices

v0, vl of some path (v0, e1, v1, . . . , el, vl). Connectedness of vertices induces an equivalence relation on

the vertex set Γ0. The classes of this equivalence relation specify full subgraphs of Γ called connected

components. If there is only one equivalence class (and hence only one connected component) then we call

the graph connected.

2.1.20. Rooted trees. A tree is a graph that is connected and acyclic. Equivalently, it is a graph in which

any two vertices are connected by a unique path.

A rooted tree is a pair (T, r) comprising a tree T and a vertex r ∈ T0 called the root. When the root

is clear from context then it is a standard abuse of notation to denote (T, r) just by T . A homomorphism

(T, r) (T ′, r′) of rooted trees is a homomorphism T T ′ of graphs that sends r r′.

A vertex v ∈ T0 is in the lth level of the tree if the unique path connecting it to the root has length l.

This means that the root is the unique vertex in level 0.

The children, or child vertices, of a vertex in level l > 0 are those vertices adjacent to it in level l + 1;

the transitive closure of the child relation gives the descendant relation. The parent, or parent vertex, of a

vertex in level l > 0 is the (unique) vertex adjacent to it in level l − 1; the transitive closure of the parent

relation gives the ancestor relation. We see that the root is the ancestor of all vertices in a rooted tree.

The valency of a vertex is the number child vertices it has. The valency of a rooted tree is the maximal

valency of any of its vertices. A rooted tree is regular if all of its vertices have the same valency.

2.1.21. The regular rooted tree Z∗ of countable valency. Let Z∗ :=
⋃
l>0 Zl denote the set of finite

sequences of integers, which includes the empty sequence Ø := (). We create a rooted tree with root Ø and

vertex set Z∗ by specifying that the children of (x0, x1, . . . , xl−1) are (x0, x1, . . . , xl−1, k), for k ∈ Z.

We easily verify that Z∗ is regular, having valency ω. The length of a sequence gives its level in the tree.

Any rooted tree of finite (or indeed countable) valency embeds as a subgraph of Z∗.
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2.1.4 Quiver theory

2.1.22. Quivers. Formally, a quiver is a tupleQ = (Q0, Q1, s, t) comprising setsQ0 of vertices andQ1 of

arrows together with source and target functions s, t : Q1 Q0. It is finite if Q0 and Q1 are both finite,

and locally finite if every vertex is the source and target of finitely many vertices.

The opposite quiver Qop of (Q0, Q1, s, t) is (Q0, Q1, t, s). That (Qop)op = Q is immediate.

2.1.23. Quiver homomorphisms. A quiver homomorphism φ : (Q0, Q1, s, t) (Q′0, Q
′
1, s
′, t′) is a pair

of (set-theoretic) maps φk : Qk Q′k (k ∈ {0, 1}) that commute the squares

Q1 Q0

Q′1 Q′0

s

φ1 φ0

s′

and
Q1 Q0

Q′1 Q′0

t

φ1 φ0

t′

.

We call φ injective or an inclusion if both φk are injective, in which case we say Q includes into Q′, we

write φ : Q Q′ and call Q a subquiver of Q′. Dually, we call φ surjective or a projection if both φk are

surjective, in which case we say Q projects onto Q′, write φ : Q Q′ and call Q′ a quotient of Q.

We call Q = (Q0, Q1, s, t) a full subquiver of Q′ = (Q′0, Q
′
1, s
′, t′) if there is some X ⊆ Q0 such that

Q0 = X , Q1 = {α ∈ Q′1 : s(α) ∈ X and t(α) ∈ X}, s = s′ |Q1 and t = t′ |Q1 ,

in which case we call it the full subquiver of Q′ specified by X .

2.1.24. Underlying graph. The underlying graph of Q = (Q0, Q1, s, t) is
(
Q0, Q1, α

{
s(α), t(α)

})
.

2.1.25. Connectedness for quivers. A connected component of a quiverQ is a full subquiver ofQ specified

by the vertices in a connected component of the underlying graph of Q. A quiver is connected if it has one

connected component (iff its underlying graph does).

2.1.26. Paths. Informally, a path in a quiver is a list of compatibly oriented arrows starting and ending at

some vertices.

Formally, let us extend s, t to maps s, t : Q0 tQ1 Q0 by specifying s(i) := i and t(i) := i for all

vertices i. Then we formally define a path (in Q) as a finite, ordered tuple p := (u0;u1, . . . , u`;u`+1)

with ` > 0 such that: u0 and u`+1 are vertices; all other ur are arrows; and for all 0 6 r 6 ` we have

t(ur) = s(ur+1). In this case, the length of the path is `, the source of the path is u0 and the target of the

path is u`+1. We write len p for the length of p and, by abuse of notation, s(p) for t(p) for the source and

target of p. We say that p passes through the vertices u0, u`+1 and s(ur), t(ur) (0 6 r 6 `).

We call a path stationary or trivial iff it has length 0. Outside of this preliminary section, stationary
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paths (i, i) will be denoted just by ei and nonstationary paths (u0;u1, u2, . . . , u`;u`+1) by u1u2 · · ·u`.

Paths should be read left-to-right.

The set of all paths in Q is Path(Q).

2.1.27. Concatenation of paths. Let p := (u0;u1, . . . , u`;u`+1) and q := (v0; v1, . . . , vm; vm+1) be

paths. If t(p) = s(q), which is exactly to say if u`+1 = v0, then we define the concatenation of p and q to

be the path pq := (u0;u1, . . . , u`, u`+1, v1, . . . , vm; vm+1). This has s(p) as its first entry and t(q) as its

last entry, and combines (in order) the lists of constituent arrows of p and q.

When t(p) 6= s(q), we leave pq undefined. Observe that eiu is defined iff i = s(u), in which case

eiu = u. Similarly, uej is defined iff j = t(u), in which case uej = u.

2.1.28. Path category. The paths in any quiver Q form a category. Specifically, the path category of Q is

the (small) category with object setQ0 and morphism set Path(Q). The domain and codomain of any path

p are s(p) and t(p) respectively. The identity morphisms are the trivial paths ei. Concatenation of paths

gives composition.

We comment that the full subcategory on any subset V ⊆ Q0 of vertices contains those paths whose

source and target both lie in V .

Suppose quivers Q and Q′ respectively have path categories Q and Q′. Any morphism Q Q′ of

quivers induces a functor Q Q′, however not all functors between path categories arise in this way. A

trivial example, provided that Q has at least one arrow and Q′ at least one vertex, is any functor Q Q′

that maps all Q-paths to some stationary Q′-path. For a slightly less trivial example, let Q :=
(
1 2α )

and Q′ :=
(
1 2 3

β1 β2
)
, and consider the path category functor sending α β1β2 (and therefore

e1 e1 and e2 e3).

2.1.29. Subpaths, prefixes and suffixes. In general, when paths p, q, u, v satisfy q = upv then p is a

subpath of q and q is a superpath of p. Some particular subpaths of q are especially important.

The prefixes of a path q are those paths u for which there exists a path v with uv = q, in which case we

call v the prefix complement of u in q. Suffixes and their (suffix) complements are defined dually.

2.1.30. Subpath order on Path(Q). The relation “is a subpath of” is a partial order on the Path(Q). The

minimal elements of this poset are the stationary paths, and this poset is finite iff Q is acyclic and finite.

We may grade Path(Q) by path length; that is, p 6 q implies len p 6 len q.
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Regular and subregular quivers

2.1.31. Regularity and subregularity. Letm be a positive integer. A quiver is sub-m-regular iff for all i ∈

Q0 we have
∣∣ s−1

(
{i}
)∣∣ 6 m and

∣∣ t−1
(
{i}
)∣∣ 6 m, and it ism-regular iff the above inequalities may both

be replaced by equalities. Here, s−1 and t−1 denote the preimage set.

2.1.32. Lemma (augmenting sub-regular to regular). Any finite, connected sub-m-regular quiverQmay

be augmented to a connectedm-regular quiver by adding only arrows.

Proof. SinceQ is connected and sub-m-regular,Q1 satisfies |Q0|− 1 6 |Q1| 6 m|Q0|. We then define

rQ := m|Q0| − |Q1|; this nonnegative integer is 0 iff Q ism-regular.

If r > 0, then a counting argument establishes the existence of vertices i and j with |s−1(i)| < m

and |t−1(j)| < m. Choose such an i and j and augment Q1 with an extra arrow i j. Denoting the

augmented arrow Q′, we find that rQ′ = m|Q′0| − |Q′1| = m|Q0| − (|Q1| + 1) = rQ − 1. Finitely many

such augmentations yield anm-regular quiver of which Q is a subquiver, as required. �

2.1.33. Remark (regularity and opposite quivers). A quiver Q is m-regular or sub-m-regular iff its

opposite Qop is. If Q′ is am-regular augmentation of Q, then (Q′)op is one of Qop.

2.1.34. Example (almost-uniqueness of regular augmentation). Consider the quiver
(
1 2

)
. It has

a unique 1-regular augmentation
(
1 2

)
. It has two 2-regular augmentations:

1 2 and 1 2.

In fact, it is a subquiver of every (connected) m-regular quiver on 2 vertices. One easily shows that these

have adjacency matrices of the form
[

(m−r) r
r (m−r)

]
for 1 6 r 6 m and, therefore, that there arem of them.

This exemplifies the general truth that a sub-m-regular quiver does not necessarily have a unique

m-regular augmentation. Nonetheless, there are only finitely many.

Sub-1-regular quivers

2.1.35. Type A and Ã quivers. Fix some positive integer n > 0. There are two isomorphism classes of

connected sub-1-regular quivers having n vertices, namely those represented by

1 2 · · · n− 1 n and 1 2 · · · n− 1 n.

In the literature these are respectively called the equioriented type Ãn−1 and type An quivers. The former

is 1-regular and the latter is not. Indeed, the former is the unique 1-regular augmentation of the latter.
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2.1.36. Alternative characterisation of 1-regularity. An equivalent definition of the 1-regularity of Q is

that its source and target maps s and t be bĳections Q1 Q0. When so, they have respective inverses s−1

and t−1 and we thus obtain permutations (t ◦ s−1) : Q0 Q0 and (s−1 ◦ t) : Q1 Q1.

2.1.37. The quiver Z. The quintessential 1-regular quiver is
(
· · · −2 −1 0 1 2 · · ·

)
,

which we naughtily call Z.

Powers of (t ◦ s−1) or (s−1 ◦ t) give Z-actions on the vertices and arrows, moving things “with the flow

of the quiver”. We write these actions additively and on the right so that, for k ∈ Z, i− k := (t ◦ s−1)k(i)

and α− k := (s−1 ◦ t)k(α). The pictures to keep in mind are the following:

· · · (i− 2) (i− 1) i (i+ 1) (i+ 2) · · ·

and

· · · · · · · · · ·α−2 α−1 α α+1 α+2 .

This notation for the action is chosen so as to be compatible with any sensible identification of the arrows

of vertices of the quiver with Z.

2.1.38. Paths in Z. Three pieces of information associated to each p ∈ Path(Z) are its source s(p), target

t(p) and length len p. Any two of these determine the third since s(p)− l = t(p).

We write
(
i ◦

l )
for the path in Z with source i and length l. (The brackets are for clarity when

written inline rather than a strict part of the notation.) In the much rarer events that we specify a path in Z

by its target and length or its source and target, we will use the notations
(
◦ i

l )
and

(
i j

)
.

The Z-actions on the vertices of Z induce one on Path(Z). An obvious notation would be to write p−k

for
(
(s(p)− k) (t(p)− k)

)
, where k ∈ Z, however this is unnecessary for we only mean to mention

the existence of the action and show how it follows from the action on vertices.

2.1.39. Subpath poset of Z. The poset Path(Z) of paths in Z (ordered by the subpath order) is very

transparent. Since t−1(s(p)) and s−1(t(p)) are uniquely defined for any path p, the whole story is told by

“fundamental diamonds”
αpβ

αp pβ

p

in the Hasse diagram. These fit together as in Figure 2.1.

2.1.40. Notation for other connected 1-regular quivers. Any finite, connected 1-regular quiver Q is a

quotient of Z. This means we can represent vertices, arrows or paths of Q using those in Z. Context will

always clarify whether the source and target vertices of
(
i j

)
are to be understood modulo n and,
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...
...

...
...

· · · · · · · · · ·

· · ·

· · · · · · · · · ·

ei−1 ei ei+1

Figure 2.1. The Hasse diagram of Path(Z).

when so, what the value of n is.

2.1.41. Notation for general 1-regular quivers. An arbitrary 1-regular quiver Q is the quotient of the

disjoint union of copies of Z, one for each connected component.

It will be necessary to discuss several paths in such a quiver Q at once, however those paths will all lie

in the same connected component and that component should be clear from context. Therefore, in keeping

with the above convention, each path of interest in that component can be represented using paths in Z.

2.1.42. Other posets of paths in Z. If we partially order Z-paths using the prefix relation, then two paths

are comparable iff they have they same source, and two comparable paths satisfy p 6 q iff len p 6 len q.

This means that the prefix-poset of Z-paths is a disjoint union of chains

(
i ◦

0 )
<
(
i ◦

1 )
<
(
i ◦

2 )
<
(
i ◦

3
)
)
< · · · ,

one copy for each i ∈ Z, each chain being order-isomorphic to N. Essentially the same statements hold for

the suffix poset; we need only compare paths by their targets rather than sources.

2.2 Algebraic prerequisites

2.2.1 Quiver algebras

We assume throughout that k is some fixed field.

2.2.1. Algebras and opposites. By an algebra A, we mean an associative and unital (but not necessarily

commutative) ring with a compatible k-vector space structure.
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Any algebraA has an opposite algebraAop. The underlying vector space is the samebut themultiplication

is reversed.

2.2.2. Path algebras and their elements. SupposeQ is a finite quiver: that is, a directed graph with finitely

many vertices and finitely many arrows, where loops and/or multiple edges are permitted. The paths of Q,

also called Q-paths to emphasise their parent quiver (and including the stationary paths ei at each vertex i),

form the basis of a vector space. Multiplication can be defined on basis vectors p and q by "concatenation

extended by zero"; more precisely, p · q = pq ("p then q") if pq is a path inQ, and p · q = 0 otherwise. This

defines the path algebra KQ. Its multiplicative unit is the sum
∑
i∈Q0

ei of stationary paths. It has finite

k-dimension iff Q contains no (directed) cycles.

An arbitrary element of kQ is thus a finite k-linear sum
∑m
k=1 λkpk of Q-paths pk. The components of

such an element are those paths pk with λk 6= 0.

2.2.3. Arrow ideal. Let J P KQ denote the arrow ideal of KQ: the smallest two-sided ideal of KQ

containing the arrows of Q. This is the Jacobson radical of A; that is, the intersection of all maximal ideals

of A.

2.2.4. Ideals of path algebras. An ideal I P KQ is admissible iff there is an integer N > 2 with

JN ⊆ I ⊆ J2.

If ρ ⊆ kQ is a collection of elements, then we denote the smallest two-sided ideal of kQ to contain ρ by

〈ρ〉; when ρ is finite, say ρ = {r1, · · · , rs}, then we alternatively denote it by 〈r1, · · · , rs〉. Any admissible

ideal I of a path algebra is of the form I = 〈ρ〉 for some finite ρ [ASS06, Lem II.2.8]; without loss of

generality, we may therefore assume the generating set ρ to be minimal.

The elements of a minimal ρ are called relations. The components of any relation
∑m
k=1 λkpk all have

the same source and target without loss of generality, since this is true of ei(
∑m
k=1 λkpk)ej (for primitive

idempotents ei, ej) and

m∑

k=1

λkpk =


∑

i∈Q0

ei



(

m∑

k=1

λkpk

)
∑

j∈Q0

ej


 =

∑

i,j∈Q0

ei

(
m∑

k=1

λkpk

)
ej .

A relation
∑m
k=1 λkpk is called a monomial relation if it has 1 component and a (skew) commutativity

relation if it has 2.

2.2.5. Quiver algebras. By a (bound) quiver algebra, we mean a quotientKQ/I of a path algebraKQ by

an admissible ideal I . We will refer to Q as the ground quiver or presenting quiver of the algebra.

Any quiver algebra is a finite-dimensional [ASS06, Prop II.2.6] algebra. Conversely, any basic, connected

algebra is isomorphic to a quiver algebra [ASS06, Thm II.3.7]. To understand why it suffices to consider
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algebras that are basic and connected (terms defined in see [ASS06, Def I.6.1 and Sec I.4]) note that any

finite-dimensional algebra is a direct product of connected ones (trivially) and the module category of any

connected finite-dimensional algebra is equivalent to that of a basic one [ASS06, Cor I.6.10].

2.2.6. Paths and residues. Retaining the notation of the previous passage, we define the A-residue of a

Q-path p to be the element p+ I . (Others have called this the canonical image of p in A.)

We use the term A-path to mean the nonzero A-residue of some Q-path.

2.2.2 Representation theory

2.2.7. Modules. A representation of A is a homomorphism of algebras φ : A → EndX whose target is

the endomorphism algebra EndX of a k-vector space X; for convenience, write φa for the image of a in

φ. In this case, we call X a (right) A-module, with associated action xa := xφa. The module is finite

dimensional iff X is.

2.2.8. Representations of quivers. Since A = kQ/I , we can work in terms of (bound) representations

of quivers. These are assignments of a vector space Xi to each vertex i of Q and of a linear map

θα : Xs(α) → Xt(α) to each arrow α of Q such that for all k-linear sum of paths
∑m
k=1 λkpk ∈ I , the

associated map
∑m
k=1 λkθpk :

⊕
iXi →

⊕
iXi is zero. Here, θpk = θα1

· · · θαr for a decomposition of a

nonstationary pk into a product α1 · · ·αr of arrows, and θi = idXi for any stationary path at i.

2.2.9. Equivalence. As is well-known, representations of quivers are equivalent to modules [ASS06, III.1].

More specifically, the categories Rep(Q, I) of bound quiver representations and Mod-A of A-modules

are equivalent, and this equivalence restricts to their respective full subcategories rep(Q, I) and mod-A

of finite-dimensional objects. We use the two formulations interchangeably throughout.

We note in particular that all of the categories in the previous paragraph are abelian: thus, we can speak

of the direct sum of modules (denoted with ⊕).

2.2.10. Indecomposability and unique decomposition. We call a nonzero module X indecomposable if

X = Y ⊕ Z implies Y or Z is zero.

If X is a finite-dimensional module (or bound quiver representation) and there are indecomposable

modules Yr, Y ′r satisfying X ∼= Y1 ⊕ · · · ⊕ Ym ∼= Y ′1 ⊕ · · · ⊕ Y ′m′ , then m = m′ and there exists some

permutation σ of {1, . . . ,m} such that Yr ∼= Y ′rσ.

2.2.11. Additive generation. If X is any set of A-modules, we define the additive closure of X as the full

subcategory ofmod-A whose objects are isomorphic to direct summands of finite direct sums of members

of X . We denote this subcategory by addX or, when X = {X} is a singleton, simply addX .
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X

U V 0

(a) Projective modules X . In particular note
that U V is surjective.

0 U V

X

(b) Injective modulesX . In particular note that
U V is injective.

Figure 2.2. Defining diagrams for projectives and injectives.

If a categoryC hasC = addX , then we sayX additively generates, or is the additive generator of,C.

2.2.12. Representation type. One can seek to classify the isomorphism classes of indecomposable (finite-

dimensional) modules of an algebra. A deep theorem ofDrozd [Dro80] establishes that all finite-dimensional

algebras fall into exactly one of three representation types.

In increasing order of complexity, the options are representation finite, tame or wild. The first type

simply means the algebra has only finitely many isoclasses of indecomposables. The second type means,

informally speaking, that in each dimension all but finitely many modules lie in one of finitely many classes,

each parameterised by the field. Speaking even more informally, the third type are those for which the

classification problem is intractible in a very strong way.

Discussion and formal definitions of representation type can be found in [Ben95, Sec 4.4]. We mention

representation type only to contextualise the classification of indecomposables for SB algebras.

2.2.13. Submodules and quotients. An A-submodule Y 6 X is a vector subspace Y of X such that

ya ∈ Y for all y ∈ Y and a ∈ A. For any submodule Y 6 X , the vector-space quotient X/Y has a

well-defined, natural A-module structure. Therefore we also denote by X/Y the quotient A-module.

We call X simple if it has no submodules beside 0 and X . The (isomorphism classes of) simple

A-modules correspond to the vertices of the ground quiver Q of A. We write Si for the simple module

associated to i ∈ Q0 comprising k at vertex i, 0 at all other vertices and all maps zero. A module is

semisimple if it is a direct sum of simple modules.

The largest semisimple submodule of X is the socle socX of X . The radical radX is the the smallest

submodule Y 6 X such that X/Y is semisimple; the head hdX of X is that quotient X/ radX .

We call X uniserial if its poset of submodules is a chain.

2.2.14. Projective and injective modules. We define two special classes of A-modules. Each class has

several equivalent definitions, some of which emphasise the duality between the definitions, others which

are more useful in practice.
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(a) The following three conditions are equivalent. Any module satisfying them is projective.

(i) The covariant functor HomA(X,−) : Mod-A→Mod-k is exact

(ii) For any solid diagramwith exact rows as in Figure 2.2a, there exists a homomorphismX U

commuting it.

(iii) The module X is a direct summand of some direct power of A.

(b) The following two conditions are equivalent. Any module satisfying them is injective.

(i) The contravariant functor HomA(−, X) : Mod-A→Mod-k is exact.

(ii) For any solid diagramwith exact rows as in Figure 2.2b, there exists a homomorphismU X

commuting it.

We write Proj-A and Inj-A for the full subcategories of Mod-A comprising the projective and injective

modules, respectively, and we write proj-A and inj-A for the corresponding full subcategories ofmod-A.

As with the simples, there corresponds to each vertex i ∈ Q0 an indecomposable projective module

Pi := eiA and an indecomposable injective module denoted Ei. It follows that
⊕

i∈Q0
Pi and

⊕
i∈Q0

Ei

are additive generators for proj-A and inj-A respectively.

2.2.15. Dualities. WewriteD for the vector-space dualityHomk(−,k) : mod-A→mod-Aop ofmodules;

by duality, we mean that this functor gives a contravariant equivalence of categoriesmod-A mod-Aop

[ASS06, I.2.9]. It restricts to dualities proj-A inj-Aop and inj-A proj-Aop [ASS06, Thm I.5.13]

that we also denote by D.

Additionally, we also write ( )∗ (ie, a superscript asterisk) for the functor

HomA(−, A) : mod-A mod-Aop

which, importantly, restricts to a duality proj-A proj-Aop (see first paragraph of [ASS06, §IV.2]).

2.2.3 Special biserial algebras

2.2.16. SB algebras. A special biserial (SB) algebra is a quiver algebra kQ/I where

(a) Q is sub-2-regular and

(b) for any arrow α ∈ Q1, (i) there exists at most one arrow β ∈ Q1 with αβ /∈ I and (ii) there exists at

most one arrow γ ∈ Q1 with γβ /∈ I .

We remark in passing that A is special biserial iff Aop is.
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2.2.17. Previous authors have restricted attention to particular classes of SB algebras. These include string

algebras (for which the defining ideal I is generated by paths), gentle algebras (I is generated by paths

of length 2) and symmetric or representation-finite or radical-cube-zero SB algebras. We make no such

restriction.

In the following proposition, we survey some of the most significant theorems about (unrestricted) SB

algebras.

2.2.18. Proposition. Let A = kQ/I be a SB algebra.

(We introduce projective, injective, nonuniserial modules and stringmodules in greater detail later in this

subsection. Band modules are defined in Subsection 5.1.2. For the definition of the representation dimension

of an algebra, see [EHIS04, §1]. For discussion of the big and little finitistic dimensions Fin dimA and

fin dimA of an algebra A, as well as the big and little finitistic dimension conjectures related to them, refer

forward to Passage 2.2.49.)

(a) [SW83, Corollary to Lem 1] [WW85, Prop 1.3] The defining admissible I is generated by monomial

relations and (skew) commutativity relations.

(b) [WW85, Prop 2.3] The indecomposable finite-dimensional modules of an A come in three distinct

flavours.

(i) Projective, injective, nonuniserial modules: there are only finitely many of these, possibly zero.

(ii) String modules: there are only finitely many of these with any given k-dimension.

(iii) Band modules: these come in families parameterised by elements of the ground field k.

Consequently A is representation-finite or tame.

(c) [WW85, §2] [Erd90, II.1.3] Decompose the regular module ofA asP⊕P ′, where all direct summands

of P are projective, injective and nonuniserial but no summands of P ′ are. Then socP is in fact a

two-sided ideal of A, and the only indecomposable A-modules that are not A/(socP )-modules are

the indecomposable direct summands of P .

(d) [EHIS04, Cor 1.3] The representation dimension ofA is at most 3 and soA satisfies the little finitistic

dimension conjecture.

(e) [HZ16, Thm 3.1] For any r > 0, there exists a SB algebra Ar that satisfies fin dimAr = r + 1 and

Fin dimAr = 2r + 1.

Proof.We direct the reader to the references given with each statement. We comment that the finiteness

statement of (b)(ii) is implicit.
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The proof of part (c) amounts to [SW83, Corollary to Lem 1] but it bears repeating here. We assume

part (a), and thus suppose I = 〈ρ〉 for some minimal set of monomial and commutativity relations. Suppose

λp−µq is a commutativity relation (and so λ 6= 0 6= µ). Both components p and q are clearly paths of length

at least 2 since I is admissible; say they factor as p = α1p
′α2 and q = β1q

′β2 for arrows α1, α2, β1, β2 and

paths p′, q′. Then, by definition,

p+ I = (α1p
′α2) + I = (λ−1µ)(β1q

′β2) + I = (λ−1µ)(q + I). (2.1)

Evidently, left-multiplication by es(p) = es(q) or right-multiplication by et(p) = et(q) fixes p+ I and q + I ,

while left- or right-multiplication by any other idempotent annihilates them. For any arrow γ ∈ Q1, consider

right-multiplying (2.1) by γ to give

(p+ I)γ = pγ + I = α1p
′α2γ + I = (λ−1µ)β1q

′β2γ + I = (λ−1µ)(q + I)γ.

If this is nonzero then α2γ /∈ I and β2γ /∈ I , which contradicts Definition 2.2.16(b)(ii); thus arrows act on

the right on p+ I and q + I as zero. One similarly shows they act as zero on the left.

We know that socP is spanned by {p+I : p is a component of a commutativity relation in ρ}. Evidently

socP is a right submodule of P and hence of A by transitivity of inclusion, and therefore a fortiori a vector

subspace of A. The preceding paragraph shows that this subspace is closed under the action of A on both

the left and right. Thus, socP is a two-sided ideal of A, as claimed. It follows that A/(socP ) = kQ/〈ρ′〉,

where ρ′ = ρ ∪ {p : p is a component of a commutativity relation in ρ}. �

2.2.19. Running example. Throughout this thesis, we will consistently work with the SB algebra

A := k
(

1 2α
β

γ
δ
)
/
〈
α2, βδ, γβ, δγ, αβγ − βγα, γαβ, δ4

〉
.

The A-paths of length 2 are αβ, βγ, γα, δ2. The paths give the basis of the regular A-module as depicted

in Figure 2.3.

Our graphical notation follows that in, for example, [ZH91]. The vertices of the graphs are A-paths,

which form a basis. An edge labelled by some α′ ∈ Q1 indicates that α′ maps the higher vector to some

(nonzero) scalar multiple of the lower vector, while all other arrows annihilate the higher node.

This algebra is built into the SBStrips package as SBStripsExampleAlgebra( 1 ).

gap> SBStripsExampleAlgebra( 1 );

<Rationals[<quiver with 2 vertices and 4 arrows>]/

<two-sided ideal in <Rationals[<quiver with 2 vertices and 4 arrows>]>,

(7 generators)>>
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e1

β

βγ

αβγ

α

αβ

e2

δ

δ2

δ3

γ

γα

β

γ

α

α

β

γ

δ

δ

δ

γ

α

Figure 2.3. Structure of the regular module of running example algebra A. The lefthand graph illustrates the
structure of P1 = e1A; the righthand graph, that of P2 = e2A.

2.2.20. Special biserial algebas are biserial. A finite-dimensional algebra A is biserial if for every

indecomposable projective A-module P there exists uniserial A-modules U, V such that radP = U + V

and U ∩ V is simple or zero.

The SB algebra axioms ensure that the principal right ideal αA generated by an arrow α is uniserial,

being spanned by the A-paths of the form αp (p some Q-path). We find that radPi =
∑
αA, where the

sum runs over all arrows α with s(α) = i, of which there are at most two. We deduce that all SB algebras

are biserial. The converse is not necessarily true [SW83, §1].

Pin modules

2.2.21. Pin modules. We abbreviate projective, injective, nonuniserial module to pin module. We further

insist that all pin modules are indecomposable.

2.2.22. Running example. In our running example algebra from Passage 2.2.19, P1 = e1A is a pin module.

Its structure graph, as in Figure 2.3, has a lozenge shape. Reading down either side of the lozenge, the labels

of the edges spell out αβγ and βγα; that the A-residues of these two paths are linearly dependent on one

another is a consequence of the defining relation αβγ − βγα for A.

2.2.23. Remarks. (a) If an indecomposable module is projective, injective and nonuniserial then, in

particular, it is an indecomposable injective and so has simple socle. (This is dual, using the functor D, to

the fact that indecomposable projectives have simple head [ASS06, Cor I.5.17].)

(b) The pin modules for a SB algebra correspond to commutativity relations. This general fact seems

to be well-known, appearing, at least implicitly, in the literature in (eg) [LM04, §2, para 5] and throughout

[HZ16]. We remarked on the particular case of our running example algebra in the previous passage.

(c) Continuing the notation of the previous passage, let the pair (U, V ) of submodules of eiA be: (0, 0)

if i is the source of no arrows; (αA, 0) if i is the source of one arrow α or; (αA, βA) if i is the source of
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two arrows α 6= β.

To have U ∩ V 6= 0, we must not only have that i be the source of two arrows (since otherwise V = 0),

but also that some A-path is represented by (a linear multiple of) a Q-path with first arrow α and one with

first arrow β. This occurs iff there is a commutativity relation with source i iff Pi is a projective, injective,

nonuniserial module. When this does occur, the simple intersection is isomorphic to Sj , where j is the

target of the commutativity relation that has source i. This is easy to see, since a basis vector for this simple

socle is given by either of the components of the commutativity relation that has source i. Confer with our

example basis in Figure 2.3 or, more generally, the basis for projectives of SB algebras given in [LM04, §2,

para 5]

String modules

2.2.24. String graphs. A string graph (for A) is a quiver homomorphism w : G Q such that:

(a) the underlying (undirected) graph of G is linear, each connected component being either finite
(
◦ ◦ · · · ◦

)
, unbounded in one direction

(
◦ ◦ ◦ · · ·

)
or unbounded in both

directions
(
· · · ◦ ◦ · · ·

)
;

(b) (i) for any subgraph
(
◦ i ◦x y )

of G featuring a source vertex i and its two outgoing arrows,

we have w(x) 6= w(y);

(ii) for any subgraph
(
◦ i ◦x y )

of G featuring a sink vertex i and its two incoming arrows,

we have w(x) 6= w(y);

(c) for any path
(
◦ ◦ · · · ◦x1 x2 x` )

in G, the A-path p := w(x1x2 · · ·xl) is linearly independent of

any other A-path.

We follow the commonplace convention of depicting a string graph as a labelled graph, each vertex v or

arrow x being labelled by w(v) or w(x).

We do not assume thatG is connected. WhenG is connected, we callw indecomposable. The restriction

of w to any connected component of G gives an indecomposable string graph.

2.2.25. Remarks. (a) Condition 2.2.24(c) is just a formal way of saying that p /∈ I and p is not a component

of a commutativity relation.

(b) The empty graph is a string graph.

2.2.26. String modules. Let w be a string graph for A. The string module Str(w) associated to w is the A

module constructed as follows. Its basis is the vertex set of w. Any basis vector v is fixed by the idempotent

ew(v) and annihilated by all others. For each arrow v v′x of the string graph, the A-arrow w(x) sends v
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to v′. Otherwise, each A-arrow acts as zero on basis vectors. Thanks to condition 2.2.24(c) and Proposition

2.2.18(a), this does indeed give an A-action.

In general, a string module is a module isomorphic to some Strw. However we will only ever work with

these representative examples.

2.2.27. Examples. (a) Any simple module is a string module: the corresponding string graph is a single

vertex. More generally, any linear graph
(
` (`− 1) · · · 1

)x1 x2 x` gives a uniserial module having

a number of vertices equal to the composition length of X . In fact, if the composition series of X is

0 = X0 < X1 < · · · < X`−1 < X` = X , then the composition factor Xk/Xk−1 is Sw(k).

(b) The zero module is the string module associated to the empty graph.

(c) The indecomposable direct summands of Str(w) correspond to the restrictions of w to its connected

components.

2.2.28. Rescaling string graphs. Suppose that in addition to a string graphw we are given a nonzero scalar

λx for each arrow v v′x of w. We can then define an A-module as in the above construction of string

graphs, except now we stipulate that the A-arrow w(x) sends v to λxv′ instead of v′.

This gives a construction of a string module that seems more general than the one given above, but is not.

The modules given by either construction are isomorphic; the isomorphism may be realised by rescaling the

basis vectors independently.

Going forward, we will take such rescaling for granted when recognising string modules.

2.2.29. String modules can be defined over any finite-dimensional algebra but they have proved especially

attractive over SB algebras. The following propositions collect some highlights.

2.2.30. Proposition. Let X := Str(w) be a string module over a SB algebra.

(See [ASS06, §IV.2] for the definitions and discussion of tranpose Tr and the Auslander-Reiten translate

τ and inverse translate τ -1. Refer forward to Definition 2.2.48 for syzygies Ω = Ω1. See [Gél20, §1.1] for

discussion of suspension Σ.)

(a) [WW85, Lem 3.1(1)] The vector-space dual DX := Homk(X,k) ofX is a string module (forAop).

(b) [WW85, Lem 3.2(2)] The transpose TrX of X is a string module (for Aop).

(c) [LM04, Prop 2.2] The syzygy Ω1X of X is a string module.

(d) The Auslander-Reiten translate τ X := (D ◦Tr)(X) and inverse translate τ -1X := (Tr ◦D)(X) of

X are string modules.

(e) The suspension ΣX := (Tr ◦Ω ◦Tr)(X) of X is a string module.
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Proof. For parts (a), (b) and (c), we direct the reader to the references given with each statement. The

remaining parts follow by composition. �

2.2.31. Proposition. Any indecomposable projective or injective A-module that is not a pin module is a

string module.

Proof. For projective modules, this is mentioned explicitly in the final sentence of the "String modules"

subsection of [HZ16, §1] and implicitly in the fifth paragraph (beginning "Furthermore") of [LM04, §2].

The statement about injective A-modules can be obtained by applying D to the injective Aop-modules

since: D sends strings to strings (by the previous proposition); exchanges injective and projective modules

(by Passage 2.2.15) and; respects (non)uniseriality (this follows from [ASS06, Thm 5.13(a)(c)]) �

2.2.32. SBStrips. These constructions on string modules in Proposition 2.2.30 are implemented in the

SBStrips package. We refer the reader to the SBStrips documentation provided in Appendix B.

2.2.4 The derived category

In the following, A denotes an arbitrary finite-dimensional algebra over k.

The purpose of this subsection is twofold. First we must define the derived category D(A) of A. This

category, initially considered in the 1960s by the circle around Grothendieck and formalised in the PhD

thesis of his student Verdier [Ver67, Ver77, Ver96] (see also [Har66] for a contemporaneous account), is a

natural setting in which to investigate the homological properties of A. It encompasses Mod-A (and so

also mod-A) but, unlike them, has the structure of a triangulated category rather than an abelian category.

We will race through the subtle minutiae of its construction and defer often to the literature for details.

Many homological questions about A can be framed in terms of D(A) and its (triangulated) subcate-

gories. Achieving this is our second goal.

Defining the derived category

Our prevailing reference is [Wei94, Chapters 1, 10].

2.2.33. Complexes and Ch(A). The complex category of A is the category with the following data. We

denote it Ch(A), an abbreviation for the more correct Ch(Mod-A)

Its objects are diagramsX• := (· · · X−1 X0 X1 X2 · · ·d−1
X d0X d1X ) inMod-A

where the boundary morphisms dkX (k ∈ Z) satisfy dkXd
k+1
X = 0. This implies im(dkX) 6 ker(dk+1

X ).
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A morphism f• : X• Y • is a family (fk)k∈Z of module homomorphisms commuting the diagram

· · · X−1 X0 X1 X2 · · ·

· · · Y −1 Y 0 Y 1 Y 2 · · · .

d−1
X

f−1

d0X

f0

d1X

f1 f2

d−1
Y d0Y d1Y

Morphisms compose termwise using the composition law of Mod-A; that is, f•g• = (fkgk)k∈Z.

Other obvious termwise constructions carry the addition of morphisms over to Ch(A) from Mod-A,

as well as kernels, cokernels, products and coproducts, making Ch(A) an abelian category.

The support of a complex X• is suppX• := {k ∈ Z : Xk 6= 0}. We say that X• is bounded above,

bounded below or bounded if suppX• ⊆ Z is too, in the sense of ordered sets.

Any module can be viewed as a bounded complex supported in a single term, usually the 0th, and so

Mod-A embeds into Ch(A), as does its full subcategory mod-A.

2.2.34. Shift functors. For r ∈ Z, the shift functor [r] : Ch(A) Ch(A) is defined on objects by

X• :=
(
· · · X0 X1 · · ·d0 )

X•[r] :=
(
· · · Xr Xr+1 · · ·(−1)rdr )

.

We may think of it as moving all terms r step leftwards (or more accurately one step “against the flow of ar-

rows”) and introducing signs (−1)r to all boundary maps. It is defined on morphisms as (fk)k (fk+r)k.

It clearly respects composition and identities and, evidently, [r][s] = [r + s] for all r, s ∈ Z.

2.2.35. Homotopy and the homotopy category K(A). A morphism f• : X• Y • of complexes is

nullhomotopic if there exists a family (sk : Xk Y k−1)k∈Z of module homomorphisms with the property

that dk+1
X sk+2 + sk+1dkY = fk+1 for all k ∈ Z. This family (sk)k is called a contraction.

The nullhomotopic morphisms form an ideal ofCh(A). The resulting quotient category is the homotopy

category K(A) of Mod-A. (As before we useK(A) as a convenient shorthand for K(Mod-A).)

For clarity, we underline thatK(A) has the sameobjects asCh(A) and thatmorphisms f•, g• : X• Y •

of complexes represent the same K(A)-morphism if their difference f• − g• is nullhomotopic.

The homotopy category K(A) is additive but not (typically) abelian.

The shift functors on Ch(A) induce shift functors on K(A).

2.2.36. Homology. Fix a complexX•. For any k ∈ Z, ker dkX/ im dk+1
X is a well-defined object ofMod-A

thanks to the condition dk−1
X dkX = 0. We call it the kth homologyHk(X•)module ofX•. A routine diagram

chase shows that any term fk : Xk Y k satisfies fk(ker dkX) ⊆ ker dkY and fk(im dk−1
X ) ⊆ im dk−1

Y . We

find that fk induces a well-defined map Hk(X•) Hk(Y •) which respects identities and composition.

Consequently we obtain the kth homology functor Hk : Ch(A) Mod-A for each k ∈ Z. It is
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straightforward to verify that this factors through the canonical quotient functor Ch(A) K(A), and

therefore we are justified in treating homology as a functor family Hk : K(A) Mod-A (k ∈ Z).

Homology is compatible with shifting in an obvious way: Hk(X•[r]) ∼= Hk+r(X•).

2.2.37. Quasiisomorphisms. We call aCh(A)- orK(A)-morphism f• a quasiisomorphism if allHk(f•)

are isomorphisms inMod-A.

The property of two complexes X•, Y • being connected by a quasiisomorphism (in either direction

X• Y • or Y • X•) generates an equivalence relation; we call two complexes quasiisomorphic if they

belong to the same class under this equivalence relation.

Standard functor properties prove that any isomorphism, and in particular any identity morphism, is a

quasiisomorphism.

2.2.38. Resolutions give quasiisomorphisms. We know that any A-moduleM admits a projective resolu-

tion and an injective resolution. These are respectively exact sequences

· · · P−2 P−1 P 0 M 0π and 0 M E0 E1 E2 · · ·ι (2.2)

with each P k projective and each Ek injective. Removing M from these sequences gives complexes P •

and E• over Mod-A, as shown belown. The module homomorphisms π and ι induce morphisms π• and

ι• in Ch(A), and subsequently K(A).

P • (· · · P−2 P−1 P 0 0 0 · · · )

M• (· · · 0 0 M 0 0 · · · )

E• (· · · 0 0 E0 E1 E2 · · · )

π• π

ι• ι

It follows from the exactness of the sequences in (2.2) that all three complexes have zero homology outside

of the 0th term where H0(P •) = H0(E•) = M . We deduce that π• and ι• are quasiisomorphisms.

2.2.39. Mapping cones. The mapping cone cone•(f•) of a Ch(A)-morphism f• : X• Y • is the

complex

· · · Xk ⊕ Y k−1 Xk+1 ⊕ Y k Xk+2 ⊕ Y k+1 · · ·dk−1 dk

with kth term Xk+1 ⊕ Y k and kth boundary map dk :=
[
−dk+1

X −fk+1

0 dkY

]
.

One verifies that
(
0 Y • cone•(f•) X•[1] 0u• v• )

is a short exact sequence, for maps

given termwise by uk := [0 1] : Y k Xk+1 ⊕ Y k and vk :=
[−1

0

]
: Xk+1 ⊕ Y k Xk+1. In the
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associated long exact sequence

· · · Hk(Y •) Hk(cone•(f•)) Hk(X•[1]) Hk+1(Y •) · · ·∂

of homology modules, the connecting homomorphism
(
Hk+1(X•) =

)
Hk(X•[1]) Hk+1(Y •)∂ is just

the map induced by f•. The mapping construction thus ensures that an arbitrary morphism of complexes

can be placed into a long exact sequence, and implies that f• is a quasiisomorphism iff cone•(f•) is exact.

If 0 X• Y • Z• 0
f• g• is a short exact sequence inCh(A), then there is a quasiisomor-

phism ϕ• : cone•(f•) Z• given termwise by ϕk :=
[

0
−gk

]
: Xk+1 ⊕ Y k Zk. (This is not typically

an isomorphism.)

2.2.40. Inverses of quasiisomorphisms and D(A). The derived category D(A) is the category obtained

from K(A) by adjoining inverses to quasiisomorphisms.

The introduction of formal inverses should remind the reader of the localisation S−1R of a ring R at a

multiplicative subset S ⊆ R. This is the correct intuition. What is happening is a localisation of K(A) at

the class of quasiisomorphisms, much like with rings at a multiplicative subset.

There exists a concrete description of D(A)-morphisms X• Y • as so-called fractions of K(A)-

morphisms X• Z• Y •
q• f• , with numerator f• and denominator q• (connecting via some inter-

mediate complex Z•). The denominator is a quasiisomorphism, a fact we signify using a squiggly arrow.

The composition law is given by some contrived “calculus of fractions”.

This is, once again, analogous to how elements of S−1R are constructed and multiplied. However such

constructions are not to be performed and employed carelessly. Morphisms inD(A) involve somemediating

object (Z• in the above notation) of which there is potentially a proper class. It is no longer clear a priori

that each morphism class HomD(A)(X
•, Y •) is actually a set, and so unclear whether D(A) is a category

as we understand the term.

Other notions of derived categories fall prey to such problems. The derived categoryD(A) of an algebra

does not [Wei94, §10.3]. Consequently we may proceed safe in the assumption that D(A) is a category in

our universe, knowing that what forays we make into investigating it are well-founded.

Indeed our interactions withD(A) will be so unsophisticated that we do not even need to articulate any

fine points about the calculus of fractions. We instead focus only on what pertains directly to our exposition.

2.2.41. Some key facts about D(A). What matters in this thesis is that D(A) has the same objects as

K(A) andCh(A) – namely complexes of A-modules – and that two complexes which are quasiisomorphic

in K(A) are isomorphic in D(A). In particular, any module is isomorphic in D(A) to its projective or

injective resolutions, viewed as complexes as above.

28



Additionally, the shift functors [r] on Ch(A) and K(A) induce shift functors [r] onD(A) (r ∈ Z).

Triangulated categories and subcategories

2.2.42. Sketch of triangulation. Although K(A) and D(A) are additive, neither is typically abelian and

in neither of them it is generally sensible to talk about short exact sequences. Instead one endowsK(A) and

D(A) with a related structure – called exact triangles – that makes them into triangulated categories.

For a given category likeK(A) orD(A), an exact triangle is any triangle isomorphic to a strict triangle.

Here: by triangle we mean a triple (f•, g•, h•) of morphisms X• Y • Z• X•[1]
f• g• h• ; by a

strict trianglewemean a triangle belonging to some distinguished class, and; by an isomorphism of triangles

(r•, s•, t•) (f•, g•, h•) we mean isomorphisms forming the vertical arrows in the following commuting

diagram. (The righthand isomorphism is the [1]-shift of the lefthand isomorphism.)

R• S• T • R•[1]

X• Y • Z• X•[1]

r•

∼=

s•

∼=

t•

∼= ∼=
f• g• h•

The strict triangles ofK(A) are the trianglesX• Y • cone•(f•) X•[1]
f• u• v• arising from

mapping cones (see passage 2.2.39). We cannot describe the strict triangles of D(A) without expounding

further on the calculus of fractions. For this reason, we wave our hands and claim that the strict triangles of

D(A) are triangles whose numerators essentially form a strict triangle in K(A).

These triangles must satisfy certain axioms, the enunciation of which is surplus to the needs of this

thesis. Details can be found in [Wei94, §10.2] and [Nee01, Chapter 1].

2.2.43. Exact triangles from Ch(A). Any short exact sequence 0 X• Y • Z• 0
f• g• in

Ch(A) yields an exact triangle in D(A).

Specifically, it yields one isomorphic to the strict triangle X• Y • cone•(f•) X•[1], whose

morphisms (inD(A)) are the “fractions”

X• X• Y •1• f• , Y • Y • cone•(f•)1• u• , cone•(f•) Z X•[1]
ϕ• g• .

ofK(A)-morphisms, in the notation of passage 2.2.39.

2.2.44. Triangulated subcategories. We will only examine triangulated subcategories ofD(A), therefore

we will only define them in this generality.

A full subcategory T ⊆ D(A) is a triangulated subcategory if the inclusion functor T D(A) is

additive, commutes with the shift functors [r] and sends exact triangles inT to exact triangles inD(A), and
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additionally if every exact triangle of D(A) is exact in T.

2.2.45. Localising and colocalising subcategories. A triangulated subcategory is localising if it is closed

under arbitrary (set-indexed) coproducts. A triangulated subcategory is colocalising if it is closed under

arbitrary (set-indexed) products.

We denote by Loc(X ) or Coloc(X ) the smallest localising or colocalising subcategory containing some

class X of D(A)-objects.

2.2.46. Key properties of localising or colocalising subcategories. There are several, well-established

properties of localising subcategories. Some of these properties were collected into a very convenient list

in an article of Rickard. We reproduce that convenient list below, with a small specialisation: the claims

that Rickard makes about the derived category of an arbitrary ring, we make only for a finite-dimensional

algebra over a field.

In Proposition 5.1.7 we prove a corresponding list of properties of colocalising subcategories. Some

aspects of Rickard’s standard arguments carry over directly, but some stages require more work, in a manner

which does require the specialisation to finite-dimensional algebras.

2.2.47. Proposition. [Ric19, Prop 2.1] Let L be a localising subcategory of D(A).

(a) (i) If 0 X• Y • Z• 0 is a short exact sequence of complexes and two of the three

objects X•, Y •, Z• are in L, then so is the third.

(ii) If a complex X• is in L, then so is X•[r] for every r ∈ Z.

(iii) If X• and Y • are quasiisomorphic complexes and X• is in L, then so is Y •.

(iv) If {X•i : i ∈ I} is a set of objects of L, then⊕i∈I Xi is in L.

(b) If X• ⊕ Y • is in L, then so are X• and Y •.

(c) If X• is a bounded complex, where the module Xk is in L for every k ∈ Z, then X• is in L.

(d) If
(
X•0 X•1 X•2 X•3 · · ·f•0 f•1 f•2 )

is a sequence ofCh(A)-morphisms between com-

plexes, with X•m in L for allm > 0, then lim−→X•m is in L.

(e) If X• is a bounded above complex where the module Xk is in L for every k ∈ Z, then X• is in L.

2.2.5 Homological questions

We introduce homological questions of interest. Two questions concern finite projective dimensions of

modules; another concerns triangulated subcategories of D(A).
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2.2.48. Projective covers and syzygies. For any finite-dimensional module X there is up to isomorphism

a unique smallest (in vector-space dimension) projective module PX that maps onto it, say by the map

π : PX X . We call this module the projective cover PX of X .

The kernel of this map is the (first) syzygy Ω1X ofX; it is uniquely determined up to isomorphism. We

inductively define the kth syzygy as Ωk+1M = Ω1(ΩkM) for k > 0 and, by convention, we set Ω0M to

be X/P , for P the largest projective direct summand of X .

2.2.49. Finitistic dimension conjectures. For an A-module X , we define the projective dimension of X

as proj dimX := min{r > 0: ΩrX is projective}, or +∞ if no such r exists. We can then respectively

define the big and little finitistic dimensions of A as

Fin dimA := sup{proj dimX > 0: X ∈Mod-A},

fin dimA := sup{proj dimX > 0: X ∈mod-A}.

An algebra A satisfies the big or little finitistic dimension conjectures when

Fin dimA < +∞ or fin dimA < +∞,

respectively. (We clearly have fin dimA 6 Fin dimA always, and so the big implies the little.) These

conjectures originated in a paper by Bass [Bas60], who attributed them to Rosenberg and Zalinsky.

2.2.50. Status of the finitistic dimension conjectures. The “social” status of the finitistic dimension

conjectures is great, since they sit at the top of a network of interconnected homological properties. We

direct the interested reader to [GPS18, §1], where this network is drawn in part and further references

provided.

In terms of academic status, the finitistic dimension conjectures are open in general but known to hold

in select cases, the majority of work focussing on the little conjecture. What follows is a (not necessarily

exhaustive) list; we direct the reader to the cited references for pertinent definitions.

The little finitistic dimension conjecture holds for algebras A that:

(a) are local, since modules over local algebras have projective dimension either 0 or∞ (stated in [Ric19,

§8] but see also [AR91, proof of Prop 2.1(b)]) and thus fin dimA = 0 < ∞, and also since every

idempotent ideal 〈e〉 of a local algebra A is isomorphic to A itself and hence is projective, implying

fin dimA 6 1 by [Mer98, Prop 1];

(b) have radical-cubed zero [GZH91, ZH93, IT05];

(c) have representation dimension at most 3 [IT05], this class including that of SB algebras [EHIS04]);
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(d) are syzygy-finite, since this means there exists a k > 0 and a finite number of indecomposable modules

Y1, . . . , Ym with {ΩrX ∈ mod-A : r > k,X ∈ mod-A} ⊆ add(Y1 ⊕ · · · ⊕ Ym), in which case

fin dimA 6 k + max{proj dimY > 0: Y ∈ {Y1, . . . , Ym} has proj dimY <∞};

(e) are representation-finite, since these are syzygy-finite as above with k = 0;

(f) are monomial [ZH91, ZH92];

(g) are symmetric, self-injective or Gorenstein (see next sentence).

Indeed, algebras in classes (d), (e), (f) or (g) satisfy the big finitistic dimension conjecture as well, as a

consequence of [Ric19, Thms 8.1 and 4.3].

2.2.51. Differences of finitistic dimensions. In the aforementioned paper, Bass also wondered whether

any finite-dimensional algebra satisfies the strict inequality fin dimA < Fin dimA. The earliest answer

came in the affirmative three decades later, when Zimmermann-Huisgen [ZH92] found monomial algebras

Ar (r > 2) with

(fin dimAr,Fin dimAr) = (r, r + 1),

having proven in an earlier paper [ZH91] that the discrepancy of 1 was the maximal achievable among

monomial algebras. Later, Smalø [Sma98] found a family of algebras Λr (r > 1) with

(fin dim Λr,Fin dim Λr) = (1, r),

his examples being radical-cubed zero algebras with wild representation type. Huisgen-Zimmermann

[HZ16] then found SB algebras Γr (r > 1) with

(fin dim Γr,Fin dim Γr) = (r + 1, 2r + 1),

demonstrating that the difference between big and little finitistic dimensions can be arbitrarily large even

among tame algebras.

2.2.52. Generation properties of the derived category. Rickard [Ric19] publicised homological proper-

ties, one of which he credits to Keller. We adopt his (Rickard’s) notation in our work.

We respectively say that injectives generate for A or projectives cogenerate for A when

Loc(Inj-A) = D(A) or Coloc(Proj-A) = D(A)

(Here, as usual, we identify Inj-A and Proj-A with subcategories of D(A) in the standard way.)

2.2.53. Status of injective generation and projective cogeneration. Rickard showed that if injectives
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generate for A, or if projectives cogenerate for Aop, then A satisfies the big finitistic dimension conjecture

(and consequently the small one); indeed, he gives a characterisation of the big finitistic dimension conjecture

using the derived category [Ric19, Thm 4.4]. From this it follows that injective generation and projective

generation are stronger than the finitistic dimension conjectures.

It is shown in the aforementioned paper that injectives generate for syzygy-finite and Gorenstein algebras.

The former class encompasses algebras that are representation-finite, radical-squared zero or monomial; the

latter, algebras that are self-injective or symmetric (such as group algebras kG) or that have finite global

dimension.

Several questions regarding these homological notions of (co)generation remain open.

The first avenue of inquiry is to prove directly that injectives generate and/or projectives cogenerate for

other algebras. The most obvious obvious candidates for study are those for which the finitistic dimension

conjectures hold. This thesis was born of a desire to address SB algebras. Our partial results in this direction

appear in 5.

A second approach is to explore how various ring constructions impact these generation properties. This

is the path taken by Cummings [Cum20], who has fruitfully explored various relations between rings and

their module or derived categories.

It also remains open whether the converses to Rickard’s implications hold under any general cir-

cumstance, and whether there is a connection between injective generation of an algebra and projective

cogeneration (of its opposite, if need be).

2.3 Computational tools for algebra

GAP [GAP19] is a computer algebra system for computational discrete algebra. Initially developed in

1986 at Lehrstuhl D für Mathematik in RWTH Aachen, it is now jointly coordinated at centres in Aachen,

Braunschweig and Kaiserslautern in Germany, Fort Collins in the US and St Andrews in the UK. It offers

a library of functions that implement algebraic algorithms written in a programming language also called

GAP, in addition to data libraries of algebraic objects.

User-supplied programmes called packages extend its core functionality. One of these is QPA [QPA18],

a package that implements quivers and path algebras and quotients thereof. This in turn uses Gröbner basis

machinery provided by the GBNP package.

The SBStrips package adds further functionality to GAP, building on QPA. Worked examples in this

thesis featuring the SBStrips package are presented as follows, in a fashion emulating the on-screen output

at a terminal.
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gap> LoadPackage( "sbstrips" );

----------------------------------------------------------------------

Loading SBStrips v0.6.5 (for syzygies of string modules over special biserial algebras)

by Joe Allen (https://research-information.bris.ac.uk/en/persons/joe-allen).

Homepage: https://jw-allen.github.io/sbstrips/

Report issues at https://github.com/jw-allen/sbstrips/issues

----------------------------------------------------------------------

true
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Chapter 3

Permissible data and syllables of a SB

algebra

The first step to effectively calculate and investigate syzygies of string modules is represent them in a

convenient way. Ultimately, we will represent string graphs as words, and indecomposable projective

modules as grids, made up of symbols from an alphabet; the symbols will be called syllables, the grids

patches and the words strips. These three collections all depend on a discrete model of the SB algebra itself,

which is to say certain collections of paths in a certain 1-regular graph obtained from the algebra. In this

chapter, we present that model.

Our model forms the foundation of the SBStrips package for syzygies of strings. For this reason, once

we have constructed our model of SB algebra, we associate to it a finite set of symbols called syllables,

together with a complementation operation on them called descent. (This choice of name will be clarified

when we treat arrays later.)

3.1 Permissible data

3.1.1 Definition of permissible data

The SBStrips package treats SB algebras using combinatorial data. In this subsection we outline that

combinatorial data.

Throughout, A = kQ/〈ρ〉 is a SB algebra with ground quiver Q and minimal relation set ρ comprising

paths and commutativity relations. By definition, Q is a sub-2-regular quiver.

3.1.1. The following handful of passages are technical in nature. A concrete example follows in Passage
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3.1.5, which we advise the reader to consult to help make sense of the coming definitions.

3.1.2. Overquiver O and vertex exchange map †. Choose some 2-regular augmentation Q̃ of Q from the

finitely many options (recall passage 2.1.34) and identify Q with its image in Q̃.

The A-residue of a Q-arrow has already been defined (in Passage 2.2.6). Those Q̃-arrows not arising

from Q-arrows, we define as having A-residue 0 ∈ A.

Strictly speaking, we define an overquiver to be a quiver homomorphism O Q̃ such that

(a) O is 1-regular and has 2|Q0| vertices (although it need not be connected),

(b) the induced map O1 Q̃1 on arrows is a bĳection,

(c) the induced map O0 Q̃0 on vertices is 2-to-1 (ie, the preimage set of any i ∈ Q0 has cardinality

exactly 2),

(d) all Q̃-paths with nonzero residue inA are images ofO-paths in (the functor on path categories induced

by) this homomorphism.

Of course, the homomorphismO Q̃ is unambiguous once the correspondence between arrows ofO and

those of Q̃ is given. Context and our notation will supply this correspondence; hence we will suppress

explicit mention of the homomorphism per se and abuse notation to just call its domain O an overquiver.

Evidently if O is an overquiver of A then Oop is an overquiver of Aop in a natural way.

The vertex exchange map † of an overquiverO is the fixpointfree involution † : O0 O0 that exchanges

O-vertices with common image in Q.

3.1.3. A-residues of O-paths. Recall that Q̃0 = Q0, and so the A-residue of any Q̃-vertex (or, rather, of

the associated stationary) is already known. Recall also that the A-residue of an Q̃-arrow α was defined

in the previous passage either α + 〈ρ〉 for α ∈ Q1 or 0 + 〈ρ〉 for α ∈ Q̃1 − Q1. We can extend this by

composition to define the A-residue of a nonstationary Q̃-path α1α2 · · ·αr to be the product (in order) of

the A-residues of the αk. Thus, any Q̃-path has a meaningful A-residue.

The overquiver homomorphism O Q̃ gives rise to a functor between the path categories of O and

of Q̃, as discussed in Passage 2.1.28. We define the A-residue of any O-path to be the Q̃-path this functor

maps it to.

3.1.4. Existence of overquivers. Any SB algebra has at least one overquiver; the argument for existence

essentially comprises the discussions of tracks in [WW85, §1] and how tracks be combined or augmented

in [WW85, proof of Thm 1.4]. We sketch it below.

Initially, let π : Q̃1 Q̃1 be the partial function sending any α ∈ Q̃1 to the arrow β ∈ Q̃1 such that the

A-residue of αβ is nonzero if it exists (or, rather, such that the product in this order of the A-residues of α
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and β is nonzero). Clearly if α ∈ suppπ then t(α) = s(απ) and, as a consequence of Definition 2.2.16(b)),

this partial function is a partial injection. Since Q̃0 is 2-regular, we have that |Xi| = |Yi| for any i ∈ Q̃0,

where
Xi :=

{
α ∈ Q̃1 : t(α) = i and α /∈ suppπ

}
,

Yi :=
{
α ∈ Q̃1 : s(α) = i and ∀β ∈ Q̃1 (βπ 6= α)

}
.

Accordingly, for each i arbitrarily choose any bĳection πi : Xi Yi, and use these bĳections to extend π

to a bĳection π′ : Q̃1 Q̃1 as follows:

απ′ :=





απ if α ∈ suppπ,

απt(α) if α /∈ suppπ.

This permutation π′ of Q̃1 has cycles; for each cycle σ let Γσ be the subquiver of Q̃1 whose arrows are the

arrows in σ and whose vertices are sources and targets of those arrows. The disjoint union of the inclusion

maps Γσ Q̃ yields a function
⊔
σ Γσ Q̃ from the disjoint union

⊔
σ Γσ of these subquivers to Q̃, a

function which satisfies the defining properties of an overquiver by construction.

Our constructed overquiver
⊔
σ Γs depended on the choices of the bĳections πi : Xi Yi but, of

course, there is only one possibility for πi whenever |Xi| = |Yi| ∈ {0, 1}. It follows that we are faced with

a nontrivial choice for πi (and, even then, just a binary choice) only when |Xi| = |Yi| = 2, which occurs

iff there are no Q̃-paths of length 2 that simultaneously have nonzero A-residue and as well as ei as a strict

subpath.

3.1.5. Running example. The ground quiverQ =
(

1 2α
β

γ
δ
)
of our running example algebra

(see Passage 2.2.19) is itself 2-regular and therefore equals its 2-regular augmentation Q̃. This algebra has

a unique overquiver O, namely
s(β) s(γ)

s(α) s(δ)

β

γ
α

δ

.

This overquiver is a finite graph which, on occasion, it will be convenient to represent by the acyclic cover
(
· · · s(α) s(β) s(γ) s(α) s(β) s(γ) s(α) · · ·α β γ α β γ )

t
(
· · · s(δ) s(δ) s(δ) · · ·δ δ )

. Asmen-

tioned in the previous passage, the naming of O-arrows makes the homomorphism O Q̃( = Q) unam-

biguous.

All A-paths (recall the definition in Passage 2.2.19) are not just represented by Q-paths, but also by

O-paths. In particular, all of the A-paths represented by Q-paths of length 2 (namely αβ, βγ, γα and δ2)

are represented by O-paths.

The vertex exchange map † exchanges s(α) with s(β) and s(γ) with s(δ). We depict this fact using
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dashed lines in the quiver above.

3.1.6.SBStrips. InSBStrips, the overquiver of an SB algebra is stored in the attribute OverquiverOfSBAlg.

gap> alg1 := SBStripsExampleAlgebra( 1 );;

gap> oq1 := OverquiverOfSBAlg( alg1 );

Quiver( ["v1","v2","v3","v4"], [["v3","v1","a_over"],["v1","v2","b_over"\

],["v2","v3","c_over"],["v4","v4","d_over"]] )

In this example, the names we have been using for the O-vertices (eg, s(α)) and those that SBStrips uses

(eg, v1) correspond as follows:

s(α) v3, s(β) v1, s(γ) v2, s(δ) v4.

There is no connection in general between the name that SBStrips assigns to anO-vertex and the name of the

Q-vertex that thatO-vertex represents. This can be seen in this particular example, because s(α), s(β) ∈ O0

represent the vertex 1 ∈ Q0, yet SBStrips calls them v3 and v1.

3.1.7. Nonzero pathsN P Path(O). TheO-pathswith nonzeroA-residue form an order ideal ofPath(O);

that is, if p 6 q in the subpath order and q has nonzero residue, then p has nonzero residue. We denote this

by order ideal by N and we call the paths in it nonzero.

By construction, every stationary path in O is nonzero. An O-arrow lies outside of N (ie, has zero

residue) iff it represents an arrow of Q̃0 −Q0.

3.1.8. ComponentsC ⊆ N . Amongst the nonzero paths, there are some whoseA-residues depend linearly

on the residues of another nonzero path. We call these components and write C ⊆ N for the set of them.

Recall that the components p, q of a commutativity relation p−q ∈ ρ have common source and common

target but distinct first arrows and distinct last arrows. When we lift theQ-paths p, q toO-paths p, q, first and

last arrows are distinct as before. The sources and targets of the lifted paths are now distinct, but exchanged

by †.

There is an obvious involution on components which exchanges p ∈ C with the unique other component

q ∈ C such that the A-residues of p and q are linearly dependent. We can denote this component exchange

map by † also, since it is compatible with the source and target maps of O and the vertex exchange map

† : O0 O0 via the following commutative diagram.

O0 C O0

O0 C O0

†

s t

† †

s t

We finally mention that any component is a maximal element of N and that the components form an
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s(α) s(β) s(γ) s(α)

α β γ

γα αβ βγ γα

γαβ αβγ βγα

βγαβ γαβγ αβγα βγαβ

βγαβγ γαβγα αβγαβ

s(δ) s(δ)

δ

δ2 δ2

δ3

δ4 δ4

δ5

Figure 3.1. Nonzero and component paths within Path(O). The subpath poset of O forms two cylinders, one
for each connected component. The nonzero paths are printed in black, the others in grey. Amongst the nonzero
paths are the components, highlighted.

antichain. These facts follow from the axioms of a special biserial algebra.

3.1.9. Running example. Figure 3.1 illustrates the sets N and C of nonzero paths and components. We

have

C = {αβγ, βγα} ⊂ {es(α), es(β), es(γ), es(δ), α, β, γ, δ, αβ, βγ, γα, δ
2, αβγ, βγα, δ3} = N .

3.1.10. SBStrips. The nonzero paths and components of an SB algebra can be accessed in SBStrips by the

attributes NonzeroPathsOfSBAlg and ComponentsOfSBAlg.

gap> NonzeroPathsOfSBAlg( alg1 );

[ v1, v2, v3, v4, a_over, b_over, c_over, d_over, a_over*b_over,

b_over*c_over, c_over*a_over, d_over^2, a_over*b_over*c_over,

b_over*c_over*a_over, d_over^3 ]

gap> ComponentsOfSBAlg( alg1 );

[ a_over*b_over*c_over, b_over*c_over*a_over ]

3.1.11. Permissible data. The permissible data of a SB algebra A is the tuple (O, N,C, †), where O is

an overquiver for A, C ⊆ N P Path(O) are the collections of components and nonzero paths, and † is the

compatible pair of involutions C C and O0 O0, as above.

3.1.12. SBStrips. The SBStrips attribute PermDataOfSBAlg stores the set N − C of paths with linearly

independent residues and the set of components C, obtained from (O, N,C, †).

gap> PermDataOfSBAlg( alg1 );
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[ [ v1, v2, v3, v4, a_over, b_over, c_over, d_over, a_over*b_over,

b_over*c_over, c_over*a_over, d_over^2, d_over^3 ],

[ a_over*b_over*c_over, b_over*c_over*a_over ] ]

3.1.2 Encodings of permissible data

We encode the sets C ⊆ N of permissible data (O, N,C, †) numerically, in terms of an integer sequence

and a {0, 1}-sequence, both of which are indexed by O0. This is convenient for our calculations and

for highlighting connections between SB algebras and Nakayama algebras. We will see shortly how it

generalises the notion of admissible sequences used in the study of the latter. Many of the ideas and

results in this section generalise those presented in [Ful68] for Nakayama algebras; indeed, we have used

the adjective permissible as though it were the next evolution of admissible, which Fuller employed in his

notation.

Assume for the following that the permissible data (O, N,C, †) of a SB algebra are fixed.

3.1.13. Dependent paths. Recall that any path p ∈ C has A-residue depending linearly on another A-path

(namely, that path represented by p†).

Write N{ := Path(O)−N . All O-paths in N{ have zero A-residue (by definition), which in a trivial

way depends linearly on another A-path.

Consequently, the A-residue of any path p ∈ N{ ∪ C depends linearly on the some other A-path. For

this reason, we sometimes refer to paths N{ ∪ C as the set of dependent paths. In contrast, the A-residues

of the remaining O-paths (which are exactly those in N −C) are linearly independent of all other A-paths.

Since N is finite, all sufficiently long O-paths are dependent paths. It follows that for any i ∈ O there

exists a shortest dependent path with source i and a shortest dependent path with target i.

3.1.14. Source encoding. For i ∈ O0, let ai := max
{

len p > 0: s(p) = i and p ∈ N
}
and let

bi :=





0 ∃p ∈ C with s(p) = i,

1 otherwise.

The source encoding of the permissible data is the pair
(
(ai)i, (bi)i

)
. Since (ai)i is Z-valued and (bi)i is

{0, 1}-valued, we respectively call these the integer sequence and bit sequence of the encoding.1

For some i ∈ O0, consider p :=
(
i ◦
ai+bi )

. If bi = 0, then p is the longest nonzero path having source

i, a vertex which is the source of a component. Components are maximal among nonzero paths so, in fact,

p ∈ C. Alternatively, if bi = 1, then p covers the path q :=
(
i ◦

ai )
in the prefix order. Since q is the

1 What we here call (ai)i should be compared to the sequence (ci+1)i of [Ful68] (which is Fuller’s sequence (ci)i with all terms
incremented by 1).
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longest path in N with source i, we deduce that p is the shortest path N{ with source i.

Combining these two observations, we deduce that ai + bi is the length of the shortest dependent path

having source i.

3.1.15. Target encoding. For i ∈ O0, let ci := max
{

len p > 0: t(p) = i and p ∈ N
}
and let

di :=





0 ∃p ∈ C with t(p) = i,

1 otherwise.

This integer sequence and bit sequence comprise the target encoding
(
(ci)i, (di)i

)
of the permissible data.2

We remark that, comparable to the previous passage, ci + di is the length of the shortest dependent path

with target i.

3.1.16. Running example. Recall our running example algebra, with the permissible data as constructed

in Passages 3.1.5 and 3.1.9. It has the following encoding.

i ai bi ci di

s(α) 3 0 3 0

s(β) 3 0 3 0

s(γ) 2 1 2 1

s(δ) 3 1 3 1

3.1.17. SBStrips. These encodings can be accessed using the following commands in SBStrips.

gap> source_enc := SourceEncodingOfPermDataOfSBAlg( alg1 );

[ <vertex-indexed integer sequence>, <vertex-indexed bit sequence> ]

gap> Display( source_enc[1] ); Display( source_enc[2] );

<integer sequence indexed by vertices of <quiver with 4 vertices and

4 arrows>>

v1 := 3,

v2 := 2,

v3 := 3,

v4 := 3

<bit sequence indexed by vertices of <quiver with 4 vertices and

4 arrows>>

v1 := 0,

v2 := 1,

v3 := 0,

v4 := 1

gap> TargetEncodingOfPermDataOfSBAlg( alg1 );

[ <vertex-indexed integer sequence>, <vertex-indexed bit sequence> ]

2 Similarly, what we here call (bi)i should be compared to the incremented version (di + 1)i of the sequence Fuller calls (di)i
[Ful68].
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3.1.18. Retrieving N and C from encodings. These sequences encode N and C since

N =
{(
i ◦

` )
∈ Path(O) : i ∈ O0, ` 6 ai

}

=
{(
◦ i

` )
∈ Path(O) : i ∈ O0, ` 6 ci

}

and
C =

{(
i ◦

ai )
∈ Path(O) : i ∈ O0 satisfies bi = 0

}

=
{(
◦ i

ci )
∈ Path(O) : i ∈ O0 satisfies di = 0

}
.

3.1.19.Compatibilitywith opposites. If the SBalgebraA can be described by permissible data (O, N,C, †),

then Aop can be described by “opposite” permissible data (Oop, Nop, Cop, †op), the components of which

are defined in an obvious way. Then the source and target encodings of the permissible data for A coincide

with the target and source encoding of the permissible data Aop respectively.

3.1.20. Remark. One can of course obtain the source encoding from the target encoding (or vice versa) via

the intermediate step ofN and C. Alternatively, one can move between the two directly using the following

formulas:

ci = max{r > 0: r 6 ai+r}, di =





0 ∃j ∈ O0 (bj = 0 and j − aj = i),

1 otherwise
(3.1)

and, dually,

ai = max{r > 0: r 6 ci−r}, bi =





0 ∃j ∈ O0 (dj = 0 and j + cj = i),

1 otherwise.

The formula for ci is analogous to the formula in [Ful68, Thm 2.2(b)].

Since these pairs of formulas are dual, we will explain only the first pair: those in (3.1). Towards this

goal, fix some i ∈ O0.

For any r > 0 we evidently have
(
◦ i

r )
=
(
i+ r ◦

r )
. By the definition of ai+r, this path

belongs to N iff r 6 ai+r. Because ci is the longest path in N with target i, we are able to deduce that

ci = max{r > 0: r 6 ai+r}, as claimed.

Additionally, di = 0 iff i is the target of some component p ∈ C (necessarily a unique one, since

distinct components are incomparable in the subpath order and thus, in particular, have distinct targets). The

source j of this component satisfies bj = 0 and it must have length aj thus, when this p exists, we have

p =
(
j ◦

aj )
=
(
◦ i

aj )
whence we find j − aj = i. This establishes the formula for di.

3.1.21. Retrieving A from permissible data. Let T be the subquiver ofO having vertex set T0 = O0 and
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arrow set T1 = {α ∈ O1 : α ∈ N}, and for any component p ∈ C we set κp,p† := 1 ∈ k.

We find that, in the notation of [WW85, §1], the connected components of T are tracks that identify A

up to the coefficients κp,p† . We can therefore essentially reconstruct A from its permissible data.

Representing a SB algebra by permissible data does lose the coefficients in each commutativity relation

λp − µq but, when it comes to calculating syzygies of string modules, all that matters is that that λ and

µ are both nonzero.3 Consequently, we are justified in presuming that they are both 1 ∈ k and otherwise

forgetting about coefficients altogether.

3.1.22. Lemma. For any i ∈ O0 we have ai − 1 6 ai−1 and, dually, ci − 1 6 ci+1. (Compare this with

[Ful68, Thm 1.1(b)(c)].)

Proof. If ai = 0 then there is nothing to prove, so assume that ai > 0. We find that
(
i ◦

ai )
∈ N ,

and so its longest strict suffix
(
i− 1 ◦

ai−1 )
∈ N also. The definition of the source encoding implies

ai−1 > ai − 1, as claimed. The statement about ci is proven dually. �

3.1.23. Corollary. For any i ∈ O0 and r > 0 we have ai − r 6 ai−r and, dually, ci − r 6 ci+r.

Proof. The claim is a tautology when r = 0. Otherwise we iterate the proof of the previous lemma. �

3.1.24. Decoupling and reduction of permissible data. We may relate a SB algebra A to another A′ that

has “simpler” permissible data; one of the two algebras will always be a quotient of the other.

We first remind the reader that if p is a component of a commutativity relation then the one-arrow

superpaths αp, pα have zero A-residue for any arrow α ∈ Q1. We demonstrated this earlier, in our proof

of Proposition 2.2.18(c), where there was no assumption that the coefficients of the commutativity relation

λp−µq satisfy λ = 1 = µ. Crucially, this means that in the presence of any commutativity relation λp−µq,

the one-arrow superpaths of components may be considered as redundant relations for the algebra.

To decouple permissible data (O, N,C, †) is to remove from C a †-pair of components; that is

(O, N,C, †) (O, N,C ′, †)

where C ′ := C −{p, p†} for some p ∈ C. The algebra A′ with permissible data (O, N,C ′, †) has the same

presentation as A, except that the commutativity relation r with components p and p† is replaced by the

the shortest strict superpaths of those components, namely αp, pβ, γp†, p†δ for appropriate α, β, γ, δ ∈ Q0

whenever these arrows exist. It follows that r spans a two-sided ideal of A′ and that A′/〈r〉 = A.

3 This point is implicit in Section 2, paragraph 2 of [LM04], the article where Liu and Morin prove that the syzygy of a string
module over a SB algebra A is a string module, because their assumption that all of the skew commutativity relations λp− µq in the
definition of A satisfy λ = µ does not play a important role in their proof.
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i ai bi ci di
s(α) 3 0 3 0
s(β) 3 0 3 0
s(γ) 2 1 2 1
s(δ) 3 1 3 1

(a) Initially

i ai bi ci di
s(α) 3 1 3 1
s(β) 3 1 3 1
s(γ) 2 1 2 1
s(δ) 3 1 3 1

(b) Decouple {αβγ, βγα}

i ai bi ci di
s(α) 3 1 3 1
s(β) 3 1 3 1
s(γ) 2 1 2 1
s(δ) 0 1 0 1

(c) Reduce δ3, δ2, δ

i ai bi ci di
s(α) 3 1 3 1
s(β) 2 1 2 1
s(γ) 2 1 2 1
s(δ) 0 1 0 1

(d) Reduce βγα

i ai bi ci di
s(α) 2 1 1 1
s(β) 2 1 2 1
s(γ) 1 1 2 1
s(δ) 0 1 0 1

(e) Reduce αβγ, γα

i ai bi ci di
s(α) 0 1 0 1
s(β) 0 1 0 1
s(γ) 0 1 0 1
s(δ) 0 1 0 1

(f) Remaining reductions

Figure 3.2. Effect of decoupling and reduction on encodings. We show snapshots of the permissible data of our
running example algebra as it undergoes the sequence of decoupling and reduction explained in Example 3.1.25.
The subfigures are to be read in order, with the mentioned decouplings or reductions being cumulative.

To reduce permissible data (O, N,C, †) is to remove fromN −C a maximal nonstationary element; ie,

(O, N,C, †) (O, N ′, C, †)

where N ′ := N − {p} for some p ∈ N − C, maximal among paths in N , satisfying len p > 0. Writing A′

for the SB algebra with permissible data (O, N ′, C, †), we find that A′ = A/〈p〉.

Decoupling and reduction diminish the finite sets C and N respectively. This is perhaps best seen

through an example.

3.1.25. Running example. We continue our running example, the permissible data of which appeared in

Passage 3.1.9. Recall from there that

C = {αβγ, βγα} ⊂ {es(α), es(β), es(γ), es(δ), α, β, γ, αβ, βγ, γα, αβγ, βγα, δ, δ
2, δ3} = N . (3.2)

By first decoupling {αβγ, βγα} and then sequentially reducing δ3, δ2, δ, βγα, αβγ, γα, βγ, αβ, γ, β and

α, we diminish C to the empty set ∅ and we diminish N to the set {es(α), es(β), es(γ), es(δ)} comprising

exactly the stationary paths. The decoupling turns C into ∅ in a single step; each reduction removes from

one element from N , starting from the furthest right (as written above in (3.2)) and working leftwards.

3.1.26. The effect that decoupling and reduction have on the encodings of permissible data is captured by

the following lemma. The reader may also find it useful to see the effects in practice, as in Figure 3.2.

3.1.27. Lemma. Suppose (O, N,C, †) are the permissible data of an algebra A, and their source and
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target encodings are respectively
(
(ai)i, (bi)i

)
and

(
(ci)i, (di)i

)
.

(a) If p ∈ C then bs(p) = dt(p) = bs(p†) = dt(p†) = 0. Decoupling by {p, p†} increments all of these

values by 1 and leaves all other bi, di unchanged.

(b) If p ∈ N is maximal, then we have as(p) = ct(p) = len p. If furthermore p /∈ C then reducing by p

leaves all ai, bi, ci, di unchanged except for as(p), ct(p), which are decremented by 1.

(c) It follows that decoupling by {p, p†} increments

as(p) + bs(p) = ct(p) + dt(p) and as(p†) + bs(p†) = ct(p†) + dt(p†)

by 1 but leaves all other ai + bi, ci + di unchanged, while reducing by p decrements

as(p) + bs(p) = ct(p) + dt(p)

by 1, but leaves all other ai + bi, ci + di are unchanged.

Proof. Parts (a) and (b) follow directly from the definitions of the encodings of (O, N,C, †). Part (c) is

a consequence. �

3.1.28. The preceding lemma performs all the heavy lifting for the following proposition, which shows a

connecting between the source encoding of the permissible data and the target encoding. We consider the

result below (and part (a) of it especially) to be the analogue for SB algebras of the Fuller’s [Ful68, Thm

2.2(a)] for Nakayama algebras. Our proof proceeds along similar very similar lines to his.

3.1.29. Proposition. Let (O, N,C, †) be data and
(
(ai)i, (bi)i

)
,
(
(ci)i, (di)i

)
its encodings as above.

(a) There exists a permutation π : O0 O0 such that aiπ = ci.

(b) There exists a permutation π : O0 O0 such that biπ = di.

(c) There exists a permutation π : O0 O0 such that aiπ + biπ = ci + di.

Proof.We proceed by on induction onm := |N |+ |C|.

The base case is whenN = {ei : i ∈ O0} and C = ∅. Here, ai = ci = 0 and bi = di = 1 for all i ∈ O0

and the identity permutation suffices.

Otherwise assume m > |O0|, in which case it is possible to decouple or reduce the permissible data.

From the previous lemma we know that either step has the same impact on at most two values of (ai)i and

(bi)i, two values of (ci)i and (di)i or two values of (ai + bi)i and (ci + di)i, that impact being to change

a common value by 1 in each case. We find that the multiset of values taken by these sequences coincide
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pairwise for our permissible data iff they do for the decoupled or reduced data. The claim then follows from

the inductive hypothesis. �

3.2 Syllables

In this section we introduce and explore symbols that we call syllables. We consider these syllables to be a

refinement of the identically-named symbols that other articles in the literature, among them [HZS05, §2]

and [HZ16, §1], have used in related topics. To best motivate some of our additional terminology, such as

orientation, we urge the reader to watch these symbols in action in Subsection 4.2.0.

We have some permissible data (O, N,C, †) of A fixed throughout.

3.2.1 Definition of syllables

In this section, we define the symbols with which we will formally describe string modules for SB algebras.

We assume that the permissible data (O, N,C, †) of the SB algebraA is fixed, and we write
(
(ai)i, (bi)i

)

and
(
(ci)i, (di)i

)
for its source and target encodings respectively. For reference, we note that the permissible

data of the running example algebra were found in Passages 3.1.5 and 3.1.9 and that the encodings appear

in 3.1.16.

3.2.1. Syllables. Formally speaking, a syllable is a tuple (p, ε, s) that comprises a nonzero noncomponent

path p ∈ N −C (which we call the underlying path), a bit ε ∈ {0, 1} (which we call the stability term) and

a sign s ∈ {+1,−1} (which we call the orientation). The tuple must satisfy the property 0 < len p+ ε.

Wewrite Syll(A) for the syllable set ofA (with respect to the prescribed permissible data). The definition

of the previous paragraph can be condensed into the following single, very terse, formula, that we use in the

next subsection (and which appears in the source code of the SBStrips package).

Syll(A) = {(p, ε, s) ∈ N × {0, 1} × {+1,−1} : 0 < len p+ ε < as(p) + bs(p) + ε}.

We will denote the syllable (p, ε, s) as
(
◦ ◦ ◦

p ε )s. We omit the orientation s when it is clear

from context or is unimportant (which is almost all of the time). From time to time we will specify the

underlying path p by its length ` and either its source or target vertex i, in which case we will use the notation
(
i ◦ ◦

` ε )s or
(
◦ i ◦

` ε )s. We can write these inline as (i, `, ε, s) or (`, i, ε, s).

A syllable
(
◦ ◦ ◦

p ε )s inherits some adjectives from its constituent parts. It is stationary or

nonstationary iff p is and it is positive or negative iff s is. We call the syllable an interior syllable if ε = 0

and a boundary syllable if ε = 1. Observe that the condition 0 < len p + ε ensures that all stationary
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(
◦ ◦ ◦

es(α) 1 )±1,
(
◦ ◦ ◦

es(β) 1 )±1,
(
◦ ◦ ◦

es(γ) 1 )±1,
(
◦ ◦ ◦

es(δ) 1 )±1,
(
◦ ◦ ◦

α 0 )±1,
(
◦ ◦ ◦

β 0 )±1,
(
◦ ◦ ◦

γ 0 )±1,
(
◦ ◦ ◦

δ 0 )±1,
(
◦ ◦ ◦

α 1 )±1,
(
◦ ◦ ◦

β 1 )±1,
(
◦ ◦ ◦

γ 1 )±1,
(
◦ ◦ ◦

δ 1 )±1,
(
◦ ◦ ◦

αβ 0 )±1,
(
◦ ◦ ◦

βγ 0 )±1,
(
◦ ◦ ◦

γα 0 )±1,
(
◦ ◦ ◦

δ2 0 )±1,
(
◦ ◦ ◦

αβ 1 )±1,
(
◦ ◦ ◦

βγ 1 )±1,
(
◦ ◦ ◦

γα 1 )±1,
(
◦ ◦ ◦

δ2 1 )±1,
(
◦ ◦ ◦

δ3 0 )±1,
(
◦ ◦ ◦

δ3 1 )±1.

Figure 3.3. Syllables for the running example algebra. The top row contains the stationary syllables.

syllables are boundary.

The compression of a syllable p :=
(
i ◦ ◦

` ε )
is the path q :=

(
i ◦

`+ε )
. Note that generally

this is different from the underlying path
(
i ◦

` )
. Using the compression, we can define the source

s(p) := s(q) and target t(p) := t(q) of a syllable.

3.2.2. Stationary syllables. Stationary syllables are denoted ei :=
(
◦ ◦ ◦

ei 1 )
, or e±1

i when we

need to mention orientation.

3.2.3. Running example. The syllables for the running example algebra A are listed in Figure 3.3.

3.2.4. Blank syllable. In due course we will define some partial operations on Syll(A), which we can

model as as total functions on a based version of the set. We will use the term blank syllable to mean the

basepoint of Syll(A).

Virtual syllables

3.2.5. Pathological syzygies. For any projective module P there is the short exact sequence

(
0 socP P P/ socP 0

)
,

from which we easily conclude Ω1(P/ socP ) = socP . But when P is (indecomposable and) pin, this

syzygy short exact sequence of the string module P/ socP witnesses an unusual phenomenon. We will give

the details later but, for now, suffice it to say that, upon calculatingΩ1(P/ socP ) (whenP is indecomposable

and pin), the two “boundaries” of P/ socP interact with one another before yielding the syzygy socP .

To mark this unusual interaction in our framework we need new, special symbols. These symbols are

bespoke: they only signify this specific phenomenon, and they never represent any actual part of a string

module. For this reason, we will call these new symbols virtual syllables.
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3.2.6. Virtual syllables. Recall from Remarks 2.2.23 that the socle of a indecomposable pin module is a

simple module at some Q-vertex j, which the target of some commutativity relation λp − µq for A. The

components p, q are represented by component O-paths and j is represented by some O-paths i which,

being the targets of the component O-paths, will satisfy di = 0.

The virtual syllables at any such i ∈ O0 with di = 0 are (ei, 0,±1) =
(
i ◦ ◦

0 0 )±1.

3.2.7. Remarks. (a) Any reference to syllables excludes virtual syllables unless explicitly mentioned.

(b) It is unambiguous whether the symbol
(
◦ ◦ ◦

p ε )s denotes a syllable or a virtual syllable,

because 0 < len p+ ε for syllables and 0 = len p+ ε for virtual syllables.

3.2.8. Running example. The virtual syllables for the running example algebra are
(
s(α) ◦ ◦

0 0 )±1

and
(
s(β) ◦ ◦

0 0 )±1.

3.2.9. SBStrips. The syllable set and blank syllable of an algebra can be accessed using the commands

SyllableSetOfSBAlg and BlankSyllableOfSBAlg. We mention that the set SyllableSetOfSBAlg

includes the blank syllables and the virtual syllables in addition to the “actual” syllables.

gap> SyllableSetOfSBAlg( alg1 );

[ ( ), ( v1, 0 ), ( v1, 1 ), ( v2, 1 ), ( v3, 0 ), ( v3, 1 ),

( v4, 1 ), ( b_over, 0 ), ( b_over, 1 ), ( c_over, 0 ),

( c_over, 1 ), ( a_over, 0 ), ( a_over, 1 ), ( d_over, 0 ),

( d_over, 1 ), ( b_over*c_over, 0 ), ( b_over*c_over, 1 ),

( c_over*a_over, 0 ), ( c_over*a_over, 1 ), ( a_over*b_over, 0 ),

( a_over*b_over, 1 ), ( d_over*d_over, 0 ), ( d_over*d_over, 1 ),

( d_over*d_over*d_over, 0 ), ( d_over*d_over*d_over, 1 ) ]

gap> BlankSyllableOfSBAlg( alg1 );

( )

3.2.10. Pin-boundary syllables. Virtual syllables turn up to describe the unusual syzygy behaviour of

Ω1(P/ socP ). This means they are only ever seen near representations of socle-quotients P/ socP of pin

modules.

The syllables arising in the representation of such socle-quotients need special attention. We call them

pin boundary syllables. They are always of the form
(
i ◦ ◦
ai+bi−1 1 )

for i ∈ O0 satisfying bi = 0.

3.2.2 Operations for syllables

3.2.11. We will formulate syzygy-taking as filling in an array. Excluding some boundary phenomena, the

array is iteratively populated in two directions from some initial data, these two directions being downwards

and sideways. Accordingly, the act of population is governed by two partial operations. The downwards-

moving operation is called descent; the sideways-moving operation, sidestep. We define them both below.
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Additionally, we define an operation used in describing the boundary phenomena.

3.2.12. Descent∇. The following partial operation on syllables is denoted∇ and pronounced descent. For
(
i ◦ ◦

` ε )s ∈ Syll(A), we define

(
i ◦ ◦

` ε )s∇ :=
(
i− (`+ ε) ◦ ◦

ai−(`+ε) bi )−s

whenever the righthand side is a syllable. The following lemma characterises supp∇.

3.2.13. Remark. We highlight that if p has orientation s (and if p∇ is defined) then p∇ has orientation

−s, and that otherwise the orientation of p has no impact on p∇. Therefore we may safely omit mention of

orientation of syllables.

3.2.14. Lemma. If p :=
(
i ◦ ◦

` ε )
∈ Syll(A), then p /∈ supp∇ iff (`, ε) = (ai + bi − 1, 1).

Proof. Using the terse defining formula for Syll(A), we have that p∇ ∈ Syll(A) iff

0 < ai + bi − (`+ ε) < ai−(`+ε) + bi−(`+ε) + bi. (3.3)

This is the conjunction of two strict inequalities. The above fails if either side does. We will find that the

righthand inequality never fails, and that the lefthand inequality fails precisely when (i, `, ε) satisfies the

given property.

In the first case, suppose that the righthand inequality of (3.3) fails. The negation of the righthand

inequality is equivalent to

ai−(`+ε) + bi−(`+ε) 6 ai − (`+ ε). (3.4)

Using Corollary 3.1.23 we know that ai − (`+ ε) 6 ai−(`+ε). Substituting this into (3.4) yields

ai−(`+ε) + bi−(`+ε) 6 ai − (`+ ε) 6 ai−(`+ε). (3.5)

If bi−(`+ε) = 1 then the contradiction ai−(`+ε) + 1 6 ai−(`+ε) arises from (3.5). Else if bi−(`+ε) = 0,

then we deduce two facts: first, that ai−(`+ε) = ai− (`+ ε) from (3.5); second, that i− (`+ ε) is the source

of the component
(
i− (`+ ε) ◦

ai−(`+ε) )
by definition. Combining these, we find that this component is a

strict suffix of q :=
(
i ◦

ai )
. We have q ∈ N , by definition of ai, and q /∈ N since it is a strict superpath

of a component. We surmise that this case reduces to the absurd.

In the second case, suppose that the lefthand inequality of (3.3) fails. The negation of the lefthand

inequality is equivalent to ai + bi 6 ` + ε. Since (i, `, ε) ∈ Syll(A) we have ` + ε < ai + bi + ε, from
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which we deduce

ai + bi 6 `+ ε < ai + bi + ε. (3.6)

If ε = 0 then (3.6) gives the absurdity ai + bi < ai + bi; this forces ε = 1. We deduce from (3.6) that `+ ε

is sandwiched between consecutive integers. We infer ai + bi = `+ ε, which is to say ` = ai + bi− 1. This

proves the claim of the lemma. �

3.2.15. Corollary. If p is an interior syllable, then p ∈ supp∇.

Proof. Interior syllables have stability term ε = 0 6= 1. We apply the previous lemma. �

3.2.16. Corollary. If p is a pin-boundary syllable, then p /∈ supp∇.

Proof. Pin boundary syllables
(
i ◦ ◦

` ε )
are precisely those with (`, ε) = (ai + bi − 1, 1) and

bi = 0. �

3.2.17. Sidestep ♦. The operation on syllables denoted ♦ and pronounced sidestep is defined a follows.

For any syllable p :=
(
i ◦ ◦

` ε )s, we set p♦ := es(p)† .

This is the unique stationary syllable ej such that s(ej)
† = s(p). Clearly ♦3 = ♦.

3.2.18. Perturbation. The perturbation of any interior syllable
(
◦ ◦ ◦

p 0 )s is the corresponding

boundary syllable
(
◦ ◦ ◦

p 1 )s. This gives a partial operation on syllables, taking values on the

boundary ones.
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Chapter 4

Patches, strips and the syzygy fabric

In this chapter, we give the novel approach to syzygy calculations that underpins the SBStrips package.

Our approach involves representing string modules as words, and indecomposable projective modules as

grids, made up of the syllables constructed in the previous chapter; the words are called strips and the grids

patches.

We first construct the patch set of a SB algebra and then demonstrate how to represent a string module

as a strip and its projective cover as an associated line of patches. We verify that our method correctly

calculates syzygies and then show how to record syzygies into an array. Following in the spirit of pin

modules, string modules, patches and strips, this array also has a textile-based name: the syzygy fabric. The

purpose of the fabric is to facilitate the rigorous discussion of syzygy patterns given in the next chapter.

4.1 Patches of a SB algebra

In this section, we introduce the patch set of a SB algebra A. This is a finite set whose members represent

the indecomposable projective A-modules. We then verify important properties about our construction, to

be used later when representing the syzygy operation.

4.1.1 Construction of patches

In this subsection we show how to systematically construct the set of patches of a SB algebra in five steps.

Throughout, we fix the permissible data (O, N,C, †) of a SB algebraA and we let (ai)i, (bi)i and (ci)i, (di)i

be the integer and bit sequences associated to the source and target encodings of the permissible data, as

before.

As a preliminary remark, let us underscore that a patch will be a (2× 2)-grid populated with symbols.
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−1 +1

+1 −1

Figure 4.1. Orientations of syllables in patches.

ri p

q

p ri

q

Figure 4.2. Schematic of a patch with one pin-boundary syllable. For each i with bi = 0, a family of patches are

created. We always have ri := (i ◦ ◦
ai−1 1

) the pin-boundary syllable at i, but p and q vary as described in
Construction 4.1.6.

4.1.1. The orientations of any (nonblank) syllable in a patch are determined by its position in the patch, as

shown in Figure 4.1. For this reason we omit mention of orientation in the forthcoming definitions.

4.1.2. SBStrips. In our package, the five steps of patch construction are performed by the attribute

PatchSetOfSBAlg.

Blank patch

4.1.3. Construction. We construct a single patch with all cells blank. We call it the blank patch of the

algebra. It is the basepoint of the set of patches of A.

4.1.4. SBStrips. This blank patch of a SB algebra is returned by the attribute BlankPatchOfSBAlg.

Patches with no pin-boundary syllable in the top row

4.1.5. Construction. For each pair (p,p′) of syllables such that s(p)† = s(p′) and neither p nor p′ is pin

boundary, we construct a patch. It has p above p∇ on one side and p′ above p′∇ on the other.

From this original patch we then make additional patches if p is stationary or if p′ is stationary, and

we treat these two possibilities separately. If p is stationary, then we create a copy of the original patch

except that p is replaced by the blank syllable (the remaining cells are unchanged). Independently, if p′ is

stationary, then we create a copy of the original patch except with p′ replaced by the blank syllable (and the

remaining cells unchanged). This means that if both p and p′ are stationary, two copies are created. Each

of these amended patches differs from the original patch in a single cell.
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p s(β) ◦ ◦
0 1

p s(β) ◦ ◦
1 0

q s(γ) ◦ ◦
2 1

q s(γ) ◦ ◦
2 1

p s(β) ◦ ◦
1 1

p s(β) ◦ ◦
2 0

q s(α) ◦ ◦
1 1

q s(α) ◦ ◦
1 1

(a) The four possible choices of p and q when i = s(α).

p s(α) ◦ ◦
0 1

p s(α) ◦ ◦
1 0

q s(β) ◦ ◦
2 1

q s(β) ◦ ◦
2 1

p s(α) ◦ ◦
1 1

p s(γ) ◦ ◦
2 0

q s(α) ◦ ◦
1 1

q s(γ) ◦ ◦
1 1

(b) The four possible choice of p and q when i = s(β).

Figure 4.3. Choices of p and q opposite ri, for the running example algebra A. Here, each possible pair (p, q)

is given as a column in the table.

The symmetry in the conditions on p and p′ mean that the reflection of any patch created at this step is

also created at this step.

Patches with one pin-boundary syllable in the top row

4.1.6. Construction. Recall that i ∈ O0 has bi = 0 iff it represents the source of a commutativity relation.

When so, we write ri for the pin boundary syllable at i.

For each such i and each syllable p which is not pin boundary but does have s(p) = ı†, we let q be the

perturbation of p∇ (ie, p∇ but with stability term ε = 1). We then create two patches. The first has ri

above a blank cell on one side and p above q on the other. The second is its reflection. These are illustrated

in Figure 4.2.

Similarly to the previous case, we make an amended version of the patch if it features a stationary

syllable in the top row. Specifically, if the top-row syllable p is stationary, we create a copy of the patches

defined in the previous paragraph, except that the p is replaced by the blank syllable.

In terms of formulas, these patches are constructed for each triple comprising i ∈ O0, ` > 0 and

ε ∈ {0, 1} such that bi = 0 and 0 < ` + ε < aı† . Then we define p := (ı† ◦ ◦
` ε

) and

q := (ı† − (`+ ε) ◦ ◦
a
ı†−(`+ε)

1
).
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ri rı†

xi−ai xı†−a
ı†

Figure 4.4. Schematic of a patch with two pin-boundary syllables. One of these is created for each vertex in the
set {i ∈ O0 : bi = 0}. Note that this set is closed with respect to the vertex exchange map †, since bi = bı† .

Above, ri := (i ◦ ◦
ai−1 1

) the pin boundary syllable at i (similarly rı† ) andxi−ai := (i− ai ◦ ◦
0 0

)

is the virtual syllable at i− ai (and similarly xi−a
ı†
.

(s(α), 2, 1)(s(β), 2, 1)

(s(α), 0, 0)(s(β), 0, 0)

(s(β), 2, 1)(s(α), 2, 1)

(s(β), 0, 0)(s(α), 0, 0)

Figure 4.5. The patches with two-pin boundary syllables, for the running example algebra A. These two patches
are reflections of one another.

4.1.7. Running example. There are two vertices in O representing the source of a commutativity relation:

one is s(α) and one is s(β). (They are exchanged by †.)

When i = s(α), the possible pairs of p and q opposite ri given in Figure 4.3(a). When i = s(β), the

possible pairs are as given in Figure 4.3(b).

Patches with two pin-boundary syllables in the top row

4.1.8. Construction. Recall that a vertex i ∈ O0 has bi = 0 if and only if it represents the source of a

commutativity relation.

For each such vertex i, we construct the patch with the data as shown in Figure 4.4. On the left side, the

top entry is the pin-boundary syllable associated to i while the bottom entry is the virtual syllable xi−ai at

i− ai. The right side is similar but for ı†.

4.1.9. Note that the reflection of the patch associated to i is the patch associated to i†. We know that i is

the source of a component iff ı† is, so by varying i around the family of vertices with bi = 0 we pick up

its exchange partner ı†. This means we do not artificially need to add the reflections of these patches; we

obtain them already.

4.1.10. Running example. The unique pin module for A is P1 = I1. The head vertex 1 of this pin module

is represented by two vertices in the overquiver O, say s(α) and s(β). We know that as(α) = 3 and
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xi

ei

xi

ei

Figure 4.6. Virtual patches. These two patches are created for each i with di = 0. They are reflections of one
another.

Here, xi := (i ◦ ◦
0 0

) is the virtual syllable and ei := (i ◦ ◦
0 1

) the stationary syllable at i. All
unmarked cells are blank.

as(β) = 3 while bs(α) = bs(β) = 0. It so happens in this particular example that s(α)− as(α)1 = s(α) and

s(β) − as(β) = s(β); this “fixpoint” behaviour is not to be expected in general. It follows that exactly two

patches are created at this step. We show them in Figure 4.5.

4.1.11. Example. Consider any Nakayama algebra. All of its indecomposable projectives are uniserial.

This means it has no pin modules and therefore no patches of this type are created for it. The same is true

more generally for any monomial SB algebra.

Virtual patches

4.1.12. Construction. Recall that a vertex i ∈ O0 has di = 0 if and only if it represents the target of a

commutativity relation.

For each such vertex i, we construct the two patches shown in Figure 4.6. The first has a virtual syllable

(i, 0, 0) in the top-right cell and the corresponding stationary syllable (i, 0, 1) underneath, but is otherwise

blank. The second is its reflection.

4.1.13. SBStrips. The virtual patches are those for which the property IsVirtualPatch returns true.

Therefore, supposing the SB algebra in question is sba, they are precisely the elements of the list returned

by the following code.

gap> Filtered( PatchSetOfSBAlg( sba ), IsVirtualPatch );

4.1.14. We emphasise that, as with the previous class of patches, virtual patches are only seen when

calculating the syzygy of P/ socP , for P pin.

4.1.2 Properties of patches

In this subsection we make remarks and prove some properties about the patches of a SB algebra. There is

no clever theoretical work to be seen here, only technical observations and their verification. These results

55



are included in order to establish the validity of our model.

4.1.15. Lemma. The only patches containing virtual syllables are virtual patches (having one such, which

lies in the top row) and patches with two pin-boundary syllables in the top row (having two such, in the

bottom row).

Proof. This is true by inspection. We need only recall that, by definition, p∇ is never a virtual syllable

for any p. �

4.1.16. Lemma. Let X be a patch with entries p and p′ in the top row, and with entry q under p.

(a) If neither p nor p′ is blank, then s(p)† = s(p′).

(b) If p is nonblank, then q = p∇ unless

(i) both top entries p,p′ of X are pin boundary (in which case q is a virtual syllable), or

(ii) the other top entry p′ ofX is a pin boundary syllable (in which case q is the perturbed version

of p∇), or

(iii) p is a virtual syllable (in which case q is the corresponding stationary syllable).

(c) If p is blank, then q is either blank or is ei∇ for some stationary syllable ei.

(d) If p = (i ◦ ◦
` ε

) and ε = 0, then s(q) = t(p).

Proof. The assumptions in part (a) exclude the blank patch, virtual patches and amended patches from

consideration – in remaining cases (a) is seen to hold – but part (c) directs us exactly to those three cases.

For the blank or virtual patches, any column featuring one blank entry is entirely blank as claimed in (c).

Amended patches only change the top syllable in a column comprising ei and ei∇. That top syllable ei is

stationary, hence the claim of part (c) is valid in this case too.

Part (b) holds by observation. We only remind the reader that ∇ maps a pin-boundary syllable to the

blank syllable and the blank syllable to itself.

Towards part (d), we can use part (b). Note that the assumption ε = 0 implies p is neither a pin-boundary

syllable nor blank. If q = p∇ then the result holds, since

s(q) = s(p∇) = s(i− ` ◦ ◦
ai+bi−` bi

) = i− l = t(p).

If q is the perturbed version of p∇, then the result also holds because perturbation does not alter the

source. If p is a virtual syllable
(
i ◦ ◦

0 0 )
, then q is the corresponding stationary syllable ei =

(
i ◦ ◦

0 1 )
and we clearly have s(ei) = i = t(p). �

4.1.17. Lemma. No two patches have the same top row.
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p p′

q q′

Figure 4.7. Notation for Definition 4.1.18.

Proof.We initially partition patches into two classes, depending on whether their top rows feature virtual

syllables. Note that those who do are always virtual patches, each of which is uniquely distinguished by the

single virtual syllable its contains and its orientation.

Amongst those whose top rows feature no virtual syllables, we further discriminate by the number of

blank syllables in the top row. There is a single patch with two blank syllables: the blank patch. The patches

with exactly one blank syllable are amended patches, each uniquely characterised by the nonblank syllable

in the top row and its orientation.

Amongst those whose top rows feature no virtual syllables and no blank syllables, we can further

subdivide by the number of pin-boundary syllables. These cases are treated in different parts of Subsection

4.1.1, from which the desired distinction follows immediately. �

4.1.18. Associating projectives to patches. We define a function from the set of nonvirtual patches to the

set containing the indecomposable projective A-modules with the prescribed bases as in Example 2.2.19

and the zero module (with basis ∅). Its purpose will become clear in Proposition 4.2.20.

To the blank patch, we associate the zero module.

Otherwise, observe that any nonblank, nonvirtual patchX has at least one nonblank syllable p in its top

row. The source s(p) represents a vertex i of the ground quiver; if the top row features a second nonblank

syllable q then s(p)† = s(q) and so they represent the same vertex i. Therefore we associate to X the

projective Pi, for this well-chosen i.

4.1.19. Lemma. Suppose that the projective associated to the patch X is a pin module.

(a) If the top row of X features two pin-boundary syllables, then the entries of the bottom row are both

virtual syllables.

(b) If the top row of X features exactly one pin-boundary syllable, then one entry of the bottom row is a

boundary syllable while the other is blank.

(c) If the top row ofX features no pin-boundary syllables, then the entries q, q′ of the bottom row satisfy

q = p∇ and q′ = p′∇ for some syllables p,p′ with s(p)† = s(p′). This implies t(q)† = t(q′).

Proof. For parts (a) and (b), respectively refer to the construction of patcheswith two or one pin-boundary

57



α β

βγ α

(a) An example patch

e1

β

βγ

αβγ

α

αβ

β

γ

α

α

β

γ

(b) The associated sets T (top) and B (bottom)

Figure 4.8. Basis subsets associated to a patch

syllables in the top row. The claims hold by inspection.

For part (c), let p and p′ be the nonblank entries of the top row above q and q′ respectively. If X is an

amended patch, instead let p,p′ be the corresponding nonblank entries of the top row of the original patch.

Because X represents a pin module, we have bs(p) = bs(p′) = 0. Since p,p′ are nonblank syllables

with this property, p∇, q∇ are defined and satisfy t(p∇)† = t(p′∇). The construction of patches with no

pin-boundary syllables in the top row implies q = p∇ and q′ = p′∇. The result follows. �

4.1.20. Remark. In addition to singling out a projective module P , a patch X specifies two subsets of the

standard basis: a top part T and a bottom part B.

If the top row of X features two pin-boundary syllables, then B comprises only the vector spanning

soc(Pi) and T comprises the remaining vectors. Otherwise, suppose that the entries ofX are p,p′, q, q′ as

shown in Figure 4.7; ifX is an amended patch, let p,p′, q, q′ be syllables of the original version. Write p, p′

for the compressions of p,p′ and 6 for the prefix order. We define T and B via the following procedure.

(a) Define Tp := {u ∈ Path(O) : u < p}, and define Tp′ similarly.

The definition of Bp depends on whether p is boundary or interior: if p is boundary then we define

B := {u ∈ Path(O) : p 6 u}; while if p is interior we define {u ∈ Path(O) : p < u} ⊆ B (in

which case p /∈ B ∪ T ). We define Bp′ similarly, again resorting to cases depending on whether p′ is

boundary or interior.

(b) Replace any path u in Tp, Tp′ , Bp or Bp′ by the basis vector uA represented by u.

(c) Set T := Tp ∪ Tp′ and B := Bp ∪Bp′ .

We mention that if p is interior then (the basis vector represented by) p does not belong to T ∪ B, and

that all basis elements not in T ∪B are of this form.

4.1.21. Running example. In Figure 4.8 we show a patch and the corresponding subsets of an associated

patch. Notice that the top row contains the interior syllable
(

◦ ◦
α 0 )

and that, accordingly, the

associated basis vector αA belongs to neither T nor B.
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4.2 Strips

In this section, we define strips. These are representations of string modules using the alphabet of syllables.

4.2.0 Preview of strips

Let us explore our approach to string modules and their syzygies using worked examples. We will start

to see how to represent string graphs with no ambiguity, if a modicum of redundancy. The focus here is

building intuition; formal definitions will come in due course. Recall the running example algebra

A := k
(

1 2α
β

γ
δ
)
/
〈
α2, βδ, γβ, δγ, αβγ − βγα, γαβ, δ4

〉

(whose uniserial A-modules can be identified with the strict prefixes of αβγ, βγα, γαβ and δ4).

4.2.1. The big idea. We have a way of representing a string graph by entering symbols (syllables) into a

row of cells. These cells are alternately of two types, positive and negative , which means that

pairs of cells alternately form peaks and valleys . Such a row of symbols is a strip.

The contents of a peak in one row uniquely determine the contents of a valley in a row underneath it.

One row may in general have several rows underneath it – a phenomenon we call branching – but there is

a fixed procedure for determining to which row the contents of a given valley are assigned. We thus create

strips from a given strip by reading the latter a peak at a time.

As we demonstrate below, it is necessary that we operate “peakwise” (a peak upstairs specifies a

valley downstairs) rather than “cellwise” (a positive or negative cell upstairs specifies a negative or positive

cell downstairs) due to the existence of string modules related to socle-quotients of pin modules. These

troublesome string modules are easy to spot; they are precisely those whose strip representation includes a

certain kind of syllable, dubbed a pin-boundary syllable. When a peak contains no pin-boundary syllables,

the entry of each cell in the valley underneath it depends only on the individual cell directly above it.

There are several key features in our approach. We treat them all in their turn with examples.

4.2.2. Interiors, boundaries, peaks and valleys. Consider the string graph v1, shown in Figure 4.9a. It has

four subgraphs that start at source vertices and end at sinks. The corresponding restrictions are
(

2 1
β )

,
(

1 1α )
,
(

1 2
γ )

and
(

2 2 2δ δ )
. The first and last of these appear at the boundary of the string

graph. Informally, this means that these subgraphs point outwards from the graph; more formally, that the

sink vertices at which these end have indegree only 1 (a property distinguishing these sink vertices from

that at which the other two subgraphs end.) We can represent v1 using the strip in Figure 4.9b.

Let us dissect the anatomy of this figure. To begin, note that it comprises an infinite (Z-indexed) row of
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2

1

1

2

2

2

β
α

γ
δ

δ

(a) String graph v1

· · · · · ·
β α γ δ2

(b) Strip representing v1. The reflection of this strip also represents v1.

Figure 4.9. First example of representing a string graph with strips.

cells which alternately look like and . Therefore they alternately form peaks and

valleys .

Next, notice that cells sufficiently far to the left and to the right are blank. Between these extremes is

the support of the strip: the concave interval of cells with nonblank entries.

These entries are syllables that unambiguously represents the subgraph of the string graph. Recall that

a syllable
(
◦ ◦ ◦

p ε )±1 contains three pieces of information: a path p in the overquiver O, a bit

ε ∈ {0, 1} which encodes whether the syllable is an interior (ε = 0) or boundary syllable (ε = 1) and an

orientation which is either positive or negative (+1 or −1). Of these, orientation is the least interesting.

All that really matters is that it alternates across the strip. In our illustrations, orientation of a (nonblank)

syllable is a function of the kind of cell where it appears: entries in cells have negative orientation

while those in cells have positive orientation. Orientation is also demonstrated by the diagonal along

which the syllable is drawn.

The underlying path of a syllable unambiguously represents a path in A, but we remind the reader of a

technical point: underlying paths of a syllable are paths in the overquiver O, not the ground quiver Q. In

the interests of brevity this is not usually expressed in the notation. For instance, the rightmost syllable in

Figure 4.9b has underlying path δ2 (in the overquiver), but it represents the A-path that is also called δ2.

Boundary syllables, such as
(
◦ ◦ ◦

β 1 )
and

(
◦ ◦ ◦

δ2 1 )
in our example, only appear

pointing outwards at the boundary of the strip. This means that if one entry in a valley is a boundary syllable

then the other is blank, as may be verified in the example.

In between the boundary syllables are the interior syllables,
(
◦ ◦ ◦

α 0 )
and

(
◦ ◦ ◦

γ 0 )

here. Observe that if one syllable in a valley is an interior syllable then so too is the other and, moreover, their

targets are †-partners. The only example in Figure 4.9b is the middle valley that contains
(
◦ ◦ ◦

α 0 )

and
(
◦ ◦ ◦

γ 0 )
. More examples will appear when discussing string graph v2, below.

Whether the syllables in a peak are boundary or interior, their sources are †-partners.
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1

1

2

2

1

1

2α

β
δ

γ
α

γ

(a) String graph v2

· · · · · ·
e αβ δ γ γα e′

· · · · · ·
αβ δ γ γα e′

· · · · · ·
e αβ δ γ γα

· · · · · ·
αβ δ γ γα

(b) Strips representing v2. Here, e and e′ are the stationary paths at s(α)† and s(γ)†, respectively. Since the
stationary syllables at either end can be inferred from a neighbouring cell, they are both optional.

Figure 4.10. Second example of representing a string graph with strips.

In our illustrations, boundary syllables have their stability term coloured, while interior syllables have

theirs suppressed. This helps distinguish them visually.

4.2.3. Rounding-off. Now consider the string graph v2 in Figure 4.10a. What matters most about this

example is that we can treat v2 on an equal footing with v1 despite their seeming difference in shape.

Informally speaking, v2 resembles a “generalisedW” while v1 resembles a “generalised

M” . It transpires that generalised Ms lend themselves more readily to syzygy calculations.

There is an obvious trick to viewing a generalised W as a generalised M by making some trivial adjustment

at the boundary: . Our version of this trick is to round off the boundary of the strip

with stationary syllables
(
◦ ◦ ◦

e 1 )
.

(Similar tricks work for “generalised Ns” and “generalised Ns”. Also recall that by construction all

stationary syllables used to represent string graphs are boundary. There are never stationary syllables in the

interior of a strip.)

See the uppermost strip in Figure 4.10b. At each side, there is a unique stationary syllable whose source

is the †-partner of the source of the neighbouring syllable. That is the stationary syllable we use to round

off the strip. To emphasise that the underlying path is trivial, we draw it as a dashed line in the illustration.

Since the appropriate stationary syllables at either end can be inferred from the remaining content of the
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1

(a) String graph v3

· · · · · ·
e e′

· · · · · ·
e′

· · · · · ·
e

(b) Strips representing v3. Here, e and e′ are the two stationary paths at O-vertices that represent the Q-vertex
1. We can infer one of the stationary syllables from the other, but we cannot infer either of them out of nothing.

Figure 4.11. Third example of representing a string graph with strips.

strip, we will allow variations of the strip where one or both stationary syllables are absent. These are the

other strips in Figure 4.10b. This redundancy is a benefit, not a drawback: the framework we develop later

will treat all of these variations the same.

In all cases, our comments from the previous passage about entries in peaks and valleys remain true.

Boundary syllables, whenever they appear in a valley, do so next to a blank cell. The valley neighbour of

an interior syllable is another interior syllable, and their targets are exchanged by †. The sources of two

(nonblank) syllables in a peak form a †-pair, as do the targets of two interior syllables in a valley. However,

whenever a stationary boundary syllable is only implied, interior syllables may form a peak with a blank

cell. This final situation did not arise when treating v1.

4.2.4. Simple modules. Examine the string graph v3 in Figure 4.11a that represents the simple module

S1. To represent it as a strip we round off both sides with stationary syllables, giving the uppermost strip in

Figure 4.11b or its reflection.

Similarly to the previous example, we allow variations of the strip where either stationary syllable is

omitted since one can be inferred from the other. These are the remaining strips in the figure. In contrast to

the previous example, we do not allow them both to be omitted. Doing so would result in an entirely blank

strip, which of course is only capable of representing the zero module.

4.2.5. Pin-boundary syllables and the need for operating peakwise. We turn to Figures 4.12a and 4.12b

and the string graphs v4 and v5 they feature. Strips representing them are drawn in Figures 4.12c and

4.12d. Neither needs any rounding off. The compatibility conditions stated above regarding †-partnership
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(a) String graph v4

2

1

1

2

1

1
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1
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γ
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β

γ

(b) String graph v5.

· · · · · ·
αβ βγ

(c) Strip representing v4.

· · · · · ·
αβ βγ α βγ

(d) Strips representing v5. The boundary syllables in this strip also occur in the strip representing a socle-quotient
of a pin module – compare (c) above – but here they do not appear together in a single peak.

Figure 4.12. Fourth and fifth examples of representing a string graph with strips.

of sources or targets of peak- or valley-neighbouring syllables are readily seen to hold. In these senses, there

is nothing new to say about these strips.

The noteworthy objects are the syllables at their boundaries; observe that these are the same for both

strips. We call these pin-boundary syllables since they arise in the strip representation of a socle-quotient

of a pin module.

What proves noteworthy about these syllables is their unusual behaviour when put to their intended use

in strips: calculating syzygies of string modules. To more clearly remark the unorthodoxy of v5, and shortly

afterwards v4, we compare them to the very routine conduct of v3 and v1.

Consult Figure 4.13a. It is a two-row picture, the first row representing v3 and the second Ω1(Str v3).

Each valley of the second row is determined by the peaks above it and nothing else. Figures 4.13b and 4.13c

are similar, representing v2 and v5 and their syzygies, with the syzygy in each case determined from the

original strip according to a local rule.

The strip representing v3 in the top row of Figure 4.13a has boundary syllables in columns 3 and 4,

and neither of these is a pin-boundary syllable. Underneath it is a strip representing Ω1(Str v3). This

actually has no boundary syllables, but we can infer where stationary boundary syllables would round it

off – specifically, columns 2 and 5 – and which stationary boundary syllables they would be. We see that,

from one row to the next, the locations of the (potentially implied) boundaries move one column outward

on each side.

The strip representing v2 in the top row of Figure 4.13b has boundary syllables in columns 1 and 6 but
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· · · · · ·

· · · · · ·

e e′

βγ γα

0 1 2 3 4 5 6 7

(a) Calculating Ω1(Str v3) = Str
(

1 2 1 1 2
β γ α γ )

using strips.

· · · · · ·

· · · · · ·

e αβ δ γ γα e′

γα γ δ2 α δ2

0 1 2 3 4 5 6 7

(b) Calculating Ω1(Str v2) = Str
(

2 1 1 2 2 2
γ α γ δ δ )

⊕ Str
(

1 1α )
⊕ Str

(
2 2 2δ δ )

using strips.

· · · · · ·

· · · · · ·

αβ βγ α βγ

α βγ

0 1 2 3 4 5 6 7

(c) Calculating Ω1(Str v5) = Str
(

1 1 2 1α β γ )
using strips.

Figure 4.13. Movement of boundaries. Existing boundaries move one column inwards or outwards from one row
to the next, the latter situation being more common by far. Additional boundaries may also appear when the lower
strip “branches”, representing a nontrivial decomposition of the syzygy (refer Figure 4.15).

neither of these is a pin-boundary syllable. The second row has several syllables and several gaps. The

boundaries present or implied in columns 3, 4, 5 and 6 are surplus to the present argument and we will

revisit them later. Those aside we certainly infer boundary syllables in columns 0 and 7 of the bottom row,

because there the blank cells appear in a peak with a nonblank cell. Once again, we notice that the locations

of the (potentially implied) boundaries move one column outwards, from columns 1 and 6 to 0 and 7.

Lastly, turn to Figure 4.13c which represents v5 and its syzygy using strips and in which appear the

dreaded pin-boundary syllables. Two things are remarkable about this figure. The first is that the boundary

on each side moves one column inwards. The second is how this impacts columns 3 and 4. Taking column 3
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· · · · · ·

· · · · · ·

· · · · · ·

αβ βγ

e e′

e e′

0 1 2 3 4 5 6 7

(a) Calculating Ω1(Str v4) = Str
(

1
)
using strips. The path e is the stationary path at t

(
◦ ◦ ◦

αβ 1 )
, the

target of the lefthand pin-boundary syllable. Similarly e′.

Figure 4.14. Syzygy of a socle-quotient of a pin module.

as an illustrative example, we see that underneath the syllable
(
◦ ◦ ◦

βγ 0 )
is
(
◦ ◦ ◦

α 1 )
. The

lower syllable is not
(
◦ ◦ ◦

βγ 0 )
∇ =

(
◦ ◦ ◦

α 0 )
but, rather, the boundary analogue.

A general rule, obeyed in Figures 4.13a and 4.13b but violated here in 4.13c, is that underneath a syllable

p appears p∇. However, the cause of this misbehaviour is not the syllables in columns 3 and 4 of the top

row. It is in fact the pin-boundary syllables
(
◦ ◦ ◦

αβ 1 )
and

(
◦ ◦ ◦

βγ 1 )
that neighbour them.

We should think of pin-boundary syllables as interfering entities that cause boundaries to move one

column inwards, therefore defying our otherwise-successful hopes of ∇-orbits for columns. Pin-boundary

syllables
(
◦ ◦ ◦

p 1 )
exist to represent a component pα of a commutativity relation of A, say pα− q,

where α is an appropriate arrow. It is thanks to their existence that our formalism calculates syzygies using

a peakwise operation rather than a cellwise one, for their corrupting influence can extend to their valley

neighbour.

The pinnacle of their meddlesome activity occurs when two pin-boundary syllables neighbour one

another in a strip, a scenario arising iff the strip represents P/ socP for some pin module P . In this case

the two boundaries on either side seem to pass through each other.

We mark such an event with special symbols, as witnessed in Figure 4.14a. We call these virtual

syllables because, unlike other syllables, these reserved symbols do not represent any part of a string

graph or string module; they are simply indicators of the presence of short exact sequences of the form

0 socP P P/ socP 0, for P pin. These virtual syllables appear two-at-a-time in a valley

underneath a peak of pin-boundary syllables. Each virtual syllable appears alone in its own peak. Directly

below any virtual syllable belongs the appropriate stationary syllable.

The data of a virtual syllable
(
◦ ◦ ◦

e 0 )
are a stationary path e and a stability term ε = 0. This
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· · · · · ·
e αβ δ γ γα e′

· · · · · ·
γα γ δ2

· · · · · ·
α

· · · · · ·
δ2

0 1 2 3 4 5 6 7

Figure 4.15. Branching. Rather than flattening the strips representing the direct summands of Ω1(Str v2) onto a
single row, as in Figure 4.13b, we place them into rows of their own. Each of these rows is directly above the top
row. In each, columns 0 to 7 inclusive are shown.

path e in the overquiver represents the target vertex of a commutativity relation. The associated stationary

syllable is then
(
◦ ◦ ◦

e 1 )
.

We recall that elsewhere a stability term ε = 0 denotes an interior syllable so it may be tempting to think

of these virtual syllables as “interior stationary” syllables, in keeping with that precedent. We know of no

benefit to be garnered from this interpretation and so we do not take it up in our exposition.

4.2.6. Branching. There is one final phenomenon to explore: when the syzygy of a string module has a

nontrivial direct sum decomposition. This has already occurred under our very noses.

Figure 4.13b depicts a syzygy calculation, with v2 represented in the top row and Ω1(Str v2) in the

bottom row. Whereas in other examples the support has been an uninterrupted sequence of interior syllables

bounded on either side by (potentially implied) boundary syllables, here the support is several such sequences,

respectively delimited by the boundaries in columns 0 and 3, 4 and 5, and 6 and 7, and all flattened together

onto the page in a single row.

Such flattening onlymuddies thewaters. Our task ismademuch clearer by giving each of these individual

strips their own row as in Figure 4.15. One consequence of this generosity is that we must generally index

rows using the vertices of a rooted tree. This allows the nontrivial direct sum decomposition of the syzygy

of a string to be reflected by branching in the tree.

Another consequence is that we must specify into which rows the cells of a valley under a given peak

are placed. There is a general rule which we hope Figure 4.15 is clear enough to illustrate.

4.2.7. Recap. We close this subsection by consolidating the examples we have explored.

We have seen strings represented as rows of symbols, rows that we call strips. A string graph can be

represented by many strips, but any strip represents a unique string.
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(a) Peaks with exactly one blank entry. The other entry may be a boundary or interior syllable.

i ı† i ı† i ı† i ı†

(b) Peaks with †-partnered sources. The syllables may be any combination of interior or boundary, provided their
sources are †-partners.

Figure 4.16. Peak-compatible pairs of syllables.

We have started to see how these symbols can be entered into an array, with rows indexed by the

vertices of a rooted tree and columns indexed by the integers (which are also just the vertices of a graph:

· · · 0 1 2 3 · · ·), to represent syzygy-taking. At least, we have seen the first two levels of

such an array, representing a string and its syzygy. The contents of one row determine the contents of the

next rows according to a local rule: a peak above determines the valley below.

The symbols used are called syllables. A syllable comprises three pieces of information. Largely these

syllables represent parts of a string module and whether that part is at the boundary or in the interior of the

string.

A select few symbols are kept aside for when we represent socle-quotients of pin modules and their

syzygies. Indeed, strings whose boundaries resemble the boundaries of such socle-quotients are the only

ones that require the local rule to operate at the scope of peaks of syllables, rather than individual syllables.

These errant examples aside, the location of the boundary moves one column outwards from one row to the

next. New boundaries can also appear, indicating that a line of symbols are to be separated into different

rows, with the resulting strips representing direct summands.

This is the core of our model for tabulating the syzygy information. What remains are the details of its

construction and the patterns it illuminates.

4.2.1 Strips and string modules

In this subsection, we give the formal definition of strips and verify that they represent string modules.

4.2.8. Peak and valley compatibility. Let (p, q) be a pair of (nonvirtual) syllables for A.

(a) We say p and q are peak compatible (see Figure 4.16) if

(i) both are blank (this is called a blank peak), or
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(a) Blank valley. (b) Boundary valleys.

i ı†

(c) Interior valley.

Figure 4.17. Valley-compatible pairs of syllables.

(ii) exactly one is blank (an implied peak), or

(iii) neither is blank and s(p)† = s(q) and the orientations of p and q are respectively −1 and +1.

(b) We say p and q are valley compatible (see Figure 4.17) if

(i) both are blank (this is called a blank valley), or

(ii) one is blank and the other is boundary (a boundary valley), or

(iii) both are interior and t(p)† = t(q) and the orientations of p and q are respectively +1 and −1

(an interior valley).

These relations are illustrated in Figures 4.16 and 4.17. No syllable is peak or valley compatible with itself

except the blank syllable, which is both.

4.2.9. Peaks and valleys. A peak is a pair of peak-compatible syllables, which we draw as p q ,

the orientations being implicit. (Note that (p−1, q) is a peak-compatible pair iff (q−1,p) is, by the above

definition.) Similarly, we define valleys and denote them as p q . This notation makes defining the

reflection q p of a peak or q p of a valley obvious.

4.2.10. Running example. Any two (horizontally) neighbouring cells in Figures 4.9b, 4.10b, 4.11b, 4.12c,

4.12d, 4.13a, 4.13b, 4.13c or 4.15 are either a peak or valley (as appropriate).

4.2.11. Strips. A strip w is a concave, non-necessarily bounded juxtaposition of (nonvirtual) syllables

alternately forming peaks and valleys; here, concave means that no blank syllable is between two nonblank

syllables.

Formally we consider the juxtaposition to be a single row of cells with columns indexed by Z; thus, a

strip w is a function w : Z Syll(A). Of course, the cells are in 1-to-1 correspondence with the columns.

The entry of cell k is w(k).

4.2.12. Support of a strip. It follows that a strip w is blank on all but an interval subset of Z, which we

call its support suppw

4.2.13. Neighbours. For any k ∈ suppw, one out of {w(k), w(k + 1)} and {w(k − 1), w(k)} is a peak

and one is a valley. The peak neighbour of k is the cell forming a peak with k; the valley neighbour is
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defined similarly.

4.2.14. Reflection. By precomposing with the reflection k −k on Z and postcomposing with the

orientation involution ps p−s on Syll(A), we obtain the reflection of w. This is clearly a well-defined

operation since these involutions carry peaks to peaks and valleys to valleys.

4.2.15. Running example. Examples of strips abounded in Figures 4.9b, 4.10b, 4.11b, 4.12c, 4.12d, 4.13a,

4.13b, 4.13c and 4.15.

4.2.16. Any strip represents a string module in an (hopefully) obvious way, which the following proposition

formalises.

4.2.17. Proposition. Any strip w represents a well-defined string graph, hence a string module, and

moreover w and its reflection both represent the same string graph.

Conversely, any string graph can be represented by a strip.

Proof. Towards proving the forward implication, write p, q for the paths underlying syllables p, q in

w. Recall from Definition 3.2.1 that these underlying paths p, q satisfying p, q ∈ N − C and so, notably,

represent Q-paths whose A-residue is linearly independent of all other A-paths.

We can view each p, q as some linear subgraph of O of the form
(
◦ ◦ · · · ◦

)
, where each

vertex and arrow canonically represents one of the ground quiver Q of A. This representation gives rise to

quiver homomorphisms p Q or q Q. (In the case that p or q is blank, the associated homomorphism

has empty domain.)

When p q is a peak, then the sources (if any) of p, q are distinct but represent the same vertex

of Q, and therefore have the same image in the quiver homomorphism. Therefore, in the disjoint union of

the homomorphisms p Q and q Q, we can identify the source vertices in the domains of paths p, q

coming from peak-neighbour syllables and obtain a well-defined graph homomorphism. In addition (still

assuming p q is a peak), the first arrows of p and q are distinct and so represent distinct arrows of Q.

It follows that, when we identify the source vertices as above, pairs of arrows in the domain that common

source are mapped by this homomorphism to distinct Q-arrows.

The preceding paragraph remains true when we simultaneously replace: “peak” by “valley”; “peak-

neighbour(ing)” by “valley-neighbour(ing)”; “source” by “target” and; “source vertex” by “sink vertex”.

This act of identifying linear quivers at their source vertices or sink vertices yields a quiver G whose

underlying graph is linear also. Since the cells of w are Z-indexed, the underlying graph of our constructed

quiver will be connected and either finite, unbounded in one direction or unbounded in two directions. As

we have already commented, pairs of arrows whose common source is a source vertex or whose common

target is a sink vertex are mapped to distinctQ-arrows. As also commented above, anymaximal equioriented
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subquiver of G (ie, a full subquiver that is sub-1-regular and that is specified by a set of vertices including

one source vertex of G and one sink vertex of G) represents an independent path; therefore an arbitrary

equioriented subquiver of G represents one too a fortiori. These three conditions defining a string graph

hold, so the first assertion is proven.

The second claim follows immediately, since the foregoing abstract construction is not affected by

reflecting w.

For the converse assertion, let v : G Q be a string graph, assumed without loss of generality to be

indecomposable.

If G contains no arrows, and so comprises a single vertex x satisfying v(x) = i ∈ Q0, then lift i to

an O-vertex that we also denote i; we may represent v using a function w : Z Syll(A) that takes blank

values on all integers save on 0, where w(0) = e1
i . (This superscript 1 is the orientation of the syllable.)

The support of this function is concave in a trivial way, all potential peaks are blank except for one that is

implied, and all potential valleys are blank except one that is boundary. Consequently w truly is a strip.

Otherwise, assume G contains at least one arrow.

To each maximal equioriented subquiver Γ :=
(
y ◦ · · · z
x1 x2 x` )

of G we may associate a syllable

as follows, writing p := v(x1x2 · · ·x`) for convenience: if the sink vertex z of this subquiver has indegree

1 in G, we associate the boundary syllable Γ̂ :=
(
◦ ◦ ◦

p 1 )
; otherwise, we associate the interior

syllable Γ̂ :=
(
◦ ◦ ◦

p 0 )
. (The orientations of these syllables is yet to be assigned.)

Choose one such maximal equioriented subquiver Γ0 of G. Let Γ1 be the maximal equioriented

subquiver of G sharing a sink vertex with Γ0 (if any exists), let Γ2 be that sharing a source vertex with Γ1

(if any exists), let Γ2 be that sharing a sink vertex with Γ1 (if any exists), and so on, iteratively defining Γk

for k > 0. Similarly on the other side, let Γ−1 be the maximal equioriented subquiver ofG sharing a source

vertex with Γ0 (if any exists), let Γ−2 be that sharing a sink vertex with Γ−1 (if any exists), and so on for Γk

with k < 0.

For any k ∈ Z for which Γk exists, define v(k) := (Γ̂k)(−1)k . (This exponent (−1)k is the orientation

we assign to the syllable Γ̂k.) For remaining k, let v(k) be blank.

Our iterative definition of the Γk, working outwards from Γ0, ensures that supp v is concave. Potential

peaks containing two nonblank syllables come from neighbouring subquivers Γk,Γm whose common vertex

is a source vertex of G. Because the two arrows incident on that source vertex have different images in v,

we have that Γ̂k and Γ̂m are distinct and their sources are exchanged by †. We deduce that these potential

peaks truly are peaks.

A similar argument shows that all potential valleys are indeed valleys. The only technicality to note is

that – when Γ̂k is nonblank – Γ̂k is an interior syllable iff the corresponding sink vertex of G has indegree
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2 in G iff Γ̂k+(−1)k is defined. Thus, the potential valleys containing one nonblank syllable are boundary

valleys and those containing two are interior valleys.

Since v is concave, its peaks are peaks and its valleys valleys, we concluce that v defines a string, as

claimed. �

4.2.2 Patches and projective covers

In this subsection, we relate strips and patches in a fashion that emulates string modules and projective

covers.

4.2.18. Proposition. Any peak p q is the top row of exactly one patch.

Proof. Lemma 4.1.17 implies that each peak is the top of at most one patch; what remains is the “at least”

argument. If p and q are both blank then the peak is the top of the blank patch. If neither is blank then the

assumption s(p)† = s(q) ensures they are the top of some patch constructed in Subsection 4.1.1. If exactly

one of p, q is blank then the peak is the top row of the unique amended version of a patch constructioned in

the previous sentence. �

4.2.19. Corollary. Any strip is the top row of a well-defined line of patches.

Proof. We can view a strip as a line of peaks. Each of which is the top of some patch by the previous

lemma, whence we obtain the line of patches. �

4.2.20. Proposition. If the strip w is the top row of a line of patches, then P(Strw) is the direct sum of the

associated projectives (using the association given in Definition 4.1.18).

Proof. We know from Proposition 4.2.18 that to any nonblank peak of w we may associate some

nonblank, nonvirtual patch and hence some indecomposable projective Pi. We know from Proposition

4.2.17 that the nonblank peaks of w correspond to the source vertice in the corresponding string graph.

These source vertices are a basis of (Strw)/(rad(Strw)), and each is fixed by exactly one primitive

idempotent ej . Clearly i = j for each nonblank peak of w and the result follows. �

4.2.21. Running example. Let w :=
(

1 1 2 2 1 1 2α β δ γ α γ )
. We find that P(Strw) is given

in Figure 4.18b. This module is represented by the line of patches in Figure 4.18a, whose top row is a strip

representing w.

4.2.22. Patch covers. We consequently define the patch cover Pw of a strip w to be the corresponding line

of patches, given in Corollary 4.2.19. We emphasise that this line is “infinite in both directions”, featuring

blank patches on either end as necessary.
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· · · · · ·

· · · · · ·

e αβ δ γ γα e′

γα γ δ2 α δ2

(a) Line of patches from a strip.

e1A

βA

βγA

βγαA

αA

αβA

e2A

δA

δ2A

δ3A

γA

γαA

e2A

γA

γαA

δA

δ2A

δ3A

β

γ

α

α

β

γ

δ

δ

δ

γ

α

δ

δ

δ

γ

α

(b) Corresponding projective module.

Figure 4.18. An example of a patch cover. The top row of (a) is a strip representing the string module Strw .
This uniquely determines the line of patches in the rest of (a), a line which models the projective module in (b).

4.2.3 Syzygy algorithm

We know that any strip w has a patch cover Pw, the bottom row of which either does or does not contain

virtual syllables. These cases respectively correspond to whether w does or does not represent the socle-

quotient of a pin module. In the latter case, the bottom row of Pw specifies the support of several strips

wr (indexed by r) such that Ω1(Strw) =
⊕

r Str(wr). In the former case, the bottom row of Pw does not

specify a strip directly. Rather, it forms the top row of a second line of patches, the bottom row of which is

a strip representing Ω1(Strw).

We advise the reader that strips representing socle-quotients of pin modules are exceptional and often

require special attention. They are either the subject of bespoke claims or exempted from general ones; this

distinction will always be made clear when necessary.

We also comment that, by excluding socle-quotient strips w, we ensure that virtual syllables will not

enter into discussion.

Syzygy of a strip that does not represent the socle-quotient of a pin module

4.2.23. Segments. Let w be any strip (socle-quotients of pin modules allowed) and let Pw its patch cover.

Recall that the columns of w and of Pw are indexed by Z. Any cell belongs to a single patch and any cell

has a unique peak neighbour and a unique valley neighbour. Neighbours always lie in the same row.
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Consider the equivalence relation ∼ defined on cells of the bottom row of Pw and generated by the

following properties: (a) a cell is always ∼-related to its peak neighbour; and (b) a cell is ∼-related to its

valley neighbour unless they belong to a patch associated to a projective string module.

We call the ∼-equivalence classes the segments of Pw.

4.2.24. Proposition. Suppose the strip w does not represent the socle-quotient of a pin module.

(a) The restriction of Pw to any segment of w gives the support of a valid strip wr .

(b) Those strips wr (indexed by r) represent the direct summands of Ω1(Strw); that is, Ω1(Strw) ∼=
⊕

r Str(wr).

Proof of (a). Fix a segment of Pw and let v be the corresponding restriction. To prove that v, extended

by blank values where necessary, is a strip we must show that any putative peak is indeed a peak, that any

putative valley is indeed a valley, and that v satisfies the concavity property. Here, by putative peak or valley,

we mean a neighbouring pair of syllables with orientations −1 +1 or +1 −1 .

We first consider a putative peak q q′ . We certainly know that in the top row above it is a valley

p p′ so there are three possibilities in the terminology of Figure 4.17: it is either an interior valley, a

boundary valley or a blank valley. If it is an interior valley, then by Lemma 4.1.16(d) we have q = p∇ and

q′ = p′∇ and by calculation s(q) = t(p) and s(q′) = t(p′), which together mean

s(q)† = t(p)† = t(p′) = s(q′),

and so the putative peak truly is a peak, and an interior peak at that. If the putative peak is a boundary or

blank valley then at least of one of p or p′ is a blank syllable, which must lie in a blank patch by concavity

of w; this forces at least one of q or q′ to be blank and so, again, the syllables do form a peak.

Next we consider a potential valley q q′ . Clearly this potential valley is the bottom row of a single

patch; that patch must represent some projective module. If the patch is blank (and the projective module

zero), its bottom row is blank and therefore a valley. If the patch represents a projective string module,

then only one cell lies in the segment v. The entry (say q) of that cell is p∇ for some syllable p satisfying

bs(p) = 1, implying q is either blank or a boundary syllable and so the potential valley is either a blank or

boundary valley. If the patch represents a pin module, then we deduce that validity of the valley from parts

(b) and (c) of Lemma 4.1.19.

It only remains to prove concavity of v. Any positions outside the segment of v have blank values so

it suffices to consider those columns supported by the segment. Suppose for contradiction that there are

columns indexed by integers k < ` < k′ such that v(k), v(k′) are nonblank but v(`) is blank.

We claim that, since v(k) is nonblank, at least one of w(k − 1), w(k), w(k + 1) is nonblank. If w is
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p p′

q q′

Figure 4.19. Notation for syllables in patchX .

blank in all three columns k − 1, k, k + 1 then the unique patch encompassing column k is blank in the top

row and so blank entirely, hence v(k) is blank; our claim follows by contrapositive. In the same fashion we

deduce that at least one of w(k′ − 1), w(k′), w(k′ + 1) is nonblank.

We know that k + 1 6 l 6 k′ − 1 and so, by concavity of w, w(`) is nonblank. But recall v(`) is blank

also. The only possibility is that w(`) is some boundary syllable. This forces w to be blank either on all

columns to the left or to the right of `, by the concavity and valley properties of strips, which means that

either the patch through column k or that through column k′ is blank, hence at least of one of v(k) or v(k′)

must be blank. This is our desired contradiction.

Proof of (b). We know that the top row of Pw is the strip w and, thanks to part (a), that the bottom row

also specifies a family of strips wr (indexed by r). Using Proposition 4.2.17 we can turn these strips into

string modules Strw and Strwr with prescribed bases. The following argument will establish that there is

a basis of the projective module P(Str(w)) defined using the combinatorial data of the patch cover Pw and

admitting a partition into a top and bottom part, mirroring the top and bottom rows of Pw. The basis vectors

of the bottom part correspond to the prescribed basis of
⊕

r Strwr and span a submodule of P(Strw),

modulo which the basis vectors of the top part give rise to the prescribed basis of Str(w). The canonical

inclusion and projection maps of this basis of P(Strw) therefore yield a short exact sequence

0
⊕
r

Strwr P(Strw) Strw 0,

whence Ω1(Strw) ∼=
⊕

r Str(wr) as claimed. We advise the reader that the abstract argument pursued in

our proof is perhaps more clearly understood through the concrete example that follows it.

For an initial basis of P(Strw), let us take the disjoint union of the standard bases of its direct summands.

We will alter this basis patch by patch.

Let X be a patch in Pw; if X is an amended patch, then without loss of generality replace X by the

original patch from which it was amended. Write PX for the indecomposable projective associated to X .

Denote the syllables of X by p,p′, q, q′ as in Figure 4.19. Write p for the compression
(
i ◦

`+ε )
of the

syllable p =
(
i ◦ ◦

` ε )
and, similarly, p′ for the compression of p′. By definition these compressions

are both nonstationary paths in O.
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e1A

βA

βγA

βγαA

αA

αβA

e2A

δA

δ2A

δ3A
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γαA
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γαA

δA
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δ3A

β

γ

α

α

β

γ

δ

δ

δ

γ

α

δ

δ

δ

γ

α

T

B

(a) Module P(Str v2) with basis T ∪B

e1A

αA

αβA

e2A

γA

γA

e2A

α

β δ γ α

γ

(b) Module Str(v2) with basis T

βA

βγA

βγαA

(αβA)− (δA)

δ2A

δ3A

γαA

(γA)− (γαA)

δA

δ2A

δ3A

γ

α γ δ

δ

α

δ

δ

(c) Module Ω1(Str v2) with basis B

Figure 4.20. Example of syzygy-friendly basis.

The paths comparable with p, p′ in the prefix order represent basis vectors of PX . We will divide the

basis into two parts: an upper part and a lower part. In the upper part, we place all basis vectors represented

by strict prefixes of p and p′. In the lower part, we place all basic vectors represented by paths having p or

p′ as strict prefix. This leaves undetermined the fate of vectors represented by p or p′.

If p is boundary, then we place the vector represented by p in the lower part; likewise with p′ if p′

is boundary. If p is interior, then it necessarily appears in a valley u p next to another interior

syllable u, whose compression we denote u. We know u represents some basis vector of a neighbouring

indecomposable direct summand of P(Strw). We replace {u, p} in the basis of P(Strw) by {u, u − p},

and then place u in the upper part and u− p in the lower part. Symmetrically, if p′ is interior then it occurs

in a valley p′ u′ neighbouring an interior syllable u′, and we replace {p′, u′} in the basis of P(Strw)

by {p′, p′ − u′}, where u′ denotes the compression of u′.

Performing these changes for all patches X yields a well-defined, bipartitioned basis for P(Strw).

The basis vectors of the lower part span a submodule of P(Strw). Observe that the basis vectors
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· · · · · ·

· · · · · ·

γα δ2 αβ βγ γα δ2 αβ βγ γα δ2

β δ γ α β δ γ α β δ

Figure 4.21. Syzygy of an infinite-dimensional string module.

represented by the compression of a boundary syllable, or by differences u−p or p′−u′ of compressions of

interior syllables, span the head, and each α ∈ Q1 annihilates at least one component of any such difference.

Any vector not so annihilated is mapped to (some linear multiple of) another vector in the lower part.

Remaining basis vectors in the lower part, represented by strict superpaths of the paths p, p′, are annihilated

by all A-arrows save at most one. We deduce that the lower part is just the standard basis for
⊕

r Strwr, up

to rescaling.

Modulo the lower basis vectors, compressions p, u or u, p′ of neighbouring interior syllables are identi-

fied. We therefore retrieve the standard basis for Strw. The result follows. �

4.2.25. Running example. We take up the calculation from Figures 4.13b, 4.15 and 4.18 that

Ω1(Str v2) = Str
(

2 1 1 2 2 2
γ α γ δ δ )

⊕ Str
(

1 1α )
⊕ Str

(
2 2 2δ δ )

.

The patch cover Pv2 designates a basis T ∪ B of P(Str v2), as described above and illustrated in Figure

4.20a. The basisB spans the submodule Ω1(Str v2), while the residue of T moduloB is a basis of Str(v2).

These are seen in Figures 4.20b and 4.20c.

4.2.26. Remark. Thanks to the careful phrasing of the preceding proposition and proof, the results hold for

infinite-dimensional string modules too.

4.2.27. Running example. Consider the infinite-dimensional string module

Str
( · · · 1 1 2 2 2 1 1 2 1 1 2 2 2 1 1 2 1 · · ·α γ δ δ β α β γ α γ δ δ β α β γ )

,

whose string graph is an infinite repetition of
(
γα
)−1(

δ2
)(
αβ
)−1(

βγ
)
. Its syzygy is a direct sum of

countably many copies of Str
(

2 2 1 1 2δ γ α β )
. This can be calculated using our formalism, as in

the Figure 4.21.
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· · · · · ·

· · · · · ·

· · · · · ·

i ı†

j †

0 j 0†

Figure 4.22. Syzygies of socle-quotients of pin modules. The top row is w, a strip representing a socle-quotient

of a pin module. Its nonblank entries are pin-boundary syllables i ◦ ◦
ai−1 1

and ı† ◦ ◦
a
ı†−1

1
.

The nonblank entries of the middle row are virtual syllables j ◦ ◦
0 0

and † ◦ ◦
0 0

, for j = i− ai.

The nonblank entries of the bottom row are stationary syllables j ◦ ◦
0 1

and † ◦ ◦
0 1

. The bottom
row is a strip representing the simple module at a particular vertex, namely that represented by j and †.

Each (appropriate) 2× 2-region in the figure is a patch.

Syzygy of a strip that does represent the socle-quotient of a pin module

4.2.28. Proposition. If the strip w does represent the socle-quotient P/ socP of a pin module P , then the

bottom row of Pw has a single segment that is blank except for two virtual patches.

Moreover, the bottom row of Pw is the top row of a new line of (virtual and blank) patches whose bottom

row is a strip representing the simple module socP = Ω1(P/ socP ).

Proof. This holds by construction. It is perhaps most easily articulated through Figure 4.22. �

Syzygy fabric

4.2.29. Syzygy fabric. Fix some strip w representing a string module. We can use the above algorithm to

iteratively construct an array holding all the syzygy information about a given string module. We call this

array the syzygy fabric.

The columns of the array are indexed by Z. The rows are indexed by the vertices of a rooted tree T . We

construct the tree iteratively, specifying the contents of each row as we go.

The induction begins with the root vertex of the tree. We identify this row with the given strip w.

Iteratively, suppose that the tth row is populated with the strip v (for some t ∈ T0). We stipulate that

the child vertices of t correspond to the segments of Pv, and that the entries of that child row equal the

restriction of Pv to the corresponding segment.

4.2.30. Running example. Let us consider the syzygy fabric of Str
(

1 1 2 2 2 2α β δ δ δ )
; this
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· · · · · ·
s(β) αβδ3 s(γ)

· · · · · ·
γα γ s(δ)

· · · · · ·
α

(a)

(b)

(c)

· · · · · ·
γα γ s(δ)

· · · · · ·
δ2

· · · · · ·
s(β) α

· · · · · ·
δ2

(b)

(d)

(c)

(d)

· · · · · ·
s(β) α

· · · · · ·
γα γ

(c)

(b)

· · · · · ·
δ2

· · · · · ·
α

· · · · · ·
s(δ)

(d)

(c)

(e)

· · · · · ·
s(δ)

· · · · · ·
δ2

· · · · · ·
α

(e)

(d)

(c)

Figure 4.23. Parts of the the syzygy fabric of Str
(

1 1 2 2 2 2α β δ δ δ )
= E2.

string module is also the indecomposable injective module E2.

First, let us describe the tree T indexing the rows of this array. This tree T is constructed as the limit of

an increasing sequence T(0) ⊆ T(1) ⊆ T(2) ⊆ · · · of trees. The initial tree T(0) comprises a single vertex,
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labelled (a), and no arrows. Then, to any leaf vertex of the kth tree T(k), we read the label of the leaf and

add child vertices according to the following scheme; this process yields T(k+1).

(a)

(b) (c)

(b)

(d) (c) (d)

(c)

(b)

(d)

(c) (e)

(e)

(d) (c)

So, for example, any leaf of T(k) that is labelled (a) earns child vertices in T(k+1) respectively labelled (b)

and (c), while a leaf labelled (b) earns child vertices labelled (d), (c) and (d), and so on.

How these rows are populated is illustrated in Figure 4.23. By piecing together the fabric one row to

next, we complete the array in the limit.
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Chapter 5

Syzygy patterns and applications to

homological questions

5.1 Interlude on associated topics

We hit pause on our string-and-syzygy focus to explore other pertinent areas of theory.

In this section, we prove several results that we will later need. Many of these appear stated in the

literature without proof: a shortcoming we are happy to rectify.

5.1.1 Properties of colocalising subcategories

To begin with, we demonstrate that colocalising subcategories often behave similarly to localising ones.

5.1.1. Products of complexes. Suppose that the members m of some set index a collection of complexes

X•m :=
(
· · · X−1

m X0
m X1

m X2
m · · ·d−1

m d0m d1m )
. The obvious termwise product of these

complexes, having for kth term the product
∏
mX

k
m of kth terms and for kth boundary map the product

∏
m d

k
m of kth boundary maps, is indeed the categorical product of the X•m in Ch(A).

5.1.2. Inverse limits as cokernels. A small diagram inCh(A), comprising a set of morphisms connecting

a set {X•m : m} of objects, yields a morphism F • :
∏
mX

•
m

∏
mX

•
m (a morphism which, to be clear,

also lives in Ch(A)). One such small diagram is an inverse system of Ch(A)-morphisms:

∆ :=
(
· · · X•3 X•2 X•1 X•0

f•3 f•2 f•1 )
.

(We mention that this inverse system in Ch(A) gives rise to an inverse system in Mod-A for each k ∈ Z,
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namely the system comprising the kth terms of each object and morphism.)

The inverse system ∆ can be encoded using the morphism F • :
∏
m>0X

•
m

∏
m>0X

•
m, whose

nonzero components are the identity morphisms and the transition maps −f•m+1 : X•m+1 X•m. We may

draw F • as follows, in a manner evoking the separated quiver construction for quivers.

∏
mX

•
m

(
· · · X•3 X•2 X•1 X•0

)

∏
mX

•
m

(
· · · X•3 X•2 X•1 X•0

)
F•

−f•3 −f•2 −f•1
(5.1)

The kernel and cokernel of F • are noteworthy.

One can calculate that kerF • = lim←−∆. Unfortunately, there is no guarantee in general that cokerF • =

0. Hence the exact sequence

0 kerF •
∏
mX

•
m

∏
mX

•
m cokerF • 0

lim←−∆

F•

(5.2)

is typically not a short one (confer [Wei94, §3.5]).

This should be contrasted with a dual situation, whereby a direct limit of a direct system may be encoded

as the cokernel of a morphism G• :
⊕

mX
•
m

⊕
mX

•
m on the coproduct. In other words, for any direct

system Θ there existsG• for which cokerG• = lim−→Θ, constructed analogously to F • above. One calculates

in such a case that kerG• = 0 always.

5.1.3. The Mittag-Leffler condition. Thankfully there are meaningful circumstances in which an F • as

above has cokerF • = 0. At least one such circumstance is captured by the following criterion [Wei94,

§3.5]

Let ∆ be an inverse system of Ch(A)-morphisms f•m+1 : X•m+1 X•m (m > 0) that we encode as a

morphism F •, as in passage 5.1.2.

We know that, for each degree k ∈ Z, ∆ induces an inverse system ∆k of module homomorphisms

fkm+1 : Xk
m+1 Xk

m. The inverse system ∆k satisfies the Mittag-Leffler condition if the descending

sequence

· · · ⊆ im(fkm+3f
k
m+2f

k
m+1) ⊆ im(fkm+2f

k
m+1) ⊆ im(fkm+1) ⊆ Xk

m

of images stabilises for each m > 0. This occurs when Xk
m is finite dimensional for each m, for instance,

or when each fkm+1 is surjective.

5.1.4. Lemma. [Wei94, Prop 3.5.7] Let ∆k be as above. If ∆k satisfies the Mittag-Leffler condition, then

the kth term of cokerF • is zero.
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5.1.5. Corollary. Let F •,∆,∆k be as above. If ∆k satisfies the Mittag-Leffler condition for each k ∈ Z,

then cokerF • = 0.

5.1.6. We are now able to give a list of properties for colocalising subcategories, roughly analogous to

Proposition 2.2.47.

5.1.7. Proposition. Let C be a colocalising subcategory of D(A).

(a) (i) If
(
0 X• Y • Z• 0

)
is a short exact sequence of complexes and two of the three

objects X•, Y •, Z• are in C, then so is the third.

(ii) If a complex X• is in C, then so is X•[r] for every r ∈ Z.

(iii) If X• and Y • are quasiisomorphic complexes and X• is in C, then so is Y •.

(iv) If {X•i : i ∈ I} is a set of objects of C, then
∏
i∈I X

•
i is in C.

(b) If X•
∏
Y • is in C, then so are X• and Y •.

(c) If X• is a bounded complex, where the module Xk is in C for every k ∈ Z, then X• is in C.

(d) If
(
· · · X•3 X•2 X•1 X•0

f•3 f•2 f•1 )
is an inverse system of Ch(A)-morphisms between

complexes X•m, if each resulting inverse system
(
· · · Xk

3 Xk
2 Xk

1 Xk
0

fk3 fk2 fk1 )
of kth

terms satisfies the Mittag-Leffler condition and if furthermore each complex X•m belongs to C, then

lim←−X
•
m is in C.

(e) If X• is a bounded-below complex of modules Xk (k ∈ Z), each of which is in C, then X• is in C.

Proof.Much of the proof proceeds in the same fashion as that of [Ric19, Prop 2.1]. Part (a) is a concrete

description of a colocalising subcategory. Part (b) follows from the same take on the Eilenberg swindle

used by Rickard, with the additional comment thatX•
∏
Y • = X•⊕Y • sinceX•∏Y • has finitely many

factors. Part (c) results from the same induction on the length of the support of X•. To prove parts (d) and

(e), however, requires careful use of the Mittag-Leffler condition.

We address part (d) first. As we did before in Passages 5.1.2 and 5.1.3, encode the inverse system as

a Ch(A)-morphism F • :
∏
m>0X

•
m

∏
m>0X

•
m. The Mittag-Leffler assumption ensures that we may

apply Corollary 5.1.5 and conclude that cokerF • = 0. This yields a short exact sequence

0 lim←−X
•
m = kerF •

∏
mX

•
m

∏
mX

•
m 0F• .

whose middle term and righthand term belong toC by assumption and part (a)(iv), so the result follows by

part (a)(i).

Now for part (e), assume X• is supported in nonnegative degrees. (By part (a)(ii) this is no loss

of generality.) For m > 0 let σm(X•) :=
(
· · · 0 X0 · · · Xm 0 · · ·

)
be the brutal
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X• · · · 0 X0 X1 X2 X3 · · ·

...
...

...
...

...
...

σ62(X•) · · · 0 X0 X1 X2 0 · · ·

σ61(X•) · · · 0 X0 X1 0 0 · · ·

σ60(X•) · · · 0 X0 0 0 0 · · ·

Figure 5.1. A bounded-below complexX• is an inverse limit of its brutal truncations σ6m(X•). The components
of each morphism σ6(m+1)(X•) σ6m(X•) are all surjections, being either maps onto 0 or identity maps
Xk Xk. Thus the inverse system of kth terms satisfies the Mittag-Leffler condition, for any k ∈ Z.

truncation of X• below m. Each truncation is a bounded complex of members of C by assumption, so in

C by part (c).

One finds that X• is the inverse limit of its brutal truncations: this inverse system is shown vertically

on the lefthand side of Figure 5.1, and its contents are laid bare on the righthand side. As the caption to

the figure makes clear, the inverse system of kth terms satisfies the Mittag-Leffler condition for each k ∈ Z,

therefore its inverse limit X• belongs to C by part (d). This establishes part (e), concluding the proof. �

5.1.2 Band modules

Next, we take a detour to explore band modules and their syzygies. This is important for our investigation

of syzygy-finiteness of an SB algebra later.

5.1.8. Finite powers of string graphs. Call a connected string graph w with at least one arrow powerable

if it has two sink vertices i, j, both with indegree 1 and such that w(i) = w(j) but w(t−1(i)) 6= w(t−1(j)).

The mth power wm (m > 1) of any powerable string graph w with sink vertices i 6= j both having

indegree 1, is the string graph obtained from m disjoint copies of w by identifying the rth copy of j with

the (r + 1)th copy of i. Observe that wm is powerable too.

A string graph v is primitive if it is not wm for any string graph w and integerm > 2. Every powerable

finite string graph is a power of some primitive powerable string graph.

5.1.9. Biinfinite powers of string graphs. If w is a powerable string graph with sink vertices i 6= j, both

of degree 1, then we write ŵ for the biinfinite power · · ·www · · · of w, formed from the Z-indexed disjoint

union of copies of w by identifying the rth copy of j with the (r + 1)th copy of i.
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5.1.10. Running example. Two examples of powerable string graphs for A are

(
1 1 2 1 1 2 1α β γ α β γ )

and
(

1 1 2 2 2 1 1 2 1α γ δ δ β α β γ )
.

The former is w2 for w :=
(

1 1 2 1α β γ )
. The latter is primitive.

5.1.11. Band graph. A band graph (for A) is a quiver homomorphism w : G Q such that:

(a) the underlying (undirected) graph of G is a connected cycle;

(b) (i) for any subgraph
(
◦ i ◦x y )

of G featuring a source vertex i and its two outgoing arrows,

we have w(x) 6= w(y);

(ii) for any subgraph
(
◦ i ◦x y )

of G featuring a sink vertex i and its two incoming arrows,

we have w(x) 6= w(y);

(c) for any path
(
◦ ◦ · · · ◦x1 x2 x` )

in G, the A-path p := w(x1x2 · · ·x`) is linearly independent of

any other A-path.

As with string graphs, we depict a band graph as a labelled graph, each vertex v or arrow x being labelled

by w(v) or w(x).

5.1.12. Bands from string graphs. Let w be any powerable string with sink vertices i 6= j both having

indegree 1. Identifying i and j yields a band graph.

Every band graph v is obtained in this fashion from some powerable string graph wm.

5.1.13. Band modules. We follow the notation of [HZ16, §1].

Let v be a primitive string graph with sink vertices i 6= j both having indegree 1, let m > 1 and let

ψ : km km be an indecomposable vector-space automorphism with companion matrix as in Figure 5.2.

Let ir (1 6 r 6 m) for the m vertices of vm corresponding to i and, abusing notation, also write j for

the sink vertex of vm corresponding to themth copy of j. Each of these vertices is a basis vector of Str(vr),

and all of these particular basis vectors are fixed by a unique vertex idempotent ek of A. It follows that j

and the ir each span an isomorphic simple submodule of Str(vm).

The band module Bnd(vm, ψ) is the quotient Str(vm)/〈j −∑m
r=1 λrir〉.

5.1.14. Huisgen-Zimmermann states the following results in [HZ16] but directs the interested reader to a

forthcoming PhD thesis [Gal] for the proof. We cannot find any trace of this thesis in the literature so, in its

absence, we supply our own proofs.

5.1.15. Proposition. Let v be a primitive string graph and let v̂ be the corresponding biinfinite power.

Moreover, let m be any positive integer and ψ an indecomposable automorphism of km with companion
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0 0 0 · · · 0 0 λ1

1 0 0 · · · 0 0 λ2

0 1 0 · · · 0 0 λ3

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 λm−2

0 0 0 · · · 1 0 λm−1

0 0 0 · · · 0 1 λm




Figure 5.2. Companion matrix

matrix as in Figure 5.2. Then the following statements are equivalent.

(a) The syzygy Ω1(Bnd(vm, ψ)) is a band module

(b) The syzygy Ω1(Str v̂) is an indecomposable, infinite-dimensional string module.

(c) None of the indecomposable direct summands of P(Str v) is a string module; that is, they are all pin.

If these conditions fail to be satisfied, then Ω1(Bnd(vm, ψ)) is a direct sum of string modules.

Proof. The equivalence of (b) and (c) follows from our implementation of the syzygy algorithm in

Propositions 4.2.24 and 4.2.28. It suffices to recognise that direct summands of Ω1(Str v̂) correspond to

segments, and distinct segments arise from string direct summands of P(Str v̂).

Towards proving that (a) is equivalent to (c), we will reconstruct Bnd(vm, ψ) as a quotient of its

projective cover P(Bnd(vm, ψ)) = P(Str vm) = P(Str v)⊕m. Let p1, q1, . . . , p`, q` be the A-paths such

that (for subscripts r taken modulo `) pr 6= qr are the longest paths in the band graph v whose source is a

given source vertex while qr 6= pr+1 are the longest paths whose target is a given sink vertex. Let ir be the

Q-vertex with s(pr) = s(qr) = ir, so that P(Bnd(vm, ψ)) = (Pi1 ⊕ · · · ⊕ Pi`)⊕m. Finally, let zr,s denote

the generator eir of the sth copy of Pir = eirA in this direct sum (for 1 6 r 6 `, 1 6 s 6 m).

In this notation, we have that Bnd(vm, ψ) is the quotient of (Pi1 ⊕ · · · ⊕ Pi`)⊕m by the submodule X

generated by the following elements:

zr,sqr + zr+1,spr+1 (1 6 r < `, 1 6 s 6 m),

z`,sq` + z1,s+1p1 (1 6 s < m),

z`,mq` −
m∑
s=1

λsz1,sp1.

(5.3)

By construction, we have that X = Ω1(Bnd(vm, ψ)).

It is easy to identify radX . Towards this goal, let αr be the unique arrow such that prαr is nonzero in

A if such an arrow exists, or 0 otherwise. Similarly, let βr be the unique arrow such that qrβr is nonzero in

A, or 0 if no such arrow exists. We know that generators of radX = X radA are given by acting on the

generators of X by arrows γ. We find that, if we act on any generator in (5.3) by any arrow γ, we obtain 0
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except in the following cases.

(zr,sqr + zr+1,spr+1)βr = zr,sqrβr

(zr,sqr + zr+1,spr+1)αr+1 = zr+1,spr+1αr+1





(1 6 r < `, 1 6 s 6 m) (5.4)

(z`,sq` + z1,s+1p1)β` = z`,sq`β`

(z`,sq` + z1,s+1p1)α1 = z1,s+1p1α1





(1 6 s < m) (5.5)

(z`,mq` −
m∑
s=1

λsz1,sp1)β` = z`,mq`β`

(z`,mq` −
m∑
s=1

λsz1,sp1)α1 = −
m∑
s=1

λsz1,sp1α1

(5.6)

(It is possible that some of these quantities are 0 also.) Consider the final element,−∑m
s=1 λsz1,sp1α. This

is a k-linear sum of elements z1,sp1α1. Aside from the first such element z1,1p1α1, these all appear in (5.5).

Therefore the submodule of (Pi1 ⊕ · · · ⊕ Pi`)⊕m generated by the elements in (5.4), (5.5) and (5.6) equals

〈zr,sprαr, zr,sqrβr : 1 6 r 6 `, 1 6 s 6 m〉 =

m⊕

s=1

〈zr,sprαr, zr,sqrβr : 1 6 r 6 `〉.

The sth direct summand of the righthand expression is just the sum of the principal right ideals prαrA and

qrβrA inside the sth copy of Pir . In a given copy, we have prαrA ∩ qrαrA = 0 iff Pir is not pin.

Consider the following two statements.

(a) For each generator g of X given in (5.3), there are distinct arrows α, β with gα 6= 0 6= gβ.

(b) For each simple direct summand S of socX , there are generators g, h ofX given in (5.3) and distinct

arrows α, β such that S 6 〈gα, hβ〉.

Our characterisation of radX and Lemma (c) imply that these statements are both simultaneously true iff

all direct summands Pir are pin. When they are both true, it is clear that X is a band module. When either

is false, we deduce that X is string. This gives the desired result. �

5.1.16. Recall from Passage 2.2.13 that socX denotes the largest semisimple submodule of X , which is

called the socle ofX , and that hdX denotes the largest semisimple quotient ofX , which is called the head

of X and is isomorphic to X/ radX .

5.1.17. Corollary. Suppose all indecomposable direct summands of P(Bnd(vm, ψ)) are pin. Then

soc(Bnd(vm, ψ)) ∼= hd(Ω1(Bnd(vm, ψ))).

5.1.18. Corollary. Suppose all indecomposable direct summands of P(Bnd(vm, ψ)) are pin. Then

soc(P(Bnd(vm, ψ))) ∼= hd(Ω2(Bnd(vm, ψ))).
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5.1.19. Corollary. Suppose all indecomposable direct summands of P(Bnd(vm, ψ)) are pin and that

pr, qr (1 6 r 6 `) are the longest paths in the band graph v, as in the proof of Proposition 5.1.15. Suppose

further that ur, vr are A-paths such that prur and qrvr are components of commutativity relations.

Then Ω1(Bnd(vm, ψ)) = Bnd(wm, ϕ), where the longest paths in the band graph w are vr and ur+1,

and where ϕ is some linear automorphism km km.

Proof. All of these follow from our construction of Ω1(Bnd(vm, ψ)) above. �

5.1.3 Width of strips

We will be interested in results about syzygy-finiteness of certain string modules. This is equivalent to the

existence of a bound on widths of indecomposable summands of string modules, as this subsection makes

clear.

5.1.20. Width of a string graph. Our previous definition of width for strips coincides with the following

definition for string graphs and string modules.

The width widw of a finite, indecomposable string w : G Q is

widw :=
∣∣{v ∈ G0 : v is a sink or a source vertex}

∣∣− 1,

and, in general, we define width of a string as the sum of the widths of its indecomposable parts. The width

of an infinite string is +∞.

5.1.21. Remarks. (a) We highlight that wid(w) depends only on the (connected) source quiver G rather

than the image of any vertex or arrow.

(b) A string has width 0 iff its domain has no arrows.

(c) A connected string has width 1 iff its domain is an equioriented linear subgraph ◦ ◦ · · · ◦

(containing at least one arrow).

(d) ProvidedG contains at least one arrow, widw is the number of distinct equioriented linear subgraphs

of G whose source and target are respectively source and sink vertices of G.

5.1.22. Running example. In our example algebra, P2 is a string module Str
(

1 1 2 2 2 2α γ δ δ δ )

with width 2, while Str
(

2 1 1 2 2 2
γ α γ δ δ )

is a string module of width 3. There are string mod-

ules of arbitrary evenwidth having form Str
(

1 1 2 1 1 2 1 · · · 1 1 2 1α β γ α β γ α β γ )
.

Emulating this construction but omitting the leftmost vertex and incident arrow, we construct string modules

of arbitrary odd width.

5.1.23. The following proposition and corollary establish that we can approximate the vector-space dimen-
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sion of a string module using width.

5.1.24. Proposition. Let m > 0 be the smallest integer such that Jm = 0; here J P A is the Jacobson

radical of A. If Str(w) is a nonzero string module for A, then

wid(Strw) + 1 6 dimk(Strw) < mwid(Strw) + 1.

Proof. Ifw is empty, then the inequality becomes 0 6 0 < 1, a triviality. Otherwise it suffices to assume

that w : G Q is indecomposable because width and vector-space dimension are additive with respective

to indecomposables. If G contains no arrows, the inequality becomes 1 6 1 < m + 1: another triviality.

Hence assume that G contains at least one arrow. Since G is connected and linear, |G0| = |G1|+ 1.

For any equioriented linear subgraph ◦ ◦ · · · ◦x1 x2 x` featuring at least one arrow, condition 2.2.24(c)

assures that w(x1 · · ·xl) has nonzero residue in A; thus 1 6 l < m. We know that G is the combination of

widw maximal such subgraphs, which implies widw 6 |G1| < mwid(w). The result follows immediately

since dimk(Strw) = |G0| = |G1|+ 1. �

5.1.25. Corollary. If (wk)k>0 is a sequence of string graphs for A, then either of

(
wid(Strwk)

)
k>0

and
(

dimk(Strwk)
)
k>0

diverges to +∞ iff the other does. Similarly, one sequence is bounded iff the other is.

5.2 Main results

We now return to our core focus. In this section, we explore the syzygy behaviour of string modules and

the ramifications thereof in the derived category of an SB algebra. We also provide compelling evidence

towards our conjectured result, that the injective (string) modules of an SB algebra have finite syzygy type

(a term that we define in Passage 5.2.6).

5.2.0 Results in context

To help the reader contextualise our results, we discuss in this subsection certain properties that the syzygies

of a module may satisfy and, in particular, the impact of canonical classes of modules satisfying them.

Many syzygy patterns, generally to do with some notion of repetition, have been studied extensively

before, often in the context of the finitistic dimension conjectures as in [GHZ98]. Rickard picked up this
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line of research in his investigation of triangulated subcategories ofD(A) [Ric19, §7], albeit using the dual

notion of cosyzygies rather than syzygies. There, he pays particular attention to the patterns seen amongst

cosyzygies of simple or projective modules.

We introduce several interrelated patterns below and explore circumstances in which certain modules

exhibit them. None of the proofs appearing here are original – they all appear in Rickard’s article [Ric19] if

not earlier – but the arguments serve as so strong a motivation for the work in this thesis that their omission

would be a sin. Once we have an abstract grasp of the syzygy properties of interest, we then narrow our

focus onto the simple and injective modules, motivating and explaining in broad terms the results that follow

in this thesis.

Syzygy patterns

5.2.1. Syzygy repetition index. [GHZ98, Def 2.1] (but compare also [Ric19, Def 7.7]). Let X be a

finite-dimensional A-module.

If there exists a k > 0 such that every indecomposable nonprojective direct summand of ΩkX occurs

as a direct summand of ΩrX for infinitely many r, then the syzygy repetition index ofM is the least such

k; if none exists, then this repetition index is∞.

5.2.2. An equivalent formulation. It will prove useful in the sequel to reformulate the above definition.

To this end, fix some finite-dimensional A-module X as above.

For k > 0, let Ak denote the set of isomorphism classes of indecomposable, nonprojective modules Y

such that Y is isomorphic to a direct summand of ΩrX for some r > k and, similarly, let Bk denote the set

of isomorphism classes of indecomposable, nonprojective modules Y for which Y is isomorphic to a direct

summand of ΩrX for some r 6 k.

(We emphasise that the only difference between these two properties is the orientation of the inequality

sign. Informally, we may remember that Ak contains the isoclasses seen at or After the kth syzygy, while

Bk contains those seen at or Before the kth syzygy.)

We evidently have that Ak ⊇ Ak+1 and Bk ⊆ Bk+1 for each k, that each successive set difference

Ak −Ak+1 and Bk+1 − Bk is finite and that clearly B0 itself is finite. Furthermore, the Ak and Bk relate

to one another by the following system of inclusions:

B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆
⋃

r>0

Br = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇
⋂

r>0

Ar. (5.7)

(We know that A0, equalling a countable union B0 ∪
(⋃

r>0(Br+1 − Br)
)
of finite sets, is countable. We

deduce that all the Bk are countable too.)

90



Let Aω :=
⋂
r>0Ar. We easily find that Aω comprises the isoclasses of those modules appearing as

direct summands of ΩrX syzygies of X for infinitely many indices r.

We find that X has syzygy repetition index k iff Ak = Aω (and k is minimal with this property).

5.2.3. Proposition. (Dual in statement and proof to [Ric19, Prop 7.8].) If X has syzygy repetition index

k <∞, then X ∈ Coloc(Proj-A).

Proof. LetX0, X1, X2, . . . be a countable (possibly finite) sequence of nonisomorphic indecomposable

modules representing all the isomorphism classes in Ak = Aω . Write X := {X0, X1, X2, . . . }

LetZ := (
∏
t>0Xt)

∏
ω be the direct product ofωmany copies of each indecomposable inX . Evidently

Ωk+1X itself is a direct factor of Z.

By taking the direct product
∏
r>k+1

(
0 Ω(ΩrX) P(ΩrX) ΩrX 0

)
of each of the

syzygy short exact sequences of the ΩrX , we obtain a short exact sequence whose leftmost and rightmost

terms are each a direct product of countably many copies of each indecomposable in X ; that is, a short exact

sequence having the form
(
0 Z P Z 0

)
where P is projective.

We may splice this sequence together with itself to obtain a exact sequence

(
0 Z P P P P · · ·

)

inCh(Mod-A), which yields a quasiisomorphism inCh(Mod-A) between the complex containing onlyZ

in degree 0 and the complex
(
· · · 0 0 P P P · · ·

)
supported in nonnegative degrees.

The latter is a bounded-below complex of projectives, which belongs to Coloc(Proj-A) by part (e) of

Proposition 5.1.7. The former, being quasiisomorphic to it, belongs there too by part (iii) of the same result.

Since Ωk+1X is a direct factor of Z, part (b) of this proposition shows X ∈ Coloc(Proj-A), as claimed.

The final step is to observe that the standard syzygy short exact sequences may be spliced together to give

an exact sequence
(
0 Ωk+1X P(ΩkX) P(Ωk−1X) · · · P(Ω1X) PX X 0

)
.

Similarly to the previous paragraph, this exact complex corresponds to a quasiisomorphism in Ch(A)

between the concentration in degree 0 of X and the complex

· · · 0 Ωk+1X P(ΩkX) P(Ωk−1X) · · · P(Ω1X) PX 0 0 · · ·

supported in degrees−(k+ 1) 6 r 6 0. SinceX is quasiisomorphic to a bounded complex of members of

Coloc(Proj-A), we conclude that X ∈ Coloc(Proj-A) as well. This completes the proof. �

5.2.4. Weakly periodic. A finite-dimensional module X is weakly periodic if X is isomorphic to a direct

summand of ΩkX for some k > 1.
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5.2.5. Proposition. If X is weakly periodic, then X ∈ Coloc(Proj-A).

Proof. To fix notation, suppose that k > 0 and Y ∈mod-A satisfy ΩkX ∼= X ⊕ Y .

Observe that for r > 0 we have Ωr+kX ∼= Ωr(ΩkX) ∼= Ωr(X ⊕ Y ) ∼= (ΩrX) ⊕ (Ωr Y ), and so

ΩrX is a direct summand of Ωr+kX . Iteration of this argument shows that ΩrX is a direct summand of

Ωr+`kX for any ` > 0. In particular, any indecomposable direct summand of any ΩrX is isomorphic to a

direct summand of ΩsX for infinitely many s > 0.

We deduce that, in the notation of (5.7), A0 = Aω . Therefore X has syzygy repetition index 0 < ∞.

By Proposition 5.2.3, X ∈ Coloc(Proj-A). �

5.2.6. Syzygy finiteness of a module. A finite-dimensional module X ∈ mod-A is syzygy finite if there

exists a module Y ∈mod-A such that add{ΩrX ∈mod-A : r > 0} = addY.

5.2.7. Proposition. (Dual in statement and proof to [Ric19, Prop 7.2].) If X is syzygy finite, then

X ∈ Coloc(Proj-A).

Proof. ForX to be syzygy finite means precisely thatA0 is finite in the notation of (5.7). It follows that

the descending sequence (Ar)r>0 must stabilise at some index k (assumed minimal), and so X has syzygy

repetition index k <∞. By Proposition 5.2.3, X belongs to Coloc(Proj-A), as claimed.

Simple modules and injective modules

5.2.8. First, let us dualise a proof of Rickard’s to show that the only colocalising subcategory of D(A)

to contain the injective modules is D(A) itself. The only part of Rickard’s argument that needs any real

adjustment is the appeal to the Mittag-Leffler condition.

5.2.9. Proposition. (Dual in statement, and mostly dual in proof, to [Ric19, Prop 2.2].) LetC ⊆ D(A)

be a colocalising subcategory and assume that all injective modules belong to C. Then C = D(A).

Proof. Let X be any A-module. By standard results [Wei94, §2.3], X has an injective resolution
(
0 M E0 E1 E2 · · ·

)
which, similarly to above, induces a quasiisomorphism inCh(A)

between the concentration in degree 0 of M and the complex
(
· · · 0 E0 E1 E2 · · ·

)

having term E0 in degree 0. The latter is a bounded-below complex all of whose terms belong toC, and so

belongs it C as well by Proposition 5.1.7(e). We deduce that X , being quasiisomorphic, lies in C too.

Now let X• :=
(
· · · X−1 X0 X1 X2 · · ·d−1 d0 d1 )

be any complex. For any r 6 0, let

σ>rX• :=
(
· · · 0 coker dr−1 Xr+1 Xr+2 Xr+3 · · ·dr+1 dr+2 )

be the good truncation of X• above r. The kth term of this complex is: Xk when k > r; coker dr−1 when
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k = r and; 0 otherwise. Aside from the rth boundary map coker dr−1 = (Xr/ im dr−1) Xr+1 given

by x+ im dr−1 xdr (which is well-defined, since im dr−1 6 ker dr), all other boundary morphisms are

either dk or 0. These are bounded-below truncations of modules that lie in C so, by part (e) of Proposition

5.1.7, C contains these truncations.

For any r 6 0 there are morphisms σr−1X• σrX• given as follows:

σr−1X•
(
· · · 0 coker dr−2 Xr Xr+1 Xr+2 · · ·

)

σrX•
(
· · · 0 0 coker dr−1 Xr+1 Xr+2 · · ·

)
.

All components of this morphism of complexes are surjections, being variably identity maps Xk Xk,

canonical quotients Xr coker dr−1 = (Xr/ im dr−1) or maps onto 0. We deduce that the resulting

inverse system
(
· · · σ2X• σ1X• σ0X•

)
satisfies the Mittag-Leffler condition. Using part (d) of

Proposition 5.1.7, we find that the inverse limit of this system of truncations belongs to C. However this

inverse limit is patently X•.

We deduce that C contains every complex and so conclude that C = D(A), as claimed. �

5.2.10. In the above argument, what is crucial is that an arbitrary module X can demonstrably be “built”

within the colocalising subcategory using known members. The problem of building an arbitrary module

in the preceding proof was solved by appealing to the existence of injective resolutions; with X found,

no further mention of the injective modules was necessary. However, as Rickard explores, one could

alternatively build X from the simple modules by a familiar semisimple filtration.

5.2.11. Proposition. (Dual in statement and proof to [Ric19, Lem 6.1].) Let C ⊆ D(A) be a

colocalising subcategory and assume that all simple modules belong to C. Then C = D(A).

Proof.Any semisimplemoduleY is a product of simplemodules soY ∈ Coloc(Proj-A) by Proposition

(a)(iv). An arbitrary module X can be built from semisimple modules by finitely many extensions. Part (i)

of this same proposition therefore showsX ∈ Coloc(Proj-A). Now the proof of Proposition 5.2.9 may be

copied verbatim, beginning with the second paragraph, to establish the claim. �

5.2.12. Equipped with this knowledge, Rickard provides examples of algebras where the simples have finite

(co)syzygy type. His reasoning has recourse to several classic results [Ric19, §7] and one ad-hoc argument

[Ric19, §6].

It is not generally true that the simples for SB algebras even have finite syzygy repetition index – the

simple module S1 of our running example algebra being a straightforward witness to this transgression –

and so any effort to prove their syzygy finiteness is certainly doomed.

However, countless calculations by the author found that the injective modules over SB algebras do have

93



finite syzygy type. Of course, injective modules E that are also projective satisfy Ω1E = 0 and so are

syzygy finite in a trivial way. This eliminates the pin modules, reducing the matter only to the study of

injective string modules.

The primary thrust of our research was consequently to prove that injective string modules for SB algebra

are syzygy finite: a statement we conjecture to be true, but cannot yet prove in its entirety. What follows in

the remaining subsections of this chapter are our partial results towards this conjecture. In reverse order, let

us sketch a crude outline of our results.

Our finalmain result, in Subsection 5.2.3, is that this conjecture is truewhenA has at most 2 isomorphism

classes of simple modules. Preceding that discussion, in Subsection 5.2.2 we show a technical result that

deploys our formalism for syzygies in a fundamental way, namely to demonstrate that there is behaviour in

the syzygy fabric suggestive of being syzygy-infinite and that the symbols used to describe injective string

modules do not exhibit this behaviour. Lastly – which is to say initially – we provide in Subsection 5.2.1 a

subclass of SB algebras for which a more general result than our conjecture is true: that in this subclass all

modules are syzygy-finite (in a uniform way).

The algebras in this subclass are those for which a particular associated quiver is acyclic. Acyclic

components of that quiver provide some additional interest, since we can show the existence of syzygy

patterns for simples on such components. Under mild conditions, we prove that those simples belong to

Coloc(Proj-A) and thus dually to Loc(Inj-A). (Briefly, let us remark that, when all components of this

quiver associated to A are acyclic, our proofs therefore demonstrate independently from one another that

the simples and the injectives belong to Coloc(Proj-A) and to Loc(Inj-A).)

5.2.1 Noncycles in pin graphs

5.2.13. Recall thatQ denotes the ordinary quiver of the special biserial algebraA = kQ/〈ρ〉. Additionally

recall that any syllable p is peak-compatible with a unique stationary syllable, namely e(s(p))† , and that the

sidestep operation p e(s(p))† is denoted ♦.

5.2.14. Pin graph. The pin graph ΦA of a SB algebra A is the quiver with vertex setQ0 and with an arrow

i j iff there exists a pin module P with hdP ∼= Si and socP ∼= Sj .

It is sub-1-regular but not necessarily connected. Evidently, ΦAop = (ΦA)op.

We know that ΦA is discrete (has no arrows) iff A is monomial. If it is 1-regular, then A is selfinjective.

5.2.15. Running example. The pin graph of our running example algebra is
(

1 2
)
.
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Simples not on cycles in ΦA

5.2.16. Recall that a finite-dimensional moduleX isweakly periodic ifX is isomorphic to a direct summand

of ΩkX for some k > 1.

5.2.17. Example. We will shortly prove a lemma about the existence of certain weakly periodic uniserial

modules. This general argument is much more straightforward than the prose of the proof suggests, and is

best illustrated with a concrete example. To this end, recall our running example algebra

A := k
(

1 2α
β

γ
δ
)
/
〈
α2, βδ, γβ, δγ, αβγ − βγα, γαβ, δ4

〉
.

Let (O, N,C, †) be the unique permissible data for A. (In particular, O is the unique overquiver for A)

We see that γβ, βδ, δγ have zero residue in A. Taken in order, these arrows form the cycle

2 1 2
γ β

δ

in the presenting quiver. They can be lifted to arrows in O that we also call γ, β, δ, whose sources have

stationary syllables es(γ), es(β), es(δ) respectively.

The composition ∇♦ permutes these stationary syllables: es(γ) es(β) es(δ) es(γ)
∇♦ ∇♦ ∇♦ . In partic-

ular this means that es(γ) is (∇♦)-periodic, but hence also that es(γ)∇ is (♦∇)-periodic. We observe that

the direct summand γA of radP2 can be represented by a strip whose only nonblank entry is the syllable

es(γ)∇ =
(
◦ ◦ ◦

α 1 )
.

The sequence of syllables, starting with es(γ)∇ and alternately applying ♦ and ∇, can be seen in the

syzygy fabric when calculating the syzygies of γA. Starting from the es(γ)∇ =
(
◦ ◦ ◦

α 1 )
in the

strip representation of γA in Figure 5.3, we move to the right when applying ♦ and downwards when

applying∇.

The stationary syllables we see along the way1 form a righthand boundary of successive strips. When

es(γ)∇ =
(
◦ ◦ ◦

α 1 )
turns up for the second time, it is a lefthand boundary. The lefthand and right-

hand boundaries together delimit a strip, specifically one representing γA. This concludes the calculation

that γA is weakly periodic.

The same can be said for δA, the other direct summand of radP2, since it also lies on a cycle whose

pairwise products have zero residue in A. That cycle is the same one as before, and the relevant calculation

also appears in (the bottom four rows of) Figure 5.3.

1In the figure, all of the relevant stationary syllables are present. This is a white lie for the sake of illustration; in reality, the
stationary syllables outside the 1st row would all be implied.
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· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

α es(β)

βγ γα es(δ)

δ2 es(γ)

α es(β)

βγ γα es(δ)

δ2 es(γ)

Figure 5.3. Following a boundary. We represent γA as a strip module (1st row) and alternately step rightwards
one cell and downwards one cell along the highlighted path, the entries we encounter being obtained by iteratively
applying ♦ and ∇ with each step. We find that γA recurs (4th row), hence γA is weakly periodic. Similarly we
find that δA repeats (3rd and 6th row).

5.2.18. Lemma. Recall that 〈ρ〉 denotes the defining ideal of A = kQ/〈ρ〉.

Suppose that i ∈ Q0 is a vertex lying on an `-cycle
(
i · · · · i
α1 α2 α` )

satisfying αrαr+1 ∈ 〈ρ〉 for

all 1 6 r 6 ` (subscripts understood modulo `), and suppose that Pi is a string module.

Then α1A is a direct summand of Ω`(α1A).

Proof. There exists a choice of permissible data (O, N,C, †) forA such that no path inO represents any

αrαr+1 (1 6 r 6 `, subscripts taken modulo `). This follows from the existence of the `-cycle of relations

of length 2.

Lift each αr ∈ Q1 to an arrow of O that we also denote αr. Since each αr ∈ O1 does represent an

arrow of the ground quiver (rather than an augmented arrow), we deduce that es(αr)∇ is defined for all r.

From the existence of the cycle again, we deduce that es(α1)(∇♦)r = es(αr+1).

In any patch where an es(αr) appears in the top row or is implied to be there, the cell underneath it

contains either es(αr)∇ or the perturbed version thereof (and in the particular case of es(α1), the entry

underneath must be es(α1)∇ because Pi is a string module and so there is no perturbation). Because this

pertubation only affects the target of the syllable rather than the source, both versions are taken by ♦ to

es(αr)∇♦

As Pi is a string module, radPi is a direct sum of one or two uniserial modules. One of these direct

summands is α1A, which we can represent as a strip whose nonblank entries are the syllable es(α1)∇ in

a peak along with the stationary syllable es(α1)∇♦ = es(α2). The argument of the previous paragraph

establishes that, starting from es(α2) and successively moving to the peak neighbour of the supported child
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cell r times as we did in Figure 5.3, we reach cells whose present or implied entries are es(αr+2).

After ` such diagonal moves, we find that es(α`+2) occurs next to es(α1)∇. Both of these are boundary

syllables. Our `moves have taken us down ` rows, none of which held virtual strips. We conclude that α1A

is a direct summand of Ω`(α1A), as claimed. �

5.2.19. Theorem. Suppose that the ordinary quiver of a SB algebra A is 2-regular. If i ∈ Q0 does not lie

on a cycle in the pin graph ΦA of A, then Si ∈ Coloc(Proj-A). Dually, Si ∈ Loc(Inj-A) also.

Proof. Choose permissible data (O, N,C, †) for A. For each α ∈ Q1, there exists a unique arrow

β ∈ Q1 with t(α) = s(β) such that no O-path represents αβ; this implies that αβ has zero residue in

A. This assignment α β yields a permutation π : Q1 Q1 of arrows. We know Q1 is finite hence

απ` = α for some ` > 0.

Let mi denote the maximal length of a path in ΦA with source i. We know mi is finite because i does

not lie on a cycle in ΦA. We proceed by induction on mi, starting with the basis case mi = 0 when i is a

sink vertex in Φ and so Pi is a string module.

Let α1, α2 ∈ Q1 be the distinct arrows with s(α1) = s(α2) = i, so that radPi = α1A ⊕ α2A. In

the canonical short exact sequence
(
0 radPi Pi hdPi 0

)
, the middle term clearly belongs

to Coloc(Proj-A). By the two-out-of-three property, the righthand term Si belongs there iff the lefthand

term does iff both summands αrA of the lefthand term do.

For r ∈ {1, 2}, let `r > 0 be the minimal integer such that π`r fixes αr. Taking in turn the arrows in the

forward π-orbit of αr, we obtain a cycle
(
i · · · · i

αr αrπ αrπ
`r )

whose arrows compose pairwise to

have zero residue inA. We deduceαrA is weakly periodic by Lemma 5.2.18 and soαrA ∈ Coloc(Proj-A)

by Proposition 5.2.5. This concludes the proof of the basis case.

For the inductive step, supposeSj ∈ Coloc(Proj-A) for all vertices j withmj < mi. There exists an ar-

row i j inΦA for such a vertex j. By definition,A has a pinmodulePi with socPi = Sj . By assumption,

the lefthand term and middle term of the short exact sequence
(
0 socPi Pi Pi/ socPi 0

)

belong to Coloc(Proj-A), thus its righthand term does.

We know that socPi is a 1-dimensional subspace ofA being spanned by the residue of either component

p, q of the commutativity relation p − q having source i. This is a two-sided ideal of A, since for any

arrow γ ∈ Q1 we have γp ≡ γq ≡ 0 and pγ ≡ qγ ≡ 0 in A, while ei socPi = socPi = (socPi)ej and

ek socPi = 0 = (socPi)ek for all k 6= i. Hence consider the quotient algebra A′ := A/ socPi, writing

P ′k for the indecomposable projective A′-module at k. Evidently P ′i ∼= Pi/ socPi is a string module, while

P ′k
∼= Pk for all other k 6= i. (These are isomorphisms of A-modules.) From the previous paragraph we

deduce that P ′k ∈ Coloc(Proj-A) for all vertices k (including i).

The ground quiver of A′ equals that of A – in particular it is 2-regular – therefore we can apply the
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argument of the inductive step to Ω1(hdP ′i ). Because all of the projective A′-modules involved in that

argument belong to Coloc(Proj-A), this very calculation shows hdP ′i
∼= hdPi ∼= Si ∈ Coloc(Proj-A)

too. This concludes the inductive step, and hence the first statement.

By employing the preceding argument on the simple Aop-module at i and then applying the standard

duality D, we similarly show that Si ∈ Loc(Inj-A), as claimed. �

Syzygy finiteness

5.2.20. Syzygy finiteness of an algebra. An algebra A is m-syzygy finite, for m > 0, if there exists

Y ∈mod-A such that

{ΩrX ∈mod-A : r > m,X ∈mod-A} = addY

and, more generally, it is syzygy-finite if it ism-syzygy finite for somem > 0. Otherwise, it is syzygy-infinite.

5.2.21. Examples. (a) Representation-finite algebras are exactly the 0-syzygy finite algebras.

(b) Any radical-square zero algebra is 1-syzygy finite, with additive generator Y = S1 ⊕ · · ·Sn.

(c) Monomial algebras A are 2-syzygy finite [ZH91], with additive generator a direct sum of principal

right ideals of A generated by paths.

5.2.22. Running example. Our running example algebra is syzygy-infinite, as can be found by calculating

the syzygies of S1.

5.2.23. Interior of a strip. Let w be a strip for A. Define the interior of w as

intw := {k ∈ Z : w(k) is an interior (nonvirtual) syllable}

and the interior width of w as intwidw := | intw|

5.2.24. Running example. Recall the strips v1, v2, v3, v4, v5 of Subsection 4.2.0. We have intwid(v1) =

intwid(v5) = 2, intwid(v2) = 4 and intwid(v3) = intwid(v4) = 0.

5.2.25. Example. If w represents a simple module, uniserial module or indecomposable projective string

module, then intwidw = 0.

5.2.26. Remarks. (a) Note that “rounding off” does not affect intw or intwidw. Thus all strips representing

the same string graph have the same interior width and so interior width is a well-defined invariant of a
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string module.

(b) Also note that intwidw 6 widw 6 intwid(w) + 2 for any strip w. Therefore if (wm)m>0 is a

sequence of strips, then (intwidwm)m>0 diverges to +∞ iff (widwm)m>0 does.

(c) Because intw is a union of valleys, intwidw is even (whenever finite).

(d) Clearly intw is an interval subset of Z. We have intw = (L,R) if the (potentially implied) left and

right boundaries of w appear in columns L and R respectively.

5.2.27. Boundaries of strips. Suppose wr (r ∈ {0, 1}) is a strip with left- and righthand boundaries

respectively in columns Lr and Rr, and that w1 is a syzygy strip of w0.

We have previously seen that left and right boundaries move at most one column outwards with each

syzygy; that is, L0 − 1 6 L1 and R1 6 R0 + 1. This behaviour carries over to the extrema of intw: ie,

min(intw0)− 1 6 min(intw1) and max(intw1) 6 max(intw0) + 1

A trivial manipulation of each inequality gives

min(intw0) 6 min(intw1) + 1 and max(intw1)− 1 6 max(intw0),

from which we deduce

intw0 ⊇
[

min(intw1) + 1,max(intw1)− 1
]
, (5.8)

unless intwidw1 = 0 (when this inclusion ismeaningless because the extrema do not exist). Wemention that

this inclusion holds vacuously when intwidw1 = 2, because then the righthand interval is empty. Therefore,

the inclusion (5.8) is only significant if intwidw1 > 2, in which case it further asserts intwidw0 >

intwidw1 − 2

Let us iterate this argument. Suppose form > 1 that wr (r ∈ {0, 1, . . . ,m}) are strips, that each wr+1

is a syzygy strip of wr, and that intwidwm > 2m so that our claims have substance. We find that

intwm−r ⊇
[

min(intwm) + r,max(intwm)− r
]

⊇
[

min(intwm) +m,max(intwm)−m
]

for each r ∈ {0, 1, . . . ,m}. The first inclusion implies that intwidwm−r > intwidwm − 2r. The second

implies that that there are (at least) two columns common to all interiors intwr. This situation is depicted

in Figure 5.4.

That second implication is crucial, for if column k is common to the interior of successive syzygy strips

99



· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

Figure 5.4. Interiors of syzygies. Reading from the bottom upwards one row at a time, the interior can narrow
with each step by at most 2 (or rather by at most 1 on either side). When the bottom row is sufficiently wide, as
occurs here, the interiors of all of the rows involved have at least one column in common.

w0, . . . , wm, then the values taken there givem+ 1 consecutive interior syllables in a ∇-orbit:

w0(k) w1(k) · · · wm(k)∇ ∇ ∇ .

5.2.28. Theorem. Suppose the longest path in the pin graph ΦA of A has lengthm < +∞.

(a) If X is a band module for A, then Ω2m+1X is a string module.

(b) If X is a (finite- or infinite-dimensional) string module for A, then

Ω2m+2X ∈ add{Strw ∈Mod-A : widw 6 4m+ 6}.

In particular, injective string modules for A are syzygy finite.

Proof of (a). Clearly 2m + 1 = 2(m + 1) − 1. If Ω2m+1X is a band module then so is ΩrX for all

r ∈ {0, 1, . . . , 2m+ 1}. We deduce the existence of a ΦA-path of lengthm+ 1, which is absurd.

Proof of (b). Let r > 0. Suppose that the strip w has intwidw > 4r and that it represents an

indecomposable direct summand of a (2r)th syzygy of a string module. By the discussion in passage 5.2.27,

there exists a sequence of 2r+ 1 consecutive interior syllables in a∇-orbit for A and, therefore, there exists

a path of length r in ΦA.

We deduce that any r satisfying those conditions further satisfies r 6 m. Hence, for any s > m + 1,

any direct summand w of Ω2sX has intwidw 6 4(m+ 1) and so widw 6 4(m+ 1) + 2 = 4m+ 6. �

5.2.29. Corollary. If the pin graph of A is acyclic, then A is syzygy finite.
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Proof. By Theorem 5.2.28,

Ω2m+2(Ω2m+1X) = Ω4m+3X ∈ add{Strw ∈Mod-A : widw 6 4m+ 6}

for any A-module X , wherem is the length of the longest path in ΦA. �

5.2.30. Corollary. If the pin graph of A is acyclic, then injectives generate for A, and therefore the big

and little finitistic dimension conjectures hold for A.

Proof.We know A is the regular A-module, and so DA is an Aop-module.

Since ΦA is acyclic, ΦAop is acyclic also. The preceding corollary implies that DA has finite syzygy

type. Applying the functor D, we find A has finite cosyzygy type (see [Ric19, Def 7.1] for a definition).

We deduce that A ∈ Loc(Inj-A) by [Ric19, 7.2] and so injectives generate for A by [Ric19, Prop 2.2] (or,

rather, the comment immediately following it). �

5.2.2 Descent∇ and injective syllables

We are keenly interested in the syzygies of injective string modules E of a SB algebra A. This is because

if E always has finite syzygy type (as we conjecture) then projectives cogenerate for A. Additionally, the

calculation could be dualised to establish that projective string modules have finite cosyzygy type and hence

that injectives generate for A. Both the generation and cogeneration statements relate to the big finitistic

dimension conjecture, as discussed previously.

One purpose of the syzygy fabric formalism is to facilitate analysis of syzygies. In particular it lets

us rigorously organise our syzygies one under the other. The columns are, largely, just orbits under some

function ∇ and, largely, neighbouring columns do not interact. It is tragic to us that “largely” cannot be

replaced by “entirely” here. Nonetheless, if we are to study injective string modules Strw as intended, then

in the syzygy fabric of w we should examine the columns containing them and descending from them. This

is the focus of this subsection.

This subsection explores what happens “directly underneath” an injective string module Strw in the

syzygy fabric, and it culminates in Proposition 5.2.54. This rather technical result establishes that the

columns descending from an injective strip are either blank after a finite number of rows or witness

branching infinitely often. In the latter case, the number of rows between successive branchings is bounded,

which gives a “vertical” constraint on the interiors of strips directly underneath w. We believe that from this

vertical constraint it should be possible to deduce a “horizontal” constraint on widths of strips (as we have

proved from in the case of cycle-free pin graphs) and so obtain results about the syzygy type of Strw.

Proposition 5.2.54 is the first step in a journey whose conclusion would be a proof of finite syzygy type
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for injective string modules; in fact, we believe it to be the most technically difficult step. The next step

would be to demonstrate the constraint of the previous paragraph. Two further steps would follow: how the

interaction of columns affects our proposition, and what happens in the remainder of the syzygy fabric of

E besides the region directly underneath it. Towards these steps in the remainder of the journey, we offer

the indicative worked examples at the end of the subsection and the results about “small” SB algebras in

Appendix A.

5.2.31. Convention. When we use (connected) 1-regular quivers in the following, we will work with the

acyclic cover
(
· · · ◦ ◦ ◦ · · ·

)
rather than the finite quiver

( ◦ ◦ · · · ◦ ◦ )

itself.

Factorisable paths of an interior ∇-cycle

5.2.32. Interior∇-cycle. Suppose that {ur,vr : r ∈ Z} is a periodic family of interior syllables such that

ur∇ = vr and vr∇ = ur+1; by periodic here, we mean that ur = ur+m and vr = vr+m for somem > 0.

Taking subscripts modulom, we will call (u1,v1, . . . ,um,vm) an interior ∇-cycle.

5.2.33. Elementary factors of an interior ∇-cycle. Write ur, vr respectively for the underlying paths of

the syllables ur,vr on an interior ∇-cycle. We call {ur, vr : r ∈ Z} the elementary factors of the interior

∇-cycle. Since the ur,vr are certainly not boundary syllables, the ur, vr are certainly not stationary paths.

We directly find that t(ur) = s(vr) and t(vr) = s(ur+1) for all r, and that the {ur, vr : r ∈ Z} form an

antichain of paths in O; more precisely, in a single component C of O. Our setup guarantees that pairwise

products urvr and vrur+1 of elementary factors represent components of commutativity relations.

5.2.34. Running example. Let C be the component of the overquiver covering α, β, γ. A part of the subpath

poset Path(C) is shown in Figure 5.5.

There are infinitely many C-paths lifting α and βγ. For r ∈ Z, give the name ur to those C-paths lifting

α and the name vr to the paths lifting βγ, in such a way that t(ur) = s(vr) and t(vr) = s(ur+1) for all r.

Define ur :=
(
◦ ◦ ◦

ur 0 )
and vr :=

(
◦ ◦ ◦

vr 0 )
. We find that ur∇ = vr and vr∇ = ur+1,

and so in particular ur = ur+1 and vr = vr+1. Therefore (u1,v1) is an interior ∇-cycle with elementary

factors ur = α, vr = βγ.

We verify that pairwise products urvr and vrur+1 respectively represent αβγ and βγα, which are

indeed components of a commutativity relation.
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s(α) s(β) s(γ) s(α) s(β) s(γ) s(α) s(β) s(γ) s(α)

α β γ α β γ α β γ

γα αβ βγ γα αβ βγ γα αβ βγ γα

γαβ αβγ βγα γαβ αβγ βγα γαβ αβγ βγα

· · · · · · · · · ·

· · · · · · · · ·

Figure 5.5. Factorisable paths within the Hasse diagram of Path(C). The C-paths are labelled by the Q-paths
they represent. (Some labels are omitted for space concerns.) Factorisable paths are printed in black; the others,
grey.

Among the factorisable paths are the elementary factors ur := α and vr := βγ, where the index r ∈ Z increases
rightwards in the diagram.

Grading

5.2.35. Henceforth fix an interior ∇-cycle (u1,v1, . . . ,um,vm) with elementary factors {ur, vr : r ∈ Z}

all lying on a component C of the overquiver. The following definitions will depend on the cycle; we simply

make this dependence implicit.

Additionally, write C for the path category of C.

5.2.36. Factorisable paths and grading. A factorisable path is a path that can be written as a product of

elementary factors ur, vr. We include in this definition the endpoints t(ur) = s(vr) and t(vr) = s(ur+1)

of the elementary factors, which we consider to be 0-fold products and which we call factorisable vertices.

A factorisable path p has grade g, written grade p = g, when it is a g-fold product of elementary factors.

The factorisable paths give a full subcategory F ⊆ C, namely the full subcategory on the factorisable

vertices. We can also identify F with the path category of the quiver

F :=
(
· · · s(ur) s(vr) s(ur+1) s(vr+1) · · ·ur vr ur+1 )

.

In this light, grade p is simply the length of p viewed as a path in F . We deduce that grade is additive; that

is, grade(pp′) = grade p+ grade p′.

5.2.37. Running example. We have elementary factors ur := α and vr := βγ and the factorisable vertices

are s(α) and s(β). We can identify these with the vertices and arrows of the quiver

F :=
(
· · · s(α) s(β) s(α) s(β) · · ·α βγ α )

.
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The 2-fold products, namely the paths representing αβγ and βγα, have grade 2. The 3-fold products,

namely the paths representing αβγα and βγαβγ, have grade 3. And so on.

5.2.38. GradingC using a functor f : C F. We give a functor f : C F that assigns a factorisable

path to an arbitrary path in C. This functor is far easier to picture and use than the ensuing prose description

may suggest, so we encourage the reader to consult the examples and illustration which follow in the next

passage and Figure 5.6.

Let i ∈ C0. (These are the objects of C.) Amongst paths having source i, there is a unique such q for

which t(q) is the only factorisable vertex through which q passes. We define f : i t(q).

For an arbitrary C-path, p :=
(
s(p) t(p)

)
, we then define f(p) :=

(
f(s(p)) f(t(p))

)
.

Towards a second, equivalent, definition in words, observe that there is a unique shortest path p′, having p

as a prefix, such that t(p′) is factorisable. Amongst the set of suffixes of p′ that are factorisable, f(p) is the

longest. A third, less formal but perhaps easier to remember, definition is to add as many arrows as possible

to the target of p, and then remove as many arrows as possible from the source of the resulting path, with

the proviso that neither s(α) nor t(β) is a factorisable vertex for any added arrow α or removed arrow β.

We mention that f fixes factorisable paths.

That f respects identities is clear. That f respects composition follows from the following straightforward

calculation, which uses the identity t(p) = s(p′) for composable paths p, p′. (For clarity, we underline that

f(p) denotes the image of p in the functor f , and that f(p)f(p′) denotes the composition “f(p) then f(p′)”

in F.)

f(p)f(p′) =
(
f(s(p)) f(t(p))

)(
f(s(p′)) f(t(p′))

)

=
(
f(s(p)) f(t(p′))

)

=
(
f(s(pp′)) f(t(pp′))

)

= f(pp′)

For an arbitrary C-path p, we define grade p := grade f(p). This is consistent with the definition of

factorisable paths since they are fixpoints of f .

5.2.39. Example. In Figure 5.5 we drew the Hasse diagram for Path(C) and printed the factorisable paths

in black, to distinguish them among the other paths in grey. This colouring is recreated in Figure 5.6.

Additionally in Figure 5.6, we highlight the “catchment regions” – or perhaps more formally the

preimage sets – of each factorisable path. We spot for instance that s(γ), γ and s(α) all lie in a single region,

reflecting the fact that f takes them all to the common image s(α). It follows that grade s(γ) = grade γ =

grade s(α) = 0. As a second example, we find that f(β) = f(βγ) and so gradeβ = gradeβγ = 1.

By construction, f and therefore grade are constant on each region. We have colour-coded each region

in Figure 5.6 by the parity of grade (ie, whether grade is odd or even there). The importance of parity will
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s(α) s(β) s(γ) s(α) s(β) s(γ) s(α) s(β) s(γ) s(α)

α β γ α β γ α β γ

γα αβ βγ γα αβ βγ γα αβ βγ

γαβ αβγ βγα γαβ αβγ βγα γαβ αβγ βγα

αβγα αβγα αβγα

βγαβγ βγαβγ βγαβγ

s(α) s(β) s(α) s(β) s(α) s(β) s(α)

α α α

βγ βγ βγ

αβγ βγα αβγ βγα αβγ βγα

αβγα αβγα αβγα

βγαβγ βγαβγ βγαβγ

s(γ) s(γ) s(γ)

β γ β γ β γ

γα αβ γα αβ γα αβ

γαβ γαβ γαβ

· · · · · ·

· · · · · ·

Figure 5.6. An example of grading. As before, the factorisable paths are in black and the others in grey. Paths
with even grade lie in lighter-coloured regions. Paths with odd grade lie in darker regions. Grade increases up the
figure.

At the rightmost corner of any region is a factorisable path. Conversely, any factorisable path is at the rightmost
corner of its own region. All paths in a given region are mapped to that factorisable path by f .

become clear later.

5.2.40. There are some immediate properties of factorisable paths, f and grade that we collect in the

following lemmas and corollary.

5.2.41. Lemma. Both f and grade are weakly monotone with respect to the subpath order 6. This means

that if p 6 q then f(p) 6 f(q) and grade p 6 grade q.

Proof. If y, z are paths satisfying ypz = q, then we calculate f(q) = f(ypz) = f(y)f(p)f(z) > f(p)

and grade q = grade(ypz) = grade y + grade p+ grade z > grade p. �

5.2.42. Lemma. Write 6 for the subpath order on Path(C). Suppose the C-path p has grade g.

(a) (i) There exists a factorisable path y of grade g + 1 with p < y (strictly).

(ii) If s(p) is not factorisable, then there is a unique such y.

(b) (i) There exists a factorisable path z of grade g − 1 with z < p (strictly), provided that g > 0.

(ii) If t(p) is not factorisable, then there is a unique such z.

Proof. This proof is much clearer when visualised, as in Figure 5.7, than when written in prose, as

below.

Each part of the lemma comprises a statement about a strict relation <, which implies the existence

statement, and also a uniqueness statement. However, the strictness of the relations z < p < y comes

automatically from the assumed (strict) inequalities grade z < grade p < grade y, so it suffices to prove a

statement about the weaker relation 6.
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· · · x1 · · ·xg−1 · · ·

· · · · · ·

· · · p′′ ·

· · · ·

· p · ·

· · p′ · ·

· · · · ·

· · · · ·

· · · · ·

· · · · ·

· · · · · ·

· · · ·

· · ·

· · ·

· · ·

· · · · ·

· · · ·

x1 · · ·xg−1 x2 · · ·xg

p′′

x1 · · ·xg

p

p′

x0 · · ·xg

x1 · · ·xg+1

Figure 5.7. Factorisable subpaths and superpaths. Like all paths in the central (darker) region, p is a strict
superpath of x1 · · ·xg−1) and a strict subpath of x0 · · ·xg .

Related to p are the paths p′ and p′′. Notice that p′ is also a strict superpath of x2 · · ·xg and p′′ is a strict subpath
of x1 · · ·xg+1.

Let us set up notation. Suppose y := x0x1 · · ·xg is a factorisable path of grade g+1, having elementary

factors xr, such that f(p) = x1x2 · · ·xg if g > 0 or f(p) = t(x0) if g = 0. If g = 1, then define z := s(x1).

If g > 1, then define z = x1x2 · · ·xg−1.

We proceed to show that the y and z just constructed have the claimed properties, starting with the claims

about y in part (a)(i). By the (second) definition of f(p), amongst the strict suffixes of y is a path p′ having

p as a prefix and f(p) as a suffix. We know that y also has f(p) as a suffix, and that the set of paths having

f(p) as a suffix is a chain. If y 6 p′ then g + 1 = grade y 6 grade p′ = g, which is absurd, so y > p′. We

deduce that y < p′ 6 p as claimed. As for part (b)(i), assume g > 0. The above definition of z ensures it is

the factorisable prefix of f(p) having grade g − 1. Amongst the suffixes of p is a prefix p′′ of x1x2 · · ·xg
also having grade g. The set of prefixes of f(p) is a chain which includes both p′′ and z, but if p′′ 6 z then

we obtain the contradiction g = grade p′′ 6 grade z = g − 1 by monotonicity, thus z < p′′ and so z < p.

This brings us to the uniqueness statements. We prove part (a)(ii). Let y′ := xsxs+1 · · ·xg+s be another

factorisable path with grade g + 1, for 0 6 s 6 g. (This constraint on s is only to ensure y and y′ have

common subpaths.) Further let y′′ := xsxs+1 · · ·xg = inf{y, y′}. Note that grade y′′ = g + 1− s.

If p < y and p < y′ then p 6 y′′, whence g = grade p 6 grade y′′ = g + 1 − s. When s > 1 we

have a contradiction and when s = 0 we have the tautology y = y′. This leaves only the case s = 1, when

y′ = x1x2 · · ·xg+1. In order to have p < y′ and f(p) = y, we must have that f(p) is a prefix of y, which

implies s(y) is a factorisable vertex. The result follows.
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We observe for part (b)(ii) that all paths have a supremum and so the assumption 0 6 s 6 g is

unnecessary, but the remainder of the proof dualises naturally. �

5.2.43. Corollary. Let p be a C-path.

(a) If grade p < 2, then p has nonzero A-residue.

(b) If grade p > 2, then p has zero A-residue.

Proof. Using Lemma 5.2.42, we can compare p with a factorisable path x1x2 having grade 2. We

know that x1x2 represents a component of a commutativity relation. The strict subpaths of x1x2 have

nonzero A-residue (since they represent uniserial A-modules) while the strict superpaths of x1x2 have zero

A-residue. The result follows. �

Odd and even grade

5.2.44. Compression and ∇. Recall the O-path p :=
(
i ◦

`+ε )
is the compression of the syllable

p :=
(
i ◦ ◦

` ε )
.

When ε = 0, the compression of p equals the underlying path of p. When ε = 1, the compression of p

covers the underlying path of p in the prefix order.

We can define ∇ on O-paths compatibly with its definition on syllables. If p :=
(
i ◦

` )
satisfies

len p > 0 and ` < ai + bi, then we define p∇ :=
(
i− ` ◦

m )
form := ai + bi− `. It is straightforward

to verify that p∇ is defined iff the compression p∇ is defined, in which case compression and ∇ commute

on p.

5.2.45. Shortest dependent paths and ∇. Recall from passage 3.1.14 the source encoding of the permis-

sible data of A as integer sequence (ai)i∈O0 and bit sequence (bi)i∈O0 .

For i ∈ C0, let ri :=
(
i ◦
ai+bi )

. When bi = 0 (which means exactly that i represents the source of

a component of a commutativity relation), ri represents that component. When bi = 1, ri is the shortest

path with source i that has zero A-residue. Either way, ri is the shortest path with source i whose residue

dependent linearly on another A-path (perhaps for trivial reasons). For this reason, we call ri the shortest

dependent path with source i.

The importance of shortest dependent paths becomes clear when we examine how ∇ interacts with

compression, for if p ∈ supp∇ is a path then (p)(p∇) = rs(p).

5.2.46. Lemma. Any shortest dependent path ri satisfies grade ri = 2.

Proof. For convenience, let g := grade ri.
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Either ri represents a component of a commutativity relation or it does not. We treat these cases in turn.

If ri does represent a component of a commutativity relation, then it has nonzeroA-residue and therefore

g 6 2, by the contrapositive to Corollary 5.2.43(b). If g 6 1 then, by Lemma 5.2.42(a)(i), ri is a strict

subpath of some factorisable path x1x2, which also represents a component of a commutativity relation,

which is absurd. Thus g > 2 which gives g = 2.

Otherwise, ri represents a monomial relation. We know in this case that ri is not factorisable because its

source is certainly not a factorisable vertex. We also know that ri has zero A-residue, and so grade ri > 2

by the contrapositive to Corollary 5.2.43(a). Write x1x2 · · ·xg := f(p) for elementary factors xr.

FromLemma5.2.42(b)wededuce that ri is the strict superpath of a unique factorisable pathx1x2 · · ·xg−1

of grade g−1. Let p, q be the paths such that ri = px1x2 · · ·xg−1q. We know that p has positive length, be-

cause s(ri) is not a factorisable vertex, and that q has positive length, since otherwise f(ri) = x1x2 · · ·xg−1

which is an absurdity.

Towards a contradiction assume that g > 3, which implies that px1x2 is a strict prefix of ri. Since px1x2

is a strict superpath of x1x2 (which represents a component of a commutativity relation), the A-residue of

the former is zero and so (trivially) depends linearly on another A-path. Since ri is the minimal such path

with source s(ri) = s(px1x2) having this property, we find ri 6 px1x2. But px1x2 < ri, which is our

desired contradiction. Thus 2 6 g 6 2, from which equality ensues. �

5.2.47. Corollary. If p is a C-path and p∇ is defined, then grade(p∇) = 2− grade(p).

Proof. Previous results give 2 = grade rs(p) = grade((p)(p∇)) = grade p+ grade(p∇). �

5.2.48. We have just proven that, where defined, ∇ respects the parity of grade. Now it remains to prove

that injective syllables have even grade and elementary factors have odd grade. The second statement is

trivial.

5.2.49. Lemma. For all elementary factors ur, vr we have gradeur = grade vr = 1.

Proof. This is immediate from the definition of grade.

5.2.50. Injective syllables. An injective syllable is a syllable of the form
(
◦ i ◦

ci ε )
for some

ε ∈ {0, 1}, where i ∈ O0 satisfies di = 1.

By definition of ci,
(
◦ i

ci )
is the longest path with target i having nonzero A-residue.

5.2.51. Running example. The only vertices i ∈ C0 for which di = 1 are the s(γ). These satisfy cs(γ) = 2.

The only injective syllables on this component are therefore
(
◦ s(γ) ◦

αβ 0 )
and

(
◦ s(γ) ◦

αβ 1 )
.

These have compressions αβ and αβγ respectively. It is easy to verify that αβ has nonzero A-residue as

claimed.
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5.2.52. Lemma. If p is the compression of an injective syllable p :=
(
◦ i ◦

ci ε )
, then grade p = 2.

Proof. First we claim that it does not matter whether ε = 0 or ε = 1. Recall from Passage 5.2.38 the

definition of f on the objects of C (ie, on vertices). Since di = 0 by assumption, i does not represent the

target of any commutativity relation and so certainly i is not an factorisable vertex. This implies the path

q in the definition of f(i) has positive length, and so f(i) = f(i − 1), from which our claim follows. We

therefore assume ε = 0 to ensure t(p) = i.

Let x1x2x3 be the factorisable path (with elementary factors xr) such that x3 passes through i, and let

q be the strict prefix of x3 with t(q) = i. Necessarily, len q > 0 and grade q = 1.

Consider x2q, whose target is i. We know x2q has nonzero A-residue because it is a strict subpath of

x2x3. We deduce p > x2q and hence grade p > grade(x2q) = grade(x2)+grade(q) = 2 bymonotonicity.

But grade p 6 2 because p has nonzero A-residue. We thus confirm grade p = 2. �

5.2.53. Example. The compressions of injective syllables for our running example algebra A are αβ and

αβγ. We verify in consultation with Figure 5.6 that these both do have grade 2.

5.2.54. Proposition. Let p be an injective syllable. If p∇r is defined for all r > 0, then the forward orbit

(p∇r)r>0 has no tail (p∇r)r�0 containing only interior syllables.

Proof. If there exists no ∇-cycle ur vr ur+1
∇ ∇ (r ∈ Z) of interior syllables lying on the same

O-component as p then the claim follows automatically. Hence assume there does exist such a cycle.

There are only finitely many syllables (up to periodicity) and so there certainly exists a (periodic)

interior ∇-cycle (u1,v1, . . . ,um,vm), with underlying paths u1, v1, · · ·um, vm. Associated to this cycle

is a grading grade that we can carry over to syllables by stipulating that grade(q) equals the grade of the

compression of q. Corollary 5.2.47 and Lemmas 5.2.49 and 5.2.52 combine to prove that (for any r ∈ Z)

(
grade(ur∇s)

)
s>0

=
(

grade(vr∇s)
)
s>0

is consistently odd while
(

grade(p∇s)
)
s>0

is consistently even.

We deduce that no ur or vr appears in (p∇s)s>0, from which the result follows.

5.2.55. Example: injective syllables and perturbation. The previous lemma addresses the behaviour of

an injective syllable p when only ∇ is applied, which is the typical behaviour of a column in the syzygy

fabric. We know from previous discussion that the impact, if any, of a neighbouring column is to perturb

syllables; that is, to change the stability term ε of a syllable
(
i ◦ ◦

` ε )
from 0 to 1. It is sensible to

wonder what happens if some combination of ∇ and perturbation is applied to an injective syllable p.
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Recall our running example algebraA. The injective syllables of interest2 ofA are
(
s(α) ◦ ◦

αβ 0 )

and
(
s(α) ◦ ◦

αβ 1 )
, the latter being the perturbation of the former. We calculate

(
s(α) ◦ ◦

) (
s(γ) ◦ ◦

) (
s(α) ◦ ◦

)
.

αβ 0 ∇
γ 0 ∇ α 1

The leftmost andmiddle of these syllables are interior, so can be perturbed to
(
s(α) ◦ ◦

αβ 1 )
/∈ supp∇

and
(
s(γ) ◦ ◦

γ 1 )
respectively. The forward ∇-orbit of the latter is as follows.

(
s(γ) ◦ ◦

) (
s(β) ◦ ◦

) (
s(γ) ◦ ◦

)
.

γ 1 ∇
es(β) 1 ∇ γα 0

(5.9)

Of these, only the rightmost is interior. Its perturbation is
(
s(γ) ◦ ◦

γα 1 )
/∈ supp∇.

The preceding calculation exhausts all possible combinations of ∇ and perturbation, starting from an

injective syllable of interest. We highlight that nowhere in this calculation do
(
s(α) ◦ ◦

α 0 )
and

(
s(β) ◦ ◦

βγ 0 )
arise, these being the syllables on the only interior ∇-cycle for A.

We find in this example that a stronger statement than the previous lemma holds. Not only does the

∇-orbit of an injective syllable have no tails of interior syllables, as shown above, but moreover no amount

of perturbation of such an orbit ever yields one with such a tail.

This stronger statement holds in all SB algebras we have ever considered, but if it is to be proven then

some refinement of our grading will be necessary. To see this, consider the three syllables in (5.9). Their

compressions are respectively γα, β and γα. These all have grade 1, as shown in Figure 5.6, and so grade

alone cannot distinguish them from the syllables of an interior ∇-cycle.

5.2.3 SB algebras with few vertices

We conjecture that injective modules over an SB algebra have finite syzygy type. A general proof eludes us

but, using the tools developed in this thesis, we can address the situation for small SB algebras. This is the

focus of this subsection.

In the following, as ever, A = kQ/〈ρ〉 is a basic, connected SB algebra with ordinary quiver Q. For

convenience, we have Q = {1, 2, . . . , n}.

We also introduce some new notation regarding cycles; that is, paths whose source and target coincide.

2 The algebra A has two other injective syllables
(
◦ s(δ) ◦

δ3 0 )
and

(
◦ s(δ) ◦

δ3 1 )
, both of which lie on a different

component D of O from the other syllables discussed. Because all vertices i ∈ D0 have bi = 1, whenever q∇ is defined for some
syllable q onD, q∇ is a boundary syllable, and therefore these injective syllables onD satisfy the strengthened claims of this passage
for more trivial reasons.
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For any cycle α1α2 · · ·αm with source and target i, we let [α1α2 · · ·αm] denote the equivalence class

[α1α2 · · ·αm] := {α1α2α3 · · ·αm−1αm, α2α3α4 · · ·αmα1, . . . , αmα1α2 · · ·αm−2αm−1}

of its rotates. Additionally, we will stipulate that (α1α2 · · ·αm)0 := ei.

5.2.56. Lemma. If Q has 2 vertices, then the indecomposable injective string modules for A have finite

syzygy type and, dually, the indecomposable projective string modules have finite cosyzygy type.

Proof. The dual result follows immediately from the first, since we may apply the first result to Aop and

then use the vector-space duality functor D.

The rest of the proof is by brute force, requiring two stages. The first stage is to enumerate all possible

permissible data for SB algebras on 2 vertices. We will do this over the coming paragraphs, using previous

results to cut down our sample space. Once the list of cases has been scoped out, we then have to actually

perform the calculations. This is the second stage. It only comprises direct computations of the sort that our

SBStrips package performs easily. We relegate the outcomes of these straightforward efforts to Appendix

A.

Towards enumerating all possible permissible data, let us first consider the pin graph ΦA of A. This is

necessarily a sub-1-regular quiver on 2 vertices and so has 0, 1 or 2 arrows. If ΦA has 2 arrows, then A is

necessarily selfinjective and the result follows. Similarly if ΦA has 0 arrows, thenA is necessarily monomial

and the result follows. If it has 1 arrow that is not a loop, then ΦA is acyclic and so A is syzygy-finite by

Theorem 5.2.28. This only leaves the case that ΦA comprises a single loop and a single isolated vertex;

without loss of generality, we may assume ΦA =
(
1 2

)
.

Next, we find an overquiver O and vertex exchange map † compatible with ΦA. Obviously O is a

1-regular quiver on 4 vertices. Let 1, 1′ and 2, 2′ respectively be the twoO-vertices representing 1, 2 ∈ Q0.

Compatibility with ΦA requires that there be O-paths p, q satisfying {s(p), s(q)} = {1, 1′} = {t(p), t(q)}

and satisfying len p, len q > 2. This implies the existence ofO-cycles at 1, 1′, the shortest of which we will

respectively denote by σ1 and σ1′ ; by exchanging 1 and 1′ where necessary, wemay assume lenσ1 6 lenσ1′ .

Since cycles of distinct length are disjoint and disjoint cycles have no arrows in common, we deduce that

lenσ1 6= lenσ1′ =⇒ [σ1] 6= [σ1′ ] =⇒ (lenσ1) + (lenσ1′) 6 4.

Consequently, we have (lenσ1, lenσ1′) ∈
{

(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (4, 4)
}
.

If there were loops at 1 and 1′, or if there were a 2-cycle
(
1 1′ 1

)
, then this would force Q to

be disconnected. Therefore we can entirely eliminate the case (lenσ1, lenσ1′) = (1, 1) and we can further

constrain the case (lenσ1, lenσ1′) = (2, 2).
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1 2

1′ 2′

α

γ

β

δ

(a) (1, 2)

1 2

1′ 2′

α

γ
β

δ

(b) (1, 3)

1 2

1′ 2′

α

β

γ

δ

(c) (2, 2)

1 2

1′ 2′

α

γ

β

δ

(d) (3, 3)

1 2

1′ 2′

α

βδ

γ

(e) (4, 4)

1 2

1′ 2′

α

δ β

γ

(f) (4, 4)

Figure 5.8. Candidate overquivers. Each is shown with its cycle-length profile (lenσ1, lenσ1′)

Up to exchanging 1 1′ and 2 2′ if need be, the remaining possibilities forO are shown exhaustively

in Figure 5.8. Aside from Figures 5.8e and 5.8f where (lenσ1, lenσ1′) = (4, 4), there is a unique possible

overquiver for each potential cycle-length profile.

Henceforth fix some overquiver O from among the candidates. Our next job is to determine the

component set C; in essence, this means finding the p and q mentioned above. These paths must be

incomparable in Path(O). If 1 and 1′ lie on distinct connected components (as in the top row of Figure

5.8), then we may set simply p := σr1 and q := σs1′ (for exponents r, s > 0 independently chosen to ensure

len p, len q > 2) and we will obtain the incomparability condition automatically. If 1 and 1′ lie on the

same connected component (as in the bottom row), then there are two cases to consider. Let u1 and u1′

respectively denote the shortest path
(
1 1′

)
and

(
1′ 1

)
. For some r > 0, our components are

either p := (u1u1′)
ru1 and q := (u1′u1)ru1′ or p := (u1u1′)

r and q := (u1′u1)r.

(In the first case, the total number of elementary factors ui in each component is odd; in the second case,

the number is even. In both cases, the exponent r must again be chosen to satisfy the length requirement.)

Once C is chosen, the final step is to compatibly choose the set N of nonzero paths (or, equivalently,

its complement). This choice may be performed independently for each connected component of O, and is

subject to our usual convention that stationary paths are always nonzero. Besides that, compatibility with C

requires that subpaths of component paths belong toN but strict superpaths of component paths do not. On

connected components C of O that do feature a component path, this leaves only a finite number of choices

for C ∩N , since all sufficiently long paths are superpaths of a component path. On connected components

that do not, our choice of C ∩ N is unconstrained. The only such unconstrained connected components C

occur in the overquivers of Figures 5.8a and 5.8d, where they comprise a single arrow δ, therefore choosing

C ∩N amounts to choosing some smallest positive power t of δ which lies outside N .
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Taken altogether, this gives permissible data (O, N,C, †) for A.

We know that there are finitelymany options forO. As we have seen above andwill see in greater detail in

Appendix A, for each of these options the component paths C as well as minimal elements ofN −Path(O)

can be parameterised by integer exponents r, s, t > 0. The parameter space can be partitioned into finitely

many regions, in each of which the behaviour can be described uniformly. This reduces the calculation to a

finite effort, which we undertake in the appendix. �

5.2.57. Theorem. IfQ has at most 2 vertices, then the indecomposable injective string modules forA have

finite syzygy type and, dually, the indecomposable projective string modules have finite cosyzygy type.

Proof. IfQ has 1 vertex, then it is selfinjective or monomial and the claim holds. The 2-vertex case was

settled in the previous lemma. �

5.2.58. Corollary. If Q has at most 2 vertices, then injectives generate and projectives cogenerate for A.

Consequently A satisfies the big and little finitistic dimension conjectures under this hypothesis.

5.2.59. Remark. Our Lemma 5.2.56 is not technically a new result. Differing terminology aside, Salmerón

proved in [Sal94] that the regular A-module has finite cosyzygy type, and thereby deduced that SB algebras

on at most 2 vertices satisfy the little finitistic dimension conjecture.

Nonetheless, we include Lemma 5.2.56 and its proof for four reasons, the simplest reason being an

aesthetic one: we believe that this proof beautifully uses the discrete information of a SB algebra that we

have laboured to quantify. Each part of the permissible tuple (O, N,C, †) is given its turn in the spotlight,

as is the pin graph ΦA.

The second reason is the obscurity of Salmerón’s article. It features in a Mexican journal whose back-

catalogue is not available online and which we could not access using the standard channels. We only

know the contents of the paper because we contacted Salmerón directly and he generously replied with

photographs of a printed copy. Indeed, we only know of the existence of the paper thanks to a passing

reference in an article by Erdmann et al [EHIS04], in which an entirely different approach is used to show all

SB algebras satisfy the little finitistic dimension conjecture. It appears that the ensuing focus in the literature

on Erdmann et al’s finitistic conclusion has come at the expense of (ours and) Salmerón’s syzygy-finiteness

criterion. This is a wrong we are happy to right by recording a proof in an open-access thesis.

The third reason is a methodological one. Salmerón’s approach was to represent string modules by string

graphs in the conventional way and then determine their syzygies in the fashion that Liu and Morin would

later formally codify [LM04], which is to say he wrote string graphs simply as juxtapositions of independent

paths and their formal inverses but did not mark those syllables at the boundary of a string graph as different

from those in the interior. Accordingly, he makes no acknowledgement of the pin-boundary phenomenon
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over which we have agonised greatly. He describes performing the requisite calculations by hand but does

not mention any effort to implement these calculations in a computer. We venture that our approach, which

does highlight this important phenomenon and which has been realised computationally, is merit-worthy by

being transparent and, thanks to the existence of SBStrips, practical.

The final, and most crucial, reason is independence. Our work arose independently of Salmerón’s.

It is true that we both explore the syzygy-finiteness of injectives and that we both reduce the amount of

brute-force calculation required by using auxiliary results. Our auxiliary results (Corollary 5.2.29) and

Salmerón’s auxiliary result ([Sal94, Prop 2.1]) both find cases in which an SB algebra is (co)syzygy-finite.

But his requires that no vertex of the ground quiver have total degree 4, which forces there to be no ΦA-paths

of length 2, which in particular implies that ΦA is acyclic. This is the hypothesis of our auxiliary result,

hence our reduction step generalises his. Not only did we prove the result independently of Salmerón, but

we did so more economically than he did.
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Appendix A

SB algebras with 2 vertices

Lemma 5.2.56 claims that the indecomposable injective string modules over a 2-vertex SB algebra A have

finite syzygy type. Every SB algebra admits a pin graph ΦA and permissible data (O, N,C, †); the argument

contained in Section 5.2.3 constraints what ΦA and (O, N,C, †) can be.

One constraint is that ΦA =
(
1 2

)
, which forces the indecomposable injectiveE1 at 1 is pin. This

leaves E2 as the only (indecomposable) injective string module up to isomorphism, reducing the necessary

calculations to just the syzygies of this one module.

We have seen that only the overquivers in Figure 5.8 are possible; recall that there these overquivers

were labelled (a) through (f). We consider each overquiver O in order, further subdividing each case using

the finitely many families of choices of C compatible with a given O and, then, the finitely many families

of choices of N compatible with a given C.

We determine N by determining its complement Path(O)−N . In addition to the strict superpaths of

component paths, there may be other generators of the complement; by this, we mean additional O-paths

p that are incomparable to any component path, that satisfy p 6 q =⇒ q /∈ N and that are minimal with

respect to this property.

In each instance, themembers ofC aswell as the additional generators ofPath(O)−N are parameterised

by some nonnegative integers t, s, r each satisfying a situational lower bound. The author performed explicit

calculations using the SBStrips package for small, explicit choices of parameters – roughly, those parameter

choices in {(t, s, r) ∈ N3 : 0 6 t + s + r 6 10}. From this sample patterns became clear and it was

possible to partition parameter space into finitely many regions, with the behaviour in any given region able

to written as a function of the parameters. Since SBStrips is unable to perform general symbolic calculation,

the author subsequently had to verify by hand that, within any given region, the formulas given for syzygy

behaviour were accurate.
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As an example partition of parameter space, let us consider case (c)(iii). There are two regions of

parameter space that are finite (each is in fact a singleton) while the remaining region is unbounded. By

contrast, in case (a)(ii) there are five regions: two regions that are singletons; two unbounded regions where

s and r may independently be arbitrarily large but t is fixed; and one region where each of t, s and r may

independently take arbitrarily large values.

This exemplifies a general truth: in every case of parameter space, there is exactly one region where all

parameters may independently take on arbitrarily large values. In regions other than that single “largest”

unbounded region, at least one parameter forces the existence of a component of length 2 or a generator of

Path(O)−N of length 1 or 2.

To record the indecomposable direct summands of syzygies of E2 in each case, we will draw its syzygy

quiver.1 The vertices of the syzygy quiver in each case are the (isomorphism classes of) indecomposable

modules occurring as direct summands of Ωk E2 for some k > 0. We draw exactly m arrows X Y iff

Ω1X has exactly m direct summands isomorphic to Y . That only finitely many vertices appear in each

quiver implies that E2 is syzygy finite. The length of the longest simple path in this quiver will give the

index at which the additive class of syzygies of E2 stabilise, and the vertices on cycles in this quiver will

give the direct summands of the additive generator of this stable class.

For the sake of space, we will denote string modules just by their string graphs, and we will write strings

graphs as words of paths and their formal inverses. Thus if v2 :=
(

1 1 2 2 1 1 2α β δ γ α γ )
, then

Str v2 will be simply reported as
(
αβ
)(
δ
)−1(

γ
)(
γα
)−1.

Overquiver (a)

LetO be the overquiver in Figure 5.8a. The vertices 1 and 1′ lie on distinct connected components, therefore

any choice of components is of the form C = {αr, (βγ)s} for some r > 2 and s > 1. We also must add the

generator δt of the complement, for some t > 1.

(i) Suppose there are no additional generators of Path(O)−N .

Parameter values Syzygy quiver Legend

t = 1, s > 1, r > 2 E2

1 Cibils originated this concept [Cib93, §5], but we prefer the variant of Howard [How15, §3] that permits multiple arrows between
vertices since we believe it is more transparent.
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Parameter values Syzygy quiver Legend

t = 2, s > 1, r > 2

E2 S1 Z

X Y

X :=
(
(βγ)s−1β

)

Y :=
(
αr−1

)

Z :=
(
(γβ)s−1γ

)

any other (t, s, r) E2 Y

X S1 U

Z

X :=
(
(βγ)s−1β

)

Y :=
(
δ
)

Z :=
(
αr−1

)

U :=
(
(γβ)s−1

)

(ii) Suppose there is the additional generator (γβ)s.

Parameter values Syzygy quiver Legend

t = 1, s > 1, r > 2 E2 X P2 X :=
(
αr−1

)

t = 2, s = 1, r = 2 E2 X

S1 S2

X :=
(
α
)(
γ
)−1

t = 2,

any other (s, r)

E2 X

Y S1

Z

X :=
(
(βγ)s−1

)
,

Y :=
(
αr
)(
γ
)−1,

Z :=
(
(γβ)s−1γ

)(
αr−1

)−1(
(βγ)s−1

)

t = 3, s = 1, r = 2 E2 Y

S1 X

S2

X :=
(
δt−2

)
,

Y :=
(
α
)(
γ
)−1

any other (t, s, r) E2 Z U

X Y

S2

X :=
(
(βγ)s−1

)
,

Y :=
(
δt−2

)
,

Z :=
(
αr−1

)(
γ
)−1,

U :=
(
(γβ)s−1γ

)(
α
)−1(

(βγ)s−1
)
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Overquiver (b)

LetO be the overquiver in Figure 5.8b. The vertices 1 and 1′ lie on distinct connected components, therefore

any choice of components is of the form C = {αr, (βγδ)s} for some r > 2 and s > 1.

(i) Suppose there are no additional generators of Path(O)−N .

Parameter values Syzygy quiver Legend

any (s, r)
E2 X U

Y Z

X :=
(
(βγδ)s−1βγ

)
, Y :=

(
γ
)
,

Z :=
(
(γδβ)s−1γδ

)
, U :=

(
αr−1

)

(ii) Suppose there is the additional generator (γδβ)sγ.

Parameter values Syzygy quiver Legend

any (s, r) E2 X U

Y S1 Z

X :=
(
(βγδ)s−1βγ

)
,

Y :=
(
(δβγ)s−1δβ

)
,

Z :=
(
(γδβ)s−1γδ

)
, U :=

(
αr−1

)

(iii) Suppose there is the additional generator (γδβ)s.

Parameter

values

Syzygy quiver Legend

s = 1, r = 2
E2 S1 W

Y Z X

U V

X :=
(
βγ
)
, Y :=

(
δ
)
,

Z :=
(
γ
)
, U :=

(
γδ
)
,

V :=
(
α
)
,W :=

(
α
)(
γδ
)−1

any other

(s, r)

E2 X F G

Z U Y

V W

X :=
(
(βγδ)s−1

)
, Y :=

(
(βγδ)s−1βγ

)
,

Z :=
(
(δβγ)s−1δ

)
, U :=

(
γ
)
,

V :=
(
(γδβ)s−1γδ

)
,W :=

(
αr−1

)
,

F :=
(
αr−1

)(
γδ
)−1,

G :=
(
(γδβ)s−1γδ

)(
α
)−1(

βγδ
)s−1
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(iv) Suppose there is the additional generator (δβγ)s.

Parameter

values

Syzygy quiver Legend

s = 1, r = 2 E2 Z Y

X V U

X :=
(
β
)
, Y :=

(
δβ
)
,

Z :=
(
δ
)(
α
)−1, U :=

(
δ
)(
α
)−1(

β
)
,

V :=
(
β
)(
α
)−1(

γδ
)−1

any other

(s, r)
E2 Z Y

X W U V

X :=
(
(βγδ)s−1β

)
,

Y :=
(
(δβγ)s−1δβ

)
, Z :=

(
δ
)(
α
)−1,

U :=
(
δ
)(
α
)−1(

β
)
,

V :=
(
(βγδ)s−1β

)(
α
)−1(

(δβγ)s−1δ
)
,

W :=
(
(βγδ)s−1β

)(
α
)−1(

(γδβ)s−1γδ
)

(v) Suppose there are the additional generators (γδβ)s and (δβγ)s

Parameter values Syzygy quiver Legend

any (s, r) E2 Z U

Y S1 X

X :=
(
(βγδ)s−1β

)
, Y :=

(
(δβγ)s−1δ

)
,

Z :=
(
δ
)(
αr−1

)−1,

U :=
(
(βγδ)s−1βα

)(
(γδβ)−1γδ

)−1

(vi) Suppose there is the additional generator (δβγ)s−1δβ.

Parameter values Syzygy quiver Legend

any (s, r) E2 Y X

U Z

X :=
(
(βγδ)s−1

)
, Y :=

(
αr
)(
γδ
)−1,

Z :=
(
(γδβ)s−1γδ

)(
α
)−1(

(βγδ)s−1
)
,

U :=
(
αr−1

)(
γδ
)−1(

δ
)
(αr−1)−1

Overquiver (c)

LetO be the overquiver in Figure 5.8c. The vertices 1 and 1′ lie on distinct connected components, therefore

any choice of components is of the form C = {(αβ)r, (γδ)s} for some r > 1 and s > 1.

By simultaneously exchanging 1 1′, 2 2′, α γ and β δ, we may assume that 1 6 r 6 s.
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(i) Suppose there are no additional generators of Path(O)−N .

Parameter values Syzygy quiver Legend

any (s, r) E2 U X

Y S1

Z

X :=
(
(δγ)s−1δ

)
,

Y :=
(
(γδ)s−1γ

)
,

Z :=
(
(βα)r−1β

)
,

U :=
(
(αβ)r−1α

)

(ii) Suppose there is the additional generator (βα)r.

Parameter values Syzygy quiver Legend

s = 1, r = 1 E2 X Y

S1 Z

X :=
(
γ
)
, Y :=

(
β
)
, Z :=

(
α
)(
δγ
)−1

s = 2, r = 1 E2 U X

S1 Y V

Z

X :=
(
γ
)
, Y :=

(
γδγ

)
, Z :=

(
β
)
,

U :=
(
δγδ
)(
β
)−1, V :=

(
γδ
)(
β
)−1

any other (s, r) E2 U W

Z X V

Y F

X :=
(
(γδ)s−1γ

)
, Y :=

(
(βα)r−1β

)
,

Z :=
(
(αβ)r−1

)
,

U :=
(
(δγ)s−1δ

)(
β
)−1,

V :=
(
(γδ)r=1

)(
β
)−1,W :=

(
(αβ)r−1

)
,

F :=
(
(βα)r−1β

)(
γδ
)−1(

(αβ)r−1
)

(iii) Suppose there is the additional generator (δγ)s

Parameter values Syzygy quiver Legend

s = 1, r = 1 E2 Y X

S1 Z

X :=
(
δ
)
, Y :=

(
α
)
, Z :=

(
βα
)(
γ
)−1

s = 2, r = 1 E2 V W

Z U X

Y

X :=
(
δ
)
, Y :=

(
δγδ
)
, Z :=

(
γδ
)
,

U :=
(
α
)
, V :=

(
δ
)(
β
)−1,

W :=
(
γδ
)−1(

α
)
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Parameter values Syzygy quiver Legend

other (s, r) E2 V W

Y Z U

X F

X :=
(
(δγ)s−1δ

)
, Y :=

(
(γδ)s−1

)
,

Z :=
(
(αβ)r−1α

)
,

U :=
(
δ
)(

(αβ)r−1
)−1,

V :=
(
δ
)(

(βα)r−1β
)−1,

W :=
(
(γδ)r−1

)
,

F :=
(
(γδ)r−1

)(
αβ
)−1(

(δγ)s−1δ
)

(iv) Suppose there exist additional generators (βα)r and (γδ)s.

Parameter

values

Syzygy quiver Legend

s = 1, r = 1
E2 Y S1 X

X :=
(
β
)(
δ
)−1,

Y :=
(
δ
)(
β
)−1(

δ
)(
β
)−1

other (s, r) E2 V

X Z Y

U

X :=
(
(γδ)s−1

)
, Y :=

(
(αβ)r−1

)
,

Z :=
(
δ
)(

(βα)r−1β
)−1,

U :=
(
(δγ)s−1δ

)(
β
)−1,

V :=
(
(δγ)s−1δ

)(
β
)−1(

δ
)(

(βα)r−1β
)−1

Overquiver (d)

Let O be the overquiver in Figure 5.8d. The vertices 1 and 1′ lie on the same connected component. The

shortest paths between them are
(
1 1′

α )
and

(
1′ 1

βγ )
. The components can either be factorised

into an even number of these paths or an odd number. In the even case, the component set is of the form

C = {(αβγ)r, (γαβ)r} for some r > 1. In the odd case, it has the form C = {(αβγ)rα, (βγα)rβγ} for

some r > 1. In either case, we must also add a generator δs of the complement, for some s > 1.

(i) In the even case suppose there are no additional generators.

Parameter values Syzygy quiver Legend

s = 1, r > 1 E2
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Parameter values Syzygy quiver Legend

s = 2, r > 2 E2 S2

X Y

X :=
(
(αβγ)r−1αβ

)
,

Y :=
(
(γαβ)r−1γα

)

any other (s, r) E2 X

Y

S2 Z

X :=
(
(αβγ)r−1αβ

)
,

Y :=
(
δs−2

)
,

Z :=
(
(γαβ)r−1γα

)

(ii) In the even case, suppose there is the additional generator (γαβ)r.

Parameter values Syzygy quiver Legend

s = 1, r > 1 E2 X X :=
(
(βγα)r−1βγ

)

s = 2, r > 2 E2 S2

X Y

X :=
(
(γαβ)r−1γα

)
,

Y :=
(
(βγα)r−1βγ

)

any other (s, r) E2 X

Y

S2 Z

X :=
(
δs−2

)
,

Y :=
(
(γαβ)r−1γα

)
,

Z :=
(
(βγα)r−1βγ

)

(iii) In the odd case, suppose there are no additional generators.

Parameter values Syzygy quiver Legend

r = 1, s = 1 E2

X Y

X :=
(
γ
)
, Y :=

(
βγ
)

r = 1, s = 2 E2 S2

X Y

X :=
(
(γαβ)γ

)
,

Y :=
(
βγ
)

r = 1, s > 3 E2 3

X 4

S2

X :=
(
δs−2

)
,

Y :=
(
γαβγ

)
,

Z :=
(
βγ
)
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Parameter values Syzygy quiver Legend

r > 2, s = 1 E2 Y

X Z

X :=
(
γ
)
, Y :=

(
βγ
)
,

Z :=
(
(βγα)r−1βγ

)

r > 2, s = 2 E2 X

S2

Y Z

X :=
(
(γαβ)rγ

)
, Y :=

(
βγ
)
,

Z :=
(
(βγα)r−1βγ

)

any other (r, s) E2 Z

X

Y U

S2

X :=
(
δs−1

)
,

Y :=
(
(γαβ)sγ

)
,

Z :=
(
βγ
)
,

U :=
(
(βγα)r−1βγ

)

Overquiver (e)

Let O be the overquiver in Figure 5.8e. The vertices 1 and 1′ lie on the same connected component. The

shortest paths between them are
(
1 1′

αβγ )
and

(
1′ 1

δ )
. The components can either be factorised

into an even number of these paths or an odd number. In the even case, the component set is of the form

C = {(αβγδ)r, (δαβγ)r} for some r > 1. In the odd case, it has the form C = {(αβγδ)rαβγ, (δαβγ)rδ}

for some r > 0.

(i) In the even case, suppose there are no additional generators.

Parameter values Syzygy quiver Legend

any r E2 Z

X Y

X :=
(
β
)
, Y :=

(
(βγδα)r−1βγδ

)
,

Z :=
(
(δαβγ)r−1δαβ

)

(ii) In the even case, suppose there is the additional generator (βγδα)rβ.
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Parameter values Syzygy quiver Legend

any r E2 Z

X S2 Y

X :=
(
(γδαβ)r−1γδα

)
,

Y :=
(
(βγδα)r−1βγδ

)
,

Z :=
(
(δαβγ)r−1δαβ

)

(iii) In the even case, suppose there is the additional generator (βγδα)r.

Parameter values Syzygy quiver Legend

any r E2 Y U

X V W

Z

X :=
(
(γδαβ)r−1γδ

)
, Y :=

(
β
)
,

Z :=
(
(βγδα)r−1βγδ

)
,

U :=
(
(δαβγ)r−1δ

)
,

V :=
(
(δαβγ)r−1δαβ

)
,

W :=
(
(βγδα)r−1γδα

)(
βγ
)−1

(iv) In the even case, suppose that there is the additional generator (γδαβ)r.

Parameter values Syzygy quiver Legend

any r
E2 U V

Y X Z

X :=
(
(γδαβ)r−1γδα

)
,

Y :=
(
(δαβγ)r−1δα

)
,

Z :=
(
γ
)(

(γδαβ)r−1γδ
)−1,

U :=
(
γ
)(

(βγδα)r−1βγδ
)−1,

V :=
(
(δαβγ)r−1

)

(v) In the even case, suppose that there are the additional generators (βγδα)r and (γδαβ)r.

Parameter values Syzygy quiver Legend

any r > 0 E2 Z Y

X S2

X :=
(
(γδαβ)r−1γδ

)
,

Y :=
(
(δαβγ)r−1δα

)
,

Z :=
(
(δγδα)r−1βγδ

)(
γ
)−1
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(vi) In the even case, suppose that there is the additional generator (γδαβ)r−1γδα.

Parameter

values

Syzygy quiver Legend

any r E2

Z X Y

X :=
(
(δαβγ)r−1δ

)
,

Y :=
(
(βγδα)r−1βγδ

)(
βγ
)−1,

Z :=
(
(βγδα)r−1βγδ

)(
βγ
)−1(

γ
)(

(βγδα)r−1βγδ
)−1

(vii) In the odd case, suppose that there are no additional generators.

Parameter values Syzygy quiver Legend

r > 1 E2

Y X

X :=
(
(αβγδ)r

)(
αβγ

)−1(
(δαβγ)r

)
,

Y :=
(
(αβγδ)r

)(
βγ
)−1(

γ
)(

(αβγδ)r
)−1

Overquiver (f)

Let O be the overquiver in Figure 5.8f. The vertices 1 and 1′ lie on the same connected component. The

shortest paths between them are
(
1 1′

αβ )
and

(
1′ 1

γδ )
. The components can either be factorised

into an even number of these paths or an odd number. In the even case, the component set is of the form

C = {(αβγδ)r, (γδαβ)r} for some r > 1. In the odd case, it has the form C = {(αβγδ)rαβ, (γδαβ)rγδ}

for some r > 0.

Simultaneously exchanging 1 1′, 2 2′, α γ, β δ yields an automorphism ofO which fixes

C and which respects Φ. Therefore, we need only consider choices of N up to this symmetry.

(i) In the even case, suppose that there are no additional generators.

Parameter values Syzygy quiver Legend

any r E2

Y S2 U

X Z

X :=
(
(δαβγ)r−1δαβ

)
,

Y :=
(
(αβγδ)r−1αβγ

)
,

Z :=
(
(βγδα)r−1βγδ

)
,

U :=
(
(γδαβ)r−1γδα

)(
(δαβγ)r

)−1
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(ii) In the even case, suppose that there is the additional generator (βγδα)r.

Parameter values Syzygy quiver Legend

any r E2 Z

U S2 X

Y

X :=
(
(δαβγ)r−1δαβ

)
,

Y :=
(
(αβγδ)r−1αβγ

)
,

Z :=
(
(γδαβ)r−1γδ

)
,

U :=
(
(βγδα)r−1βγδ

)(
β
)−1

(iii) In the even case, suppose there are the additional generators (βγδα)r and (δαβγ)r.

Parameter

values

Syzygy quiver Legend

any r E2 V

X Z Y

U

X :=
(
(αβγδ)r−1αβ

)
,

Y :=
(
(γδαβ)r−1γδ

)
,

Z :=
(
(δαβγ)r−1δαβ

)(
δ
)−1,

U :=
(
(βγδα)r−1βγδ

)(
β
)−1),

V :=
(
(βγδα)r−1βγδ

)(
β
)−1(

δ
)(

(δαβγ)r−1δαβ
)

(iv) In the odd case, suppose there are no additional generators.

Parameter values Syzygy quiver Legend

any r E2

Y S2 U

Z X

X :=
(
(δαβγ)rδ

)
,

Y :=
(
(αβγδ)rα

)
,

Z :=
(
(βγδα)rβ

)
,

U :=
(
(γδαβ)rγ

)

(v) In the odd case, suppose there is the additional generator (βγδα)rβγ.

Parameter values Syzygy quiver Legend

r > 0 E2 U

Z S1 Y

X

X :=
(
(δαβγ)rδ

)
, Y :=

(
(αβγδ)rα

)
,

Z :=
(
(γδαβ)r−1

)
,

U :=
(
(βγδα)r−1β

)(
δ
)−1
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(vi) In the odd case, suppose there are the additional generators (βγδα)rβγ and (δαβγ)rδα.

Parameter values Syzygy quiver Legend

r = 0 E2

Y S1 X

X := (β)(δ)−1,

Y :=
(
δ
)(
β
)−1(

δ
)(
β
)−1

any other r
E2 Y Z

V X U

X :=
(
(αβγδ)r

)
,

Y :=
(
(γδαβ)r

)
,

Z :=
(
(βγδα)rβ

)(
δ
)−1,

U :=
(
(δαβγ)rδ

)(
β
)−1,

V :=
(
(δαβγ)rδ

)(
β
)−1(

δ
)(

(βγδα)rβ
)−1
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Appendix B

SBStrips documentation

Here we include the documentation of the SBStrips package.
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Abstract
String modules for special biserial (SB) algebras are represented by string graphs. Many modules related to a
given string module, including its syzygy, transpose and vector-space dual and hence Auslander-Reiten translate
and inverse translate, are also string modules. These related modules can be calculated combinatorially rather
than algebraically. SBStrips implements this functionality in GAP, representing string graphs as objects called
strips. It includes some tests for associated properties such as syzygy type, delooping level and weak periodicity.

SBStrips also includes bookkeeping functionality for multisets, which it calls collected lists, and it
integrates with (and depends on) the QPA package for quiver algebras and their modules.
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Chapter 1

Introduction

1.1 Aim

The aim of the SBStrips package is to calculate syzygies of string modules over special biserial (SB)
algebras in a user-friendly way.

1.2 Some historical context

Special biserial algebras are a combinatorially-defined class of finite-dimensional K-algebras (over
some field K, often assumed algebraically closed), which have been the object of much study. Among
other results, their indecomposable finite-dimensional modules have been entirely classified into three
sorts, one of which are the string modules. These are so called because their module structure is
characterised by certain decorated graphs. In the literature these graphs are called strings but, for our
convenience (shortly to be justified), we will call them string graphs.

Liu and Morin [LM04] proved that the syzygy Ω1(X) of a string module X is a direct sum of
indecomposable string modules. Their proof is constructive and elementary: the former, because it
explicitly gives the string graphs describing each summand of Ω1(X) from that describing X , and
the latter, because they cleverly choose a basis of the projective cover P(X) of X which disjointly
combines bases of Ω1(X) and X . In particular, their proof is valid regardless of the characteristic of
the field K or whether it is algebraically closed. Consequently, we can argue that, in a very strong way,
"taking the syzygy of a string module" is a (many-valued) combinatorial operation on combinatorial
objects, not an algebraic one on algebraic objects.

This package implements that operation effectively. However, instead of the slightly naive no-
tation/formalism used in the above article, SBStrips uses an alternative, more efficient, framework
developed by the author during his doctoral studies. More precisely, the author devised a theoretical
framework (to prove mathematical theorems)in that this package models. This theoretical framework
was created with syzygy-taking in mind.

1.3 Why "strips", not "strings"?

Mantra:
If whenever you read the word "strip" in this package, you imagine that it means the kind of
decorated graph that representation theorists call a "string", then you won’t go too far wrong.
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Liu and Morin’s aforementioned paper exploits a kind of alternating behavior, manifesting from one
syzygy to the next. Through much trial and error, the author found patterns only apparent over a
greater "timescale". It rapidly became impractical to describe these greater patterns using the classical
notation for strips, let alone to rigorously prove statements about them. From this necessity was born
the SBStrips package – or, rather, the abstract framework underpinning it.

One crucial aspect in this framework is that string graphs are refined into objects called strips.
This refinement is technical, does not break any new ground mathematically – it largely amounts to
disambiguation and some algorithmic choice-making – and so we keep it behind the scenes.

The SBStrips user may safely assume that strip (or IsStripRep) simply means the kind of object
that GAP uses to represent string graphs for SB algebras. As an added bonus, this name avoids a clash
with those objects that GAP already calls "strings"!

1.4 Installation

The SBStrips package was designed for version 4.11 of GAP; the author makes no promises about
compatibility with previous versions. It requires version 1.30 of QPA and version 1.6 of GAP-
Doc. It is presently distributed in tar.gz and zip formats. These may be downloaded from
https://github.com/jw-allen/sbstrips/releases (be sure to download the latest version!),
and then unpacked into the user’s pkg directory.

1.5 InfoSBStrips

1.5.1 InfoSBStrips

. InfoSBStrips (info class)

Returns: nothing.
The InfoClass for the SBStrips package. The default value is 1. Integer values from 0 to 4

inclusive are supported, offering increasingly verbose information about SBStrips’ inner working.
(When set to 0, no information is printed.)



Chapter 2

Worked example

Many people learn by doing. This chapter is for them. Here, we provide a guided tour of the the
SBStrips package together with commentary.

2.1 How to teach a special biserial algebra to GAP using quivers (from
QPA)

Before discussing string modules, we have to specify a SB algebra to GAP. We use functionality
from the QPA package for this. Indeed, our GAP definition of SB algebra is an object for which
IsSpecialBiserialAlgebra (QPA: IsSpecialBiserialAlgebra) returns true.

The first step is to define the presenting quiver quiv1. We use just one of the many methods QPA
affords; see Quiver (QPA: Quiver no. of vertices, list of arrows) for details.

Example
gap> quiv1 := Quiver( 2,

> [ [ 1, 1, "a" ], [ 1, 2, "b" ], [ 2, 1, "c" ], [ 2, 2, "d" ] ]

> );

<quiver with 2 vertices and 4 arrows>

The second step is to create a path algebra pa1. We need the quiver quiv1 that we just created
and some field. For convenience, take Rationals (the Q object in GAP).

Example
gap> pa1 := PathAlgebra( Rationals, quiv1 );

<Rationals[<quiver with 2 vertices and 4 arrows>]>

The third step is to define a list rels of relations over that path algebra. Relations are linear com-
binations of paths in pa1. The addition, subtraction and multiplication of elements can be performed
using +, - and *, as normal. Paths are *-products of arrows in pa1. For details on refer to arrows of
pa1, see . (QPA: . for a path algebra).

Example
gap> rels := [ pa1.a * pa1.a, pa1.b * pa1.d,

> pa1.c * pa1.b, pa1.d * pa1.c,

> pa1.c * pa1.a * pa1.b, (pa1.d)^4,

> pa1.a * pa1.b * pa1.c - pa1.b * pa1.c * pa1.a ];

[ (1)*a^2, (1)*b*d, (1)*c*b, (1)*d*c, (1)*c*a*b, (1)*d^4,

(1)*a*b*c+(-1)*b*c*a ]

7



SBStrips 8

We impose a rule on the relations: they must be monomial relations or commutativity relations.
This imposition causes no mathematical loss of generality, of course.

The fourth step is to create the ideal ideal generated by the relations and to tell GAP that the
relations form a Gröbner basis of ideal.

Example
gap> gb := GBNPGroebnerBasis( rels, pa1 );

[ (1)*a^2, (1)*b*d, (1)*c*b, (1)*d*c, (-1)*a*b*c+(1)*b*c*a, (1)*c*a*b,

(1)*d^4 ]

gap> ideal := Ideal( pa1, gb );

<two-sided ideal in <Rationals[<quiver with 2 vertices and 4 arrows>]>,

(7 generators)>

gap> GroebnerBasis( ideal, gb );

<complete two-sided Groebner basis containing 7 elements>

The final step is to quotient pa1 by ideal, and hence finally obtain the SB algebra object alg1
Example

gap> alg1 := pa1/ideal;

<Rationals[<quiver with 2 vertices and 4 arrows>]/

<two-sided ideal in <Rationals[<quiver with 2 vertices and 4 arrows>]>,

(7 generators)>>

(This algebra is the same as SBStripsExampleAlgebra( 1 ). See A.2.1 for more information.)

2.2 How to teach a string (graph) to GAP using strips.

We continue with the example SB algebra alg1, created in the previous section.
Consider the following string (graph) for alg1.

1 1 2 1 1 2 2 1 1 2 2a b c a b d c a c d

Reading from left to right, the first arrow in this string graph is a and it has exponent−1 (which means
it points to the left, the negative direction). It’s followed by 2 arrows with positive exponent (which we
record as the positive integer "2"), then 1 with negative exponent (recorded as negative integer "-1"),
then 1 positive ("1"), 1 negative ("-1"), 1 positive ("1"), 2 negative ("-2") and 1 positive ("1").

This is the information used when specifying the string graph to SBStrips. The operation
Stripify (4.2.1) returns the strip representing this string graph. What gets printed is the formal
word associated to the original string graph.

Example
gap> s := Stripify( alg1.a, -1, [ 2, -1, 1, -1, 1, -2, 1 ] );

(a)^-1(b*c) (a)^-1(b) (d)^-1(c) (c*a)^-1(d)

gap> IsStripRep( s );

true;

The reader will note that reading the string graph "from left to right" a moment ago was only
possible of how the graph was written on the page. That same graph may be written equally well in
the "reflected" format, as follows.

2 2 1 1 2 2 1 1 2 1 1d c a c d b a c b a

This gives us different defining data for the string. However, SBStrips is smart enough to know that
these two are representations of the same object.
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Example
gap> t := Stripify( alg1.d, -1, [ 2, -1, 1, -1, 1, -2, 1 ] );

(d)^-1(c*a) (c)^-1(d) (b)^-1(a) (b*c)^-1(a)

gap> s = t;

true

2.3 How to calculate syzygies of string( modules)s using strips

We continue with the strip s for the SB algebra alg1 from the previous sections.
We know that s represents some (string) module X for alg1. The syzygy of that string module X

is a direct sum of indecomposable string modules, each of which may be represented by string graph.
Those string graphs, or rather strips representing them, can be calculated directly from s. This is the
heart of the SBStrips package!

So, let’s start calculating the "syzygy strips" of s. This calls for the attribute SyzygyOfStrip

(4.5.1), which returns a list of strips, one for each indecomposable direct summand of the syzygy of
its input.

Example
gap> SyzygyOfStrip( s );

[ (v2)^-1(c) (a)^-1(b*c) (c*a)^-1(d^2), (a)^-1(v1), (d)^-1(v2) ]

gap> Length( last );

3

The call to Length (Reference: Length) reveals that the the syzygy of s has 3 indecomposable
summands.

Of course, there’s no reason to stop at 1st syzygies. SBStrips is able to take Nth syzygies very
easily for N ≥ 0. For example, we can calculate the 4th syzygy of s as follows.

Example
gap> 4th_syz := NthSyzygyOfStrip( s, 4 );

[ (v2)^-1(c*a) (c)^-1(v2), (v2)^-1(d^2), (a)^-1(v1), (v2)^-1(d^2),

(a)^-1(b*c) (a)^-1(v1), (d^2)^-1(v2), (v1)^-1(a), (v2)^-1(v2),

(v2)^-1(c) (c*a)^-1(v2), (v1)^-1(a), (v2)^-1(v2),

(v2)^-1(c) (c*a)^-1(v2), (v2)^-1(v2), (a)^-1(v1),

(v2)^-1(c*a) (c)^-1(v2), (v2)^-1(d), (a)^-1(v1), (v2)^-1(d^2),

(a)^-1(v1), (d^2)^-1(v2) ]

gap> Length( 4th_syz );

20

We find that the 4th syzygy of s has 20 indecomposable direct summands.
The reader will spot that many strips appear multiple times in 4th_syz. If you want to remove

duplicates, then the most efficient way is with Set (Reference: Set). (Mathematically, this is like
asking for just the isomorphism types of modules in the 4th syzygy of the module represented by s,
ignoring how often that type is witnessed.)

Alternatively, you can use Collected (Reference: Collected), which turns the list into something
that a mathematician might call a multiset. This means that the distinct strips are recorded along with
their frequency in the list. For example, the second output below means that (v2)^-1(v2) occurs 3
times in 4th_syz while (v1)^-1(a) occurs 6 times.

Example
gap> Set( 4th_syz );

[ (v2)^-1(v2), (v1)^-1(a), (v2)^-1(d), (v2)^-1(d^2),
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(v2)^-1(c*a) (c)^-1(v2), (a)^-1(b*c) (a)^-1(v1) ]

gap> Collected( 4th_syz );

[ [ (v2)^-1(v2), 3 ], [ (v1)^-1(a), 6 ], [ (v2)^-1(d), 1 ],

[ (v2)^-1(d^2), 5 ], [ (v2)^-1(c*a) (c)^-1(v2), 4 ],

[ (a)^-1(b*c) (a)^-1(v1), 1 ] ]

This package uses the term collected lists for these multisets, and it offers several built-
in functionalities for calculating collected lists of syzygies. Principal among these are
CollectedSyzygyOfStrip (4.5.3) and CollectedNthSyzygyOfStrip (4.5.4).

Example
gap> CollectedSyzygyOfStrip( s );

[ [ (a)^-1(v1), 1 ], [ (d)^-1(v2), 1 ],

[ (v2)^-1(c) (a)^-1(b*c) (c*a)^-1(d^2), 1 ] ]

gap> CollectedNthSyzygyOfStrip( s, 4 );

[ [ (v2)^-1(c) (c*a)^-1(v2), 4 ], [ (v2)^-1(v2), 3 ],

[ (v1)^-1(a), 6 ], [ (v2)^-1(d^2), 5 ], [ (v2)^-1(d), 1 ],

[ (a)^-1(b*c) (a)^-1(v1), 1 ] ]

The author recommends that, if calculating kth syzygies for large k (say k ≥ 10), you use a Col-
lected method. Details can be found in 6.1.

2.4 Aside: How to calculate Nth syzygies efficiently for large N

This section is a short digression, more philosophical than computational.
A central point of the author’s doctoral studies (refer [All21]) is that the syzygies of a string

module should be arranged in a particular format. (A little more specifically, they should be written
into a certain kind of array.) Most of the time this format does not print nicely onto the Euclidean
plane so, sadly, there is little hope of GAP displaying syzygies in the most "optimal" way. The closest
it can get – which is not very close at all, frankly – is the list format returned by SyzygyOfStrip or
NthSyzygyOfStrip. However, this format compresses lots into a single line. This loses information
and becomes a very inefficient way to store data (let along compute with them). By using functions
like Collected, CollectedSyzygyOfStrip and CollectedNthSyzygyOfStrip, we lose what little
information the list presentation holds onto, but we streamline out calculations greatly.

To see this, let s be the example strip from above and consider the 20th syzygy of s. The following
calculation shows that it has 344732 distinct summands (many of which will be isomorphic). On the
author’s device, this took over 2 minutes to perform.

Example
gap> NthSyzygyOfStrip( s, 20 );;

gap> time;

130250

gap> Length( last2 );

344732

Compare this with a Collected approach, wherein the 20th syzygy was calculated in a heartbeat and
the 200th syzygy is not much more. For comparison, and as a small boast, we also include times for
the 2000th, 20000th and 200000th syzygies for comparison.

Example
gap> CollectedNthSyzygyOfStrip( s, 20 );

[ [ (v2)^-1(c) (c*a)^-1(v2), 66012 ], [ (v2)^-1(v2), 55403 ],
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[ (v1)^-1(a), 121414 ], [ (v2)^-1(d^2), 101901 ], [ (v2)^-1(d), 1 ],

[ (a)^-1(b*c) (a)^-1(v1), 1 ] ]

gap> time;

62

gap> CollectedNthSyzygyOfStrip( s, 200 );

[ [ (v2)^-1(c) (c*a)^-1(v2),

28610320653810477165032088685001500201865067503083660 ],

[ (v2)^-1(v2), 24012263187173292438733091914788756514219413052446981 ]

,

[ (v1)^-1(a), 52622583840983769603765180599790256716084480555530640 ],

[ (v2)^-1(d^2), 44165437642884416151601614150885951220530708429827491

], [ (v2)^-1(d), 1 ], [ (a)^-1(b*c) (a)^-1(v1), 1 ] ]

gap> time;

547

gap> CollectedNthSyzygyOfStrip( s, 2000 );; time;

5422

gap> CollectedNthSyzygyOfStrip( s, 20000 );; time;

54172

gap> CollectedNthSyzygyOfStrip( s, 200000 );; time;

548922

We warn the reader that, even in this easier-to-store collected form, the integers involved may
become too big for GAP to handle. Effective book-keeping only increases the upper bound on infor-
mation we can store; it doesn’t remove it!

2.5 How to call the strips representing simple, projective and injective
(string) modules

We continue with the SB algebra alg1 from before which, we remind the reader, was defined in terms
of the quiver quiv1. There is nothing very special about the running example strip s that previous
sections have focussed on. The associated string module is certainly not canonical in any way.

However, there are some string modules which really are canonical for one reason or another, and
which SBStrips has methods to call. This includes the simple modules and, more generally, uniserial
modules. It also includes the indecomposable projective or injective modules, provided that they are
string modules (which is not guaranteeed).

To obtain the list of strips that describe the simple modules, use SimpleStripsOfSBAlg (4.3.1).
Example

gap> SimpleStripsOfSBAlg( alg1 );

[ (v1)^-1(v1), (v2)^-1(v2) ]

The ith entry is the strip describing the ith simple module Si.
The uniserial modules are also string modules. They correspond to paths in the SB algebra. There

is a method for Stripify (4.2.1) that turns a path for the SB algebra into the corresponding strip.
Example

gap> Stripify( alg1.a * alg1.b );

(a*b)^-1(v1)

gap> Stripify( alg1.c );

(c)^-1(v2)

gap> Stripify( alg1.d^3 );
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(d^3)^-1(v2)

gap> Stripify( alg1.v1 );

(v1)^-1(v1)

(A quick reminder on QPA syntax. Here, a, b, c and d are the names of arrows in quiv1. The
corresponding elements of alg1 are called by alg1.a and alg1.b and so on. As in quiv1, paths
are products of arrows. Thus, alg1.a * alg1.b is the element of alg1 corresponding to the path a

* b ("a then b") in quiv1. We see that vertices or arrows of the SB algebra (such as alg1.v1 and
alg1.c) are paths too. We also see an example of the ^ operation: alg2.d^3 is equivalent to alg2.d

* alg2.d * alg2.d.)
Since vertices are still paths (trivially) and simple modules are uniserial (trivially), we therefore

have a second way to access the simple modules of a SB algebra.
Example

gap> s1 := Stripify( alg2.v1 );;

gap> s2 := Stripify( alg2.v2 );;

gap> SimpleStripsOfSBAlg( alg1 );

[ (v1)^-1(v1), (v2)^-1(v2) ]

gap> [ s1, s2 ] = SimpleStripsOfSbAlg( alg2 );

true

Some of the indecomposable projective modules are string modules. The attribute
IndecProjectiveStripsOfSBAlg (4.3.4) returns a list, whose rth entry is the strip describing
the module Pr (if Pr is indeed a string module) or the boolean fail (if not). The attribute
IndecInjectiveStripsOfSBAlg (4.3.5) is similar.

Example
gap> ProjectiveStripsOfSbAlg( alg1 );

[ fail, (c*a)^-1(d^3) ]

gap> InjectiveStripsOfSbAlg( alg1 );

[ fail, (v1)^-1(a*b) (d^3)^-1(v2) ]

2.6 Some inbuilt tests for string modules using strips

The objective of the SBStrips package is to investigate the syzygies of string modules over SB al-
gebras for patterns. There are some patterns, described in 3.3.2, that it already knows to look for.
This section describes those functionalities. We will also see syzygies put to use in calculating the
delooping level of modules and algebras, as explained more in 3.3.3.

We keep the algebra alg1 defined in previous sections. For comparison, we introduce an additional
algebra using SBStripsExampleAlgebra (A.1.1), giving it the very imaginative name alg2.

Example
gap> SetInfoLevel( InfoSBStrips, 3 );

gap> alg2 := SBStripsExampleAlgebra( 2 );

#I The quiver of this algebra has 3 vertices

#I v1

#I v2

#I v3

#I and 3 arrows

#I a: v1 --> v2

#I b: v2 --> v3

#I c: v3 --> v1



SBStrips 13

<Rationals[<quiver with 3 vertices and 3 arrows>]/

<two-sided ideal in <Rationals[<quiver with 3 vertices and 3 arrows>]>,

(3 generators)>>

gap> SetInfoLevel( InfoSBStrips, 2 );

By raising the level of InfoSBStrips (1.5.1) to 3, we make SBStrips provide a bit more detail about
this example algebra. Full details can be found in A.2.2 but, for now, it suffices to say that alg2 is
a Nakayama algebra: this means an algebra for which all indecomposable modules are uniserial. It
follows that alg2 is representation finite and, a fortiori, syzygy finite.

Let’s pick any old uniserial module U for alg2 and then call the associated strip u.
Example

gap> UniserialStripsOfSBAlg( alg2 );

[ (v1)^-1(v1), (v2)^-1(v2), (v3)^-1(v3), (a)^-1(v1), (b)^-1(v2),

(c)^-1(v3), (a*b)^-1(v1), (b*c)^-1(v2), (c*a)^-1(v3), (a*b*c)^-1(v1),

(b*c*a)^-1(v2), (c*a*b)^-1(v3) ]

gap> u := last[8];

(a*b)^-1(v1)

Is U weakly periodic? Recall that U is weakly periodic if there is some k>0 such that U is a direct
summand of Ωk(U). We’ll test this by hunting for u amongst the syzygy strips of u. Initially, let’s look
amongst the first 4 syzygies using the operation IsWeaklyPeriodicStripByNthSyzygy (4.5.14).

Example
gap> IsWeaklyPeriodicStripByNthSyzygy( u, 4 );

#I Examining strip: (a*b)^-1(v1)

#I This strip does not occur as a summand of its first 4 syzygies

false

No luck so far but observe that, since InfoSBStrips is currently at level 2, SBStrips has also pro-
vided some commentary alongside our non-result. Let us raise the threshold from 4 to 10 and try
again.

Example
gap> IsWeaklyPeriodicStripByNthSyzygy( u, 10 );

#I Examining strip: (a*b)^-1(v1)

#I This strip first appears as a direct summand of its 6th syzygy

true

Fantastic! We learn that strip u does appear among its first 10 syzygies. In fact, SBStrips is even kind
enough to tell us the index of the earliest recurrence of u: at the 6th syzygy. (This information would
not be printed if InfoSBStrips had value 1 or 0.)

Now let us take a uniserial module U – for alg1, this time – and conduct a similar investigation.
Example

gap> UniserialStripsOfSBAlg( alg1 );

[ (v1)^-1(v1), (v2)^-1(v2), (a)^-1(v1), (b)^-1(v1), (c)^-1(v2),

(d)^-1(v2), (a*b)^-1(v1), (b*c)^-1(v1), (c*a)^-1(v2), (d^2)^-1(v2),

(d^3)^-1(v2) ]

gap> uu := last[7];

(a*b)^-1(v1)

gap> IsWeaklyPeriodicStripByNthSyzygy( uu, 10 );

#I Examining strip: (a*b)^-1(v1)

#I This strip does not occur as a summand of its first 10 syzygies
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false

gap> IsWeaklyPeriodicStripByNthSyzygy( uu, 100 );

#I Examining strip: (a*b)^-1(v1)

#I This strip does not occur as a summand of its first 100 syzygies

false

gap> IsWeaklyPeriodicStripByNthSyzygy( uu, 10000 ); time;

#I Examining strip: (a*b)^-1(v1)

#I This strip does not occur as a summand of its first 10000 syzygies

false

6703

We find that uu does not occur amongst its first 10000 syzygies. This certainly suggests that uu is
not weakly periodic, but "absence of evidence is not evidence of absence" so this does not constitute
a proof. On the basis of this test alone, we cannot rule out its first reccurence being at index 10001.
Hunting among syzygy strips of uu for uu itself has been fruitless, therefore we should change tactic.
We will now use the test IsFiniteSyzygyTypeStripByNthSyzygy (4.5.13) to calculate the set of
syzygy strips of uu appearing at or before index 0, then the strips at or before index 1, then index 2
and so on up until a specified index N. If this ascending sequence of finite sets stabilizes at or before
index N, then we may conclude that uu has finite syzygy type.

Example
gap> IsFiniteSyzygyTypeStripByNthSyzygy( uu, 10000 );

#I Examining strip: (a*b)^-1(v1)

#I This strip has finite syzygy type.

#I The set of strings appearing as summands of its first N syzygies st\

abilizes at N=4, at which point it has cardinality 6

true

This is indeed what happens. Handily, SBStrips also tells us the index at which stabilization occurs
(namely 4) and how many distinct strips were seen at or before this index. We deduce that any strips
that are going to occur would do so by the 4th syzygy. Since uu did not recur by then, we know that it
never will.

If we seek modules of infinite syzygy type, we should not test any strips over alg2. We know
the answer will be negative in that case, since alg2 is a representation finite algebra and so all of its
modules are trivially of finite syzygy type. Instead, we turn again to strips over alg1.

We need look no further than the simple module at vertex 1.
Example

gap> s1 := SimpleStripsOfSBAlg( alg1 )[1];

(v1)^-1(v1)

gap> IsFiniteSyzygyTypeStripByNthSyzygy( s1, 10 );

#I Examining strip: (v1)^-1(v1)

#I The set of strings appearing as summands of its first 10 syzygies h\

as cardinality 15

false

gap> IsFiniteSyzygyTypeStripByNthSyzygy( s1, 100 );

#I Examining strip: (v1)^-1(v1)

#I The set of strings appearing as summands of its first 100 syzygies \

has cardinality 105

false

gap> IsFiniteSyzygyTypeStripByNthSyzygy( s1, 1000 );

#I Examining strip: (v1)^-1(v1)
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#I The set of strings appearing as summands of its first 1000 syzygies\

has cardinality 1005

false

gap> time;

284860

(Of course these non-results can only be suggestive rather than conclusive.)
One can also explore whether a string module X is a direct summand of ΩY for some Y or, more

generally, whether Ωk X is a direct summand of Ωk+1Y for some Y . When this happens, we say X can
be k-delooped. The delooping level of a module is the smallest k ≥ 0 for which it can be k-delooped
or +∞ if no such k exists.

SBStrips provides the operation DeloopingLevelOfStripIfAtMostN (4.5.15) to determine the
delooping level of a module, aborting the calculation and returning fail if it finds the delooping level
exceeds a user-specified threshold.

Example
gap> U := UniserialStripsOfSBAlg( alg1 );;

gap> a := U[3]; b := U[4]; ab := U[7];

(a)^-1(v1)

(b)^-1(v1)

(a*b)^-1(v1)

gap> DeloopingLevelOfStripIfAtMostN( a, 0 );

0

gap> DeloopingLevelOfStripIfAtMostN( a, 1 );

0

gap> DeloopingLevelOfStripIfAtMostN( b, 0 );

fail

gap> DeloopingLevelOfStripIfAtMostN( b, 1 );

1

gap> DeloopingLevelOfStripIfAtMostN( ab, 10 );

2

The delooping level of a SB algebra is the supremum of the delooping levels of its simple mod-
ules. SBStrips provides DeloopingLevelOfSBAlgIfAtMostN (4.6.2) to calculate this quantity for
algebras in a fashion similar to above with modules.

Example
gap> DeloopingLevelOfSBAlgIfAtMostN( alg1, 10 );

0

gap> DeloopingLevelOfSBAlgIfAtMostN( alg2, 10 );

10

gap> for k in [ 1 .. 5 ] do

> Print(

> DeloopingLevelOfSBAlgIfAtMostN( SBStripsExampleAlgebra( k ), 10 )

> );

> Print( "\n" );

> od;

0

0

2

0

1
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We highlight that all of these examples return finite answers. Whether an arbitrary SB algebra has
finite delooping level remains an open question. In general, if A has finite delooping level then Aop

satisfies the big finitistic dimension conjecture, and this is still open for SB algebras. (The little
finitistic dimension conjecture is settled in the affirmative; see [EHIS04]).

Another sufficient condition for Aop to satisfy the big finitistic dimension conjecture is that the
injective A-modules have finite syzygy type [Ric19]. It is trivial that projective modules obviously
have finite syzygy type. Over a SB algebra, the nonprojective (indecomposable) injective modules are
string modules.

To explore this question, SBStrips provides the function
TestInjectiveStripsUpToNthSyzygy (4.6.1). It calculates up to the Nth syzygy of each in-
jective string module of a SB algebra, and prints a message whether they all have syzygy type at most
N.

Example
gap> SetInfoLevel( InfoSBStrips, 1 );

gap> alg_list := List( [ 1..5 ], SBStripsExampleAlgebra );;

gap> SetInfoLevel( InfoSBStrips, 2 );

gap> for A in alg_list do

> TestInjectiveStripsUpToNthSyzygy( A, 200 );

> Print( "\n" );

> od;

#I Examining strip: (v1)^-1(a*b) (d*d*d)^-1(v2)

#I This strip has finite syzygy type.

#I The set of strings appearing as summands of its first N syzygies st\

abilizes at N=3, at which point it has cardinality 5

The given SB algebra has passed the test!

#I Examining strip: (v1)^-1(a*b*c)

#I This strip has finite syzygy type.

#I The set of strings appearing as summands of its first N syzygies st\

abilizes at N=0, at which point it has cardinality 1

[...lengthy output omitted from documentation for space reasons...]

The given SB algebra has passed the test!

#I Examining strip: (v1)^-1(a*b*c*d) (f*g*h*f*g*h)^-1(v1)

#I This strip has finite syzygy type.

#I The set of strings appearing as summands of its first N syzygies st\

abilizes at N=7, at which point it has cardinality 14

[...omitted...]

The given SB algebra has passed the test!

#I Examining strip: (v7)^-1(n*o*p*a) (n*o*p)^-1(v7)

#I This strip has finite syzygy type.

#I The set of strings appearing as summands of its first N syzygies st\

abilizes at N=8, at which point it has cardinality 21

[...omitted...]

The given SB algebra has passed the test!

#I Examining strip: (v1)^-1(a*b*c*d*a) (e*f*g*e*f*g*e)^-1(v1)

#I This strip has finite syzygy type.

#I The set of strings appearing as summands of its first N syzygies st\

abilizes at N=6, at which point it has cardinality 13

[...omitted...]
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The given SB algebra has passed the test!

2.7 How to turn a strip into a quiver representation

A combinatorial approach is all very well and good but perhaps you really do want a module for your
SB algebra. SBStrips can provide!

For the following, recall from preceding sections the strip s for the algebra alg1. Further recall
that alg1 was defined in terms of the quiver quiv1.

The strip s stands for a string module for alg1. That string module can be modelled as a repre-
sentation of quiv1. To obtain that quiver representation from s, use ModuleOfStrip (4.5.5).

Example
gap> module := ModuleOfStrip( s );

<[ 6, 5 ]>

gap> Print( module );

<Module over <Rationals[<quiver with 2 vertices and 4 arrows>]/

<two-sided ideal in <Rationals[<quiver with 2 vertices and 4 arrows>]>

, (7 generators)>> with dimension vector [ 6, 5 ]>

You can turn a list of strips into a list of modules using ModuleOfStrip (4.5.5).
Example

gap> 4th_syz := NthSyzygyOfStrip( s, 4 );;

gap> ModuleOfStrip( 4th_syz );

[ <[ 2, 2 ]>, <[ 0, 3 ]>, <[ 2, 0 ]>, <[ 0, 3 ]>, <[ 4, 1 ]>,

<[ 0, 3 ]>, <[ 2, 0 ]>, <[ 0, 1 ]>, <[ 2, 2 ]>, <[ 2, 0 ]>,

<[ 0, 1 ]>, <[ 2, 2 ]>, <[ 0, 1 ]>, <[ 2, 0 ]>, <[ 2, 2 ]>,

<[ 0, 2 ]>, <[ 2, 0 ]>, <[ 0, 3 ]>, <[ 2, 0 ]>, <[ 0, 3 ]> ]

You can turn a collected list (see 6.1) of strips into a collected list of modules using ModuleOfStrip

(4.5.5).
Example

gap> coll_4th_syz := CollectedNthSyzygyOfStrip( s, 4 );

[ [ (v2)^-1(c) (c*a)^-1(v2), 4 ], [ (v2)^-1(v2), 3 ], [ (v1)^-1(a), 6 ],

[ (v2)^-1(d^2), 5 ], [ (v2)^-1(d), 1 ], [ (a)^-1(b*c) (a)^-1(v1), 1 ]

]

gap> ModuleOfStrip( coll_4th_syz );

[ [ <[ 2, 2 ]>, 4 ], [ <[ 0, 1 ]>, 3 ], [ <[ 2, 0 ]>, 6 ],

[ <[ 0, 3 ]>, 5 ], [ <[ 0, 2 ]>, 1 ], [ <[ 4, 1 ]>, 1 ] ]

The latter two methods take a list (or collected list) of strips and return a list of modules
(or a collected list, as appropriate). Perhaps you want the direct sum of all the modules in that
list or collected list. Naive calls to QPA’s inbuilt functionality turn out to be resource inten-
sive. In its place, SBStrips offers the operation DirectSumModuleOfListOfStrips (4.5.6) or
DirectSumModuleOfListOfStrips (4.5.6).

Example
gap> 4th_syz := NthSyzygyOfStrip( s, 4 );;

gap> coll_4th_syz := CollectedNthSyzygyOfStrip( s, 4 );;

gap> DirectSumModuleOfListOfStrips( 4th_syz );

<[ 24, 29 ]>

gap> DirectSumModuleOfListOfStrips( coll_4th_syz );

<[ 24, 29 ]>
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Mathematical background

3.1 Finite-dimensional algebras

Here and throughout, K is some field. By a K-algebra A, we mean an associative and unital (but
not necessarily commutative) ring with a compatible K-vector space structure. Any algebra A has an
opposite algebra Aop.

Suppose Q is a finite quiver: that is, a directed graph with finitely many vertices and finitely many
arrows, where loops and/or multiple edges are permitted. The paths of Q (also called Q-paths to
emphasize their parent quiver), including the "stationary" paths at each vertex, form the basis of a
vector space. multiplication can be defined on basis vectors p and q by "concatenation extended by
zero"; more precisely, p ·q = pq ("p then q") if pq is a path in Q, and p ·q = 0 otherwise. This defines
the path algebra KQ. Its multiplicative unit is the sum of stationary paths. It has finite K-dimension
iff Q contains no (directed) cycles.

Let J E KQ denote the arrow ideal of KQ: the smallest two-sided ideal of KQ containing the
arrows of Q. An ideal I E KQ is admissible iff there is an integer N ≥ 2 with JN ⊆ I ⊆ J2.

By a (bound) quiver algebra, we mean a quotient KQ/I of a path algebra KQ by an admissible
ideal I. Quiver algebras are always finite-dimensional [ASS06, Sec II.2]. Indeed, at least when K is
algebraically closed, any finite-dimensional algebra is a direct product of connected ones (trivially),
any connected finite-dimensional algebra is Morita equivalent to a basic one [ASS06, Sec I.6] and any
basic, connected algebra is isomorphic to a quiver algebra [ASS06, Sec II.3].

In this document, we assume that K is algebraically closed and A is a quiver algebra KQ/I. By
the above, this is no loss of generality. We also use the term A-path to mean a nonzero element p+ I
represented by a path of the quiver.

3.2 Modules and bound quiver representations

A representation of A is a homomorphism of algebras φ : A→EndX whose target is the endomorphism
algebra EndX of a K-vector space X ; for convenience, write φa for the image of a in φ . In this case,
we call X a (right) A-module, with associated action x ·a = xφa. The module is finite-dimensional iff
X is.

Since A = KQ/I, we can work in terms of (bound) representations of quivers. These are assign-
ments of a vector space Xi to each vertex i of Q and a linear map θα : Xi→ X j to each arrow α : i→ j
of Q such that for any ρ = ∑m

k=1 pkλk ∈ I, the associated map ∑m
k=1 θpk :

⊕
i Xi→

⊕
i Xi is zero. Here,

18
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θpk = θα1 · · ·θαr for a decomposition of a nonstationary pk into a product α1 · · ·αr of arrows, and
θi = idXi for any stationary path at i.

As is well-known [ASS06, III.1], representations of quivers are equivalent to modules. More
specifically, the categories Rep(Q, I) of bound quiver representations and Mod-A of A-modules are
equivalent, and this equivalence restricts to their respective full subcategories rep(Q, I) and mod-A of
finite-dimensional objects. In keeping with the quiver-minded approach from above, whenever we say
module, we really mean the equivalent bound quiver representation.

We note in particular that all of the categories in the previous paragraph are abelian: thus, we
can speak of the direct sum of modules (denoted with ⊕) . We call a module X indecomposable if
X =Y ⊕Z implies Y or Z is zero. Further, if U is any set of A-modules, we define the additive closure
addU of U as the full subcategory of mod-A whose objects are isomorphic to direct summands of
finite direct sums of members of U .

Write [X ] for the isomorphism type of X . One can seek to classify the isomorphism classes of inde-
composable (finite-dimensional) modules of an algebra. A deep theorem of Drozd [Dro80] establishes
that all finite-dimensional algebras fall into exactly one of three representation types. In increasing or-
der of difficulty, the options are representation finite, tame or wild. The first simply means the algebra
has only finitely many isoclasses of indecomposables. Speaking informally, tame algebras are those
for which, in each dimension, almost all modules lie in one of finitely many classes each parameter-
ized by the field. Speaking even more informally, wild algebras are those for which the classification
problem is intractible in a very strong way. Discussion and formal definitions of representation type
can be found in [Ben95, Sec 4.4].

There are certain canonical classes of module. A module X is: simple if it has no proper, nonzero
submodules; projective if the covariant functor HomA(X ,−) : Mod-A→Mod-Z is exact, or; injective
if the functor HomA(−,X) : Mod-A→Mod-Z is exact. The simple A-modules (necessarily indecom-
posable) are in one-to-one correspondence with the vertices of Q, as are the indecomposable projective
and injective modules. We respectively write Si, Pi and Ii for the simple, indecomposable projective
and indecomposable injective module corresponding to the vertex i. We also write proj -A and inj -A to
for the full subcategories of mod-A whose objects are respectively the (finite-dimensional) projective
and injective modules.

A composition series for a module X is a strictly ascending chain of submodules

0 = X0 < X1 < X2 < · · ·< Xl−1 < Xl = X

of X such that each consecutive quotient Xk+1/Xk is simple. A module is uniserial if it has a unique
composition series; equivalently, if its submodules form a chain.

We write D for the vector-space duality HomK(−,K) : mod-A→ mod-Aop of modules (and its
inverse) and we write ∗ for the dualities HomA(−,A) : proj -A→ proj -Aop and HomA(−,A) : inj -A→
inj -Aop.

3.3 Syzygies and related constructions

In this section, we describe certain module constructions which refer to projective presentations (de-
scribed below). These constructions do not generally extend to functors on the module category be-
cause they depend on the presentation chosen. However, this dependence is usually only up to the
adding or removing of projective direct summands. By working in the finite-dimensional universe
mod-A where the Krull-Schmidt theorem applies, we can reduce to study of modules having no inde-
composable projective direct summands. These objects admit minimal projective presentations. This
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approach suffices for SBStrips, since we will only be interested in constructions on modules and not
their functorial extension to morphisms. Readers who care for the functorial approach should interpret
the following in the (projectively) stable module category mod-A: its objects are those of the usual
module category mod-A and its hom-spaces are the quotients of their counterparts in mod-A by the
subspaces of maps that factor through projective modules. They should also be aware of the injec-
tively stable module category mod-A, similarly obtained by quotienting my maps factoring through
injectives.

3.3.1 Projective covers and syzygies

Any module M admits a projective presentation, which is to say an exact sequence P1
f→ P0→ X → 0.

Applying ∗ to f yields the map f ∗ : ¶∗0 → P∗1 in proj -Aop. Its cokernel cok f ∗ is called the transpose
TrX of X . (In mod-A, transpose yields a duality Tr : mod-A→mod-Aop.)

The composition DTr (transpose first, then dual) is called the Auslander-Reiten translation (and is
an equivalence mod-A→mod-A). Its inverse is the opposite composition TrD.

For any finite-dimensional module X there is a smallest (in vector-space dimension) projective
module PX that maps onto it, say by the map π : PX� X . The kernel of this map is the (first) syzygy
Ω1 X of X . We inductively define the kth syzygy as Ωk+1 M = Ω1(Ωk M) for k≥ 0 and, by convention,
we set Ω0 M to be X/P, for P the largest projective direct summand of X .

The projective dimension projdimX of X is the smallest k ≥ 0 for which Ωk X = 0, or +∞ if no
such k exists. In particular, a module has projective dimension 0 iff it is projective.

3.3.2 Syzygy patterns

We can define certain homological behavior with reference to syzygies. For k ≥ 0 and some fixed
module X , let

Ak =
{
[M] : M ∈ add{Ωt X} for some t ≥ k

}
, Bk =

{
[M] : M ∈ add{Ωt X} for some t ≤ k

}
.

(These letters were chosen so that Ak contains the isoclasses of indecomposables appearing at or
A fter the kth syzygy, while Bk contains those appearing at or Before.) The Ak and Bk relate in the
following way:

B0 ⊆B1 ⊆B2 ⊆ ·· · ⊆
⋃

k≥0

Bk = A0 ⊇A1 ⊇A2 ⊇ ·· · ⊇
⋂

k≥0

Ak.

We comment that, for each successive inclusion Bk ⊇Bk+1 or Ak ⊇ Ak+1, the appropriate set dif-
ference between them is finite. Note also that ∩k≥0Ak contains exactly those isoclasses witnessed at
Ωk X for infinitely many indices k. Below, we use this sequence of inclusions to define some termi-
nology for patterns in syzygies. Our definitions are inspired by comparable work in [GHZ96, Sec 2]
and [Ric19, Sec 7].

If there is an index t for which At = At+1(= At+2 = · · · = ∩k≥0Ak), then there is a minimal
one t?, in which case we say that the syzygy repetition index of X is t?. This holds exactly when t?
satisfies At? =∩k≥0Ak (and is the minimal index to enjoy this property). If no such t exists, the syzygy
repetition of index of X is +∞.

If A0 is finite, then we say X has syzygy type |A0| of index s?, for s? the minimal index k such
that Bk = Bk+1(= Bk+2 = · · ·= A0); the existence of s? in this case follows from an easy finiteness
argument. Just as immediately, we see that if X has finite syzygy type |A0| then it has finite syzygy
repetition index at most |A0|.

If [X ] ∈ ∩k≥0Ak, then we call X weakly periodic.
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3.3.3 Delooping

We say a module X can be k-delooped if there is some module Y for which Ωk X is a direct summand
Ωk+1Y . Here, we either discard projective direct summands of both modules or, formally, work in
mod-A. Gélinas [Gél20, Thm 1.10] showed that it suffices to check Y = Ωk+1 Σk+1 Ωk X , where Σ =
TrΩTr is called suspension.

Gélinas defines the delooping level dellX of a module X to be the smallest k ≥ 0 for which it can
be k-delooped, or +∞ if no such k exists. He subsequently defines the delooping level dellA of an
algebra A as dellA = max{dellS : S is simple} and relates this invariant to the finitistic dimension of
A.

3.4 Special biserial algebras

A special biserial (SB) algebra is a quiver algebra KQ/I such that

1. every vertex of Q is the source of at most 2 arrows,

2. every vertex of Q is the target of at most 2 arrows,

3. for every arrow a of Q, there is at most one arrow b with ab /∈ I and

4. for every arrow a of Q, there is at most one arrow c with ca /∈ I.

These algebras emerged from the modular representation theory of finite groups. A key text on them
is [WW85], which establishes in particular that they are tame algebras. Their indecomposable mod-
ules fall into three classes: band modules, string modules and a finite class of projective-injective
nonuniserial ("pin") modules.

3.5 String modules for special biserial algebras

String modules earn their name from the string graphs that describe them so well. A string graph
for A = KQ/I is a quiver homomorphism w : Γ→ Q from a quiver Γ such that: the domain is an
orientation of a linear graph, w(α) 6= w(β ) whenever α,β ∈ Γ1 have common source or target and
where the image in w of any Γ-path p is linearly independent of all other A-paths. A string graph w
is commonly depicted by labelling each vertex and arrow of Γ by its respective images in Q. Then
vertices of w provide a basis of the associated string module, and the labels describe the A action. We
can identify a string graph with the string module it represents.

One subtle point: here, we do not require string graphs to be connected; accordingly we do require
string modules to be indecomposable.

The dual DX , the transpose TrX and the syzygy Ω1 X of a string module X are all string mod-
ules, albeit for the opposite algebra in the first two cases [WW85, Sec 3] [LM04, Sec 2]. In as-yet-
unpublished work of Galstad [Gal] (and publicized without proof by Huisgen-Zimmermann [HZ16])
the syzygy of a band module X is also a string module provided that at least one indecomposable
direct summand of PX is a string module.
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Strips

4.1 Introduction

Strips are the principal objects of the SBStrips package. They are syzygy-minded representations of
string graphs.

4.2 Constructing strips

4.2.1 Stripify

. Stripify(arr, N, int_list) (method)

. Stripify(path) (method)

Arguments (first method): arr , an arrow in a SB algebra (see note below); N , an integer which
is either 1 or -1; int_list , a (possibly empty) list of nonzero integers whose entries are alternately
positive and negative).

Argument (second method): path , a path in a SB algebra.
(Note. Remember that vertices and arrows in a SB algebra, which is to say the elements in the

algebra corresponding to the vertices and arrows of the quiver, can be easily accessed using . (QPA: .
for a path algebra), and that these can be multiplied together using \* (Reference: *) to make a path
in the SB algebra.)

Returns: the strip specified by these data
The first method is intended for specifying arbitrary string( graphs) over a SB algebra to GAP.

The second method is more specialized, being intended for specifying those string( graph)s where all
arrows point in the same direction. This includes the vacuous case where the string (graph) has no
arrows.

For the first method, suppose you draw your string graph on the page as a linear graph with some
arrows pointing to the right (the "positive" direction) and some to the left (the "negative" direction).
See further below for examples.

The first arrow (ie, the leftmost one drawn on the page) is arr . If it points to the right (the
"positive" direction), then set N to be 1. If it points to the left (the "negative" direction), then set N to
be -1.

Now, ignore that first arrow arr and look at the rest of the graph. It is made up of several paths that
alternately point rightward and leftward. Each path has a length; that is, the total number of arrows in

22
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it. Enter the lengths of these paths to int_list in the order you read them, using positive numbers
for paths pointing rightwards and negative numbers for paths pointing leftwards.

SBStrips will check that your data validily specify a strip. If it doesn’t think they do, then it will
throw up an Error message.

For the second method, SBStrips directly infers the string (graph) and the SB algebra directly
from path .

4.3 Canonical strips

4.3.1 SimpleStripsOfSBAlg

. SimpleStripsOfSBAlg(sba) (attribute)

Argument: sba , a special biserial algebra (ie, IsSpecialBiserialAlgebra (QPA: IsSpecial-
BiserialAlgebra) returs true)

Returns: a list simple_list, whose jth entry is the simple strip corresponding to the jth vertex
of sba .

You will have specified sba to GAP via some quiver. The vertices of that quiver are ordered;
SimpleStripsOfSBAlg adopts that order for strips of simple modules.

4.3.2 UniserialStripsOfSBAlg

. UniserialStripsOfSBAlg(sba) (attribute)

Argument: sba , a special biserial algebra
Returns: a list of the strips that correspond to uniserial modules for sba
Simple modules are uniserial, therefore every element of SimpleStripsOfSBAlg (4.3.1) will

occur in this list too.

4.3.3 WidthNStripsOfSBAlg

. WidthNStripsOfSBAlg(N, sba) (operation)

Arguments: N , a nonnegative integer; sba , a special biserial algebra
Returns: a list, comprising all the strips of width N over sba
Recall that the strips of width 0 are the simple strips and those of width 1 are the nonsimple

uniserial strips.

4.3.4 IndecProjectiveStripsOfSBAlg

. IndecProjectiveStripsOfSBAlg(sba) (attribute)

Argument: sba , a special biserial algebra
Returns: a list proj_list, whose entry are either strips or the boolean fail.
You will have specified sba to GAP via some quiver. The vertices of that quiver are ordered;

IndecProjectiveStripsOfSBAlg adopts that order for strips of indecomposable projective mod-
ules.
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If the indecomposable projective module corresponding to the jth vertex of sba is a string module,
then IndecProjectiveStripsOfSBAlg( sba )[j] returns the strip describing that string module.
If not, then it returns fail.

4.3.5 IndecInjectiveStripsOfSBAlg

. IndecInjectiveStripsOfSBAlg(sba) (attribute)

Argument: sba , a special biserial algebra
Returns: a list inj_list, whose entries are either strips or the boolean fail.
You will have specified sba to GAP via some quiver. The vertices of that quiver are ordered;

IndecInjectiveStripsOfSBAlg adopts that order for strips of the indecomposabe injective mod-
ules.

If the indecomposable injective module corresponding to the jth vertex of sba is a string module,
then IndecInjectiveStripsOfSBAlg( sba )[j] returns the strip describing that string module. If
not, then it returns fail.

4.4 Attributes and properties of strips

4.4.1 WidthOfStrip

. WidthOfStrip(strip) (operation)

Argument: strip , a strip
Returns: a nonnegative integer, counting the number (with multiplicity) of syllables of strip

are nonstationary.

4.4.2 IsZeroStrip

. IsZeroStrip(strip) (property)

Argument: strip , a strip
Returns: true if strip is the zero strip of some SB algebra, and false otherwise.
Note that SBStrips knows which SB algebra strip belongs to.

4.4.3 IsIndecProjectiveStrip

. IsIndecProjectiveStrip(strip) (property)

Arguments: strip , a strip.
Returns: true if strip represents a indecomposable projective string module, and false oth-

erwise. (The indecomposability requirement means this returns false on zero strips.)

4.4.4 IsIndecInjectiveStrip

. IsIndecInjectiveStrip(strip) (property)
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Arguments: strip , a strip.
Returns: true if strip represents a indecomposable injective string module, and false other-

wise. (The indecomposability requirement means this returns false on zero strips.)

4.5 Operation on strips

The following attributes and operations usually take strips as input. However, many of them are clever
enough to recognise a list or collected list of strips. They will then resort to special methods that apply
the strip method entrywise, combine the outputs and return a list or collected list (as appropriate).

4.5.1 SyzygyOfStrip

. SyzygyOfStrip(strip) (attribute)

Argument: strip , a strip
Returns: a list of strips, corresponding to the indecomposable direct summands of the syzygy of

strip .
For higher syzygies, NthSyzygyOfStrip (4.5.2) is probably more convenient and

CollectedNthSyzygyOfStrip (4.5.4) probably more efficient.

4.5.2 NthSyzygyOfStrip

. NthSyzygyOfStrip(strip, N) (method)

Arguments: strip , a strip; N , a positive integer
Returns: a list of strips containing the indecomposable N th syzygy strips of strip
For large N – say, N ≥ 10 – consider using CollectedNthSyzygyOfStrip (4.5.4) instead, since

it is much more efficient.

4.5.3 CollectedSyzygyOfStrip

. CollectedSyzygyOfStrip(strip) (method)

Argument: strip , a strip
Returns: a collected list, whose elements are the syzygy strips of strip
This is equivalent to calling Collected( SyzygyOfStrip( strip ) );.

4.5.4 CollectedNthSyzygyOfStrip

. CollectedNthSyzygyOfStrip(strip, N) (method)

Arguments: strip , a strip; N , a positive integer.
Returns: a collected list, whose entries are the N th syzygies of strip .
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4.5.5 ModuleOfStrip

. ModuleOfStrip(strip) (method)

Argument: a strip strip .
Returns: a right module for the SB algebra over which strip is defined, or a list or collected list

of the modules associated to the strips in list or clist respectively.
This operation returns the string module corresponding to the strip strip . More specifically, it

gives that module as a quiver, ultimately using RightModuleOverPathAlgebra (QPA: RightMod-
uleOverPathAlgebra with dimension vector).

4.5.6 DirectSumModuleOfListOfStrips (for a (flat) list of strips)

. DirectSumModuleOfListOfStrips(list) (method)

. DirectSumModuleOfListOfStrips(clist) (method)

Argument (first method): list , a list of strips
Argument (second method): clist , a collected list of strips
Returns: the quiver representation corresponding to the direct sum of A-modules whose inde-

composable direct summands are specified by list or clist .
The methods for this operation make the obvious requirement that all strips present belong to the

the same SB algebra.

4.5.7 IsStripDirectSummand

. IsStripDirectSummand(strip_or_strips, list) (operation)

Arguments: strip_or_strips , a strip or list of strips or collected list of strips; list , a list or
collected list of strips.

Returns: true if the string module represented by strip_or_strips is a direct summand of
the string module represented by the strips in list , and false otherwise.

4.5.8 VectorSpaceDualOfStrip

. VectorSpaceDualOfStrip(strip) (attribute)

. OppositeStrip(strip) (attribute)

. DOfStrip(strip) (attribute)

Argument: strip , a strip representing some string module X over a K-algebra A.
Returns: a strip representing the vector-space dual module DM = HomK(X ,K) of X .
Recall that DX is a module for Aop, the opposite algebra to A.
OppositeStrip and DOfStrip are synonyms for VectorSpaceDualOfStrip.

4.5.9 TransposeOfStrip

. TransposeOfStrip(strip) (attribute)

. TrOfStrip(strip) (attribute)
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Argument: strip , a strip representing some string module X .
Returns: a strip representing the transpose TrX of X .
Recall that if X is an A-module, then TrX is an Aop-module.
TrOfStrip is a synonym for TransposeOfStrip.

4.5.10 DTrOfStrip

. DTrOfStrip(strip) (attribute)

. ARTranslateOfStrip(strip) (attribute)

Argument: strip , a strip representing some string module X .
Returns: a strip representing the Auslander-Reiten translate DTrX of X .
Recall that if X is projective then DTrX = 0.
ARTranslateOfStrip is a synonym for DTrOfStrip.

4.5.11 TrDOfStrip

. TrDOfStrip(strip) (attribute)

. ARInverseTranslateOfStrip(strip) (attribute)

Argument: strip , a strip representing some string module X .
Returns: a strip representing the Auslander-Reiten inverse translate TrDX of X .
Recall that if X is injective then TrDX = 0.
ARInverseTranslateOfStrip is a synonym for TrDOfStrip.

4.5.12 SuspensionOfStrip

. SuspensionOfStrip(strip) (attribute)

Argument: strip , a strip representing some string module X
Returns: a list of strips, representing the indecomposable direct summands of the suspension

ΣX = TrΩTrX of X

4.5.13 IsFiniteSyzygyTypeStripByNthSyzygy

. IsFiniteSyzygyTypeStripByNthSyzygy(strip, N) (operation)

Arguments: strip , a strip; N , a positive integer
Returns: true if the strips appearing in the N th syzygy of strip have all appeared among earlier

syzygies, and false otherwise.
If the call to this function returns true, then it will also print the smallest N for which it would

return true.

4.5.14 IsWeaklyPeriodicStripByNthSyzygy

. IsWeaklyPeriodicStripByNthSyzygy(strip, N) (operation)
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Arguments: strip , a strip; N , a positive integer
Returns: true if strip is appears among its own first N syzygies, and false otherwise.
If the call to this function returns true, then it will also print the index of the syzygy at which

strip first appears.

4.5.15 DeloopingLevelOfStripIfAtMostN

. DeloopingLevelOfStripIfAtMostN(strip, N) (operation)

Arguments: strip , a strip; N , a nonnegative integer.
Returns: the delooping level of strip if it is at most N , and fail if not.

4.5.16 WithoutProjectiveStrips

. WithoutProjectiveStrips(list) (operation)

Argument: list , a list or collected list of strips
Returns: a new list or collected list new_list obtained from list by removing all the projective

strips.

4.6 Tests on an SB algebra that use strips

4.6.1 TestInjectiveStripsUpToNthSyzygy

. TestInjectiveStripsUpToNthSyzygy(sba, N) (function)

Arguments: sba , a special biserial algebra (ie, IsSpecialBiserialAlgebra (QPA: IsSpecial-
BiserialAlgebra) returs true); N , a positive integer

Returns: true, if all strips of injective string modules have finite syzygy type by the N th syzygy,
and false otherwise.

This function calls IndecInjectiveStripsOfSBAlg (4.3.5) for sba , filters out all the fails,
and then checks each remaining strip individually using IsFiniteSyzygyTypeStripByNthSyzygy

(4.5.13) (with second argument N ).
Author’s note. For every special biserial algebra the author has tested, this function returns true

(for sufficiently large N ). It suggests that the minimal injective cogenerator of a SB algebra always has
finite syzygy type. This condition implies many homological conditions of interest (including the big
finitistic dimension conjecture)!

4.6.2 DeloopingLevelOfSBAlgIfAtMostN

. DeloopingLevelOfSBAlgIfAtMostN(sba, N) (operation)

Arguments: sba , a special biserial algebra; N , a nonnegative integer.
Returns: the delooping level of sba if it is at most N , and fail if not.
Author’s note. Every SB algebra the author has tested has had finite delooping level. It would be

very interesting to know whether this is a general phenomenon!



Chapter 5

QPA utilities

5.1 Introduction

In order to do what it does, the SBStrips package includes several utility functions for use on quivers
where each vertex has indegree and outdegree at most 2. (The existing term for such quivers is spe-
cial biserial, abbreivated SB.) This class includes the 1-regular quivers: those where each vertex has
indegree and outdegree exactly 1.

These quiver utility functions really build on the QPA package. We document them in this stan-
dalone chapter, alongside utilities for algebras presented by quivers.

The term quiver algebra means an object for which IsQuiverAlgebra (QPA: IsQuiverAlgebra)
returns true.

5.2 Utilities for 1-regular quivers

5.2.1 Is1RegQuiver

. Is1RegQuiver(quiver) (property)

Argument: quiver , a quiver
Returns: either true or false, depending on whether or not quiver is 1-regular.

5.2.2 PathBySourceAndLength

. PathBySourceAndLength(vert, len) (operation)

Arguments: vert , a vertex of a 1-regular quiver Q; len , a nonnegative integer.
Returns: the unique path in Q which has source vert and length len .

5.2.3 PathByTargetAndLength

. PathByTargetAndLength(vert, len) (operation)

Arguments: vert , a vertex of a 1-regular quiver Q; len , a nonnegative integer.
Returns: the unique path in Q which has target vert and length len .
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5.2.4 1RegQuivIntAct

. 1RegQuivIntAct(x, k) (operation)

Arguments: x , which is either a vertex or an arrow of a 1-regular quiver; k , an integer.
Returns: the path x+ k, as per the Z-action (see below).
Recall that a quiver is 1-regular iff the source and target functions s, t are bijections from the

arrow set to the vertex set (in which case the inverse t−1 is well-defined). The generator 1 ∈ Z acts as
“t−1 then s” on vertices and “s then t−1” on arrows.
This operation figures out from x the quiver to which x belongs and applies
1RegQuivIntActionFunction (5.2.5) of tha quiver. For this reason, it is more user-friendly.

5.2.5 1RegQuivIntActionFunction

. 1RegQuivIntActionFunction(quiver) (attribute)

Argument: quiver , a 1-regular quiver (as tested by Is1RegQuiver (5.2.1))
Returns: a single function f describing the Z-actions on the vertices and the arrows of quiver
Recall that a quiver is 1-regular iff the source and target functions s, t are bijections from the arrow

set to the vertex set (in which case the inverse t−1 is well-defined). The generator 1 ∈ Z acts as “t−1

then s” on vertices and “s then t−1” on arrows.
In practice you will probably want to use 1RegQuivIntAct (5.2.4), since it saves you having to remind
SBStrips which quiver you intend to act on.

5.3 Utilities for SB quivers

5.3.1 Is2RegQuiver

. Is2RegQuiver(quiver) (property)

Argument: quiver , a quiver
Returns: either true or false, depending on whether or not quiver is 2-regular.

5.3.2 2RegAugmentationOfQuiver

. 2RegAugmentationOfQuiver(ground_quiv) (attribute)

Argument: ground_quiv , a sub2-regular quiver (as tested by IsSpecialBiserialQuiver

(QPA: IsSpecialBiserialQuiver))
Returns: a 2-regular quiver of which ground_quiv may naturally be seen as a subquiver
If ground_quiv is itself 2-regular, then this attribute returns ground_quiv identically. If not,

then this attribute constructs a brand new quiver object which has vertices and arrows having the same
names as those of ground_quiv , but also has arrows with names augarr1, augarr2 and so on.
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5.3.3 Is2RegAugmentationOfQuiver

. Is2RegAugmentationOfQuiver(quiver) (property)

Argument: quiver , a quiver
Returns: true if quiver was constructed by 5.3.2 or if quiver was an already 2-regular quiver,

and false otherwise.

5.3.4 OriginalSBQuiverOf2RegAugmentation

. OriginalSBQuiverOf2RegAugmentation(quiver) (attribute)

Argument: quiver , a quiver
Returns: The sub-2-regular quiver of which quiver is the 2-regular augmentation.
Informally speaking, this attribute is the "inverse" to 2RegAugmentationOfQuiver.

5.3.5 RetractionOf2RegAugmentation

. RetractionOf2RegAugmentation(quiver) (attribute)

Argument: quiver , a quiver constructed using 2RegAugmentationOfQuiver

Returns: a function ret, which accepts paths in quiver as input and which outputs paths in
OriginalSBQuiverOf2RegAugmentation( quiver ) 5.3.2.

One can identify OriginalSBQuiverOf2RegAugmentation( quiver ) with a subquiver of
quiver . Some paths in quiver lie wholly in that subquiver, some do not. This function ret takes
those that do to the corresponding path of OriginalSBQuiverOf2RegAugmentation( quiver ),
and those that do not to the zero path of OriginalSBQuiverOf2RegAugmentation( quiver ).

5.4 Miscellaneous utilities for QPA

What follows are minor additional utilities for QPA.

5.4.1 String (for paths of length at least 2)

. String(path) (method)

Argument: path , a path of length at least 2 in a quiver (see IsPath (QPA: IsPath) and
LengthOfPath (QPA: LengthOfPath) for details)

Returns: a string describing path

Methods for String (Reference: String) already exist for vertices and arrows of a quiver; that is
to say, paths of length 0 or 1. QPA forgets these for longer paths: at present, only the default answer
"<object>" is returned.

A path in QPA is products of arrows. Accordingly, we write its string as a *-separated sequences
of its constituent arrows. This is in-line with how paths are printed using ViewObj (Reference:
ViewObj).
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5.4.2 ArrowsOfQuiverAlgebra

. ArrowsOfQuiverAlgebra(alg) (operation)

Argument: alg , a quiver algebra
Returns: the residues of the arrows in the defining quiver of alg , listed together

5.4.3 VerticesOfQuiverAlgebra

. VerticesOfQuiverAlgebra(alg) (operation)

Argument: alg , a quiver algebra
Returns: the residues of the vertices in the defining quiver of alg , listed together

5.4.4 FieldOfQuiverAlgebra

. FieldOfQuiverAlgebra(alg) (operation)

Argument: alg , a quiver algebra
Returns: the field of definition of alg

5.4.5 DefiningQuiverOfQuiverAlgebra

. DefiningQuiverOfQuiverAlgebra(alg) (operation)

Argument: alg , a quiver algebra
Returns: the quiver of definition of alg
This single operation performs OriginalPathAlgebra (QPA: OriginalPathAlgebra) and then

QuiverOfPathAlgebra (QPA: QuiverOfPathAlgebra)

5.4.6 Paths obtained by adding/removing an arrow at source/target

. PathOneArrowLongerAtSource(path) (attribute)

. PathOneArrowLongerAtTarget(path) (attribute)

. PathOneArrowShorterAtSource(path) (attribute)

. PathOneArrowShorterAtTarget(path) (attribute)

Argument: path , a path
Returns: a path new_path which differs from path by one arrow in the appropriate way, or fail

if no such arrow exists.
Both of the -Shorter- attributes require path to have length at least 1, as measured by

LengthOfPath (QPA: LengthOfPath).
Both of the -Longer- attributes require there to exist a unique arrow to add. So, for example

PathOneArrowLongerAtSource requires the source of path to have indegree exactly 1, as mea-
sured by InDegreeOfVertex (QPA: InDegreeOfVertex). This is always the situation with 1-regular
quivers, where these operations are most intended to be used.
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Miscellaneous utilities

In this chapter, we document some additional functionalities that have been implemented in SBStrips
but which, really, can stand independently of it. Others may find these useful without caring a jot
about SB algebras.

6.1 Collected lists

Sometimes it is important to know where in a list an element appears. Sometimes, all that matters is
how often it does. (In mathematical terms, these two ideas respectively correspond to a sequence of
elements and the multiset of values it takes.) One can of course move from knowing the positions of
elements to just knowing their frequency. This is a strict loss of information, but usually not a loss of
very important information.

GAP implements this functionality using Collected (Reference: Collected). Calls to this oper-
ation yield lists that store information in a more economical, if slightly less informative, fashion, of
which SBStrips makes great use. Using Collected on a list list returns another list, detailing the
different elements appearing in list and their multiplicity (ie, number of instances) in list.

Example
gap> list := [ "s", "b", "s", "t", "r", "i", "p", "s" ];

[ "s", "b", "s", "t", "r", "i", "p", "s" ]

gap> clist := Collected( list );

[ [ "b", 1 ], [ "i", 1 ], [ "p", 1 ], [ "r", 1 ], [ "s", 3 ],

[ "t", 1 ] ]

gap> entry := clist[5];

[ "s", 3 ]

In the above example, the entry [ "s", 3 ] in clist tells us that the element "s" appears 3 times
in list. In other words, "s has multitplicity 3 (in list).

In this documentation, we will use the terms elements and multiplicities respectively to mean the
first and second entries of entries of a collected list. So, in the above example, the elements of clist
are "b", "i", "p", "r", "s" and "t" and their respective multiplicities are 1, 1, 1, 1, 3 and 1.

What characterises a collected list is that all of its entries are lists of length 2, the second being
a positive integer. Elements may be repeated. This doesn’t happen from simple uses of Collected,
but can result from combining several collected lists, for instance with Collected (Reference: Col-
lected) or Append (Reference: Append).
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Example
gap> hello := Collected( [ "h", "e", "l", "l", "o" ] );

[ [ "e", 1 ], [ "h", 1 ], [ "l", 2 ], [ "o", 1 ] ]

gap> world := Collected( [ "w", "o", "r", "l", "d" ] );

[ [ "d", 1 ], [ "l", 1 ], [ "o", 1 ], [ "r", 1 ], [ "w", 1 ] ]

gap> hello_world := Concatenation( hello, world );

[ [ "e", 1 ], [ "h", 1 ], [ "l", 2 ], [ "o", 1 ], [ "d", 1 ],

[ "l", 1 ], [ "o", 1 ], [ "r", 1 ], [ "w", 1 ] ]

gap> IsCollectedList( hello_world );

true

Here, the element "l" appears twice in hello_world, first with multiplicity 2 and then again with
multiplicity 1. The element "o" also appears twice with multiplicity 1 each time. Despite this repeti-
tion, hello_world is still a collected list. It may be "tidied up" using Recollected (6.1.6).

Example
gap> Recollected( hello_world );

[ [ "e", 1 ], [ "h", 1 ], [ "l", 3 ], [ "o", 2 ], [ "d", 1 ],

[ "r", 1 ], [ "w", 1 ] ]

6.1.1 IsCollectedList

. IsCollectedList(list) (property)

Argument: list , a list
Returns: true if all entries of list are lists of length 2 having a positive integer in their second

entry, and false otherwise.
This property will return true on lists returned from the GAP operation Collected (Reference:

Collected), as well as on combinations of such lists using Concatenation (Reference: concatena-
tion of lists) or Append (Reference: Append). This is the principal intended use of this property.

When this document refers to a collected list, it means a list for which IsCollectedList returns
true.

6.1.2 IsCollectedDuplicateFreeList

. IsCollectedDuplicateFreeList(clist) (property)

Argument: clist
Returns: true if clist is a collected list with no repeated elements
In particular, if clist was created by applying Collected (Reference: Collected) to a duplicate-

free list (see IsDuplicateFreeList (Reference: IsDuplicateFreeList)), then this property will re-
turn true. This is the principal intended use of this property.

6.1.3 IsCollectedHomogeneousList

. IsCollectedHomogeneousList(clist) (property)

Argument: clist , a collected list
Returns: true if the elements of clist form a homogeneous list, and false otherwise
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If obj is the result of applying Collected (Reference: Collected) to a homogeneous list, then
this property returns true. This is the principal intended use of this property.

6.1.4 ElementsOfCollectedList

. ElementsOfCollectedList(clist) (operation)

Argument: clist , a collected list.
Returns: the elements of clist .

6.1.5 MultiplicityOfElementInCollectedList

. MultiplicityOfElementInCollectedList(obj, clist) (operation)

Arguments: obj , an object; clist , a collected list.
Returns: a nonnegative integer, namely the (total) multiplicity of obj in clist .

6.1.6 Recollected

. Recollected(clist) (operation)

Argument: clist , a collected list
Returns: a collected list, removing repeated elements in clist and totalling their multiplicities.
If clist contains entries with matching first entries, say [ obj, n ] and [ obj, m ], then it

will combine them into a single entry [ obj, n+m ] with totalised multiplicity. This can be neces-
sary when dealing with concatenations (see Concatenation (Reference: concatenation of lists)) of
collected lists.

6.1.7 Uncollected

. Uncollected(clist) (operation)

Argument: clist , a collected list
Returns: a (flat) list, where each element in clist appears with the appropriate multiplicity

6.1.8 CollectedLength

. CollectedLength(clist) (attribute)

Argument: clist , a collected list
Returns: the sum of the multiplicities in clist

6.1.9 IsCollectedSublist

. IsCollectedSublist(sublist, superlist) (operation)
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Arguments: sublist and superlist , two collected lists
Returns: true if each element of sublist occurs in superlist with multiplicity as least that

in sublist , and false otherwise.

6.1.10 CollectedListElementwiseFunction

. CollectedListElementwiseFunction(clist, func) (operation)

Arguments: clist , a collected list; func , a function
Returns: a new collected list, obtained from clist by applying func to each element.
If func returns lists (perhaps because it implements a "many-valued function"), consider using

CollectedListElementwiseListValuedFunction (6.1.11) instead.

6.1.11 CollectedListElementwiseListValuedFunction

. CollectedListElementwiseListValuedFunction(clist, func) (operation)

Arguments: clist , a collected list; func , a function (presumed to return lists of objects).
Returns: a new collected list.
Imagine clist were unpacked into a flat list, func were applied to each element of the flat list

in turn and the result concatenated then collected. That is what this operation returns (although it
determines the result more efficiently than the procedure just described).

6.1.12 CollectedFiltered

. CollectedFiltered(clist, bool_func) (operation)

Arguments: clist , a collected list; bool_func , a function that returns either true or false.
Returns: the collected sublist of clist featuring only those elements for which prop returns

true. (Those elements appear in the sublist with the same multiplicity as in clist .)
This should be considered the analogue of Filtered (Reference: Filtered) for collected lists.
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Example algebras

A.1 The function

For your convenience, SBStrips comes bundled with 5 SB algebras built in. We detail these algebras
in this appendix. They may be obtained by calling SBStripsExampleAlgebra (A.1.1).

A.1.1 SBStripsExampleAlgebra

. SBStripsExampleAlgebra(n) (function)

Arguments: n , an integer between 1 and 5 inclusive
Returns: a SB algebra
Calling this function with argument 1, 2, 3, 4 or 5 respectively returns the algebras described in

subsections A.2.1, A.2.2, A.2.3, A.2.4 or A.2.5.

A.2 The algebras

Each algebra is of the form KQ/〈ρ〉, where K is the field Rationals in GAP and where Q and ρ are
respectively a quiver and a set of relations. These change from example to example.

The LATEX version of this documentation provides pictures of each quiver.

A.2.1 Algebra 1

The quiver and relations of this algebra are specified to QPA as follows.
Example

gap> quiv := Quiver(

> 2,

> [ [ 1, 1, "a" ], [ 1, 2, "b" ], [ 2, 1, "c" ], [ 2, 2, "d" ] ]

> );

<quiver with 2 vertices and 4 arrows>

pa := PathAlgebra( Rationals, quiv );

<Rationals[<quiver with 2 vertices and 4 arrows>]>

gap> rels := [

> pa.a * pa.a, pa.b * pa.d, pa.c * pa.b, pa.d * pa.c,

> pa.c * pa.a * pa.b, (pa.d)^4,

> pa.a * pa.b * pa.c - pa.b * pa.c * pa.a
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> ];

[ (1)*a^2, (1)*b*d, (1)*c*b, (1)*d*c, (1)*c*a*b,

(1)*d^4, (1)*a*b*c+(-1)*b*c*a ]

Here is a picture of the quiver.

1 2a

b

c
d

The relations of this algebra are chosen so that the nonzero paths of length 2 are: a*b, b*c, c*a,
d*d.

The simple module associated to vertex v2 has infinite syzygy type.

A.2.2 Algebra 2

The quiver and relations of this algebra are specified to QPA as follows.
Example

gap> quiv := Quiver(

> 3,

> [ [ 1, 2, "a" ], [ 2, 3, "b" ], [ 3, 1, "c" ] ]

> );

<quiver with 3 vertices and 3 arrows>

gap> pa := PathAlgebra( Rationals, quiv );

<Rationals[<quiver with 3 vertices and 3 arrows>]>

gap> rels := NthPowerOfArrowIdeal( pa, 4 );

[ (1)*a*b*c*a, (1)*b*c*a*b, (1)*c*a*b*c ]

Here is a picture of the quiver.

1 2 3a b

c

(In other words, this quiver is the 3-cycle quiver, and the relations are the paths of length 4.) The
nonzero paths of length 2 are: a*b, b*c, c*a.

This algebra is a Nakayama algebra, and so has finite representation type. A fortiori, it is syzygy-
finite.

A.2.3 Algebra 3

The quiver and relations of this algebra are specified to QPA as follows.
Example

gap> quiv := Quiver(

> 4,

> [ [1,2,"a"], [2,3,"b"], [3,4,"c"], [4,1,"d"], [4,4,"e"], [1,2,"f"],

> [2,3,"g"], [3,1,"h"] ]

> );

<quiver with 4 vertices and 8 arrows>

gap> pa := PathAlgebra( Rationals, quiv );

<Rationals[<quiver with 4 vertices and 8 arrows>]>

gap> rels := [
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> pa.a * pa.g, pa.b * pa.h, pa.c * pa.e, pa.d * pa.f,

> pa.e * pa.d, pa.f * pa.b, pa.g * pa.c, pa.h * pa.a,

> pa.a * pa.b * pa.c * pa.d * pa.a - ( pa.f * pa.g * pa.h )^2 * pa.f,

> pa.d * pa.a * pa.b * pa.c - ( pa.e )^3,

> pa.c * pa.d * pa.a * pa.b * pa.c,

> ( pa.h * pa.f * pa.g )^2 * pa.h

> ];

[ (1)*a*g, (1)*b*h, (1)*c*e, (1)*d*f, (1)*e*d, (1)*f*b, (1)*g*c,

(1)*h*a, (1)*a*b*c*d*a+(-1)*f*g*h*f*g*h*f, (-1)*e^3+(1)*d*a*b*c,

(1)*c*d*a*b*c, (1)*h*f*g*h*f*g*h ]

Here is a picture of the quiver.

1 2

4 3

a

f
bgd

e

c

h

The relations of this algebra are chosen so that the nonzero paths of length 2 are: a*b, b*c, c*d,
d*a, e*e, f*g, g*h and h*f.

A.2.4 Algebra 4

The quiver and relations of this algebra are specified to QPA as follows.
Example

gap> quiv := Quiver(

> 8,

> [ [ 1, 1, "a" ], [ 1, 2, "b" ], [ 2, 2, "c" ], [ 2, 3, "d" ],

> [ 3, 4, "e" ], [ 4, 3, "f" ], [ 3, 4, "g" ], [ 4, 5, "h" ],

> [ 5, 6, "i" ], [ 6, 5, "j" ], [ 5, 7, "k" ], [ 7, 6, "l" ],

> [ 6, 7, "m" ], [ 7, 8, "n" ], [ 8, 8, "o" ], [ 8, 1, "p" ] ]

> );

<quiver with 8 vertices and 16 arrows>

gap> pa := PathAlgebra( Rationals, quiv );

<Rationals[<quiver with 8 vertices and 16 arrows>]>

gap> rels := [

> pa.a * pa.a, pa.b * pa.d, pa.c * pa.c, pa.d * pa.g, pa.e * pa.h,

> pa.f * pa.e, pa.g * pa.f, pa.h * pa.k, pa.i * pa.m, pa.j * pa.i,

> pa.k * pa.n, pa.l * pa.j,

> pa.m * pa.l, pa.n * pa.p, pa.o * pa.o, pa.p * pa.b,

> pa.a * pa.b * pa.c * pa.d,

> pa.e * pa.f * pa.g * pa.h,

> pa.g * pa.h * pa.i * pa.j * pa.k,

> pa.c * pa.d * pa.e - pa.d * pa.e * pa.f * pa.g,

> pa.f * pa.g * pa.h * pa.i - pa.h * pa.i * pa.j * pa.k * pa.l,

> pa.j * pa.k * pa.l * pa.m * pa.n - pa.m * pa.n * pa.o,

> pa.o * pa.p * pa.a * pa.b - pa.p * pa.a * pa.b * pa.c

> ];

The relations of this algebra are chosen so that the nonzero paths of length 2 are: a*b, b*c, c*d, d*e,
e*f, f*g, g*h, h*i, i*j, j*k, k*l, l*m, m*n, n*o, o*p and p*a.
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A.2.5 Algebra 5

The quiver and relations of this algebra are specified to QPA as follows.
Example

gap> quiv := Quiver(

> 4,

> [ [ 1, 2, "a" ], [ 2, 3, "b" ], [ 3, 4, "c" ], [ 4, 1, "d" ],

> [ 1, 2, "e" ], [ 2, 3, "f" ], [ 3, 1, "g" ], [ 4, 4, "h" ] ]

> );

<quiver with 4 vertices and 8 arrows>

gap> pa := PathAlgebra( Rationals, quiv5 );

<Rationals[<quiver with 4 vertices and 8 arrows>]>

gap> rels := [

> pa.a * pa.f, pa.b * pa.g, pa.c * pa.h, pa.d * pa.e, pa.e * pa.b,

> pa.f * pa.c, pa.g * pa.a, pa.h * pa.d,

> pa.b * pa.c * pa.d * pa.a * pa.b * pa.c,

> pa.d * pa.a * pa.b * pa.c * pa.d * pa.a,

> ( pa.h )^6,

> pa.a * pa.b * pa.c * pa.d * pa.a * pa.b -

> pa.e * pa.f * pa.g * pa.e * pa.f * pa.g * pa.e * pa.f,

> pa.c * pa.d * pa.a * pa.b * pa.c * pa.d -

> pa.g * pa.e * pa.f * pa.g * pa.e * pa.f * pa.g

> ];

[ (1)*a*f, (1)*b*g, (1)*c*h, (1)*d*e, (1)*e*b, (1)*f*c, (1)*g*a,

(1)*h*d, (1)*b*c*d*a*b*c, (1)*d*a*b*c*d*a, (1)*h^6,

(1)*a*b*c*d*a*b+(-1)*e*f*g*e*f*g*e*f,

(1)*c*d*a*b*c*d+(-1)*g*e*f*g*e*f*g ]

The relations of this algebra are chosen so that the nonzero paths of length 2 are: a*b, b*c, c*d, d*a,
e*f, f*g, g*e, h*h.
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