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Abstract—SYCL is an open-standard, parallel programming
model for programming heterogeneous devices from Khronos. It
allows single-source programming of diverse attached devices in
a cross-platform manner in modern C++. SYCL provides dif-
ferent layers of parallel abstractions, including Same Instruction
Multiple Thread (SIMT) kernels, data-parallel loop concurrency
and hierarchical parallelism. We discuss Scoped Parallelism as an
extension to the existing Hierarchical Parallelism in SYCL, and
highlight the advantages and disadvantages of these models from
the perspective of the programmer and an implementer of SYCL.
In this paper, we compare writing benchmark programs using
SIMT kernel, hierarchical parallelism and scoped parallelism
paradigms, and present results running on a high-performance
CPU and GPU.

I. INTRODUCTION

Heterogeneous parallel programming models are a vital com-
ponent in providing a way for writing high performance appli-
cations in a way that is productive and performance portable
across a wide variety of different devices. The extent to which
different models provide this performance portability has been
discussed elsewhere (e.g. [1]). The model must provide a way
to express concurrency and parallelism in an abstract way so
that implementations of that model have sufficient flexibility to
map to the parallel features of the underlying target processor.
This range of implementation options, both in how the user
expresses parallelism and in how an implementation of any
programming model maps to the underlying hardware, can
effect the degree to which performance portability is realised
in practice.

SYCL is one such parallel programming model [2]. Orig-
inally released in 2015, it provides a range of abstraction
levels for writing parallel applications: data-parallel kernels,
SIMT-style NDRange kernels (see Section II-A), hierarchical
parallelism, and high-level task-based concurrency to allow
for parallel scheduling of kernel tasks. There are multiple
implementations of the SYCL specification; in this work, we
will use the hipSYCL [3] and Intel oneAPI DPC++ imple-
mentations. In this study, we focus on expressing parallelism
inside of a kernel, and in particular compare NDRange kernels
with hierarchical parallelism and scoped parallelism.

In particular, we make the following contributions:
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o We benchmark the performance of NDRange and Hierar-
chical Parallelism on CPUs and GPUs using the hipSYCL
and DPC++ in-development implementations of SYCL.

e We implemented a new simple DGEMM benchmark
application for testing parallel schemes in SYCL.

e Recent hipSYCL versions include support for a new
model of parallelism as an extension to SYCL called
scoped parallelism. We provide the first evaluation and
discussion of this proposed model.

The remainder of the paper is structured as follows. Sec-
tion II summarises the NDRange and Hierarchical parallelism
features currently available in SYCL. We compare these
features to those available in other programming models in
Section III. We introduce the scoped parallelism model in
Section IV. Section V describes the benchmark kernels we
use, with their results presented in Section VI. We summarise
our findings in Section VIIL.

II. EXPRESSING PARALLELISM IN SYCL

Data parallel heterogeneous SIMT programming will be famil-
iar to those who know the heterogeneous programming models
OpenCL, CUDA, or HIP. In this study, we focus on SYCL and
will use that terminology throughout. In this style of parallel
programming, a kernel function is written, and invoked once
per work-item in the parallel iteration range with a call to
parallel_for over a range. The kernel body can be
thought of as the body of a loop, with the loop iterations
being assigned to work-items which are allowed to execute in
parallel. In SYCL, the range based kernel implies that all
the work-items can be executed concurrently and there are no
dependencies — in particular there is no way to synchronise
between work-items. This gives the implementation freedom
to map the work-items to threads, SIMD lanes, etc. as appro-
priate.

A. NDRange kernels

SYCL distinguishes between this basic range based kernel
model and the nd_range model of OpenCL (etc), where
additional semantics apply. In the nd_ range model, the par-
allel iteration space of the kernel is given additional structure
by grouping those work-items into work-groups. In SYCL we
express this by giving the parallel_for an nd_range



instead of a range. This allows the programmer to specify
the number of work-items in each work-group, and importantly
this adds semantic constraints which allow synchronisation at
explicit barriers between work-items in the work-group. This
structure also adds constrains on the implementation, which
must ensure that all work-items within a group make forward
progress so that they may all reach these barriers. For example,
if there were no explicit barriers, the SYCL implementation
could implement work items as iterations of a sequential loop
within a work group. The SYCL specification describes these
restrictions in §3.8.3.4 of the specification [2]. Programmers
need the ability to synchronise between work-items in the
work-group to develop optimised applications; particularly in
order to use local memory cooperatively within one group. We
present some examples of such applications in Section V.
The SYCL specification explicitly allows library-only im-
plementations of the standard. For those simple C++ library
implementations that target CPUs without additional com-
piler support, these constraints add challenges to implement
nd_range parallelism efficiently: the additional forward-
progress guarantees require that each work-item is put into its
own thread, fiber, coroutine or other mechanism to maintain
independent stacks for each work-item such that execution of
a work item can be preempted. Note that forward-progress
guarantees in SYCL are limited to the requirement that all
work-items reach group barriers before execution continues
beyond the barrier!. This can add considerable overhead and
limit vectorization across work-items in library-only SYCL
implementations if explicit barriers or collective group algo-
rithms are used (see e.g. [4] for details). However, mapping
nd_range parallelism to e.g. OpenCL devices or CUDA
GPUs is straight-forward due to the similarity of the models.

B. Hierarchical parallelism

Hierarchical parallelism has been available in SYCL since it
was first released as version 1.2 in 2015. The motivation was to
provide a syntactic alternative to programming in an NDRange
style.

The hierarchical parallelism APIs gave a way to express
the structure of nd_range kernels, and barriers within them,
using nested levels of parallelism instead of a single-level
SIMT programming paradigm. Instead of defining the structure
in advance, an outer parallel_for_work_group was
used to express what each work-group should do. Inside this,
parallel_for_work_item could then be included to
express what each work-item in the work-group should do. At
the end of the parallel_for_work_item there would be
an implicit barrier. This is the only synchronization mechanism
in SYCL’s hierarchical parellelism, since it does not allow the
explicit barriers that can be employed by the programmer in
nd_range parallelism. Note too that the implicit barriers are
non-optional and there is no mechanism to state they are not
required by a particular kernel.

I'Note that this is not an issue on GPUs, where the execution model of the
hardware already provides barrier semantics.

As such, this notation becomes quite convenient for ex-
pressing a two-level hierarchical structure of work-groups and
work-items, while in principle retaining the ability to formulate
all programs that are expressible in nd_range parallelism.

For hierarchical parallelism, SYCL allows the number of
work-groups launched by a parallel_for_work_group
call to specify the size of the work-groups or leave it up
to the implementation at runtime. If the work-group size is
unspecified, the programmer must specify a number of logi-
cal work-items in the nested parallel_for_work_item
calls. These work-items are logical in the sense that they do not
necessarily map one-to-one with the underlying physical work-
items in the work-group, but state the amount of concurrent
work within the work-group. A programmer can use these
logical work-items for to grow/shrink the effective number of
work-items in the work-group on demand even when work-
group sizes were specified.

While the SYCL specification states regarding hierarchical
parallelism that “this mode is purely a compiler feature and
does not change the execution model of the kernel”, it is
important to realize that due to the lack of explicit barriers in
the work-item loops, hierarchical parallelism does not force a
SYCL implementation to provide the same forward progress
guarantees for work-items as nd_range parallelism. This
does in fact enable SYCL implementations to implement it
using a different execution model internally: in particular on
CPUs it is often very efficient to employ multi-threading
across work-groups, and a (vectorized) loop across work-items
within a work-group. The parallel_ for_work_group
and parallel_for_work_item APIs provide a conve-
nient way for SYCL implementations to offer this alternative
form of parallelism, and hipSYCL implements hierarchical
parallelism on CPUs in this fashion. It is also noteworthy that
this makes hierarchical parallelism efficiently implementable
on CPUs as a C++ library, without any additional compiler
logic.

On a data parallel accelerator such as a GPU, implementing
hierarchical parallelism however requires non-trivial compiler
support. Outside of parallel_for_work_item, it must
be guaranteed that code is only executed once within a work
group as if only a single work item were active. However,
the kernel model on GPUs usually relies on the number of
work items being static for the duration of the kernel (and
known at the time of kernel submission). Therefore, additional
operations usually have to be inserted by the compiler to
prevent observable effects caused by the additional work items
(e.g. by masking their memory accesses). Coupled with the
requirement of the specification that variable declarations out-
side of parallel_for_work_item should be allocated
in local memory, performance can be difficult to predict since
the compiler might have to insert additional barriers to guard
the local memory accesses, and per-work-group local memory
is usually slower than per-work-item private memory.

Listing 1 shows a SYCL nd_range kernel. The same
kernel is implemented using SYCL hierarchical parallelism
and shown in Listing 2. They of course have much in



Listing 1. SYCL nd_range parallelism
Q.submit([&](handler& cgh) {
// global memory, shared by all work-
items
accessor A {bufA, cgh};

// local memory,
in work—group
local_accessor<int> locA {16, cgh};

shared by work—items

cgh.parallel_for (nd_range <1>{{1024},
{16}}, [=1(nd_item<I> it) {
// private variable
int i = it.get_global_id(0);

locA[it.get_local_id(0)] = i;
group_barrier (it.get_group());

if (it.get_group().leader()) {
int t = 0;
for (int j = 0; j < 16; ++j)

t += locAl[j];

Alit.get_group_id(0)] = t;

}

IOF
}s

common, but there a number of key differences to highlight.
For nd_range, the size of the work-groups have been
specified in the call to parallel_for, but with hierar-
chical parallelism we leave this up to the implementation,
giving us later flexibility to launch a loop over logical work-
items. Note, we could specify the size of the work-groups
and so remove the need to specify a range in the nested
parallel_for_work_item call

An important implication is that of which memory space is
used for variables. Variables defined inside parallel_for
and parallel_ for_work_item scope are placed in
work-item private memory, and so each work-item has its own
personal copy. The accessors defined inside command group
scope typically refer to global memory, and is memory avail-
able for all work-items. For work-group local memory, there
is some difference in the two approaches. For nd_range
kernels, we must use a local accessor in command group scope
to specify the amount of local memory available to each work-
group. Note that this means the size of local memory requested
is known only at runtime. In comparison, variable definitions
in parallel_for_work_group are placed directly in
local memory, shared between all work-items in the work-
group. As such, the size of these variables is known at compile
time, and array-types declared in this manner must be of a
fixed size — if runtime-size arrays are required, local accessors
can be used as well. As such, there are two ways to declare

Listing 2. SYCL hierarchical parallelism
Q.submit([&]J(handler& cgh) {
// global memory, shared by all work-
items
accessor A {bufA, cgh};

cgh.parallel_for_work_group (range
<1>{64},
[=](group<l> g) {

// local memory,
// shared by work—items
int locA[16];

in work—group

g.parallel_for_work_item (range
<1>{16},
[=](h_item<I> it) {
// private variable
int i = it.get_global_id (0);

locA[it.get_local_id(0)] = i;
Y): // Implicit barrier

if (g.leader()) {
int t = 0;
for (int j = 0; j < 16; ++j)
t += locA[j];
Alit.get_group_id(0)] = t;
}
s
}s

local memory arrays for hierarchical parallelism: within work-
group scope if they are of a static size known at compile time,
or via accessors for both compile time and runtime sizes just
as for NDRange kernels.

Importantly, any scalar variables declared in work-group
scope are also placed by default in local memory, with a copy
shared between all work-items in the work-group. If private
variables are required, they must be annotated as such with the
private_memory class. If the compiler is able to do so, it
might optimise away such constant local variables, but this is
difficult to predict and might depend on the internal heuristics
used by the compiler and the quality of the implementation.

These examples show that in principle, both the hierarchical
and nd_range parallelism in SYCL can express the same
concurrency and so is ideally merely a matter of programmer
preference or productivity based on the algorithm they wish
to implement.

SYCL 2020 was a significant update to the standard, but
little was updated for hierarchical parallelism. A large number
of new features, in particular sub-groups, expanded group
algorithms and first-class reduction support, have not yet
been fully integrated into hierarchical parallelism. Indeed,



the hierarchical parallelism does not extend to exposing sub-
groups, and is limited to two levels: work-groups and work-
items.

III. RELATED WORK

Hierarchical parallelism is not unique to SYCL. Other parallel
programming models include some notion of this.

Table I summarises the levels of parallelism available in
SYCL’s hierarchical parallelism and our scoped parallelism
extension, and in OpenMP and Kokkos. We suggest a map-
ping of each level to the SYCL nomenclature based on our
experiences using these models; note that there are other such
mappings, in many cases the mapping in not uniform across all
implementations, and an implementation may use a different
mapping based on the specific use of the constructs.

A. OpenMP

Hierarchical parallelism in OpenMP can be expressed in a
wide variety of ways [5]. Often, the parallelism that is realised
is dependent on how the parallel threads are implicitly (or
explicitly) bound to the parent OpenMP directive. Threads
can fork other threads under the fork-join model, through
the use of nested parallel regions. This allows, from
the perspective of the application programmer, an unlim-
ited number of parallel levels. In practice, the degree to
which these “threads” will be truly parallel is limited by
the implementation’s max-active-levels-var Internal
Control Variable (ICV). In addition, the 1oop construct, first
introduced in OpenMP 5.0, can be used in a nested manner
to define concurrent work. This construct uses the bind ()
clause to direct how the loop might be mapped onto the parent
region: a teams or parallel region. Note that OpenMP also
provides three levels of explicit parallelism: teams, threads
and SIMD though the use of teams, parallel and simd
constructs. In OpenMP it is possible to write multiple levels
of parallelism using the parallel directive alone in contrast
to the different APIs for different hierarchical levels used in
Kokkos and SYCL. It is also possible to be explicit and map
to the three levels that OpenMP exposes.

Table I shows a number of ways to map OpenMP
parallelism. Teams are usually mapped to work groups,
but implementations today map one of either threads or
SIMD vectors to work-items. Using the combined construct
teams distribute parallel for simd exposes a
single level of parallelism where synchronization is disal-
lowed, and so are usually mapped to work-items. Note that
the 1oop construct may be nested and has explicit or implicit
binding behaviour; therefore the mapping is highly situational.

B. Kokkos

Kokkos exposes three levels of parallelism: teams, threads,
and vectors [6]. Various Policy types are used to distinguish
the levels on the usual parallel dispatch API. Up to three
levels of nested parallelism is allowed: each level corresponds
to the policies. The notion of threads and teams aligns with
SYCL’s model of work-items and work-groups respectively.

In NDRange kernels, SYCL exposes sub-groups to somewhat
align with Kokkos’s vector policy. In hierarchical parallelism
however, they are not currently exposed to the programmer
in the form of a parallel loop; vector types could be used
instead. We refer reader interested in generalised performance
comparisons between these programming models to previous
work by us and others, such as [1], [7].

Table I shows how the three levels of parallelism in Kokkos
map onto the SYCL execution model. It is a fairly straightfor-
ward mapping, however note that ThreadVectorRange is
asking for vectorized operations, which in SYCL are usually
exposed via subgroups.

IV. SCOPED PARALLELISM IN HIPSYCL

hipSYCL provides the scoped parallelism model as an exten-
sion, which targets similar use cases as hierarchical parallelism
in SYCL 1.2.1. The first hipSYCL release to include support
for the first version of scoped parallelism was hipSYCL 0.9.0
from 2020. In this work, we describe the latest iteration of
scoped parallelism, which is currently being finalized and
available as a prototype implementation in the hipSYCL
repository?.

Listing 3 provides an example code using scoped paral-
lelism. We implement the same program as in Listings 1 and 2
so as to show the syntactic and semantic differences. We refer
interested readers to the hipSYCL repository in footnote 2 for
more detailed examples.

The fundamental difference between scoped parallelism and
hierarchical parallelism is that scoped parallelism provides
the SYCL implementation the freedom to choose the degree
of parallelism that is exposed to the backend. For example,
on GPU the SYCL implementation could decide to execute
the kernel with all work-items running right from the start,
while on CPU it could map kernel execution to multithread-
ing across work-groups, and vectorized loops across work-
items within a work-group. This additional flexibility for the
SYCL implementation can introduce performance advantages.
Additionally, it avoids both the implementation complexities
of hierarchical parallelism on accelerators, and nd_range
parallelism on CPUs for library-only implementations.

In scoped parallelism terminology, the actual degree of
parallelism that is exposed to the backend is called the phys-
ical parallelism, while the user-requested work-group size is
referred to as logical parallelism. The user can then distribute
logical work-items across the physical parallel iteration space
using the distribute_items () function. Additionally,
distribute_groups () can be used to subdivide a group
into smaller subunits and distribute those subunits across the
physical iteration space. This allows the SYCL implementation
to expose hardware subgroups, or even e.g. nested multi-
dimensional tiling on CPUs. distribute_groups () calls
can be nested arbitrarily deep.

Declared variables are always allocated in private mem-
ory: either in the private memory of the physical work-item

Zhttps://github.com/illuhad/hipS YCL/pull/619



TABLE I
COMPARISON OF THE FIRST THREE NESTED PARALLELISM LEVELS FOR VARIOUS PROGRAMMING MODELS.

Model Nesting level Expressed by Mapped to
1 parallel_for_work_group () Work-groups
SYCL (hierarchical) 2 parallel_for_work_item() Work-items
3 _ _
1 parallel() Work-groups
2 distribute_groups () Subgroups or work-items
SYCL (scoped) 3 distribute_groups () (Sub-)Subgroups or work-items
any distribute_items () ‘Work-items
1 teams Work-groups
2 threads Work-item or ignored
3 simd Ignored or work-item
OpenMP 1 teams distribute parallel for simd Work-item
any loop bind() Dependent on nesting and binding
any parallel Dependent on nesting and ICVs
1 TeamPolicy Work-groups
Kokkos 2 TeamThreadRange Work-items
3 ThreadVectorRange Subgroup

if the declaration is outside of distribute_items (),
or inside the private memory of the logical work-item if
the declaration is inside of distribute_items (). This
can avoid performance surprises in SYCL 1.2.1 hierar-
chical parallelism, where variable declarations outside of
parallel_for_work_item are always allocated in local
memory. Local memory allocation in scoped parallelism is
possible if the user explicitly requests it using either local
accessors or the local_memory wrapper type.

Synchronization within a group can be performed
either by invoking distribute_items_and_wait ()
or distribute_groups_and_wait (), or by
explicitly invoking a group_barrier () outside of
distribute_items ().

The scoped parallelism model also supports SYCL 2020
reductions and some group algorithms.

Scoped parallelism can be efficiently implemented as a
layer on top of both SYCL 1.2.1 hierarchical parallelism and
nd_range parallel for models, allowing efficient library-only
implementations of the model both for CPUs as well as on top
of other data parallel heterogeneous models such as CUDA.

Because the number of levels of parallelism is arbitrary
and multiple types of groups might be utilized simulta-
neously, the notion of a local ID as defined in SYCL
2020 is now ambiguous: the concept of a local ID is
only meaningful if it is known from which work-group
the local ID stems. To this end, the group object must
be provided to get_local_id() calls. Alternatively, the
s_item::get_innermost_local_id () method can
be used to explicitly refer to the current level.

In addition, sub-groups in a scoped parallelism sense no
longer necessarily map to SYCL’s subgroup concepts. In
SYCL, nd_range subgroups are only one-dimensional since
they typically refer to SIMD units. However, in scoped paral-
lelism multi-dimensional sub-groups might be required. While
those might be implemented as true SYCL subgroups in some

cases, this is not always possible, and the implementation
might instead choose to map them to something else such
as simple nested loops on CPUs, trivial scalar groups or
abstrations such as CUDA Cooperative Groups on GPUs.

V. BENCHMARKS

In order to explore NDRange, hierarchical and scoped paral-
lelism in SYCL, we introduce a number of simple benchmark
codes.

A. SYCL-Bench

The SYCL Benchmark suite (SYCL-Bench) contains a collect
of idiomatic kernels implemented in SYCL for microbench-
marking, testing SYCL runtime overheads and proxies of
applications [4], [8]. We select three kernels for our study:
nbody, reduction and segmented reduction. These benchmarks
have been chosen because they already provide implemen-
tations in nd_range and hierarchical parallelism. We
have additionally extended them with support for scoped
parallelism. For all kernels, we use FP64.

The nbody kernel implements a typical O(N?) algorithm
for simulating the movement of particles in a 3-dimensional
domain under the influence of a 1/r? force such as gravity.
Each work-item updates the movement of a particle based
on its distance to the other particles in the domain. The
hierarchical and scoped parallelism versions of this benchmark
use private_memory allocations of variables inside work-
group scope. In addition, the scoped parallelism version allows
for the removal of redundant work-group barriers, which exist
in the hierarchical parallelism version due to the implicit
barriers at the end of a parallel_ for_work_item.

The reduction kernel implements the summation (accumu-
lation) of a large array, using a tree-based parallel pattern.
Local memory is used to store partial results, with the number
of active work-items accumulating halving at each step. One
value per work-group is written to global memory. The kernel
is re-enqueued until the size of the input is small enough to



Listing 3. hipSYCL scoped parallelism
Q.submit([&](handler& cgh) {
// global memory, shared by all work-
items
accessor A {bufA, cgh};

cgh.parallel (range <1>{64}, range <1>{16}
[=]Cauto grp) {

// local memory,

// shared by work—items in work—group

local_memory<int[16], decltype(grp)>
locA;

// distribute_groups is optional,
// but can expose subgroups of the
// work group
distribute_groups (

grp, [&](auto subgroup){

distribute_items (
subgroup, [=](s_item<I> 1_id) {

// private variable
int i = 1_id.get_global_id (0);

locA[1_id.get_local_id(grp)] =

13
s
s
group_barrier (grp);

single_item (grp, [&]O{
int t = 0;
for (int j = 0; j < 16; ++j)

t += locAl[j1;
Alit.get_group_id(0)] = t;
1
1
s

be reduced by a single work-group, following a divide-and-
conquer approach.

The segmented reduction kernel is similar, however only
performs a single reduction step, returning one value per work-
group. The final result is accumulated on the host in serial.

The version SYCL-Bench we used is available on GitHub at
https://github.com/illuhad/sycl-bench/tree/scoped-parallelism.

B. DGEMM

In a real application, users should always defer to using
a highly-optimised off-the-shelf implementation of a matrix
multiplication, however the DGEMM kernel itself provides

a useful parallel pattern for exploring types of hierarchical
parallelism. In particular, it is well understood, a good test of
compiler optimizations such as vectorization, and the express-
ibility of parallelism in the programming models.

Matrix multiplication of a N x P-matrix A and a P x M-
matrix B to form the N x M-matrix C' can be expressed as
the following:

P—1
Cij =Y ax xbg; Vic[0,N),je[0,M)
k=0
The computation of each element of C' can be computed
concurrently, and a naive parallel implementation follows this
scheme. We call this our Simple kernel, and it is implemented
using range-based parallel_for in SYCL.

A common optimisation is to tile the matrix into small
blocks to significantly improve the data reuse of the A and B
input matrices. The details of this optimisation can be found in
many parallel programming tutorials. In our SYCL implemen-
tation, we compute 16 x 16 tiles of the C' matrix, iterating over
tiles of A and B. One work-group is launched per tile, and 256
(physical) work-items co-operate to compute the tiles. Tiles
of A and B are first copied into local memory, which often
provides performance benefits over global memory where the
memory space has hardware support, such as on GPUs. We
call this our NDRange kernel, as it is implemented using a
nd_range-based parallel_for. It requires work-group
barriers to synchronise work-items after copying tiles of A
and B into local memory, and after updating the tile of C
based on them.

This same  tiled algorithm can be  imple-
mented using SYCL’s hierarchical parallelism
notation: parallel_for_work_group and

parallel_for_work_item. We have made no other
changes aside from writing the NDRange kernel in this form.
We call this implementation our Hierarchical kernel.

Finally, we have used the Scoped Parallelism exten-
sion to SYCL described in Section IV to implement the
tiled matrix multiplication. We call this our Scoped ker-
nel. This benchmark exposes the same two levels of par-
allelism (tiles and work-items) as the preceding hierarchi-
cal version, so converting from hierarchical parallelism is
mostly a matter of nomenclature. Note that barriers between
parallel work-items are now explicitly used via the new
distribute_items_and_wait API call, and the mem-
ory for tiles is explicitly marked as local.

This benchmark is implemented using double-precision
floating point (FP64). An optimised matrix multiplication
should be limited by the peak floating-point performance of
the processor, however our focus in this study is on the relative
performance of the mode of parallelism.

The benchmark is available on GitHub at https://github.com/
UoB-HPC/sycl_dgemm.

VI. RESULTS

The benchmarks introduced in the preceding section (Sec-
tion V) are run on two processors: a dual-socket Cascade Lake



CPU, and a NVIDIA V100 GPU.

The Cascade Lake CPU is an Intel Xeon Gold 6230 CPU,
running 2.10GHz. It has 20 cores, resulting a 40 core node in
our dual-socket configuration. It has peak main memory band-
width of 282 GB/s and peak FP64 floating point performance
of 2.688 TFLOP/s.

The NVIDIA V100 PCIe GPU has 900 GB/s of main mem-
ory bandwidth and a peak FP64 floating point performance of
7 TFLOPIs.

For our choice of SYCL implementations, we used the
Intel oneAPI version 2021.3.0 and a nightly build of the
DPC++ compiler from August 19, 2021; and the hipSYCL
implementation from the branch identified in footnote 2.
For hipSYCL, we used the Clang/LLVM 11 and GCC 10.3
compilers for code generation.

For the hipSYCL measurements, the hipSYCL version
is usually more relevant than the Clang/LLVM version for
the performance of the specific benchmark applications that
we investigate in this work. This is because the SYCL
NDRange, hierarchical and scoped models are implemented
inside hipSYCL, which controls how the C++ constructs
are mapped to the hardware, while the compilers used by
hipSYCL are mainly responsible for backend code generation.
As such, the main factor for the relative performance between
different models is usually the hipSYCL version. However,
with hipSYCL on CPU, some differences may arise due to
autovectorization behavior. We will point out where this play
a role.

For both the DGEMM and SYCL-Bench benchmarks, we
show results on the Cascade Lake CPU and V100 GPU using
DPC++ and hipSYCL.

A. DGEMM

The results for the DGEMM benchmark are shown for the
Cascade Lake CPU in Figure 2, and for the V100 GPU in
Figure 1. The figures show the estimated obtained GFLOP/s.
We use square matrices of the order indicated. The simple
model of 2 x N x M x P floating point operations are
required to compute the matrix product is used to provide
these performance metrics.

For the GPU in Figure 1, the tiling optimisation provides an
important improvement, and that programmers see significant
benefit from the complexities of managing work-groups for
data locality. Note that expressing this kernel as hierarchical
or scoped parallelism, rather than using NDRange kernels,
provides further benefit when using hipSYCL (Figure la):
performance increases by around 1.25x. Hierarchical paral-
lelism is less performant when using the experimental DPCPP
CUDA backend (Figure 1b). Profiling the hipSYCL build
with NVPROF shows that the NDRange kernel required 48
registers, with the hierarchical and scoped parallelism kernels
using only 32. All kernels used 256 threads per thread block.
This is likely due to the hierarchical and scoped parallelism
kernels utilizing local memory declared using sizes that are
known at compile-time, while the nd_range kernel utilizes
a local accessor. Since local accessors support sizes known

only at runtime, it needs to additionally store the extents of
the local memory regions. The CUDA Occupancy Calcula-
tor Spreadsheet® implies this reduction in register pressure
increases occupancy from 63% to 100%, and allows for the
kernel to reach the hardware limit of 64 warps per SM instead
of only 40. For a compute bound code, it is important to ensure
sufficient warps are available for scheduling in order to achieve
good performance.

On CPU architectures, we find the challenges of NDRange
parallelism in library-only SYCL implementations identified
by Lal et al [4], as seen in Figures 2a and 2b. With compiler
support, these problems are alleviated as shown in Figure 2c.
Using hipSYCL’s library-only CPU backend, we see high per-
formance for hierarchical parallelism due its weaker require-
ments for work-item forward progress guarantees, resulting in
efficient mapping of work-groups to CPU cores.

The Clang 11 compiler is used for our experiments in
Figures 2a, which for the prototype hipSYCL implementation
of scoped parallelism fails to perform effective vectorisation
compared to hierarchical parallelism. Using hipSYCL with
GCC 10 instead, shown in Figure 2b, both scoped and hi-
erarchical parallelism vectorise well, with scoped parallelism
outperforming hierarchical parallelism. We therefore conclude
that the performance of scoped parallelism in this experiment
is not an inherent limitation of the model, but a limitation
in Clang 11 (we observed similar behaviour with Clang 12).
Consequently, similar performance for hierarchical and scoped
parallelism is possible if different compilers are used.

B. SYCL-Bench

Tables II and III show the runtime results of the three SYCL-
Bench benchmarks on the V100 GPU and Cascade Lake CPU
respectively. Note that these figures report benchmark runtime,
and so lower indicates faster runtime.

For all benchmarks, the V100 shows little difference in
runtime for all the parallelism implementations with hipSYCL.
This shows that the additional abstractions introduced by
hierarchical and scoped parallelism don’t necessarily introduce
performance overhead compared to the nd_range model,
which is the most straight-forward to map to GPUs.

As with the DGEMM benchmark, the hierarchical paral-
lelism implementation in DPCPP is again slower on both our
CPU and GPU systems than the NDRange implementation.

On the CPU however, there are significant differences for
the reduction benchmarks as shown in Table III. Both hierar-
chical and scoped parallelism have similar runtimes and pro-
vide a significant improvement over the NDRange implemen-
tation. This is because for NDRange parallelism, hipSYCL’s
library-only CPU backend relies on multi-threading across
work-groups, and, if barriers are present, executes each work-
item in its own fiber. A fiber is a light-weight userland
thread-like object that has its own stack, but is not subject to
preemption. Instead, when a barrier is encountered, the active
fiber yields control to the fiber scheduler used by hipSYCL,

3https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
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Fig. 1. DGEMM benchmark results on a NVIDIA V100 GPU.

which then cycles through all fibers, switching the active stack
each time, until all fibers have arrived at the barrier.

For a parallel reduction algorithm, only very few instruc-
tions (e.g. additions) are executed before a barrier must be
invoked to make the changes visible to the other work-
items. This means that the overhead of such a code for the
context switches between the fibers is going to dominate
the overall runtime, severely limiting performance. In order
to run efficiently in such a scenario, the amount of work
per work-item must be increased, such as by performing
many additions of the reductions in the private memory of
each work-item before exchanging information with other
work-items — however, this is not how common nd_range
reductions are written, since this contradicts the fine-grained
parallelism model typically found on GPUs.

For the nbody benchmark on the CPU, the differences
between the models are less significant in hipSYCL. This
is because the nbody benchmark is highly compute-bound,
with a high amount of work per work-item and few barriers.
Performance is therefore mostly dependent on how well the
compiler auto-vectorizes a particular formulation of the kernel.
In addition, nbody is the only benchmark in this study that uses
private_memory allocations in the hierarchical and scoped
versions. At present, this is implemented with a dynamic mem-
ory allocation on the heap for every work group to allocate
sufficient memory for each work item, which is avoidable in
the DPCPP compiler-based implementation of SYCL.

VII. CONCLUSION

In this paper we have explored hierarchical parallelism in
SYCL. Use of hierarchical parallelism or NDRange paral-
lelism has implications for performance, even though they
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TABLE II
SYCL-BENCH RESULTS ON A NVIDIA V100 GPU.

Benchmark Kernel Runtime (s)
hipSYCL DPCPP
ndrange 0.185 0.162
nbody hierarchical 0.187 0.311
scoped 0.187 -
ndrange 0.002 Verification failed.
reduction hierarchical 0.002 Verification failed.
scoped 0.002 -
ndrange 0.002 0.002
segmented reduction  hierarchical 0.002 0.022
scoped 0.002 -
TABLE III

SYCL-BENCH RESULTS ON 2X20-CORE INTEL CASCADE LAKE CPU.

Benchmark Kernel Runtime (s)
hipSYCL DPCPP
LLVM  GCC
ndrange 4.053 3.478 0.700
nbody hierarchical ~ 3.323  2.966 4.952
scoped 5.665  4.250 -
ndrange 6.543 4430 0.022
reduction hierarchical ~ 0.033  0.044 0.457
scoped 0.033  0.029 -
ndrange 6.438  4.408 0.020
segmented reduction  hierarchical ~ 0.037  0.036 0.207
scoped 0.035  0.028 -
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Fig. 2. DGEMM benchmark on 2x20-core Intel Cascade Lake CPU.

provide similar semantics in the SYCL standard. Implementing
hierarchical parallelism alleviates some of the implementation
challenges of implementing SYCL in a library-only imple-
mentation that’s portable across CPUs and GPUs. We plan to
extend our work to explore compiler-based GPU implemen-
tations of SYCL hierarchical parallelism. Our results show
these hierarchical parallel approaches are not necessarily just
syntactic equivalents to NDRange parallelism in SYCL.

For the DGEMM and Reduction kernels, using hierarchical
parallelism in favour of NDRange parallelism provided signifi-
cant performance benefits on both CPUs and GPUs when using

hipSYCL. DPCPP performed well on CPUs with standard
NDRange kernel, since as a compiler-based implementation,
it can apply transformations to the code to map it well to the
hardware. DPCPP’s hierarchical parallelism implementation
did not provide high performance in comparison.

We have also investigated the Scoped Parallelism exten-
sion to SYCL. For our benchmarks, these should result in
similar mappings, and similar performance, to hierarchical
parallelism, however vectorising compiler limitations yield
some performance variations. Scoped parallelism provides
additional flexibility over hierarchical parallelism for both



programmer and implementer. Programmers can use similar
APIs for multiple levels, and SYCL implementers are free to
map the parallel levels to hardware as appropriate.

Indeed, it would be possible to implement much of the
scoped parallelism extension as a library on top of NDRange
in general, and we hope to explore this in future work.
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