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Wepresent a novel theoretical framework for the emission and absorption of two-dimensional7
internal waves in a density stratified medium. Our approach uses a weakly nonlinear8
perturbation expansion of a streamfunction field that exposes the harmonic structure emitted9
from a flexible boundary of infinite extent. We report the discovery of a special symmetry10
in polychromatic waves that share a common horizontal component of phase velocity. Under11
these conditions, there can be no wave-wave interactions in the domain interior, and therefore12
all harmonic generation is from the boundary. By activating polychromaticwaves on this same13
flexible surface, we then consider the equivalent inverse problems of emission of a prescribed14
harmonic signature and absorption of wave energy from a given flow field. Specialising to15
monochromatic waves, to calculate the amplitudes and phases of the harmonics generated16
by a monochromatic boundary displacement and to find the explicit form of the absorbing17
boundary condition for a monochromatic internal wave, we present algorithms that refine18
lengthy algebraic processes down to a set of executable instructions valid for arbitrary order19
in the small parameter of the expansion. Finally, we compare our theoretical predictions up20
to third order with a sophisticated, digitally controlled experimental realisation that we call21
a “magic carpet”, and we find that harmonic analysis of the flow field convincingly supports22
our theory.23

1. Introduction24

Internal waves provide one of themost important energy transmission systems on Earth: lunar25
diurnal excitation alone drives around 1 TW of wave power within the world’s oceans (Egbert26
& Ray 2001). This energy causes, for example, the upwelling 2.5 × 107 m3 s−1 of dense,27
salty water from the deep ocean to the surface that forms part of sustaining the meridional28
overturning circulation (Nikurashin & Ferrari 2013).Without the ocean currents transporting29
heat from the equator towards the poles, much of western Europe would be profoundly colder.30
However, much remains to be understood about the generationmechanisms of internal waves.31
For example, van Haren et al. (2002) observed that the frequency spectrum in the deep ocean32
contains multiple peaks, of which only some correspond directly to the diurnal tide or33
wind-generated surface waves.34
It is widely known that bodies oscillating at a single frequency, ω, at large amplitudes emit35

additional harmonics of frequency nω
(
n ∈ Z>2

)
, which could explain some of the peaks36

observed by van Haren et al.. In the laboratory, Mowbray &Rarity (1967) observed addtional37
harmonics when vertically oscillating a small cylinder with its axis horizontal, and Ermanyuk38
et al. (2011) produced them from a horizontally oscillating sphere. Furthermore, they are even39
generated by a quasi-monochromatic travelling sinusoidal boundary displacement (Mercier40
et al. 2010), for which linear theory predicts a single monochromatic internal wave. Thus,41
harmonics are necessarily a nonlinear phenomenon.42

† Email address for correspondence: andrew.lawrie@bristol.ac.uk
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Weakly nonlinear theory has been used to model the emission of additional wave beams43
arising from nonlinear processes. For example, at second order in the small perturbation44
parameter, Tabaei et al. (2005) predicted the second harmonic that is produced when an45
internal wave reflects off a rigid surface. In addition, Sutherland (2016) considered the46
generation of second harmonics arising from the interaction of bounded internal wave47
modes. Bourget et al. (2013) also used second-order analysis to predict the dominant pair of48
waves produced when triadic resonant instability splits an internal wave beam. Conversely,49
Ermanyuk et al. (2011) did not formally use a perturbation expansion to consider the50
higher harmonics emitted by a small horizontally oscillating sphere, but rather measured51
the experimental difference with the linear theory, for which they still found behaviours52
indicative of a weakly nonlinear regime.53
With the exception of Ermanyuk et al. (2011), these examples only consider wave-54

wave interactions in an inviscid fluid. The oscillating sphere additionally permits nonlinear55
generation of waves at the boundary of the sphere. These are the only two possible56
generation mechanisms of additional harmonics in a laminar, inviscid flow. Introducing a57
turbulent boundary layer, which requires viscosity, would provide a notable third mechanism,58
which may also introduce other, non-harmonic frequencies (Clark & Sutherland 2010). For59
simplicity, here we only consider low- to moderate-amplitude displacements.60
In this paper, we consider the comparatively straightforward boundary condition of a61

prescribed two-dimensional displacement about a flat, horizontal plane. This geometry is62
representative of a current flowing over an ocean basin and also of the surface of the ocean,63
where wind shear can generate internal waves (Pollard 1970). In the laboratory, this geometry64
is motivated by the “magic carpet” wave maker of Dobra et al. (2019) and also approximately65
applies to the wave generator of Gostiaux et al. (2007). We will use a weakly nonlinear66
perturbation expansion to calculate the harmonics produced by a horizontally phase-locked67
boundary displacement, and then to solve the inverse problem of determining the boundary68
displacement required to produce a given wave field, such as a monochromatic internal wave69
with no additional harmonics. This is dependent on the symmetry, which wewill demonstrate70
in §3.3, that the harmonics are generated solely at the boundary for phase-locked inputs. To71
address the more general case where wave-wave interactions may occur, we have developed a72
method using Green’s functions to calculate these interactions (Dobra 2018), and we expect73
to publish these aspects shortly.74
This article is arranged as follows. First of all, we outline the weakly nonlinear perturbation75

expansion in §2. In §3, we present the process of calculating the harmonic spectrum76
for arbitrary horizontally phase-locked boundary displacements, including generalising77
d’Alembert’s solution for a completely arbitrary linear waveform in §3.2. Then, we compare78
these predictions to experiments in §4. In §5, we repurpose the perturbation expansion to79
calculate the boundary displacement required to give a chosen flow field, which we exemplify80
for a monochromatic internal wave and verify experimentally. Finally, we summarise our81
findings in §6.82

2. Approach83

We develop a weakly nonlinear framework, in a similar vein to Tabaei et al. (2005), for84
two-dimensional, inviscid internal waves generated by a low-amplitude forcing of vertical85
displacement h(x, t) along our wave maker, where x = (x, z) are the horizontal and vertically86
upwards coordinates, with z = 0 at the equilibrium height of the wave maker, and t is87
time. The waves propagate through a quiescent liquid with a linear, Boussinesq density88
stratification, ρ0(z), with no diffusion of mass or heat. Here, the buoyancy, or Brunt-Väisälä,89
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frequency,90

N =

√
− g

ρ00

dρ0
dz

, (2.1)91

is constant, where g is the gravitational acceleration, ρ00 is the reference density and92

thus ρ0(z) = ρ00

(
1 − N2

g z
)
. Furthermore, the Boussinesq approximation implies that the93

fluid is incompressible and thus does not admit acoustic waves (Sutherland 2010), thereby94
simplifying the following analysis. Let a be the dimensionless order of magnitude of the95
boundary forcing, h; for example, if h is a sinusoid of amplitude A and wavenumber k, then96
a = Ak. In the weakly nonlinear regime, |a| � 1, we will expand the governing equations97
and the boundary conditions in powers of a.98

2.1. Governing Equation99

Let u be the velocity field, p′ the pressure perturbation from hydrostatic and ρ′ the density100
perturbation from the background stratification, ρ0. Then, the three nonlinear governing101
equations are the conservation of momentum (Euler equation),102

ρ00

(
∂u
∂t
+ u · ∇u

)
= −∇p′ − ρ′gez, (2.2)103

the conservation of mass,104

∂ρ′

∂t
+ u · ∇(ρ0 + ρ

′) = 0, (2.3)105

and the conservation of volume,106

∇ · u = 0. (2.4)107

We re-express these equations in terms of the buoyancy, b = −gρ′
ρ00

, and the streamfunction, ψ,108

which is defined by u = ∇ × (
ψey

)
=

(
−∂ψ∂z , ∂ψ∂x

)
and automatically satisfies volume109

conservation (2.4), thereby reducing the number of simultaneous scalar equations to solve110
from four to three.111
Taking the curl of the momentum equation (2.2) and defining the Jacobian determinant,112 ����∂(α, β)∂(x, z)

���� = ∂α

∂x
∂β

∂z
− ∂α
∂z

∂β

∂x
, (2.5)113

which has the form and algebraic properties of the Poisson bracket in classical Hamiltonian114
dynamics, yields the vorticity equation,115

∂

∂t
∇2ψ +

�����∂ (
ψ,∇2ψ

)
∂(x, z)

����� = ∂b
∂x

. (2.6)116

The quantity −∇2ψ is the vorticity, which points in the y direction for two-dimensional flows.117
The conservation of mass (2.3) is transformed by simple substitution of variables,118

∂b
∂t
+

����∂(ψ, b)∂(x, z)

���� = −N2 ∂ψ

∂x
. (2.7)119

This formulation explicitly shows the buoyancy frequency, N , is intrinsic to the flows in a120
stratified fluid. All of the nonlinear terms are now contained in the two Jacobian determinants,121
which are the transformation of the advection operator, u · ∇.122
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We expand the streamfunction, ψ, in powers of the small dimensionless amplitude, a,123

ψ = aψ1 + a2ψ2 + a3ψ3 + · · · =
∞∑
n=1

anψn, (2.8)124

and similarly for the buoyancy, b. For the following analysis, we assume that the coefficient125
functions ψn(x, z, t) are no greater than ord(1), which is required for the sum to converge.126
Substitution of these expansions into the vorticity equation (2.6) gives127

∂

∂t
∇2

( ∞∑
n=1

anψn

)
+

�������
∂
(∑∞

p=1 apψp,∇2
(∑∞

q=1 aqψq

))
∂(x, z)

������� = ∂

∂x

( ∞∑
n=1

anbn

)
. (2.9)128

Setting n = p + q in the Jacobian term and noting that 1 6 p = n − q 6 n − 1, so that129
the summation is now over n and p, enables factorisation to yield an outer sum in terms of130
powers of a,131

∞∑
n=1

an
 ∂

∂t
∇2ψn +

n−1∑
p=1

�����∂ (
ψp,∇2ψn−p

)
∂ (x, z)

����� =
∞∑
n=1

an ∂bn
∂x

. (2.10)132

Similarly, inserting the perturbation expansion (2.8) into the equation of conservation of133
mass (2.7) and summing over powers of a gives134

∞∑
n=1

an
N2 ∂ψn

∂x
+

n−1∑
p=1

����∂ (
ψp, bn−p

)
∂ (x, z)

���� = −
∞∑
n=1

an ∂bn
∂t

. (2.11)135

Comparing coefficients of powers of a in the expanded governing equations (2.10)136
and (2.11) gives the two equations at ord (an),137

∂

∂t
∇2ψn +

n−1∑
p=1

�����∂ (
ψp,∇2ψn−p

)
∂ (x, z)

����� = ∂bn
∂x

, (2.12a)138

N2 ∂ψn

∂x
+

n−1∑
p=1

����∂ (
ψp, bn−p

)
∂ (x, z)

���� = −∂bn
∂t

. (2.12b)139

140

The buoyancy at each order, bn, can be eliminated by differentiating (2.12a) with respect141
to t and (2.12b) with respect to x and then adding the resulting equations to give the142
inhomogeneous internal wave equation for ψn,143

∂2

∂t2∇
2ψn + N2 ∂

2ψn

∂x2 = −
n−1∑
p=1

{
∂

∂t

�����∂ (
ψp,∇2ψn−p

)
∂(x, z)

����� + ∂

∂x

����∂ (
ψp, bn−p

)
∂(x, z)

����}. (2.13)144

The homogeneous part of this equation consists of the sum of two temporal derivatives and145
two spatial derivatives, so forms a wave equation. Its spatially anisotropic structure yields146
the unusual properties of internal waves. At first order (n = 1), the summation vanishes,147
leaving just the equation for linear internal gravity waves. For all higher order contributions148
to the streamfunction, the internal wave equation is inhomogeneous, but all terms in the149
summation arise from lower orders. Consequently, we can inductively evaluate all orders.150
This set of equations governs all weakly nonlinear wave-wave interactions in free space.151
However, especially in the case of a flow driven by a moving material surface, such as of our152
wave maker, it is necessary to consider in detail the role of boundary conditions.153
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2.2. Boundary conditions154

The kinematic boundary condition on the wavemaker is of no penetration. Since it is assumed155
inviscid, the fluid may slip along the boundary. Because the actuating rods of the wave maker156
move vertically, the velocity of its surface is in the vertical direction,157

U(x, t) = ∂h
∂t

ez . (2.14)158

No penetration of the boundary requires that the normal velocity of the fluid, in the direction159
of unit vector n, matches that of the surface of the wave maker at z = h(x, t),160

u · n = U · n. (2.15)161

Let α be the angle the local tangent to the flexible wave maker surface makes with162
the horizontal, so that tanα = ∂h

∂x , then using trigonometry, the normal vector pointing163
into the fluid can be expressed as n = (− sinα, cosα). Extracting a common factor of164
cosα, substituting into the boundary condition (2.15), expressing u in terms of ψ and165
U following (2.14), then written in the order nzuz + nxux = nzUz , we obtain166

∂ψ

∂x

����
z=h

+
∂h
∂x

∂ψ

∂z

����
z=h

=
∂h
∂t
. (2.16)167

A physical interpretation of this equation is that there is no penetration of the fluid material168
surfaces, uz = Dh

Dt , where we have used the material (total) time derivative.169
Solving partial differential equations on domains with time-varying, curved boundaries170
(z = h) is usually analytically intractable and here is no exception. Instead, under the low171
steepness approximation, |a| � 1, we Taylor expand the streamfunction about z = 0 with172
the summation variable q,173

∞∑
q=0

hq

q!

(
∂

∂x
+
∂h
∂x

∂

∂z

)
∂qψ

∂zq

����
z=0
=
∂h
∂t
. (2.17)174

This expansion will be specialised and fully expanded in powers of a in §3.1 and §5.2175
according to the configuration under consideration.176

3. Evaluating harmonic spectra generated by boundary displacement177

We develop a weakly nonlinear framework using the perturbation expansion introduced in178
§2 for evaluating the harmonic spectra for several classes of two-dimensional boundary179
displacement. We begin, in §3.1, by fully expanding the kinematic boundary condition and180
obtain a double summation over orders of a and a Taylor’s expansion of the boundary. This181
summation can be condensed into a graph of dependencies where the flow moves from lower182
order to higher order solutions in the streamfunction variable. In §3.2, we go on to show183
d’Alembert’s Solution for the linear wave equation in the general case of arbitrary spectra184
and phase relationships, and present the complementary evanescent solution, because higher185
harmonics at some point will fall into this category. We then make a specialisation, in186
§3.3, to horizontally phase-locked but otherwise arbitrary spectra, because this exhibits an187
interesting symmetry that we need to efficiently evaluate the special case of monochromatic188
displacements. The outcome of this algebra is a concise algorithm through which higher189
powers of sinusoids can be systematically converted into the higher harmonics, which we190
present in §3.4. Thus, we can uncover the relationships between harmonics and account for191
all the subharmonic contributions made by those higher harmonics.192
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3.1. Boundary conditions193

In the weakly nonlinear regime, we assume that the prescribed boundary displacement, h is194
no greater than ord(a), so we define ĥ = ord(1) such that h = aĥ. In addition, we assume195
that the characteristics of the internal waves each only intersect the wave maker once, which196
requires max

��∂h
∂x

�� < min cotΘ, where, as we will see in §3.2, Θ is the angle of the direction197
of energy propagation of one such internal wave to the vertical.198
Then, we expand the streamfunction (2.8) in the kinematic boundary condition (2.16),199

collect terms of equal order (powers of a) and express as a double sum,200

∞∑
q=0

∞∑
r=1

aq+r

q!
ĥq

(
∂

∂x
+ a

∂ ĥ
∂x

∂

∂z

)
∂qψr
∂zq

����
z=0
= a

∂ ĥ
∂t
. (3.1)201

Now all quantities are either ord(1) or are powers of a, so this has been fully expanded. It202
is convenient to factor out powers of a and sum over them with summation variable n and203
use separate inner summations over q for each term. After adjusting the summation limits204
accordingly, we have205

∞∑
n=1

an

n−1∑
q=0

ĥq

q!
∂q+1ψn−q
∂x ∂zq

�����
z=0

+

n−2∑
q=0

ĥq

q!
∂ ĥ
∂x

∂q+1ψn−q−1

∂zq+1

�����
z=0

 = a
∂ ĥ
∂t
. (3.2)206

The system is forced only at ord(a), so the right hand side contains no contributions for207
n > 2, and terms of those orders on the left hand side must themselves balance.208

At ord(an), the q = 0 term in the first summation reduces to ∂ψn

∂x

���
z=0

. The remaining terms209

in the first q summation all arise from the Taylor’s expansion that extrapolates evaluation210
of the vertical fluid velocity from z = 0 to the material surface at z = h. The second q211
summation contains corrections due to the variations of the surface normal, n, about the212
vertical and these unavoidably contain the horizontal fluid velocity, which we also Taylor213
expand to extrapolate from z = 0 to z = h. Except for the q = 0 term in the first summation,214
which yields ψn, all terms that appear at ord(an) are contributions from lower orders. The215
forcing of the governing equation for ψn (2.13) also only depends on lower orders. Hence, as216
shown in figure 1, there exists a unidirectional cascade of dependence from lower to higher217
order streamfunction contributions.218
In addition to the kinematic boundary condition (3.2), the solution must satisfy causality:219

the time-averaged energy flux must be directed away from z 6 h for all components of the220
generated flow. For internalwaves, this is equivalent to saying the group velocity has a positive221
vertical component. Let the time-average over one period of oscillation be denoted by angle222
brackets 〈·〉. Then, causality requires 〈p′w〉 > 0 for all linearly independent components of223
the flow (derived, for example, in Dobra 2018, pp. 143–144).224

3.2. D’Alembert’s solution for arbitrary boundary displacements225

Setting n = 1 in the expansion of the governing equation (2.13) yields the first-order226
contribution to the streamfunction, ψ1,227

∂2

∂t2∇
2ψ1 + N2 ∂

2ψ1

∂x2 = 0. (3.3)228

This is the linearised form of the wave equation for internal waves. As noted earlier, it229
has an anisotropic structure, and here we use a method of characteristics that generalises230
d’Alembert’s solution to the classical wave equation (d’Alembert 1747). While a Fourier231
transform could be performed to obtain a dispersion relation directly, in general a Fourier232
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ψ1 u1

w1

ψ2 u2

w2

ψ3 u3

w3

ψ4 u4

w4

Figure 1: Graph of dependencies of contributions to the streamfunction at each order. The
black triangular arrows indicate vertical (z) derivatives and grey triangular arrows indicate
horizontal (x) derivatives. The other arrows only show the direction of dependence; no

other operations occur.

approach cannot be used at higher orders containing quadratic Jacobian determinants, except233
for cases exhibiting a special symmetry, which we discovered and will report in §3.3.234
Furthermore, our approach identifies the hyperbolic structure and the geometry of the235
characteristics, which we have shown in Dobra (2018) is an important consideration for236
wave-wave interactions. The algebra given here is a preparatory step for extension to higher-237
order harmonics from a monochromatic boundary displacement, which we will discuss238
in §3.4.239
The linear kinematic boundary condition is given by taking all terms of ord(a) in the240

expansion (3.2) (n = 1, q = 0),241

∂ψ1
∂x

����
z=0
=
∂ ĥ
∂t
. (3.4)242

We integrate this with respect to x,243

ψ1 |z=0 =

∫
∂ ĥ
∂t

dx, (3.5)244

where the arbitrary constant of integration will be chosen such that ψ represents the245
perturbation to the (constant) background streamfunction with no net volume flux through246
z = 0; in other words,

〈
ψ1 |z=0

〉
= 0.247

Any smooth boundary displacement profile can be expressed as a real Fourier transform,248

ĥ =
∬

A(k, ω) sin (k x − ωt) + B(k, ω) cos (k x − ωt) dω dk, (3.6)249

where the functions A and B of k and ω are the Fourier coefficients. Substituting this form250
into the kinematic boundary condition (3.5) gives251

ψ1 |z=0 = −
ω

k

∬
A(k, ω) sin (k x − ωt) + B(k, ω) cos (k x − ωt) dω dk . (3.7)252

Since the operation of integration, the governing equation (3.3) and the boundary conditions253
are all linear, we will consider each term independently for a particular (k, ω) and then254
integrate over these contributions to recover the full streamfunction field.255
Taking only the terms at a particular frequencyω, which we denote as ψω , we seek a wave-256
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like sinusoidal solution, so the linear internal wave equation reduces to the two-dimensional257
partial differential equation258

− ω2∇2ψω + N2 ∂
2ψω

∂x2 = 0, (3.8)259

which readily rearranges into the form of the classical wave equation,260 (
N2

ω2 − 1
)
∂2ψω

∂x2 −
∂2ψω

∂z2 = 0. (3.9)261

In the case ω > N , this is an elliptic equation, so does not admit propagating wave solutions,262
but instead evanescent waves form, which we will discuss later in this section. Internal263
waves are the solutions that occur along characteristics when ω < N and thus the system is264
hyperbolic. Although elliptic equations can often be solved more readily than hyperbolic265
equations (for example, Hurley (1972) used analytic continuation to extend an elliptic266
solution to propagating internal waves), here we specialise d’Alembert’s direct approach267
for the solution of hyperbolic forms (d’Alembert 1747) to linear internal waves. Solutions are268
projected along the characteristics, so satisfying the boundary condition at z = 0 provides a269
streamfunction everywhere in the fluid interior.270
Factorising the hyperbolic differential operator yields271 (√

N2

ω2 − 1
∂

∂x
+
∂

∂z

) (√
N2

ω2 − 1
∂

∂x
− ∂

∂z

)
ψω = 0. (3.10)272

This form clearly shows the fundamental property of internal waves (when ω < N) that the273
characteristics of the streamfunction, which are also the streamlines, are parallel at a constant274
angle to the vertical. Let Θ1 be the angle these make with the vertical, where 0 < Θ1 <

π
2 ,275

and η1± be the normalised characteristic variables,276

η1± = x cosΘ1 ± z sinΘ1. (3.11)277

The difference in η between two parallel characteristics is the perpendicular distance between278
them in (x, z) space. The derivatives with respect to η1± are found using the chain rule,279

∂

∂η1±
= secΘ1

∂

∂x
± cosecΘ1

∂

∂z
= cosecΘ1

(
tanΘ1

∂

∂x
± ∂

∂z

)
. (3.12)280

Comparing this with the factorised form of the wave equation (3.10) shows that281

∂2ψω
∂η1+∂η1−

= 0 (3.13)282

and tanΘ1 =
√

N2

ω2 − 1, so283

ω = N cosΘ1, (3.14)284

which we identify as the dispersion relation for linear internal waves. Therefore, the285
characteristics are parallel to the group velocity. Although the tangent function could take286
either sign, we take tanΘ1 to be positive throughout this paper, because it represents a287
positive square root. The general solution of the transformed equation (3.13) is the sum of288
two arbitrary functions each of one variable,289

ψω = f (η1+) + g(η1−). (3.15)290

Applying the boundary condition (3.7) at this chosen frequency, ω, to the general solution291
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implies that this contribution to the streamfunction is of the form293

ψω = − ωk
∫

CA sin [k(x + z tanΘ1) − ωt] + (1 − C)A sin [k(x − z tanΘ1) − ωt]
+ DB cos [k(x + z tanΘ1) − ωt] + (1 − D)B cos [k(x − z tanΘ1) − ωt] dk,

(3.16)294

where C and D are constants to be determined from the causality condition, 〈pωwω〉 > 0 on295
z = 0. In fact, due to the characteristic nature of the system, this condition holds everywhere296

in the fluid domain, z > 0. The vertical velocity component wω is given by ∂ψω
∂x , and we find297

the corresponding pressure perturbation by integrating the linearised horizontal momentum298
equation (2.2) with respect to x,299

pω = ρ00

∫
∂2ψω
∂t ∂z

dx, (3.17)300

where the integration constant will be set to zero to ensure zero time-averaged perturbation.301
Alternatively, one could derive this by considering the force balance on a fluid parcel; see302
Dobra (2018, p.144–145) for details. We now consider each sinusoid in turn, noting that303
time-averages of cross terms equal zero. For the first sinusoid,304

〈pωwω〉 = C2 A2
〈
−ρ00

ωk tanΘ1
k

k cos2 [k(x + z tanΘ1) − ωt]
〉
= −1

2
C2 A2ρ00kω tanΘ1,

(3.18)305
where we have used that the mean square of a sinusoid is half its amplitude. In preparation306
for considering phase-locked waves in §3.3, we define cx = ω

k to be the horizontal phase307
velocity, and so308

〈pωwω〉 = −1
2

C2 A2ρ00k2cx tanΘ1. (3.19)309

Causality is only satisfied for waves generated by the lower boundary when this quantity310
is positive, so sin [k(x + z tanΘ1) − ωt] is physical only when cx < 0 (i.e. k and ω have311
opposite signs). Conversely, for the second sinusoid, the same method shows that 〈pωwω〉 =312
1
2 (1 − C)2 A2ρ00k2cx tanΘ1, so is only causal when cx > 0. These properties hold for the313
third and fourth sinusoids, when the sine is replaced by a cosine, because it is simply a phase314
shift. Therefore, the coefficients C and D are either zero or one, according to the sign of the315
horizontal phase velocity. We succinctly express this using the sign function,317

ψω = −ωk
∫

A(k, ω) sin [k(x − sgn (kω)z tanΘ1) − ωt]
+ B(k, ω) cos [k(x − sgn (kω)z tanΘ1) − ωt] dk .

(3.20)318

Instead, ifω > N , linear internal waves cannot propagate and are evanescent. Furthermore,319
the spatial equation (3.9) becomes elliptic, meaning that there are no real characteristics and320
information at one point propagates throughout the whole domain. We seek a separable321
solution, which we will denote ψe, that is harmonic in x, so must be exponential in z with322

growth/decay rate k
√

1 − N2

ω2 . In order to satisfy causality, the disturbance decays into the323

fluid domain, so the contribution to the streamfunction in the evanescent case is324

ψe = −ωk
∫

A(k, ω) e−kz
√

1− N2
ω2 sin (k x − ωt) + B(k, ω) e−kz

√
1− N2

ω2 cos (k x − ωt) dk .

(3.21)325
This is simply the (unstratified) potential flow response, but with a rescaled vertical326

coordinate, z 7→ z
√

1 − N2

ω2 ; potential flow is smoothly recovered in the unstratified limit,327
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N → 0. These forced oscillations are in phase with the boundary forcing. The disturbance328
extends further up into the fluid as the strength of the stratification increases and does not329
decay at all at the point where internal waves start to propagate, N = ω. Unlike propagating330
internal waves, evanescent waves are reversible in time, meaning that it would not be possible331
to determine if a video of one is being played backwards. Thus, steady evanescent waves do332
not transport any energy.333
Assembling the propagating (3.20) and evanescent (3.21) wave solutions gives the334

linear contribution to the streamfunction generated by an arbitrary boundary displacement335
expressed in the form (3.6),336

ψ1 =

∫ −N

−∞
ψe dω +

∫ N

−N
ψω dω +

∫ ∞

N

ψe dω. (3.22)337

3.3. Symmetries of phase-locked internal waves338

Here,we derive a symmetry of phase-locked internalwaves, both propagating and evanescent,339
which have the same horizontal phase velocity cx . Such propagating waves may have an340
arbitrary amplitude spectrum according to341

ψ =

∫
A(k) sin [k(x − sgn (cx)z tanΘ − cxt)] + B(k) cos [k(x − sgn (cx)z tanΘ − cxt)] dk,

(3.23a)342
where, from the dispersion relation (3.14), the angle Θ = cos−1 kcx

N and thus depends on k.343
The corresponding form of evanescent waves is344

ψ =

∫
e−kz

√
1− N2

ω2
(
A(k) sin [k(x − cxt)] + B(k) cos [k(x − cxt)]

)
dk . (3.23b)345

This is a general description of travelling wavepackets of both finite and infinite extent along346
a material surface, such as the surface of the wave maker. This includes classes of problem347
such as atmospheric lee waves (e.g. Scorer 1949; Dalziel et al. 2011; Dobra et al. 2019),348
though excludes cases such as standing waves because they are superpositions of waves of349
opposing phase velocities. For such a propagating wave spectrum, the Jacobian terms (which350
correspond to the advection terms, u · ∇, of the vorticity equation (2.6) and conservation of351
mass (2.7)) vanish. This important symmetry shows not only that resonant interactions in352
the domain interior are not admissible but in fact that all second-order interactions between353
waves arising from a horizontally phase-locked spectrum are inadmissible. We also note354
that, although linear, such a spectrum fully satisfies the nonlinear governing equations (2.2)–355
(2.4) at all amplitudes, which is a remarkable generalisation of this property observed for356
monochromatic plane waves by McEwan (1973) and Tabaei & Akylas (2003).357
We now derive this symmetry by first differentiating the phase-locked form of the358

propagating streamfunction (3.23a) to obtain the negative of the vorticity,360

∇2ψ1 = −
∫ (

k2 + k2 tan2
Θ

)
A(k) sin [k(x − sgn (cx)z tanΘ − cxt)]

+
(
k2 + k2 tan2

Θ

)
B(k) cos [k(x − sgn (cx)z tanΘ − cxt)] dk .

(3.24)361

Using trigonometry and the dispersion relation (3.14) gives362

k2 + k2 tan2
Θ = k2 sec2

Θ =
N2

c2
x

, (3.25)363

which is a constant and so can be factored out of the integral. Therefore, the vorticity is364
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proportional to the streamfunction with the constant of proportionality depending only on365
the buoyancy frequency, N , and the horizontal phase velocity, cx ,366

∇2ψ = −N2

c2
x

ψ. (3.26)367

Applying the Laplacian to the evanescent form of the streamfunction (3.23b) gives the same368
result. From the linear and antisymmetric properties of Jacobians, we now show that the369
Jacobian corresponding to the vorticity is zero,370 �����∂ (

ψ,∇2ψ
)

∂(x, z)

����� =
�������
∂
(
ψ,−N2

c2
x
ψ
)

∂(x, z)

������� = −N2

c2
x

����∂(ψ, ψ)∂(x, z)

���� = 0. (3.27)371

Similarly considering the buoyancy, b, each term in the integrand is a plane internal wave,372
which satisfies the linear internal wave equation (3.3), so we calculate the buoyancy for each373
component separately, denoted by a prime, using the linearised conservation of mass (2.6),374

∂b′

∂t
= −N2 ∂ψ

′

∂x
, (3.28)375

and then integrate over the resulting contributions. For both propagating and evanescent376

waves, integrating mass conservation with respect to time gives b′ = N2

cx
ψ ′, where the377

constant of integration has been set to zero to enforce zero average perturbation. Like the378
vorticity, the constant of proportionality is independent of the horizontal wavenumber, k, so379

may be factored out of the integral, yielding b = N2

cx
ψ. Therefore, the Jacobian containing380

the buoyancy is also zero,381 ����∂(ψ, b)∂(x, z)

���� = N2

cx

����∂(ψ, ψ)∂(x, z)

���� = 0, (3.29)382

and the symmetry of phase-locked internal waves is proven.383
Consequently, for a phase-locked boundary displacement ĥ, the streamfunction contribu-384

tion, ψn, is also phase-locked and thus is generated solely at the wave maker surface at all385
orders. We will now prove this using the strong principle of induction by first assuming386
that ψq is phase-locked with horizontal phase velocity cx for all q < n. Then, the Jacobian387
terms in the expanded internal wave equation (2.13) at ord(an), which depend only on the388
lower, phase-locked orders, are all zero, so no wave-wave interactions can occur and the fluid389
response, ψn, is generated solely at the surface of the wave maker. The kinematic boundary390

condition (3.2) at ord(an) consists of ∂ψn

∂x

���
z=0

and terms proportional to391

ĥq ∂
q+1ψn−q
∂x ∂zq

�����
z=0

and ĥq ∂ ĥ
∂x

∂q+1ψn−q−1

∂zq+1

�����
z=0

,392

which all sum to zero for n > 2, or ∂ĥ
∂t when n = 1. By the induction assumption, each of393

these terms is an integral over products of sines and cosines with uniform horizontal phase394
velocity cx . The product of a pair of such sinusoids also has phase velocity cx , because, for395
example,396

cos [A(x − cxt)] cos [B(x − cxt)] = 1
2

(
cos [(A + B)(x − cxt)] + cos [(A − B)(x − cxt)]

)
,

(3.30)397
where A and B are arbitrary constants, and thus all of the product terms in the kinematic398
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boundary condition have horizontal phase velocity cx . Therefore, integrating the boundary399
condition with respect to x and setting the integration constant to zero to ensure no net400
flux through z = 0 gives that ψn |z=0 is also phase-locked. Since the Jacobian determinants401
are zero, the internal wave equation (2.13) at ord(an) reduces to the linear internal wave402
equation (3.3), and so, from the linear solution (3.20), the streamfunction contribution ψn is403
phase-locked everywhere in the domain. Finally, we already know from the linear solution404
that ψ1 is phase-locked. Therefore, by induction, the streamfunction is phase-locked at all405
orders.406
In general, the Jacobian determinant gives the area of the image of a unit element having407

undergone a coordinate transformation. Here, these zero Jacobian determinants indicate that408
the transformations into the two-dimensional streamfunction-buoyancy and streamfunction-409
vorticity spaces are singular for arbitrary superpositions of phase-locked internal waves,410

namely that all points map onto straight lines through the origin of gradients N2

cx
and N2

c2
x

411

respectively. Conversely, the image space remains two-dimensional for an unconstrained412
superposition of internal waves and other flows.413

3.4. Algorithmic evaluation of higher-order contributions for monochromatic boundary414
displacement415

We now present the process by which we obtain contributions to monochromatic boundary416
displacements for arbitrary order. The steps in this process we divide into a pair of417
interconnected algorithms 1 and 2, then for convenience we illustrate their use by explicitly418
calculating key expressions at first, second and third orders in tables 1–3.419
In §3.3, we showed that the expansion of the internal wave equation (2.13) is linear at420

all orders for a phase-locked boundary displacement. A special case is of a monochromatic421
sinusoid travelling to the right, which is infinite in extent, h = A sin (k x − ωt), where we422
use the convention k, ω > 0. Defining the dimensionless amplitude as a = Ak, we have423
ĥ = 1

k sin (k x − ωt). For this case, we may derive analytic expressions for the produced424
spectrum of harmonics at each of the first three orders by noting that the flow at each order425
is only generated at the boundary. The expansion of the kinematic boundary condition (3.2)426
becomes427

∞∑
n=1

an

n−1∑
q=0

sinq φ
q! kq

∂q+1ψn−q
∂x ∂zq

�����
z=0

+

n−2∑
q=0

sinq φ cos φ
q! kq

∂q+1ψn−q−1

∂zq+1

�����
z=0

 = −a
ω

k
cos φ.

(3.31)428
Since this condition at ord(an) depends on all of the lower orders, the contribution to the429
streamfunction at each order is evaluated in turn, according to algorithm 1.430
To calculate the contribution to the streamfunction at ord(an), denoted by ψn, firstly we431

take the first n terms of the outer summation in (3.31). These are shown for the first three432

orders in table 1. The boundary condition at all orders contains ∂ψn

∂x

���
z=0

, which is the vertical433

velocity at ord(an). Higher orders also include derivatives of lower-order contributions to434
the streamfunction, and these are multiplied by sines and cosines of integer multiples of the435
horizontal phase, φ = k x − ωt. All derivatives are evaluated at the equilibrium height of the436
wave maker, z = 0. Secondly, we evaluate and substitute for the derivatives of the lower-order437
contributions to the streamfunction. For example, the required derivatives of ψ1 follow the438
pattern439

∂q+1ψ1
∂x ∂zq

����
z=0
=

{
(−1) q+2

2 ωkq−1 tanq Θ1 cos φ for even q

(−1) q+1
2 ωkq−1 tanq Θ1 sin φ for odd q

, (3.32a)440
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Result: ψ
ψ ← 0
for n ∈ N do

Evaluate kinematic boundary condition (3.31) at ord(an)
for p← 1 to n − 1 do

Evaluate ∂q+1ψp

∂x ∂zq

���
z=0

and ∂qψp

∂zq

���
z=0

, q < n, following the pattern of (3.32)
Express the terms as products of sin φ and cos φ using (3.33)
Express these products as sums of harmonics using algorithm 2

end
Collect like terms
Integrate ψn with respect to x, setting the integration constant to zero
for p← 1 to n do

if pω 6 N then
Project the pω harmonic along its characteristics using (3.20)

else
Project the pω harmonic as an evanescent wave into z > 0 using (3.21)

end
end
ψ ← ψ + anψn

end
Algorithm 1. Calculation of streamfunction ψ.

Order Kinematic boundary condition at nth order

1st
∂ψ1
∂x

����
z=0

= −ω
k

cos φ

2nd
∂ψ2
∂x

����
z=0
+

1
k

sin φ
∂2ψ1
∂x∂z

����
z=0
+ cos φ

∂ψ1
∂z

����
z=0

= 0

3rd

∂ψ3
∂x

����
z=0
+

1
k

sin φ
∂2ψ2
∂x∂z

����
z=0
+

1
2k2 sin2 φ

∂3ψ1
∂x∂z2

����
z=0

+ cos φ
∂ψ2
∂z

����
z=0
+

1
k

sin φ cos φ
∂2ψ1
∂z2

����
z=0

= 0

Table 1: Kinematic boundary condition at the first three orders for a monochromatic
boundary displacement.

and441
∂q+1ψ1

∂zq+1

����
z=0
= tanΘ1

∂q+1ψ1
∂x ∂zq

����
z=0

. (3.32b)442

We are left with a product of sines and cosines of several multiples of φ for each term in the443
boundary condition. The next stage is to simplify these as sums of harmonics, or equivalently444
express a Fourier series, using the formulae derived using standard methods in appendix A.445
We first expand all of the higher harmonic terms into powers of trigonometric functions of446
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Result: S

for j = 0 to α + β do
C[ j] ← 0
if j ≡ α + β (mod 2) then

B← max
{ 1

2 (β − α − j), 0}
if j = 0 then T ← β

2 − 1 else T ← min
{ 1

2 (β + α − j), β}
for k = B to T do

C[ j] ← C[ j] + (−1)
⌊
β
2

⌋
+k

2α+β−1

(
α

1
2 (α + β − j) − k

) (
β

k

)
end

end
end

if α even and β even then C[0] ← C[0] + 1
2α+β

(
α
α
2

) (
β
β
2

)
if β even then S ←

α+β∑
j=0

C[ j] cos ( jφ) else S ←
α+β∑
j=0

C[ j] sin ( jφ)

Algorithm 2. Expressing cosα φ sinβ φ as a sum of harmonics.

the fundamental using, for p ∈ Z,447

cos (pφ) =
p
2∑

β=0
(−1)β

(
p

2β

)
cosp−2β φ sin2β φ (3.33a)448

and449

sin (pφ) =
p−1

2∑
β=0
(−1)β

(
p

2β + 1

)
cosp−2β−1 φ sin2β+1 φ, (3.33b)450

where
(n
r

)
is the binomial coefficient. Then, we collect the terms into a single product and451

expand as a series of harmonics using formula (A 15), which we re-express for convenience452

as algorithm 2. Collecting like terms shows that ∂ψn

∂x

���
z=0

is equal to a sum of harmonics453

with constant amplitudes. Moreover, we find that these harmonics need to be represented454
by cosine functions in order to match the symmetry of the boundary displacement about455
x = 0, and up to the nth harmonic, denoted by nφ, is included. For odd n, all and only the456
odd-numbered harmonics are present (up to the nth harmonic); conversely, for even n, we457
have all and only even-numbered harmonics.458
Such a form is readily integrated with respect to x to give the contribution to the459

streamfunction, ψn, evaluated at z = 0. We find that it is equal to a sum of sinusoids of460
phase nφ. The integration constant is set to zero to enforce that the equilibrium height of the461
wave maker is at z = 0.462
Since the streamfunction is a discrete sum of linearly independent temporal (and spatial)463

harmonics along the boundary and it satisfies the linear internal wave equation (3.3),464
we project each harmonic with a frequency less than the buoyancy frequency along the465
corresponding characteristics, which are at angle Θn to the vertical, given by the dispersion466
relation (3.14). Then, each harmonic takes the form of the linear solution (3.20). The467
harmonics above the buoyancy frequency generate evanescent waves, whose contribution468
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Order Contribution to the streamfunction, ψn

1st − ω
k2 sin [k(x − z tanΘ1) − ωt]

2nd − ω

2k2 tanΘ1 sin [2k(x − z tanΘ2) − 2ωt]

3rd
ω

8k2 tanΘ1
{(tanΘ1 − 4 tanΘ2) sin [3k(x − z tanΘ3) − 3ωt]
+ (4 tanΘ2 − 3 tanΘ1) sin [k(x − z tanΘ1) − ωt]}

Table 2: Contributions to the streamfunction at the first three orders, provided 3ω < N .

takes the form of the linear evanescent waves (3.21), with k and ω multiplied by the469
appropriate value of n. Finally, the contribution to the streamfunction, ψn, is given by470
the linear superposition of these propagating and evanescent internal waves, even though the471
solution is nonlinear. Provided the third harmonic is not evanescent, these contributions are472
listed in table 2 and are plotted in figure 2 together with a phase plot in physical space. We473
note that in this case all harmonics are in phase with the boundary displacement.474
The leading-order contribution to the nth harmonic comes from nth order and so grows475

as an. Higher-order corrections to this harmonic arise at orders (n + 2), (n + 4), (n + 6), . . . ,476
but these corrections become decreasingly significant as a reduces. All of the corrections477
to the lower harmonics are also given by sine functions, thereby ensuring odd symmetry478
about x = 0. Considering the expression 4 tanΘ2 − 3 tanΘ1 as a function of ω shows that479
the third-order correction to the first harmonic reinforces its amplitude for 0 < ω < N

2 , and480
this reinforcement is more pronounced for smaller ω. Superlinear growth has been observed481
previously in experiments (Ermanyuk et al. 2017); here, in figure 2(a), we find it appearing on482
all three propagating harmonics within and beyond the domain of applicability (k A < cotΘ1)483
in which each internal wave characteristic intersects the sinusoidal boundary exactly once.484
Since each mode satisfies the linear equation (3.3), the energy density of each mode is485

proportional to the square of the amplitude with uniform constant of proportionality 1
2 ρ00N2486

for all harmonics, and their time-averaged energy fluxes (〈p′ |u|〉) are equal to their energy487
densities multiplied by their group velocities, which are given by cx sinΘn. Although product488
terms are developed for all pairs of harmonics in the series, by orthogonality, the time averages489
of the cross terms are zero, leaving only the linear contributions for each mode. Thus, the490
energy density and the energy flux have very similar profiles, and as an illustration, we show491
the energy flux in figure 2(b). We see that for a given monochromatic input, the total energy492
flux is greater than that contained in the single wave beam predicted by the linear theory.493
The increased energy flux is not a violation of causality, because the power that the flexible494
boundary transmits to the fluid is not specified, only the position of its surface.495
On the other hand, if at least one of the first three harmonics were evanescent (3ω > N),496

some of the tangent functions would be replaced by explicit square roots, tanΘn =497 √(
N
nω

)2 − 1 7→
√

1 − (
N
nω

)2, as can be seen in the linear evanescent solution (3.21).498
Moreover, the z derivatives of an evanescent wave have a different phase to those of the499
corresponding propagating wave, so if the mth harmonic is the lowest evanescent one, all500
contributions at (m + 1)th and higher orders become phase-shifted relative to the boundary501
displacement. For any given order of perturbation expansion, the explicit form of the solution502
depends on the number of propagating harmonics, and we provide up to the third-order503
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Figure 2: Predictions for the first three harmonics generated by an input sinusoid of
frequency ω = 0.4 = 0.25N and wavenumber k = 0.4, where units for frequency and

wavenumber are freely chosen provided they are self-consistent: (a) vertical displacement
amplitude; (b) time-averaged energy flux, which has a similar profile to the energy

density; and (c) phase profile showing the characteristics where ψ decreases through zero,
equivalently where the vertical displacement increases through zero. The expansion is
valid for Ak < 1, since thereafter some of the characteristics will intersect the flexible

boundary more than once.

contributions in table 3 for when only the first harmonic is propagating. In this case, the first504
three harmonics again grow superlinearly.505

4. Experimental validation506

This section presents a sequence of experiments conducted to verify the predictions made507
in §3.4 for the fluid response to monochromatic displacement of a flexible boundary. In §4.1,508
we briefly describe the “magic carpet” used to provide these displacements, and the reader is509
referred to Dobra et al. (2019) for a more detailed discussion and validation of the apparatus.510
The following section, §4.2, outlines our data acquisition pipeline from raw camera images511
to estimates of the amplitude of each harmonic. Finally, we present a detailed comparison512
between the predicted and observed amplitudes of each harmonic in §4.3.513

4.1. Magic carpet514

The Arbitrary Spectrum Wave Maker (ASWaM, Dobra et al. 2019) is a 1 m-long, flexible515
section in the base of an 11 m-long tank that is 0.255 m wide and 0.48 m deep. The wave516
maker’s shape is controlled by an array of 100 Portescap 26DBM10D1B-L linear stepper517
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Order Contribution to the streamfunction, ψn

1st − ω

k2 sin [k(x − z tanΘ1) − ωt]

2nd − ω

2k2 tanΘ1 e
−2kz

√
1−

(
N
2ω

)2

sin [2k x − 2ωt]

3rd

ω

8k2 tanΘ1

©«tanΘ1 sin [3k x − 3ωt] + 4

√
1 −

(
N
2ω

)2
cos [3k x − 3ωt]ª®¬e

−3kz
√

1−
(
N
3ω

)2

− 3 tanΘ1 sin [k(x − z tanΘ1) − ωt] − 4

√
1 −

(
N
2ω

)2
cos [k(x − z tanΘ1) − ωt]


Table 3: Contributions to the streamfunction at the first three orders when the first

harmonic is propagating but the second is evanescent, ω < N < 2ω. The tangent functions
are replaced by explicit square roots when the corresponding frequency is above the

buoyancy frequency.

motors positioned at a pitch of 10 mm along the flexible section, each of which has a vertical518
resolution of 0.0127 mm and a stroke of 48 mm.519

For generating the digital input signals to these steppermotors, we constructed a coupled set520
of Texas Instruments Beaglebone Blacks (revision C). Each Beaglebone contains a processor521
where every instruction takes exactly 5 ns, onwhichwe deploy an efficient assembly-language522
algorithm to issue signals to motor drivers. The signal timings are compiled from analytic523
functions specified in a text file. The waveforms produced for this paper have a temporal524
resolution of 30 ns.525

The surface of the wave maker is a 3 mm-thick nylon-faced neoprene foam sheet (similar526
to that used for wetsuits). At zero displacement, the neoprene surface is flush with the base527
of the tank, but in operation is deformed by 100 horizontal rods, each spanning the width528
of the tank and driven by one of the stepper motors. The lengthwise edges of the sheet are529
not sealed to the tank wall, and there is an 80 mm-deep cavity of fluid beneath the neoprene530
with both sides of the sheet wetted. However, there is almost no pressure gradient to drive a531
leakage flow from the underlying cavity into the working section of the tank, provided the532
chosen waveform conserves volume. To leading order, three-dimensional effects are limited533
to wall boundary layers.534

The neoprene attaches to sleeves around the horizontal rods using hook-and-loop fasteners.535
The material has some resistance to bending, and conveniently the sleeves can rotate about536
the rods, minimising the tensile stress in the sheet and the bending moments on the actuators.537
Ourmodelling (Dobra et al. 2019) indicates that this producesC2-continuous profiles, despite538
being specified by a discrete set of actuation rods. We find that the wave maker can reliably539
produce sinusoids of steepness

��∂h
∂x

�� 6 0.6 without the motors stalling or neoprene detaching.540
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Figure 3: Vertical gradient of the normalised density perturbation, 1
ρ00

∂ρ′
∂z , for a sinusoid

of input amplitude 4 mm when ω = 0.3 rad s−1, k = 40 rad m−1 and N = 1.58 rad s−1,
exhibiting four harmonics, indicated by the arrows. The fourth harmonic is just visible but

is too weak to measure its amplitude using our diagnostics.

4.2. Method541

We filled the tank using the double bucket method (Fortuin 1960; Oster 1965) with a linear542

density stratification of the form ρ0(z) = ρ00 + z dρ0
dz , which gives a constant buoyancy543

frequency N = 1.58 rad s−1, using sodium chloride as the solute.544

Quasi-monochromatic waveforms of six complete wavelengths
(
k = 40 rad m−1) were545

driven along the magic carpet. Starting from rest, we increased the amplitude at a constant546
rate of 2 mm min−1 until the desired amplitude was obtained. By increasing the amplitude547
slowly, the formation of a boundary layer was minimised, ensuring maximum transmission of548
internal waves. Then, the wave maker continued to run at constant amplitude for 80 s for data549
acquisition, before decreasing the amplitude at a rate of 6 mm min−1 in order to minimise550
mixing in the tank due to impulsive flows, which would degrade the stratification for future551
runs. A typical wave field is shown in figure 3.552

We observed the produced density perturbations using the optical technique of Synthetic553
Schlieren (Dalziel et al. 1998; Sutherland et al. 1999; Dalziel et al. 2000). A static, random554
pattern of black and white dots was displayed 0.2 m behind the tank on a 1.4 m (55′′) diagonal555
size 4k (UHD) television screen, in order to maximise the contrast between colours, similar556
to that implemented by Sveen & Dalziel (2005). The light rays emitted by the screen bend557
as they pass through the varying refractive indices in the tank, and the distorted image was558
recorded at 4 fps on a 12-megapixel ISVI IC-X12CXP video camera located 3.8 m in front of559
the tank. A pattern-matching algorithm in the software package DigiFlow (Dalziel Research560
Partners 2018) was used to reconstruct the density fields from the recorded images.561

To measure the amplitudes of the harmonics produced, we cropped the output video562
sequence from the Synthetic Schlieren to a rectangular window, entirely contained in all of563
the observed wave beams, that was 0.32 m wide and 0.11 m high and its base was 0.034 m564
above the surface of the wave maker. By excluding the region very close to the wave maker,565
any boundary layer effects are eliminated from this analysis. Within this window, we used566
harmonic analysis to extract the amplitude and phase of each of the harmonics. Any real567
signal f (t) that is periodic with period 2T can be expressed as the complex Fourier series,568
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Figure 4: Observed vertical displacement amplitudes of the first three harmonics (points
with error bars) compared to predictions correct to third order (lines) for monochromatic
sinusoids with frequency 0.3 rad s−1. The predictions are linearly scaled by a factor of

0.14 to match the smaller responses generated by the wave maker. A fourth harmonic was
observed but is too weak to be analysed.

using an asterisk ∗ to denote the complex conjugate,569

f (t) = c0 +

∞∑
n=1

[
cnei nπ tT + c∗ne−i nπ tT

]
, (4.1)570

with the complex coefficients given by571

cn =
1

2pT

∫ 2pT

0
f (t)e−i nπ tT dt, (4.2)572

averaged over p complete periods to reduce experimental noise. The choice of summing573
only over positive n is possible because the function f (t) being real requires c−n = c∗n. Each574
pixel in an image sequence is treated as an independent signal, fj(t), and its first few Fourier575
coefficients, cn, are found. The amplitude of the signal with angular frequency ω = nπ

T576

is given by |cn |2 and phase by the argument of cn. Then, the pixels are assembled to form577
amplitude and phase images at each harmonic frequency.578
For each mode, the dominant internal wave travels up and to the right (with a very weak579

wave to the left, as observed by Mercier et al. (2010)) before reflecting off the top surface of580
the water to travel down and to the right. To separate these and provide the amplitude of the581
dominant wave at each pixel, we applied the Hilbert transform to each mode, which filters582
by direction in wavevector space and was first applied to internal waves by Mercier et al.583
(2008). Finally, we estimated the amplitude of each harmonic by taking the mean over all584
points in the window and also calculated the standard deviation to evaluate the uncertainty.585

4.3. Results and discussion586

Graphs comparing the measured amplitudes of each of the harmonics against the theoretical587
predictions in table 2 are shown in figure 4 for input frequency ω = 0.3 rad s−1 = 0.190N588
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Figure 5: Observed vertical displacement amplitudes of the first three harmonics (points
with error bars) compared to predictions correct to third order (lines) for monochromatic
sinusoids with frequency 0.4 rad s−1. The predictions are linearly scaled by a factor of

0.21.

and in figure 5 forω = 0.4 rad s−1 = 0.253N . The error bars represent one standard deviation589
either side of themean of themeasured amplitude after taking theHilbert transform (see §4.2).590
The first four harmonics are propagating waves in the first set, but only the first three are591
propagating in the second set. However, the signal-to-noise ratio using our apparatus for the592
fourth harmonic is very low, so we cannot reliably measure its very small amplitude of order593
0.01 mm, in the domain of validity, and we omit it from figure 4.594
From these graphs, we find that our solution predicts the relative amplitudes of the595

harmonics well at moderately low amplitudes, within the weakly nonlinear regime. In596
particular, we observe the predicted superlinear growth of the first harmonic. As stated597
in §3.1, our model assumes that each internal wave characteristic only intersects the wave598
maker once. This requires the gradient of the fundamental mode, cotΘ1, to be greater than599
the maximum gradient of the input sinusoid, a = Ak. Thus, the domain of applicability600
is A < 1

k cotΘ1, which is the unshaded region on the graphs, and we do not expect the601
experimental data to fit the predictions in the shaded regions. Nevertheless, the experiments602
still conform fairly well to the theory just above this critical amplitude.603
We needed to linearly scale down all of the predictions in order to match the experiments.604

The scaling factor is uniform for each graph, that is for each input frequency, wavelength and605
buoyancy frequency but it is independent of the amplitude. This factor is a measure of the606
efficiency of our “magic carpet” at generating internal waves: no scaling would be required607
if the vertical displacement of the fluid equals the vertical displacement of the wave maker. It608
arises because of the formation of a boundary layer in the vicinity of the wave maker, where609
the flow ceases to follow the strict characteristic structure of linear internal waves. Instead,610
the material surface at the top edge of the boundary layer is deformed by the complex flow611
beneath, and the laminar internal waves are effectively generated by this oscillating surface.612
This boundary layer also forms around oscillating bodies within the stratification (Ermanyuk613
2000; Clark & Sutherland 2010) and near cam-driven wave generators (Gostiaux et al. 2007;614
Mercier et al. 2010), which exhibit displacement efficiencies of around 0.5 in near-optimal615
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cases. Displacement efficiency of our wave maker is a propagation-angle-dependent quantity,616
which ranges from 0.1 to 0.9 (Dobra 2018). In the present experiments where fundamentals617
emanate obliquely, these are 0.14 (figure 4) and 0.21 (figure 5).618
In addition, the stratification within the boundary layer is not uniform. Firstly, moving the619

boundary into the stratification is likely to cause enhanced diffusion due to the deformation620
of isopycnals and possibly small-scale turbulent mixing. Secondly, although assumed to the621
contrary, salt is perpetually diffusing through the tank at a rate proportional to the saline622
gradient. However, salt cannot diffuse through the base of the tank, so the density gradient623
and hence the buoyancy frequency are zero there. Thus, there is an unknown stratification624
within the boundary layer. Consequently, our model should only be applied to the material625
surface at the top of the boundary layer.626
Above the critical amplitude, there is a regime change: the response amplitudes of the627

harmonics cease growing and the higher frequencies contain a greater proportion of the628
energy. Here, shear flows within the boundary layer generate turbulence and significant flow629
separation occurs. As a result, a broader frequency and wavevector spectrum is generated630
at values ceasing to be restricted to integer multiples of the input waveform. Therefore,631
increasing amounts of energy are dispersed into frequencies not measured here and our632
weakly nonlinear model is thoroughly violated at large amplitudes.633

5. Generating a pure wavefield634

5.1. Approach635

We saw in §3.4 that a monochromatic boundary forcing produces a full spectrum of internal636
wave harmonics. However, to study the free-space dynamics of internal waves experimentally,637
such as for the interaction of two incident wave beams (Smith & Crockett 2014), wave fields638
without the extra harmonics are desirable.639
One approach is to modify the wave maker so that it is mounted perpendicular to the640

characteristics of the intended internal wave, thus at angle Θ to the horizontal. Then,641
the velocity of the surface of the modified wave maker, U, is always perpendicular to its642
equilibrium plane, thus has the same direction as the characteristics of the internal wave643
and hence the fluid velocity, u. Therefore, the kinematic boundary condition (2.15) implies644
that U = u on the wave maker surface, and the monochromatic response exactly satisfies645
the nonlinear boundary condition, so no additional harmonics are generated. Moreover, a646
monochromatic sinusoidal internal wave of any amplitude satisfies the linear internal wave647
equation (3.3) (McEwan 1973), so the response is monochromatic even in the strongly648
nonlinear regime, provided there is no overturning or shear instability. In particular, we note649
that for our unmodified horizontal wave maker, critically evanescent internal waves (ω = N)650
have vertical characteristics, which are perpendicular to our wave maker, so these are the651
only monochromatic fluid oscillations for which our horizontal wave maker can eliminate652
harmonics entirely.653
Alternatively, we can use the unique ability of our wave maker to choose a polychromatic654

input waveform that generates a monochromatic wave at some other angle to the vertical, Θ.655
As an example, suppose we wish to solve the inverse problem of constructing the input656
waveform, h, that produces exactly the internal wave field (3.20) of the linear solution657
in §3.2, then we would have658

ψ = aψ̂ = −aω
k2 sin [k(x − z tanΘ) − ωt]. (5.1)659
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We know from §3 that the wave maker profile660

h = ah1 = A sin (k x − ωt) = a
k

sin φ (5.2)661

is the leading-order (linear) input required to generateψ, but it also produces higher harmonics662
that are in this case unwanted. Thus, seeking a solution valid in the weakly nonlinear regime663
(|a| � 1), this time we expand h and seek a series solution of the form,664

h =
∞∑
n=1

anhn, (5.3)665

that generates the monochromatic internal wave field (5.1).666
At ord

(
a2) , the second harmonic that is generated by the linear forcing (5.2) is given667

by ψ2, which is stated in table 2. We can cancel this second harmonic by superposing a668
corresponding correction, a2h2, on the wave maker. Since the linearised kinematic boundary669

condition (3.4) is ∂h
∂t =

∂ψ
∂x

���
z=0

and it needs to negate ψ2, we deduce that670

h2 = −
∫

∂ψ2
∂x

����
z=0

dt = − 1
2k

tanΘ sin [2(k x − ωt)], (5.4)671

with the constant of integration set to zero so that 〈h〉 = 0. It then follows that672

h =
a
k

sin φ − a2

2k
tanΘ sin (2φ) +O

(
a3

)
. (5.5)673

However, since the input waveform has now been modified, h , A sin φ, the expansion of674
the kinematic boundary condition (2.16) needs to be recalculated to obtain the internal wave675
field at ord

(
a3) , ψ3, which would then lead to further such corrections.676

5.2. Kinematic boundary condition677

Such approaches rapidly become unwieldy. Instead, we take the approach that our wave678
field is entirely specified by ψ = aψ̂ and by this definition one cannot make higher order679
corrections to ψ. Instead, we choose to expand the dependent function, h, using (5.3) in the680
Taylor-expanded kinematic boundary condition (2.17),681

∞∑
q=0

hq

q!

(
∂

∂x
+
∂h
∂x

∂

∂z

)
∂qψ

∂zq

����
z=0
=
∂h
∂t
, (5.6)682

which gives683

∞∑
q=0

1
q!

( ∞∑
s=1

ashs

)q (
∂

∂x
+

( ∞∑
r=1

ar
∂hr
∂x

)
∂

∂z

)
∂q

(
aψ̂

)
∂zq

�����
z=0

=

∞∑
n=1

an ∂hn
∂t

. (5.7)684

Although a truncation of this expansion of h may generate evanescent harmonics, this685
possibility does not need to be considered here, because the only fluid flows are those686
specified in ψ̂, which can consist of arbitrary non-internal wave motions.687
Next, we manipulate this expansion to factor out all the powers of a. Firstly, we re-express688

the infinite sum raised to an arbitrary finite integer q as a new power series,689 ( ∞∑
s=1

ashs

)q
= aq

( ∞∑
s=0

ashs+1

)q
= aq

∞∑
s=0

ascs, (5.8)690
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where the coefficients cs are given by the recurrence relation,691

cs+1(q) = 1
(s + 1)h1

s∑
p=0
[q(s + 1) − p(q + 1)]cphs−p+2, (5.9)692

and c0 = hq
1 .While aspects of this formula are standardmaterial (see, for example,Gradshteyn693

& Ryzhik 2014), appendix B contains our derivation, from which we obtain the next three694
coefficients,696

c1 = qhq−1
1 h2, (5.10a)697

c2 =
1

2h1
[2qh3c0 + (q − 1)h2c1] = qhq−1

1 h3 +
1
2

q(q − 1)hq−2
1 h2

2, (5.10b)698

c3 =
1

3h1
[3qh4c0 + (2q − 1)h3c1 + (q − 2)h2c2]

= qhq−1
1 h4 + q(q − 1)hq−2

1 h2h3 +
1
6

q(q − 1)(q − 2)hq−3
1 h3

2 .

(5.10c)699

700

Then, the kinematic boundary condition becomes701

∞∑
q=0

aq+1

q!

( ∞∑
s=0

ascs(q)
) (

∂q+1ψ̂

∂x ∂zq

����
z=0
+
∂q+1ψ̂

∂zq+1

����
z=0

∞∑
r=1

ar
∂hr
∂x

)
=

∞∑
n=1

an ∂hn
∂t

. (5.11)702

The first term can be straightforwardly rearranged to isolate powers of a. The second term703
requires the Cauchy product (B 5), which evaluates the product of two summations, before704
the reorganisation in powers of a,705

∞∑
q=0

∞∑
s=0

aq+s+1

q!

(
cs(q) ∂

q+1ψ̂

∂x ∂zq

����
z=0
+
∂q+1ψ̂

∂zq+1

����
z=0

s∑
r=1

cs−r (q)∂hr
∂x

)
=

∞∑
n=1

an ∂hn
∂t

. (5.12)706

Finally, letting n = q + s + 1 and adjusting the summation limits accordingly gives the707
expansion of the kinematic boundary condition factorised into powers of a,708

∞∑
n=1

n−1∑
q=0

an

q!

(
cn−q−1(q) ∂

q+1ψ̂

∂x ∂zq

����
z=0
+
∂q+1ψ̂

∂zq+1

����
z=0

n−q−1∑
r=1

cn−q−r−1(q)∂hr
∂x

)
=

∞∑
n=1

an ∂hn
∂t

.

(5.13)709
In this structure, at ord(an), hn only appears on the right hand side. On the left hand side,710

the cs terms produce orders of h up to s + 1, but c0(0) = 1 and cs(0) = 0 for s > 1, so711
the highest order appearing is hn−1. Thus, hn depends only on lower order contributions to712
the solution, and we obtain a similar hierarchy of dependencies to that found for ψn in §2.2713
(depicted in figure 1).714
This boundary condition (5.13) holds for any fluid flow, ψ̂, in the weakly nonlinear regime,715

which need not consist of internal waves. Since it is derived only from the kinematic boundary716
condition (2.15) of no penetration and thus is only evaluated at the boundary, this equation717
is independent of the fluid dynamics in the interior of the domain, provided the flow is718
inviscid and incompressible, and holds for arbitrary density stratifications, or indeed no719
stratification at all. As a result, not only can we prescribe the wave maker displacement,720
h(x, t), required for any arbitrary flow field, but we can also solve the inverse problem721
of deducing a suitable displacement on the wave maker that will fully absorb any incoming722
waves: a non-reflecting boundary condition for internalwaves. Furthermore, given sufficiently723
many spatially separate measurements of velocity distant from z = 0, the Taylor’s expansion724
at z = 0 can be computed and thus the spectrum of the source may be inferred.725



24 T. E. Dobra, A. G. W. Lawrie and S. B. Dalziel
Result: h

h← 0
for n ∈ N do

Evaluate kinematic boundary condition (5.13) at ord(an)
Calculate cn−1(q; h1, . . . , hn−1) using (5.9)
Calculate ∂nψ̂

∂x∂zn−1

���
z=0

, ∂
n−1ψ̂
∂zn−1

���
z=0

and ∂hn−1
∂x following the pattern of (5.15b)

Substitute these calculated quantities into (5.13) at ord(an)
Express the terms as products of sin φ and cos φ using (3.33)
Express the trigonometric products as sums of harmonics using algorithm 2
Integrate with respect to t, setting the integration constant to zero
h← h + anhn

end
Algorithm 3.Calculation of boundary displacement, h, to obtain a single set of internalwave harmonics
with a common phase angle.

5.3. Algorithmic calculation of boundary displacement for a single spectrum of internal726
wave harmonics727

We consider a single spectrum of harmonics to be one arising from a common fundamental,728
so have frequencies nω that are integer multiples of the fundamental and have a common729
horizontal phase velocity, cx , which restricts the wavevectors to be kn = (nk,−nk tanΘn).730
This is sufficiently general to admit a polychromatic spectrum constructed with arbitrary731
amplitudes of such harmonics to form a Fourier series and thus may represent arbitrary732
translating periodic shapes. In this section, we present a procedure to explicitly calculate733
order-by-order the boundary displacement, h, required to generate a single spectrum of734
internal wave harmonics with streamfunction ψ = aψ̂; this is summarised in algorithm 3.735
As an example, we illustrate how a polychromatic spectrum of three harmonics would be736
expanded to obtain h correct to second order, with related expressions listed in tables 4737
and 5. We then specialise to a monochromatic wave and give the corresponding boundary738
displacement in table 6.739
To calculate hn, first we take all of the terms at ord(an) in the kinematic boundary condi-740

tion (5.13). We note that the linear condition is the same as for the forwards problem (3.4).741
Second, we evaluate the coefficients cs in terms of hq and substitute these into the boundary742
condition; these are listed for the first three orders in table 4. Third, we evaluate and substitute743
all of the required derivatives and boundary displacement contributions. The expansion is744
now a sum of products of sines and cosines with phases of the form αφ, where α ∈ Z.745
Exactly as in §3.4, we re-express these as a sum of terms of the form sinα φ cosβ φ, where746
α, β ∈ Z, using the general compound angle formulae (3.33), and then convert them to a sum747
of harmonics using algorithm 2 (see appendix A for derivations of these formulae). After748
simplification, we are left with ∂hn

∂t equal to a sum of harmonics with fundamental phase φ.749
We integrate this with respect to time, t, setting the integration constant to zero to enforce750
no net displacement. This yields the contribution to h at nth order.751
For example, the contributions to the boundary displacement correct to second order,752

h = ah1 + a2h2, for a polychromatic internal wave field consisting of three harmonics that753
are in phase at z = 0,755

ψ = aψ̂ = A1 sin [k(x − z tanΘ1) − ωt] + A2 sin [2k(x − z tanΘ2) − 2ωt]
+ A3 sin [3k(x − z tanΘ3) − 3ωt], (5.14)756

are listed in table 5. In line with §3, we define a to be the characteristic steepness of the first757
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Order Kinematic boundary condition at nth order

1st
∂ψ̂

∂x

����
z=0

=
∂h1
∂t

2nd
∂ψ̂

∂z

����
z=0
+ h1

∂2ψ̂

∂x ∂z

����
z=0

=
∂h2
∂t

3rd
∂h2
∂x

∂ψ̂

∂z

����
z=0
+ h2

∂2ψ̂

∂x ∂z

����
z=0
+ h1

∂h1
∂x

∂2ψ̂

∂z2

����
z=0
+

1
2

h2
1

∂3ψ̂

∂x ∂z2

����
z=0

=
∂h3
∂t

Table 4: Kinematic boundary condition at the first three orders, after the cs coefficients
have been expanded in terms of hq .

Order Contribution to the boundary displacement, hn

1st − 1
k

sin φ − A2
k A1

sin (2φ) − A3
k A1

sin (3φ)

2nd

− A2
2k A1

[
tanΘ1 − 2 tanΘ2 +

A3
A1
(2 tanΘ2 − 3 tanΘ3)

]
sin φ

− 1
2k

[
tanΘ1 +

A3
A1
(tanΘ1 − 3 tanΘ2)

]
sin (2φ)

− A2
2k A1

[tanΘ1 + 2 tanΘ2] sin (3φ) −
A2 A3
2k A2

1
[2 tanΘ2 + 3 tanΘ3] sin (5φ)

Table 5: Contributions to the boundary displacement at the first two orders that generates
three in-phase internal wave harmonics (5.14).

harmonic of h predicted by linear theory, a = A1k
2

ω . Expanding to third order would introduce758
up to five harmonics along the boundary, but if expanded to all orders, these components759
would cancel to produce only three internal wave harmonics.760
Specialising further to generate a monochromatic internal wave field (5.1) with A1 = − aω

k2761

and A2 = A3 = 0, we note that ∂
∂z = − tanΘ ∂

∂x due to the characteristic structure, so the762
kinematic boundary condition (5.13) specialises to763

∞∑
n=1

n−1∑
q=0

an

q!
∂q+1ψ̂

∂x ∂zq

����
z=0

(
cn−q−1 − tanΘ

n−q−1∑
r=1

cn−q−r−1
∂hr
∂x

)
=

∞∑
n=1

an ∂hn
∂t

. (5.15a)764

Recalling that φ = k x −ωt, the derivatives of the streamfunction, following formula (3.32a),765
are given by766

∂q+1ψ̂

∂x ∂zq

����
z=0
=

{
(−1) q+2

2 ωkq−1 tanq Θ cos φ for even q

(−1) q+1
2 ωkq−1 tanq Θ sin φ for odd q

. (5.15b)767

The contributions to the boundary displacement at the first three orders that generate a768
monochromatic internal wave are listed in table 6. The first two orders agree with the769
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Order Contribution to the boundary displacement, hn

1st
1
k

sin φ

2nd − 1
2k

tanΘ sin (2φ)

3rd
1
k

tan2
Θ

{
3
8

sin (3φ) − 1
8

sin φ
}

Table 6: Contributions to the boundary displacement at the first three orders that generates
a monochromatic internal wave (5.1).

solution for h (5.5) inferred from the internal wave field generated by a monochromatic770
boundary forcing in §5.1. As we would expect from the forwards problem at third order, a771
third harmonic is required on the boundary to eliminate the third harmonic internal wave772
that would be generated by a monochromatic boundary displacement. However, this is not773
simply the negative of the third-order wave field, ψ3 (as listed in table 2), generated by774
a monochromatic forcing along the boundary. Nonetheless, it does exhibit a third-order775
reduction that is cubic in a to the amplitude fundamental frequency along the wave maker.776
This qualitatively agrees with the observation in §3.4 that there is a cubically increasing777
response in the fundamental frequency internal wave due to a monochromatic forcing, so we778
expect a cubically decreasing input to counteract this and generate an internal wave field of779
a given amplitude.780
We remark that we could have alternatively derived the expanded kinematic boundary781

condition for a monochromatic internal wave (5.15) by directly considering the fluid782
velocities projected onto the direction of motion of the wave maker. Doing so for arbitrarily783
large amplitudes produces physical inconsistencies, because our wave maker cannot take784
multiple values of h at any value of x. However, within the single-valued constraint, it is785
possible to compute an h(x, t) that matches a wave of arbitrary amplitude. One obtains a786
strongly nonlinear equation where the dependent variable appears both inside and outside787
a trigonometric function. This can be resolved by Taylor expanding on those trigonometric788
functions and this leads to an expansion in h that is identical to equation (5.15). The details789
of this calculation can be found in appendix C.790

5.4. Experimental verification791

We experimentally tested the predictions for a single spectrum of harmonics in §5.3 using792
the apparatus and method described in §4.1–4.2. For these experiments, the tank contained793
a nearly linear stratification of buoyancy frequency N = 1.4 rad s−1.794
Initially, we displaced the magic carpet with a right-travelling monochromatic sinusoid795

of frequency ω = 0.3 rad s−1 = 0.21N , wavenumber k = 40 rad m−1 and steady amplitude796
A = 4 mm, giving Ak = 0.16; the resulting wave field is shown in figure 6(a). As expected797
from§3, there is a dominant first harmonic plus a visible second harmonic, but negligible third798
harmonic. In contrast, we applied the corresponding second-order correction of table 6 in799
figure 6(b) to almost eliminate the second harmonic but consequently generated a significant800
third harmonic. We were unable to completely remove the second harmonic using our801
theoretical waveform because of the nonlinear stratification and flow in the boundary layer802
highlighted in §4.3, which cannot be accommodated in this solution. Nevertheless, we have803
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Figure 6: Vertical gradient of the normalised density perturbation 1
ρ00

∂ρ′
∂z for: (a) a

monochromatic sinusoid of amplitude 4 mm, frequency 0.3 rad s−1 and wavenumber
40 rad m−1 in a stratification where the harmonic sequence decays in amplitude; and

(b) the corresponding polychromatic input to remove the second-order contributions to the
second harmonic, which in this configuration generates a significant third harmonic, as
expected. Harmonic analysis confirms that wavy perturbations in phase lines are not

intrinsic to the first harmonic.

demonstrated a useful technique in the experimental study of internal waves: the substantial804
attenuation of an unwanted harmonic, which allows a clearer view of the desired fundamental805
wave beam.806
To test the polychromatic expansion given in table 5, we estimated the amplitudes of the807

three internal wave harmonics in figure 6(b) using the method in §4.2 and then reconstructed808
the corresponding theoretical boundary displacement correct to second order. We found809
that the second and third harmonics were in antiphase relative to the first harmonic, so we810
multiplied the corresponding amplitudes in the model by −1. Figure 7 compares the inferred811
displacement, shown with a solid line, with the actual input along the “magic carpet” linearly812
scaled by a factor of 0.19, shown with a dashed line. A pure sinusoid is also drawn in813
dots to demonstrate the modulation of a sinusoid introduced by our expansion (5.13). The814
very similar shapes of the inferred and input waveforms, except at phases corresponding815
to distance 0 m along the wave maker, confirm that the second-order correction accurately816
determines the amplitude of the second harmonic relative to the first harmonic. The small817
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Figure 7: Vertical displacement profile calculated from the experiment in figure 6(b)
showing a good match to the input waveform, scaled down linearly to match the

amplitudes. Also shown, for reference, is a monochromatic sinusoid.

disagreement between the two curves arises principally from an overestimation of the third818
harmonic. This is partially due to already identified difficulty in measuring the amplitudes of819
weak harmonics but also due to the boundary layer around the wave maker. The calculated820
profile is in fact for a material surface just outside the boundary layer. Despite this small821
error, we have successfully calculated the boundary displacement required to produce an822
observed spectrum of waves, with a superior accuracy that would be given by a linear model.823

6. Conclusion824

We demonstrated that triadic wave-wave interactions do not occur between internal waves825
sharing the same horizontal component of the phase velocity. This has profound implications826
for the spectral structure in many applications where the wave field is generated by what827
is essentially a propagating boundary. In particular, the only source of waves, or of their828
harmonics, is at the boundary itself. Consequently, the wave field encodes considerable829
information about the boundary geometry. We have derived a complementary pair of weakly830
nonlinear perturbation expansions: one to predict the spectrum of harmonics of internal831
waves generated by a prescribed boundary displacement, and its inverse to calculate the832
boundary displacement required to produce a given flow field. Both of these expansions were833
specialised to a monochromatic boundary displacement and a monochromatic internal wave834
field, respectively, for which we gave succinct algorithms for calculating the corresponding835
polychromatic spectra. Each successive order of the expansions not only introduces an836
additional harmonic but also applies additive corrections to the lower harmonics. We837
successfully verified our models using experiments driven by a “magic carpet” in the838
base of a large tank. Our results may be used to generate cleaner internal wave fields,839
especially monochromatic ones, in the laboratory, and to deduce the boundary displacements840
corresponding to an observed flow field, whether in a tank or in the ocean.841
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Appendix A. Compound angle identities842

The formulae in this appendix are used for algorithmically evaluating the perturbation843
expansions of this paper at all orders.844

A.1. Product of sinusoids as a sum of harmonics845

The expansions throughout this paper frequently yield products of cosines and sines that we846
need to express as a sum of harmonics. We consider the arbitrary product for a single phase φ847
expressed as complex exponentials, for α, β ∈ Z>0,848

cosα φ sinβ φ =
1
2α

(
eiφ + e−iφ

)α 1
(2i)β

(
eiφ − e−iφ

)β
. (A 1)849

The binomial expansion gives the product of summations, where
(n
r

)
= n!

r!(n−r)! is the binomial850
coefficient,851

cosα φ sinβ φ =
1

2α+βiβ
©«
α∑
ξ=0

(
α

ξ

)
ei(α−ξ)φe−iξφª®¬

(
β∑
ε=0

(
β

ε

)
ei(β−ε )φ(−1)εe−iεφ

)
, (A 2)852

which we combine as a double sum,853

cosα φ sinβ φ =
1

2α+βiβ
α∑
ξ=0

β∑
ε=0
(−1)ε

(
α

ξ

) (
β

ε

)
ei(α+β−2ξ−2ε )φ . (A 3)854

This summation exhibits symmetry, whereby pairs of terms have the same values of the855
binomial coefficients, so we can halve the number of terms in the summation. The summation856
domain is rectangular in (ξ, ε) space, and the conjugate pairs of terms are reflections in the857
line ξ+ε = 1

2 (α + β), shown in red in figure 8, which passes through the centre of the domain.858
Thus, we split the domain of summation about this line into the shaded and unshaded regions859
in the figure, neither of which include the symmetry line, and a separate summation over860
points lying on the line of symmetry itself, which occurs when, and only when, α and β are861
either both odd or both even,862

cosα φ sinβ φ = Sshaded + Sunshaded + Sline. (A 4)863

In the first (shaded) sum, ξ runs from zero to the lesser of the intersection of the symmetry864
line with the ε axis (exclusive) and the right edge of the rectangle (ξ = α, inclusive), and ξ865
runs from zero to the lesser of the symmetry line (exclusive) and the top edge of the rectangle866
(ε = β, inclusive),867

Sshaded =
1

2α+βiβ

bmin { 1
2 (α+β−1),α}c∑
ξ=0

bmin { 1
2 (α+β−1)−ξ,β}c∑

ε=0
(−1)ε

(
α

ξ

) (
β

ε

)
ei(α+β−2ξ−2ε )φ . (A 5)868

In Sunshaded, ξ runs from the greater of the intersection symmetry line with the top edge of869
the rectangle, ξ = 1

2 (α + β) − β = 1
2 (α − β) (exclusive), and the left edge (ξ = 0, inclusive)870

to the right edge (ξ = α, inclusive), and ε runs from the line of symmetry (exclusive) to the871
top edge (inclusive),873

Sunshaded =

1
2α+βiβ

α∑
ξ=dmax { 1

2 (α−β+1),0}e

β∑
ε=dmax { 1

2 (α+β+1)−ξ,0}e
(−1)ε

(
α

ξ

) (
β

ε

)
ei(α+β−2ξ−2ε )φ . (A 6)874
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Figure 8: Summation domain for cos4 φ sin3 φ (α = 4, β = 3). An example pair of
conjugate symmetric points is marked with crosses.

We now select a new set of variables to exploit the symmetries, µ = α − ξ and ν = β − ε .875
On substitution, the summation domains become876 ⌈

max
{

1
2
(α − β + 1), 0

}⌉
6 α − µ 6 α, (A 7a)877 ⌈

max
{

1
2
(α + β + 1) − (α − µ), 0

}⌉
6 β − ν 6 β. (A 7b)878

879

Subtracting α and β from each inequality, respectively, andmultiplying through by−1, noting880
that the maximum functions become minimum functions and the inequalities reverse, gives881 ⌊

min
{

1
2
(α + β − 1), α

}⌋
> µ > 0 ,

⌊
min

{
1
2
(α + β − 1) − µ, β

}⌋
> ν > 0, (A 7c)882

which is exactly the summation domain over (ξ, ε) in Sshaded (A 5). The binomials,
(α
ξ

)
=

( α
α−µ

)
883

and
(β
ε

)
=

( β
β−ν

)
, are symmetric about α2 and β

2 , respectively, so are equal to their original884

forms,
(α
µ

)
and

(β
ν

)
. Thus, Sunshaded is of a very similar form to Sshaded886

Sunshaded =

1
2α+βiβ

bmin { 1
2 (α+β−1),α}c∑
µ=0

bmin { 1
2 (α+β−1)−µ,β}c∑

ν=0
(−1)β−ν

(
α

µ

) (
β

ν

)
ei(−α−β+2µ+2ν)φ .

(A 8)887

Since (−1)−ν = (−1)ν for ν ∈ Z, and on changing the summation variables to (ξ, ε), the888
contributions to cosα φ sinβ φ not on the line of symmetry total890

Sshaded + Sunshaded =
1

2α+βiβ

bmin { 1
2 (α+β−1),α}c∑
ξ=0

bmin { 1
2 (α+β−1)−ξ,β}c∑

ε=0
(−1)ε

(
α

ξ

) (
β

ε

)
×(

ei(α+β−2ξ−2ε )φ + (−1)βe−i(α+β−2ξ−2ε )φ
)
.

(A 9)891

The term in the square brackets is 2 cos [(α + β − 2ξ − 2ε)φ] when β is even and892
2i sin [(α + β − 2ξ − 2ε)φ] when β is odd. Finally, we choose to sum over harmonics893
by letting γ = ξ + ε and summing over (γ, ε). We obtain the summation limits for the894
shaded region from figure 8 by noting that lines of constant γ are parallel to the red line of895
symmetry, so 0 6 γ 6

⌊ 1
2 (α + β − 1)⌋ , and that the minimum value of ε on once such line896
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occurs either on the right or bottom edges of the rectangle and the corresponding maximum897
value is on the left or top edge, max {γ − α, 0} 6 ε 6 min {γ, β}. Thus,899

Sshaded + Sunshaded =
(−1)

β
2

2α+β−1
∑b 1

2 (α+β−1)c
γ=0

∑min {γ,β }
ε=max {γ−α,0}(−1)ε ( αγ−ε ) (βε ) cos [(α + β − 2γ)φ] for β even

(−1)
β−1

2

2α+β−1
∑b 1

2 (α+β−1)c
γ=0

∑min {γ,β }
ε=max {γ−α,0}(−1)ε ( αγ−ε ) (βε ) sin [(α + β − 2γ)φ] for β odd

.

(A 10)

900

Finally, we consider the contribution along the line of symmetry, where γ = 1
2 (α + β) and901

so ε has the same limits as before,902

Sline =
1

2α+βiβ

min { 1
2 (α+β),β}∑

ε=max { 1
2 (β−α),0}

(−1)ε
(

α
1
2 (α + β) − ε

) (
β

ε

)
. (A 11)903

Again, this has a symmetry point at ε = β
2 , so we split the summation into three components,904

Sline = Slower + Supper + Spoint, where905

Slower =
1

2α+βiβ

β−1
2∑

ε=max { 1
2 (β−α),0}

(−1)ε
(

α
1
2 (α + β) − ε

) (
β

ε

)
, (A 12a)906

Supper =
1

2α+βiβ

min { 1
2 (α+β),β}∑
ε=

β+1
2

(−1)ε
(

α
1
2 (α + β) − ε

) (
β

ε

)
, and (A 12b)907

Spoint =

{
1

2α+β iβ (−1) β2 (α
α
2

) (β
β
2

)
for β even

0 for β odd
. (A 12c)908

909

Similar to the method for Sunshaded, changing the summation variable of Supper to κ = β − ε ,910
recalculating the limits and manipulating the binomial coefficients gives911

Supper =
1

2α+βiβ

β−1
2∑

κ=max { 1
2 (β−α),0}

(−1)β−κ
(

α
1
2 (α + β) − κ

) (
β

κ

)
= (−1)βSlower, (A 13)912

because (−1)−κ = (−1)κ . So, for odd β, the components of Sline total zero and for even β, and913
hence even α (otherwise Sline = 0),914

Sline =
1

2α+β

(
α
α
2

) (
β
β
2

)
+
(−1) β2
2α+β−1

β−1
2∑

ε=max { 1
2 (β−α),0}

(−1)ε
(

α
1
2 (α + β) − ε

) (
β

ε

)
. (A 14)915
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Therefore, for α, β, γ, ε ∈ Z,917

cosα φ sinβ φ =
(−1)

β
2

2α+β−1
∑b 1

2 (α+β−1)c
γ=0

∑min {γ,β }
ε=max {γ−α,0}(−1)ε ( αγ−ε ) (βε ) cos [(α + β − 2γ)φ] for β even

(−1)
β−1

2

2α+β−1
∑b 1

2 (α+β−1)c
γ=0

∑min {γ,β }
ε=max {γ−α,0}(−1)ε ( αγ−ε ) (βε ) sin [(α + β − 2γ)φ] for β odd

+
1

2α+β

(
α
α
2

) (
β
β
2

)
+
(−1) β2
2α+β−1

β−1
2∑

ε=max { 1
2 (β−α),0}

(−1)ε
(

α
1
2 (α + β) − ε

) (
β

ε

)
if α, β even.

(A 15)

918

A.2. Harmonic as a product of sinusoids919

Here, we derive the reverse operation, expressing a harmonic as a product of sinusoids at the920
fundamental frequency. For n ∈ Z>0, de Moivre’s theorem states921

cos (nφ) + i sin (nφ) = (cos φ + i sin φ)n, (A 16)922

which we expand using the binomial theorem,923

cos (nφ) + i sin (nφ) =
n∑
α=0

iα
(
n
α

)
cosn−α φ sinα φ. (A 17)924

Firstly, taking the real part, which only has contributions for even α, and letting β = α
2 gives925

cos (nφ) =
n
2∑

β=0
(−1)β

(
n

2β

)
cosn−2β φ sin2β φ. (A 18)926

Secondly, taking the imaginary part, which only has contributions for odd α, and letting927
β = α−1

2 gives928

sin (nφ) =
n−1

2∑
β=0
(−1)β

(
n

2β + 1

)
cosn−2β−1 φ sin2β+1 φ. (A 19)929

Appendix B. Expression for infinite sum raised to integer power930

In equation (5.8), we expressed an infinite power series raised to a finite integer power as a931
new power series,932 ( ∞∑

s=0
ashs+1

)q
=

∞∑
s=0

ascs, (B 1)933

with the coefficients cs to be determined. We will find a recurrence relation for cs by first934
letting935

g(a) =
∞∑
s=0

ashs+1 and f (a) = (g(a))q =
∞∑
s=0

ascs, (B 2a)936

whose derivatives are, where ε = ξ + 1,937

dg
da
=

∞∑
s=0

sas−1hs+1 =

∞∑
p=0

ap(p + 1)hp+2 and
d f
da
=

∞∑
s=0

as(s + 1)cs+1. (B 2b)938
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We seek an equation relating different elements in the sequence cs by differentiating f (g(a))939
using the chain rule,940

d f
da
= qgq−1 dg

da
, (B 3)941

which we multiply by g and recall that f = gq to yield942

d f
da

g = q f
dg
da
. (B 4)943

Both sides are a product of two summations, which we evaluate using the Cauchy product of944
power series,945 ( ∞∑

s=0
asXs

)©«
∞∑
p=0

apYp
ª®¬ =

∞∑
s=0

as
s∑

p=0
XpYs−p, (B 5)946

on the power series forms for f , g and their derivatives (B 2) to give947

∞∑
s=0

as
s∑

p=0
(p + 1)cp+1hs−p+1 = q

∞∑
s=0

as
s∑

p=0
cp(s − p + 1)hs−p+2. (B 6)948

We now observe that this equation still holds if we change the lower limit of the p summation949
on the left hand side to p = −1 without changing the summand, because the extra term that950
is introduced is equal to zero. Taking the terms at ord(as), we let r = p + 1, sum from r = 0951
(rather than r = 1) on the left hand side and separate the term involving cs+1 to obtain952

(s + 1)cs+1h1 +

s∑
r=0

rcrhs−r+2 = q
s∑

p=0
(s − p + 1)cphs−p+2. (B 7)953

Rearranging this equation gives the recurrence relation (5.9). The seed of the sequence of954
coefficients, c0, is found by setting a = 0 in the power series (B 1), which gives c0 = hq

1 .955

Appendix C. Strongly nonlinear approach to expanding h(x, t)956

We can derive the monochromatic expansion (5.15) by substituting for ψ (5.1) in the unex-957
panded kinematic boundary condition (2.16). Using the calculated derivatives of ψ̂ (5.15b),958
but remembering to evaluate them at z = h rather than z = 0, gives959

− aω
k

(
1 − tanΘ

∂h
∂x

)
cos [k(x − h tanΘ) − ωt] = ∂h

∂t
. (C 1)960

There is no known closed-form solution to this strongly nonlinear equation where the961
dependent variable, h, appears both inside and outside a trigonometric function. Instead,962
we expand the cosine using its compound angle formula,963

− aω
k

(
1 − tanΘ

∂h
∂x

) [
cos (k x − ωt) cos (kh tanΘ) + sin (k x − ωt) sin (kh tanΘ)

]
=
∂h
∂t
,

(C 2)964
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substitute for the horizontal phase velocity, φ = k x−ωt, and Taylor expand the trigonometric965
functions of h about zero to obtain polynomials in h,967

−aω
k

(
1 − tanΘ

∂h
∂x

)  cos φ
∑

q even,>0

(−1) q2
q!
(kh tanΘ)q

+ sin φ
∑

q odd,>1

(−1) q−1
2

q!
(kh tanΘ)q

 =
∂h
∂t
.

(C 3)968

On comparison with the period pattern of the derivatives of ψ̂ (5.15b), we see that the969
summed quantities are derivatives of ψ̂, so we combine the summations,970

a
(
1 − tanΘ

∂h
∂x

) ∞∑
q=0

hq

q!
∂q+1ψ̂

∂x ∂zq

����
z=0
=
∂h
∂t
. (C 4)971

This Taylor’s expansion of trigonometric functions matches that of Taylor expanding ψ̂ about972
z = 0 (2.17) (remembering that ∂

∂z = − tanΘ ∂
∂x in this monochromatic case), demonstrating973

that these two methods are equivalent. In addition, we note that the Taylor’s expansions of974
sines and cosines have infinite radius of convergence, so this equation still holds for h of975
any magnitude. Restricting h to small amplitudes and substituting its expansion in powers976
of a (5.3) yields our expansion of the kinematic boundary condition (5.7). Finally, following977
the same manipulations of the summations as before, we recover our expansion grouped in978
powers of a (5.15).979
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