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a b s t r a c t 

Background: Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 (WHO 

label Alpha) rapidly became the dominant lineage across much of Europe. Simultaneously, several other 

VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer 

partial immune escape. Understanding when and how these additional VOCs pose a threat in settings 

where B.1.1.7 is currently dominant is vital. 

Methods: We examine trends in the prevalence of non-B.1.1.7 lineages in London and other English 

regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic 

surveillance, and wastewater monitoring. The study period spans from 31st January 2021 to 15th May 

2021. 

Findings: Across data sources, the percentage of non-B.1.1.7 variants has been increasing since late March 

2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April, 

B.1.617.2 (WHO label Delta) spread rapidly, becoming the dominant variant in England by late May. 

Interpretation: The outcome of competition between variants depends on a wide range of factors such as 

intrinsic transmissibility, evasion of prior immunity, demographic specificities and interactions with non- 

pharmaceutical interventions. The presence and rise of non-B.1.1.7 variants in March likely was driven 

by importations and some community transmission. There was competition between non-B.1.17 variants 

which resulted in B.1.617.2 becoming dominant in April and May with considerable community transmis- 

sion. Our results underscore that early detection of new variants requires a diverse array of data sources 

in community surveillance. Continued real-time information on the highly dynamic composition and tra- 

jectory of different SARS-CoV-2 lineages is essential to future control effort s 
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Research in Context 

Evidence before this study 

Evidence about novel SARS-CoV-2 variants is rapidly be- 
ing disseminated through genome sequencing databases, gov- 
ernmental reports, preprints, scientific papers, and even so- 
cial media. We consulted journal publications, preprint repos- 
itories (medrxiv and biorxiv), and technical briefings from 

public health agencies (primarily Public Health England). For 
England, the COVID-19 Genomics UK Consortium (co-authors 
on this paper) maintain the most comprehensive dataset on 

genomic sequences. Data on variants obtained from genome 
sequencing databases often comes from non-random sam- 
ples, meaning that there is a risk of bias. We also rely on 

estimates from the sequencing of viral RNA from sewage wa- 
ter. This form of environmental surveillance can be used to 
track variants with potentially lower bias due to the random 

sampling design. 

Added value of this study 

By bringing together passive-case detection PCR data, 
cross-sectional community infection surveys, genomic se- 
quencing surveillance, and wastewater monitoring we are 
able to examine very recent spatial and temporal trends in 

the circulation of novel variants of SARS-CoV-2 in the re- 
gions of England. We highlight the situation that is currently 
unfolding in London where the pattern is clearest, and note 
similar patterns in other regions. 

Implications of all the available evidence 

We are witnessing dynamic shifts in the composition of 
SARS-CoV-2 lineages driving transmission across England in 

March and April 2021, with an expansion of non-B.1.1.7 VOCs. 
This still ambiguous but potentially concerning early signal 
of community transmission of non-B.1.1.7 VOCs in England 

suggests a need for intensified monitoring. Such information 

is critical to the epidemic’s immediate control and to future 
vaccine development and deployment - both in the UK and 

other countries where the potential emergence of other novel 
SARS-CoV-2 variants remains a serious public health threat. 

. Introduction 

Since its emergence in Autumn 2020 in South East England, the 

ARS-CoV-2 variant of concern (VOC) B.1.1.7 has become the dom- 

nant lineage across much of Europe [1] . Characterised by several 

utations in the spike protein receptor-binding domain (RBD), epi- 

emiological studies suggest B.1.1.7 is 50–80% more transmissible 

 2 , 3 ] and causes more severe disease [4] than previously circulat-

ng lineages. B.1.1.7 rose rapidly, from near 0% to over 50% in un- 

er two months, and soon made up > 98% of sequenced samples in 

ngland. Its rapid spread necessitated a third English national lock- 

own in January 2021. Subsequent spread in Europe [5] and North 

merica [6] has similarly highlighted the threat this variant poses 

o continued control of community transmission. 

The 69–70 deletion in B.1.1.7 ′ s Spike gene causes PCR tests to 

eturn negative results for that gene target [3] , allowing S-gene 
∗ Corresponding authors at: Medical Research Council (MRC) Centre for Global 

nfectious Disease Analysis, Jameel Institute, School of Public Health, Imperial Col- 

ege London, UK. 

E-mail addresses: s.mishra@imperial.ac.uk (S. Mishra), s.bhatt@imperial.ac.uk (S. 

hatt). 
1 These authors contributed equally to this work. 
2 Full list of consortium names and affiliations are in the supplementary text. 
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arget failure (SGTF) to act as a proxy for genomic surveillance. 

he rapidity of PCR testing means that this proxy is available 

ore quickly than genomic sequencing data. Both community- 

ased testing of symptomatic individuals (“Pillar 2 ′′ [7] ) and a 

eekly survey of more than 10 0,0 0 0 randomly sampled UK resi- 

ents conducted by the Office for National Statistics (ONS) [8] have 

hown trends in SGTF frequency which mirrored the pattern seen 

n sequenced samples. The frequency of SGTF increased from near 

% in October 2020 to 98.8% in March 2021. 

After B.1.1.7 ′ s emergence, several other VOCs have been identi- 

ed globally, including B.1.351 (first identified in South Africa [9] ), 

.1 (first identified in Brazil [10] ), and B.1.617.2 (first identified in 

ndia). These VOCs have been associated with extensive transmis- 

ion following emergence, leading to substantial infection and mor- 

ality rates even in settings where seroprevalence was high (for ex- 

mple in Manaus, Brazil [ 11 , 12 ]). Epidemiological analysis suggests 

hat B.1.351 and P.1 are more transmissible than ancestral SARS- 

oV-2 lineages; [ 10 , 13 ] for B.1.617.2, emerging evidence suggests 

he same. Additionally, all three VOCs carry mutations thought to 

ontribute to partial immune escape (E484K or T478K) [ 14–16 ]. 

he three VOCs do not have the 69–70 deletion and can thus be 

istinguished from B.1.1.7 in the Spike gene PCR. 

The UK now has a high level of population immunity to SARS- 

oV-2: at the beginning of April 2021, it was estimated that 55% 

95% CI: 49% −60%) of the English population were seropositive, ei- 

her due to prior infection or vaccination [17] . However, such high 

evels of immunity also represent an evolutionary selection pres- 

ure on the virus and may give VOCs with even a partial degree 

f immune escape (relative to B.1.1.7) a transmission fitness ad- 

antage –especially at a time where control measures are being 

rogressively relaxed. Further, the UK’s vaccination rollout has re- 

ied heavily on the AstraZeneca vaccine; a vaccine that has proven 

ighly protective against B.1.1.7 and prior variants [18] , but may 

ossess reduced efficacy against other VOCs [15] . Understanding 

hen, how and if these VOCs pose a threat in settings where B.1.1.7 

s currently dominant is vital also for other countries. 

Here, we use a combination of data from passive-case detec- 

ion PCR data, cross-sectional community infection surveys, ge- 

omic sequencing surveillance, and wastewater monitoring to ex- 

mine spatial and temporal trends in the prevalence of non-B.1.1.7 

ineages in England between February and May 2021. 

. Methods 

.1. Pillar 2 symptomatic community testing 

Public Health England’s surveillance system assembles data 

rom dozens of PCR testing laboratories, the largest of which are 

he three large “Lighthouse” laboratories developed specifically in 

esponse to the pandemic. Approximately 30% of the samples pro- 

essed by the Lighthouse laboratories use the ThermoFisher Taq- 

ath PCR assay, which includes Spike as a target. For tests that 

ive a PCR cycle threshold (Ct) value for non-spike targets substan- 

ially below the positivity threshold of 40, SGTF is a highly accurate 

roxy for B.1.1.7. Thus we are able to categorise a substantial pro- 

ortion of all lab-confirmed community SARS-CoV cases as B.1.1.7 

r non-B.1.1.7 [2] . SGTF becomes less reliable when Ct values for all 

argets are high since the Spike target is more likely to test nega- 

ive by chance when sample viral load is low. Hence we estimate 

he frequency of SGTF only from cases with Ct values in non-Spike 

argets of 30 or less. However, results and conclusions were un- 

hanged when we included cases with Ct of 40 or less. 

We consider the period from 31st January 2021 to 15th May 

021. We only consider test results in self-reported symptomatic 

ases and exclude tests conducted following a lateral flow test 

used, for instance, for asymptomatic screening for infection in 

mailto:s.mishra@imperial.ac.uk
mailto:s.bhatt@imperial.ac.uk
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Fig. 1. Trends in S + infections in London, February-May 2021. ( A) Estimated aggregated weekly incidence (log scale) of symptomatic S + cases diagnosed via community 

testing (Pillar 2) calculated by multiplying the fraction of S + cases by the total number of positives and S + infections estimated from the ONS infection survey [35] . B) 

Temporal trends in the proportion of cases and infections that are S + , estimated from symptomatic community testing (Pillar 2), the ONS infection survey, and from SARS- 

CoV-2 sequence data (COG-UK public data, which may include travelers and surge testing; non-B.1.17 fraction is shown). Shaded ribbons represent 95% uncertainty intervals 

for the mean. Details on uncertainty intervals can be found in Supplementary Text. Results for other regions of England can be found in Supplementary Figures 1 and 2. 
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chools and workplaces). Unlike the COG-UK data detailed below, 

e do not have metadata to exclude individuals with recent travel 

istory. Over that period and with these exclusions applied, there 

as a total of 72,881 S-gene positive (S + ), and 586,854 S-gene 

egative (S-) cases in England processed by the Lighthouse labora- 

ories and 4246 S + and 79,207 S- cases in London. Given that SGTF 

esults are only available for a subset of samples, we estimate total 

pike-positive (S + ) case incidence by multiplying the frequency of 

 + among all cases with SGTF results by the total Pillar 2 case in-

idence. Uncertainty estimates are detailed in Supplementary Text. 

.2. ONS infection survey 

ONS conducts a fortnightly survey of randomly selected private 

ouseholds in the UK. In the two weeks prior to 16th April 2021, 

39,948 participants from 73,328 households were tested using 

ose and throat self-swabs, analyzed with a PCR test. A Bayesian 

odel was used to estimate the positivity rate for SARS-CoV-2 in 

he community, stratified by regions of England [19] . We use the 

NS estimates of the percentage of PCR-positive samples that are 
3 
not compatible with UK variant” (gene pattern S + ORF1ab + N; 

ndicated as S + in Fig. 1 ) and the estimates of samples that are “UK

ariant compatible” (gene pattern ORF1ab + N indicating likely in- 

ection with B.1.1.7). Uncertainty estimates are detailed in Supple- 

entary Text. 

Each ONS release provides estimates for a 6 week period. We 

ombine all the ONS releases from 26th February 2021 to 14th May 

021. For duplicated dates, we take the most recent estimate avail- 

ble in the combined data. To estimate total infection prevalence 

or each region ( Fig. 1 A and Supp Figure A), we multiply the es-

imated S + infection prevalence for that region by its population 

ize as reported by ONS [20] . 

.3. Sewage water monitoring 

Sequencing of viral RNA from sewage water has been a valuable 

ool for tracking the distribution of SARS-CoV-2 variants in the UK, 

oth during the first wave [21] and the rise of B.1.1.7 [22] . In par-

icular, a key advantage of this method is low sampling bias as it 

aptures all people in the catchment area and not only those that 
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n

eceive COVID-19 tests. Here, we analysed fortnightly samples from 

he Beckton Sewage Treatment Works plant, which has a catch- 

ent area containing approximately 4 million people in North Lon- 

on. The catchment area does not include Heathrow Airport and 

djacent quarantine hotels, which drain into the Mogden Sewage 

reatment Works plant (as confirmed by Thames Water). Sample 

ollection, processing, and analysis are described in detail in pre- 

ious work; [ 21 , 22 ] a short summary is given in Supplementary

ext. 

.4. COG-UK genomic sequencing 

We studied 10,3247 sequences collected from Pillar 2 testing 

n the greater London area after March 1, 2021 and provided by 

he COG-UK consortium [23] . Sequence quality control, alignment, 

nd lineage classification was carried out as described in previous 

ork [24] and computed with the MRC 

–CLIMB computational in- 

rastructure [25] . Among the 10,324 sequences, 2957 were found to 

e from a lineage other than B.1.1.7 with 2560 sequences in the set 

f VOCs and 397 variants under investigation (VUIs) P.1 ( n = 81), 

.1.1.318 ( n = 74), B.1.525 ( n = 96), B.1.617.2 ( n = 2225), B.1.617.1

 n = 131), B.1.351 ( n = 254) and C.36.3 ( n = 28). 

We estimated the frequency over time for each lineage with 

ore than 20 samples using a Gaussian process generalized ad- 

itive model with a multinomial response for each lineage (de- 

ails are in Supplementary Text). Only a minority of the non-B.1.1.7 

equences ( n = 2957) were found to be collected from managed 

uarantine facilities and individuals with recent travel history. We 

epeated the analysis excluding this set. 

.5. Statistical analysis 

All analysis was done using R version 4.0.5 unless stated oth- 

rwise. We used a bootstrapping approach to obtain confidence 

ntervals for Pillar 2 and COG-UK data. For sewage data the se- 

uences were processed and analysed using Geneious 10.2.3 soft- 

are. Statistical analysis of COG-UK sequencing data was per- 

ormed using the MGCV package in R. See Supplementary Text: 

ethods for detailed description of the statistical methodologies 

e used. 

.6. Ethical approval 

The COVID-19 Genomics UK Consortium has been given ap- 

roval by Public Health England’s Research Ethics and Governance 

roup (PHE R&D Ref: NR0195). For sewage data not applicable as 

o human materials were used in the study, and hence, no indi- 

idual patient consent is required. 

.7. Reporting 

The reporting of this paper adheres to the Strengthening the 

eporting of Observational Studies in Epidemiology (STROBE)- 

uidelines. 

.8. Role of the funding source 

Beyond supporting our work over the long term, no funding 

gency had any role in the study or its analysis. 

. Results 

Since the beginning of March 2021, S + case incidence (Pillar 

) has been increasing against a backdrop of initially falling, and 

hen stable, low overall case numbers. Fig. 1 displays the data for 

ondon, where this trend started earliest, but similar increases in 
4 
 + cases happened in every other region in England (Supplemen- 

ary Figs. 1 and 2). However, Pillar 2 is based on non-random test- 

ng. S + infection prevalence (ONS) showed an early slight increase 

n March but then decreased again and increased strongly only in 

arly May. However, the ONS survey suffers from sampling vari- 

bility due to the low overall incidence in London. Similar patterns, 

ith increases in the ONS survey lagging behind Pillar 2 data, are 

een in several other regions of England (Supplementary Figs. 1 

nd 2). 

Examination of the Pillar 2 Ct values supports a quantitative 

nd qualitative change in S + transmission patterns. Ct values in 

ommunity testing are inversely related to viral load. Recent work 

as shown that population-level average Ct values can therefore 

rovide an indication about the epidemic’s dynamics, with average 

t values declining when epidemics are growing and increasing 

hen epidemics are declining [26] . Fig. 2 shows that until March 

021, S- samples (primarily B.1.1.7) had considerably lower Ct val- 

es than S + samples, especially for the N gene. This is as expected; 

eports suggest B.1.1.7 has higher viral loads, and thus lower Ct val- 

es, than prior lineages [27] . Since the end of March 2021, how- 

ver, mean Ct values for S + samples have considerably decreased 

nd are now comparable to values for S- samples. This suggests 

n increase in transmission of S + lineages; for imported cases, it 

ay suggest an increasing epidemic in the country of origin. Addi- 

ionally, a change in the genetic composition of S + cases, towards 

ariants causing higher viral loads, could also have contributed to 

he drop in Ct values. 

Fig. 3 shows the frequency of mutations in SARS-CoV-2 viral 

NA found in sewage water [ 21 , 22 ] from North London. This data

ource includes all people living in the sewage plant’s catchment 

rea, not just those that are tested. Fig. 3 confirms that the increase 

n the proportion of S + observed in other data sources is due to a

ecrease in the proportion of B.1.1.7, with mutations HV69–70del, 

144del, and A570D (all largely unique to B.1.1.7 22 ; Supplemen- 

ary Table 1) all showing considerable declines. All three muta- 

ions were detected at a stable frequency > 95% from early Jan- 

ary [22] to mid-March 2021 and then decreased to mean fre- 

uencies of 67% - 75% by April 13th ( Fig. 3 A). The frequency of

he E484K mutation—absent in B.1.1.7 but present in many vari- 

nts of concern that evade immunity—had increased to over 30% 

y April 13th, though it declined in the following weeks ( Fig. 3 B).

he non-B.1.1.7 population on April 13th included variants B.1.351 

nd B.1.525 but not P.1 or B.1.617.2, as revealed by analysing ad- 

itional mutations (Supplementary Text). After April 13th, B.1.1.7- 

ssociated mutations further decreased in frequency, to 28% - 49% 

y May 11th ( Fig. 3 A). In turn, B.1.617.2-associated mutations in- 

reased to 41% - 62% ( Fig. 3 C). In summary, sewage water samples

uggest that various immunity-evading variants started to replace 

.1.1.7 in the North London viral population by early April 2021. By 

id-May a single variant of concern, B.1.617.2, dominated, consti- 

uting around half of the virus found in sewage water. 

Fig. 4 shows results from COG-UK sequencing of SARS-CoV- 

 samples from London, mirroring the sewage water results. 

hroughout March, the sequenced non-B.1.1.7 samples included 

hiefly B.1.351 and B.1.525 but also several other variants (see also 

upplementary Figure 6). Over the course of April, the frequency of 

.1.617.2 in sequenced samples increased rapidly, ultimately mak- 

ng up more than 75% of all sequences by late May. A similar over- 

ll pattern is seen when excluding cases which are linked to travel 

r surge-testing (Supplementary Figure 5), suggesting community 

ransmission of B.1.617.2. 

. Discussion 

Experiences across the globe to date have highlighted the sig- 

ificant public health threat that new SARS-CoV-2 VOCs can pose, 
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Fig. 2. Mean Cycle threshold (Ct) values by week for Pillar 2 symptomatic community testing in London. Shaded ribbons show 95% confidence intervals around the mean 

calculated as 1.96 ∗ standard error (assuming asymptotic normality). Ct values for ORF1ab gene and N gene are shown, with S + in blue and S- in red. MS2 control indicates 

the mean Ct value of Bacteriophage MS2, which is added to samples for calibration purposes. In each plot, samples with Ct values above 30 for the specific gene shown are 

excluded. Results for other regions of England can be found in Supplementary Fig. 3. 
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ven in settings where transmission is currently under control 

r where population-level immunity should preclude resurgence. 

hey have also highlighted the importance of early detection and 

dentification of emerging viral threats, which provides the oppor- 

unity for prompt implementation of measures to control spread. 

ere, using four independent data sources, we present evidence 

upporting recent increases in the number and proportion of 

OVID-19 infections that are S + ; a dynamically changing popula- 

ion that was driven first by a variety of lineages with immune 

vasion (see below), and then overwhelmingly by the newest VOC, 

.1.617.2. 

When detecting increases in the proportion of a new variant, 

 key question is whether this reflects local transmission, or im- 

orted infections detected on the background of low overall inci- 

ence. Variants under investigation such as B.1.525 and A.23.1 have 

ndergone periods of rapid expansion in January-March 2021 as- 

ociated with travel-related importation and limited local spread, 

nly to subside later. At the time of writing, however, B.1.617.2 has 

ecome the dominant variant in England (Supplementary Figures 1 

nd 2) and makes up more than 75% of sequenced samples in Lon- 

on even from cases which are not linked to travel (Supplementary 

igure 5); sustained community transmission has taken place. 

A considerable increase in the fraction of non-B.1.1.7 variants 

as apparent in multiple data sources already in early/mid-April 

021. This finding, and its consistency across independent data 

ources, gave an early warning about the potential for highly trans- 

issible or immunity-evading variants to spread in England. How- 

ver, data on the degree to which community transmission was 

riving this increase was ambiguous. While > 20% of sequenced 

ases were from non-B.1.1.7 lineages as of mid-April, the fraction 

as only around 10% in cases not known to be associated with 

ravel or surge testing (Supplementary Figure 6). There were clus- 

ers detected in London and elsewhere [ 9 , 28 , 29 ], but it was not

nown to what extent this transmission was self-sustaining or as- 

ociated with short chains of transmission initiated by individual 

mportation events. In addition, VOCs are subject to enhanced pub- 

ic health interventions, and thus the patterns seen in sequenced 

amples may deviate substantially from the overall population. 

nalysis of Ct values and mutations found in sewage water gave 
5 
urther evidence for community-transmission, but by no means 

onclusive. Sewage water sequencing is not subject to the same 

urveillance biases as symptomatic case testing, but the increase 

n non-B.1.1.7 variants in North London in April ( Fig. 3 ) could still

ave been caused by an increase in imported infections, especially 

iven that London has several large airports. Finally, decreasing Ct 

alues ( Fig. 2 ) can indicate rising epidemics, but they could also 

e explained by importation of infections from countries with ris- 

ng epidemics. 

Throughout May, the independent data sources we considered 

ainted a consistent picture pointing to the rapid emergence and 

pread of B.1.617.2. S + surveillance from Pillar 2–the most timely 

ignal available due to the rapid turnaround of PCR testing–now 

erves as a useful proxy for B.1.617.2 vs B.1.1.7, due to the fact that 

.1.617.2 now predominates among S + variants, as confirmed by 

enomic surveillance of positive cases. While the ONS Infection 

urvey did not show signs of an increase in S + in April (probably 

ecause the overall number of positive cases was very low), this 

opulation survey shows a marked increase in S + in May, match- 

ng the other data streams. Finally, wastewater surveillance for 

orth London is consistent with the rapid emergence of B.1.617.2 

n April/May. 

The outcome of competition between two variants depends on 

heir relative transmission fitness, which is determined by the in- 

rinsic transmissibility of each strain, the extent to which each can 

vade prior immunity, and any targeted non-pharmaceutical inter- 

entions in place. Several studies suggest that VOCs B.1.1.7 [ 2 , 3 ],

.1 [10] , B.1.351 13 , and B.1.617.2 30 are more transmissible than pre- 

iously circulating lineages, but precise estimates of their rela- 

ive transmissibility are not yet available. However, even if B.1.351, 

.1.617.2 and P.1 are less intrinsically transmissible than B.1.1.7, any 

ubstantive ability to evade prior immunity may give these VOCs 

n overall transmission advantage over B.1.1.7 in the context of a 

ighly immunised population such as the UK’s. Mounting evidence 

rom in vitro [ 14 , 30 ], epidemiological [ 10 , 13 ], and vaccine studies

 15 , 16 , 31 , 32 ] suggests that variants with E484K, T478K, or E484Q

utations may partially evade prior immunity. Indeed, rapid resur- 

ences followed variant emergence, for example in Manaus, Brazil 
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Fig. 3. Fraction of viral RNA showing mutations at key spike protein amino acid positions, identified in sewage samples from North London. Mean values from replicate 

sequences ( n = 8–12) for each sampling date are shown. Error bars indicate standard error of the mean. A) HV69–70del, Y144del, and A570D are relatively uniquely found in 

B.1.1.7 (Supplementary Table 1). B) E484K is absent in B.1.1.7. but present in several other variants of interest/concern; and linked to evasion of previous immunity. C) G142D 

and T478K are associated with B.1.617.2 (G142D is also found in B.1.617.1, Supplementary Table 1). 
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P.1) and Delhi, India (B.1.617.2), despite evidence of high levels of 

rior immunity in the population [ 11 , 33 , 34 ]. 

Events following the emergence of novel SARS-CoV-2 vari- 

nts have emphasised the value of identifying and responding to 

hanges in lineage frequency early. Our results underscore the 

alue of utilising a diverse array of data sources in community 

urveillance. They also underscore the value of timely genomic 

urveillance to provide real-time information on the highly dy- 

amic composition and trajectory of different SARS-CoV-2 lineages 

n a country. Such information is critical to the epidemic’s imme- 

iate control and to future vaccine development and deployment - 

oth in the UK and other countries where the potential emergence 

f other novel SARS-CoV-2 variants remains a serious public health 

hreat. 
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6 
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Fig. 4. The sample frequency of non-B.1.1.7 lineages in Greater London in commu- 

nity testing ( n = 2957 sequenced samples). ( A) Bar charts show the sample pro- 

portion of lineages with at least 20 samples after 31 March 2021. Error bars show 

95% confidence intervals based on binomial sampling. ( B) Stacked area charts show 

estimates over time of the frequency of lineages in the period 1 March to 29 May. 

Colour-code is identical to panel A). While a variety of non-B.1.1.7 variants (all S + ) 

are in circulation in March and the beginning of April, by May B.1.617.2 predom- 

inates. A of this figure, displaying data that was available until mid-April, can be 

found in the Supplement (Supplementary Fig. 6). 
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