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Abstract 
 

In Gram-negative bacteria, resistance against β-lactam antibiotics arises most often in 

the form of β-lactamase enzymes. β-Lactamases inactivate these antibiotics by hydrolysing 

their β-lactam pharmacophore. In this thesis, enzymatic drug modification by selected serine 

β-lactamases is studied using combined quantum mechanics/molecular mechanics (QM/MM) 

simulations. 

Carbapenem breakdown by class A β-lactamases is inspected using so-called 

“computational assays”. The assays are simplified simulation protocols, which are still accurate 

enough to distinguish between active and inhibited enzymes. By limiting the simulation time 

and conformational sampling, a >99% reduction in required computational resources was 

achieved (compared to the original protocols), whilst still preserving the predictive power of 

the computational assay. 

Further studies focus on class D β-lactamases, in particular the OXA-48 family. Most 

OXA-48 β-lactamases, including the wildtype OXA-48, are carbapenemases with specific 

preference for imipenem, but some variants have acquired activity against expanded-spectrum 

oxyimino cephalosporins. Ceftazidime breakdown for OXA-48-like enzymes is simulated to 

elicit the origins behind this enhanced cephalosporinase activity. Active site hydration was 

observed to correlate with the energy barriers for the rate-limiting reaction step. In addition to 

ceftazidime breakdown, carbapenem inactivation by OXA-48 is compared for imipenem and 

meropenem. QM/MM simulations are used to identify the preferred substrate orientation for 

deacylation, and to further illustrate that the difference in carbapenem hydrolysis comes from 

a subtle change in the active site hydrogen bonds. 

Lastly, two suggested inhibition mechanisms of the non-β-lactam β-lactamase inhibitor 

avibactam against OXA-48 are compared to deduct the most plausible acylation pathway. The 

QM/MM potential energy profiles show that avibactam most likely utilises a similar 

mechanism to β-lactam substrates, where a carboxylated Lys73 acts as a proton acceptor in 

acylation. Based on these data, it is hypothesised that the avibactam inhibition most likely 

results from post-acylation decarboxylation of Lys73, which prevents any further reactivity. 
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Chapter 1 - An introduction to antibiotic resistance 
 

1.1 The Antimicrobial Resistance Crisis 
 

Antimicrobial resistance (AMR) conveys all different mechanisms, with which 

pathogens, such as bacteria, viruses, and parasites, resist medical treatments designed to cure 

infections. AMR develops naturally over time through changes in the genetic code, but the 

overuse of antimicrobials in healthcare and agriculture, poor hygiene, lack of proper sanitation, 

as well as lower-quality healthcare accelerate it.1 These factors point strongly towards low- and 

middle-income countries, for example in Asia and Africa, where AMR continues to be a 

constant burden.2-5 However, AMR is also a growing problem in the western world. According 

to the Centers of Disease Control and Prevention (CDC), in the United States alone more than 

2.8 million antibiotic resistant bacterial infections are diagnosed annually, resulting in more 

than 35 000 fatalities.6 Furthermore, according to the English Surveillance Programme for 

Antimicrobial Utilisation and Resistance report from 2019 to 2020 (published by Public Health 

England), there has been an estimated 32% increase in antibiotic resistant blood stream 

infections from 2015 to 2019. This increase is despite the decreased consumption of antibiotics 

during the same time interval, going from 19.4 to 17.9 defined daily doses per 1000 

inhabitants.7 

Evidently, there is a need to combat the evolving AMR problem, and multiple global 

and national initiatives have been propagated to this end. In 2015, a global action plan on AMR 

was established at the World Health Assembly.8 The aims of this plan are focused on spreading 

AMR awareness, endorsing research concerning AMR, strengthening surveillance, optimising 

the use of antimicrobials, and sustainably investing in countering AMR. The World Health 

Organization (WHO) has also multiple additional initiatives: the World Antimicrobial 

Awareness Week (annually between November 18th and 24th),9 the Global Antimicrobial 

Resistance Surveillance System (GLASS),10 and the Global Antibiotic Research and 

Development Partnership (GARDP), to mention a few. In addition to global initiatives, most 

countries have national strategies for controlling the spread of AMR. For example, the UK has 

currently a five-year action plan between 2019-2024 for tackling AMR with three key aims: 

reducing the need and unnecessary exposure to antimicrobials, optimising the use of 

antimicrobials, and investing in new innovations, supply, and access in this field.11 As 

expected, these aims are well aligned with the overall aims in the WHO global action plan, 



 

2 
 

with the overarching national goal being containing and controlling the spread of AMR by 

2040.11 

One central aspect in most action plans is ensuring the research and development work 

necessary for discovering new and effective antibiotics, against which bacteria have not yet 

developed resistance mechanisms. After the considerable successes in antibiotic drug 

discovery in the 20th century, when most currently available antibiotics were first introduced 

into clinical practice, the antibiotic pipeline has dried out. This so-called “antibiotic discovery 

void” is due to the inherent difficult nature of drug discovery and development, as well as the 

reluctance of big pharmaceutical companies to engage in antibiotic research. Many antibiotic 

classes were originally derived from natural products, such as tetracyclines from soil 

Actinomycetes or penicillin from fungi,12, 13 though purely synthetic antibiotic classes, such as 

quinolones, also exist.14 Currently, mining natural sources has mainly led to the re-discovery 

of already existing antibiotics. Additionally, finding possible sources for new antibiotics would 

require assembling and screening a huge library, which is a laboursome and costly task.13 

Antibiotic development is a difficult task, as the drug candidate needs to be potent enough to 

cure the bacterial infection, whilst being non-toxic for humans. Other aspects, such as the drug 

being preferably in an orally bioavailable form, should be considered as well. One bottleneck 

seems to be the lack of compounds able to enter the bacterial cell through the cell envelope.15 

Finally, after the time-consuming development and clinical testing process involved for any 

new drug, any possible profits from the approved antibiotic are most likely to be less than the 

development costs.16 

 

1.2 β-Lactam antibiotics 
 

β-Lactam antibiotics were first discovered in 1929 by Alexander Fleming,17 and the 

large-scale production of these drugs began in the 1940s. Despite their relatively old age, β-

lactams are still the most prescribed group of antibiotics globally due to their non-toxicity in 

human patients and general broad-spectrum antibacterial activity.18 β-Lactams are categorised 

into four classes: penicillins, cephalosporins, carbapenems, and monobactams (Figure 1.1). 

The scaffold in all four groups involves a four-atom β-lactam ring, which is the pharmacophore 

responsible for drug binding. In the first three groups, the β-lactam ring is fused to a second 

ring: thiazolidine in penicillins, dihydrothiazone in cephalosporins, and pyrroline in 
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carbapenems. Monobactams are monocyclic and the β-lactam ring stands alone (with other 

substituents attached to it). Penicillin antibiotics were initially isolated among the natural 

products of the Penicillium fungi,12 but most commercially available penicillin antibiotics 

today are synthetic penicillin derivatives.19 Cephalosporins are divided into generations based 

on their antibacterial properties. Especially the newer third and fourth generations have broad 

activity against Gram-negative bacteria,20 whilst some fifth generation cephalosporins have 

additional activity against methicillin-resistant Staphylococcus aureus.21, 22 Currently, the only 

commercially available monobactam antibiotic is aztreonam.23 Carbapenems are the newest 

group of β-lactam drugs, and often referred to as “last-resort antibiotics” due to their general 

potency and wider spectrum of use, with respect to cephalosporins and penicillins.24 

 

Figure 1.1 Some clinically used β-lactam antibiotics and β-lactamase inhibitors. Examples of approved 

β-lactam antibiotic/β-lactamase inhibitor combinations are listed in rectangular grey boxes with bold 

text. 
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To combat growing antibiotic resistance against β-lactam drugs, an antibiotic may be 

administered together with a β-lactamase inhibitor (some combinations presented in Figure 

1.1).25 This so-called “combination therapy” is often reserved for multi-drug resistant bacterial 

infections with only limited treatment possibilities. The treatment power of combination 

therapy is illustrated by the WHO model list of essential medicines, which categorises 

necessary drugs into access, watch, and reserve groups. Different examples of β-lactam/β-

lactamase inhibitor combinations are listed in all three aforementioned groups of medicine.26 

β-Lactamase inhibitors essentially block enzymes responsible for β-lactam antibiotic 

inactivation (as outlined in following sections), which allows for the actual antibiotic to bind 

to its ultimate target.27 They can be mechanism-based inhibitors including a β-lactam ring, or 

belong to another functional group. Examples of mechanism-based antibiotic/inhibitor 

combinations include amoxicillin/clavulanic acid (tradename Augmentin or Clavulin),28 

ampicillin/sulbactam (Unasyn),29 and piperacillin/tazobactam (Tazocin, Zosyn),30 which have 

inhibitory activity mainly against some class A penicillinases and extended-spectrum β-

lactamases (ESBLs). As these β-lactam-based β-lactamase inhibitors do not possess very 

broad-spectrum activity, new inhibitor classes including diazabicyclooctanones (DBOs) and 

cyclic boronates have been introduced to the market in the last decade. Avibactam31, 32 was the 

first DBO inhibitor approved in clinical use in combination with ceftazidime (FDA approved 

in 2015, tradename Avycaz),33 and it shows broad inhibition against serine β-lactamases 

(introduced in the following sections).34 Beyond avibactam, the DBO scaffold is undergoing 

extensive research to provide inhibitors with more broad-spectrum activity.35-39 Cyclic 

boronates also show promise as possible broad-spectrum β-lactamase inhibitors.40, 41 The first 

FDA approved cyclic boronate inhibitor was vaborbactam,42 which is approved in clinical use 

together meropenem (Vabomere).43 Boronate inhibitors are also undergoing extensive 

research, and some clinical candidates show promise of ultrabroad-spectrum inhibition against 

all β-lactamases (such as taniborbactam and QPX7728).44, 45 The market for β-lactam 

antibiotics together with β-lactamase inhibitors is growing, with a size of over $27 million in 

2018 and a projected rise to over $34 million by 2028.46 
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1.3 β-Lactamase-mediated antibiotic resistance 
 

Antibiotic resistance is a natural phenomenon, which has been observed since the 

introduction of modern antibiotics: penicillin-resistant Staphylococcus aureus was identified 

only a year after the clinical introduction of penicillin.47 Antibiotic resistance in bacteria is 

manifested in different ways, which include both chromosomal changes (such as efflux pumps) 

and extrachromosomal elements (such as resistance plasmids).48 Focusing on Gram-negative 

bacteria, the main resistance mechanism is enzymatic drug modification by β-lactamase 

enzymes.49 β-lactam compounds mimic the tertiary structure of D-ala-D-ala, which is the 

natural substrate of penicillin-binding proteins (PBPs). PBPs are essential in bacterial cell wall 

biosynthesis, as the D-ala-D-ala-end of pentapeptides is a precursor for peptidoglycan 

formation in the cell wall.50 β-Lactam binding and subsequent long-lived covalent complex 

formation with PBPs inhibits cell wall renewal and eventually leads to bacterial death.51 

Therefore, the sole purpose of β-lactamases is to inactivate β-lactam antibiotics before they 

bind to PBPs, ensuring the survival of the bacteria. β-Lactamases are often encoded on 

plasmids,52-56 which makes for efficient spread of the resistance genes; however, 

chromosomally-encoded β-lactamases exist as well.57-60 The CDC categorises many Gram-

negative bacteria expressing β-lactamases as urgent threats, including carbapenem-resistant 

Acinetobacter and Enterobacterales as well as ESBL-producing Enterobacterales.6 The 

number and variety of identified β-lactamases has increased exponentially after β-lactams were 

introduced as antibacterials,61 and the sequences of over 7000 enzymes are listed in the β-

lactamase database in 2021 (with structural data available for over 1300).62 

β-Lactamases are divided into serine β-lactamases and metallo-β-lactamases based on 

their catalytic mechanism. According to the Ambler classification, serine β-lactamases are 

further grouped into classes A, C, and D, whilst all metallo-β-lactamases comprise class B. The 

Ambler classification is based on sequence similarity between enzymes.63 Serine β-lactamases 

are distant relatives to PBPs,64 and even when the sequence homology between different groups 

of serine β-lactamase is limited, the tertiary structure across the classes is similar (Figure 1.2). 

Generally, penicillin-recognising enzymes (including β-lactamases and PBPs) have a 

conserved Ser-X-X-Lys moiety in their active site, which includes the catalytic serine and a 

lysine (X-X can be any amino acid); the residue numbering is Ser70 in class A, Ser64 in class 

C, and Ser70 or Ser79 in class D, depending on the enzyme. Further, two triads near the active 

site consisting of Lys-Thr-Gly and Ser-Asp-Asn are conserved across most penicillin-
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recognizing enzymes.65 All serine β-lactamases have an Ω-loop near their active site, even 

though the loop residues and location differs between classes. β-Lactamases in classes A and 

D are widely distributed globally and confer broad-spectrum resistance against cephalosporins, 

carbapenems, and β-lactamase inhibitors.49 The work in this thesis is focused on studying 

selected enzymes from these classes. Class C β-lactamases are mainly chromosomally encoded 

and do not inherently possess activity against the most potent carbapenem antibiotics, as their 

carbapenemase activity is suggested to be a result of reduced permeation into the cell.66 Class 

B β-lactamases are also a clinically significant part of widespread multidrug resistance,67 but 

they have a distinct hydrolytic mechanism utilising zinc cofactors instead of a nucleophilic 

serine.68 

 

 

Figure 1.2 Crystal structures of three unliganded serine β-lactamases (PDB IDs: KPC-2 2OV569, AmpC 

2BLS70, OXA-48 6P9671). Conserved motifs in the tertiary structure highlighted in yellow and the Ω-

loops in orange. The active site serine and lysine residues (part of the SXXK motif) are indicated in 

sticks. 
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In serine β-lactamases, antibiotic inactivation relies on forming a covalent intermediate 

with the drug via the catalytic serine residue. The reaction mechanism follows the general 

mechanism of serine proteases (to which serine β-lactamases belong) illustrated in Figure 1.3. 

First, the nucleophilic serine is activated via proton transfer to a general base in acylation. This 

involves tetrahedral intermediate formation leading to a covalent acylenzyme complex.72 

Subsequently, the covalent acylenzyme undergoes deacylation, where a water acts a 

nucleophile, again leading to tetrahedral intermediate formation. Finally, the hydrolysed 

antibiotic is cleaved. The tetrahedral intermediate formation in both reaction steps is aided by 

the so-called “oxyanion hole”,73 which is formed by the backbone amides of two active site 

residues (the catalytic serine and another one). Hydrogen bonds in the oxyanion hole stabilise 

the negatively charged transition state and subsequent tetrahedral intermediate, which accounts 

for most of the catalytic effect of serine β-lactamases, and serine proteases in general.73 The 

specific residues participating in the hydrolysis reaction vary between different classes. The 

mechanism for class A β-lactamases is described in Section 1.3.1, whereas the mechanism for 

class D β-lactamases is covered in Chapter 4. The mechanism in class C β-lactamases differs 

from classes A and D, as they most likely use a tyrosine residue as the general base in β-lactam 

hydrolysis.74 

 

Figure 1.3 General hydrolysis scheme for serine β-lactamases for a carbapenem substrate. Starting 

from the non-covalent Michaelis’ complex (1), in acylation the catalytic serine nucleophile is activated 

via proton transfer to a general base. This leads to tetrahedral intermediate formation (1 → 2), which 

collapses to form the covalent acylenzyme (2 → 3). In deacylation a water nucleophile is activated to 

form a new tetrahedral intermediate (4 → 5), which yields the final hydrolysis product (6). The 

carbapenem substrate depicted as the Δ2-tautomer.  
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1.3.1 Class A β-lactamases 

 

Class A β-lactamases are perhaps the most studied group of serine β-lactamases, even 

though some controversies concerning e.g. their catalytic mechanism still remain (discussed 

further below). These enzymes are traditionally characterised as penicillinases, meaning they 

exhibit efficient penicillin breakdown, but a growing array of enzymes capable of 

cephalosporin and carbapenem hydrolysis have emerged. Most encountered class A β-

lactamase families in clinical settings include the TEM (originally identified in Greece in a 

patient named Temoneira),75 SHV (sulfhydryl variant),59 CTX-M (cefotaximase),76 and KPC 

(Klebsiella pneumoniae carbapenemase)77 enzymes. The TEM and SHV families inactivate 

primarily penicillin substrates, although some of their variants have acquired activity against 

oxyimino cephalosporins (e.g. cefotaxime) through point mutations.78 β-Lactamases exhibiting 

activity against broad-spectrum cephalosporins are referred to as extended-spectrum β-

lactamases (EBSLs),79 and as the name cefotaximase suggests, CTX-M enzymes belong to this 

group as well. Moreover, CTX-M enzymes are specifically named in the CDC Antibiotic 

Resistance Threats report under ESBL-producing Enterobacterales.6 Another concerning 

direction exhibited by some class A β-lactamases is carbapenemase activity, i.e. the ability to 

inactivate potent carbapenem antibiotics, which severely limits treatment options.80 Examples 

of class A carbapenemases include e.g. the previously mentioned KPCs, SME (Serratia 

marcescens enzyme),81 NMC-A (non-metallocarbapenemase A),82 and SFC-1 (Serratia 

fonticola carbapenemase)83. KPC enzymes are among the most commonly identified 

carbapenemases in Enterobacterales, and they confer resistance against most carbapenem and 

cephalosporin antibiotics.84 As an example, KPC enzymes accounted for 12.5% of confirmed 

carbapenemase-producing Enterobacterales samples in England according to the 2019 

ESPAUR report.7 Alarmingly, KPC-2 point mutants have also demonstrated resistance against 

new inhibitors such as avibactam,85 and mutants with activity against the 

ceftazidime/avibactam combination have been observed in a laboratory setting.86 

The hydrolysis mechanism in class A β-lactamases follows the general mechanism 

presented in Figure 1.3. However, the residue acting as the general base in acylation remains 

disputed. Two main reaction mechanisms have been proposed in the literature. In the first 

proposal, the serine nucleophile is activated via proton transfer to Glu166 using a bridging 

water molecule, which yields the tetrahedral intermediate. The second proposed mechanism 
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involves Ser70 nucleophile activation by a proton transfer to Lys73 instead of a water molecule, 

which would require Lys73 in its neutral protonation state. In both proposals, a proton is 

subsequently transferred from Glu166 to Ser130 via Lys73, as Ser130 protonates the β-lactam 

ring nitrogen in the second acylation step, which ultimately yields the covalent acylenzyme 

intermediate. This intermediate is cleaved using a water nucleophile, which is activated by a 

proton transfer to Glu166 (analogous to acylation). Evidence for Glu166 as the (primary) 

general base in acylation is based on information derived both from computational modelling 

and experimental studies.87-89 The proposed role of Lys73 as the general base instead of Glu166 

is based on site-directed mutation studies, as mutants of TEM-1 at position 166 are able to 

undergo acylation, albeit with greatly reduced rates.90 Further studies indicate that Lys73 would 

be in its neutral form if Glu166 is mutated,91 and that proton transfer to Lys73 could be 

feasible.92, 93 However, is it possible that the absence of Glu166 shifts the pKa of Lys73, 

enabling it to be deprotonated and to act as a base, and that the primary base in the wildtype 

enzyme is Glu166. 

 

1.3.2 Class D β-lactamases 

 

The class D β-lactamases studied in this thesis, namely OXA-48 enzymes, are presented 

in a minireview comprising Chapter 4. 

 

1.4 Summary of this thesis 
 

In this thesis, I will present my work on simulating antibiotic breakdown by selected serine 

β-lactamases. This research has two main goals: 

1. Establishing efficient computational protocols, which still accurately distinguish 

between active and inhibited β-lactamases. 

2. Deducting structural and/or mechanistic features contributing to efficient catalysis. 

Computational methods utilised in this thesis, and the theory behind them, are briefly 

introduced in Chapter 2. Chapter 3 focuses on investigating carbapenem hydrolysis by class A 

β-lactamases. This work introduces the term “computational assay”, which accurately 

distinguishes between carbapenemases and carbapenem-inhibited enzymes whilst employing 

relatively straightforward and fast simulation protocols. Chapters 4 to 7 focus on class D β-
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lactamases. Chapter 4 consists of a minireview summarising recent research concerning class 

D OXA-48 enzymes. Chapters 5 to 7 are focused on simulating β-lactam degradation by OXA-

48s. Cephalosporin inactivation by OXA-48 and its variants is presented in Chapter 5, whilst 

Chapter 6 discusses carbapenem hydrolysis by OXA-48. Finally, studies on OXA-48 inhibition 

by avibactam are summarised in Chapter 7. Chapters 5 to 7 concentrate on the second goal, 

where atomistic simulations are used for elucidating the determinants behind different 

hydrolysis phenotypes. 
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Chapter 2 - Computational methods 
 

Computational chemistry has paved its way into modern chemical research, as it is 

routinely used in many different applications ranging from materials research to catalyst design 

to studying biological systems.94-98 In this chapter, different computational chemistry methods 

are presented, covering theory from more simplistic molecular mechanics description of atoms 

to computationally more demanding quantum chemical wavefunction-based methods and 

density-functional theory. Semi-empirical methods are also briefly introduced. The theory 

behind biased reaction simulations and the standard techniques used in biomolecular modelling 

are described in the end. 

 

2.1 Molecular mechanics 
 

Due to the relatively large system sizes (ranging usually from tens of thousands to 

millions of atoms) encountered when simulating biological systems, methods based on 

quantum mechanics become too computationally expensive to apply for practical use. Instead, 

a system can be described using molecular mechanics,99 where the general potential energy 

function V(total) for the system includes contributions from both intramolecular and 

intermolecular terms: 

Eq.  2.1 

𝑉(𝑡𝑜𝑡𝑎𝑙)  =  𝑉(𝑏𝑜𝑛𝑑𝑠)  +  𝑉(𝑎𝑛𝑔𝑙𝑒𝑠)  +  𝑉(𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠)  +  𝑉(𝑣𝑑𝑊) +  𝑉(𝑒𝑙) 

where V(bonds), V(angles), and V(dihedrals) form the intramolecular energy contribution from 

bonds, angles, and dihedrals, and the Van der Waals interactions V(vdW) together with the 

electrostatic interaction term V(el) form the intermolecular component. 

The energy contribution arising from bonds between atoms has the following form: 

Eq.  2.2 

𝑉(𝑏𝑜𝑛𝑑𝑠)  =  ∑ 𝑘𝑏(𝑟 − 𝑟0)2  

where kb corresponds to the bond force constant and r0 the reference bond length. The harmonic 

form of the bond energy expression prohibits bonds from breaking and ensures bond lengths 

staying near the reference value. 
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The energy expression for angles is analogous to the energy contribution arising from 

bonds, and is: 

Eq.  2.3 

𝑉(𝑎𝑛𝑔𝑙𝑒𝑠) = ∑ 𝑘0(𝜃 − 𝜃0)2 

where k0 is the force constant, and θ0 the reference angle value. 

The intramolecular energy expression for the dihedrals is slightly more complicated 

than the previous two: 

Eq.  2.4 

𝑉(𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠)  =  ∑ 𝑘𝜙(1 + cos(𝑛𝜙 − 𝛿)) 

where kϕ is the force constant, and n the number of rotational minima between 0° and 360°. 

Additionally, the force field energy expression can include a term for improper torsions. 

These involve four atoms that can form out-of-plane torsions: 

Eq.  2.5 

𝑉(𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠) = ∑ 𝑘𝜙(𝜙 − 𝜙0)
2

 

where again kϕ is a force constant, and ϕ0 the reference improper value. 

Intermolecular energy terms describe interactions between non-bonded atoms. For the 

Van der Waals component, the interaction energy is often modelled using a 12-6 Lennard-

Jones-type potential: 

Eq.  2.6 

𝑉(𝑣𝑑𝑊) = ∑
𝐴𝑖𝑗

𝑅𝑖𝑗
12

𝑖<𝑗 

−
𝐵𝑖𝑗

𝑅𝑖𝑗
6  

where Aij and Bij are atom-pair specific parameters included in the force field, and Rij the 

distance between non-bonded atoms i and j. A 12-6 potential ensures that the interaction energy 

increases steeply as two atoms come too close together (R12 term) and is lowered when they 

are further apart (R6 term). 

Electrostatic interaction between two atoms is described by a Coulomb potential: 
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Eq.  2.7 

𝑉(𝑒𝑙)  =  ∑
𝑞𝑖𝑞𝑗

𝜖𝑅𝑖𝑗
𝑖<𝑗

 

where qi and qj are point charges on atoms i and j, Rij the distance between the atoms, and ϵ the 

effective dielectric constant for the solvent. 

The specific parameter set used when calculating the individual energy terms for a 

certain system configuration is called a force field. In this thesis, the Amber ff14SB force field 

was used in all calculations.100 

 

2.2 Basics of quantum mechanics 

 

Molecular mechanics is a convenient approach for simulating large systems. However, 

quantum mechanics provides a more appropriate description of system behaviour at the 

molecular level. In the heart of quantum mechanics is the Schrödinger equation,101 which tells 

how a system with a state wavefunction ψ(t) evolves with time: 

Eq.  2.8 

iℏ
∂

∂t
𝜓(𝑟, 𝑡) =  Ĥ 𝜓(𝑟, 𝑡) 

Here, ψ(t) is the time-dependent wavefunction of the system, and Ĥ the Hamiltonian 

operator corresponding to the total energy of a system. If the Hamiltonian is assumed to be 

time-independent, the Schrödinger equation can be written as: 

Eq.  2.9 

 �̂� 𝜓(𝑟) = 𝐸𝜓(𝑟) 

where E is the total energy of a system. The total energy is a sum of kinetic and potential energy 

terms for electrons and nuclei, and the molecular Hamiltonian takes the form: 

Eq.  2.10 

 Ĥ  =  −
1

2
∑ ∇𝑖

2

𝑖

−  
1

2
∑

1

𝑚𝑎
∇𝑎

2

𝑎

+  ∑
1

𝑟𝑖𝑗
𝑖𝑗

+ ∑
𝑍𝑎𝑍𝑏

𝑟𝑎𝑏
𝑎𝑏

− ∑
𝑍𝑎

𝑟𝑖𝑎
𝑎𝑖
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where the first and second terms describe the kinetic energies of electrons and nuclei 

(respectively), the third term electron repulsion, the fourth nuclei repulsion, and the last one 

attractive interaction between electrons and nuclei. However, often nuclei are considered as 

fixed point charges in space. This is due to the large mass difference between electrons and 

nuclei. When this so-called Born-Oppenheimer approximation102 is applied, the electronic 

Hamiltonian is obtained: 

Eq.  2.11 

 Ĥ  =  −
1

2
∑ ∇𝑖

2

𝑖

+  ∑
1

𝑟𝑖𝑗
𝑖𝑗

− ∑
𝑍𝑎

𝑟𝑖𝑎
𝑎𝑖

. 

Even with the Born-Oppenheimer approximation, the Schrödinger equation is possible 

to solve analytically only for a hydrogen atom or hydrogen-like molecules (with only one 

electron). Further approximations for obtaining the system energy include separating the full 

electron wavefunction into a product of single-electron wavefunctions: 

Eq.  2.12 

𝜓(𝒓) = |𝜓1𝜓2 … 𝜓𝑛| 

 

As electrons are fermions with a half-integer spin, the Pauli exclusion principle103 states 

that the wavefunction must be antisymmetric with respect to interchanging two electrons 

(fermions), and it is hence described as a determinant. 

Molecular orbitals for a given system are often constructed from atomic orbitals (AOs). 

In the LCAO approximation (linear combination of atomic orbitals), one-electron AOs χ1,…,χn 

are used for describing a MO ϕi: 

Eq.  2.13 

𝜙𝑖 = 𝑐1𝑖χ1 + 𝑐2𝑖χ2+. . . +𝑐𝑛𝑖χn 

 

where coefficients cni correspond to the individual weights of the AOs in the linear combination 

for a particular MO. The AOs used are often referred to as basis functions, which comprise the 

basis set (discussed later in more detail). The system wavefunction can then be constructed by 

finding the AO weights which yield the lowest energy. However, solving the Schrödinger 

equation and obtaining the total energy even using this LCAO-MO wavefunction would require 
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knowing the individual AO weights in advance, and hence the weights are solved in an iterative 

way using trial weights as a starting guess. This procedure is called a self-consistent field (SCF) 

calculation.104 

 

2.3 Ab Initio methods 
 

Ab initio translates from Latin as “from first principles”. The oldest ab initio method is 

the Hartree-Fock (HF) method, which is alternatively called the self-consistent field method.105 

Within HF theory, the system wavefunction is expressed as single Slater determinant, and the 

system energy is solved in practice using the Hartree-Fock-Roothan equations.106, 107 The HF 

method scales cubically with respect to system size, i.e. N3. HF formulation follows the 

variational principle, which states that when using a trial wavefunction for finding the energy 

of a ground state, the true ground state energy is never higher than the one obtained with the 

trial wavefunction. Therefore, the HF energy is always an upper-bound limit for the real energy. 

The shortcomings of HF theory include neglecting electron correlation, as the movement of a 

single electron is independent of the other electrons (except for the repulsion arising from the 

average electron positions). The only correlation considered is Fermi correlation, which means 

that the probability of finding two parallel spin electrons in the same point in space is zero. 

This is not true for antiparallel spin electrons, though. Secondly, the single-determinant 

approach is often a poor description of many-body systems. These are also referred to as 

dynamical and statistical correlation, respectively. Neglecting electron correlation is a big 

approximation, which can lead to wrong system descriptions and large deviations of computed 

values from experimentally determined ones.108-111 

Building on the HF theory, the so-called post-HF methods have been developed to 

address the shortcomings of the original formulation, e.g. by adding more dynamical 

correlation. The Møller–Plesset perturbation theory (MP)112 incorporates electron correlation 

through perturbation theory. The Hamiltonian operator is expressed as a sum of the unperturbed 

operator and a small perturbation, and the corresponding energies can be calculated up to the 

second (MP2), third (MP3), or fourth (MP4) order. The first order (MP1) energy equals the 

Hartree-Fock energy (which is also the zeroth order energy with an unperturbed Hamiltonian, 

as the first order correction is zero). Among the different levels of MP theory, MP2 remains 

perhaps as the most utilised method as it is least costly computationally (scaling N5) and 

progressing to MP3 or beyond does not necessarily guarantee better convergence of the 
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calculated energies towards a certain value.113 The steep scaling of MP2 can be partly overcome 

by utilising the resolution of identity (RI) approximation.114 In the RI approximation, the 

computationally expensive four index two-electron integrals are approximated as a linear 

combination of three-index integrals; this procedure can be applied to both the SCF part and 

the MP2 correction. One drawback of the MP theory is that it is not variational, i.e. it 

overestimates system stability by underestimating their energies. On the other hand, this can 

be used as an upper bound for stability. One easy way to improve the calculated energies is to 

incorporate empirical scaling factors for energy contributions from same-spin and opposite-

spin electrons, as is done in spin-component-scaled MP2 method (SCS-MP2).115 

Further post-Hartree-Fock ab initio methods include the configuration interaction 

(CI)116 and the coupled cluster (CC)117 methods. Especially the CC method combined with 

perturbation theory (named CCSD(T))118 is currently regarded as the “gold standard” in 

quantum chemistry. However, calculations utilising CCSD(T) are limited to very small 

molecules or only single-point energies, where initial structure optimisation is done using a 

lower level of theory, due to its expensive scaling behaviour of computational time with respect 

to system size (N7). A promising development regarding CC methods is utilising the locality 

of electron correlation. The DLPNO-CCSD(T) (domain based local-pair natural orbital) is a 

linear-scaling method with respect to the system size,119 and based on benchmarking, it is able 

to recover over 99% of the CCSD(T) correlation energy.120 In this thesis, benchmarking of 

semi-empirical methods is most often done against (SCS-)MP2 results for very small gas-phase 

model systems, as routinely utilising ab initio methods for system sizes in biomolecular 

simulations becomes unfeasible. 

 

2.4 Density functional theory 

 

Ab initio methods rely on finding the energy of a molecular system by constructing a 

wavefunction to describe the system and solving the Hamiltonian eigenvalue problem. Density 

functional theory (DFT) approaches the same problem from another angle, as the electron 

density ρ of a system is used for obtaining system energies. DFT is originally built on the 

Hohenberg-Kohn theorems, which state that 1. the ground state electron density of a system 

uniquely determines its energy (and other properties), and 2. only the ground state electron 

density minimises the energy functional for a system.121 In other words, determination of 

ground-state properties depends only on three spatial coordinates for electron positions, and 
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the DFT formulation follows the variational principle. However, modern DFT formulation is 

based on later Kohn-Sham equations,122 where the electron density of the full, interacting 

system is matched with the electron density of a fictious, non-interacting system. The total 

energy is then expressed as a sum: 

Eq.  2.14 

𝐸𝐷𝐹𝑇[ρ] = 𝑇𝑒[ρ] + Vne[ρ] + Vee[ρ] + EXC[ρ] 

where Te is the kinetic energy of non-interacting electrons, Vne the attractive Coulomb potential 

between electrons and nuclei, and Vee the repulsive potential between electrons. All the 

unknown interactions terms are grouped into the last EXC term, which is the so-called exchange-

correlation functional. The exchange-correlation functional can be further decomposed into 

separate exchange and correlations terms: the exchange term can be calculated exactly as in 

the HF method. Notably, the theory of DFT is exact, i.e. it yields the exact electronic energy 

of a system. In reality, however, the exact form of the EXC functional is unknown, and some 

approximations need to be introduced. 

As many different approximations have been developed for tackling the problem of the 

unknown exchange-correlation functional, DFT cannot be systematically improved. 

Nonetheless, the Jacob’s ladder framework (proposed by Perdew) rationalises the approaches 

taken in constructing various DFT functionals, as progressing higher on the successive levels 

should improve the functional (and bring the performance closer to the “heaven of chemical 

accuracy”).123 The first rung is the local density approximation (LDA), which is originally 

derived for homogeneous electron gas (electron density identical at every point in space).121 

The energy of a system is given by the electron density at certain point in space, and the density 

is assumed to vary slowly. However, LDA functionals are not widely applied to molecular 

systems as their electron density is often far from spatially uniform. Functionals incorporating 

the generalised gradient approximation (GGA) build on the LDA, but also include the gradient 

of electron density in the EXC functional.124-126 Analogously, meta-GGA functionals include the 

second derivative of electron density, and examples of meta-GGA functionals include e.g. 

TPSS127 and M06-L128. On the ladder towards the heaven of chemical accuracy, GGA and 

meta-GGA functionals comprise the second and third rung, respectively. On the fourth and 

fifth rungs are hybrid and double hybrid functionals, respectively. Hybrid functionals 

incorporate a certain amount of the exact HF exchange energy into their EXC functional,129 

whereas double hybrid functionals also include a certain fraction of MP2 correlation energy. 
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B3LYP130-133 is still perhaps the most widely applied hybrid functional, other popular hybrids 

include functionals in the M06 suite134 and the ωB97 family135, 136. Examples of double hybrid 

functionals include B2PLYP137 and ωB97X-2138. A known drawback of most DFT methods is 

the incorrect description of long-range dispersion interactions,139-142 and corrections can be 

added to address this.143 Common ways to account for this error include van der Waals density 

functionals (vdW-DF), where a non-local energy term for dispersion interactions is added to 

the EXC functional.144 Another example are the semiclassical DFT-D corrections, where the 

dispersion energy is calculated pair-wise in an additive fashion for all atoms and simply added 

to the Kohn-Sham energy.145 

In this thesis, DFT was mainly used for benchmarking purposes due to the 

computational cost of using DFT in conformational sampling for large biomolecular systems. 

The performance of semi-empirical methods in QM/MM calculations was compared against 

DFT results both for model gas-phase systems of the enzyme active site, and for energy 

corrections for structures optimised using semi-empirical methods. Mainly hybrid functionals 

were used, the most utilised one being the meta-GGA hybrid M06-2X.134 M06-2X includes 

54% HF exchange in its EXC formulation, and it is parametrised only for non-metals. Based on 

previously published benchmarking data, M06-2X performs well for thermochemistry and 

barrier heights,134, 146 but may lack proper description of non-covalent interactions.147 Another 

functional of choice was the long-range corrected hybrid GGA ωB97X,135 either as its initial 

formulation or as ωB97X-D136 with dispersion corrections. 

 

2.5 Basis sets 
 

Functions used for constructing the electronic wavefunction are called basis functions, 

and together the functions form a basis set. Approaching the complete basis set limit, i.e. the 

perfect description of a wavefunction, would require an infinite amount of basis functions; in 

practise a finite number of functions is included in each basis set. Basis sets are often 

constructed using AOs, which are combined to yield MO descriptions (as introduced in section 

2.2). Slater-type orbitals (STOs) can be used for describing AOs, as these functions are 

analytical solutions for the Schrödinger equation for one-electron systems. However, 

evaluation of two-electron integrals using STOs can be difficult; therefore, STOs are often 

approximated using a combination of Gaussian-type orbitals (GTOs). Minimal basis sets 

follow the format STO-nG, where n tells the number of GTOs used for constructing one STO. 
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Even when minimal basis sets are computationally efficient, results obtained using them are 

often crude as only one STO is used per orbital. Pople’s split-valence basis sets follow format 

X-YZG, where X tells how many GTOs comprise every core AO, and Y and Z how many 

primitive gaussian are used for the valence orbitals.148 For example, in 3-21G basis set every 

core AO is a linear combination of three primitive gaussians, while the two valence AOs consist 

of two and one primitive gaussians. With split-valence basis, at least two STOs are used for 

each valence electron, which yields a better description of the system than provided by STO-

nG basis sets. Polarisation is indicated by a star after the basis set name and is incorporated by 

including higher angular momentum orbitals in the basis set (for example 1p orbitals for 

hydrogen). Diffuse functions are indicated by a +, and they are used for describing regions 

further away from the nucleus (often called the tail regions). Dunning basis sets,149 or the so-

called correlation-consistent basis sets, are designed to approach the complete basis set limit 

upon adding more basis functions. They follow the format cc-pVnZ, where the prefix cc-p 

indicates the set to be correlation-consistent polarised, and the suffix VnZ tells how many 

functions (n) are used for describing each valence electron. Diffuse functions can be added 

with the aug- suffix. The Karlsruhe def2 basis sets (also named Ahlrichs basis sets) follow the 

same format, where e.g. def2-SVP denotes split valence (two AOs per valence electron) 

polarised.150 

 

2.6 Semi-empirical methods 

 

Semi-empirical quantum chemical methods are based on the HF theory, but skip many 

computationally intensive steps by introducing additional approximations or parametrisation. 

Any parameters used in the formulation are usually empirically derived, i.e. the goal is to fit 

the computed results to match some existing empirical data. Many semi-empirical methods 

employ the neglect of diatomic differential overlap (NDDO) approach, where the simplified 

idea is to reduce the computational overhead by ignoring the two-electron integrals,151 and 

treating remaining one-electron integrals approximately e.g. through parametrisation.152 These 

methods often employ minimal basis sets with only valence electrons, which further speeds up 

the calculations. Popular semi-empirical methods include AM1 (Austin Model 1)153, PMx 

(Parametric Method, x=3,6,7)154-156, and OMx methods (Orthogonalization-corrected Methods, 

x=1,2,3)157. As some methods are formulated against empirical data, they are able to recover 

some electron correlation (unlike HF). However, the limited number of systems used in the 
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parametrisation procedure combined with valence-only and minimal basis set approaches 

limits their applicability, and their performance for a given problem should be tested against 

higher-level methods. 

In addition to finding approximate ways to speed up HF-based calculations, density 

functional tight-binding (DFTB) schemes aim to do the same for DFT methods. The electron 

density ρ for a system is expressed as a sum of a reference density and a small fluctuation ρ = 

ρ0 + δρ (ρ0 being the superposition of neutral atomic densities). The energy expression can now 

be expanded as a Taylor series around the reference density. Including only the first order terms 

in the expansion yields the DFTB1 method (alternatively just DFTB), whereas including the 

second order term yields DFTB2. DFTB2 is also called SCC-DFTB, as it introduces calculating 

atomic partial charges self-consistently.158 DFTB3 includes terms up to third order.159 As the 

DFTB1 method is not self-consistent,160 it is advised to be used only for systems where charge 

transfer between atoms is small.161 Both DFTB2 and DFTB3 have been applied widely in 

simulating biological systems,162, 163 and are the semi-empirical methods of choice also in this 

thesis. 

 

2.7 Hybrid quantum mechanics/molecular mechanics methods 
 

State-of-the-art reaction simulations of large biomolecular systems often utilize a 

combined quantum mechanics/molecular mechanics (QM/MM) approach, where a small 

portion of the system is modelled using quantum mechanics, whilst the rest are described by 

molecular mechanics.164 The QM subsystem often consists of ligand and some key active site 

residues (e.g. participating in the catalysed reaction or transition stabilisation). QM/MM 

methods allow simulating chemical reactions within the enzyme, as the bonding situation is 

not fixed, unlike in simulations based on molecular mechanics. 

The total energy for a given system in QM/MM simulations is generally calculated 

using either the additive or subtractive approach.165 In an additive scheme, the total energy 

consists of three terms: 

Eq.  2.15 

𝐸(𝑎𝑑𝑑, 𝑡𝑜𝑡𝑎𝑙)  =  𝐸(𝑀𝑀) + 𝐸(𝑄𝑀) + 𝐸(𝑄𝑀 − 𝑀𝑀) 
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where energies for the MM and QM parts of the system are described by E(MM) and E(QM), 

respectively), and the two systems are coupled by the interface energy E(QM-MM). On the 

other hand, in a subtractive QM/MM scheme the total energy is expressed as: 

Eq.  2.16 

𝐸(𝑠𝑢𝑏, 𝑡𝑜𝑡𝑎𝑙) = 𝐸(𝑀𝑀, 𝑤ℎ𝑜𝑙𝑒) + 𝐸(𝑄𝑀) − 𝐸(𝑀𝑀 𝑓𝑜𝑟 𝑄𝑀) 

where first the MM energy is calculated for the whole system (E(MM,whole), including the 

QM region) and QM energy for the QM subsystem (E(QM)). From this total energy, the MM 

energy contribution for the QM region (E(MM for QM)) is then subtracted. The Amber 

software suite utilises the additive scheme in its QM/MM implementation, therefore it shall be 

discussed more in depth below.166 

In an additive QM/MM implementation, calculating energies for the QM and MM 

regions is relatively straightforward, whilst calculating the interaction energy (E(QM-MM)) 

for energy contributions spanning over the two subsystems remains more complicated. In the 

QM/MM implementation in the sander program (part of the Amber software package166, used 

for all QM/MM calculations in this thesis), point charges in the MM system polarise the QM 

system but not vice versa, as this would require a polarisable force field. This approach is also 

referred to as electrostatic embedding. Electrostatics often dominate in the QM-MM interaction 

energy contribution, but also Van der Waals interactions between QM and MM atoms are 

included in the QM-MM interaction energy function. Van der Waals interactions are calculated 

using the 12-6 potential as for MM atoms as discussed in Section 2.1 (equation 2.6). If there 

are no covalent bonds between the QM and MM regions, the interface energy is simply a sum 

of the electrostatic and van der Waals interactions. However, more terms must be included if 

covalent bonds are “cut” when partitioning the system into QM and MM parts. Often the link 

atom approach165 is used for these “broken” covalent bonds (as is done in sander).166 A link 

atom (hydrogen) is added as a cap to any covalent bonds between QM and MM regions to fill 

open valences. It is placed on the bond vector between the bonded QM and MM atoms, 

therefore introducing no new degrees of freedom (as the link atom coordinates depend on the 

QM and MM atom coordinates). In Amber, the link atom bond length is set to the equilibrium 

distance of a methyl C-H bond 1.09 Å. Electrostatics for link atoms are calculated the same 

way as for other QM atoms excluding the MM link pair atoms, whilst no Van der Waals 

interactions are calculated. Additionally, the MM terms for bonds spanning over the QM and 

MM systems are calculated using force field terms as usual. In addition to careful formulation 
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of the QM/MM energy function, care must be taken when partitioning the system into QM and 

MM regions. Generally, polar bonds should not be broken, and the QM-MM partitioning is 

thus best done across C-C bonds. A compromise between QM system size, accuracy of 

calculated energetics/properties, and computational power needed should be considered. 

 

2.8 System preparation 
 

The starting point for biomolecular simulations is often an experimentally determined 

structure for the system of interest, either unliganded or with a ligand. Structural techniques, 

such as X-ray crystallography, yield the positions of heavy atoms, but the resolution is still 

often too low for observing hydrogens. Hence, hydrogens need to be added to the structure 

prior to performing any calculations, and many simulation programs have an automated way 

of doing this (such as tleap in the Amber suite166). The protonation states as well as residue 

tautomers need to be determined in advance as well, as standard molecular dynamics 

techniques do not allow for bonding changes (e.g. proton transfers). In this thesis, the 

protonation states of ionisable residues are based on empirically predicted pKa values using the 

propKa3.1 software.167 Determining the tautomeric states of histidine residues was done using 

reduce as part of Ambertools 19166. 

The parameters used for standard protein residues to calculate the system energy 

(according to equation 2.1) are included in a force field. For any ligands or non-standard 

residues, new force field parameters and atomic partial charges need to be derived. Specific 

parameter sets are designed to cover most of the chemical space of small organic molecules, 

such as gaff and gaff2,168 which can be used for assigning force field parameters for most small-

molecule organic ligands. For non-covalent ligands, calculating atomic partial charges is rather 

straightforward using e.g. the restrained electrostatic potential (RESP)169 or AM1-BCC 

charges170, 171. However, deriving accurate charges for non-standard residues, which form a 

part of the protein backbone, is not as trivial. Charges for all non-standard residues in this thesis 

are derived using the R.E.D Server,172 which offers an automated way for fragment charge 

derivation using intramolecular charge constraints during charge fitting (the charges on the 

capping groups around the desired non-standard residues are set to zero). Any missing force 

field parameters were taken from the gaff force field. 
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2.9 Water models 

 

To make the simulations more realistic, enzyme models are often solvated in water. The 

applied water model depends on the particular purpose, and generally one can utilise either an 

implicit or an explicit solvent method. Implicit solvents mimic solvation effects by 

approximating the solvent as a continuous medium, whilst in explicit solvent methods actual 

solvent molecules are added around the studied system. Explicit solvation allows for 

calculating e.g. possible active site interactions with solvent, but this model also largely 

increases the number of atoms in the system. Vice versa, implicit solvent models often enhance 

conformational sampling due to smaller system sizes, but do not offer information of protein 

interactions with water. 

With explicit solvation, the solvent molecules tend to “drift off” from their original 

starting positions during the simulation. Therefore, so-called periodic boundary conditions 

(PBCs) are applied, where the simulated system consists of an infinite number of simulation 

cells. Once a solvent molecule exits the original cell from one side, a new solvent molecule 

enters the cell from the opposing side. PBCs ensure that possible surface effects of water are 

avoided, and that the number of particles in the system stays fixed. 

The choice of water model is also important in explicit solvent simulations. These can 

be divided into three-site, four-site, and five-site interaction models. Three-site models (such 

as TIP3P173, SPC174, and SCP/E175) have three interactions points on the three atoms in water, 

and the geometry of water is often rigid. All three atoms have fixed point charges, and the 

oxygen atom has Lennard-Jones parameters for calculating van der Waals interactions. In four-

site models (TIP4P173 and its successors, OPC176, BF177), a dummy atom with a negative charge 

is added next to the oxygen atom on the axis bisecting the HOH angle. Often the geometry of 

solvent molecules is again kept fixed. Correspondingly, five-site water models (TIP5P178 and 

its successors, BNS179, ST2179) mimic the tetrahedral geometry of oxygen lone pairs in water. 

Five-site models tend to have a higher computational cost in simulations, and hence have only 

been developed further in the recent decades. 

All molecular dynamics simulations in this thesis are done using an explicit solvation 

using the TIP3P water model with PBCs, except for the simulation in Chapter 3, where the four 

point TIP4P-Ew was used. 
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2.10 Energy minimization 
 

The variation of system energy as a function of atom coordinates can be described as a 

potential energy surface (PES). As a system consisting of N atoms has 3N-6 degrees of 

freedom, PESs are often quite complex. Local minima on the PES respond to stable 

configurations, whereas the global minimum is the overall lowest energy structure. The 

geometry of a system can be optimised when the energy is minimised, which does not 

necessarily yield the global minimum energy structure as the system is optimised to a near-by 

local minimum. This is especially true for large biomolecular systems, where finding the global 

minimum energy structure is impossible. 

Minimisation algorithms often rely on following the gradient of the PES. In the steepest 

descent method only the gradient of the energy is calculated.180 As the net force acting on the 

system is the opposite of the gradient, the atoms are moved parallel to the net force towards the 

nearest PES minimum. A pre-defined step size indicates how far the system is displaced. 

Steepest descent is often combined with another minimisation method to avoid oscillating 

around the energy minimum. The conjugate gradient algorithm is similar to steepest descent, 

but uses additionally information of the previous steps to speed up convergence.180 More 

advanced (and often computationally expensive) minimisation methods can also employ 

second derivatives of the PES, as is done in the Newton-Raphson method. 

 

2.11 Molecular dynamics simulations 

 

To study the time-dependent behaviour of biomolecular systems, molecular dynamics 

(MD) simulations can be performed. Theory behind the equations used in MD simulations 

starts from the Newton’s second law of motion: 

Eq.  2.17 

𝐹 = 𝑚𝑎 

where F is the force acting on a particle, m the mass of a particle, and a acceleration. As force 

is also the gradient of potential energy and acceleration the second gradient of position, 

equation 2.17 can be written as 
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Eq.  2.18 

𝜕𝑉

𝜕𝑟
= 𝑚

𝜕2𝑟

𝜕𝑡2
 

where V(r) is the potential energy of the system, r(t) the position (in Cartesian coordinates), 

and t time. Combining equations 2.17 and 2.18 yields the expression: 

Eq.  2.19 

𝐹𝑖 = 𝑚𝑖

𝜕2𝑟

𝜕𝑡
 

where Fi is the force acting on atom i and mi its mass. Integrating this equation at certain 

timesteps yields new atomic positions and shows how the system evolves dynamically with 

time. 

As the potential energy is a function of all 3N atom coordinates, the differential equation 

cannot be solved analytically. Different numerical integration algorithms exist, such as the 

Verlet181, velocity Verlet182, and leapfrog183 schemes. In the Verlet algorithm, the new atom 

positions at timepoint t+δt are calculated using information from the two previous timepoints, 

t and t-δt: 

Eq.  2.20 

𝑟(𝑡 + 𝛿𝑡)  =  2𝑟(𝑡)  − 𝑟(𝑡 − 𝛿𝑡)  +  𝑎(𝑡)𝛿𝑡 

where a(t) is the second derivative of position with respect to time (acceleration). The 

expression is derived by combining two Taylor expansions for r(t+δt) and r(t-δt) and ignoring 

higher than the third order terms. As seen in equation 2.20, atom velocities are not explicitly 

solved when using the Verlet algorithm for numerical integration. Instead, they are often 

calculated as a first order central difference based on the atom positions at timepoints t-δt and 

t+δt: 

Eq.  2.21 

𝑣(𝑡) =
𝑟(𝑡 + 𝛿𝑡) − 𝑟(𝑡 − 𝛿𝑡)

2𝛿𝑡
 

 

The velocity Verlet algorithm is similar to the Verlet algorithm, but incorporates atom 

velocities explicitly in the integration scheme. In this scheme, only the positions and velocities 
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at the previous timepoint t are needed (instead of positions at two previous timepoints, as in 

Verlet). In the leapfrog algorithm, positions and velocities are updated in a “staggered” fashion 

after each other at certain timepoints. For any integration scheme, the timestep δt needs to be 

shorter than the fastest timescale for system movement to allow for generating a stable 

trajectory. Often a timestep between 0.5-1 fs is used, but it can be increased to 2 fs if stretching 

vibrations of bonds involving hydrogens are restrained. 

System configurations obtained in a molecular dynamics trajectory correspond to a 

certain statistical ensemble. A “standard” simulation with no temperature or pressure control 

is in the microcanonical (NVE) ensemble, where the number of particles N, the volume V, and 

the system energy E stay constant. The canonical (NVT) ensemble corresponds to constant 

temperature, and the isothermal-isobaric (NPT) simulation to constant temperature and 

pressure simulations. The temperature is often controlled by coupling the system to an external 

heat bath, which acts as a thermostat (such as in the Berendsen algorithm184). Analogously, a 

barostat is required to control the system pressure. 

Simulations in this thesis were performed in the NPT ensemble using Langevin 

dynamics for temperature scaling. In Langevin dynamics, the energy expression is modified by 

neglecting some system degrees of freedom, and by introducing the so-called friction and 

random force terms. The friction term mimics system viscosity, and the random force term the 

stochasticity of the system. The Berendsen barostat was used to control the pressure. When 

using the Berendsen barostat, the equations of motion for atoms are scaled according to the 

desired reference pressure, which results in slight changes in the corresponding periodic box 

size.  

 

2.12 Umbrella sampling simulations 
 

To simulate chemical reactions within enzyme active site, often biased simulation 

techniques are applied. In umbrella sampling (US), a biasing potential is added along one or 

two reaction coordinates to force the system to undergo a transition (e.g. a chemical 

reaction).185 Reaction coordinates are parameters describing the system change from its initial 

(reactant) state to the final (product) state and can include for example bond distances or 

torsions.  These two end states are connected via a series of intermediate states, which are 

referred to as US windows. A MD simulation is done in each window to sample structures near 
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the restrained reaction coordinate values, and the US windows are placed so that the sampled 

reaction coordinate distribution in each window overlaps with distributions in the adjacent 

windows. To ensure sampling near a desired value for reaction coordinate ξ in the US window 

i, a harmonic biasing potential ωi is added to the overall energy function: 

Eq.  2.22 

𝜔𝑖(𝜉)  =  𝐾(𝜉 − 𝜉𝑖
𝑟𝑒𝑓

) 

where K is a force constant, ξ the reaction coordinate value at a certain time point, and ξi
ref the 

reference reaction coordinate value in ith US window. Care must be taken when choosing a 

value for the force constant K, as its value should both ensure conformational sampling around 

the chosen US window minimum, as well as allow for sufficient overlap of sampled reaction 

coordinate values between adjacent windows. 

With this approach, a biased potential mean force (PMF) along a reaction coordinate(s) 

is obtained. To study the unbiased PMF, the system is assumed to be ergodic (ensemble 

averages for reaction coordinate distribution equal to time averages for the distribution during 

the simulation), and the free energy expression takes the form: 

Eq.  2.23 

𝐴𝑖(𝜉)  =  −(1/𝛽)ln𝑃𝑖
𝑏(𝜉) − 𝜔𝑖(𝜉) + 𝐹𝑖 

where β=1/kBT, Pi
b is the biased distribution for ξ in window i, ωi is the biasing potential, and 

Fi a term to combine free energy distributions from US windows to one global PMF: 

Eq.  2.24 

𝐹𝑖 = −(1/𝛽)ln (∑ 𝑃(𝜉)𝑒−𝛽𝜔𝑖(𝜉)) 

As Fi cannot be directly estimated from US simulations, another method needs to be 

used for analysing the simulations. The weighted histogram analysis method (WHAM) is a 

popular one,186 where the unbiased distribution is calculated based on a weighted average of 

individual windows. Because Fi depends on the distribution P(ξ), and the given weights depend 

on Fi, the WHAM procedure requires iterating the calculations until convergence. Other 

methods for analysing US simulations are for example the dynamic histogram analysis method 

(DHAM)187 and umbrella integration (UI)188. 
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Chapter 3 – An efficient computational assay for β-lactam antibiotic 

breakdown by class A β-lactamases 

 

This chapter consists of a communication article titled “An efficient computational 

assay for β-lactam antibiotic breakdown by class A β-lactamases”, which was published in 

Journal of Chemical Information and Modelling in 2019.189 This article continues the work by 

E. I. Chudyk et al. published in 2014,190 and builds on the original computational assays by 

reducing both the sampling time and the conformational sampling along the free energy 

surface. By shortening the sampling time from 20 to 2 ps and sampling only along an 

approximate reaction free energy path, the required computational power is reduced by more 

than 99% (compared against the original assays). I performed and analysed all calculations in 

the new, shortened assays, and wrote the manuscript with help from my supervisors. Section 

3.6 consists of the data included as the Supporting Information for this article. 

 

3.1 Abstract 
 

Class A β-lactamases cause clinically relevant resistance to β-lactam antibiotics. Carbapenem 

degradation is a particular concern. We present an efficient QM/MM molecular simulation 

protocol that accurately predicts the activity of β-lactamases against carbapenems. Simulations 

take <24 CPU hours, a >99% reduction, and do not require fitting against experimental data or 

significant parameterization. The computational assay reveals mechanistic details of β-lactam 

breakdown, and should assist in evaluating emerging β-lactamase variants and developing new 

antibiotics. 

 

3.2 Introduction 
 

Antibiotic resistance is one of the most concerning phenomena of the 21st century.191, 

192 To some extent, this resistance occurs naturally, but in recent decades its spread has been 

accelerated by the excessive use of antibiotics.61 β-lactam drugs are one of the largest groups 

of commercially available antibiotics and they remain the most prescribed ones,18 but they also 
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suffer from increasing clinical resistance.193 The key source for this resistance, especially in 

Gram-negative bacteria, are the β-lactamase enzymes.49, 194, 195 

β-lactamases can be divided into four different classes based on their primary amino 

acid sequence homology (Ambler classification): classes A, C, and D are serine β-lactamases 

with an active site serine residue, whilst class B are metallo-β-lactamases with active site zinc 

ion(s).63 Of the four classes class A β-lactamases are the largest, with many clinically 

significant enzymes. They can inactivate a broad range of β-lactam substrates: in addition to 

hydrolyzing penicillins and cephalosporins, some family members can also mediate resistance 

against carbapenems.27, 196, 197 Carbapenems are mainly used as ‘last resort’ antibiotics or for 

difficult infections,24 hence the Centers for Disease Control and Prevention (CDC) have 

categorized the clinical importance of carbapenemase-producing Enterobacteriaceae (the group 

of Gram-negative bacteria including Escherichia coli and Klebsiella pneumoniae) as “an 

immediate public health threat that requires urgent and aggressive action”.198 

β -lactamases inactivate β-lactam antibiotics by hydrolyzing the β-lactam amide (Figure 

3.1). In serine β-lactamases, this consists of two consecutive reactions: acylation, resulting in 

formation of a covalently-bound acylenzyme, and deacylation.49 In acylation, a nucleophilic 

attack by the active site serine upon the -lactam carbonyl carbon occurs to form the 

acylenzyme, via a tetrahedral intermediate.199 Deacylation is analogous to acylation including 

a tetrahedral intermediate (TI), but the nucleophile is an active site water molecule (the 

deacylating water, DW). In class A enzymes, both nucleophiles are activated via proton 

abstraction by an active site glutamate residue (Glu166 in the class A β-lactamase numbering 

scheme).200, 201 β-lactamases are typically inhibited when the acylenzyme intermediate is long-

lived due to slow deacylation rates.190 For many β-lactam drugs, including carbapenems, TI 

formation in deacylation of the acylenzyme is most likely the rate-limiting step.24 Therefore, 

to determine the carbapenemase activity of class A β-lactamases, only this reaction needs to be 

modelled. 

Previously, a quantum mechanics/molecular mechanics (QM/MM) protocol for 

modelling TI formation in the deacylation step for class A enzymes with meropenem was 

shown to correctly distinguish between carbapenemases and non-carbapenemases.190 Using the 

proposed protocol, carbapenem-inhibited enzymes showed deacylation barriers of 17.0-18.9 

kcal/mol, whilst for carbapenem-hydrolyzing enzymes the values were 7.5-10.5 kcal/mol. A 

similar computational protocol has been used to study class A β-lactamase inhibition by 

clavulanate, which identified the covalent clavulanate complex responsible for irreversible β-
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lactamase inhibition.202 Despite the promising results of these protocols, the carbapenem assay 

requires significant computational resources due to extensive sampling of the free energy 

surface. Hence, it cannot be used for more rapid, computationally efficient, screening of a 

variety of different enzyme-antibiotic combinations. 

Starting from our previous work, here we present and validate a more rapid 

computational assay that can discriminate between carbapenemase activities using only limited 

computational resources. The resources are minimized first by limiting the area on the free 

energy surfaces (FES) to be sampled, and then by reducing the sampling time. We demonstrate 

that this reduced protocol, requiring less than 1 % of the computational resources of the original 

assay, can still correctly distinguish between carbapenemases and carbapenem-inhibited class 

A β-lactamases. It therefore provides an efficient computational diagnostic towards in silico 

screening of β-lactamase activity. 
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Figure 3.1 A) First step of deacylation in class A β-lactamases. Glu166 acts as a proton acceptor 

allowing the deacylating water to perform nucleophilic attack on the acylenzyme (1), which results in 

tetrahedral intermediate formation (2). B) Full free energy surface of deacylation for KPC-2 with 

meropenem. Red circles show the positions of umbrella sampling windows along the approximate 

“standard” minimum free energy path (MFEP) used for all enzymes. AC = acylenzyme, TS = 

approximate transition state, TI = tetrahedral intermediate. C) Active site of KPC-2 highlighting the 

hydrogen bonds between Glu-166 OΕ1 and OΕ2 and relevant residues. Meropenem in magenta. 
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3.3 Methods 
 

We investigate eight class A β-lactamases, including the widely distributed K. 

pneumoniae carbapenemase (KPC), and the TEM, SHV and CTX-M enzymes (Table 3.1), 

selected for their clinical relevance and their ability (or inability) to hydrolyze carbapenems. 

Acylenzyme systems were prepared as described previously (details in ESI, Section 3.6).190 

Briefly, structures were solvated in water and minimized, followed by heating to 300 K in 50 

ps. Starting structures for umbrella sampling (US) were then taken after at least 50 ps of 

unrestrained QM/MM MD (with starting points for repeat simulations at least 15 ps apart). 

Two reaction coordinates are used for umbrella sampling: one for the proton transfer between 

DW and Glu166, and one the nucleophilic attack of DW on the acylenzyme carbonyl. The 

DFTB2 method was used for the QM region.162 All calculations were performed with sander 

from AmberTools16.203 The weighted-histogram analysis method (WHAM)186 was used to 

analyze US results and to obtain calculated barriers for each reaction (Δ‡Gcalc). Three 

independent US simulations were run for each acylenzyme to test convergence of Δ‡Gcalc 

(details in the ESI in Section 3.6; meropenem parameters at DOI 

10.6084/m9.figshare.8158097). 

 

3.4 Results and discussion 
 

Several modifications to the protocol were evaluated in order to improve computational 

efficiency. First, the amount of sampling was reduced by sampling only at those US windows 

corresponding to the approximate minimum free energy path (MFEP) on the FES. Based on 

our earlier work,190 the calculated MFEPs on full FESs across all eight studied β-lactamases 

are similar, which implies that only a partial FES needs to be calculated to compare the 

deacylation rates between studied enzymes. The “standard” MFEP used for partial sampling 

along the FES is presented in Figure 3.1 (and in the ESI, Section 3.6). Sampling only in 

windows along this MFEP reduces the number of US calculations from the original 374 to 28 

per (partial) surface. The more limited sampling along the surface does not change the resulting 

Δ‡Gcalc values significantly, with the largest calculated change between full and partial surface 

calculations being 2.5 kcal/mol (Table 3.1). Despite some changes in Δ‡Gcalc values for all 

enzymes, the correct division into two groups is maintained. Carbapenemases (KPC, SFC, 

SME and NMC) have Δ‡Gcalc values between 7.8-10.4 kcal/mol, and carbapenem-inhibited 

enzymes (SHV, TEM, BlaC and CTX-M) between 15.5-16.8 kcal/mol. This suggests that the 
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standard MFEP describes deacylation sufficiently well for differentiating between different 

carbapenem-hydrolyzing abilities. 

Even when the amount of US windows is significantly reduced, the computational time 

for each window remains high. Hence, the possibility of utilizing shorter sampling times was 

first tested using the original 20 ps US results. This was done by using only the first 0.5, 1, 2, 

5 or 10 ps of each 20 ps US window to calculate Δ‡Gcalc values (Table S2 in Section 5.6). This 

differs from sampling each window for a shorter time only, since the system is still allowed to 

equilibrate for 20 ps before changing the reaction coordinate restraints. Nonetheless, this 

preliminary analysis can be used to study the effects of shorter sampling. The results indicate 

that sampling for only a fraction of 20 ps is enough to distinguish between the two groups of 

β-lactamases. In most cases, the preliminary shorter sampling times yield somewhat higher 

barriers (<2.5 kcal/mol), which is expected due to reduced sampling of the phase space. 

However, this does not affect the distinction between carbapenemases and non-

carbapenemases.  When reducing sampling to 1 ps per window or less, more significant 

increases of the barrier heights (up to 20%) become common. We thus decided to use 2 ps US 

sampling per window. Sampling for 2 ps also ensures enough overlap between sampling in 

adjacent US windows. 
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Table 3.1 Comparison of experimental (Δ‡Gexp) and calculated free energies of activation (Δ‡Gcalc) for 

the first step of deacylation of meropenem by eight enzymes using different protocols. 

β-lactamase kcat (s–1) a 
Δ‡Gexp 

(kcal/mol) b 

Δ‡Gcalc (kcal/mol) c 

Full a MFEP (20ps) 
MFEP 

(2ps) 

KPC-2 3.6 16.8 10.5 (0.9) 8.5 (2.2) 9.1 (1.1) 

SFC-1 6.5 16.6 10.9 (0.9) 10.4 (1.2) 9.9 (1.3) 

SME-1 3.2 16.9 10.3 (2.8) 7.8 (0.2) 9.5 (1.4) 

NMC-A 12.0 16.1 7.5 (0.4) 8.8 (0.4) 
10.4 

(0.7) 

SHV-1 0.0013 21.6 17.0 (0.4) 16.1 (1.0) 
19.5 

(0.5) 

TEM-1 0.0023 22.7 17.1 (0.4) 16.3 (2.2) 
23.6 

(1.4) 

BlaC 0.0017 21.5 17.9 (0.1) 15.5 (2.2) 
24.7 

(1.1) 

CTX-M-16 0.0042 20.8 18.9 (1.1) 16.8 (1.5) 
17.2 

(1.6) 

Computer resource (%) d 100 7.5 0.75 

 

a) Values taken from ref. 19. 

b) Calculated from experimental rate constants using the Eyring equation, see ref. 202. 

c) Barriers are calculated from three simulations using WHAM as described in the ESI, standard 

deviations in parenthesis. 

d) Computer resources required are estimated by extrapolating the time needed for all required QM/MM 

simulations from 2 ps calculations: 374 umbrella sampling windows for the whole surface and 20 ps 

per window (374 x 20) for “Full”, 28 windows x 20 ps for “MFEP (20ps)” and 28 windows x 2 ps for 

“MFEP (2ps)”. 

 

Sampling for only 2 ps per window along the MFEP gives similar overall results to 

sampling for 20 ps (Table 3.1). With the shorter protocol, carbapenemases have Δ‡Gcalc values 

of 9.1-10.4 kcal/mol, whilst carbapenem-inhibited enzymes have Δ‡Gcalc values of 17.2-24.7 
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kcal/mol. Shorter US gives higher deacylation Δ‡Gcalc values for all enzymes, with most 

significant increases seen for carbapenem-inhibited enzymes (0.4-9.2 kcal/mol) when 

compared to calculations using 20 ps sampling along the MFEP. However, the increased 

deacylation barriers do not change the division of the enzymes into the two distinct groups. 

Furthermore, the shortened protocol enables all running calculations on modest computing 

resources (e.g. on a desktop with one CPU) in a reasonable time. For the largest system (SFC-

1, containing 54.9k atoms), US takes on average 23 hours to finish on one 2.6 GHz CPU. In 

general, the more efficient assay requires less than 1 % of the computer resources needed for 

the original assay (Table 3.1). 

The efficient assay we have developed can be used to study specific mechanistic details 

of carbapenem hydrolysis. Glu166, the general base in deacylation, has two chemically 

inequivalent carboxylate oxygens: one that forms a hydrogen bond with Asn170 (OΕ1), and 

one that interacts with Lys73 (OΕ2) (Figure 3.1C). The DW hydrogen bonds with OΕ2 in all 

MD simulations, and the US calculations have been performed using this oxygen as the proton 

acceptor. However, proton transfer to OΕ1 might also be relevant for deacylation. We thus 

used our new, efficient protocol to compare the two possible proton acceptors. When forcing 

the proton transfer to OΕ1, the Δ‡Gcalc values increase by >3 kcal/mol for the carbapenemases 

(Table S3, Section 3.6). Significant increases also incur for the carbapenem-inhibited enzymes 

(especially if the barrier with proton transfer to OΕ2 was not very high already). This consistent 

increase implies that the most probable proton transfer pathway in carbapenem hydrolysis is 

via Glu166:OΕ2 that interacts with Lys73, thus indicating an important role for this residue. 

Preference for a certain carboxylate oxygen as the general base has been observed also 

in other enzymes.204 For the β-lactamases, DW is primarily hydrogen bonded with OE2 in the 

acylenzyme MD simulations and this interaction is thus present in all starting structures for US 

calculations. The preference for OE2 acting as the base can be explained by inspecting the 

additional hydrogen bonds formed by the Lys73 and Asn170 side chains. Lys73 interacts with 

Glu166:OΕ2 as well as Asn132, Ser70, meropenem and the Ser130 backbone carbonyl oxygen, 

whilst Asn170 interacts only with Glu166:OΕ1 and the backbone carbonyl of Leu167. Upon a 

proton transfer, other residues can balance the weakening interaction of Lys73 with 

Glu166:OΕ2, whereas Asn170 has fewer other interactions for such stabilization. 

 

 

 



 

36 
 

3.5 Conclusions 
 

In conclusion, the carbapenemase activity of eight class A β-lactamases was assayed in 

silico using QM/MM reaction simulations with an optimized, efficient computational protocol. 

Assays based on computational simulation are increasingly common and can complement 

traditional experimental assays.98  Assay efficiency is obtained here by using the semi-

empirical DFTB2 method and by limiting both conformational space and time sampled. 

Distinction between four enzymes known to efficiently hydrolyze carbapenems, and four 

enzymes that do not, can be made within a day with very modest computer resources (e.g. one 

CPU per enzyme). Additionally, this efficient assay can be used to inspect mechanistic aspects 

of carbapenem inactivation; exemplified here by comparing the Δ‡Gcalc values of the first 

deacylation step for two possible proton transfer pathways. The short computational assay time 

with moderate computer resources now makes this assay attractive for more rapid in silico 

activity screening of different class A β-lactamase – antibiotic combinations. This will assist 

assessment and understanding of resistance to β-lactam drugs as conferred by β-lactamases, 

e.g. the effect of acquired point mutations on drug hydrolysis. As access to genome sequences 

of pathogen isolates becomes more routine, such information could be used in guiding 

prescription decisions. Furthermore, elucidation of mechanistic details of acyl-enzyme 

hydrolysis, as identified in simulations, may guide the development of new β-lactams or β-

lactamase inhibitors designed to evade the activity of broad-spectrum and carbapenem-

hydrolyzing -lactamases. 

 

3.6 Computational details 
 

This section comprises the Supporting Information data for the above publication. 

 

System set-up 

 

Acylenzyme structures were built on available crystal structures (Table S1). For SHV-

1 and BlaC, acylenzyme structure with meropenem was available, for SFC-1 the Glu166Ala 

structure was used (mutated back to wild-type enzyme based on SFC-1 Ser70Ala and 

meropenem structure, PDB: 4EUZ). TEM-1 with meropenem was generated by minimizing 
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the crystal structure with imipenem, and then changing the substrate to meropenem. 

Acylenzymes for CTX-M-16, NMC-A, KPC-2, and SME-1 were built by aligning the available 

apoenzyme structures with the SFC-1 and meropenem complex, and by combining the 

coordinates of the antibiotic substrate with the enzyme. 

 

Table S1. Accession codes for acylenzyme structures used in model generation. 

Enzyme PDB code 
KPC-2 2OV5 

SFC-1 (E166A) 4EV4 

NMC-A 1BUE 

SME-1 1DY6 

CTX-M-16 1YLW 

SHV-1 2ZD8 

BlaC 3DWZ 

TEM-1 1BT5 

 

Protonation states were calculated using the propKA3.1 program, and hydrogen atoms 

like implemented in tLeap. All crystallogprahic water molecules were deleted from the 

structures excluding the deacylating water, and the structures were solvated in a 10 Å box of 

TIP4P-Ew water. Existing charges were neutralized by adding sodium ions. 

 

Computational methods 

 

Systems were minimized, heated and equilibrated as described in the ESI of ref. 190. 

 

QM/MM Free energy calculations 

 

All QM/MM umbrella sampling (US) calculations were done using two reaction 

coordinates: one for describing the nucleophilic attack (NA, d[DW:O - ACA:C]), and one for 

describing the proton transfer (PT, d[Glu:O-DW:H] - d[DW:O-DW:H]).190 Reaction 

coordinate values for the standard MFEP (in Å): 

PT 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

NA 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.2 2.1 
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PT 0.1 0.0 -0.1 -0.2 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.8 

NA 2.1 2.0 1.9 1.8 1.7 1.7 1.7 1.6 1.6 1.5 1.5 1.4 

 

where PT and NA describe the values for the proton transfer and nucleophilic attack reaction 

coordinates, respectively. The range of both RCs was kept same as in ref. 190.   

 

 Outputs from US calculations were analysed using the weighted histogram analysis 

(WHAM)186 program using 17 bins for PT and 22 bins for NA reaction coordinates. The 

convergence criterium was set to 0.0000000000001. This analysis was done separately for all 

three starting structures, and lastly by combining all three results into one WHAM calculation 

for calculating the overall reaction barrier (as opposed to taking the average of three snapshots). 

However, especially with shorter sampling times WHAM analysis was prone to give false 

minima on the (partial) free energy surface, due to an error in the WHAM code used. This was 

resolved by locating these false minima and deleting the corresponding coordinate lines from 

the input files. Usually the false minima were due to only few coordinates, and in each case 

less than 1 % of data was removed. This problem can be overcome by utilizing a different 

analysis method or by fixing the WHAM code. 

 

The complete efficient assay 

 

The complete efficient assay follows these steps: 

1. Prepare the starting structures for all studied acylenzymes either from crystal structures 

or based on analogous crystal structures (as described above). Solvate all proteins in a 

periodic box of TIP4P-Ew water, neutralize charges with counterions. 

2. Minimize the structures briefly (100 of steepest descent followed by 900 steps of 

conjugate gradient). 

3. Heat the systems from 50 K to 300 K in 50 ps using Langevin dynamics. 

4. Equilibrate the systems in 300 K for 50 ps using unrestrained QM/MM MD 

(DFTB2/ff12SB), afterwards perform 300 ps of further QM/MM MD to generate 

starting structures for US. 
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5. Utilize QM/MM US for calculating deacylation barriers for all β-lactamases. Three 

different variations are used in the manuscript as described below: 

a. The original assay: Do US in every window for 20 ps, calculate the whole 

surface (374 windows). 

b. 20 ps along the standard MFEP: Do US in the 29 windows listed above starting 

from the reactant structure, use the restart file from the previous window as a 

starting point for the next one. Sample 20 ps in each window. 

c. 2 ps along the standard MFEP (the efficient assay): The same procedure as 

described in b), except the sampling time is shortened from 20 ps to 2 ps in each 

US window. Repeat a), b), or c) three times using different starting structures to 

test the convergence of calculated deacylation barriers. 

6. Analyse the results of each individual run using WHAM. For the overall barrier, the 

three US calculations were combined into one WHAM run. 

 

WHAM analysis of shorter sampling 

 

To first inspect to possibility of reducing sampling time in each US window, US results 

for 20 ps sampling along the MFEP were inspected by including only the first 10/5/2/1/0.5 ps 

in the WHAM analysis. For all three snapshots, the desired amount of sampling was included 

for each US window, which was followed by the same WHAM analysis as described earlier 

(where the same US windows for three different snapshots were combined into one). Results 

for this analysis are presented in Table S2. 

Table S2. Δ‡Gcalc values calculated using WHAM, where results from three different calculations are 

combined into one WHAM analysis. 

 Δ‡Gcalc (20 ps) Δ‡Gcalc (10 ps) Δ‡Gcalc (5 ps) Δ‡Gcalc (2 ps) Δ‡Gcalc (1 ps) Δ‡Gcalc (0.5 ps) 

KPC-2 8.5 8.9 8.9 9.8 10.2 10.5 

SFC-1 10.9 11.0 10.3 10.8 11.3 12.8 

SME-1 9.5 7.7 7.6 7.6 8.1 8.4 

NMC-A 8.8 8.6 8.9 9.0 9.6 10.5 

SHV-1 16.1 16.5 16.5 16.8 16.7 17.5 

TEM-1 16.3 16.8 16.9 17.2 17.9 18.6 

BlaC 15.5 17.0 17.0 17.9 17.9 18.0 

CTX-M-16 16.8 17.1 17.2 17.6 17.9 17.9 

 

Alternative proton transfer pathways 
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The two possible proton transfer pathways were inspected using the efficient protocol. 

Glu166 acting as the general base has two chemically inequivalent oxygens, which can both 

act as the proton acceptor. As the DW hydrogen bonds with Glu166:OΕ2 in MD simulations, 

it was used as the proton acceptor in all US calculations. However, technically the proton 

acceptor can also be Glu166: OΕ1. A comparison of activation barriers for the two different 

proton transfers are presented in Table S3. Using OE1 as the proton acceptor increases Δ‡Gcalc 

values for all enzymes 2.0-9.7 kcal/mol: new Δ‡Gcalc values for carbapenemases are 2.0 – 7.2 

kcal/mol higher, and for non-carbapenemases 3.0-9.7 kcal/mol. This suggests that Glu166: 

OΕ2 should be used as the proton acceptor when modelling deacylation in class A β-

lactamases, and that the hydrogen bonding interaction with Lys73 is important for efficient 

catalysis. 

 

Table S3. Δ‡Gcalc values for the two possible proton transfer pathways (with 2 ps sampling). All energies 

in kcal/mol, standard deviations in parenthesis. 

 Δ‡Gcalc (OΕ2) Δ‡Gcalc (OΕ1) Difference 

KPC-2 9.1 (1.1) 14.5 (2.2) +5.4 

SFC-1 9.9 (1.3) 17.1 (1.8) +7.2 

SME-1 9.5 (1.4) 15.2 (2.6) +5.7 

NMC-A 10.4 (0.7) 13.8 (2.1) +3.4 

SHV-1 19.5 (0.5) 29.2 (1.2) +9.7 

TEM-1 23.6 (1.4) 26.6 (1.6) +3.0 

BlaC 24.7 (1.1) 26.7 (2.6) +2.0 

CTX-M-16 17.2 (1.6) 21.1 (0.4) +3.9 

  



 

41 
 

Chapter 4 - Antimicrobial resistance conferred by OXA-48 β-

lactamases: towards a detailed mechanistic understanding 

 

The work in this chapter comprises a minireview “Antimicrobial resistance conferred 

by OXA-48 β-lactamases: towards a detailed mechanistic understanding” published in 

Antimicrobial Agents and Chemotherapy.205 The original draft of the review was written by 

myself, and my co-authors Marc van der Kamp and James Spencer provided comments, 

additional ideas, and text editing at later stages. 

 

4.1 Abstract 

 

OXA-48-type β-lactamases are now routinely encountered in bacterial infections 

caused by carbapenem-resistant Enterobacterales. These enzymes are of high and growing 

clinical significance due to the importance of carbapenems in treatment of healthcare-

associated infections by Gram-negative bacteria, the wide and increasing dissemination of 

OXA-48 enzymes on plasmids, and the challenges posed by their detection. OXA-48 confers 

resistance to penicillin (which is efficiently hydrolyzed) and carbapenem antibiotics (more 

slowly broken down). In addition to the parent enzyme, a growing array of variants of OXA-

48 is now emerging. The spectrum of activity of these variants varies, with some hydrolyzing 

expanded-spectrum oxyimino-cephalosporins. The growth in importance and diversity of the 

OXA-48 group has motivated increasing numbers of studies that aim to elucidate the 

relationship between structure and specificity and establish the mechanistic basis for β-lactam 

turnover in this enzyme family. In this review we collate recently published structural, kinetic, 

and mechanistic information on the interactions between clinically relevant β-lactam 

antibiotics and inhibitors with OXA-48 β-lactamases. Collectively, these studies are starting to 

form a detailed picture of the underlying bases for the differences in β-lactam specificity 

between OXA-48 variants, and the consequent differences in resistance phenotype. We focus 

specifically on aspects of carbapenemase and cephalosporinase activities of OXA-48 β-

lactamases and discuss β-lactamase inhibitor development in this context. Throughout the 

review, we also outline key open research questions for future investigation. 
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4.2 Introduction 
 

Antimicrobial resistance has been recognized globally as one of the most serious threats 

to modern medicine. According to the 2014 UK Review on Antimicrobial Resistance, 

antibiotic resistant bacterial infections are predicted to result in 10 million deaths annually by 

2050 if no preventative measures are taken.206 β-lactams are the single most prescribed 

antibiotic class, accounting for over half of all antibiotic prescriptions in human patients,18 thus 

the consequences of widespread resistance to these agents are especially severe. Resistance 

against carbapenems is a particular concern, as these drugs are the most recently introduced 

and potent class of b-lactams; they are for example favored treatments for opportunistic 

infections of secondary care patients by Gram-negative bacteria resistant to other agents.24 

Furthermore, the continuing weakness of the antibacterial pipeline means that alternative 

treatments are limited.207 This existing threat is highlighted by the Centers for Disease Control 

and Prevention, who classified carbapenem-resistant Enterobacterales as an urgent antibiotic 

resistance threat in the United States in 2019.6 

Since the initial introduction of β-lactam antibiotics in the 1940s, bacteria have 

developed many different mechanisms to bypass their effect; these include changes in 

expression levels of porins and efflux pumps, target modification through gene acquisition or 

mutation, and enzymatic drug modification.48 In Gram-negative bacteria, β-lactamase enzymes 

are the main resistance mechanism against β-lactam antibiotics. β-Lactamases modify the 

antibiotic by hydrolytic cleavage of the β-lactam amide bond;49 as β-lactams work by binding 

to penicillin-binding proteins (PBPs) and disrupting bacterial cell wall biosynthesis,50, 208 

degrading the β-lactam pharmacophore renders these antibiotics inactive. Over 4500 β-

lactamases have now been identified (see www.bldb.eu for details),62 with the continuing 

explosion of genomic data driving further discovery of new enzymes from both environmental 

and clinical sources. 

According to the Ambler classification, β-lactamases are divided into four groups: 

classes A, C, and D are serine β-lactamases (SBLs), which utilize an active site serine 

nucleophile to hydrolyze β-lactams via a covalent acylenzyme intermediate, while class B 

metallo-β-lactamases (MBLs) utilize zinc cofactors to activate a water molecule to undertake 

antibiotic inactivation.49 Within SBLs, class D β-lactamases form a structurally diverse group 

of enzymes, which were first identified as having enhanced hydrolytic activity towards 

semisynthetic penicillins such as oxacillin, and reduced activity towards penicillin (rates 

http://www.bldb.eu/
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compared against class A β-lactamases).75, 209 Subsequently, they were named as oxacillinases, 

or OXAs for short. OXA β-lactamases include five recognized subgroups of carbapenem-

hydrolyzing enzymes: four of these, namely OXA-23-like, OXA-24/40-like, OXA-51-like, and 

OXA-58-like β-lactamases, are largely restricted to Acinetobacter baumannii, while OXA-48-

like β-lactamases are most commonly encountered in the Enterobacterales.32, 206, 210-216 

Additionally, some OXA enzymes (OXA-2, OXA-10) classified as narrow-spectrum β-

lactamases have demonstrated comparable rates of carbapenem hydrolysis to recognized 

carbapenem-hydrolyzing OXAs, which could imply that most OXAs can (to some extent) be 

considered carbapenemases.217 OXA-48 β-lactamases are now among the most common 

carbapenemases218 and are often co-produced with other β-lactamases (MBLs or ESBLs).219 

For an in-depth overview of the global epidemiology of β-lactamase, specifically OXA-48-

type, producing pathogens we refer the reader to recent reviews by Bush and Bradford220 and 

Pitout et al.221 

 

Figure 4.1 Structure of OXA-48. Cartoon shows unliganded OXA-48 (PDB ID 6P96)71 with selected 

elements of the structure highlighted. The three conserved motifs within class D β-lactamases are shown 

in blue shades, the Ω-loop in yellow, and the β5-β6-loop in orange. Selected OXA-48 variants are listed 

according to their primary hydrolysis phenotype, and their amino acid substitutions or deletions 

highlighted in the corresponding color in the amino acid sequence. Carbapenemase = efficient 

imipenem hydrolysis, some activity towards other carbapenem substrates. ESBL-like = only weak 

activity against all carbapenems, activity against expanded-spectrum oxyimino cephalosporins. 
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Even though OXA-48 β-lactamases are not closely related in sequence to other class D 

β-lactamases (less than 50 % amino acid identity), their sequences include three active site 

motifs that are broadly conserved within class D enzymes.222 Motif I (SxxK) includes the 

nucleophilic Ser70 and the catalytically important Lys73, which needs to be carboxylated for 

efficient hydrolysis to take place (Figure 4.1).222, 223 Motifs II and III are in the vicinity of these 

key catalytic residues and include residues Ser118-Val119-Val120 and Lys208-Thr209-

Gly210, respectively, in OXA-48-like enzymes. Additionally, the Ω-loop (residues 143-165) 

and β5-β6-loop (residues 213-218) bordering the active site seem to be important determinants 

of OXA-48 activity, as discussed below. According to the β-lactamase database, at least 15 

plasmid-encoded OXA-48 β-lactamases have been identified and validated (with further 

variants chromosomally encoded mainly in different Shewanella species224, 225). These variants 

differ from wild-type OXA-48 by certain amino acid substitutions or deletions. Selected key 

family members along with their hydrolytic profiles are listed in Figure 4.1. 

As mentioned above, OXA-48 enzymes degrade a variety of β-lactam antibiotics, 

including ampicillin and oxacillin (more efficiently than e.g. temocillin),222, 226  and perhaps 

most notably the “last-resort antibiotics” carbapenems (Figure 4.2).227 However, there are large 

phenotypic variations within the enzyme family. Compared to the parent OXA-48 enzyme, 

some variants have enhanced carbapenemase activity (like OXA-162228 and OXA-181229), 

while others have expanded their hydrolysis profile to better accommodate expanded-spectrum 

oxyimino cephalosporins (such as OXA-163230 and OXA-405231). OXA-48 carbapenemases 

tend to favour imipenem over other carbapenems and display only low-level meropenem and 

ertapenem hydrolysis (Table 4.1). Weak carbapenem hydrolysis can complicate diagnosis and 

treatment of bacterial infections involving OXA-48 producers, as their activity can be below 

the detection limit of clinical tests but still sufficient to confer resistance, especially in strains 

with reduced antibiotic permeability.232 OXA-48 itself shows varying activity against 

cephalosporins; e.g. cefalotin and cefotaxime are inactivated readily, whereas minimal (or no) 

activity is measured against ceftazidime and cefepime. 
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Table 4.1. Kinetic parameters for OXA-48, OXA-163, OXA-181, and OXA-232 with different β-lactam 

antibiotics. Presented values taken from ref. 226, and more comprehensive data of enzyme kinetics is 

provided as part of the SI. 

 OXA-48a OXA-163 OXA-181 OXA-232 

 kcat (s–1) Km (μM) kcat (s–1) Km (μM) kcat (s–1) Km (μM) kcat (s–1) Km (μM) 

Imipenem 5 13 0.03 520 7.5 13 0.2 9 

Meropenem 0.07 10 >0.1 >2000 0.1 70 0.03 100 

Ertapenem 0.13 100 0.05 130 0.2 100 0.04 110 

Doripenem -b -b NH NH 0.04 55 0.005 10 

Ceftazidime NH NH 8 >1000 - - >0.6 >1000 

Cefotaxime >9 >900 10 45 >62 >1000 >6.5 >1000 

Cefalotin 44 195 3 10 13 250 13 125 

Benzylpenicillin -c -c 23 13 444 90 125 60 

Ampicillin 955 400 23 315 218 170 132 220 

Temocillin 0.3 45 NH NH 0.3 60 0.03 60 

Oxacillin 130 95 34 90 90 80 156 130 

a Values for OXA-48 in ref. 226 are from ref. 222. 

b Data from ref. 228 do not show doripenem hydrolysis by OXA-48, but kinetic data from ref. 217 indicate weak 

doripenem hydrolysis. 

c Kinetic data from ref. 227 indicate that benzylpenicillin is hydrolysed by OXA-48. 
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Figure 4.2. β-lactam antibiotics as substrates for OXA-48. Examples of penicillin, cephalosporin, and 

carbapenem antibiotics (left, middle, and right respectively), which are generally ineffective against 

OXA-48 producers (red box), and which can be used to treat OXA-48-producing infections (green box). 

Notably, activity profiles vary within the OXA-48 family, as e.g. the ESBL-like OXA-163 has acquired 

activity against expanded-spectrum oxyimino cephalosporins (ceftazidime). 

 

4.3 General hydrolysis mechanism 
 

In SBLs, the overall hydrolysis reaction consists of two parts, acylation followed by 

deacylation (Figure 4.3).49 After initial formation of the non-covalent Michaelis complex, the 

β-lactamase is acylated by the antibiotic resulting in covalent bond formation between Ser70 

and the carbonyl carbon of the β-lactam ring. This covalent acylenzyme structure is hydrolyzed 

in the deacylation step, where an active site water molecule (the so-called deacylating water) 

acts as the nucleophile to attack the acylenzyme carbonyl. Both acylation and deacylation 

involve formation of short-lived tetrahedral intermediate (TI) structures. For OXA-48-like β-

lactamases, deacylation was shown to be rate-limiting for carbapenem breakdown.233 
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Figure 4.3. Hydrolysis mechanism of OXA-48 β-lactamases. Starting from the formation of a Michaelis 

complex for a general carbapenem substrate (1), the substrate is acylated (tetrahedral intermediate 

formation in 1 → 2), which yields a covalent acylenzyme structure (3). The bound antibiotic is 

subsequently deacylated (4 & tetrahedral deacylation intermediate 5) resulting in the final hydrolysis 

product (6). 

As depicted in Figure 4.3, both acylation and deacylation involve a negatively charged 

general base. For class A β-lactamases, this residue is largely accepted to be Glu166,89, 201 but 

for OXA enzymes, the general base is a carboxylated lysine (Lys73 in OXA-48 numbering).222, 

234 This post-translational carboxylation is needed for efficient hydrolysis to take place, as 

mutating Lys73 results in enzymes incapable of substrate turnover.223 The degree of 

carboxylation increases with pH, and preparation of catalytically competent enzymes can be 

ensured by adding a suitable CO2 source for carboxylation (bicarbonate), even though 

atmospheric CO2 may also be enough.235 This carboxylation is reversible, and it has been 

monitored with 19F NMR spectroscopy in the presence of different inhibitors to understand 

how (de)carboxylation contributes to enzyme inhibition.236 The results indicate that Lys73 is 

carboxylated to a lesser extent with some covalently-bound inhibitors (like avibactam), which 

may contribute to more efficient inhibition. 
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4.4 Carbapenemase activity 
 

 

Figure 4.4. Divergent active sites of carbapenem-hydrolyzing OXA enzymes. Active sites of OXA-48 

(PDB ID 6P96, left)71 and OXA-23 (PDB ID 4K0X, right)237 highlight the missing hydrophobic bridge 

in OXA-48 with respect to other class D carbapenemases. In OXA-23, the hydrophobic bridge is formed 

by residues Phe110 and Met221, while the corresponding residues in OXA-48 are Ile102 and Thr213, 

which leave the active site more open. Additionally, residues forming the so-called “deacylating water 

channel” are also highlighted in sticks (V120 and L158 for OXA-48, V128 and L166 for OXA-23). 

 

OXA-48 enzymes are carbapenemases or, more specifically, imipenemases with weak 

turnover rates for other carbapenems such as meropenem and ertapenem (Table 4.1). Based on 

the structural information originally derived from other carbapenem-hydrolyzing OXAs,238 

carbapenemase activity in class D -lactamases was hypothesized to originate from a 

hydrophobic bridge spanning the active site (Phe110 and Met221 for OXA-23, Tyr112 and 

Met223 for OXA-24). However, structural comparisons between OXA-48 and other OXA 

carbapenemases show OXA-48 to be lacking this hydrophobic bridge,222 which implies that 

the OXA-48 group has evolutionally diverged from other class D β-lactamases and acquired 

carbapenemase activity by other means (Figure 4.4). Fortunately, within the last years a 

plethora of new crystal structures of OXA-48s complexed with carbapenems have been 

released, and new mechanistic knowledge has been derived from them. 
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Figure 4.5. Carbapenem, cephalosporin, and diazabicyclooctanone (DBO) scaffolds with atom 

numbering. The 6α-hydroxyethyl group (C6 substituent) in the carbapenem scaffold is shown in red. 

 

The first carbapenem acylenzyme structure of OXA-48 (with imipenem) was released 

in 2018 (PDB ID 5QB4) alongside multiple structures with small inhibitor fragments.239 From 

2019 onward, further acylenzyme structures have been deposited with imipenem (PDB IDs 

6P97, 6PTU, and 7KH9),71, 233, 240 meropenem (PDB IDs 6P98, 6PT1, and 7KHQ),71, 233, 240 

doripenem (PDB IDs 6P9C and 6PXX),71, 241 ertapenem (PDB ID 6P99),71 and faropenem 

(PDB ID 6PSG)240. Additionally, two acylenzyme structures of inactivated OXA-163 (K73A) 

with imipenem and meropenem are available (PDB IDs 7KHZ and 7KHY, respectively)233. 

Common features in these structures include a covalent bond between Ser70 and the substrate 

and hydrogen bonds between Thr209/Arg250 and the carbapenem C3 carboxylate (Figure 4.5). 

The carbonyl oxygen of the cleaved β-lactam ring is positioned in the oxyanion hole formed 

by the backbone amides of Ser70 and Tyr211, active site interactions in selected crystallized 

carbapenem acylenzyme complexes are presented in Figures 4.6 and 4.7. Carbapenem “tail” 

groups (C2 substituents) are not anchored by any strong interactions, which implies that they 

are dynamic and do not need to adopt any one specific orientation. This likely disorder was 

also inspected by Papp-Wallace et al., who further refined previously deposited imipenem and 

doripenem complexes (PDB IDs 5QB4 and 6P9C, respectively).241 Their analysis of the re-

refined structures supports the presence of a covalent bond between Ser70 and the antibiotic, 

but observation of weak or absent density for the pyrroline ring and C2 tail groups indicates 

disorder (i.e. multiple conformations) for these regions. In addition to previously mentioned 

covalent complexes, a structure of OXA-48 with hydrolyzed imipenem has also been published 

(PDB ID 6PK0).240 Non-covalently bonded hydrolyzed imipenem forms similar interactions 

with Thr209 and Arg250 to those observed in the acylenzyme, and the newly formed C7 
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carboxylate group is hydrogen bonded to Ser70, Lys73, and Tyr211 (Figure 4.6). Although the 

deacylating water is not present in any acylenzyme structure, the orientation of hydrolyzed 

imipenem (specifically coordination of the C7 carboxylate to Ser70 and Lys73) indicates the 

possible position of the deacylating water molecule prior to deacylation. 

 

Figure 4.6. Carbapenem complexes of OXA-48. Top left: Imipenem acylenzyme (PDB ID 6P97)71, 

interactions with active site residues highlighted. Imipenem pyrroline ring modelled as the Δ2 tautomer. 

Top middle: Imipenem acylenzyme (PDB ID 6PTU)240, with the pyrroline ring as the (R)-Δ1 tautomer. 

Top right: Hydrolyzed imipenem (PDB ID 6PK0)240, with the pyrroline ring as the (S)-Δ1 tautomer. 

Bottom left: Doripenem acylenzyme (PDB ID 6P9C)71, with the pyrroline ring as the Δ2 tautomer. 

Bottom right: Doripenem acylenzyme (PDB ID 6PXX)241, with the pyrroline ring as the (R)-Δ1 tautomer. 

 

In OXA-48 enzymes the basis for carbapenemase activity has been attributed to the 

presence of the β5-β6 loop bordering the active site, as for example engineering this loop from 

OXA-48 into the non-carbapenemase OXA-10 changes its phenotype to hydrolyze imipenem 

at higher rates than native OXA-48.242 The specific role of Arg214 (in the β5-β6 loop) was 

studied by comparing hydrolysis kinetics and crystal structures of OXA-181 and OXA-232, 

the difference between these two variants being residue 214 (Arg in OXA-181, Ser in OXA-
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232).243 OXA-181 is a slightly better carbapenemase than OXA-48,229 whilst OXA-232 has 

decreased carbapenem hydrolysis rates but has also acquired weak activity against ceftazidime 

(Table 4.1).244 The authors suggest that the presence of Arg214 is crucial for carbapenem 

hydrolysis by OXA-48, as it aids in the formation of a productive binding pose for imipenem. 

Replacing this arginine with a negatively charged residue (Glu) results in poor affinity, which 

was reasoned to be due to unproductive binding pose of imipenem (both hypotheses based on 

molecular docking). Similar results were found by Dabos et al., who substituted the β5-β6 loop 

of OXA-18 into OXA-48.245 Steady-state kinetics of the OXA-48loop18 variant showed 

decreased ampicillin and imipenem hydrolysis and elevated ceftazidime hydrolysis. The 

importance of the β5-β6 loop for the hydrolysis profile indicated by these studies is further 

emphasized by the decrease in imipenem hydrolysis and increase in ceftazidime hydrolysis in 

OXA-163 (Table 4.1),226, 230 in which the loop is partially deleted (Figure 4.1). Pre-steady state 

kinetics indicate that the loss of efficient imipenemase activity in OXA-163 is due to decreased 

deacylation rates.233 However, even though the β5-β6 loop is evidently important for 

carbapenem hydrolysis, the specific origin of imipenemase activity in OXA-48 enzymes (e.g. 

over meropenem hydrolysis) remains to be investigated. The presence of the 1β-methyl group 

e.g. in meropenem and doripenem (instead of the 1β-proton in imipenem) has been suggested 

to impair hydrolysis, as this methyl group might prevent deacylation by disfavoring rotation of 

the carbapenem 6α-hydroxyethyl moiety (attached to C6, Figure 4.5), which would in turn 

prohibit the nucleophilic attack.240 In all OXA-48/carbapenem crystal structures (excluding 

5QB4), the 6α-hydroxyethyl sidechain adopts a similar orientation where its methyl group 

points towards Leu158 and Arg214 and values for the C7-C6-C-O dihedral angle are between 

147°-192° (Figure 4.7). However, for hydrolyzed imipenem this orientation has changed, and 

the methyl group points out of the active site towards bulk solvent (with the same dihedral 

angle being between 275°-292° depending on the protein chain). As the 6α-hydroxyethyl group 

is likely able to rotate in the acylenzyme, verifying the extent of its influence on e.g. positioning 

and movement of the deacylating water remains as an important aspect for future mechanistic 

studies. 
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Figure 4.7. Further carbapenem complexes of OXA-48. Acylenzyme structures with meropenem (left, 

PDB ID 6P98)71 and faropenem (right, PDB ID 6PSG)240. The pyrroline ring is present as the Δ2 

tautomer in both structures. 

The pyrroline ring of carbapenem acylenzymes can exist as two different tautomers: Δ2
 

or Δ1, the latter of which also has two stereoisomers (R)-Δ1
 and (S)-Δ1

 (Figure 4.8). For class 

A β-lactamases, the Δ2
 tautomer has been proposed to be the catalytically competent form,246, 

247 and the Δ1 to not deacylate efficiently (potentially due to displacement of the deacylating 

water from the active site248 or loss of stabilizing interactions with the oxyanion hole249). The 

same has been suggested for class D enzymes when comparing the doripenem complex of 

carbapenem-hydrolyzing OXA-24 against carbapenem-inhibited OXA-1.250 The tautomeric 

form can be identified in crystal structures with sufficiently strong electron density for the 

ligand, as the pyrroline ring C2 – sulphur bond present in all carbapenems is planar (sp2 

hybridized) in the case of the Δ2, and sp3 hybridized for the Δ1 forms. For previous class D β-

lactamases complexed with carbapenems, all three tautomers have been observed.250, 251 In the 

case of OXA-48, the Δ2
 form was assigned in the first deposited imipenem complex,239 and the 

same tautomer was subsequently observed for the meropenem, imipenem, doripenem, and 

ertapenem acylenzymes published by C. A. Smith et al. (structures prepared by soaking crystals 

of apo-OXA-48 with 50 mM carbapenem solution over time scales between 30 seconds and 10 

minutes).71 The same authors inspected the possibility of accommodating ligands in the active 

site in the Δ1 form by superimposition of their structures onto OXA-23 with (R)-Δ1
 and (S)-Δ1 

ligands. They suggest that the formation of the (S)-Δ1
 tautomer of meropenem is feasible, while 
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the (R)-Δ1
 conformer would clash sterically with Tyr211. Shortly after the publication of these 

carbapenem acylenzymes, a new structure of deacylation-deficient OXA-48 (Lys73Ala) in 

complex with doripenem was released (also prepared using crystal soaking).241 The doripenem 

acylenzyme was observed as both (R)-Δ1 and (S)-Δ1
 tautomers (Figure 4.6), and only a partial 

salt bridge with Arg250 is formed, which most likely prevents any severe steric clashes 

between doripenem and Tyr211 for either tautomer. In further structures deposited by Akhtar 

et al., different carbapenems have different tautomers present: the meropenem acylenzyme is 

in the Δ2 form (as depicted for another crystal structure in Figure 4.7), imipenem and faropenem 

are found as (R)-Δ1 (Figures 4.6 and 4.7), and the imipenem hydrolysis product as the (S)-Δ1 

tautomer (Figure 4.6, structures prepared by soaking OXA-48 crystal with a solution containing 

the ligand for 30 minutes, or for the OXA-48 imipenem product complex for 2 hours).240 

Characterization of the enzyme-hydrolyzed products by NMR spectroscopy implies that for 

OXA-48 (as well as all other tested SBLs and MBLs) the preferred hydrolysis product would 

be either in the Δ2
 or (R)-Δ1  form, but deducing the exact enzyme-catalyzed reaction product 

was not feasible due to the ability of released products to undergo tautomerization in 

solution.252 

 

Figure 4.8. Mechanism for carbapenem side product formation by OXA-48. The pyrroline ring in 

carbapenem substrates can undergo Δ2
→ Δ1 tautomerization (7 → 8) post-acylation. In addition to the 

general hydrolysis mechanism (7 → 10), 1β-methyl carbapenems such as meropenem can form a 1β-

lactone product (8 → 9), which has been suggested to be mainly in the Δ1 form.253 
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In addition to the generic hydrolysis mechanism of serine β-lactamases, OXA-48 

enzymes were shown to possess an additional mechanism for carbapenem breakdown that 

involves the formation of a β-lactone product, as illustrated in Figure 4.8.253, 254 Starting from 

the acylenzyme, the β-lactone is suggested to form by intramolecular cyclization, where the 

hydroxyl group of the carbapenem 6α-hydroxyethyl sidechain donates a proton to the 

carboxylated lysine (Lys73) and attacks the same electrophilic C7 carbon as in deacylation. 

This results in formation of a four-membered lactone ring, which is structurally close to the 

original β-lactam ring and capable of reacting further to give (unidentified) reaction products. 

Interestingly, β-lactone formation by OXA-48 appears carbapenem-dependent, as it was 

observed only for 1β-methyl carbapenems (such as meropenem, doripenem, and ertapenem), 

but not for carbapenems with a 1β-hydrogen (imipenem and biapenem). The reason for this 

dependence on the presence of the 1β-substituent was studied by simulating the dynamics of 

OXA-1 (one 100ns simulation), and suggested to be due to more favorable conformational 

sampling of the 6α-hydroxyethyl sidechain: with a 1β-methyl group, bound carbapenems 

formed closer interactions with the carboxylated lysine, which would aid in proton transfer 

from the hydroxyl group to the lysine carboxylate oxygen.253 More recently, however, lactone 

formation was shown to also depend upon the structure of the active site: OXA-519 

(Val120Leu variant of OXA-48) demonstrated both an increase in the proportion of the lactone 

product as well as generated lactones from both of 1β-proton and 1β-methyl carbapenems.254 

 

4.5 Cephalosporinase activity 
 

While OXA-48 is considered of particular importance as a result of its carbapenemase 

activity, there are variations in hydrolytic phenotypes between different OXA-48 variants. 

OXA-48 itself does hydrolyze some cephalosporin antibiotics, such as cefalotin and 

cefotaxime, but shows no significant hydrolysis of the expanded-spectrum oxyimino 

cephalosporin ceftazidime or the fourth-generation cephalosporin cefepime.226 However, 

variants such as OXA-163 and OXA-405 (that contain partial deletions in the β5-β6 loop) are 

capable of hydrolyzing ceftazidime, at the expense of efficient imipenem breakdown (Figure 

4.1, Table 4.1).230, 231 Interestingly, their hydrolysis rates for other carbapenems (such as 

meropenem) seem to be on the same low level as for OXA-48. 

In 2019, the structure of an OXA-48 (Pro68Ala) ceftazidime acylenzyme was deposited 

(PDB ID 6Q5F, Figure 4.9);255 this single point mutant was obtained by passage of a laboratory 
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OXA-48 producer strain against increasing concentrations of ceftazidime. Comparison of this 

OXA-48 structure with previously deposited OXA/ceftazidime complexes (OXA-225 and 

OXA-160, PDB IDs 4X55 and 4X56, respectively)256 shows that ceftazidime exhibits a 

different binding pose in OXA-48 than observed in the OXA-23 or OXA-24/40 variants, the 

difference being in the orientation of the C7 substituents (carboxypropyl oxyimino and thiazole 

groups, Figure 4.5). Another distinct feature in the OXA-48/ceftazidime structure was the lack 

of interpretable electron density for the Ω-loop (including residues Leu158 and Asp159, Figure 

4.1). The authors suggested ceftazidime binding to displace Arg214, which in turn results in a 

distorted (and thus flexible) Ω-loop; the Pro68Ala mutation might then contribute to Ω-loop 

distortion by increasing flexibility of the active site. Molecular dynamics simulations and 

QM/MM reaction modelling of ceftazidime deacylation by OXA-48, OXA-163, and OXA-181 

suggest that in addition to the β5-β6 loop and Arg214, Leu158 could also play an important 

role in determining the efficiency of ceftazidime turnover.257 The orientation of Leu158 was 

observed to correlate with active site hydration, and an increase in water molecules in the active 

site was observed to impair deacylation efficiency in OXA-48. Additionally, the study 

proposed that distorting the Ω-loop, as is implied by the absence of electron density for this 

region in the OXA-48 ceftazidime crystal structure, would fully open the active site to bulk 

water and diminish deacylation rates. Although some consideration has been given to the routes 

by which the water molecule necessary for deacylation may enter the active site,71, 251 the 

importance of active site hydration to the activity of OXA-48 β-lactamases (or of SBLs in 

general) has to date not been extensively discussed in the literature. 

 

 

Figure 4.9. Cephalosporin acylenzyme complexes of OXA-48. Hydrogen bonds between the substrate 

and active site residues highlighted with dashed lines. Left: ceftazidime (CAZ, PDB ID 6Q5F)255, 

middle: cefotaxime (CTX, PDB ID 6PQI)240, right: cefoxitin (FOX, PDB ID 6PT5)240. 
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In addition to ceftazidime, structures of OXA-48 acylenzyme complexes with 

cefotaxime and cefoxitin have also been determined (PDB IDs 6PT5 and 6PQI for cefoxitin 

and cefotaxime, respectively).240 Cefotaxime has a similar binding pose to ceftazidime, where 

the thiazole ring orients to make stacking interactions with Tyr211 and the oxyimino group 

occupies a pocket between residues Leu158, Thr213, and Arg214 (Figure 4.9). Unlike the 

ceftazidime complexes, the Ω-loop remains ordered, as found in the apoenzyme, and the salt 

bridge between Asp159 and Arg214 is preserved. This is most likely due to the smaller size of 

the cefotaxime C7 methoxyimino group, compared to the equivalent carboxypropyl oxyimino 

group of ceftazidime. In the case of cefoxitin, the thiophene ring is rotated towards Leu158, 

breaking the Asp159-Arg214 salt bridge. Low cefotaxime hydrolysis rates are hypothesized to 

be due to limited access of potential deacylating water molecules to the active site, while 

cefoxitin hydrolysis (kcat > 0.05 s–1 and Km > 200 μM, SI) is essentially hindered by the presence 

of its 7-α-methoxy group, which would sterically clash with any active site water molecules.240 

Additionally, carboxylation of Lys73 could lead to further steric clashes with the 7-α-methoxy 

group, which could increase preference for lysine decarboxylation in the presence of cefoxitin 

(Lys73 is decarboxylated in the crystal structure). 

 

4.6 OXA-48 inhibitors 
 

A common strategy for treating challenging, -lactam resistant bacterial infections is 

to prescribe a β-lactam antibiotic together with a β-lactamase inhibitor.27, 258 FDA approved 

antibiotic/inhibitor combinations include e.g. amoxicillin/clavulanate, piperacillin/tazobactam, 

ceftazidime/avibactam, and meropenem/vaborbactam.25, 27, 33, 258 In general,  OXA-48 β-

lactamases are not susceptible to traditional β-lactamase inhibitors like sulbactam, tazobactam, 

and clavulanate (except for some exceptions like OXA-163).259 Of the new generation β-

lactamase inhibitors, avibactam31, 32 shows efficacy against OXA-48.34, 260 Avibactam belongs 

to the diazabicyclooctanone (DBO) class and exhibits broad-spectrum inhibition of SBLs. The 

ceftazidime/avibactam combination specifically shows promise as an effective therapy against 

OXA-48 producers in both in vitro testing and clinical practice.219, 259, 261-263 When compared 

with other OXAs, it appears that DBOs such as avibactam inhibit OXA-48 better than enzymes 

with more hydrophobic active site residues.36 Several crystal structures of OXA-48 with 

covalently-bound avibactam all show a very similar binding pose for the acylenzyme (PDB 
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IDs 6Q5B255, 4WMC,264 4S2J235, 4S2K235, and 4S2N235), with the carbamate carbonyl 

positioned in the oxyanion hole (analogous to the position of the ester carbonyl carbon in β-

lactam antibiotics), and the sulfonate group positioned towards motif II and Arg250 (Figure 

4.10). The amide group of avibactam is positioned towards Leu158 on the Ω-loop. Based on 

the published OXA-48/avibactam structures, the presence of avibactam seems to favour Lys73 

decarboxylation: for structures crystallized at pH 6.5 or 7.5 (PDB IDs 4S2J and 4S2K), no 

carboxylation was observed, and at pH 8.5 only partial occupancy of the carboxylate was seen 

in two out of four monomers in the asymmetric unit (PDB ID 4S2N).235 Partial carboxylation 

of Lys73 was also observed in another study, where only two out of eight monomers displayed 

electron density for carboxylated Lys73 (PDB ID 4WMC).264 

 

 

Figure 4.10. Crystal structure of the avibactam-OXA-48 acylenzyme at pH 7.5 (PDB ID 4S2K)235. 

Inhibition kinetics indicate that avibactam readily acylates OXA-48, but that its 

recyclization to release intact avibactam happens very slowly (whilst no analogue for the  

‘standard’ -lactam ring-opened hydrolysis product is observed).264 In acylation, the C7-N6 

bond in the five-membered ring structure is broken (as opposed to the C7-N1 bond, Figure 4.5), 

likely due to the N6-sulphate moiety being a better leaving group than N1-R group.235 At least 

two different reaction mechanisms for avibactam with OXA-48 have been proposed in the 

literature (Figure 4.11). King et al. proposed a general mechanism for all SBLs, which involves 

a decarboxylated, neutral Lys73 acting as a general base in acylation; Lys73 would then 
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subsequently protonate the N6 ring nitrogen via Ser118.235 Recyclization occurs as the reverse 

reaction (Figure 4.11, pathway 1). This mechanism was based on the preference for Lys73 to 

be decarboxylated in the presence of avibactam. Additionally, mutational studies of the class 

A ESBL CTXM-15 identified Lys73 to be the most likely general base in avibactam 

acylation.235 Since decarboxylated Lys73 was observed to form a hydrogen bond with Ser118 

(Figure 4.10), it is possible it has a similar role in class D and class A SBLs. 

The second proposed mechanism for avibactam inhibition in Figure 4.11 (pathway 2) 

was suggested by Lahiri et al.; in this case, Lys73 is indicated to be carboxylated for the whole 

reaction cycle.264 Carboxylated Lys73 acts as the general base in acylation, and Lys208 

protonates N6 via Ser118. Recyclization takes place similarly but in reverse, where N6 first 

donates a proton back to Lys208 via Ser118, and Lys73 acts as a general acid protonating 

Ser70. As the authors also observed decarboxylation of Lys73 in the presence of avibactam, 

they attribute the slow avibactam recyclization rates to Lys73 decarboxylation, which hinders 

reactivity. In addition to these crystal structures, decarboxylation of Lys73 in the presence of 

covalently bound avibactam has also been measured using NMR spectroscopy.236 The authors 

observed that Lys73 favors the decarboxylated form when OXA-48 is complexed with 

avibactam (or the related DBO inhibitors relebactam and zidebactam). The extent of Lys73 

decarboxylation in reactions of OXA-48 with DBOs and its exact mechanistic role remain 

unclear. 
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Figure 4.11. Two proposed reaction pathways for the avibactam inhibition mechanism with OXA-48. 

Left: Pathway 1, based on a “universal” avibactam reaction scheme for SBLs, adapted from ref. 235. 

Neutral Lys73 is suggested to act as a general base in acylation and recyclization, whilst Ser118 

(de)protonates the ring nitrogen. Right: Pathway 2, where carboxylated Lys73 is proposed to act as the 

general base in acylation, and as the general acid in recyclization, adapted from ref. 264. Ser118 has 

the same role as in pathway 1, except it donates a proton to Lys208 instead of Lys73 during 

recyclization. 

 

To study the possible emergence of resistance to avibactam, OXA-48 producers were 

passaged against a combination of ceftazidime and avibactam.255 Resistance was observed to 

develop as a result of two amino acid substitutions: Pro68Ala (as discussed above in the section 

“Cephalosporinase activity”), and Tyr211Ser. The catalytic efficiency of ceftazidime turnover 

increased >10-fold and >20-fold for the single and double substituted variants, respectively. 

Inhibitory activity of avibactam stayed on the same level as for OXA-48 for the Pro68Ala 

variant, but for Pro68Ala/Tyr211Ser the activity of avibactam decreased >5-fold. Tyr211 is 

known to be a key residue in stabilizing tetrahedral intermediates in -lactam hydrolysis 

through the formation of an oxyanion hole (together with the backbone amide of Ser70). 

Additionally, Tyr211 was suggested to possibly aid in the formation of a Michaelis complex. 

Notably, however, the observed evolutionary trajectory towards ceftazidime/avibactam 

resistance comes at a fitness cost, as the enzyme thermostability is reduced and the primary 

hydrolysis phenotype (carbapenemase/penicillinase) is compromised.255 
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Figure 4.12. Examples of β-lactamase inhibitors in different inhibitor classes: β-lactam ring-based 

inhibitors, DBO = diazabicyclooctanones, and boronates, each block divided into investigational 

compounds (top), compounds in clinical trials (middle), and inhibitors approved in clinical use 

(bottom). Inhibitors in red and cursive do not effectively inhibit OXA-48, inhibitors in black show 

inhibitory activity. 

 

Other β-lactamase inhibitors with a DBO scaffold include relebactam, nacubactam, 

zidebactam, durlobactam (previously ETX2514), ARX-1796 and the investigational compound 

BOS-752 (Figure 4.12). The relebactam/imipenem combination has been approved for clinical 

use, but this inhibitor does not effectively inhibit OXA-48; measured MICs for carbapenems 

do not change (or change only slightly) in the presence of relebactam.265-267 Based on MICs, 

zidebactam combined with cefepime shows inhibitory activity against OXA-48.268 This is due 

to OXA-48 inhibition by cefepime, as in vitro kinetics indicate that zidebactam on its own does 

not inhibit OXA-48.37 Similarly, nacubactam inhibits class A and C SBLs, but in vitro data on 

its activity against OXA-48 are sparse. In MIC tests, bacterial isolates expressing OXA-48 

were susceptible to aztreonam/nacubactam and cefepime/nacubactam, but the potentiation of 

antibiotic activity by nacubactam was concluded to be mainly due to inhibition of co-expressed 

ESBLs and AmpC β-lactamases.269 Durlobactam was originally developed to combat 

infections involving OXA enzymes in Acinetobacter baumannii,36 and this compound inhibits 

OXA-48 effectively irreversibly (as well as class A and C SBLs): in MIC tests, durlobactam 
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restored imipenem potency against OXA-48 better than avibactam.35 Durlobactam is currently 

in Phase III clinical trials in combination with sulbactam.4 New β-lactamase inhibitors utilizing 

the DBO scaffold have been synthesized by substituting the avibactam C2 carboxamide (Figure 

4.5) with new functional groups.37, 270 The size of the C2 substituent appears to correlate with 

β-lactamase inhibitory activity: new DBO compounds with larger C2 groups (with respect to 

avibactam) have approximately an order of magnitude slower on-rates and faster off-rates for 

OXA-48.270 However, the studied derivatives with larger C2 substituents inhibit PBPs in 

bacterial cells. OXA-48 complexes with avibactam derivatives (PDB IDs 5FAQ, 5FAS, and 

5FAT)270 show essentially the same binding pose as observed for avibactam, the main 

differences being in the respective C2 substituents. Avibactam itself has poor oral 

bioavailability, but the avibactam prodrug ARX-1796 can be administered orally and 

subsequently metabolized in the body to produce avibactam.271 ARX-1796 differs from 

avibactam through the addition of a neopentyl ester protecting group on the N6 sulfate moiety. 

Recent data show DBO inhibitory activity towards OXA-48 to be dependent upon the N6 

substituent, as replacing the durlobactam N6 sulfate with fluoroacetate reduces potency but can 

form the basis for an orally available therapy.39 Another investigational β-lactamase inhibitor 

in the DBO group is BOS-752, which has a third ring fused to the DBO scaffold (making it a 

dioxotriazatricyclohendecane).38 BOS-752 does not possess antibacterial activity on its own, 

but combined with piperacillin it lowered measured MICs against SBLs including OXA-48.38 

In addition to DBOs, other -lactamase inhibitors currently in clinical development 

include mechanism-based β-lactam inhibitors and boronic acid compounds (Figure 4.12). An 

example of a β-lactam inhibitor is enmetazobactam, which is a penicillanic acid sulfone 

currently developed in combination with cefepime.272, 273 This combination was found to be 

effective against OXA-48 producers, but the efficacy is most likely again attributed to the 

activity of cefepime and not to efficient inhibition by enmetazobactam, which is active 

primarily against ESBLs.273, 274 On the other hand, boronates show promise as broad-spectrum 

β-lactamase inhibitors. In particular, cyclic boronates can act as analogues of the tetrahedral 

acylation transition state of SBLs,41 and have potential for at least moderate activity against 

MBLs.40, 275 The first boronic acid inhibitor approved in clinical use was vaborbactam 

(originally RPX7009),42 which is currently administered in combination with meropenem.43, 

276 Vaborbactam is a monocyclic boronic acid compound showing inhibition mainly against 

class A and C SBLs, and it is not able to effectively inhibit OXA-48 based on both biochemical 

data and MIC measurements (potency of meropenem not restored).265, 277 Further development 
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of boronic acid derivatives as β-lactamase inhibitors includes taniborbactam (VNRX-5133), 

which is a bicyclic boronate.278 Based on both in vitro and whole cell assay data, taniborbactam 

exhibits pan--lactamase inhibition (i.e. is able to inhibit all four Ambler classes) including 

moderate inhibition of OXA-48 (with an IC50 value of approximately 0.54 μM).44 

Taniborbactam is currently in clinical development in combination with cefepime.279 Another 

potent bicyclic boronate with ultrabroad-spectrum β-lactamase inhibition is the compound 

QPX7728, which can efficiently inhibit carbapenem-resistant Enterobacterales and restore the 

potency of meropenem against OXA-48.45, 280 QPX7728 entered Phase I clinical trials in 

December 2020.281, 282 VNRX-7145, which is orally bioavailable, also demonstrates OXA-48 

inhibition and has entered Phase I clinical trials in 2020 combined with ceftibuten.22, 283, 284 In 

addition to boronates, other cyclic compounds mimicking the tetrahedral intermediate (such as 

phosphonates, sulfonates, and sulfonamides), may also provide a source of future inhibitors, 

but these are yet to be explored in detail.41 Growing appreciation of the clinical importance of 

OXA-48 has also motivated exploration of other routes to inhibitors, such as the use of DNA-

encoded libraries, but these too remain at an early stage.285 

 

4.7 Conclusions 

Carbapenem-hydrolyzing Enterobacterales are classified as an urgent global threat to 

modern medicine, while OXA-48 β-lactamases are endemic in some regions (especially Turkey 

and the Mediterranean) and continue to disseminate. In general, OXA-48 enzymes convey 

penicillin and low-level carbapenem resistance; their weak carbapenem hydrolysis often 

complicates diagnosis and subsequent treatment of infections involving OXA-48 producers. 

Most variants within the OXA-48 family are imipenemases with slow turnover rates for other 

carbapenems, and resist established mechanism-based β-lactam inhibitors. However, certain 

variants (such as OXA-163 and OXA-405) have acquired a more ESBL-like hydrolysis profile 

with activity against expanded spectrum oxyimino-cephalosporins (such as ceftazidime) and 

significantly decreased imipenemase activity. The extent to which further evolution of the 

OXA-48 scaffold towards genuinely broad-spectrum activity is possible remains to be 

established. 

Recent crystallographic efforts have yielded structures of acylenzyme complexes of 

OXA-48 not only with clinically relevant carbapenem and cephalosporin substrates, but also 

with new generation DBO inhibitors (avibactam). These supply much new information 
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regarding the interactions of substrates and inhibitors with the OXA-48 active site, including 

the importance of active site structure (specifically the -loop), hydration and, with respect to 

carbapenems, rearrangements such as tautomerization and lactone formation that occur after 

-lactam cleavage. The origin of preferential activity towards imipenem over other 

carbapenems, however, remains to be verified. Importantly, structural data for other OXA-48-

like enzymes has started to emerge too, which is important to increase understanding of how 

substitutions affect specificity across the enzyme group. Combining knowledge from 

biochemical characterization, X-ray crystallography as well as atomistic computational 

modelling will likely lead to a detailed picture of the origin of activity and specificity in OXA-

48 enzymes, ultimately benefitting design of inhibitors effective against this widespread and 

variable -lactamase family. 
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Chapter 5 – Small changes in hydration determine cephalosporinase 

activity of OXA-48 β-lactamases 

 

This chapter contains the article titled “Small changes in hydration determine 

cephalosporinase activity of OXA-48 β-lactamases” published in ACS Catalysis in 2020.257 

The aim of this article is to compare ceftazidime hydrolysis for selected OXA-48 β-lactamases, 

which are either known to be cephalosporin-inhibited or cephalosporinases, to illustrate any 

possible determinants behind efficient ceftazidime breakdown. A comparison of OXA-48 

(inhibited) and OXA-163 (cephalosporinase) reveals active site hydration to be a key factor 

correlating with the calculated free energy barriers: increased hydration near the catalytic base 

(carboxylated Lys73) impairs catalysis by raising the energy barrier. I performed all the 

simulations and analysed the data together with my co-authors. I also wrote the original draft 

of the manuscript, and others provided comments and text editing at later stages. Section 5.6 

comprises the Supporting Information data for this article.  

 

5.1 Abstract 
 

β-lactamase mediated antibiotic resistance threatens treatment of bacterial infections. 

OXA-48 enzymes are clinically important class D serine β-lactamases (SBLs) that confer 

resistance to most β-lactam antibiotics, including carbapenems. However, OXA-48 and related 

enzymes vary widely in their activity towards different substrates: OXA-48 primarily 

hydrolyzes carbapenems, whereas the OXA-163 variant is a cephalosporinase with minimal 

carbapenemase activity. The basis of cephalosporinase activity in OXA-163 remains elusive. 

Here we use QM/MM reaction simulations (umbrella sampling molecular dynamics) to study 

breakdown of the cephalosporin antibiotic ceftazidime, a key antibiotic for healthcare-

associated infections, by selected OXA-48 variants. Calculated free energy barriers for 

ceftazidime deacylation correctly capture the differing catalytic efficiencies of the studied 

enzymes and identify the catalytically competent orientation for bound ceftazidime. 

Additionally, we show that high flexibility of the Ω-loop bordering the active site, a 

determinant of specificity in many SBLs, is not required for efficient deacylation. Based on our 

simulations, cephalosporin breakdown in OXA-163 is efficient due to subtle control of active 

site solvation, which requires a particular orientation of Leu158 in the Ω-loop. Our simulations 
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further predict that a single mutation in the OXA-48 β5 - β6 loop (Arg214Ser) will increase the 

efficiency of ceftazidime deacylation to that of OXA-163. The finding that the hydration of the 

general base in the active site determines deacylation efficiency is possibly important in other 

class D β-lactamases. 

 

5.2 Introduction 
 

Antimicrobial resistance is a complex phenomenon requiring urgent global action.286, 

287 For example, it is estimated that if no preventive measures are taken, antibiotic resistance 

will result in 10 million deaths annually by 2050.206 From their initial clinical introduction in 

the 1940s, β-lactam antibiotics remain the most important drugs for treating bacterial 

infections.18 They are the oldest and largest group of commercially available antibiotics, and 

have undergone continuous development, but their efficacy is threatened by growing resistance 

especially in Gram-negative bacteria, in which breakdown by β-lactamase enzymes are the 

major resistance mechanism.49 β-lactamases hydrolyze β-lactams by opening the β-lactam 

amide, which inactivates the antibiotic as it prevents binding to its bacterial transpeptidase 

target.208 

According to the Ambler classification, β-lactamases can be divided into four classes 

based on specific sequence motifs. Classes A, C and D are serine β-lactamases (SBLs), and 

class B zinc-dependent metallo-β-lactamases (MBLs).63 Serine β-lactamases have an active 

site serine residue (part of the invariant S-X-X-K motif common to SBLs and transpeptidases) 

that acts as the essential reaction nucleophile, whilst class B enzymes have a different 

mechanism that employs zinc-activated water. OXA-48 β-lactamases are class D SBLs, and 

are now common on mobile genetic elements (plasmids) in Enterobacteriaceae responsible for 

healthcare-associated infections in Europe (especially Mediterranean countries) and 

worldwide.216, 288, 289 This resistance to broad spectrum β-lactams in Enterobacteriaceae is now 

a major public health challenge.290 OXA-48 confers resistance to carbapenems (especially 

imipenem),222, 291, 292 but some variants have acquired cephalosporinase activity (especially 

against the oxyiminocephalosporin ceftazidime) through amino acid deletions and 

substitutions.226 For example, OXA-163 has increased cephalosporinase and decreased 

carbapenemase activities; it differs from OXA-48 by four amino acid deletions and one 

substitution in the β5 - β6 loop that borders the active site (Figure 5.1).230 

 



 

66 
 

 

Figure 5.1 Comparison of class D β-lactamase structures. Left inset: Comparison of two OXA-

ceftazidime acylenzyme crystal structures, where the ceftazidime binding pose differs. For OXA-48 

(PDB: 6Q5F), the ceftazidime oxyimino group is between the β5 - β6 and Ω-loops (binding pose 1 in 

turquoise),255 whilst for OXA-225 (PDB: 4X55),256 this space is occupied by the thiazole ring (binding 

pose 2 in purple). Right inset: Apoenzyme structures of OXA-48 (turquoise, PDB:4S2P) and OXA-163 

(gray, PDB: 4S2L) showing the partly deleted β5 - β6 loop (R214-P217) and the S212D mutation in 

OXA-163 with respect to OXA-48. 

 

The hydrolysis mechanism of serine β-lactamases consists of acylation and subsequent 

deacylation;49 between these two reactions the antibiotic is covalently bound to the enzyme via 

the active site Ser70. Both acylation and deacylation involve formation of a tetrahedral 

intermediate (TI) via attack of a nucleophile upon the carbonyl carbon of the scissile bond. In 

the acylation reaction the unstable tetrahedral intermediate (TI) collapses to form the covalent 

acylenzyme intermediate (AE); after TI formation in the deacylation reaction, turnover is 

completed when the hydrolyzed drug is cleaved from the enzyme (the complete hydrolysis 

reaction is illustrated in scheme S1 in Section 5.6). Often only the first step in deacylation 

needs to be modelled to distinguish β-lactamase activities, as this is frequently the rate-limiting 

step in hydrolysis.190, 202 Furthermore, β-lactamases are inhibited when the AE intermediate 

persists, with high energetic barriers for deacylation. For class D enzymes, a carboxylated 

lysine (Lys73) acts as a general base in both acylation and deacylation;234 in deacylation, the 

base abstracts a proton from an active site water molecule (deacylating water, DW), allowing 
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the DW to act as a nucleophile and attack the electrophilic carbonyl carbon (C8) of the AE 

(Scheme 5.1). 

 

 

Scheme 5.1. Tetrahedral intermediate formation in ceftazidime deacylation. AE=acylenzyme, 

TI=tetrahedral intermediate. 

 

The structural determinants of cephalosporinase activity in OXA-48 and its variants 

remain unclear. The β5 - β6 loop near the active site has been demonstrated to be important for 

carbapenem breakdown,242 and most likely has some effect on cephalosporin hydrolysis e.g. 

by limiting available space in the active site. It has been suggested that the cephalosporinase 

phenotype of OXA-163 originates from increased enzyme flexibility due to the loss of two salt 

bridge interactions upon amino acid deletions.293 Cephalosporin breakdown was also studied 

by Fröhlich et al., where serial passage of OXA-48 producers against ceftazidime resulted in a 

single amino acid mutation (Pro68Ala).255 Based on crystal structures of the ceftazidime AE, 

the authors hypothesize that upon ceftazidime binding and hydrolysis in OXA-48, Arg214 (part 

of the β5 - β6 loop) is displaced, thus breaking the salt bridge between Arg214 and Asp159 

(part of the Ω-loop that is a major determinant of substrate binding and specificity across 

multiple β -lactamase classes). The Pro68Ala substitution was in turn reasoned to facilitate 

ceftazidime binding, and subsequent loop displacement, by providing more flexibility in the 

active site. Notably, similar results have been observed with two other class D carbapenemases, 

OXA-23 and OXA-24/40. Two of their subfamily members, namely OXA-160 (a variant of 

OXA-24/40) and OXA-225 (a variant of OXA-23), have single proline to serine substitutions 

(Pro225Ser and Pro227Ser, respectively)256 that enhance their hydrolytic activities against 

oxyimino cephalosporins e.g. ceftazidime and cefotaxime. Interestingly, however, comparison 

of the crystal structures shows two different binding poses for ceftazidime in OXA-48 and 

OXA-225. For OXA-48, the ceftazidime C7 substituent, including the oxyimino moiety, is 
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oriented towards the β5 - β6 and Ω-loops (referred to as binding pose 1), whilst for both OXA-

160 and OXA-225 the thiazole ring occupies this area (binding pose 2, Figure 5.1). 

Current hypotheses regarding the origin of cephalosporinase activity in OXA-163 

ascribe increased hydrolysis to more favorable substrate binding made possible by residue 

deletions near the active site. Changes in substrate binding alone, however, may not explain 

why ceftazidime turnover by OXA-163 is greatly increased compared to OXA-48: reported 

ceftazidime kcat values for OXA-48 range from unmeasurably low to 3 s−1,226, 255 whilst those 

for OXA-163 range from 8 to 200 s−1.226, 230 Hence, to complement and extend existing 

experimental work, here we study ceftazidime breakdown by OXA-48 variants using combined 

quantum mechanical / molecular mechanical (QM/MM) reaction simulations. QM/MM 

simulations can provide a good approach to examine enzyme-catalyzed reaction mechanisms 

(including in β-lactamases189, 190, 201, 247, 294) and can identify e.g. determinants of activity and 

effects of mutation.97 Starting from a covalent AE model, TI formation in deacylation (Scheme 

5.1) is simulated using QM/MM umbrella sampling (US) molecular dynamics simulations, 

resulting in free energy barriers for this reaction for different AE complexes. Additionally, AE 

dynamics are simulated using classical MM molecular dynamics. Our simulations reveal that 

structural features of the OXA-163-ceftazidime complex impair the ability of extra water 

molecules to enter the active site, accelerating ceftazidime breakdown. In OXA-48, an 

increased number of water molecules near the carboxylated lysine decreases ceftazidime 

turnover. Simulations of the OXA-48 Arg214Ser point mutant identify deletion of Arg214 as 

the major contributor to increased ceftazidime turnover by OXA-163 as a result of desolvation 

of the catalytic base. Our findings suggest that reactivity of other serine β-lactamases with 

carboxylic acid general bases may also be modulated by changes in solvation. 

 

5.3 Methods 
 

Computational details and system set-up are described in detail in the Supporting 

Information (Section 5.6). We applied QM/MM and MD simulation protocols similar to those 

we have applied successfully previously to other serine β-lactamases.189, 190, 202 In short, AE 

starting structures were built using the crystal structure of OXA-48 in complex with imipenem 

(PDB: 5QB4)239 and replacing imipenem with ceftazidime as found in complexes with OXA-

225 (PDB: 4X55)256 or OXA-48 (PDB: 6Q5F)255. Starting models of the OXA-163 ceftazidime 

complex were built using the apoenzyme crystal structure (PDB: 4S2L)295 and the same 

ceftazidime binding poses as above. A “disordered” Ω-loop model of OXA-48 was built into 
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the OXA-48 and ceftazidime crystal structure using MODELLER296 as described in the 

Supporting Information, along with further details of system setup and non-standard residue 

parameter generation. All systems were initially minimized, followed by heating from 50 K to 

300 K in 20 ps molecular dynamics (MD), followed by further MD for a total of 1 ns, to 

generate starting structures for QM/MM calculations. Four different starting structures for 

QM/MM umbrella sampling (US) calculations were taken from the last 500 ps of each 1 ns run 

(at least 50 ps apart). We used short equilibrations prior to the umbrella sampling to ensure that 

there are no significant changes away from the starting structures (e.g. a change in binding 

pose), and to test whether efficient computational 'assays' are feasible.189 Extended MD 

simulations (5x 120ns) and additional QM/MM MD US simulations (one profile each) were 

performed for OXA-48, OXA-48 R214S and OXA-163 with the acylenzyme in binding mode 

1 (see Supporting Information in Section 5.6, section “Extended MD Simulations: Stability, 

Loop Conformation, and Free Energy Barriers”). These simulations verified that (1) the 

systems remain conformationally stable over longer timescales (Figure S16, Section 5.6); (2) 

the R214S mutation does not cause a large shift in β5 - β6 loop conformation (Figure S17, 

Section 5.6); and (3) the free energy barriers obtained from QM/MM reaction simulations are 

not significantly affected by longer MM MD equilibration beforehand (Table S7, Section 5.6). 

Two-dimensional US was performed using two reaction coordinates (Figure S3, Section 5.6): 

one describing proton transfer between DW and the carboxylated lysine (Lys73) general base 

(defined as the difference in the carboxylate oxygen – proton distance and the water oxygen - 

proton distance), and one for the nucleophilic attack between DW and the electrophilic 

carbonyl carbon in the acylenzyme (oxygen-carbon distance). DFTB3159 was used as the QM 

method for a QM region consisting of the reactive part of the ceftazidime acylenzyme, DW, 

and the carboxylated lysine (Figure S4 in Section 5.6). US was run initially for 2 ps on the 

whole surface, consisting of 525 US windows, and afterwards the restart files for this surface 

were used as starting structures for more extensive sampling. Further US was run for 20 ps in 

windows corresponding to an approximate minimum energy path on the surface, and for 2 ps 

in the rest of the windows. Calculations were done using the sander program as implemented 

in the AmberTools16 package.203, 297 Results of US calculations were analysed using 

WHAM186 with 21 and 25 bins for proton transfer and nucleophilic attack coordinates, 

respectively, and a convergence criterium of 10−13. Minimum free energy paths on calculated 

surfaces were constructed using the MEPSA code.298 Extended MM MD simulations of AE 

models were each run for 50 ns (at least five independent simulations per model, trajectory 

frames recorded every 40 ps) using pmemd.cuda as implemented in Amber.299-301 Electrostatic 
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interaction strengths were calculated using BioSimSpace302 with the Sire303 biomolecular 

simulation program. 

 

5.4 Results and discussion 
 

We first set out to calculate (relative) free energy barriers for cephalosporin deacylation 

in OXA-48 enzymes using reaction simulations by comparing several different models of the 

acylenzyme complex (Table 5.1). Using QM/MM umbrella sampling molecular dynamics 

simulations along the two reaction coordinates (one for nucleophilic attack of the deacylating 

water DW and the acylenzyme and one for proton transfer from DW to the carboxylated lysine; 

see Methods and Figure S3 in Section 5.6), we calculated free energy surfaces and 

corresponding free energy barriers for the first step of the AE deacylation (i.e. TI formation, 

Figure 5.2). Altogether, three AE models were prepared for OXA-48 due to differences 

between existing crystal structures. The most recent crystal structure255 suggests disorder in the 

Ω-loop, which was not observed in previous OXA-48 structures.71, 222, 239 Additionally, prior to 

publication of the OXA-48:ceftazidime complex, previously available OXA:ceftazidime 

structures256 indicate a different binding pose for the substrate from that observed in the 

crystallized OXA-48 complex. To establish both the effect of Ω-loop disorder on reactivity (as 

opposed to drug binding), and the extent of preference for a particular binding pose, three 

models were built: 1. OXA-48 complex with ceftazidime AE as found in the crystal structure 

complex (binding pose 1, enzyme modelled as found in the imipenem complex239), but with 

the Ω-loop as in the apoenzyme structure; 2. ceftazidime AE oriented as in the OXA-225 

complex structure (binding pose 2) with the same apoenzyme Ω-loop as in model 1; and 3. 

‘disordered’ Ω-loop constructed using MODELLER296 and AE as in OXA-48 and ceftazidime 

complex (binding pose 1). Two models with the different ceftazidime binding poses 1 and 2 

were also prepared for OXA-163, but no model with a disordered Ω-loop (as there is no 

evidence of Ω-loop distortion for this enzyme). Models for OXA-48 and OXA-163 are 

illustrated in Figure S1 in the Supporting Information (Section 5.6). Two models equivalent to 

those generated for OXA-163 were also prepared for OXA-181, which has a similar resistance 

phenotype to OXA-48.229, 259 
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5.4.1 Comparison of the binding poses 

 

Comparison of Δ‡Gcalc values for formation of the TI in ceftazidime deacylation shows 

that the orientation of the bulky ceftazidime C7 substituents has a large effect on overall 

hydrolysis. AE models constructed with ceftazidime oriented as in the OXA-225 co-crystal 

structure (binding pose 2, Figure 5.1), in which the thiazole ring is positioned between the Ω- 

and β5 - β6 loops, yield relatively high Δ‡Gcalc values of 19.0 and 16.0 kcal/mol for OXA-48 

and OXA-163, respectively. This is a large increase over Δ‡Gcalc values for the binding pose 

observed in the OXA-48 structure (binding pose 1), with deacylation barriers for these models 

are 12.5 and 7.3 kcal/mol for OXA-48 and OXA-163, respectively. Deacylation barriers for 

OXA-181 are similar albeit slightly lower to OXA-48 (17.9 kcal/mol for binding pose 2, 11.1 

kcal/mol for binding pose 1). We note that the absolute values of the barriers are underestimated 

when compared to rates of turnover, due to the approximate semi-empirical QM method used. 

Benchmarking calculations against DFT and ab initio methods (M06-2X & SCS-MP2; see 

Supporting Information, section “Benchmarking”) indicate that the use of DFTB3 may lead to 

underestimation of (at least) 7 kcal/mol. The reaction mechanism is similarly concerted with 

DFTB3 or more accurate DFT treatment (indicated both by M06-2X and BLYP small model 

transition state optimizations and a M06-2X corrected DFTB3/MM potential energy profile; 

see Figures S5 and S6, Table S2 in Section 5.6). The relative differences in our semi-empirical 

free energy barriers, therefore, give a good indication of the reaction feasibility. The 

consistently and significantly higher barriers for binding pose 2 compared to binding pose 1 (at 

least 6.5 kcal/mol), indicate that for all three OXA-48 variants studied, binding pose 1 is more 

competent for deacylation. Further, it is highly likely that binding pose 1 is also the 

thermodynamic minimum for the acylenzyme conformation, as it is found in the X-ray 

structure of OXA-48 and it remains in this pose in extended MD simulations of the solvated 

enzyme (see Supporting Information in Section 5.6, “Extended MD Simulations: Stability, 

Loop Conformation and Free Energy Barriers”). Any correction for a difference in free energy 

between poses 1 and 2 should therefore be in favor of binding pose 1. The fact that the 

acylenzyme pose found in a homologous enzyme (binding pose 2, found in OXA-225, which 

has 41% sequence identity to OXA-48) is not likely to undergo deacylation highlights the 

importance of determining AE crystal structures for specific OXA families and family 

members as a prerequisite for analyzing and understanding catalytic turnover. An assumption 

that the ceftazidime conformation observed in the OXA-225 complex structure (binding pose 
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2) indicates the conformation found in OXA-48 would result in calculated barriers that are too 

high, and thus inconsistent with experimental assays. 

 

5.4.2 Comparison of OXA-48 variants 

 

For binding pose 1, a consistent difference of approximately 5 kcal/mol is seen between 

OXA-48 (with an ordered Ω-loop) and OXA-163 (Figure 5.2); the same trend as for OXA-48 

is also observed for OXA-181. As OXA-163 has moderate cephalosporinase activity, whereas 

OXA-48 has essentially no activity against ceftazidime, this difference is consistent with 

experimental observations (Table 5.1).226 Based on our previous work on class A β-lactamases, 

we would expect semiempirical DFTB methods to underestimate the magnitude of deacylation 

barriers, which would explain the deviation of calculated Δ‡Gcalc values from deacylation 

barriers determined from the experimental kcat values using transition state theory.189 As 

illustrated in the Supporting Information (Table S1 in Section 5.6), differences in calculated 

barriers obtained by shorter sampling (only 2 ps sampling per umbrella sampling window, 

without equilibration) are minor (< 0.5 kcal/mol difference). This indicates that 

cephalosporinase activity of OXA-48-like enzymes could be assayed by efficient QM/MM 

protocols in a similar fashion to carbapenem turnover by class A carbapenemases.189, 190 

 

 

Figure 5.2 Calculated free energy surfaces for ceftazidime deacylation in binding pose 1 by OXA-48 

(left) and OXA-163 (right). Red dots indicate the minimum free energy path on the surface. 

AE=acylenzyme, TS=approximate transition state, TI=tetrahedral intermediate. 
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Table 5.1 Calculated free energy barriers for deacylation for all acylenzyme models (standard 

deviations in parenthesis). 

Enzyme 
Mutations wrt. 

OXA-48 

kcat 

(s−1)226 

Δ‡Gcalc (kcal/mol), wildtype 

Binding 

pose 1 a 

Binding 

pose 2 b 
New Ω-loop c 

OXA-48 - NH 12.5 (0.8) 19.0 (0.9) >20e 

OXA-48 

R214S 

R214S 
- 6.9 (0.5) 14.5 (1.2) >20e 

OXA-163 
S212D, 

del. R214-P217 
8d 7.3 (0.3) 16.0 (1.8) N/A 

OXA-181 
T104A, N110D, 

E175Q, S179A 
ND 11.1 (1.3) 17.9 (0.7) - 

OXA-181 

R214S 

T104A, N110D, 

E175Q, S179A, 

R214S 

- 6.6 (0.3) - - 

 

NH = No hydrolysis detected. ND = Not determined. N/A = Not applicable (Ω-loop not present). 

a Acylenzyme orientation as found in the crystal structure for OXA-48 with ceftazidime (see Figure 

5.1). 

b Acylenzyme as found in OXA-225 K82D structure with ceftazidime (see Figure 5.1). 

c Ω-loop representative of a disordered loop, constructed using MODELLER as described in the 

Supporting Information (Section 5.6). 

d Corresponds to Δ‡Gexp =16.3 kcal/mol, as estimated with transition state theory. 

e Transition state could not be located on the free energy surface, with energy values rising to above 

20 kcal/mol near the TI. 

 

5.4.3 Role of the Ω-loop 

 

Recently published crystal structures support the hypothesis that ceftazidime binding 

disrupts the Ω-loop in OXA-48-like enzymes.255 We thus studied the effect of Ω-loop distortion 

by constructing a possible model for the “disordered” Ω-loop variant of OXA-48 in silico; MM 

MD simulations confirm that the selected starting conformation of the loop leads to high 
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flexibility, consistent with the lack of density for this region in structures obtained by X-ray 

crystallography (Supporting Information Figure S2). Notably, deacylation Δ‡Gcalc values for 

the “disordered” Ω-loop variants show no hydrolysis for OXA-48, as free energy minima 

representing the deacylation TI could not be located on the calculated free energy surfaces, and 

therefore nor can transition states (surfaces show an increase in energy from AE to >20 

kcal/mol when approaching the TI structure). This is perhaps not surprising as crystal structures 

tend to capture the thermodynamic minimum free energy structure, which may be catalytically 

deficient.304, 305 Additionally, in the OXA-48-ceftazidime complex structure, triethylene glycol 

is co-crystallized in the space occupied by the Ω-loop in the apoenzyme, which might in turn 

contribute to the disorder and consequent lack of density for this loop in experimental crystal 

structures. Our simulations thus indicate that a more disordered Ω-loop conformation (different 

from the conformation found in the OXA-48 apoenzyme structure) is not necessary to increase 

the rate of deacylation and may indeed decrease it. It is possible, however, that Ω-loop disorder 

aids in the formation of the initial Michaelis complex and possibly acylation by expanding the 

active site to better accommodate ceftazidime. For example, Fröhlich et al. argued that 

ceftazidime binding is likely favoured in OXA-48 P68A due to increased Ω-loop flexibility; 

Ω-loop disorder was observed in the crystal structure of this variant.17 

 

5.4.4. Comparison of acylenzyme dynamics 

 

To further elucidate the reason for the difference in cephalosporinase activity in OXA-

48-related enzymes, the ceftazidime AE complexes of OXA-48 and OXA-163 were studied by 

extended MM MD and QM/MM MD simulations. At least five independent 50 ns MD 

simulations of each AE model with binding pose 1 were run in order to inspect the dynamics 

and possible catalytically relevant interactions between ceftazidime and the protein. 

Additionally, 20 ps of QM/MM MD were run for selected US windows close to the calculated 

AE and TI minima. It is well known that interactions with an oxyanion hole,73 in OXA-48 

formed by the backbone amides of Ser70 and Tyr211,222 stabilize TI formation in β-lactamases 

(similar to many other co-factor independent hydrolases). Thus, hydrogen bond distances 

between these residues and the ceftazidime AE were measured in both the extended MM MD 

and QM/MM MD simulations and are shown in the Supporting Information (S8-S11, Section 

5.6). Additionally, electrostatic interactions between the quantum region (Figure S4, Section 

5.6) used for QM/MM simulations and Tyr211 as part of the oxyanion hole were quantified by 

measuring the electrostatic interaction strength as described in the Methods section. However, 
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neither the distance nor the electrostatic analyses reveal any significant difference between 

OXA-48 (disordered/ordered Ω-loop), and OXA-163. Electrostatic interactions of each 

enzyme with the modelled TI show the measured stabilization to be similar in all systems tested 

(Figure 5.3). Hence, our simulations do not provide evidence that enhanced ceftazidime 

hydrolysis by OXA-163 is a result of stronger stabilizing interactions in the oxyanion hole than 

take place in OXA-48. The population of different ceftazidime conformers was also 

investigated using clustering analysis of the sampled AE orientations; this revealed that 

variation in ceftazidime orientations in the different enzymes is largely confined to the 

oxyimino group, which interacts mainly with bulk solvent (details of clustering can be found 

in Section 5.6, Figure S8). These data indicate that increased ceftazidime hydrolysis by OXA-

163 is unlikely to be due to a more favorable orientation of the AE that results from partial 

deletion of the β5 - β6 loop. 

 

 

Figure 5.3 Top: Oxyanion hole interaction strength in the tetrahedral intermediate structure between 

the QM region and Tyr211 residue (the ceftazidime atoms part of the QM region are depicted with ball 

and sticks, and relevant MM atoms in licorice). Bottom: Average number of hydrogen bonds between 

the carboxylated lysine OQ1 oxygen and solvent water molecules measured from the acylenzyme 

structures in US reaction simulations. 
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5.4.5 Role of Leu158 

 

One structural difference apparent from the OXA-48 and OXA-163 MD simulations is 

the rotation of Leu158 in the Ω-loop. The C-Cα-Cβ-Cγ (χ1) dihedral angle for Leu158 in the 

starting models is approximately 170°, and in OXA-48 it rotates to around 50° (i.e. it changes 

from t to g+ according to the leucine rotamer naming convention; see Supporting Information 

Figures S14 and S15 in Section 5.6). This rotation happens both in the short 1 ns MD simulation 

used for generating starting structures for US, and in most of the 50 ns MD trajectories (for 

OXA-48, a total of seven 50 ns trajectories were run, Leu158 rotation was seen in five of these). 

For OXA-163, Leu158 rotation was not seen in the short 1 ns trajectory, but it was occasionally 

observed in the longer 50 ns simulations. However, OXA-48 samples this rotated Leu158 

orientation (g+) more than OXA-163, as well as the orientation around 290° (g-). In the 

distorted Ω-loop variant of OXA-48, Leu158 is part of the newly constructed loop and is thus 

free to move in the disordered structure. Another structural feature that distinguishes OXA-48 

is formation of a salt bridge between Asp159 and Arg214, as Arg214 is one of the residues 

deleted in OXA-163. This salt bridge extends “over” the active site from the β5-β6 loop to the 

Ω-loop and is present in the apoenzyme crystal structures of OXA-48 as well as in some 

complexes with different substrates.71, 222, 226 In starting structures for simulations of OXA-48, 

Arg214 is initially rotated towards bulk solvent (thus breaking the salt bridge) in order to avoid 

any possible steric clashes in the AE starting model, but it (re-)forms a salt bridge with Asp159 

upon simulation either during or soon after the heating phase. 

Importantly, in MM MD trajectories and in QM/MM US simulations, rotation of 

Leu158 correlates with the number of solvent molecules present around the carboxylated lysine 

(Lys73). Accordingly, we inspected possible differences in active site solvation by measuring 

the average number of hydrogen bonds formed between the carboxylated lysine oxygens (OQ1 

as the proton acceptor in deacylation, and OQ2) and possible active site water molecules. In 

OXA-48 MM MD trajectories where Leu158 rotates (five out of seven 50 ns simulations), OQ1 

forms on average 1.64 ± 0.17 hydrogen bonds (with standard deviation) with a solvent 

molecule. This is a large increase over the OXA-48 trajectories where Leu158 does not rotate 

(two 50 ns simulations), in which the average number of hydrogen bonds to OQ1 drops to 1.09 

± 0.12. In the simulations of OXA-163 (five 50 ns simulations), lysine OQ1 forms on average 

1.20 ± 0.14 hydrogen bonds. This indicates that the hydrogen bonding environment around the 

general base differs between the ceftazidime AEs of OXA-48 and OXA-163. This difference 

is also observed in US simulations. For OXA-163, lysine OQ1 is hydrogen bonded only to the 
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DW during US, whereas for OXA-48, Lys73:OQ1 forms a hydrogen bond both to the DW and 

to an additional water molecule for the majority of the time (Figure 5.3 and 5.4). In the distorted 

Ω-loop of OXA-48, the active site is fully open for water molecules and on average 3.8 solvent 

hydrogen bonds are calculated (Figure 5.3). In contrast to class A β-lactamases, where both 

carboxylate oxygens of the general base (Glu166) form hydrogen bonds with other active site 

residues in a relatively organized manner,189 the carboxylate moiety in Lys73 is hydrogen 

bonded only to Trp157 (Figure 5.4). Therefore, any additional water molecules hydrogen 

bonding to the general base can affect the reactivity of the enzyme. 

 

5.4.6 Role of Arg214 

 

Arg214 is one of the four residues present in the OXA-48 β5-β6 loop that is deleted in 

OXA-163. Its absence could play an important role in the increased cephalosporin hydrolysis 

in OXA-163, for example by affecting the number of hydrogen bonds between the catalytic 

base and water molecules. Therefore, we hypothesize that deletion of Arg214 could be an 

important determinant of increased ceftazidime turnover by OXA-163. However, it remains 

possible that the four-residue deletion in the OXA-163 β5-β6 loop is necessary to enhance 

initial substrate binding (i.e. Michaelis complex and subsequent acylenzyme formation). To 

investigate the importance of Arg214 to ceftazidime AE deacylation, we constructed an in 

silico Arg214Ser point mutant of OXA-48. Interestingly, Δ‡Gcalc values for ceftazidime 

deacylation for this point mutant drop to the same level as those for OXA-163 (6.9 and 7.3 

kcal/mol for OXA-48 R214S and OXA-163, respectively), a 5.6 kcal/mol decrease in 

comparison with wild-type OXA-48 (Table 5.1; this difference may be overestimated due to 

the simulation approach, see discussion in the next section). The calculated energetics imply 

that point substitution of OXA-48 Arg214 would result in an enzyme with deacylation rates 

comparable to those observed in OXA-163. Moreover, in OXA-48 Arg214Ser both the 

conformational dynamics of Leu158 and the population dynamics of active-site water 

molecules resemble those observed for OXA-163, rather than the wild-type enzyme (Figures 

S14 and S15 in Section 5.6). In the absence of the Asp159 - Arg214 salt bridge, Leu158 prefers 

to stay in its original orientation, as was observed for OXA-163. In the reaction simulations, 

again only the DW is hydrogen bonded to the reactive oxygen of the carboxylated lysine 

(Lys73, see Figure 5.4), with lysine OQ1 forming on average 1.08 ± 0.07 hydrogen bonds with 

water molecules during extended MM MD simulations of the AE (five 50 ns simulations). 

Mulliken charge analysis on the QM/MM reaction simulations of the different enzymes further 
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indicates that a difference in the environment, rather than a difference in QM region geometry, 

leads to a difference in electron distribution (with the DW more polarized when no additional 

hydrogen bonds between water and OQ1 are present, see Tables S2-S5 in Section 5.6). 

Therefore, we hypothesize that deletion of Arg214 is an important determinant of increased 

ceftazidime turnover by OXA-163, due to its effect on the Leu158 conformation which in turn 

changes the accessibility of water to the catalytic base. 

 

 

Figure 5.4 Examples of acylenzyme structures from US for OXA-48 (cyan, left) and OXA-163 (magenta, 

right). Water molecules within 4 Å of carboxylated lysine (Lys73) are illustrated. In OXA-48, the 

carboxylate oxygen participating in deacylation is hydrogen bonded with two water molecules, whereas 

in OXA-163 it is interacting only with the DW. Two different leucine orientations are highlighted for 

OXA-48: the orientation found in the apoenzyme (t), and the rotated orientation used in all reaction 

simulations (g+). 

 

5.4.7 Relation between active site hydration and Leu158 

 

To further investigate the role of active site water molecules in deacylation, and the role 

of Leu158, additional reaction simulations (2 ps per US window) were carried out for OXA-

48 on starting structures taken from the two 50 ns MD trajectories where Leu158 does not 

rotate (Figure 5.3). In the chosen structures, each oxygen of the carboxylated lysine (Lys73) 

was hydrogen bonded to a single water molecule. The new deacylation Δ‡Gcalc value was 6.5 

kcal/mol for these simulations with no additional water in the active site (calculated from three 
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reaction simulations), a similar decrease as observed with the R214S mutation. Ergo, we 

hypothesize that rotation of Leu158 enables more water molecules to enter the active site, thus 

impairing ceftazidime deacylation by stabilizing the general base in the AE complex. Clearly, 

the reactivity of the carboxylated lysine is affected by the level of solvation. A reduction in 

hydration of key active site residues, such as the catalytic base involved in proton 

abstraction, also plays an important role in other enzymes. Several enzymes appear to 

have evolved such that water is excluded from the active site to aid in efficient catalysis of the 

chemical step.306, 307  For example, in ketosteroid isomerase and triosephosphate isomerase, 

where proton transfer to a catalytic base is the rate-determining step, any increase in solvation 

of the catalytic base (e.g. due to partial opening of the active site) leads to a significant increase 

in barrier,308, 309  so small changes in solvation (at the level of individual water molecules) have 

a significant effect on reactivity. In dihydrofolate reductase isoforms, higher catalytic rates due 

to enhanced dehydration appear directly related to evolution: more efficient, evolved 

enzymes have increased the substrate basicity (i.e. reactivity) by expelling water from the 

active site.310 In the case of these other enzymes, significant loop motions are involved (e.g. 

triosephosphate isomerase, dihydrofolate reductase), or at least a closing of the substrate cleft 

(as in ketosteroid isomerase), whereas the effect found here in the OXA-48 type β-lactamases 

appears more subtle, primarily related to the rotational freedom of a single residue (Leu158). 

We note, however, that the energetic effect of an additional water molecule found here, around 

6 kcal/mole, is likely to be overestimated due to the simulation approach. The additional water 

is modelled using TIP3P, i.e. a standard fix-point charge MM description. The lack of 

polarization, perhaps combined with a too short hydrogen bond, may cause this overestimation; 

a similar large effect was observed in potential energy profiles for ketosteroid isomerase with 

one additional water, treated MM, hydrogen bonding to the catalytic base.309 

In our original US simulations for OXA-48, all the starting structures involved a rotated 

Leu158. Conversely, for OXA-163 all starting structures include Leu158 in the original 

rotamer. Interestingly, the role of water movement into the active site has recently been 

examined in carbapenem AE structures of OXA-48.71 Based on these crystallized AE 

complexes, carbapenemase activity in OXA-48 is suggested to be largely dependent on an open 

“deacylating water channel”, which allows water molecules to enter the active site. This water 

channel, consisting of Leu158 and Val120, is permanently “open” in OXA-48 and requires 

only slight shifts in residue positions upon carbapenem binding (unlike the case for other 

carbapenem-hydrolyzing Class D enzymes such as OXA-23,251 where more substantial 

conformational changes are proposed to be necessary to open a water channel upon carbapenem 
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binding). However, our results indicate that, while water access to the active site is necessary 

for the deacylating water to participate in deacylation, the deacylation efficiency is also 

affected by the level of solvation of the carboxylated lysine. Specifically, ingress of additional 

solvent molecules able to readily hydrogen bond with the carboxylate moiety would reduce its 

basicity and thereby the deacylation reactivity. 

 

5.5 Conclusions 
 

Here, we have modeled ceftazidime hydrolysis by the OXA-48-family class D β-

lactamase enzymes, using QM/MM reaction simulations. Our QM/MM protocol successfully 

distinguishes cephalosporinases (such as OXA-163) from non-cephalosporinases (such as 

OXA-48) by showing a consistent ~5 kcal/mol difference in calculated deacylation free energy 

barriers. It reveals the reactive ceftazidime AE conformation, and shows that the Ω-loop should 

not be disordered for efficient deacylation. This QM/MM protocol can be used for predictions 

of deacylation barriers (and, potentially, hydrolysis rates) for new and emerging OXA-48 

mutants (as for OXA-48 Arg214Ser here). Analysis of our simulations reveals that the 

calculated cephalosporinase efficiency correlates with active site solvation. In OXA-48, more 

water molecules can hydrogen bond with the general base (carboxylated lysine), which likely 

stabilizes the AE intermediate and diminishes deacylation rates. Correspondingly, the absence 

of active site water molecules other than the deacylating water in simulations of OXA-163 and 

OXA-48 Arg214Ser aids deacylation. Active site solvation is influenced by the orientation of 

Leu158 (part of the Ω-loop), whilst the local dynamics of Leu158 and the rest of the Ω-loop 

are likely to be affected by the β5-β6-loop, the site of a four residue deletion in OXA-163. Our 

findings that active site solvation in the AE affects the reactivity may be also applicable to 

other OXA enzymes and potentially to other serine β-lactamases where the general base is not 

a part of an organized hydrogen bonding network in the active site. This study also highlights 

the importance of modeling enzyme dynamics to understand reactivity, as active site solvation 

is difficult to reliably assess from static crystal structures that rarely yield information on 

conformational and solvation dynamics. The combination of experimental structures with 

detailed computational simulation techniques employed here thus enables deeper 

understanding of the mechanistic details of β-lactamase-mediated resistance, as well as 

prediction of activities of new drug-resistant enzyme variants.98 Ultimately, the availability of 

efficient and reliable reaction simulation techniques such as the QM/MM approach used here 



 

81 
 

will aid identification of new β-lactams that exploit the resulting mechanistic understanding to 

evade deacylation, as well as design of new mechanism-based β-lactamase inhibitors. 

 

5.6 Computational details 
 

This section comprises the Supporting Information for the publication presented in 

Chapter 5. 

 

System Set-up and Parameterisation 

 

OXA-48 with ceftazidime was originally set-up using OXA-48 acylenzyme structure 

with imipenem as the template (PDB:5QB4)239, and by replacing imipenem with ceftazidime 

as found in OXA-225 K82D structure (PDB: 4X55)256. Upon the publication of OXA-48 P68A 

with ceftazidime crystal structure (PDB: 6Q5F),255 further models were built based on the new 

binding pose of ceftazidime either by taking the new binding pose and combining it with the 

protein structure used with the first model (with the Ω-loop and β5-β6 loops as found in the 

apoenzyme), or by mutating the new crystal structure back to the wild-type enzyme and 

reconstructing the Ω-loop in a disordered state using Modeller (described below). For OXA-

163 models, the apoenzyme crystal structure (PDB: 4S2L)295 was used with both CTZ binding 

poses. For OXA-181, four residues were mutated with respect to the OXA-48 model, all 

mutations were performed using the mutagenesis wizard in PyMol (OXA-181 and OXA-48 

Arg214Ser). DW was manually added to the active site for all models, and all crystallographic 

water molecules were kept excluding the ones clashing with the acylenzyme (closer than 2.5 

Å from any acylenzyme atom). Carboxylated lysine (Lys73) was kept as found in the OXA-48 

and imipenem structure, which is essentially the same as in the OXA-48 apoenzyme structure 

(PDB: 4S2P)235. To avoid any possible steric clashes between the acylenzyme and the rest of 

the protein, Arg214 was rotated towards bulk solvent in all starting structures. All starting 

structures are available to download from Supporting Information as a zip file. Ceftazidime in 

the acylenzyme was modelled without the pyridine ring, as its elimination has been observed 

experimentally.311 

Protonation states of titratable residues were determined using propKa3.1.167, 312 Based 

on the predicted pKa values, all titratable residues were kept in their default state (all Glu/Asp 
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deprotonated, all Lys protonated). Histidine tautomers were predicted using reduce as 

implemented in the Amber program package (all histidines were singly protonated, are solvent 

exposed and distant from the active site). Hydrogen atoms were then added and all systems 

were solvated in a 10 Å box of TIP3P water using tLeap, with overall charge neutralized by 

replacing bulk water molecules with Na+ ions. The ff14SB force field was used to describe the 

protein, and the TIP3P compatible parameters were used for the counterions.100 Charge 

parametrization for non-standard residues (carboxylated lysine, KCX, and ceftazidime 

acylenzyme, CTZ – without the pyridine ring) was done using restrained electrostatic potential 

(RESP) fitting as implemented in the RED Server.172 Missing force field parameters were taken 

from analogous GAFF parameters.168 Parameter files for both fragments are available as part 

of the Supporting information zip file. 

 

Figure S1. Different models built for OXA-48 and OXA-163 with ceftazidime.  A. OXA-48 with Ω-loop 

as found in the apoenzyme and ceftazidime binding pose as in the OXA-48 and ceftazidime crystal 

structure (binding pose 1). B. OXA-48 with Ω-loop as found in the apoenzyme and ceftazidime binding 

pose as in the OXA-225 and ceftazidime complex (binding pose 2). C. OXA-48 with a disordered Ω-

loop built using MODELLER and ceftazidime binding pose as in the OXA-48 and ceftazidime complex. 

D. OXA-163 and ceftazidime binding pose as in the OXA-48 and ceftazidime crystal structure (binding 

pose 1). E. OXA-163 and ceftazidime binding pose as in the OXA-225 and ceftazidime structure 

(binding pose 2). 
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Loop Generation 

 
In the OXA-48 structure complexed with CTZ (PDB ID: 6Q5F),255 electron density was 

not found for residues between Asp148 and Ile162 (ISGNVDSFWLDGGIR, 13 residue gap). 

250 new models for the “disordered” Ω-loop were reconstructed using MODELLER296 with 

slow loop refinement, whilst the rest of the atoms in the apoenzyme were kept fixed. (KCX 

was mutated back to lysine and CTZ removed for model generation to avoid parameter 

problems with non-standard residues.) Models were initially inspected using both the DOPE 

and molpdf scores, and 25 models were chosen for visual inspection (all models were in the 

top 50 for at least one scoring method, emphasis was given for DOPE scores to include more 

realistic loop conformations). The final loop model was chosen based on the following criteria: 

loop residues do not clash with bound ceftazidime in the active site, the new loop does not form 

interactions with Arg214, and loop reaches in the cavity near the active site (where the 

“ordered” loop is in the apoenzyme) rather than fully into bulk solvent. All crystallographic 

waters closer than 2.5 Å to the new loop were deleted to avoid possible clashes. 

The “disordered” Ω-loop is not seen in the crystal structure of OXA-48 and ceftazidime 

(lacking electron density), and it is therefore predicted to be highly flexible compared to the 

surrounding structural elements. The chosen loop model was validated by measuring Cα-atom 

RMSF values for three 100 ns molecular dynamics simulations and by comparing the 

calculated fluctuations of the new Ω-loop against fluctuations in rest of the protein. The first 

10 ns of each simulation were excluded from RMSF calculations to allow for system 

equilibration. RMSF values for each simulation are presented in Figure S2, and they indicate 

that the newly constructed loop region is the most flexible part of the protein. Loop flexibility 

is somewhat exaggerated in simulation 2, as it is observed to move into bulk solvent and then 

move back to the vicinity of the active site. 
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Figure S2. RMSF measurement for Cα-atoms for the distorted Ω-loop model of OXA-48. RMSF was 

measured from three 100 ns MD simulations and compared against the average RMSF for OXA-48 

with the apo Ω-loop (magenta, average RMSF taken from five 100 ns MD simulations). 
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Scheme S1. Schematic illustration of the complete hydrolysis reaction in serine β-lactamases.49 After 

the initial Michaelis complex formation, the antibiotic is acylated (1) and a tetrahedral intermediate is 

formed (2), which collapses to give the acylenzyme structure (3). Subsequently, the acylenzyme is 

deacylated forming a second unstable tetrahedral intermediate (4), which collapses to the final 

hydrolysis product (5). 

 

Computational Methods 

 

After initial preparation, all structures were briefly minimized (1000 and 1000 steps of 

steepest descent and conjugate gradient, respectively) and heated from 50 K to 300 K in 20 ps. 

After heating, 1 ns MM MD was run to generate starting structures for umbrella sampling (US) 

calculations. Classical MD simulations were run using Langevin dynamics with a 2 fs timestep 

constraining all bonds involving hydrogen atoms with the SHAKE algorithm. All starting 

structures were chosen from the last 500 ps of the 1 ns run to allow for system equilibration 

during the first half (starting structures at least 50 ps apart). (Tests were also performed using 

starting structures after at least 50 ns of MM MD, see section “Extended MD Simulations: 

Stability, Loop Conformation and Free Energy Barriers”.)  All MM MD simulations were 

performed using a 2 fs timestep, Langevin dynamics with a collision frequency of 0.2, and 

periodic boundary conditions. The SHAKE algorithm was applied for all bonds involving 

hydrogen atoms. QM/MM simulations were performed under the same conditions, but with a 

1 fs timestep and SHAKE turned off for the QM region. The Amber program package was used 

for all calculations.203 
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QM/MM Free Energy Calculations 

 

QM/MM US185, 297 MD simulations were done using two analogous reaction 

coordinates as for class A enzymes: one for describing the proton transfer from DW to the 

general base, and one for describing the nucleophilic attack (Figure S3). The proton transfer 

reaction coordinate was sampled from 1.0 to −1.0 Å, and the nucleophilic attack coordinate 

from 3.8 to 1.4 Å, both in 0.1 Å increments with a 100 kcal mol−1 Å−2 force constant. First, US 

was performed along an approximate (see below) minimum free energy path (MFEP) from AE 

to TI on the 2D free energy surface (FES) in 33 US windows, and afterwards sampling along 

the rest of the surface was performed using these windows as starting points (altogether 525 

US windows). US was first done for in each window for 2 ps for equilibration, followed by a 

further 20 ps along the approximate MFEP and a further 2 ps in all other windows. This 

approach should ensure enough sampling near the true reaction path, whilst minimizing 

sampling in high energy regions on the FES. US was done for four different starting structures 

taken from a 1 ns MM/MD run. The QM region consists of the deacylating water (DW), KCX, 

and a part of the covalently bound drug (38 atoms, Figure S4), and DFTB3159 was used as the 

QM method with a 1 fs timestep. Covalent bonds between the QM and MM regions were 

treated using the hydrogen link atom scheme implemented in sander (Amber). A one-sided 

restraint was added for the ester bond between Ser70 and the substrate to ensure it does not 

elongate above 1.6 A (Figure S4). All US results were analysed and FESs constructed using 

WHAM186 with 21 and 25 bins for the proton transfer and nucleophilic attack coordinates 

respectively, with a convergence criterium set to 1x10−13. Calculations were done for four 

snapshots, and the overall energy barriers were obtained by combining all sampling from these 

four US calculations into one WHAM calculation. True MFEPs on the FESs were calculated 

using the Minimum Energy Pathway Analysis for energy landscapes (MEPSA) code.298 
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Figure S3. Illustration of the reaction coordinates used in umbrella sampling describing the changed 

in bonding during the tetrahedral intermediate formation. The proton transfer coordinate is defined 

with dark blue arrows as the difference d1-d2 (d[Lys73:O, DW:H] – d[DW:O, DW:H]). The 

nucleophilic attack coordinate is depicted as the red arrow, distance d3 (d[DW:O, CTZ:C]). 

 

The approximate minimum energy path for OXA-48 variants was constructed based on 

calculated class A deacylation surfaces, and consists of 33 initial US windows (PT=proton 

transfer, NA=nucleophilic attack): 

 

PT 1.0 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.6 

NA 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 

 

PT 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

NA 2.3 2.2 2.2 2.1 2.1 2.0 1.9 1.8 1.7 1.7 1.6 1.6 1.5 

 

PT -0.8 -0.8 -0.9 -1.0 

NA 1.5 1.4 1.4 1.4 
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Figure S4. QM region used in US calculations; QM atoms in red, MM atoms in black; location of link 

atoms indicated with squiggly lines. The ester bond in blue was restrained to be less than (or equal to) 

1.6 Å during US to avoid sampling the next step. 

 

Free Energy Surfaces – short sampling 

 
Free energy barriers for deacylation (Δ‡Gcalc values) in Table 1 (main manuscript) were 

calculated by sampling 20 ps near the approximate minimum energy path and 2 ps elsewhere 

on the free energy surface (as described above, from now on referred to as 20 + 2 ps sampling). 

The 2 ps ‘equilibration’ sampling in each window (prior to the US used for the free energy 

analysis reported in Table 1) was also used directly for the calculation of free energy surfaces 

using WHAM (as detailed above). Notably, Δ‡Gcalc values based on the 2 ps surfaces (without 

equilibration) do not largely differ from the 20 + 2 ps results (largest difference 0.5 kcal/mol; 

see Table S1), and show the same consistent difference in deacylation rates between different 

OXA-48 variants. 
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Table S1. Deacylation free energy barriers calculated from 2 ps sampling. All values in kcal/mol, 

standard deviations in parenthesis. 

Enzyme kcat (s–1)226 

Δ‡Gcalc (kcal/mol) 

Binding 

pose 1 

Binding 

pose 2 

New Ω-

loop 

OXA-48 NH 12.4 (0.8) 18.5 (1.0) >20a 

OXA-48 

R214S 

- 6.9 (0.5) 14.0 (1.4) >20a 

OXA-163 8 7.2 (0.3) 15.7 (1.4) - 

OXA-181 ND 11.0 (1.9) 17.7 (0.6) - 

OXA-181 

R214S 

- 6.4 (0.3) - - 

NH = No hydrolysis detected. ND = Not determined. 

a transition state could not be located on the free energy surface, with energy values rising to above 20 kcal/mol near the TI 

 

Benchmarking 

 
For the QM/MM MD umbrella sampling simulations, the semi-empirical DFTB3 

method was used. The free energy surface indicates a concerted mechanism with a barrier lower 

than that expected from experiment. Here, we perform more accurate DFT calculations (and 

ab initio single-point energy calculations) using a small gas-phase system representing the 

quantum region used in our QM/MM simulations (Figure S5). Transition states (TS) were 

optimised on both the M06-2X/6-31+G(d)134, 148 and BLYP/6-31G+(d)130, 131 levels using the 

QST3 algorithm as implemented in Gaussian09313. UltraFine integration grid was used for all 

calculations. 
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Figure S5. Left: Small molecule model representing the QM region used in benchmarking calculations. 

Right: M06-2X/6-31+G(d) optimized transition state of the small molecule model. Red arrows: proton 

transfer reaction coordinate, blue arrow: nucleophilic attack reaction coordinate. 

 

TSs were characterized by frequency calculations, and the TS on the M06-2X level 

corresponded to one imaginary frequency (-293.2677), whilst TS optimized using the BLYP 

functional yielded two imaginary frequencies (-107.3119 corresponding to the reaction, and 

one at -1.8944, corresponding to an overall bend/twist motion). IRC calculations starting from 

the M06-2X TS structure were performed in both directions to obtain the reactant and product 

minima, and the end structures where further optimised on the M06-2X/6-31+G(d) level. 

Reactants and products were optimised also with BLYP (starting from the M06-2X optimised 

structures). The reaction coordinate values of the TSs indicate that the reaction proceeds 

through a concerted mechanism, similar to that predicted by the DFTB3/ff14SB free energy 

surface (Table S2). Calculated activation energies (Table S2) indicate that DFTB3 significantly 

underestimates this value. RI-SCS-MP2/aug-cc-pVTZ314-316 single-point energies were 

calculated on the M06-2X optimized structures using Orca 4.2317, 318 (using the RIJK 

approximation and aug-cc-pVTZ/C and aug-cc-pVQZ/JK auxiliary basis sets319). DFTB3 

single-point energies were calculated for BLYP optimized structures using sqm as part of the 

Amber package.297 Comparison of these RI-SCS-MP2/aug-cc-pVTZ and DFTB3 activation 

energies shows that, based on these potential energies only, DFTB3 underestimates the 

activation energy by 7 kcal/mol. 
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Table S2. Location of the transition state for M06-2X and BLYP optimized small QM model (Figure 

S5), and calculated activation energy barrier. NA RC = nucleophilic attack reaction coordinate, PT 

RC = proton transfer reaction coordinate. 

Method NA RC (Å) PT RC (Å) Δ‡Gcalc (kcal/mol) 

M06-2X/6-31+G(d) 1.97 -0.35 14.85 

RI-SCS-MP2/aug-cc-pVTZa - - 16.63 

BLYP/6-31+G(d) 1.83 -0.51 15.53 

DFTB3b - - 9.65 

DFTB3/ff14SB FES (OXA-48)c 1.7 -0.5  
a Energy difference from single-point energies on M06-2X/6-31+G(d) optimized AE and TS structures. 
b Energy difference from single-point energies on BLYP/6-31+G(d) optimised AE and TS structures; A transition 

state could not be optimized in the gas-phase with DFTB3 as no saddle point is indicated between the AE 

minimum and the tetrahedral intermediate. 
c For reference, the approximate TS location obtained from the QM/MM free energy surface (see Figure 2) is 

indicated. 

 

For the purpose of comparing the in-enzyme energy surface shape and energies, a 

QM/MM potential energy surface was obtained (Figure S6). Starting from a snapshot of one 

OXA-48 US simulation in the window corresponding to the (approximate) transition state, a 

potential energy surface (PES) was calculated for the deacylation reaction. The LBFGS method 

was used for minimization (with convergence criterium of 0.01 mol−1 Å−1 for energy gradients). 

Residues further than 5 Å away from ceftazidime were restrained with a restraint weight of 50 

kcal mol−1 Å−2 (to avoid discontinuities). Single-point energy corrections were calculated by 

taking the difference in the QM region energies calculated at the M06-2X/def2-TZVP level 

(using the RIJK approximation with def2/JK auxiliary basis set) with Orca 4.2 and the DFTB3 

level. (QM-MM interaction terms were thus calculated with DFTB3.) 
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Figure S6. Left: Potential energy surface for ceftazidime deacylation calculated with DFTB3; energy 

at -0.5,1.6 (location of the free energy surface TS) is 13.4 kcal/mole. Right: DFTB3 potential energy 

surface with M06-2X/def2-TZVP energy corrections; approximate TS at -0.3,1.9 is 19.4 kcal/mole. The 

difference of 6 kcal/mole is in line with the small model calculations (Table S2). 

 

Mulliken Charge Calculations 

 

Mulliken charges for the QM region were calculated from extended US in both 

acylenzyme and tetrahedral intermediate minima from one individual US free energy surface. 

Charge values were calculated as an average from 1000 frames over 20 ps (i.e. snapshots 

recorded every 20 fs). Mulliken charges are presented for OXA-48 (both ordered and 

disordered Ω-loop), OXA-48 Arg214Ser, and OXA-163. All four models show the same trend, 

where largest charge variations are observed for the atoms that directly take part in deacylation 

or are near the reactive parts (Figure S7). Mulliken charges were recorded for the QM atoms 

in both the enzyme environment and in the gas-phase. For the gas-phase charge calculations, 

each frame of the QM/MM MD trajectory was extracted as a separate structure and pseudo-

minimized (minimization with 0 steps) to obtain the QM region with link atoms. Subsequently, 

a single-point QM calculation was done for each QM region structure using sqm (as 

implemented in Amber) to obtain the Mulliken charges. The results on key atoms are reported 

in Tables S3-S5. 
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Figure S7. QM region with link atoms (in green). Atom names shown for selected heavy atoms, whose 

Mulliken charges were recorded during QM/MM MD. 

 

 

 

Table S3. Mulliken charges for WT OXA-48 and ceftazidime. 

QM atom 
Enzyme QM region only 

QAC QTI ΔQTI-

AC QAC QTI 
ΔQTI-

AC 

KCX-OQ1 -1.01 -0.59 0.41 -0.93 -0.56 0.36 

KCX-OQ2 -0.91 -0.80 0.11 -0.86 -0.74 0.12 

KCX-C 0.98 0.83 -0.15 0.94 0.81 -0.13 

DW-O -0.85 -0.76 0.09 -0.84 -0.73 0.11 

CTZ-O -0.65 -1.0 -0.35 -0.56 -0.92 -0.37 

CTZ-C 0.71 0.91 0.20 0.69 0.89 0.20 

CTZ-OG -0.34 -0.59 -0.26 -0.34 -0.6 -0.26 

 

Table S4. Mulliken charges for WT OXA-48 with a ‘disordered’ Ω-loop and ceftazidime. 

QM atom 

Enzyme QM region only 

QAC QTI ΔQTI-

AC QAC QTI 
ΔQTI-

AC 

KCX-OQ1 -1.01 -0.59 0.41 -0.93 -0.56 0.36 

KCX-OQ2 -0.91 -0.80 0.11 -0.86 -0.74 0.12 

KCX-C 0.98 0.83 -0.15 0.94 0.81 -0.13 

DW-O -0.85 -0.76 0.09 -0.84 -0.73 0.11 

CTZ-O -0.65 -1.0 -0.35 -0.56 -0.92 -0.37 

CTZ-C 0.71 0.91 0.20 0.69 0.89 0.20 

CTZ-OG -0.34 -0.59 -0.26 -0.34 -0.6 -0.26 
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Table S5. Mulliken charges for R214S OXA-48 and ceftazidime. 

QM atom 
Enzyme QM region only 

QAC QTI ΔQTI-

AC QAC QTI 
ΔQTI-

AC 

KCX-OQ1 -0.94 -0.59 0.35 -0.89 -0.56 0.33 

KCX-OQ2 -0.89 -0.78 0.11 -0.86 -0.74 0.12 

KCX-C 0.96 0.83 -0.14 0.94 0.81 -0.13 

DW-O -0.93 -0.79 0.14 -0.87 -0.76 0.11 

CTZ-O -0.69 -1.00 -0.31 -0.56 -0.88 -0.32 

CTZ-C 0.73 0.93 0.20 0.70 0.91 0.21 

CTZ-OG -0.32 -0.60 -0.27 -0.34 -0.62 -0.28 

 

Table S6. Mulliken charges for OXA-163 and ceftazidime. 

QM atom 

Enzyme QM region only 

QAC QTI ΔQTI-

AC QAC QTI 
ΔQTI-

AC 

KCX-OQ1 -0.94 -0.61 0.33 -0.90 -0.59 0.32 

KCX-OQ2 -0.89 -0.79 0.10 -0.86 -0.75 0.11 

KCX-C 0.97 0.84 -0.13 0.94 0.82 -0.12 

DW-O -0.92 -0.82 0.10 -0.88 -0.81 0.06 

CTZ-O -0.67 -1.00 -0.33 -0.57 -0.90 -0.33 

CTZ-C 0.73 0.92 0.20 0.70 0.90 0.21 

CTZ-OG -0.32 -0.53 -0.21 -0.33 -0.54 -0.21 

 

Acylenzyme Clustering 

 

Clustering of the acylenzyme was done based on five 50 ns MD simulations (1250 

frames/simulation) per acylenzyme model (OXA-48 with (dis)ordered Ω-loop, OXA-48 

Arg214Ser, OXA-163). All MD simulations were combined into one clustering calculation by 

stripping all solvent molecules and parts of the protein that did not match between all enzymes 

(e.g β5 - β6 loop in OXA-48). Trajectories were aligned based on Cα-atoms of 12 residues near 

the active site (CTZ, Thr71-Pro75, Ser118, Lys208-Tyr211, Lys218), and the substrate 

orientations were clustered into four clusters (using a sieve of 20) based on the RMSD of CTZ 

heavy atoms. The clustering analysis does not show any significant differences between the 

different enzyme models near the formed ester bond and the electrophilic carbon, but larger 

deviations between enzymes are seen for the oxyimino and thiazole groups. As depicted in 

Figure S8, OXA-48 with a newly constructed Ω-loop is seen to sample one orientation not 

observed for other enzymes (green cluster), as it has more space in the active site for substrate 

movement due to loop distortion. 
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Figure S8. Acylenzyme orientations during extended MD from k-means clustering analysis. 

Representative structures (cluster centroids) are shown of the largest clusters (most sampled 

orientations) for OXA-48 (grey), OXA-163 (magenta), OXA-48 Arg214Ser (cyan), and OXA-48 with 

distorted Ω-loop (cyan & green). 

 

Oxyanion Hole Hydrogen Bond Distances 

 

 

Figure S9. The oxyanion hole, formed by backbones of Ser70 (the AE) and Tyr211, stabilises the 

formation of a tetrahedral intermediate (hydrogen bonds highlighted in violet). 

 

Because oxyanion hole interactions are known to stabilise the forming tetrahedral 

intermediate structure, distances of these hydrogen bonds (formed by the backbones of Ser70 

in the ceftazidime acylenzyme and Tyr211, Figure S9) were measured both from five 50 ns 
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MM MD simulations per enzyme (for the acylenzyme), and from four 20 ps QM/MM MD 

simulations per enzyme (for the tetrahedral intermediate). Distance measurements are 

presented in Figures S10-S13. Overall, distances are very similar, and do not correlate with 

differences in the reaction barrier between the different enzyme models. 

 

 

Figure S10. Hydrogen bond distances between the mainchain of Tyr211 and ceftazidime in the oxyanion 

hole from 50 ns MM/MD (measured from five MD simulations per acylenzyme model). 
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Figure S11. Hydrogen bond distances between the mainchain of Ser70 and ceftazidime in the oxyanion 

hole from 50 ns MM/MD (measured from five MD simulations per acylenzyme model). 

 

Figure S12. Oxyanion hole distances between Ser70 backbone and ceftazidime in the tetrahedral 

intermediate from 20 ps QM/MM MD. 
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Figure S13. Oxyanion hole distances between Tyr211 backbone and ceftazidime in the tetrahedral 

intermediate from 20 ps QM/MM MD. 

 

Leu158 Rotation 

 

Figure S14. Three observed rotamers of Leu158. Representative structures are highlighted for 

structures where the C-Cα-Cβ-Cγ dihedral angle (χ1) is approximately 50° (g+; cyan), 170° (t; grey), 

and 290° (g-; purple). 
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Figure S15. Leu158 C-Cα-Cβ-Cγ dihedral (χ1) values measured from five 50 ns MD simulations for 

each enzyme. Three different rotamers are observed for each enzyme during MD simulations: around 

50°, 170° and 290° (g+, t, and g-, respectively).  The orientation found in the apoenzyme corresponds 

to the 170° orientation, and the two different orientations mainly occur for OXA-48. 

 

Extended MD Simulations: Stability, Loop Conformation and Free Energy Barriers 

 
To further inspect the stability of the simulation systems and check for possible of 

conformational changes in the studied OXA-48 variants, we ran five additional independent 

120 ns MD simulations each for the acylenzymes of OXA-48, OXA-163 and OXA-48 R241S 

(in binding mode 1 and with the ordered Ω-loop). Measurement of the RMSD for Cα-atoms 

(excluding the first flexible five residues in the N terminus) indicates that all three systems are 

stable (Figure S16). 
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Figure S16. Cα-RMSD of five 120 ns MM MD simulations for OXA-48 (left), OXA-48 Arg214Ser 

(middle), and OXA-163 (right). 

 

The β5 – β6 loop movement in OXA-48 and OXA-48 R214S was further inspected 

from the 120 ns MD simulations by clustering the sampled loop orientations based on Cα-

RMSD. All five OXA-48 trajectories and five OXA-48 R214S trajectories were aligned on Cα-

atoms of residues 29-211 & 219-265 (excluding five residues from the N-terminal end), and 

then divided in 5 clusters based on Cα-RMSD of the β5 – β6 loop (residues 212-218). 

Clustering was performed with the k-means algorithm as implemented in cpptraj with a sieve 

of 20. For the majority of simulation time, the β5 - β6 loop in OXA-48 and in OXA-48 R214S 

sample the same conformational space (70% and 76% in clusters 1-3 for OXA-48 and OXA-

48 R214S, respectively, with populations ≥ 20% for each enzyme/cluster). Although the 

remainder of the time (30% and 23% for OXA-48 and OXA-48 R214S, respectively) the loop 

conformations are slightly different, it is clear that the mutation does not lead to a significant 

shift to a new conformational state (Figure S17). 
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Figure S17. Clustering of the β5 - β6 loop (k-means clustering based on loop backbone RMSD after 

alignment on the rest of the protein, into 5 clusters) of 5x 120ns simulations of both OXA-48 and OXA-

48 R214S. Loop carbons are coloured by cluster as follows: 1 green, 2 magenta, 3 yellow, 4 cyan and 

5 orange. Ceftazidime acylenzyme and the Ω-loop are also shown, for reference. 

Additionally, we performed one QM/MM (DFTB3/ff14SB) US simulation per enzyme 

variant by taking a starting structure from the 120 ns MD simulations. To make the calculated 

energetics comparable with the ones calculated for starting structures taken from 1 ns MD 

simulation, the structure for each variant was chosen so that Leu158 conformation and active 

site hydration replicate the ones observed in the original starting structures (i.e. Leu158 

dihedral is 50° for OXA-48, and 170° for OXA-48 Arg214Ser and OXA-163). Results from 2 

ps QM/MM US simulations, using the same procedure as applied previously, indicate similar 

free energies are obtained as with snapshots from the initial short 1 ns MD simulation (Table 

S7). 

Table S7. Free energy barriers calculated with DFTB3/ff14SB umbrella sampling from extended MD 

snapshots. 

Enzyme Time Δ‡Gcalc 

(kcal/mol) 

OXA-48 50 ns 12.42 

OXA-48 

R214S 
120 ns 7.45 

OXA-163 110 ns 7.93 
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Chapter 6 – Dissection of carbapenem hydrolysis by the OXA-48 β-

lactamase reveals the origin of difference in efficiency 

 

 Chapter 6 comprises a draft manuscript titled “Dissection of carbapenem hydrolysis by 

the OXA-48 β-lactamase reveals the origin of difference in efficiency”. The following version, 

i.e. the first draft, was written by myself with text editing from my supervisor Marc van der 

Kamp. Section 6.6 comprises the data intended as Supporting Information for the manuscript.  

 

6.1 Abstract 
 

OXA-48 β-lactamases are frequently encountered in bacterial infections caused by 

carbapenem-resistant Gram-negative bacteria. Due to the importance of carbapenems in 

treatment of healthcare-associated infections and the increasingly wide dissemination of OXA-

48 enzymes on plasmids, these enzymes are of high clinical significance. Notably, OXA-48 

hydrolyses imipenem more efficiently than other common carbapenems, such as meropenem. 

Here, we use extensive multi-scale simulations of imipenem and meropenem hydrolysis to 

dissect the differences in reactivity of possible conformational substates of the carbapenem 

acylenzymes. We highlight in detail which active site interactions lead to most efficient 

hydrolysis, including the orientation of the carbapenem 6α-hydroxyethyl group, and we 

correctly identify the experimentally observed difference in hydrolysis efficiency. In addition 

to increased insights into carbapenem breakdown by OXA β-lactamases, which may aid design 

of new antibiotics, our approach exemplifies the combined use of atomistic dynamics 

simulations and multi-scale reaction simulations to determine different possible enzyme-

substrate substates and their influence on enzyme reaction kinetics. 

 

 

6.2 Introduction 
 

The World Health organization describes antibiotic resistance as “...one of the biggest 

threats to global health, food security, and development today.”320 Antibiotic resistance arises 

naturally,321 but it is considerably accelerated by the current excessive use of antibacterial 

drugs.61, 322 This evolving resistance does not only complicate the standard practice of 
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medicine, but has additionally expensive implications e.g. for global economy and food 

production.206, 323, 324 Moreover, we are currently living in the so-called antibiotic discovery 

void: discovering new and safe antibacterials, especially against Gram-negative bacteria, is 

difficult, time-consuming, and often unprofitable for big pharmaceutical companies.13, 325 β-

Lactam antibiotics offer broad-spectrum antibacterial activity against Gram-negative bacteria 

and persist as the most prescribed drugs in clinical practice.18 The significance of β-lactams in 

healthcare is highlighted by the World Health Organization, who has included multiple 

different β-lactam antibiotics in the Model List of Essential Medicine.26 All these antibiotics 

contain a four-membered β-lactam ring, which ensures antibiotic binding to penicillin-binding 

proteins and consequently inhibition of bacterial cell wall biosynthesis.50, 326 Clinically used β-

lactam compounds can be divided into four different groups: penicillins, cephalosporins, 

carbapenems, and monobactams, of which especially carbapenems play a critical role as potent 

“last resort” antibiotics.24 

Emerging resistance against β-lactams is evident, and currently β-lactamase enzymes 

are the main resistance mechanism against these drugs (especially in Gram-negative 

bacteria).49 β-Lactamases prevent antibiotic action by hydrolysing the β-lactam ring, which 

prevents antibiotic binding to their ultimate target in cells. According to the Ambler 

classification, β-lactamases are divided into four major subgroups: serine-β-lactamases (SBLs) 

are classes A, C, and D, and metallo-β-lactamases (MBLs) class B.63 The hydrolysis 

mechanism differs between SBLs and MBLs, as SBLs utilise a nucleophilic serine residue and 

MBLs employ zinc cofactors.49 Class D SBLs are referred to as OXA enzymes, the name 

stemming from the term oxacillinase,288 and they are currently of interest due to their wide 

spread globally as well as due to their ability to inactivate carbapenems. OXAs include five 

subgroups of recognised carbapenemases: OXA-23, OXA24/40, OXA-51, and OXA-58 β-

lactamases are mainly found in Acinetobacter baumannii, while OXA-48-like β-lactamases are 

common in Enterobacterales.221 

Focusing on Enterobacterales, OXA-48 β-lactamases are among the most commonly 

diagnosed carbapenemases in clinical samples.218 Their activity is directed against imipenem, 

but other carbapenem substrates (such as meropenem and ertapenem) are also hydrolysed, 

albeit slowly.226 The specific origin of this imipenemase activity is not well established, even 

though variations in measured hydrolysis rates between OXA-48 variants hint to structural 

moieties contributing to specific hydrolytic phenotypes. In OXA-163, a partial deletion of the 

β5-β6 loop (Arg214-Pro217) and one amino acid substitution (Ser212Asp) expands the 

hydrolysis profile to accommodate expanded-spectrum oxyimino cephalosporins (like 
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ceftazidime) at the expense of efficient imipenem breakdown.230 Further studies show that the 

β5-β6 loop plays a role in acquired carbapenemase activity.242, 243, 245 In recent years, structural 

studies have yielded a variety of OXA-48 crystal structures with carbapenems, which shed new 

light on the acylenzyme (AC) intermediate state.71, 233, 239-241 Intriguingly, even when the β5-β6 

loop is suggested to influence carbapenem activity, the only interaction between the substrate 

and loop residues (Thr213-Lys218) are hydrogen bonds to a bridging water molecule between 

imipenem 6α-hydroxyethyl hydroxyl and Thr213.71, 233 Furthermore, carbapenem tail groups 

(C2 substituents) seem to be dynamic and able to adopt multiple conformations, which suggests 

they do not form strong interactions with the protein.241 

 

 

Figure 6.1. Crystal Structures of OXA-48 with Carbapenems. Acylenzyme structures of OXA-48 with 

imipenem (PDB ID 6P97, green sticks) and meropenem (PDB ID 6P98, light pink sticks) show a very 

similar binding pose for both substrates, where mainly the orientation of carbapenem tail group 

differs.71 The Ω-loop is highlighted in orange, the β5-β6-loop in yellow, and relevant active site 

interactions with dashed black lines. The carbapenem pyrroline ring is found as the Δ2-tautomer for 

both carbapenems. 
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The standard hydrolysis mechanism of SBLs with β-lactams consists of acylation 

followed by deacylation.49 Both acylation and deacylation include the formation of a shortly 

lived tetrahedral intermediate (TI) through a nucleophilic attack; the TI collapses to yield either 

a covalent AC structure (after acylation), or the final hydrolysed product (after deacylation). In 

both reactions, the nucleophile, which is Ser70 in acylation and a water molecule (deacylating 

water, DW) in deacylation, is activated via proton abstraction by a general base. For OXA 

enzymes, this general base is a carboxylated lysine residue (Lys73).222, 223 Notably, Lys73 

needs to be carboxylated for hydrolysis to take place, and its carboxylation is reversible and 

pH dependent, i.e. a carboxylation is observed to a higher degree at higher pH values.223 

Characteristic only for carbapenems, the pyrroline ring can undergo Δ2 → Δ1 tautomerization 

in the AC state, the Δ1 tautomer also having two stereoisomers (R or S). For class A SBLs, the 

Δ2 tautomer has been suggested to be the catalytically competent form, whereas Δ1 would 

essentially inhibit the enzyme.247 For OXA-48s, all three tautomers have been observed in AC 

crystal structures,71, 233, 240, 241 but based on NMR studies, the hydrolysis product is suggested 

to be either the Δ2 or R-Δ1 tautomer.252 

 

Scheme 6.1. Top: Structures of meropenem and imipenem with atom numbering, the 6α-hydroxyethyl 

group highlighted in red. Bottom: Deacylation mechanism in OXA-48 with a carbapenem substrate (Δ2 

tautomer). Starting from the acylenzyme, the antibiotic is deacylated via tetrahedral intermediate 

formation (1 → 2), which collapses to yield the hydrolysed antibiotic. 
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Kinetics measurements suggest that for OXA-48-like β-lactamases, deacylation is the 

rate-limiting hydrolysis step in carbapenem breakdown.233 The authors suggested that the 

impaired imipenemase activity in the ESBL-like OXA-163 is due to a larger active site, which 

would not constrain the substrate in deacylation-compatible conformations. Molecular 

dynamics simulations of the non-covalent complexes of OXA-48 and OXA-163 with both 

meropenem and imipenem were conducted (a single trajectory for each complex), which may 

indicate differences in stability. However, the measured Km values for OXA-48 with imipenem 

and meropenem are highly similar (according to one assay, 11 and 13 μM, respectively)226, 

which indicates that there is likely no significant difference in the initial Michaelis complex 

stability. The difference in the inactivation efficiency of imipenem compared to meropenem 

should thus be related to a difference in the deacylation step. To inspect differences in catalysis 

for carbapenems on an atomistic level, we simulate the TI formation in deacylation, i.e. the 

identified rate-limiting step, for both imipenem and meropenem with OXA-48 using combined 

quantum mechanics/molecular mechanics (QM/MM) simulations. Our simulations support the 

hypothesis of the dynamic nature of carbapenem substrates in the AC state. We identify which 

conformations of the 6α-hydroxyethyl group allow for efficient deacylation. Additionally, 

active site hydration around the carboxylated Lys73 is observed to affect the calculated free 

energy barriers, as has been noted previously for ceftazidime hydrolysis by OXA-48 

enzymes.257 Based on further analysis of the reaction simulations, efficient carbapenem 

breakdown results both from decreased hydration around carboxy-Lys73 and from subtle 

changes in the hydrogen bonds between the substrate and the catalytic water molecule. 

 

6.3 Methods 
 

Computational methods and details for system setup are described in detail in the SI. 

To summarise, models of OXA-48 with imipenem and meropenem were prepared based on 

corresponding acylenzyme (AC) crystal structures (PDB IDs 6P9771 and 6P9871 for imipenem 

and meropenem, respectively). The ff14SB parameter set was used for the protein,100 

parameters and partial charges for non-standard residues (acylated carbapenems and 

carboxylated lysine) were derived with the R.E.D. Server.172 Both systems were briefly 

minimised, heated from 50 K to 300 K (in 20 ps), and then the dynamics in the AC state were 

simulated for 200 ns using Langevin dynamics (collision frequency 0.2 ps-1) with a 2 fs 

timestep. Five independent simulations for each AC system were run. All bonds involving 
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hydrogens were restrained using the SHAKE algorithm. Starting structures for QM/MM185 

were chosen from MD simulations based on visual inspection of the active site hydration and 

the 6α-hydroxyethyl orientation; the 6α-hydroxyethyl orientation was kept from changing 

during subsequent US by applying a mild dihedral restraint  (except for orientation I). Free 

energy barriers for the first (rate-limiting) step of deacylation for different active site 

conformations were determined from three separate QM/MM US calculations.297 Two reaction 

coordinates were employed in US, one for the nucleophilic attack and one for the proton 

transfer. Sampling time in each window was 2 ps, and DFTB2 (SCC-DFTB)158, 327, 328 was used 

as the QM method for QM region consisting of 43 and 46 atoms for imipenem and meropenem, 

respectively (including link atoms, depicted in Figure S1, Section 6.6). Free energy surfaces 

were constructed from 399 individual US windows. The Weighted Histogram Analysis Method 

(WHAM)186, 329 was used to construct the free energy surfaces, and the minimum energy paths 

were analysed using the Minimum Energy Path Surface Analysis (MEPSA) program298. All 

simulations and trajectory analysis were done using the Amber18 software package166 

(pmemd.cuda299, 301 for MM MD, and sander for QM/MM calculations). 

 

6.4 Results and discussion 
 

6.4.1 Acylenzyme dynamics 

 

AC dynamics for both imipenem and meropenem complexed with OXA-48 were 

explored by running five 200 ns MM MD simulations for each complex, the first 50 ns were 

excluded from trajectory analysis to allow time for system equilibration. For both carbapenems, 

the salt bridge between C3 carboxylate and Arg250 was preserved during simulations, and the 

C7 carbonyl stayed in the oxyanion hole formed by the backbone amides of Ser70 (part of the 

AC) and Tyr211. The carbapenem tail moieties sampled a range of conformations during the 

simulations, consistent with previous suggestions based on structural analysis.241 Clustering of 

imipenem and meropenem poses based on their heavy atom RMSD yielded four distinct 

clusters, which differ slightly from the poses defined in the deposited crystal structure 

coordinates by 0.8-1.8 Å and 1.7-2.5 Å for imipenem and meropenem, respectively (Figure S2, 

Table S1 and SI section “Acylenzyme Clustering” in Section 6.6). The main deviations 

between cluster centroids and the crystal structure coordinates are due to the C2 tail group 

position, as the pyrroline ring and its substituents are anchored in place by the oxyanion hole 

hydrogen bonds and the salt bridge with Arg250. However, there is only limited electron 
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density beyond the sulfur atom for both imipenem and meropenem in crystal structures 6P97 

and 6P98, so the deposited substrate coordinates may not completely reliably depict the actual 

binding poses. 

During MM MD, the carbapenem 6α-hydroxyethyl group rotated to occupy three different 

orientations, which can be distinguished by the value of the C7-C6-C-O dihedral angle: around 

50°, 180°, or 290°, and these are henceforth referred to as orientations I, II, and III, respectively 

(Figure 6.2). The 6α-hydroxyethyl orientation affects interactions in the active site, because its 

hydroxyl group can hydrogen bond either with the DW (I), Lys73 carboxylate (III), or stay 

close to the crystallographically observed pose, in which its methyl group is positioned next to 

the DW and points towards Leu158 (II, Figure 6.2). The starting orientation of the 6α-

hydroxyethyl for both carbapenems is II, from the crystal structures used in model building. 

During MD, this sidechain is free to move and sample all three orientations. For meropenem, 

orientation I is sampled more than II, while III is sampled only minimally (Figure 6.2). 

Conversely, both orientations II and III are sampled more than I for imipenem. The free energy 

difference between the different orientations of the 6α-hydroxyethyl group was estimated by 

calculating the ratio of MD trajectory frames corresponding to each orientation (Z), and using 

ΔG=RTln(Z), where R is the molar gas constant and T the simulation temperature (300 K). For 

imipenem, the lowest free energy state is orientation II, with slightly higher relative energies 

of 0.6 and 0.2 kcal/mol for orientations I and III, respectively. For meropenem, orientation I 

has the lowest free energy, orientation II is slightly higher (0.6 kcal/mol) but orientation III is 

significantly higher (2.2 kcal/mol). The presence of a methyl group in the 1β-position in 

meropenem (instead of a 1β-proton in imipenem) may explain the relatively higher penalty for 

orientation III, as in this orientation the 1β-substituent is located directly next to the 6α-

hydroxyethyl moiety. 



 

109 
 

 

 

Figure 6.2. Sampling of the 6α-hydroxyethyl group of carbapenems. Left: The 6α-hydroxyethyl group 

can assume three different orientations, which can be distinguished by the C7-C6-C-O dihedral angle 

values. When the dihedral is around 50° (orientation I), the hydroxyl group is hydrogen bonded with 

the DW, and in the 180° orientation (II) the hydroxyl group can only interact with solvent. In 290° 

orientation (III), the hydroxyl group is donating a hydrogen bond to the carboxylated Lys73. Right: The 

distribution of sampled dihedral values during MM MD (5x150 ns per carbapenem). 

 

Previously, our QM/MM simulations indicated that Leu158 may play an important role 

in modulating active site hydration in the deacylation of ceftazidime by OXA-48-like 

enzymes.257 The orientation of Leu158 also differed initially between the two OXA-

48/carbapenem systems, as the Cβ-Cγ bond has rotated by 180° in the meropenem structure. 

To study if Leu158 has a similar effect in carbapenem hydrolysis as observed for ceftazidime, 

its rotamers were recorded during MD by measuring the χ1 dihedral (N-Cα-Cβ-Cγ). The 

distribution of sampled rotamers is presented in Figure S4 in Section 6.6. After the heating 

phase, Leu158 essentially always rotates away from the crystallographic g- orientation (χ1 ≈ 

290°) to the t orientation (χ1 ≈ 180°) to allow space for the 6α-hydroxyethyl moiety, which in 

turn also permits two water molecules to form hydrogen bonds with K73:OQ1. As the 

cephalosporin scaffold lacks a moiety similar to the 6α-hydroxyethyl group in the carbapenem 
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scaffold, it is likely that Leu158 does not possess a similar role in carbapenem hydrolysis to 

that suggested for cephalosporins. 

 

6.4.2 Deacylation efficiencies for the 6α-hydroxyethyl orientations 

 

Because the interactions of the 6α-hydroxyethyl group in the active site have been 

suggested to play a role in modulating β-lactamase activity towards carbapenems,222 

deacylation free energy barriers were calculated separately for all three orientations observed 

in MD for both imipenem and meropenem. Starting structures for US were chosen from the 

200 ns MM MD simulations following two criteria: a potential DW was at a suitable distance 

for nucleophilic attack, and the 6α-hydroxyethyl orientation was the desired one. For 

orientations II and III, the sidechain dihedral was restrained close to the reference values to 

avoid the substrate changing between orientations during the reaction (no restraints were 

needed for I, as no sidechain rotation during US was observed). Overall barriers were 

determined by combining sampling from three separate US calculations (with different starting 

structures), with standard deviations calculated between the free energy barriers for individual 

US simulations (Table S3 in Section 6.6). More details of the US setup and analysis are 

available in the SI in Section 6.6. 
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Figure 6.3. Free energy barriers for the three different 6α-hydroxyethyl orientations. Each bar includes 

the barrier obtained with a single water molecule hydrogen bonded to Lys73:OQ2 (lowest barrier, in 

colour; see Figure 6.4 for depiction of OQ2) and the barrier obtained with two water molecules 

hydrogen bonded to K73:OQ2 (highest barrier, in grey). Each barrier derived from three individual 

US simulations, standard deviations in parenthesis. Imipenem = green, meropenem = pink.  

 

Figure 6.3 introduces the calculated deacylation free energy barriers for the three 6α-

hydroxyethyl orientations. For all orientations, two barriers are presented, which correspond to 

two different hydration states around the general base. The lower barrier (in color) corresponds 

to a state with only one water hydrogen bonded to Lys73:OQ2 and one or two waters hydrogen 

bonded to Lys73:OQ1, while the higher barrier corresponds to a state with two water molecules 

hydrogen bonded to both carboxylate oxygens (Figure 6.4, carboxylate oxygens labelled in 

Scheme 6.1). For all hydration states, the calculated barriers follow the same trend of I < II < 

III, i.e. the lowest barriers are calculated for orientation I. Notably, the lowest barriers are 

consistently underestimated due to the QM method used (SCC-DFTB), as indicated by our 

benchmarking results (SI section “Benchmarking”). Converting the experimentally determined 

kcat values from one assay to free energy barriers using the Eyring equation gives activation 

free energies of 16.6 and 19.2 kcal/mol for imipenem and meropenem, respectively.226 
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However, despite the difference in calculated barriers and those derived from experiment, we 

expect our protocol with semi-empirical QM methods to be a reliable indicator of energetic 

trends between different enzymes active site conformations, as we have demonstrated 

previously for studying β-lactam deacylation by class A and D SBLs.189, 257 

As discussed above and in ref. 257, increased hydration around the proton-accepting 

Lys73:OQ1 is expected to impair deacylation in ceftazidime hydrolysis. A similar phenomenon 

was observed for carbapenems, with the addition that hydration around the second carboxylate 

oxygen affects reactivity as well. In orientation I, the average number of hydrogen bonds 

Lys73:OQ1 accepts during the reaction is 2.1-2.6 (calculated from the US minimum free 

energy path trajectories), which aligns with OQ1 being hydrogen bonded to two waters and 

partly to Trp157. The two subpopulations with different deacylation barriers arise from a 

change in hydration around Lys73:OQ2. For the lower barriers in Figure 6.3, the number of 

hydrogen bonds to OQ2 is 1.3-1.4, and for the higher barriers 2.1-2.3 for orientation I. The 

lowest calculated deacylation barrier, 8.5 kcal/mol, is for imipenem in orientation I with one 

water hydrogen bonded to OQ2 and two to OQ1 (Figure 6.4). The barrier increases by 1.9 

kcal/mol when another solvent molecule donates a hydrogen bond to OQ2. For meropenem, 

the barrier is raised by 3.5 kcal/mol upon introducing an additional water near OQ2. The 

hydration effect around Lys73:OQ2 indicated here has a smaller effect on calculated barriers 

than hydration around Lys73:OQ1, since having an additional water hydrogen bonded to OQ1 

raised the barrier by approximately 5 kcal/mol for ceftazidime deacylation.257 As the electrons 

are delocalised in the carboxylate anion, it is plausible that changing the interactions around 

the non-reactive oxygen affects also the charge distribution, i.e. basicity, of the reactive OQ1. 

Orientation II is observed in most OXA-48/carbapenem crystal structures 

(corresponding dihedral between 147°-192° depending on the structure and protein chain). In 

this orientation, no part of the 6α-hydroxyethyl moiety interacts with the DW or with Lys73, 

so the antibiotic may possibly not interfere with the reactive atoms. However, calculated 

deacylation barriers are increased by 2.0 for imipenem and by 1.8 kcal/mol for meropenem 

when comparing orientation II against I (with only one water hydrogen bonded to OQ2). 

Having two waters donating hydrogen bonds to both OQ1 and OQ2 further raises the barriers 

to 13.6 and 16.0 kcal/mol for imipenem and meropenem, respectively. Therefore, our 

simulations suggest that II is not the most deacylation-compatible AC orientation. 

Additionally, orientation II might hinder the presence of the DW in the active site in proximity 

to the electrophilic acyl carbon. For 93% and 87% of simulation time for imipenem and 

meropenem (respectively) in orientation II, the distance between the AC electrophilic carbon 
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and the closest water falls beyond 4 Å (an arbitrary threshold distance for a feasible 

nucleophilic attack; Figure S5 in Section 6.6). This is likely due to the 6α-hydroxyethyl methyl 

group partly occupying the space in the deacylating water pocket and thereby forcing water 

further away from the AC. This is reflected in deposited crystal structures, as a suitable DW 

positioned for nucleophilic attack is not observed in any OXA-48/carbapenem complex.71, 233, 

239-241 In a previous study, orientation II was observed to obstruct the positioning of the DW in 

the active site. The authors concluded that only slight re-positioning of the methyl group of the 

6α-hydroxyethyl sidechain is needed to better accommodate a water molecule at a suitable 

distance for nucleophilic attack. However, these conclusions are based on one 10 ns MD 

simulation, which provides insufficient conformational sampling of all available substrate 

orientations. Based on our MM MD simulations as well as calculated free energy barriers, 

orientation II is less likely to contribute to efficient deacylation both due to an increase in 

required energy as well as due to the lack of suitable active site configurations to undergo 

nucleophilic attack. 

The largest increase in energetics between the two hydration states is calculated for 

orientation III, where the barriers increase 9.6 and and 5.6 kcal/mol for imipenem and 

meropenem (respectively), when changing the hydration state. For the lower barriers, OQ1 and 

OQ2 form on average 1.9-2.1 and 1.4-1.5 hydrogen bonds, respectively, for imipenem and 

meropenem complexes, while for the higher barriers the same numbers are 2.7-2.9 and 1.8-2.3. 

For the lower barriers, Leu158 has not (yet) rotated from the g- to t rotamer (Figure S4, Section 

6.6), as the starting structures were chosen almost directly after the heating phase. The g- 

rotamer of L158 allows space only for the DW near Lys73:OQ1, which was inserted to the 

active site in the starting model. Further, only one water is donating a hydrogen bond to OQ2. 

Upon MD equilibration, Leu158 rotates, allowing for active site hydration to change to two 

water molecules hydrogen bonding to both carboxylate oxygens. Subsequently, only the “high 

barrier” hydration state is sampled. This explains the large increase in activation free energy 

when comparing the two hydration substates for orientation III, as two water molecules are 

added near Lys73 as opposed to only one near Lys73:OQ2 (as for I and II). Therefore, our 

simulations indicate that III is the least deacylation-compatible AC orientation for the 

equilibrated system (where Leu158 has rotated). Experimentally, this AC orientation is seen in 

the crystal structure of OXA-48 with hydrolysed, non-covalently bound imipenem (PDB ID 

6PK0)240, where the hydroxyl part is donating a hydrogen bond to the newly-formed 

carboxylate group. As observed in our MM MD simulations of the AC, the exchange between 

6-hydroxyethyl dihedral orientations is frequent (indicating a low energy barrier). This is likely 
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true also for the hydrolysed antibiotic, in which case the rotation of this moiety can occur post-

deacylation. 

Further analysis of the US trajectories reveals that hydration around Lys73:OQ2 

correlates with the rotamer of Val120. Valine has three rotamers for the χ1 dihedral (N-Cα-Cβ-

Cγ1): g+ rotamer around 50°, t around 180°, and g- around 300° (Figure 6.4, Figure S6 in 

Section 6.6). In the starting structures for simulations, Val120 is in the t orientation for both 

carbapenems (for meropenem, partial occupancy for both t and g– rotamers were observed in 

the deposited structure, but the t rotamer was used in model building).71 The rotameric state 

can switch to either g+ or g- during MD (Figure S6 in Section 6.6). For the g+ rotamer, one of 

the methyl groups points directly to Lys73, which only leaves space for one water molecule 

next to Lys73:OQ2; this water is positioned to accept a hydrogen bond from Gln124 and to 

donate one to Lys73. Conversely, the t rotamer allows for a second water to occupy the space 

between Lys73 and Val120, where the water molecule donates hydrogen bonds to both 

Lys73:OQ2 and the Val120 backbone carbonyl. Val120 is part of motif II, which is formed by 

residues Ser118-Val120 and conserved across class D β-lactamases.222 Together with Leu158, 

it forms the so-called “deacylating water channel” in the vicinity of Lys73; this hydrophobic 

patch essentially partly shields the active site from bulk solvent.71 For other OXAs, a similar 

water channel has been proposed to open upon substrate binding to allow for water ingress into 

the active site and ergo efficient deacylation.251, 330 For OXA-48, previous comparison of 

apoenzyme and acylenzyme structures shows that substrate binding shifts the Val120 and 

Leu158 only slightly, and the water channel is permanently more open than e.g. in OXA-23.71 

Access of water into the catalytic position next to the substrate and Lys73 is necessary for 

antibiotic hydrolysis, but as we indicate above, any additional solvent in the active site will 

impair reactivity. In OXA-48, it appears that the rotamer of Val120 is an important gateway 

residue for bulk solvent to approach Lys73:OQ2, and our previous work (on ceftazidime 

hydrolysis in OXA-48-like enzymes) indicates that Leu158 can module hydration near 

Lys73:OQ1.257 Interestingly, Val120 has been mutated to a leucine in OXA-519, a single point 

mutant of OXA-48. This mutation results in increased measured hydrolysis for some 1β-methyl 

carbapenems, like meropenem and ertapenem, but decreased imipenemase efficiency.331 

Further studies indicate that OXA-519 increases the portion of β-lactone reaction products with 

respect to standard hydrolysis products for meropenem.254 Establishing the role of Val120 

mutations to the hydrolysis efficiency as well as to β-lactone formation remains as a subject 

for future research efforts. 
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Figure 6.4. Alternative hydrogen bond configurations found with the 6α-hydroxyethyl in orientation I. 

Left: Active site of OXA-48 with imipenem in hydrogen bond configuration 1. Val120 adopts the g+ 

rotamer, and consequently only one water molecule is forming a hydrogen bond with Lys73:OQ2. The 

6α-hydroxyethyl is in orientation I and donates a hydrogen bond to a water lodged between the Tyr211 

backbone and Thr213. Right: Active site interactions of OXA-48 with meropenem in hydrogen bond 

configuration 2. Val120 is in its t rotameric state, which allows for two waters to hydrogen bond with 

both Lys73 carboxylate oxygens. The 6α-hydroxyethyl is in orientation I but donating a hydrogen bond 

to the DW. 

 

6.4.3 Comparison of carbapenem deacylation in orientation I 

 

As presented above, orientation I of the 6α-hydroxyethyl moiety is calculated to have 

the overall lowest deacylation free energy barriers for both carbapenems. The combined free 

energy surfaces for the hydration state with lower free energy barriers are presented in Figure 

S7 (Section 6.6) for all three substrate conformations. In this section, we focus further on 

orientation I and the ‘reactive’ active site configuration with only one water molecule hydrogen 

bonded to Lys73:OQ1, and two to Lys73:OQ2 (unless otherwise stated). For this AC 

conformation, two different hydrogen bond arrangements in the active site are possible: the 

DW can donate a hydrogen bond to the hydroxyl group (named configuration 1), or the 

hydroxyl group can donate a hydrogen bond to the DW (configuration 2), see Figure 6.4. In 

MM MD, configuration (1) is sampled for 87% and 86% of simulation time for imipenem and 

meropenem, respectively. In addition to donating a hydrogen bond to the DW, the hydroxyl 

group can also donate a hydrogen bond directly to Lys73:OQ1 if the DW is displaced. This 6α-

hydroxyethyl orientation may be the relevant one for β-lactone formation, which has been 
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characterised as a side product for OXA-48 with 1β-methyl carbapenems (such as 

meropenem).253, 254 The β-lactone product has been proposed to form via intramolecular 

cyclisation, where the hydroxyl group acts as a nucleophile and donates a proton to Lys73. If 

the reaction occurs without a bridging water molecule, i.e. by a direct proton transfer between 

-OH and Lys73, lactonisation is most likely lower in energy in orientation I than in III based 

on the trends observed for deacylation energetics. 

For imipenem deacylation, both configurations (1) and (2) were observed in US 

sampling. The lowest free energy barrier of 8.5 kcal/mol was calculated for configuration (1), 

and the barrier was increased by 1.9 kcal/mol for configuration (2). In addition to raising the 

free energy barriers, changing from (1) to (2) shifts the location of the transition state on the 

FES. For (1), the TS is located approximately at values –0.1 Å and 1.7 Å for the proton transfer 

and nucleophilic attack reaction coordinates, respectively. However, for (2), the TS location on 

the FES shifts to around –0.5 Å and 2.0 Å. Free energy surfaces with corresponding TS 

structures for both active site configurations are presented in Figure 6.5 and Figure S8 (Section 

6.6). With active site configuration (2), the proton transfer has progressed further at the TS, 

whereas the approach of the DW oxygen to the acyl carbon less advanced. This is potentially 

due to the additional hydrogen bond from the 6α-hydroxyethyl moiety hydroxyl decreasing the 

nucleophilicity of the DW, which requires the proton transfer reaction to have progressed 

further from the starting structure at the TS. Notably, a similar shift in the TS position on the 

FES is observed also in orientation III, where a water molecule is donating a hydrogen bond to 

the DW instead of the 6α-hydroxyethyl group (Figure S7 in Section 6.6). Mulliken charge 

analysis of the key QM atoms does not reveal many significant differences for the calculated 

charges along the reaction when comparing US calculations with either configuration (1) or (2) 

(Tables S5-S8 in Section 6.6). The main difference is calculated at the TS, where for 
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Lys73:OQ1, the charge is more positive and for DW:O the charge is more negative for 

configuration (2), as expected by the shift in the TS location towards the TI. 

 

 

Figure 6.5. Free energy surfaces and transition state structures for alternative active site hydrogen 

bond configurations. Left: Free energy surface for imipenem deacylation for the lowest calculated 

barrier in orientation I. The DW is donating a hydrogen bond to the carbapenem hydroxyl group. Right: 

Free energy surface for meropenem deacylation with the lowest calculated barrier in orientation I. The 

carbapenem hydroxyl group donates a hydrogen bond to the DW. AC=acylenzyme, TS=transition state, 

TI=tetrahedral intermediate. 

 

For meropenem, the lowest calculated deacylation barrier is 11.8 kcal/mol with an 

average of 2.3 and 1.3 hydrogen bonds accepted by K73:OQ1 and OQ2, respectively. This is 

3.3 kcal/mol higher than the lowest calculated barrier for imipenem, or 2.7 kcal/mol higher if 

the free energy penalty derived from MM MD for imipenem to form orientation I is considered 

as well. In contrast to imipenem, the hydroxyl of the 6α-hydroxyethyl moiety in meropenem 

always rotates during unrestrained US sampling to hydrogen bond configuration (2), donating 



 

118 
 

a hydrogen bond to the DW. This rotation occurs before the TS is reached even when 

configuration (1) is present in the starting structure. Enforcing the DW to donate a hydrogen 

bond to the 6α-hydroxyethyl -OH, i.e. restraining the reaction simulations to configuration (1), 

affects the location of the TS in a similar manner to that observed with imipenem. TS locations 

for configurations (1) and (2) are at –0.2/1.8 Å and –0.5/2.0 Å (proton transfer/nucleophilic 

attack), respectively. However, changing the hydrogen bonding pattern between configurations 

has only a minimal effect on the energetics, as the barrier for (1) is 11.9 kcal/mol. Therefore, 

the decrease in activation energy for configuration (1) vs. (2) does not follow the same trend 

for meropenem as it does for imipenem. Possible reasons for this may include the presence of 

a 1β-methyl in meropenem, as this group may hinder the rotation of the 6α-hydroxyethyl group 

to better optimise further hydrogen bonds between active site residues and water molecules 

nearby. A water molecule lodged between Tyr211 and Thr213 accepts a hydrogen bond from 

the carbapenem -OH moiety in configuration (1) or donates a hydrogen bond to it in 

configuration (2) (Figure 6.5 and Figure S8 in Section 6.6). The 1β-methyl group occupies the 

space above this water and may therefore induce its displacement or the re-organization of the 

surrounding water molecules to optimise hydrogen bonds between them, which could 

subsequently lead to a change from configuration (1) to (2). Additionally, the initial 

nucleophilic approach of the DW (from 3.5 Å to 2.2 Å) with the 6α-hydroxyethyl moiety in 

orientation I and hydrogen bond configuration (1) is calculated to be slightly lower in energy 

for imipenem (Figure S9, Section 6.6). (Notably, the initial approach between the DW and the 

carbapenem is also slightly higher in energy in orientations II and III than in orientation I, 

which may contribute to their overall energetics being less favourable for deacylation). 

However, the reasons for the preference for the imipenem complex to adopt configuration (1), 

but not for the meropenem complex, are likely subtle and can result from small structural 

changes between the active site, substrate, and solvent molecules. 

 

6.4.4 Comparison with experimental data 

 

Most of the variants in the OXA-48 family are carbapenemases, with elevated 

imipenem hydrolysis rates when compared against other carbapenems.205 For OXA-48, 

experimental measurement of kcat values for imipenem hydrolysis vary between 1.5 and 22.5 

s–1, which can be converted to Δ‡G=15.7-17.3 kcal/mol using the Eyring equation. For 

meropenem, the measured kcat values range between 0.07-0.16 s-1, which converts to Δ‡G=18.7-
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19.2 kcal/mol. Comparing these experimentally determined free energies of activation, there is 

a difference between imipenem and meropenem hydrolysis (ΔΔ‡G) of 1.4-3.5 kcal/mol, which 

is approximately the same magnitude as the strength of a single hydrogen bond (1-3 

kcal/mol).332 Hence, structural factors contributing to efficient imipenem breakdown over 1β-

methyl carbapenems are most likely to be subtle. Our QM/MM simulations suggest that 

orientation I of the 6α-hydroxyethyl moiety is the most likely AC orientation to undergo 

deacylation, together with decreased hydration around Lys73:OQ2 (i.e., only one water 

molecule donating a hydrogen bond to this carboxylate oxygen). When comparing the lowest 

free energy barriers calculated in orientation I for imipenem and meropenem (Figure 6.3), the 

difference for the two substrates is ΔΔ‡G=3.3 kcal/mol; adding the free energy penalty for the 

imipenem 6α-hydroxyethyl moiety adopting orientation I (0.6 kcal/mol, as determined from 

our MM MD simulations), the obtained ΔΔ‡G value drops to 2.7 kcal/mol. This is in excellent 

agreement with the experimentally determined range of ΔΔ‡G values, which implies that the 

difference between imipenem and meropenem deacylation may indeed be caused by the subtle 

difference in the preferred hydrogen bonding patterns involving the DW and the 6α-

hydroxyethyl sidechain reported here. In turn, the 1β-methyl group is likely involved in causing 

this difference. 

 

6.5 Conclusions 
 

We have modelled carbapenem hydrolysis by the OXA-48 β-lactamase using QM/MM 

reaction simulations. For two carbapenem substrates with differing hydrolysis efficiencies, 

imipenem and meropenem, deacylation reactions were compared to deduct the origin of the 

higher activity towards imipenem compared to other carbapenems. MM MD simulations of the 

acylenzyme complexes support that the carbapenem tail groups do not conform to any 

particular orientation but are able to adopt many different conformations. Furthermore, the 6α-

hydroxyethyl group is able to rotate and to adopt three different orientations, where it either 

interacts with the DW (I), Lys73 (III), or is rotated so that the methyl end is oriented towards 

Leu158 (II). Subsequently, deacylation was modelled for all these three orientations to 

investigate their effect on deacylation efficiency. Our calculated free energy barriers indicate 

that the most deacylation-compatible orientation is I, where the hydroxyl group interacts with 

the DW, and that the orientation III has the highest free energy barriers. 

Detailed comparison of the reaction simulations revealed two factors contributing to 

the calculated energetics: hydration around Lys73, and the hydrogen bonding pattern between 
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the DW and substrate. Hydration around the general base has been noted to affect predicted 

hydrolysis rates for other β-lactam substrates,257 and here we extend this argument to include 

hydration around both Lys73 carboxylate oxygens (instead of only the oxygen participating in 

proton transfer). Increase in hydration around the second, non-reactive, oxygen (Lys73:OQ2) 

was observed to correlate with higher calculated barriers, and the rotation of Val120 in turn to 

correlate with the number of water molecules near this oxygen. Another aspect influencing the 

deacylation efficiency are the hydrogen bonds in the active site involving the DW and the 6α-

hydroxyethyl sidechain. Imipenem shows a preference for the configuration where the DW 

donates hydrogen bonds to Lys73 and the 6α-hydroxyethyl hydroxyl group, with an increase 

in barrier when the hydroxyl group rotates to donate a hydrogen bond to the DW instead. This 

preference is not observed for meropenem, where the reaction simulations with both hydrogen 

bond configurations have comparable energy barriers, which are similar to that calculated for 

imipenem in the “less-favorable” orientation. Therefore, we hypothesise that the difference 

between hydrolysis activities for carbapenem substrates stems from subtle differences in the 

active site hydrogen bonding patterns, which affect the reactivity of the DW. Furthermore, our 

results indicate that active site hydration is an important determinant for catalysis in OXA-48 

enzymes, as increasing the hydration around the general base is observed to impair carbapenem 

hydrolysis. Our study highlights the importance of detailed atomistic modelling in addition to 

experimental research to determine origins of activity, as simulation protocols such as ours 

enable studying specific active site interactions during catalysis. 

 

6.6 Computational details 
 

This section comprises the Supporting Information for Chapter 6. 

 

System Setup 

 

The OXA-48 with imipenem model was set-up starting from a corresponding 

acylenzyme (AC) crystal structure (PDB ID: 6P97)71, as well as OXA-48 with meropenem 

(PDB ID: 6P98)71. In both structures, Lys73 is not carboxylated and was thus replaced by its 

carboxylated form as found in another OXA-48 + imipenem acylenzyme structure (PDB ID: 

5QB4)239. The deacylating water (DW) was added manually to both models, and all 

crystallographic water molecules were kept in place. The pKa values of titratable residues were 
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inspected using propKa 3.1,167 and all residues were kept in their standard state (protonated 

Lys, deprotonated Glu and Asp residues). Histidine tautomers were assigned using the reduce 

program (in Amber): all histidines were singly protonated at the ε-nitrogen except for residues 

38 and 140, which were singly protonated at the δ-nitrogen. Hydrogens were added to the 

structures using tLeap upon system preparation, and the enzyme was solvated in a 12 Å TIP3P 

water box. The systems were neutralized by randomly replacing bulk water molecules with 

Na+ counter ions (using the default TIP3P compatible ion parameters in Amber). The ff14SB 

parameter set was used for the protein.100 

Partial charges and force field parameters for the non-standard Ser70+carbapenem 

residues were derived using the restrained electrostatic potential (RESP) fitting as implemented 

in the R.E.D. Server.172 Analogous gaff parameters were substituted for any missing 

parameters.168 Parameter files for carboxylated lysine and carbapenem ACs are available as 

part of the Supporting Information. 

 

Computational Methods 

 

After system preparation, all models were initially briefly minimized for 2000 steps to 

avoid any steric clashes (1000 steps conjugate gradient and 1000 steps steepest descent). After 

minimization, the systems were heated from 50 K to 300 K in 20 ps, and subsequently 

simulated for 200 ns in the NPT ensemble. Langevin dynamics were used in all simulations 

with a collision frequency of 0.2 ps-1. MD timestep was 2 fs, and all bonds involving hydrogen 

atoms were constrained using the SHAKE algorithm. Structures during MD were recorded 

every 20 ps (10k MD frames/trajectory). The Amber18 package with Ambertools19 was used 

for all calculations,166 and specifically the pmemd.cuda MD engine for all extended MM MD 

simulations.299, 301 All trajectory analysis was done using cpptraj333 (as implemented in 

Ambertools19) excluding 50 ns from the start to allow time for system equilibration. Hydrogen 

bond analysis using cpptraj was done using the default criteria set in cpptraj (donor-acceptor 

distance less than 3.4 Å, the D-H-A angle between hydrogen bond donor and acceptor deviates 

less than 45° from a linear angle). 

Starting structures for QM/MM umbrella sampling (US) were chosen from restart files 

saved during the 200 ns MM MD simulations based on visual inspection (starting structures 

taken at least 1 ns apart unless otherwise stated). All starting snapshots had the desired 6α-
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hydroxyethyl orientation and a suitable DW in place, as to not introduce big distortions through 

restraints when starting US calculations. Three different starting structures were used per free 

energy barrier (unless otherwise stated). The DFTB2 (SCC-DFTB)158, 162 method was used for 

describing the QM region consisting of either 43 or 46 atoms for imipenem and meropenem, 

respectively (Figure S1). The ester bond in the AC was restrained with a one-sided harmonic 

restraint to avoid elongation beyond 1.6 Å (force constant 100 kcal mol−1 Å−2), and the 6α-

hydroxyethyl group dihedral was restrained near its initial values during reaction simulations. 

In orientation II, the sidechain dihedral was restrained between values 150-200°, and in 

orientation III between 270-310°, the applied force constant was 50 kcal mol−1 Å−2. No dihedral 

restraints were applied in orientation I, as switching from this orientation to another one was 

not observed during US. However, distance restraints between the meropenem 6α-

hydroxyethyl hydroxyl group and an active site water molecule were applied to enforce the 

active site configuration where the DW donates a hydrogen bond the hydroxyl group. A one-

sided harmonic restraint was added for this hydrogen bond to avoid elongation beyond 2.2 Å 

(force constant of 50 kcal mol−1 Å−2). 

 

 

Figure S1. QM region in US simulations, QM atoms in red. Link atoms based along bonds indicated 

with wavy lines. 

 

Full deacylation free energy surfaces (FESs) were calculated using two reaction 

coordinates to describe the proton transfer (PT) and nucleophilic attack (NA). Reaction 

coordinate values were decreased from 0.8 Å /3.5 Å (PT/NA) in the AC to -1.0 Å /1.5 Å in the 

TI by 0.1 Å. Force constants for both reaction coordinates were 100 kcal mol−1 Å−2. Full 

deacylation free energy surfaces (FESs) were constructed by first performing US along an 

approximate diagonal on the FES (used as a proxy for the minimum free energy path), and then 
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calculating the rest of the US windows using these calculations as a starting point. Initial 

sampling along the diagonal included 36 windows with values: 

 

PT 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.5 

NA 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.5 2.4 2.4 2.3 2.2 2.2 

 

PT 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.3 -0.4 -0.5 -0.6 -0.7 -0.7 -0.7 

NA 2.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1 2.0 2.0 1.9 1.9 1.9 1.9 1.8 

 

PT -0.7 -0.8 -0.8 -0.8 -0.9 -1.0 

NA 1.7 1.7 1.6 1.5 1.5 1.5 

 

 

The whole FESs consisted of a total of 399 US windows, and the sampling time was 2 

ps/window with a 1 fs timestep. FESs were constructed using the weighted histogram analysis 

method (WHAM, Grossfield lab)329 with 19 and 21 bins for the PT and NA coordinates, 

respectively. The convergence criterium was set to 10−13. Minimum free energy paths on the 

FESs were analyzed using the Minimum Energy Path Surface Analysis (MEPSA) program.298 

All US calculations were performed using sander.MPI as implemented in Ambertools19.166 

 

Acylenzyme clustering 

 

Clustering of the AC orientations was done separately for imipenem and meropenem 

MM MD trajectories (excluding 50 ns from the start, five simulations per substrate with 7500 

frames per simulation). Trajectories were aligned on Cα-atoms of residues 70-73, 118-120, 

157, 158, and 209-211, and substrate orientations were clustered into four groups based on AC 

heavy atom RMSD. The kmeans algorithm (as implemented in cpptraj) was used for the 

clustering procedure with a sieve of 10. The representative structures for the four clusters are 

presented in Figure S2 along the corresponding AC orientation in the original crystal structure. 
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Figure S2. Representative structures from AC clustering for imipenem (left) and meropenem (right). 

Cluster 1, green; cluster 2, pink; cluster 3, yellow; cluster 4, orange, the crystallographic binding pose 

in cyan. 

 

Table S1. Further clustering information for the substrate binding pose for imipenem (IME) and 

meropenem (MER). Fraction represents the fraction of simulation frames belonging to the clusters and 

colour the corresponding sticks representation color in Figure S2. RMSD measured between 

carbapenem heavy atoms in the representative cluster structure and in the crystal structure. 

 

 IME MER 

Color Fraction 
RMSD 

(Å) 
Fraction 

RMSD 

(Å) 

Cluster 1 Green 0.55 0.81 0.36 1.65 

Cluster 2 Pink 0.21 0.82 0.34 1.75 

Cluster 3 Yellow 0.13 1.09 0.25 2.16 

Cluster 4 Orange 0.11 1.75 0.05 2.49 

 

 

In addition to AC clustering, the active site conformations for both imipenem and 

meropenem simulations were compared by combining all trajectories and clustering the 

structures based on the common AC atoms (i.e. all atoms except C2 tail groups beyond sulphur 

and the 1β-group). Solvent molecules, counterions, and parts of the enzyme which were not 

identical between the two models were stripped before clustering. Trajectories were aligned on 

the mainchain heavy atoms of residues 70, 73, and 157, and clustering done based on RMSD 
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of the remaining carbapenem heavy atoms. The kmeans clustering algorithm was used to divide 

the structures in to four clusters with a sieve of 10 (as in cpptraj). 

 

 

Figure S3. Representative cluster structures for the combined clustering of imipenem and meropenem 

trajectories. Left: Clusters 1 and 2 are sampled for most of the simulation time for meropenem (green) 

and imipenem (purple), respectively. Right: For the rest of time, cluster 3 (brown) is sampled for 

imipenem and cluster 4 (cyan) for meropenem. 

 

Table S2. Combined cluster fractions in imipenem and meropenem trajectories. 

 Color Fraction (IME) Fraction (MER) 

Cluster 1 Green 0.00 0.71 

Cluster 2 Purple 0.65 0.00 

Cluster 3 Brown 0.35 0.00 

Cluster 4 Cyan 0.00 0.29 

 

 

Leu158 Dihedral Sampling 
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Leu158 has been proposed to modulate the access of bulk solvent near Lys73 in 

ceftazidime deacylation.257  The orientations of Leu158 were analysed by measuring the 

sidechain χ1 dihedral angle (N-Cα-Cβ-Cγ). In both crystal structures used for model building, 

Leu158 is in the g- orientation (in OXA-48/meropenem structure,71 the residue has rotated 180° 

around the Cβ-Cγ bond). Upon MD equilibration, Leu158 essentially always adapts to the t 

state, as depicted by Figure S4. 

 

Figure S4. Sampling distribution for Leu158 rotamers in MM MD for imipenem (green) and meropenem 

(red). Leu158 rotates from the starting g- orientation (red sticks representation in the insert) to the t 

orientation (cyan) for the majority of the simulation time. 

 

MM MD Analysis 

 

To preliminarily study the effect a certain AC conformation has on the nucleophilic 

attack, the distance between the AC electrophilic carbon and the closest water molecule was 

measured. The corresponding scatter plots are presented in Figure S5, where a threshold of 4 

Å is indicated with a dashed line; distances below this threshold are regarded suitable for a 

nucleophilic attack (although the choice of this threshold value is somewhat arbitrary). For 

both carbapenems, a water molecule is found at a suitable distance for the nucleophilic attack 



 

127 
 

in all three orientations, even when the majority of the active site configurations fall beyond 4 

Å for orientations II (~180°) and III (290°). 

 

 

Figure S5. The distribution of distances from the AC electrophilic carbon to the closest water molecule 

in the active site. Distances measured for all five 150 ns simulations per system (50 ns were excluded 

from the start for each simulation, total simulation length 200 ns). Each scatter point represents a frame 

in a trajectory, different colours represent different trajectories. Dashed line at 4 Å is the used as an 

arbitrary threshold distance for determining the feasibility of nucleophilic attack, i.e. arrangements 

beyond 4 Å are not likely to undergo deacylation. 

 

Val120 Dihedral Sampling 

 

Val120 adopts three different orientations during MM MD, which can be differentiated 

by the χ1 (N-Cα-Cβ-Cγ1) dihedral angle: g+ at around 60°, t at 180°, and g- at 290°. Val120 is 

situated in the vicinity of Lys73 and Trp157, and its rotamer influences the accessibility of 

water near Lys73 (especially near Lys73:OQ2). The distribution of sampled Val120 χ1 

dihedrals is presented in Figure S6. The t rotamer, which is observed in both crystal structures 

used as starting models, is the most sampled state for both imipenem and meropenem; this 

orientation allows for two water molecules to hydrogen bond with Lys73:OQ2. When the 

dihedral angle rotates to the g+ state, only one water has space to donate a hydrogen bond to 
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OQ2, as the γ2-carbon occupies the space available for water in the case of t rotamer. The g- 

rotamer was observed the least, and it was not present in any starting structure used for US. 

 

 

Figure S6. V120 rotamer distribution in MM MD for imipenem (green) and meropenem (red). Rotamer 

label coloring corresponds to the stick color representation of the rotamer structure in the inset. 

Histograms created using 100 bins, probability distributions (solid line) obtained using the kernel 

density estimation in the seaborn library (python) with default parameters. 

 

Umbrella Sampling 

 

Overall free energy barriers for different AC orientations with different hydration states 

are presented in Table S3. Barriers are calculated by combining sampling from three separate 

US calculations into one WHAM calculations (the overall sampling time being 2x3ps = 

6ps/window, 2.4 ns for the full surface), standard deviations are between the individual 

snapshots. 
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Table S3. Free energy barriers for carbapenem deacylation from umbrella sampling. All energies in 

kcal/mol, standard deviations between barriers obtained for the three individual US calculations in 

parenthesis. Hydration state 1 = only one water donating a hydrogen bond to Lys73:OQ2, two waters 

donating a hydrogen bond to Lys73:OQ1 (except orientation III, where only one), hydration state 2 = 

two waters hydrogen bonded to both Lys73 carboxylate oxygens. 

 Imipenem Meropenem 

 Hydration state 1 Hydration state 2 Hydration state 1 Hydration state 2 

Orientation I1 8.5 (0.9) 10.4 (0.4) 11.9 (0.7) - 

Orientation I2 10.4 (0.4) 13.5 (1.0) 11.8 (0.7) 15.3 (1.1) 

Orientation II 10.5 (1.1) 13.6 (0.9) 13.6 (1.1) 16.0 (1.1) 

Orientation III 11.2 (0.6) 20.8 (1.4) 12.4 (2.0) 18.0 (0.5) 

1 DW donates a hydrogen bond to the carbapenem hydroxyl group 

2 DW accepts a hydrogen bond from the carbapenem hydroxyl group 

 

The FESs for both imipenem and meropenem for all three 6α-hydroxyethyl orientations 

are presented in Figure S7. The minimum free energy paths are illustrated with black dots. All 

surfaces are for the active site configuration, where only one water donates a hydrogen bond 

to Lys73:OQ2. In orientation I, the DW donates a hydrogen bond to imipenem 6α-hydroxyethyl 

hydroxyl group, whereas for meropenem, the DW accepts a hydrogen bond from the same 

hydroxyl. 
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Figure S7. Calculated free energy surfaces for imipenem (left) and meropenem (right) deacylation in 

substrate orientations I (top), II (middle), and III (bottom. The minimum free energy paths marked with 

black dots. AC=acylenzyme, TS=transition state (circled), TI=tetrahedral intermediate. 
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Figure S8. Transition state structures for imipenem and meropenem in orientation I. In configuration I 

(top row), the DW donates a hydrogen bond to the 6α-hydroxyethyl group, which in turn donates a 

hydrogen bond to a water molecule between Tyr211 and Thr213. For imipenem, this water can accept 

an additional hydrogen bond from another water molecule near the imipenem 1β-proton. For 

meropenem, this additional water is shifted due to the larger 1β-methyl group. 

 

To further inspect possible differences causing the observed difference in efficiency 

between imipenem and meropenem, the initial approach of the DW to the substrate was 

inspected by US, where only the distance between the DW oxygen and the carbapenem carbon 

was used as a reaction coordinate. This was done for both imipenem and meropenem in active 

site configuration (1), where the DW donates a hydrogen bond to the 6α-hydroxyethyl group. 

Based on the calculated free energies, the energetic cost for the initial approach of the DW is 

lower for imipenem than for meropenem, which partly explains the lower calculated barriers 

in imipenem deacylation. 
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Figure S9. The calculated free energy profile for the initial approach of the deacylating water molecule 

to the carbapenem electrophilic carbon. Sampling was done for 20 ps/window for three snapshots 

starting from the structures on the full 2 ps free energy surface. 

 

Benchmarking 

 

DFTB2 (SCC-DFTB) was used as the QM method in all US simulations. Previously, 

this method has been shown to depict deacylation in serine β-lactamases well and to distinguish 

between carbapenemases and carbapenem-inhibited class A enzymes.189 For OXA-48, the 

minimum free energy paths on DFTB2//ff14SB free energy surfaces indicate that the proton 

transfer and nucleophilic attack occur in a concerted fashion after the initial approach of the 

DW (from ~3.5 Å to 2.2 Å). The lowest calculated free energy barrier, which we expect to be 

a representative barrier for the most efficient deacylation reaction, was 8.5 kcal/mol, which is 

a significant underestimation from the experimental barrier of 16.6 kcal/mol (converted from 

a kcat of 5 s-1 using the Eyring equation)226. To benchmark the performance of DFTB2, we 

performed transition state optimization for a representative small molecule model in the gas-

phase as well as calculated a representative deacylation potential energy surface using a higher-

level DFT method. 
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Figure S10. Small molecule model of the active site used in benchmarking calculations. The transition 

state corresponds to a concerted proton transfer between K73 carboxylate and C-O bond formation 

between the substrate and water (both indicated with arrows). Notably in the gas-phase, the 6α-

hydroxyethyl group has been optimized to orientation III (with a 290° dihedral). 

The small molecule model used in benchmarking is presented in Figure S10. The gas-

phase model included methyl-capped Lys73 and imipenem acylenzyme with the DW taken 

from a representative full enzyme structure. TS corresponding to the tetrahedral intermediate 

(TI) formation in deacylation was first optimized using Gaussian16 on the M06-2X/6-31+G(d) 

level using looser criteria (with keywords Opt=(TS,calcfc,noeigentest)), and the final structure 

was optimized with tighter convergence criteria (Opt=(TS,VTight) SCF=Tight), ultrafine 

integration grid was used in all calculations (Int=UltraFine). TS was validated by visual 

inspection and normal mode calculation (one imaginary frequency at -296.63 corresponding to 

the reaction coordinates). The reactant (AC) and product (TI) structures were obtained with 

IRC calculations in both directions starting from the optimized TS, and the final IRC endpoints 

were further optimized on the same level as the final TS. TS optimisation and subsequent IRC 

calculations were done using Gaussian16.334 Single-point energies were calculated on the 

higher SCS-MP2/aug-cc-pVTZ level149, 316 (using the RIJK approximation with aug-cc-

pVTZ/C and aug-cc-pVQZ/JK auxiliary basis sets), as well as using DFTB2. RI-SCS-MP2 

calculations were done using orca 4.2.0,317, 318 and semi-empirical calculations using sqm (part 

of the Amber18 and Ambertools19 package). Since the gas-phase model was optimized to the 

290° orientation, the US barrier is shown for the lower 290° for imipenem. 
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Table S4. Benchmarking energies for the small molecule gas-phase system. The approximate TS 

location from US is shown for the 290° orientation (as opposed to 50°), as the gas-phase system was 

optimized to this orientation. 

Method NA RC 

(Å) 

PT RC 

(Å) 

Δ‡Gcalc 

(kcal/mol) 

M06-2X/6-31+G(d) 1.89 -0.37 19.9 kcal/mol 

RI-SCS-MP2/aug-cc-pVTZa - - 22.5 kcal/mol 

DFTB2a,b - - 14.5 kcal/mol 

DFTB2/ff14SB FES (OXA-48)c 2.0 -0.4 11.2 kcal/mol 
a Energy difference from single-point energies on M06-2X/6-31+G(d) optimized AC and TS structures. 

b TS could not be optimized in the gas-phase with DFTB2 as no saddle point is indicated between the AC minimum 

and the tetrahedral intermediate. 

c The approximate TS location on the QM/MM free energy surface. 

 

To study the performance of DFTB2 in the whole enzyme model, deacylation potential 

energy surfaces were calculated for imipenem in the 50° dihedral orientation using DFTB2 and 

M06-2X/def2-TZVP134, 335 levels of theory (Figure S11). The LBFGS algorithm was used for 

energy minimization with a convergence criterium of 0.01 mol-1 Å-1. Force constants for 

restraints used in US were increased to 5000 kcal mol−1 Å−2, and residues further than 5 Å from 

the substrate were restrained (50 kcal mol−1 Å−2 force constant). Energy correction using DFT 

was obtained by calculating single-point energies for the QM region on the M06-2X/def2-

TZVP level (using Orca 4.2) and taking the difference between the M06-2X and DFTB2 

energies (interactions terms between the QM and MM regions were thus calculated using 

DFTB2). The RIJCOSX approximation with the def2/J auxiliary basis set was used with M06-

2X. 
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Figure S11. Potential energy surfaces for OXA-48/imipenem in orientation I calculated using DFTB2 

(left) or M06-2X/def2-TZVP (right). Energy at the approximate TS position (-0.1/1.7 for PT and NA 

RCs, respectively) is 9.0 kcal/mol for DFTB2, and 15.3 kcal/mol for M06-2X. SCF did not converge 

satisfactorily for two structures in the high energy region and were hence left out from the M06-2X 

potential energy surface (black area). 

 

Mulliken Charges 

 

Mulliken charges for the key atoms in the QM region were calculated from extended 

US at the AC, TS, and TI minima, values determined from the minimum free energy path. Each 

state was sampled for 20 ps (starting from the last structure after the initial 2 ps sampling), and 

charges were calculated every 20 fs and averaged to obtain one value per atom. Key atoms with 

atom names are presented in Figure S12. 
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Figure S12. QM region atoms (for meropenem) with link atoms highlighted in cyan. Names shown for 

the key atoms, for which Mulliken charges were recorded along the reaction. 

 

All Mulliken charges show the same trend, where during a reaction a positive charge 

emigrates to Lys73 carboxylate (proton acceptor), and the substrate carbonyl oxygen becomes 

more negative due to negatively-charged TI formation. The transition state location shifts 

slightly when the hydrogen bond pattern between the DW and the 6α-hydroxyethyl group 

changes, which results in different charges at the transition state. When the DW accepts a 

hydrogen bond from the carbapenem hydroxyl, the transition state location shifts to more 

negative values for the proton transfer reaction coordinate, i.e. closer to the TI structure. This 

results in more positive Lys73 carboxylate oxygen charges and more negative DW:O charges. 

No significant changes are seen between different active site conformations when comparing 

the change between endpoint charges (AC → TI). 

 

Table S5. Mulliken charges for the key QM region atoms for imipenem in the 50° orientation. DW 

donates a hydrogen bond to the 6α-hydroxyethyl hydroxyl group. Locations for the minima and TS 

(proton transfer/nucleophilic attack values): AC 0.8/3.4, TS -0.1/1.7, TI -1.0/1.5. 

QM atom 
Enzyme 
QAC QTS QTI ΔQTS-AC ΔQTI-AC 

K73-OQ1 -0.84 -0.65 -0.51 0.19 0.33 

K73-OQ2 -0.76 -0.73 -0.67 0.04 0.09 

K73-C 0.74 0.72 0.71 -0.02 -0.03 

DW-O -0.69 -0.61 -0.59 0.08 0.10 

IME-O -0.60 -0.80 -0.87 -0.20 -0.26 

IME-C 0.66 0.73 0.74 0.06 0.08 

IME-O(H) -0.51 -0.54 -0.54 -0.03 -0.03 
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Table S6. Mulliken charges for the key QM region atoms for imipenem in the 50° orientation. DW 

accepts a hydrogen bond from the 6α-hydroxyethyl hydroxyl group. Locations for the minima and TS: 

AC 0.7/3.4, TS -0.4/1.9, TI -1.0/1.5. 

 

QM atom 
Enzyme 
QAC QTS QTI ΔQTS-AC ΔQTI-AC 

K73-OQ1 -0.85 -0.59 -0.52 0.26 0.33 

K73-OQ2 -0.76 -0.68 -0.67 0.08 0.09 

K73-C 0.74 0.72 0.71 -0.02 -0.03 

DW-O -0.66 -0.74 -0.58 -0.08 0.08 

IME-O -0.60 -0.74 -0.87 -0.14 -0.27 

IME-C 0.66 0.70 0.74 0.04 0.08 

IME-O(H) -0.58 -0.60 -0.57 -0.02 0.01 

 

Table S7. Mulliken charges for the key QM region atoms for meropenem in the 50° orientation. DW 

accepts a hydrogen bond from the 6α-hydroxyethyl hydroxyl group. Locations for the minima and TS: 

AC 0.8/3.4, TS -0.5/1.9, TI -1.0/1.5. 

QM atom 
Enzyme 
QAC QTS QTI ΔQTS-AC ΔQTI-AC 

K73-OQ1 -0.85 -0.57 -0.52 0.28 0.33 

K73-OQ2 -0.75 -0.69 -0.66 0.07 0.09 

K73-C 0.74 0.71 0.71 -0.03 -0.03 

DW-O -0.67 -0.76 -0.59 -0.08 0.08 

MER-O -0.58 -0.72 -0.85 -0.14 -0.27 

MER-C 0.66 0.70 0.74 0.04 0.08 

MER-O(H) -0.54 -0.59 -0.58 -0.05 -0.03 

 

Table S8. Mulliken charges for the key QM region atoms for meropenem in the 50° orientation. DW 

donates a hydrogen bond to the 6α-hydroxyethyl hydroxyl group. Locations for the minima and TS: AC 

0.8/3.4, TS -0.1/1.7, TI -1.0/1.5. 

QM atom 
Enzyme 
QAC QTS QTI ΔQTS-AC ΔQTI-AC 

K73-OQ1 -0.84 -0.67 -0.53 0.18 0.32 

K73-OQ2 -0.76 -0.72 -0.68 0.03 0.07 

K73-C 0.74 0.72 0.71 -0.02 -0.03 

DW-O -0.69 -0.62 -0.60 0.07 0.09 

MER-O -0.58 -0.78 -0.85 -0.20 -0.27 

MER-C 0.66 0.72 0.74 0.06 0.08 

MER-O(H) -0.51 -0.53 -0.54 -0.02 -0.02 
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Chapter 7 - Acylation mechanism of the β-lactamase inhibitor 

avibactam by the OXA-48 β-lactamase 

 

7.1 Introduction 
 

As briefly discussed in Section 1.2, a common treatment option for severely resistant 

bacterial infections is combination therapy.25 This means that an antibiotic is administered 

together with a β-lactamase inhibitor, which prevents β-lactamases from inactivating the drug 

prior to it binding to the target proteins. As combination therapy has proven to be useful in 

clinical practice,261, 336-338 the field of β-lactamase inhibitor development is evolving fast.283 

Avibactam (depicted in Figure 1.1), a non-β-lactam β-lactamase inhibitor belonging to 

diazabicyclooctanones (DBOs), is a recent example of this.31 Avibactam was approved for 

clinical use in 2015 in combination with ceftazidime (Figure 1.1), and the combination is sold 

under tradename Avycaz.339 As shown in Figure 4.5, the β-lactam is replaced by cyclic urea in 

the DBO scaffold. Generally, avibactam exhibits broad-spectrum inhibition against SBLs, such 

as KPC-2 and OXA-48, but lacks inhibitory activity against MBLs.34, 260, 340 Even though 

avibactam resembles β-lactams, its inhibition mechanism has been shown to be distinctly 

different. Avibactam is acylated in an analogous fashion to β-lactams to form a covalent 

acylenzyme (AC), but the AC is not deacylated using a water nucleophile like β-lactams. 

Instead, avibactam recyclizes to form an intact inhibitor molecule, which can react with further 

enzymes.31 This is excluding KPC-2 β-lactamases, where an additional route involving 

avibactam fragmentation was observed.34 Similar recyclization is not observed for any 

“traditional” mechanism-based inhibitors, and it is most likely enabled by decreased ring strain 

in the five-membered urea ring compared to the corresponding four-membered β-lactam ring.31 

OXA-48 inhibition by avibactam is discussed in depth in Section 4.6. To summarise, 

in vitro kinetics indicate that avibactam is readily acylated by OXA-48, but that the 

recyclization occurs slowly. The measured acylation efficiency k2/Ki is 1.4 ± 0.1 x 103 M-1 s-1, 

whilst the recyclisation rate constant koff is measured to be 1.2 ± 0.4 x 10-5 s-1 with a half-life of 

1000 ± 300 minutes.34 Multiple crystal structures of OXA-48 with covalently-bound avibactam 

(AC state) are deposited in the Protein Data Bank, and these structures yield information of the 

binding pose and interactions with active site residues (see Figure 4.10).235, 255, 264 However, 

existing experimental studies have provided only hypotheses of the actual avibactam inhibition 
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mechanism. At least two different reaction pathways have been proposed, and these are 

presented in Figure 7.1. The first mechanism incorporates a neutral, non-carboxylated Lys73 

as a general base, which acts as a proton acceptor activating the nucleophilic Ser70. 

Subsequently, avibactam ring opening and nitrogen protonation occur by shuffling a proton 

from Lys73 to avibactam via Ser118.235 This mechanism is henceforth again referred to as 

pathway 1, and it is derived from a suggested “universal” reaction scheme for avibactam with 

SBLs. However, it is known that for β-lactam hydrolysis, Lys73 needs to be in its carboxylated 

form for efficient catalysis to take place.223 Another proposed pathway employs a carboxy-

Lys73 as the initial proton acceptor, and avibactam is subsequently protonated by Lys208 via 

Ser118.264 This mechanism will be referred to as pathway 2. For pathway 2, slow recyclization 

rates are attributed to the preference of Lys73 being decarboxylated in the AC state, which 

would essentially hinder reactivity.264 Pathways 1 and 2 are summarised again in Figure 7.1. 

 

 

Figure 7.1 Three proposed mechanisms for avibactam acylation by OXA-48. Top: In pathway 1, the 

nucleophilic Ser70 is activated via proton transfer to a neutral Lys73 (in its standard amine form). After 

TI formation, the five-membered ring in avibactam opens and avibactam nitrogen is protonated by 

Lys73 via Ser118. Bottom: In pathway 2, a carboxylated Lys73 acts as the proton acceptor going from 

MC to TI. Subsequent avibactam protonation occurs by Lys208 via Ser118. 

 

In this chapter, we utilise both MM MD and QM/MM methods to compare the 

presented reaction mechanisms for avibactam acylation. First, Michaelis complex (MC) 
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models for OXA-48 with either a decarboxylated and neutral Lys73 (for pathway 1) or a 

carboxylated Lys73 (for pathway 2) were constructed. The stabilities of the formed MCs were 

inspected by 10x50 ns MM MD simulations. Further, the presented reaction pathways were 

compared by calculating their corresponding potential energy profiles using QM/MM 

calculations with the nudged elastic band (NEB)341 method. Both pathways were broken down 

into two separate NEB calculations, where the first calculation corresponds to the tetrahedral 

intermediate (TI) formation via a nucleophilic attack, and the second the subsequent avibactam 

ring opening and nitrogen protonation. Both the MM MD and QM/MM NEB calculations 

indicate that pathway 2, where a carboxylated Lys73 acts as a general base, is more feasible 

than pathway 1. 

 

7.2 Computational methods 
 

7.2.1 System set-up 

 

Non-covalent Michaelis complexes of OXA-48 with avibactam were prepared using a 

crystal structure of covalently-bound avibactam as a template (PDB ID 4S2K).235 Ser70-

avibactam AC was replaced by an intact serine residue and non-covalently coordinated 

avibactam. Lys73 was either kept in its neutral form or replaced by a carboxylated lysine as 

found in analogous systems (e.g. in OXA-48/imipenem complex, PDB ID 5QB4).239 Partial 

charges (RESP) and force field parameters for carboxy-Lys73 were derived using the 

constrained charge derivation as implemented in the R.E.D. Server,172 any missing parameters 

were taken from analogous gaff168 parameters. For avibactam, gaff parameters with AM1-BCC 

partial charges were derived using antechamber (part of Ambertools19).170, 171 Any clashing 

water molecules (closer than 2.5 Å to any avibactam heavy atom) were removed, otherwise all 

crystallographic waters were retained. Both systems were solvated in a 10 Å box of TIP3P 

water, and existing charges were neutralised by replacing water molecules by counterions. The 

protonation states of ionisable residues were inspected using propKa3.1167, and subsequently 

kept in their standard state based on the predicted pKa values (Glu/Asp deprotonated, Lys 

protonated apart from Lys73). All histidine residues were singly protonated at the ε-nitrogen, 

except His140, which was singly protonated at the δ-nitrogen. Hydrogens were added using 

tLeap, and the ff14SB force field100 (part of the Amber software suite) was used in all 
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calculations. Both prepared systems consisted of 32292 atoms. Active sites of both starting 

structures are illustrated in Figure 7.2. 

 

 

Figure 7.2 Starting MC models for the two studied OXA-48/avibactam systems. Left: Lys73 is kept in 

its neutral form. Right: Lys73 is carboxylated, Lys208 is protonated in both systems. 

 

7.2.2 Molecular dynamics simulations 

 

After initial preparation, the systems were minimised in three parts: i. only water 

molecules allowed to move, other parts restrained, ii. all atoms except Cα allowed to move, 

and finally iii. all atom positions minimized (restraint weights of 50 kcal/mol/Å2 applied in i. 

and ii.). Each minimisation step consisted of 1000 steps using the steepest descent method 

followed by 1000 steps of the conjugate gradient method. After minimisation, systems were 

heated from 50 K to 300 K in 50 ps, and subsequently simulated for 50 ns in the NPT ensemble. 

All simulations were performed using Langevin dynamics with a 0.2 ps-1 collision frequency 

and a 2 fs timestep. Ten independent replicas were run for both systems to inspect the stability 

of the non-covalent MC model. In addition, a 10 ns MD run straight after heating using 

restraints was run to equilibrate the structure before QM/MM MD. To preserve the desired 

initial binding pose, restraints were applied for the Ser70-Lys73 hydrogen bond (<2.0 Å, 10 

kcal/mol/Å2), avibactam carbonyl oxygen and Tyr211 backbone amide (<2.5 Å, 10 

kcal/mol/Å2), and carbonyl carbon and sulphur to ensure positioning of the sulphate group 

(<3.5 Å, 10 kcal/mol/Å2). Afterwards 100 ps of QM/MM MD using DFTB2158 was performed 
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with the same restraints, but also enforcing the distance between Ser70 and avibactam 

electrophilic carbon staying below 4.0 Å (restraint weight 10 kcal/mol/Å2) to ensure a suitable 

conformation for nucleophilic attack (only for the system with a neutral Lys73). The QM region 

consisted of avibactam and the sidechains of Ser70, Lys73, Ser118, and Lys208 as depicted in 

Figure 7.3. This resulted in a QM region consisting of 56 atoms for the system with a 

carboxylated Lys73, and 54 atoms for the system with a neutral Lys73 (including link atoms). 

All MM and QM/MM MD simulations were performed using the Amber18 software package 

with Ambertools19.166 

 

 

Figure 7.3 . QM region used in QM/MM MD and NEB calculations. Red and blue atoms included in 

the QM region, black atoms described using MM, link atoms placed along the bonds indicated with 

wavy lines. For a carboxylated Lys73, the terminal amine in Lys73 was replaced by -NCOO−. The 

carbonyl oxygen used as a reference point when stripping atoms for QM/MM NEB calculations is 

shown in blue. 

 

7.2.3 QM/MM potential energy calculations 

 

The activation energies and minimum energy paths (MEPs) for the discussed reaction 

mechanisms were calculated using the nudged elastic band (NEB) method as implemented in 

orca 4.2.0317, 318. For NEB calculations, the systems were stripped of any residues with any 

atom further than 17 Å from the avibactam carbonyl oxygen (Figure 7.3). Atoms closer than 

10 Å to the same oxygen were included in the active region, which was allowed to move during 

optimisation. Coordinates for the rest of the system were frozen. The stripped systems consisted 

of 1735 and 1723 atoms for the neutral Lys73 and carboxy-Lys73 systems, respectively. 

Reaction pathways were separated into two NEB calculations: TI formation from the MC (MC 

→ TI), or AC formation from the TI (TI → AC). Starting structures for the TI and the AC were 
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initially created by doing a brief constrained minimisation to change the bonding arrangement, 

and the created structures were then subjected to a full minimisation using the L-BFGS 

optimiser and the GFN2-xTB342 method (referred to as XTB2). The RMS gradient tolerance 

was set to be below 5x10−5 a.u. during this minimisation. The minimised structures were used 

as starting points for reaction path inspection using the climbing image NEB method (CI-NEB). 

The L-BFGS optimiser was used for constructing the NEB, and the images were re-distributed 

along the path every 50 iterations using linear interpolation. The default convergence criteria 

were kept for all images. MEPs were initially constructed using XTB2, and single-point 

energies (SPEs) were calculated on the ωB97XD/def2-TZVP and M06-2X/def2-TZVP 

levels.134, 135, 150 Two MEPs for both MC→TI reactions were re-optimised using the 

ωB97XD/def2-SVP method for the QM region. The RIJCOSX approximation343 with the 

default auxiliary def2/J basis set344 was applied both during NEB optimisation and upon 

calculating single-point energies for all DFT calculations. All NEB and SPE calculations were 

done using orca 4.2.0.317, 318 

 

7.3 Results and Discussion 
 

7.3.1 Dynamics of the formed Michaelis complexes 

 

After the initial minimisation and heating phases, the stability of the formed MCs was 

inspected by 50 ns MM MD simulations. Ten independent simulations were run for both 

systems. With a neutral Lys73, avibactam moved away from the initial “productive” pose in 

nine of the ten simulations (with the distance between avibactam carbonyl oxygen and Tyr211 

backbone amide increasing beyond 3.5 Å). In the remaining simulation, avibactam stayed in 

the original pose for the whole 50 ns. Notably, in one trajectory avibactam re-bound to the 

initial pose after shifting away. Upon repositioning, avibactam does not completely diffuse out 

of the active site during the simulations. It changes its orientation so that the carbonyl group 

shifts out of the oxyanion hole, but so that the -OSO3
- group stays near Lys208, Thr209, and 

Arg250. Representative structures of avibactam in its original non-covalent binding pose and 

the shifted position are presented in Figure 7.4. In the eight trajectories where avibactam shifts 

away from its initial pose for the rest of the simulation, this repositioning occurs within the first 

13 ns. In the trajectory where avibactam shifts away and then moves back to the oxyanion hole, 

this repositioning happens at 27 ns. In the single simulation, where avibactam stays in the 
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oxyanion hole, Ser70 is observed to donate a hydrogen bond to Lys73 throughout the 

simulation, but it does so whilst rotating further away from the avibactam electrophilic carbon. 

For the initial Ser70 rotamer, the distance between Ser70:O and avibactam carbon is below 3.3 

Å, which is deemed feasible for a nucleophilic attack. Upon rotation, this distance increases to 

above 4 Å, which hinders the possibility of Ser70 hydroxyl forming a TI with avibactam. Ser70 

would need to first rotate back to its initial rotameric state before the nucleophilic attack could 

occur (Ser70 rotamers also illustrated in Figure 7.4). 

 

 

Figure 7.4 Representative structures of avibactam in MM MD simulations with a neutral Lys73. 

Important active site interactions highlighted with dashed black lines. Left: Avibactam orientation in 

the MM MD simulations, where it stays positioned in the oxyanion hole (formed by the backbone amides 

of Ser70 and Tyr211). The sulphate group is interacting with Lys208, Thr209, and Arg250. For the grey 

Ser70 rotamer, the distance to AVI:C is less than 3.3 Å, and for the pink rotamer, this distance is beyond 

4 Å. Right: Avibactam position after shifting away from the oxyanion hole. The inhibitor is kept in the 

active site by electrostatic interactions and hydrogen bonds between the sulphate group and Lys208, 

Thr209, and Arg250. 

 

For carboxy-Lys73, avibactam stays positioned in the oxyanion hole in five out of ten 

simulations, and shifts away in five simulations. In one trajectory, a similar shifting away and 

re-binding was observed as previously for the MC with a neutral Lys73. If avibactam shifts 

away from its initial pose, this shifting happens within 22 ns of the simulation start, except for 

the simulation with shifting and re-binding, where avibactam moves away at 35 ns. In the five 
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simulations, where avibactam stays close to its original position, Ser70 is observed to rotate 

between three different orientations. Two are the same ones as depicted for the system with a 

neutral Lys73, and the third one involves the Ser70 hydroxyl group donating a hydrogen bond 

to the avibactam sulphate moiety (Figure 7.5). In the five simulations where avibactam re-

positions away from the oxyanion hole, it is still kept in the active site by electrostatic 

interactions and hydrogen bonds analogous to simulations with a neutral Lys73. 

 

 

Figure 7.5 Representative structures of avibactam in MM MD simulations with a carboxy-Lys73. 

Important interactions between the inhibitor and active site residues indicated with dashed black lines. 

Left: Avibactam positioned in the oxyanion hole. The three possible orientations for Ser70 indicated 

with sticks representation. Right: After shifting away from the oxyanion hole, avibactam is kept in the 

active site by electrostatic and hydrogen bond interactions between the sulphate group and Ser70, 

Lys208, Thr209, and Arg250. 

 

Further analysis of the MM MD data focuses on the subset of trajectories, where 

avibactam stays in the oxyanion hole (one trajectory for neutral Lys73, five for carboxy-

Lys73). As briefly mentioned previously, Ser70 can adopt three different orientations, which 

can be distinguished by measuring the sidechain χ1 (N-Cα-Cβ-OG) dihedral. The most 

acylation-compatible initial active site configuration is achieved, when i. Ser70 donates a 

hydrogen bond to Lys73, and ii. the distance between Ser70:OG and AVI:C is less than 3.5 Å. 

These criteria ensure both a feasible proton transfer and nucleophilic attack going from the MC 

to the TI. The hydroxyl oxygen in Ser70 and the avibactam carbon are closest, when χ1 is 
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approximately 300° (g- rotamer), with the majority of the sampled distances between 

Ser70:OG and avibactam carbon falling mostly under 3.5 Å for this rotamer (Figure 7.6). When 

the dihedral is approximately 180° (t), Ser70 is still donating a hydrogen bond to neutral Lys73, 

or analogously to the amine nitrogen in carboxylated Lys73. However, the distance between 

Ser70:O-AVI:C increases to ~4 Å or beyond, and for bond formation between Ser70 and 

avibactam, rotation to the g− state would be required. For the third rotamer, where χ1 is 

approximately 60°, Ser70 has rotated to donate a hydrogen bond to the sulphate group and is 

unable to transfer a proton to Lys73. Even though all three Ser70 orientation are observed in 

the simulations with the carboxylated Lys73, the g− rotamer is sampled the most. This, 

combined with the more stable non-covalent pose for avibactam, indicates that the carboxylated 

form of Lys73 is likely to participate in the acylation reaction. 

 

Figure 7.6 Distributions of the sampled Ser70 dihedrals and the corresponding distance between Ser70 

oxygen and avibactam electrophilic carbon. The label colour for the different Ser70 rotamers matches 

the colour of the corresponding sticks representation in the inset. 
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7.3.2 Energetics of the proposed pathway 1 

 

As discussed in section 7.1, at least two different pathways have been proposed for 

avibactam acylation. The compared reaction mechanisms are presented in Figure 7.1, and 

potential energy profiles for the approximate MEPs were calculated for models of the enzyme 

system (as described in Section 7.2.3). For pathway 1, the initial minimisation yielded only the 

MC and AC minima, as no stable minimum was found for the TI using the L-BFGS optimiser 

(the initial TI model changed back to the reactants during structure optimisation). Therefore, 

the MEP was first optimised from the MC all the way to the AC using 12 images, which helped 

to locate a better initial structure for the TI intermediate. This approximate TI structure was 

subsequently minimised prior to a new NEB optimisation in two parts going either from the 

MC to the TI, or from the TI to the AC. For the MC → TI calculation, the NEB consisted of 

14 images including the endpoints, and for the TI → AC of 22 images including the endpoints. 

The XTB2/MM optimised MC/TI/AC structures are presented in Figure 7.7. 

 

 

Figure 7.7 XTB2/ff14SB minimised structures for OXA-48 and avibactam with a neutral Lys73 

(pathway 1). 

 

All NEB calculations were done using the CI-NEB implementation in orca 4.2.0, where 

one of the images is converted into a so-called “climbing image” (CI). The CI converges to the 
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highest-energy saddle point along the MEP, which yields an approximate TS structure. This is 

not guaranteed for standard NEB, where the obtained images may not necessarily provide a 

good estimate of the TS as there may not be an image close to the saddle point. The obtained 

MEPs using XTB2/ff14SB for the NEB optimisation together with the DFT/MM single-point 

energy (SPE) values are presented in Figure 7.8 for both NEB calculations. Going from MC 

→ TI, the activation energy obtained with XTB2 as the QM method is 13.6 kcal/mol, and the 

reaction energy 10.6 kcal/mol. Analogously, the activation and reaction energies for the TI → 

AC conversion are 16.0 and −10.6 kcal/mol, respectively. Notably, the calculated energetics 

for the MC → TI reaction are underestimated using XTB2 with respect to the SPEs using either 

M06-2X/def2-TZVP or ωB97X/def2-TZVP for the QM region. Using M06-2X, the activation 

barrier is 23.2 kcal/mol, which is 9.6 kcal/mol higher than the corresponding XTB2 energy. 

The difference is even higher with ωB97X, where the calculated barrier is 27.4 kcal/mol, a 13.8 

kcal/mol increase with respect to XTB2. The opposite is observed for the second NEB 

calculation going from TI to the AC. Here, the XTB2 barrier is 16.0 kcal/mol, when M06-2X 

and ωB97X yield barrier heights of 6.0 and 9.8 kcal/mol, respectively. Even though the 

activation energies differ largely between XTB2 and the chosen functionals, XTB2 accurately 

predicts the forming TI to be high in energy with respect to the MC. The overall combined 

activation free energy barrier from the MC to the AC is 29.6 kcal/mol for XTB2, 29.2 kcal/mol 

for M06-2X, and 37.2 kcal/mol for ωB97X. The corresponding overall reaction energies are 0 

kcal/mol for XTB2, −3.3 kcal/mol for M06-2X, and −0.4 kcal/mol for ωB97X. 
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Figure 7.8 Potential energy along the MEP for the tetrahedral intermediate formation (MC → TI, left), 

and the subsequent avibactam ring opening and protonation (TI → AC, right) for pathway 1. QM/MM 

NEB calculations were performed using XTB2/ff14SB, and QM/MM SPEs were calculated using the 

ωB97X or M06-2X functional with the def2-TZVP basis set for the QM region. For both reactions, the 

structure of the climbing image, which corresponds to the highest energy saddle-point, is depicted 

(labelled NEB CI). 

 

Key distances together with the full interpolated XTB2/MM energy profiles are 

presented in Figure 7.9. For the MC → TI transition, the distances between the transferred 

proton and both the donor and acceptor were recorded, as well as the nucleophilic attack 

distance between Ser70 and the avibactam carbon. The first steep rise in the energy curve 

corresponds both to the proton transfer and the nucleophilic attack, which happen in a concerted 

fashion. However, the calculated energy still increases slightly, as the protonated Lys73 moves 

closer to hydrogen bond with Ser118. This explains why the Ser70:O – Ser70:H distance 

increases even after the proton transfer has occurred. For the TI → AC reaction, the two proton 

transfers are concerted and happen simultaneously with the elongation of the avibactam C-N 

bond (in the five-membered ring). 
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Figure 7.9 Key distances along the calculated MEP for the MC → TI (left) and TI → AC (right) 

reactions in pathway 1. Left y-axis: measured key distances along the MEP, depicted with dots 

connected by lines. Right y-axis: XTB2/ff14SB energy along the MEP, depicted by yellow circles. 

 

7.3.3 Energetics of the proposed pathway 2 

 

The procedures for calculating MEPs for pathway 2 are the same as discussed for 

pathway 1, with the exception that the QM/MM NEB calculations were done in two parts from 

the beginning, as the TI minimum was identified already during the initial minimisation. 

However, re-positioning of some active site solvent molecules was observed between the 

minimised MC and TI structures, and therefore the MC → TI MEP was optimised in two parts. 

As water movement in the active site occurred before any bonding changes in the initial MEP, 

a MC structure with newly positioned waters (closer to the arrangement in the TI structure) 

was subsequently minimised and used as a starting point for a new NEB calculation. This 

ensured that the calculated barrier excludes any re-organisation in the active site and mainly 

corresponds to the actual enzymatic reaction itself. The minimised structures used as NEB start 

and end points are presented in Figure 7.10. 
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Figure 7.10 XTB2/ff14SB minimised structures for OXA-48/avibactam acylation with a carboxylated 

Lys73 (pathway 2). 

 

The calculated potential energies along the MEP for both reactions in pathway 2 are 

presented in Figure 7.11. The MEPs consisted of 14 and 22 images for the MC → TI and the 

TI → AC reactions, respectively. Notably, the XTB2 method seems to vastly underestimate 

the barrier to forming a TI. Calculated energies using XTB2/ff14SB imply that the MC → TI 

reaction is essentially barrierless, as the required energy is only 0.6 kcal/mol, and that the TI is 

−9.5 kcal/mol lower in energy than the starting non-covalent MC. As the TI structure is 

expected to be higher in energy than the MC, XTB2 does not appear to give reliable energetics 

for the formation of this intermediate. However, this is partly overcome by obtaining SPEs 

using DFT for the QM region. The activation energy with M06-2X/def2-TZVP is 7.5 kcal/mol, 

and with ωB97X/def2-TZVP 11.3 kcal/mol. The reaction energies are also in better accordance 

with their expected values, as they are 0.7 and 5.4 kcal/mol for M06-2X and ωB97X, 

respectively. For the TI → AC reaction, XTB2/ff14SB yields an activation energy barrier of 

23.8 kcal/mol. This is higher than the calculated QM/MM SPEs with DFT, as the M06-2X 

barrier is 12.5 kcal/mol and the ωB97X barrier 14.9 kcal/mol. Based on the energies, the TI 

minimum is also shifted to image 8 when using DFT as the QM method. The total activation 

energy barrier going from the MC to the AC for pathway 2 is 23.8 kcal/mol using XTB2, 20.0 
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kcal/mol using M06-2X, and 26.2 kcal/mol using ωB97X. However, just based on the 

XTB2/ff14SB energetics, the forming TI would be the stable intermediate structure. The total 

reaction energies for MC → TI are 4.3 kcal/mol for XTB2, −1.0 kcal/mol for M06-2X, and -

0.8 kcal/mol for ωB97X. 

 

Figure 7.11 Potential energies for the tetrahedral intermediate formation (MC → TI, left), and the 

subsequent avibactam ring opening and protonation (TI → AC, right) for pathway 2. NEB calculations 

were performed using XTB2/ff14SB, QM/MM SPEs calculated using either ωB97X or M06-2X 

functionals with the def2-TZVP basis set for the QM region. The converged structure of the climbing 

image depicted for both reactions (labelled NEB CI). 

 

Key distances for both reactions involved in pathway 2 are presented in Figure 7.12. 

They follow largely the same pattern observed for pathway 1, where the proton transfer and 

nucleophilic attack in the MC → TI reaction are concerted. This aligns with the slight increase 

in the calculated XTB2/ff14SB energy at the TS. For the TI → AC reaction, the proton transfers 

from Lys208 to Ser118 and from Ser118 to avibactam occur almost simultaneously, and 

coincide with the elongation of the avibactam C-N bond. 
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Figure 7.12 Key distances along the calculated MEP for the MC → TI (left) and TI → AC (right) 

reactions in pathway 2. Left y-axis: measured key distances along the MEP, depicted with dots 

connected by lines. Right y-axis: QM/MM energy with XTB2 as the QM method along the MEP, 

depicted by yellow circles. 

 

 

7.3.4 Comparison of the pathways 

 

The activation free energies calculated with all QM methods used are listed in Table 

7.1. Energies are tabulated for the separate reactions as well combined to give the overall 

activation energy for the whole acylation reaction. Going all the way from MC to the AC, 

DFT/MM energies on the XTB2/MM optimised MEPs indicate that the overall barrier for 

pathway 2 is either 11.0 kcal/mol (ωB97X/def2-TZVP) or 9.2 kcal/mol (M06-2X/def2-TZVP) 

lower in energy than for pathway 1. Notably, the calculated energy barrier for the MC → TI 

reaction in pathway 1 is significantly higher than for pathway 2. In pathway 1, the TI formation 

requires either 16.1 kcal/mol (ωB97X) or 15.7 kcal/mol (M06-2X) more energy than the TI 

formation in pathway 2. Comparison of the calculated activation energy barriers implies that 

of the studied mechanisms, pathway 2 is the most likely mechanism for avibactam acylation. 

The activation energy barrier for the MC → TI conversion in pathway 2 was re-calculated using 

ωB97X/def2-SVP for the QM region during NEB optimisation, and calculating SPEs using 

either ωB97X/def2-TZVP or M06-2X/def2-TZVP. The obtained barriers of 10.2 kcal/mol 
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(ωB97X) and 6.6 kcal/mol (M06-2X) are in good agreement with the previously obtained 

corresponding energetics on the XTB2 optimised structures. Comparison of the CI and TI 

structures reveals the proton transfer between Ser70 and Lys73 to have progressed further when 

optimising the structured using ωB97X/def2-SVP//MM. The distances between Lys73:O – 

Ser70:H and Ser70:O – Ser70:H are 1.1 and 1.3 Å in the ωB97X/MM optimised TS, and 

conversely 1.3 and 1.1 Å in the TS optimised using XTB2/MM (respectively). The 

ωB97X/MM reaction energy is 4.2 kcal/mol, and the M06-2X/MM reaction energy is -0.7 

kcal/mol. The TI structures are virtually identical when optimised either using XTB2/MM or 

ωB97X/MM, implying that whilst XTB2 does not give reliable energetics for the forming TI, 

the structures can be used for obtaining better energetics using a higher-level method for the 

QM region. Further, the barrier for the MC → TI conversion in pathway 1 using the same DFT 

methods for the QM region in NEB optimisation and subsequent SPEs yields barriers of 27.2 

and 23.0 kcal/mol for ωB97X and M06-2X, respectively. This further support the hypothesis 

of a proton transfer from Ser70 to a neutral Lys73 being energetically unfeasible in comparison 

to a proton transfer to a carboxylated Lys73. 

 

Table 7.1 QM/MM activation energy barriers (Δ‡E) for pathways 1 and 2 with all QM methods used. 

All energies in kcal/mol. The combined barrier is obtained by summing together the individual barriers 

for MC → TI and TI → AC. 

 GFN2-XTB/MM optimised structures 

Δ‡E (kcal/mol) 
GFN2-

XTB 

ωB97X/def2-

TZVP 

M06-2X/def2-

TZVP 

1 MC → TI 13.6 27.4 23.2 

1 TI → AC 16.0 9.8 6.0 

1 MC → AC 

Combined 
29.6 37.2 29.2 

2 MC → TI 0.6 11.3 7.5 

2 TI → AC 23.8 14.9 12.5 

2 MC → AC 

Combined 
23.8 26.2 20.0 

 

A kcat value for avibactam acylation by OXA-48 has not been measured, as only the combined 

k2/Ki = 1.4 ± 0.1 x 103 M-1 s-1 is available in existing literature.34  However, a separate rate 
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constant for recyclization is measured to be koff = 1.2 ± 0.4 x 10-5 s-1 with a half-life of 1000 ± 

300 minutes. This deacylation rate constant corresponds to a free energy barrier of 

approximately 24.3 kcal/mol (converted using the Eyring equation). As the free energy barrier 

for acylation is lower than for deacylation, it is likely that the calculated combined potential 

energy barriers of 23.8/26.2/20.0 kcal/mol (with XTB2/ωB97X/M06-2X as the QM method, 

respectively) for pathway 2 overestimate the actual acylation barrier. If recyclization occurs 

via the same reaction “backwards”, the activation energy for the AC → TI reaction is 10 

kcal/mol for XTB2, 15.0 kcal/mol for ωB97X, and 12.8 kcal/mol for M06-2X. 

Correspondingly, the TI → MC conversion to give intact avibactam requires 10.1 kcal/mol 

using XTB2, 10.6 kcal/mol using ωB97X, and 6.8 kcal/mol using M06-2X. The combined 

barriers for the whole AC → MC recyclization reaction are 10.1 kcal/mol with XTB2 as the 

QM method, 25.6 kcal/mol with ωB97X, and 19.6 kcal/mol with M06-2X. These are all lower 

than the corresponding overall barriers calculated for the whole MC → AC conversion in 

acylation. Therefore, avibactam inhibition most likely relies on Lys73 being preferentially in 

its decarboxylated form in the AC state, and thus unable to act as a general acid in recyclization. 

This hypothesis is further supported by experimental data from enzyme kinetics, 

crystallography, and NMR spectroscopy. Based on the crystallised OXA-48/avibactam 

complexes, Lys73 is preferentially decarboxylated when covalently-bound avibactam is 

present. For example, in structures obtained at pH values 6.5 and 7.5, none of the OXA-48 

monomers displayed Lys73 carboxylation, and at 8.5 only partial carboxylation was 

observed.235 This is expected, as increasing the pH of the solution favours Lys73 carboxylation. 

Further, 19F NMR measurements suggest that Lys73 is decarboxylated in the OXA-

48/avibactam AC complex.236 Enzyme kinetics measurements indicate that avibactam 

recyclization is slower for class D β-lactamases than for classes A and C.34 A distinct difference 

between class D and class A/C enzymes is that for the former, a reversibly carboxylated Lys73 

acts as an acid/base in the reaction instead of a “standard”, unmodified amino acid residue. 

“Inactivation” of this Lys73 through decarboxylation could explain the relative slow rates of 

class D SBLs. 

 

7.4 Conclusions 
 

In this chapter, the possible mechanisms of OXA-48 inhibition by the DBO inhibitor 

avibactam were studied using MM MD simulations and QM/MM potential energy calculations. 
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Two main reaction mechanisms were inspected. In pathway 1, a neutral Lys73 acts as the initial 

proton acceptor, but subsequently also donates a proton to Ser118, which further protonates 

avibactam. In pathway 2, a carboxy-Lys73 is the initial proton acceptor, and avibactam 

protonation occurs by Lys208 via Ser118. Accordingly, non-covalent MC models for OXA-48 

with either a standard, neutral Lys73 or with a carboxylated Lys73 were constructed. The 

stabilities of these complexes were inspected by ten independent 50 ns MM MD simulations. 

With a neutral Lys73, avibactam shifted away from its initial acylation-compatible pose in nine 

out of ten simulations. With a carboxylated Lys73, the same avibactam re-positioning was 

observed in five simulations. Comparison of the reaction energetics for acylation was done by 

constructing MEPs for both pathways using the CI-NEB method. Energetics along the 

calculated MEPs indicate that the initial proton transfer and nucleophilic attack are more 

feasible for OXA-48 with a carboxylated Lys73; the activation energy barriers are 13.0-16.1 

kcal/mol lower for the MC → TI reaction in pathway 2 (with a carboxy-Lys73) than in pathway 

1 (neutral Lys73). Based on the combination of MM MD and QM/MM NEB calculations 

presented here, we suggest that avibactam acylation happens analogous to β-lactam hydrolysis, 

where a carboxy-Lys73 acts as the general base. The efficient inhibition of OXA-48 (and other 

class D β-lactamases) with avibactam is enabled by slow recyclization rates, which are likely 

due to post-acylation decarboxylation of Lys73 at the AC state. 
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8. Conclusions and outlook 
 

In this thesis, I have outlined my research on selected serine β-lactamases, which have 

been identified among the most common enzymes in resistant bacterial infections globally. In 

Chapter 3, carbapenem hydrolysis by eight class A β-lactamases is compared using different 

types of computational assays. These computational assays are essentially simplified 

simulation protocols, which still distinguish between different hydrolytic phenotypes (i.e. 

correctly differentiate between carbapenemases and carbapenem-inhibited enzymes). Chapters 

5 to 7 present simulations of class D β-lactamases, specifically the OXA-48 family. 

Cephalosporinase inactivation by selected OXA-48 enzymes is compared in Chapter 5, and the 

differences in carbapenem breakdown between imipenem and meropenem for OXA-48 in 

Chapter 6. Finally, Chapter 7 discusses the inhibition mechanism of OXA-48 by avibactam, a 

DBO-based β-lactamase inhibitor. In this last section, I will briefly outline the main 

conclusions of these chapters, consider their potential impact, and discuss possible future work 

in the corresponding research areas. 

 

8.1 Class A β-lactamases 
 

In Chapter 3, meropenem breakdown was simulated for four carbapenemases (KPC-2, 

NMC-A, SFC-1, and SME-1) and for four carbapenem-inhibited enzymes (TEM-1, SHV-1, 

BlaC, and CTX-M-16), all belonging to class A serine β-lactamases. A previous study, where 

QM/MM umbrella sampling (with DFTB2) was used to calculate full free energy surfaces for 

all enzymes, was used as a starting point for constructing more simplified simulation 

protocols.190 The aim here was to limit both the sampling time in each umbrella sampling 

window, and the conformational sampling along the free energy surface. The sampling time 

was shortened from 20 ps/window to 2 ps/window, and the number of umbrella sampling 

windows was decreased from 374 to 28. The 28 windows correspond to structures near the 

approximate minimum free energy path, which was largely similar across all eight enzymes. 

This new simulation protocol used less than 99% of the computational resources required for 

the initial QM/MM computational assay, whilst still correctly differentiating between the two 

groups. 
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This study highlights, how simulations can be used as computational assays to compare 

enzyme activities. In addition to correctly distinguishing between known hydrolytic 

phenotypes, i.e. carbapenemases and non-carbapenemases, these type of in silico assays could 

be applied to study the phenotypes of new, emerging variants e.g. from sequence data. In 

addition to assaying new β-lactamase variants, newly designed β-lactam antibiotics or β-

lactamase inhibitors could be inspected in a similar fashion e.g. prior to synthesising them. This 

underlines the paradigm shift in computational chemistry, where the role of simulations is 

moving from mainly rationalising experimental data to being fully predictive and guiding 

decision making. Further automation of these protocols could provide rough estimates of 

enzyme activities within hours with relatively modest computational resources. Establishing 

how much these computational assays could still be simplified and shortened remains as future 

work. Some possible ideas could include moving from periodic box simulations to a more 

simplified system descriptions (with fewer atoms), and using GPU accelerated QM programs 

or new, more efficient methods for the QM region (e.g. utilising machine learning potentials). 

 

8.2 OXA-48 β-lactamases 
 

8.2.1 Cephalosporinase activity 

 

Generally, OXA-48 β-lactamases are either carbapenemases exhibiting low level 

carbapenem hydrolysis with a specific preference towards imipenem, or they are more ESBL-

like, i.e. they have acquired activity against oxyimino cephalosporins like ceftazidime (usually 

at the expense of efficient imipenem breakdown). In Chapter 5, the cephalosporinase activities 

of carbapenemases OXA-48 and OXA-181 are compared against OXA-163, which has an 

ESBL-like hydrolytic phenotype. Comparison of the expected rate-limiting step (deacylation) 

in ceftazidime hydrolysis revealed that for cephalosporinases, the active site tends to be less 

hydrated. Hydration around the general base (carboxy-Lys73) correlated with the calculated 

free energy barriers: the fewer water molecules were hydrogen bonding to the proton accepting 

carboxylate oxygen, the lower the barriers were. Additionally, two further hypotheses were 

tested using our simulation protocols. Firstly, the effect of a single mutation (Arg214Ser) on 

the calculated deacylation barriers was analysed, as deletion of Arg214 was hypothesised to be 

the main determinant in the acquired activity in OXA-163. Secondly, the effect of the Ω-loop 

distortion was studied by constructing a model of OXA-48 with a flexible Ω-loop. 
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In this study, we demonstrated the power of our simplified simulation protocols 

presented in Chapter 3. All reaction simulations were performed using short simulation times 

(2 ps per US window) with semi-empirical QM methods. Whilst replicating the experimentally 

measured kcat values within chemical accuracy was not possible with this approach, it is 

sufficient to discriminate between inhibited and active enzymes. Additionally, this modelling 

approach was used to indicate the ceftazidime orientation most compatible with deacylation. 

We were also able to complement existing experimental research by analysing the effect of Ω-

loop distortion on the calculated rates. No visible electron density was observed for the Ω-loop 

region in a crystal structure of OXA-48 with ceftazidime (in the AC state), and hence Ω-loop 

distortion was hypothesised to be important for ceftazidime hydrolysis. However, our 

simulations show that this distortion is likely to lead to diminished catalytic rates, as the active 

site is fully exposed to solvent molecules. Therefore, the observed Ω-loop distortion most likely 

relates to the initial binding of ceftazidime, a relatively bulky cephalosporin substrate, instead 

of offering any rate enhancement beyond aiding in the formation of the initial non-covalent 

complex. In addition to rationalising experimental findings, we predicted the activity of an in 

silico Arg214Ser point mutant. This is an example of computational assays being used to study 

activities of new enzyme variants, as discussed in Section 8.1. Finally, this was the first work 

to highlight the effect active site hydration has on the catalytic efficiency of serine β-

lactamases, aside the obvious need for a deacylating water to reach a position suitable for 

nucleophilic attack. We illustrated that whilst the argument concerning deacylating water 

movement is accurate, there is a more careful balance between the active site being accessible 

and additional hydration around the reactive residues impairing catalysis. 

Our simulations focus on modelling the rate-limiting enzymatic reaction starting from 

the covalent AC intermediate. For this, we assume the initial non-covalent MC to have been 

formed and undergone acylation. However, experimental kinetics indicate that in addition to 

the actual rate constant, also ceftazidime binding differs for OXA-48 and OXA-163. Studying 

the role of the Ω-loop (and its possible distortion) in binding remains for future studies. Another 

interesting prospect is developing more broad-spectrum cephalosporin antibiotics against 

serine β-lactamases. E.g. the ceftazidime/avibactam combination is one of the recommended 

treatment options for OXA-48 infections,259 as OXA-48 remains susceptible for both 

ceftazidime and avibactam. In addition to ceftazidime, another treatment option against OXA-

48 is cefiderocol, another cephalosporin antibiotic. As OXA-48 spares these antibiotics, it is 
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likely that the cephalosporin scaffold could be improved to yield even more broad-spectrum 

antibacterial drugs. 

 

8.2.2 Carbapenemase activity 

 

As mentioned in the previous section, the OXA-48 β-lactamase exhibits a preference 

for imipenem over other carbapenem substrates. The origin of this imipenemase activity 

remains unclear, although the β5-β6 loop has been demonstrated to be integral for acquired 

carbapenemase activity in general.242, 245 In Chapter 6, the rate-limiting step in carbapenem 

breakdown (deacylation, as for ceftazidime) is compared for imipenem and meropenem by 

MM MD and QM/MM reaction simulations. To briefly summarise, we observed carbapenem 

substrates to be able to accommodate three different conformations, which differ by the 

position of the 6α-hydroxyethyl group. The effect of changing the orientation of the 6α-

hydroxyethyl group on the deacylation reaction was calculated by restraining this sidechain 

during QM/MM US simulations. For both carbapenems, the lowest free energy barriers were 

obtained, when the 6α-hydroxyethyl group is rotated near the oxyanion hole and either donates 

or accepts a hydrogen bond from the deacylating water. For imipenem, the lowest free energy 

barriers were calculated in this orientation upon the 6α-hydroxyethyl accepting a hydrogen 

bond from the deacylating water, and the barrier is increased if hydrogen bonds change so that 

the 6α-hydroxyethyl hydroxyl group donates a hydrogen bond to the water nucleophile. The 

same effect was not calculated for meropenem, where both hydrogen bond patterns had very 

similar barriers. Further, we were able to extend our argument concerning hydration around the 

general base, as increased hydration around both carboxylate oxygens was calculated to affect 

the barriers (not just around the proton accepting one). 

Many arguments about the source of carbapenemase activity have been presented in 

existing literature, and whilst some have been related to the orientation of the discussed 6α-

hydroxyethyl group,222, 254 our simulations illustrate the precise effect a certain substrate 

conformation has on the deacylation efficiency. We are also able to pinpoint the exact 

orientation that is most likely to contribute to efficient deacylation. Additionally, we can deduct 

a very subtle difference between the preferred hydrogen bond networks in the active site, which 

in turn most likely leads to the observed difference between imipenem and meropenem 

hydrolysis efficiency. Finally, we further extended our findings of active site hydration 

(discussed in Section 8.2.1 for ceftazidime) impairing catalysis, indicating that it applies to 
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both Lys73 carboxylate oxygens. The free energy barriers were calculated to increase even 

when hydration around the second carboxylate oxygen, which does not participate in the 

reaction, increased as well. 

Even though carbapenem hydrolysis by the OXA-48 β-lactamase was dissected rather 

exhaustively, the exact reason for the calculated lower energy barriers for imipenem in the most 

deacylation-compatible substrate orientation remains elusive. This is expected to relate to the 

1β-methyl group in meropenem, which is replaced by a 1β-proton in imipenem. The larger 

methyl group might favour re-orienting water molecules near the substrate or the substrate 

itself, but establishing the validity of this hypothesis remains for future studies. Additionally, 

comparing carbapenem hydrolysis between the wildtype OXA-48 and its variants with 

enhanced carbapenemase activity could further indicate if similar patterns with respect to active 

site hydrogen bonds are observed. Another interesting aspect for future research would be 

inspecting a common side reaction for carbapenems, as in addition to standard hydrolysis, 

OXA-48 has been shown to degrade carbapenems additionally by β-lactone formation.253, 254 

Originally lactone formation was observed for the wildtype OXA-48 only with 1β-methyl 

carbapenems,253 but later some OXA-48 variants were shown to lactonise 1β-proton 

carbapenems as well.254 Comparison of deacylation vs. lactone formation for different 

carbapenem substrates, as well as establishing the role of amino acid mutations enhancing or 

diminishing lactone formation, would be an intriguing (albeit most likely challenging) subject 

for computational modelling. 

 

8.2.3 Avibactam inhibition mechanism 

 

To combat the growing resistance against β-lactam antibiotics, new β-lactamase 

inhibitors are in active development. Avibactam is one of these newer non-β-lactam β-

lactamase inhibitors, which efficiently inhibits OXA-48.34 Experimental studies indicate that 

avibactam is acylated in an analogous way to β-lactam substrates, but instead of being 

inactivated via deacylation, it undergoes recyclization to re-form the intact inhibitor.34 

However, the exact mechanisms for avibactam acylation and recyclization are not known, but 

two main hypotheses have been presented in existing literature. In the first proposed pathway, 

avibactam is acylated using a neutral, non-carboxylated Lys73 as the general base, which 

subsequently also protonates avibactam via Ser118.235 In the second proposal, a carboxylated 

Lys73 acts the general base, whilst avibactam protonation occurs by Lys208 via Ser118.264 We 
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compared these two pathways by calculating their potential energy profiles using QM/MM 

nudged elastic band calculations, and concluded the pathway incorporating a carboxylated 

Lys73 to be more likely than the alternative mechanism with a neutral Lys73 as the proton 

acceptor. 

Even though it is known that Lys73 needs to be in its carboxylated form for β-lactam 

hydrolysis, this has so far not been verified for DBOs like avibactam. The hypothesis of a 

neutral Lys73 acting as a proton acceptor is mainly based on crystal structures, where Lys73 is 

observed to favour its standard, non-carboxylated form in the presence of a covalently-bound 

avibactam.235 Here, we show that a proton transfer to a neutral Lys73 is energetically not 

feasible, in contrast to proton transfer to a carboxy-Lys73. Therefore, avibactam most likely 

utilises a similar mechanism for the initial proton transfer and nucleophilic attack as is known 

for β-lactam antibiotics. The inhibition power of avibactam is likely to come from post-

acylation decarboxylation of Lys73, which traps the covalently-bound inhibitor in the 

acylenzyme state. This suggested mechanism aligns well with other experimental observations, 

such as class D β-lactamases exhibiting slower recyclization rates than class A or C β-

lactamases.34 

Even though we provide a mechanistic suggestion for avibactam acylation, different 

possible pathways for recyclization are not inspected in detail. Rather, recyclization is expected 

to happen via the same mechanism in the reverse direction; verifying if this expectation is true 

remains for future studies. Additionally, calculating free energy profiles (as opposed to 

potential energy) for the fully solvated enzyme system using e.g. the adaptive string method345, 

will possibly provide more accurate energetics for the whole acylation reaction. Finally, 

studying the origin of Lys73 decarboxylation post-acylation can guide the design of new types 

of inhibitors, which essentially inhibit class D β-lactamases by enforcing Lys73 

decarboxylation at the acylenzyme state. 

 

8.3 Broad impact 
 

Atomistic simulations of enzyme/substrate complexes complement experimental 

research, e.g. x-ray crystallography, by offering a more complete picture of the dynamic nature 

of these macromolecules. As illustrated in Sections 8.2.1-8.2.3., biomolecular simulations are 

useful for elucidating hypotheses concerning enzyme mechanisms and determinants of activity, 



 

163 
 

which are originally derived from experimental data.  Simulations also provide a cost-effective 

and straight-forward way of testing new hypotheses or screening through large data libraries. 

As an example, serine β-lactamases can acquire activity against β-lactam antibiotics or β-

lactamase inhibitors through point mutations. As new enzyme variants emerge e.g. from 

environmental or clinical samples, their phenotypes could be characterised in silico directly 

from sequence data. Simulations can also be used to elucidate the molecular level interactions, 

which lead to increased hydrolysis against certain antibiotics for enzyme variants emerging 

from experimental research.346 Further, identified mutational sites in new variants could be 

screened for any alternative amino acid replacements, therefore identifying possible new 

variants before they have been detected. This would help to understand the evolution of broad-

spectrum β-lactamase resistance on a more fundamental level. Combining further automation 

of simulation protocols with modest required computational resources enables using a standard 

laptop as a diagnostic tool for predicting enzymatic activities against a certain antibiotic. This 

in turn can be used to guide antibiotic prescriptions in a clinical setting. This kind of evidence-

based antibiotic prescription is an integral part of antibiotic stewardship, as it reduces selection 

pressure for bacteria and slows down evolving resistance. 

The subtle effects of solvation, highlighted by the studies of carbapenem and 

cephalosporin breakdown by OXA-48 enzymes, aid in gaining a better understanding of 

features contributing to antibiotic hydrolysis. Serine β-lactamases seem to enhance their 

activity by expulsing water away from the active site, especially away from the general base. 

Changes in active site hydration are especially important in class D β-lactamases, where the 

general base is not a part of a highly organised hydrogen bond network. A comparison of active 

site hydration between different enzyme variants could already be used as a relatively simple 

indicator of enzyme activity. Further, the findings concerning hydration have implications for 

future antibiotic and inhibitor design purposes. An ideal β-lactamase inhibitor is acylated 

efficiently and forms a very long-lived covalent acylenzyme structure post-acylation. One way 

to achieve this is to design ligands, which modulate the access of water molecules to the active 

site: as lack of catalytic water molecules essentially traps the ligand in the acylenzyme state. 

The use of reliable and efficient QM/MM protocols may also aid in designing new mechanism-

based inhibitors as well as elucidating inhibition mechanisms for inhibitors with a new mode 

of action (as evidenced for avibactam). 
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