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Abstract

Di�usion-weighted magnetic resonance imaging is routinely used for quanti-
fying microstructural properties of brain tissue in both health and disease for
its ability to be sensitive to the displacements of water molecules on a micro-
scopic level. Signi�cant e�ort has been put into the development of methods
that provide more information on tissue microstructure than conventional dif-
fusion tensor imaging. Multidimensional di�usion encoding methods render
the signal sensitive to the displacements of water molecules that occur along
two or three dimensions and can resolve some degeneracies in data acquired
with single di�usion encoding methods that measure di�usion along a single
dimension. �e aim of this thesis is to study the state-of-the-art microstruc-
tural imaging methods and to assess their robustness in estimating microscopic
di�usion anisotropy, i.e., the average anisotropy of the microscopic di�usion
environments irrespective of their orientation dispersion, prior to their adop-
tion in the wider neuroscience research community and possible deployment in
clinical studies. First, a massively parallel Monte Carlo random walk simulator
is presented. Second, the reproducibility of three commonly used microstruc-
tural models is quanti�ed and the shortcomings of such single di�usion en-
coding methods in estimating microscopic di�usion anisotropy are addressed.
�ird, the challenges of estimating microscopic di�usion anisotropy in the hu-
man brain using double di�usion encoding are addressed using animal imaging
experiments and simulations. �e results support the feasibility of double di�u-
sion encoding in human neuroimaging but raise hitherto overlooked precision
issues when measuring microscopic di�usion anisotropy. Fourth, the accuracy
and precision of microscopic di�usion anisotropy estimation using q-space tra-
jectory encoding, a multidimensional di�usion encoding method speci�cally
developed with the limitations of clinical whole-body scanners in mind, are
assessed using imaging experiments and simulations. �e results suggest that
although broken model assumptions and time-dependent di�usion may bias
the estimates, the e�ect of time-dependent di�usion on the estimated micro-
scopic di�usion anisotropy is small in human white ma�er.
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Impact statement

Since its invention in the 1990s, di�usion-weighted magnetic resonance imag-
ing has become a valuable tool in neuroscience for safely and noninvasively
studying microstructural properties of the human brain. �e work presented in
this thesis deepens our understanding of some of the most advanced methods
for acquiring and analyzing di�usion-weighted magnetic resonance images.
Speci�cally, the estimation of microscopic di�usion anisotropy, i.e., the aver-
age anisotropy of the microscopic di�usion environments irrespective of their
orientation dispersion, is studied in detail. Microscopic di�usion anisotropy
imaging is a novel method with promising results in imaging brain tumours
and lesions. �e results presented in this thesis provide valuable information
on the robustness of microscopic di�usion anisotropy estimation methods and
facilitate the planning of future studies that may bene�t from applying these
methods. Furthermore, the simulator developed by the PhD candidate takes
advantage of the recent developments in both the so�ware and hardware of
general-purpose graphical processing unit computing to enable large amounts
of synthetic di�usion-weighted magnetic resonance signals to be generated
on standard desktop and laptop computers without needing to access high-
performance computing clusters. �e simulator is wri�en in Python, a pro-
gramming language known for its readibility and clarity, making it approach-
able and easily extensible to researchers and students with li�le or no prior
experience in massively parallel computing. �is contribution to the grow-
ing library of scienti�c Python packages facilitates the adoption of computing
practices that utilize the astonishing computational power of modern graphical
processing units.
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• Kan Yan Chloe Li, Leevi Kerkelä, Jonathan D. Clayden, Kiran K. Seu-
narine, Ma� G. Hall, Chris A. Clark. Assessing scan-rescan reproducibil-
ity of surgically relevant white ma�er tractography reconstructions. �e

27th Scienti�c Meeting of the International Society for Magnetic Resonance

in Medicine, virtual meeting, 2020.
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Chapter 1

Introduction

1.1 Overview

�e human brain is the central organ in the nervous system regulating most of
the activities in the body based on the information it receives via the sensory
nervous system. Its hundred billion or so neurons1 form a densely connected
network whose hierarchical organization spans length scales from individual
synapses to the largest white ma�er �bre bundles connecting cortical regions2.
In the 19th century, seminal scienti�c theories of brain function were inspired
by the study of brain anatomy using post-mortem dissections in neurotypi-
cal patients and in those with brain lesions3–5. Comparing the lesions with
the symptoms the patients had shown revealed that the typical functioning
of the brain could be disrupted by white ma�er lesions causing disconnec-
tion between cortical areas. In modern neuroscience, noninvasive neuroimag-
ing methods such as magnetic resonance imaging (MRI) are routinely used for
measuring properties of the brain in vivo, enabling longitudinal studies investi-
gating changes in the brain as a result of aging6, degeneration7, and learning8,
to name a few examples.

Since its invention in the 1970s9,10, MRI has become an important tool both
in research and clinical se�ings for its versatility and high spatial resolution.
MRI is based on manipulating the nuclear magnetizations of atomic nuclei in a
strong magnetic �eld and since it does not involve the use of ionizing radiation,
it is relatively safe to apply on humans and is free from the harmful side e�ects
of techniques such as computed tomography (CT) or positron emission tomog-
raphy (PET). Typically, MRI experiments probe the concentration of hydrogen
atoms, which are abundant in biological tissues, and the signal magnitude is
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Figure 1.1: Sagi�al, axial, and coronal slices of a T1-weighted magnetic reso-

nance image of the human brain.

a�ected by the used contrast mechanism. For example, slices of a T1-weighted
magnetic resonance image are shown in Figure 1.1. �e contrast between white
ma�er, gray ma�er, and cerebrospinal �uid (CSF) is very clear, re�ecting the
relaxation properties of the nuclei and the di�erences in water and lipid con-
centrations11. A general description of nuclear magnetic resonance (NMR) and
image formation is given in Chapter 2.

Building on the pioneering work of measuring molecular displacements
using NMR12–14, di�usion-weighted MRI (dMRI) was introduced and applied
in human neuroimaging in the 1980s15–18. �e di�usion of water in biological
tissues is restricted by microscopic obstacles such as cell organelles, myelin,
and macromolecules. Because the displacements of water molecules during a
typical dMRI experiment are in the micrometre range, the measured di�usion
propagator is determined by the cellular level microstructure of the surround-
ing tissue19,20. �us, important microstructural properties of the brain can be
studied using dMRI. An overview of neural tissue microstructure is given in
Section 3.1 and the basics of the physics of di�usion are described in Section
3.2. Section 3.3 describes how the NMR signal can be made sensitive to di�u-
sion by the application of di�usion encoding magnetic �eld gradients.

�e ability to localize measurements of microscopic di�usion in neural tis-
sue in vivo in the form of maps at the millimetre resolution opened a new
window to study the brain. �e clinical value of dMRI was quickly highlighted
by studies showing that the progression of acute stroke can be followed using
maps of apparent di�usion coe�cient (ADC), allowing therapeutic interven-
tion on tissue that can still be salvaged and saving patients from permanent
brain damage21–23.
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Since it had been shown that ADC depends on the direction of the applied
di�usion encoding gradient24 and thus a single scalar is not su�cient for char-
acterizing anisotropic di�usion in white ma�er, di�usion tensor imaging (DTI)
was introduced in 1994 as a way to quantify the magnitude and anisotropy of
di�usion in the imaging voxel25. �e anisotropy of the di�usion tensor, most
o�en quanti�ed with fractional anisotropy (FA), has been shown to be sensitive
to degenerative processes in white ma�er such as axonal loss and demyelina-
tion26–28. DTI is described in Section 3.4.

Using the orientational information in the dMRI signal in white ma�er, it
also became possible to estimate the positions of white ma�er tracts in vivo 29.
Since then, many techincal improvements have been made in the �eld of trac-
tography30–33, which has become a popular method in in vivo neuroanatomy34,
the study of brain connectivity35,36, and presurgical planning37,38, for instance.

Despite its proven utility, DTI su�ers from various well-recognized limita-
tions that have been addressed by the subsequent advances in the �eld. Because
the tensor representation of di�usion confounds isotropic di�usion with orien-
tation dispersion of anisotropic neurites, techniques like constrained spherical
deconvolution (CSD)39–41, q-ball imaging42, and di�usion spectrum imaging
(DSI)43 were developed to obtain a more accurate estimate of the �bre orien-
tation distribution function (ODF). Such methods accelerated the adoption of
high angular resolution di�usion imaging (HARDI) acquisition methods, which
involve sampling the signal along a large number of distinct di�usion encod-
ing directions with the aim of characterizing orientational features of the dMRI
signal44.

Another major limitation of DTI is that it represents voxel-level di�usion as
Gaussian and thus does not provide a good �t to data in experiments with mod-
erate to high levels of di�usion-weighting (roughly b > 1 µm2/ms in the brain)
when the di�usion-a�enuated signal decay clearly deviates from a monoex-
ponential curve, revealing that the voxel-level average di�usion propagator is
not Gaussian, especially in white ma�er. �is becomes evident in experiments
with multi-shell acquisition protocols, i.e., the acquisitions are performed with
more than one level of non-zero di�usion-weighting. More complicated signal
models such as the biexponential tensor model45, di�usion kurtosis imaging
(DKI)46, and e�ective medium theory47 have been developed to obtain a be�er
�t to data and additional information on tissue microstructure. Furthermore, a
large number of microstructural models have been developed with the aim of

19



extracting biophysically relevant properties of tissue microstructure by impos-
ing strict a priori constraints on microstructure geometry48–51. Some methods
beyond DTI for analyzing HARDI and multi-shell data are discussed in sections
3.5 and 3.6.

All the methods mentioned above belong to a wider class of single di�u-
sion encoding (SDE) methods as they are based on acquisitions measuring the
displacements of water molecules along a single dimension52. Despite being
sensitive to several clinically and scienti�cally relevant changes in the brain
microstructure, SDE acquisitions are fundamentally limited by their lack of
speci�city. �ey confound two major sources of voxel-level non-Gaussian dif-
fusion, the orientation dispersion of anisotropic di�usion and the size variance
of microscopic di�usion environments. Multidimensional di�usion encoding
(MDE), on the other hand, render the dMRI signal sensitive to the displace-
ments of water molecules along two or three dimensions, enabling the corre-
lations of water molecule displacements along di�erent directions to be mea-
sured. Over recent years, MDE methods, such as double di�usion encoding
(DDE) and q-space trajectory encoding (QTE), have gained signi�cant a�en-
tion for their ability to resolve the fundamental degeneracy in data acquired
with conventional SDE methods, potentially capturing clinically relevant in-
formation about tissue microstructure53–61. An overview of MDE methods is
provided in Section 3.7.

Overall, an abundance of sophisticated mathematical and computational
methods have been developed to estimate microstructural properties of neu-
ral tissue using dMRI. However, it can be argued that the translation of novel
microstructural imaging methods from the dMRI research community to the
wider neuroscience community and to the clinical se�ing has not kept up with
the exponentially growing number of introduced methods62. �erefore, instead
of developing yet another model, the focus of this thesis is on assessing the ro-
bustness of existing methods in order to facilitate their adoption and optimal
use.

1.2 Research problem

�e aim of this PhD thesis is to study the state-of-the-art of quantifying mi-
crostructural properties of brain tissue using dMRI and to focus on the esti-
mation of microscopic di�usion anisotropy (µA), i.e., the average anisotropy of
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the microscopic di�usion environments in the voxel irrespective of their orien-
tation dispersion52. Since µA is not a�ected by orientation dispersion like the
anisotropy indices calculated from DTI, it may be a suitable metric for quan-
tifying white ma�er integrity. Indeed, promising results of µA imaging have
been reported in imaging multiple sclerosis lesions56,60 and white ma�er degen-
eration in Parkinson’s disease patients63. It has also been applied to quantify
the average cell shape in brain tumours64,55 and microstructural properties of
brains of patients with schizophrenia65 and epilepsy59. �e studies presented
in this thesis assess the robustness of µA estimation methods and thus facilitate
their deployment in the wider research community and possible future clinical
studies. In particular, this thesis investigates microscopic fractional anisotropy
(µFA), a normalized measure of µA that is equivalent to conventional FA in vox-
els where the microscopic di�usion environments are perfectly aligned. �e
central focus is on the di�erent methods’ abilities to accurately and precisely
provide information on neural tissue microstructure within the time and hard-
ware constraints that are typically present in clinical and research se�ings,
imposing limits on the number of acquisitions and signal-to-noise ratio (SNR).

�e results presented in this thesis, supported by both imaging experiments
and simulations, show that µFA can be robustly estimated in white ma�er us-
ing MDE. However, existing methods can not reliabily map µFA in gray mat-
ter or other brain regions where its ground-truth value is low. In particular,
the results show that precise measurement of µFA values less than 0.5 require
SNR values that are una�ainable using modern-day clinical whole-body scan-
ners. Furthermore, the simulation experiments required the development of
new so�ware that enables complex dMRI simulations to be performed in mas-
sively parallel and that will be maintained and improved in as it is used in
future studies.

1.3 �esis structure

�is thesis begins with this introductory chapter followed by an overview of
NMR and MRI (Chapter 2). In Chapter 3, a comprehensive review of dMRI in
the context of microstructural imaging is provided. �e subsequent four chap-
ters describe the original contributions by the PhD candidate. In Chapter 4,
simulations of dMRI experiments are discussed and a massively parallel Monte
Carlo random walk simulator is presented. In Chapter 5, the reproducibility
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of DKI, neurite orientation dispersion and density imaging (NODDI)66, and
spherical mean technique (SMT)67,68 is quanti�ed using an established clini-
cal SDE protocol and scan-rescan experiments. Furthermore, the limitations of
estimating µA using such SDE methods are discussed. In Chapter 6, the limi-
tations and challenges of applying DDE in human neuroimaging are discussed
and a clinically feasible DDE acquisition protocol is validated using animal
imaging experiments. Furthermore, the precision of µFA estimation is quan-
ti�ed using simulations. �e results support the feasibility of DDE in clinical
se�ings but raise hitherto overlooked precision issues when measuring µFA.
In Chapter 7, the accuracy and precision of µFA estimation using QTE and dif-
ferent signal models are assessed using imaging experiments and simulations.
�e results show that broken model assumptions and time-dependent di�usion
may introduce bias into the estimates, factors that must be carefully considered
when µFA is applied in characterizing brain microstructure. However, the sim-
ulations suggest that the bias caused by time-dependent di�usion is small in
human white ma�er. Chapter 8 �nishes by providing conclusions, discussing
limitations of the presented results, and describing possible directions for fu-
ture research.

1.4 On notation

�is thesis contains a large number of mathematical formulas in which the
following conventions have generally been followed. Scalars are represented
by Latin and Greek le�ers wri�en in italics, e.g., x and α. Abbreviations of
microstructural parameters like FA are wri�en without italics. Tensors of all
ranks are denoted by boldface upright le�ers in both lower and upper case, e.g.,
b and D, with the exception of the quantum mechanical eigenstate vectors
which are wri�en in bra-ket notation69, e.g., |S〉. Also, in Chapter 7, rank-4
tensors are denoted by upper case Latin le�ers wri�en in blackboard bold, e.g.,
C. However, blackboard bold is generally used to denote sets of numbers, e.g.,
R for the set of real numbers. When referring to one-dimensional vectors, a

denotes a column vector and its transpose aT is a row vector. ab denotes a
standard matrix multiplication between a and b. · denotes an inner product
and ⊗ denotes an outer product. : denotes a generalized scalar product, e.g.,
A : B =

∑N
i

∑M
j AijBij for rank-2 tensors A and B with the same size

N ×M . 〈 〉 denotes averaging.
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Chapter 2

Magnetic resonance imaging

Sections 2.1 and 2.2 provide a simpli�ed summary of the physics that make
MRI possible. A more detailed description of the theory presented here can be
found in the textbooks by Gri�ths70 and Levi�71.

2.1 Spin in a magnetic �eld

Despite the name ”spin”, which is a result of early theories explaining spin as
a consequence of the rotation of a charged particle around its own axis, spin
is now understood as an intrinsic quantum-mechanical property of a particle
which can not be completely understood using classical concepts alone. �is
is illustrated by the fact that a measurement of spin is fundamentally non-
deterministic. According to what is widely known as the Copenhagen inter-
pretation of quantum mechanics, introduced by Bohr and Heisenberg, quan-
tum systems do not have strictly de�ned properties prior to being measured72.
Instead, quantum mechanics can describe solely the probabilities of di�erent
measurement outcomes. A quantum system, such as a particle with spin, is
described by its wavefunction which prior to a measurement is in a superpo-
sition of eigenstates. Upon measurement, the superposition is reduced to an
individual eigenstate through a phenomenon known as wave function collapse.

All atomic nuclei consisting of an odd number of protons and neutrons have
non-zero total spin determined by the spin quantum number of the nucleus s.
�e spin is a quantized property, meaning that the measurement values are a

priori constrained to take on one of a discontinuous set of values. �e number
of possible values is given by 2s + 1. In this chapter, we will focus on the
spin properties of the nucleus of hydrogen 1H, i.e., a proton, for which s = 1

2
,
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because it is the most common target in MRI.
Using the bra-ket notation introduced by Dirac69, the general spin state |S〉

of a proton placed in a magnetic �eld aligned with the z-axis can be wri�en as

|S〉 = α |↑〉+ β |↓〉 , (2.1.1)

where α and β are the probability amplitudes corresponding to the eigenstates
spin up |↑〉 and spin down |↓〉, respectively. �e probability amplitudes are
complex numbers whose modulus squared represents the probability of ob-
serving the spin in the corresponding eigenstate and which ful�l the condition
|α|2 + |β|2 = 1.

In quantum mechanics, observables, i.e., physical quantities that can be
measured, are represented by linear operators whose eigenvalues are real num-
bers corresponding to the possible outcomes of a measurement. For the proton
in the magnetic �eld aligned with the z-axis, the spin operator Sz has eigen-
values ±~

2
where ~ ≈ 1.05 · 10−34 J · s is the reduced Planck constant:

Sz |↑〉 =
~
2
|↑〉 , Sz |↓〉 = −~

2
|↓〉 . (2.1.2)

Equation 2.1.1 can be rewri�en using the polar form of the probability am-
plitude:

|S〉 = rαe
iφα |↑〉+ rβe

iφβ |↓〉

= eiφα
(
rα |↑〉+ rβe

iφβ−φα |↓〉
)
,

(2.1.3)

which can be further simpli�ed by taking into account that quantum states that
only di�er by a phase factor (eiφα) are the same state. �is gives

|S〉 = rα |↑〉+ rβe
iφβ−φα |↓〉 . (2.1.4)

Now we can de�ne angles θ and φ so that

|S〉 = cos

(
θ

2

)
|↑〉+ sin

(
θ

2

)
eiφ |↓〉 , (2.1.5)

where θ ∈ [0, π] and φ ∈ [0, 2π] because of the normalization condition on
the probability amplitudes and because cos2(x) + sin2(x) = 1 for all x ∈ R.
Equation 2.1.5 provides an analogy between a general superposition of spin-1

2

eigenstates and spherical coordinates, providing an intuitive way of visualizing
Equation 2.1.1, known as a Bloch sphere which is shown in Figure 2.1.

�e time evolution of the spin state is given given by the time-dependent
Schrödinger equation:

i~
∂

∂t
|S(t)〉 = H |S(t)〉 , (2.1.6)
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Figure 2.1: Bloch sphere representation of a general spin-1
2

state |S〉 of a proton

in a magnetic �eld aligned with the z-axis. �e eigenstates of Sz , |↑〉 and |↓〉, are

aligned with the z-axis, and any superposition of the eigenstates is on the surface

of the sphere as de�ned by angles θ and φ.

whereH = −γB0Sz is the Hamiltonian operator where γ ≈ 2.68·108 rad·s−1 ·
T−1 is the gyromagnetic ratio of 1H and B0 is the magnitude of the external
magnetic �eld. �e gyromagnetic ratio is a constant that relates the magnitude
of the spin of a nucleus to its magnetic moment. Its value is di�erent for dif-
ferent nuclei. �e Hamiltonian gives the total energy of the system. Applying
the Hamiltonian on the spin eigenstates gives

H |↑〉 = −~
2
γB0 |↑〉 , H |↓〉 =

~
2
γB0 |↓〉 . (2.1.7)

�e spin up state has lower energy than the spin down state and the energy dif-
ference between the eigenstates, ∆E = γ~B0, linearly depends on the external
magnetic �eld magnitude.

By integrating the time-dependent Schrödinger equation over time, we get
the following expression for a general spin state over time:

|S(t)〉 = eiγB0tSz/~ |S(0)〉 . (2.1.8)

If we consider a spin state de�ned by Equation 2.1.5 at time zero, we get

|S(t)〉 = eiγB0tSz/~ cos

(
θ

2

)
|↑〉+ eiγB0tSz/~+iφ sin

(
θ

2

)
|↓〉

= eiγB0t/2

[
cos

(
θ

2

)
|↑〉+ sin

(
θ

2

)
ei(φ−γB0t) |↓〉

]
,

(2.1.9)

where θ and φ de�ne the initial state. Equation 2.1.9 shows that any spin that
is not in either one of the eigenstates precesses about the z-axis at an angular
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frequency ω = γB0. �is frequency that depends on the �eld strength and
the gyromagnetic ratio of the nucleus is known as the Larmor frequency. In
fact, this behaviour of the spin state is the same as the precession of a magnetic
dipole in an external magnetic �eld, as described by classical electromagnetism.

If we consider an ensemble of protons in a thermal equilibrium, the proba-
bility for an indvidual proton to occupy the spin up state is slightly higher than
the spin down state. �e probabilities of observing the spins in one of the two
eigenstates follow the Boltzmann distribution:

P↑
P↓

= e
γ~B0
kBT , (2.1.10)

where P↑ is the probability to observe the protons in the spin up state, P↓ is the
probability to observe the proton in the spin down state, kB ≈ 1.38·10−23 J·K−1

is the Boltzmann constant, and T is the temperature. �e asymmetry between
the states is small at magnetic �eld strengths generated by most MRI scanners.
For instance, in a magnetic �eld of 3 T and at body temperature, P↑ ≈ 0.5 +

10−5 and P↓ ≈ 0.5 − 10−5. �e asymmetry between the states creates a net
magnetization

M = γ 〈S〉 , (2.1.11)

where 〈S〉 is the ensemble average spin vector whose magnitude is equal to the
ensemble average spin and whose direction is equal to the average direction of
the spins as de�ned by Equation 2.1.5. In a thermal equilibrium, M is aligned
with the external magnetic �eld.

2.2 Excitation and decay

�e previous section provided a quantum mechanical overview of how net
magnetization arises from an ensemble of spins in an external magnetic �eld.
�is section provides a classical description of how net magnetization enables
NMR.

Let us continue to consider an ensemble of protons in an external magnetic
�eld, B0, aligned with the z-axis. �e �eld magnitude determines the Larmor
frequency, which is typically in the radio frequency (RF) range. By applying
an additional time-dependent magnetic �eld, BRF, oscillating at the Larmor fre-
quency in the xy-plane, it is possible to perturb the spin system so that the net
magnetization vector M gets tipped towards the xy-plane by an angle

θRF = γBRFτRF, (2.2.1)
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where BRF and τRF are the magnitude and duration of the RF pulse, respectively.
A pulse with a duration π/(2γBRF) is known as a 90° pulse as it tips the mag-
netization vector into the xy-plane. A�er the RF pulse, M begins to precess
about the z-axis, creating a time-dependent magnetic �eld that induces a cur-
rent in the receiver coil placed around the spin system in the xy-plane. �is
is the NMR signal, which decays over time as the spin system returns to its
equilibrium state.

Charged particles in a given proton’s proximity are in constant motion due
to thermal energy, creating a complex magnetic �eld, referred to as the la�ice
�eld, which is in constant interaction with the proton. If the interaction hap-
pens close to the Larmor frequency, the proton in a spin down state can move to
a spin up state, emi�ing the energy di�erence between the states to its environ-
ment. �is phenomenon is known as spin-la�ice relaxation, as a consequence
of which the longitudinal component of the net magnetization is recovered af-
ter an RF pulse. �e expected lifetime of a proton in the higher energy state
is characterized by a time constant T1 which depends on the properties of the
environment.

�e decay of the transverse component of M happens as the excited spins’
accumulated phases deviate from their expected value as a consequence of local
�uctuations in the magnetic �eld and interactions between spins. �is process,
o�en referred to as spin-spin relaxation, occurs even in ideal systems, where
the local environment of all spins is the same, and is characterized by a time
constant T2. In realistic systems, additional dephasing also occurs because of
inhomogeneities in the magnetic �eld B0, which leads to dispersion in reso-
nance frequencies. �ese inhomogeneities can be caused by the magnet hard-
ware or by susceptibility-induced distortions produced by other ma�er, such
as biomolecules, within the �eld. �e combined signal loss from both spin-spin
relaxation and magnetic �eld inhomogeneities is referred to as T2-star (T ∗2 ).
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Figure 2.2: Time evolution of the net magnetization M of an ideal spin system

a�er a 90° RF pulse, as described by the Bloch equation. �e recovery of the longi-

tudinal magnetization (A) and the decay of the transverse magnetization (B) are

characterized by the time constants T1 and T2 depicted by the dashed lines. In

(C) the evolution of M over time is shown in 3D space. �e results are calculated

using T1 = 4 s and T2 = 2 s, values which are close to experimentally observed

values in cerebrospinal �uid at 1.5 T73,74.

�e time evolution of M a�er an RF pulse is summarised by the Bloch
equation75:

dM

dt
= γM×B− Mxi−Myj

T2
− Mz −M0

T1
k, (2.2.2)

whereMx,My, andMz are the Cartesian components of M, i, j, and k are unit
vectors de�ning the axes of the coordinate system in the laboratory frame,
M0 is the initial magnitude of M, T1 is the decay constant for the recovery
of the longitudinal component of M, and T2 is the decay constant for the the
transverse component of M.

�e signal measured immediately a�er the excitation pulse is called free
induction decay (FID), which oscillates at the Larmor frequency and follows
the T ∗2 decay. In an inhomogeneous sample, the Larmor frequencies of the
spins depend on their local environment and the FID is a superposition of the
Larmor frequencies of all the spins in the sample. By applying another RF
pulse before the signal readout, it is possible to reverse much of the T ∗2 -related
dephasing and regenerate the signal using a spin echo pulse sequence12. �e
refocusing pulse e�ectively reverses the dephasing direction and the phases
of the faster precessing spins will catch up to the slower precessing spins at
echo time (TE), generating a measurable signal. An example of a spin echo
sequence is depicted in Figure 2.3, where a 180° RF pulse is applied on the spin
system at time TE/2. �e magnitude of the spin echo is limited by the T2 decay
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Figure 2.3: A schematic representation of the spin echo sequence. �e excita-

tion pulse (90°) generates a free induction decay in signal. �e addition of the

refocusing pulse (180°) at TE/2 results in a signal echo at TE.

because the random �uctuations resulting in T2-related signal loss can not be
reversed71.

2.3 Image formation

In MRI, a spatial map of net magnetization is reconstructed from the NMR
signal by manipulating the phases of spins with additional magnetic �elds that
vary linearly over space, simply referred to as gradients. Because the Larmor
frequency depends linearly on the magnitude of the external magnetic �eld, a
speci�c slice can be excited by combining the excitation pulse with a magnetic
�eld gradient whose direction is perpendicular to the slice. Let us denote the
direction perpendicular to the excited slice with z and the directions de�ning
the plane of the excited slice with x and y. If additional magnetic �eld gradients
are applied along x and y, the precession frequency of an excited spin depends
on its location in the excited plane. �us, the location of the spin is encoded in
the accumulated phase shi� during the application of the gradients.

Spatial frequencies in k-space can be de�ned as20

kx(t) = γ

∫ t

0

Gx(x, t
′)dt′,

ky(t) = γ

∫ t

0

Gy(y, t
′)dt′,

(2.3.1)

where Gx and Gy are the gradient �eld magnitudes along x and y. Now the
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measured signal S in the receiver coil can be wri�en as

S(t) =

∫ ∫
M(x, y)ei2π(kxx+kyy)dxdy, (2.3.2)

where M(x, y) is the net magnetization in the excited plane and integration
is performed over the excited plane. M(x, y) can be recovered by sampling
k-space and calculating the Fourier transform of the resulting signal. �e res-
olution and the �eld of view (FOV) of the image is determined by the extent of
k-space which is sampled and the sampling density, respectively.

Since the rate at which k-space can be sampled is limited by the scan-
ner hardware, several sampling methods have been developed. In echo planar
imaging (EPI), an entire 2D planar image is acquired a�er a small number of ex-
citations, making it particularly relevant for dMRI because it decreases motion
artefacts and enables very fast acquisitions20.

�e measured net magnetization, and therefore the image intensity, de-
pends on the used TE and repetition time (TR) between the excitation pulses
as

M(x, y) = ρ(x, y)α
(
1− e−TR/T1

)
e−TE/T2 , (2.3.3)

where ρ(x, y) roughly represents proton density and α is a constant that ac-
counts for spin dephasing caused by other factors than T1 and T ∗2 relaxation,
such as di�usion, perfusion, and bulk �ow. Equation 2.3.3 shows that image
contrast can be altered by changing TR and TE, because T1 and T2 vary over
tissue types. For example, at 3 T, T1 in gray ma�er and white ma�er are ap-
proximately 1.3 and 0.8 s, respectively, and T2 in gray ma�er and white ma�er
are approximately 0.08 and 0.11, respectively76.

2.4 Summary

�is chapter provided an overview of MRI, describing how the NMR signal
arises and how an image can be formed by sampling k-space. Many important
details were omi�ed intentionally because they are outside the scope of this
thesis. �e next chapter focuses on adding di�usion-weighting gradients to
the pulse sequence and the data analysis of the resulting MR images.
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Chapter 3

Microstructural imaging using
di�usion-weighted MRI

�is chapter provides an overview of dMRI and how it enables the properties
of neural tissue microstructure to be studied. �e chapter begins by describing
the microstructure of neural tissue and the basic physics of di�usion, followed
by a description of dMRI in the context of microstructural imaging.

3.1 Overview of neural tissue

�e human brain can be loosely divided into four parts: the brainstem, dien-
cephalon, cerebellum, and cerebrum77. �e brainstem connects the rest of the
brain to the spinal cord and is associated with many functions critical to life,
such as respiratory control and cardiovascular system control. �e brainstem
connects to the diencephalon which consists of the thalamus, hypothalamus,
epithalamus, and subthalamus. �e cerebellum, located inferior to the occip-
ital lobe of the cerebrum, plays an important role in motor control and some
cognitive processes78. �e cerebrum is the largest part of the brain and can
be further divided into four distinct lobes: the frontal lobe, parietal lobe, tem-
poral lobe, and occipital lobe. �e two cerebral hemispheres are covered by
the cerebral cortex which consists of folded gray ma�er containing a relatively
large amount of cell bodies of neurons. White ma�er, located underneath the
cortex, contains mostly densely packed axons connecting neurons in cortical
and subcortical gray ma�er79. Subcortical structures are islets of gray ma�er
deep within the brain which include the diencephalon, pituitary gland, limbic
structures, and the basal ganglia.
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On a microscopic level, brain tissue consists mostly of neurons, glial cells,
and blood vessels80. In the highly interconnected and complex network of neu-
rons information is transmi�ed between neurons via synapses which connect
the axons of pre-synaptic neurons to the dendrites or somas of post-synaptic
neurons. Axons are projections of neurons with lengths ranging from less than
a millimetre in intra-cortical neurons to over one metre in the sciatic nerve81.
Dendrites are branched extensions of neural somas, i.e., the cell bodies. Glial
cells, which support neuronal activity, do not produce electrical impulses like
neurons. Glial cells can be classi�ed into various categories of which the most
common are oligodendrocytes, astrocytes, and microglia80.

�e cells in the brain are surrounded by extra-cellular space which consists
of a solution that closely resembles cerebrospinal �uid with additional extra-
cellular matrix molecules82. �e intra-cellular space contains the cell nucleus
and cytoplasm which mostly consists of cytosol, a majority of which is water,
and cell organelles83. �e cell membrane restricts the di�usion of water but it
is not completely impermeable to water. Instead, water slowly di�uses through
the lipid membrane and is actively transported across the membrane by water-
speci�c membrane channel proteins known as aquaporins84.

�e cortical gray ma�er of an adult human brain contains approximately
12 billion neurons and even more non-neuronal cells which are mostly glial
cells1. Pyramidal cells and interneurons make up approximately 70% and 30%
of the neurons of the cortex, respectively85. Oligodendrocytes, astrocytes, and
microglia make up approximately 75%, 19%, and 6% of the glial cells of the
cortex, respectively86. In the cortex, the densely connected dendritic trees ex-
tending from the neural somas are mostly isotropic, branching and extending
equally in all directions, whereas in subcortical gray ma�er the dendritic trees
can be highly anisotropic to increase inter-layer connectivity87,88. �e diame-
ters of the dendrites typically range from 0.1 to 0.3 µm and they extend up to a
few millimetres away from the soma87. �e sizes of the neural somas typically
range from approximately 5 to 50 µm across, depending on the type and func-
tion of the neuron. �e somas of astrocytes and microglia are approximately
10 µm in diameter with the somas oligodendrocyte being slightly larger89,90.

In human white ma�er, up to 90% of the space is occupied by axons79 which
serve as conductors of action potentials. �e diameters of axons typically vary
from 0.1 to 10 µm with larger axons providing the bene�t of transmi�ing action
potentials more quickly91, although at the cost of consuming more energy and
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occupying more space92. Oligodendrocytes extend their processes to several
axons and wrap around them, creating an insulating layer of myelin, known
as an internode. �e myelin sheaths, made up of roughly 80% lipids and 20%
proteins, insulate the axon, form a nearly impermeable barrier to water and
increase the conduction speed of action potentials91,93. With the exception of
small axons with a diameter of less than 1 µm, most axons are myelinated91, and
demyelination may occur as a consequence of various neurological conditions,
such as multiple sclerosis94.

�e brain’s arteries, veins, and capillaries make up the vascular system
which provides the cells with oxygen, glucose, and other necessary nutrients.
�e diameters of of the vascular system’s components range from microme-
tres to millimetres. �e capillaries are more prevalent in gray ma�er than
white ma�er and lack orientational coherence95, which may lead the circulat-
ing blood to exhibit displacements similar to di�usion, although more rapid96.

3.2 Physics of di�usion

Di�usion is the stochastic translational motion of particles in a �uid driven by
the internal kinetic energy of the system. �e unpredictable motion of micro-
scopic particles was �rst reported by Brown97 who observed that pollen parti-
cles suspended in water move in a seemingly random manner, a phenomenon
nowadays known as Brownian motion.

Bulk di�usion, the process of net displacement of particles in a �uid from
a region of high concentration towards a region of lower concentration, was
extensively studied in the 19th century and summarized in Fick’s laws of dif-
fusion:

J = −D∇C, (3.2.1)
∂C

∂t
= D∇2C, (3.2.2)

where J is the di�usion �ux,D is the di�usion coe�cient expressing the rate of
di�usion in the medium, and C is the local concentration of particles98. Here,
D is assumed to be constant across the volume. Fick’s laws of di�usion enable
the estimation of the di�usion coe�cient from experimental data and describe
how concentration C across space evolves over time. Fick’s macroscopic de-
scription of the system states that there is no net displacement of particles if
their concentration is constant across the volume.
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On a microscopic level, particles in a �uid are in constant thermal motion,
continuously mixing and colliding into each other, which leads to self-di�usion
that occurs even in the absence of a concentration gradient. Einstein was the
�rst to connect the di�usion coe�cient to microscopic Brownian motion99 by
showing that the probability of a freely di�using particle to undergo a displace-
ment r during time t is given by

P (r, t) =
1

(4πDt)3/2
exp

(
− |r|

2

4Dt

)
, (3.2.3)

which is a symmetric three-dimensional normal, i.e., Gaussian, distribution
with the following mean and covariance matrix:

µ =

0

0

0

 , Σ =

2Dt 0 0

0 2Dt 0

0 0 2Dt

 . (3.2.4)

�e displacement probability distribution is also referred to as the average dif-
fusion propagator. �e Gaussian form of the displacement distribution of par-
ticles undergoing free di�usion can be understood by considering the displace-
ment of a particle as a sum of a very large number of elementary steps arising
from collisions with other particles19. �e central limit theorem implies that
the displacement distribution follows a normal distribution because the ele-
mentary steps become practically uncorrelated a�er picoseconds100,101.

�e di�usion coe�cient is related to the intrinsic properties of the medium
by the Sutherland-Einstein equation99:

D =
kBT

6πηα
, (3.2.5)

where kB is the Boltzmann constant, T is the temperature, η is the viscosity of
the medium, and α is the radius of the di�using particles which are assumed
to be spheres in the derivation of the equation.

It follows from Equation 3.2.3 that the mean squared displacement (MSD)
of an ensemble of N particles freely di�using in 3D depends linearly on the
di�usion coe�cient and di�usion time:

MSD =
〈
|r(t)− r(0)|2

〉
= 6Dt, (3.2.6)

which is valid for N →∞.
In general, di�usion is not isotropic. For example, water molecules inside

an axon can move much more freely along the axon than along a direction per-
pendicular to the axon. �e displacement distribution of particles undergoing
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Figure 3.1: (A) Simulated trajectories of 100 two-dimensional random walkers

undergoing free, hindered, and restricted di�usion. �e columns correspond to

snapshots of the simulation at di�erent time points and the rows correspond to

di�erent di�usion environments. (B) �e root mean squared displacement (RMSD)

of the walkers over time. �e initial position of each walker is at the origin and the

step length is 0.5. In typical neuroimaging experiments, RMSD is roughly around

10 µm.

anisotropic Gaussian di�usion has zero mean and the covariance matrix

Σ = 2tD = 2t

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 , (3.2.7)

where D is the di�usion tensor which is symmetric positive de�nite. �e dif-
fusion tensor’s eigenvectors {ê1, ê2, ê3} are orthogonal and its eigenvalues
{λ1, λ2, λ3} are equal to the di�usion coe�cients in the direction of the corre-
sponding eigenvector. Since the di�usion tensor can only represent Gaussian
di�usion, it is not an accurate representation of di�usion in neural tissue where
the average di�usion propagator at the voxel level is not Gaussian102.

Di�usion can be characterized as free, hindered, or restricted depending on
the environment in which the particles are (Figure 3.1). In free di�usion, a dif-
fusing particle’s movement is only a�ected by other particles and its expected
squared displacement follows the description by Equation 3.2.6. In restricted
di�usion, the particles are con�ned to a volume and their displacements are
constrained by the size of the restricting volume. In hindered di�usion, parti-
cles collide with obstacles but they aren’t con�ned to a volume, so their mean
squared displacement increases with time without an upper bound, although
at a slower rate than in free di�usion.

In the special case of free di�usion in homogeneous media, the di�usion
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coe�cient D is independent of time: D(t) = D for all t. However, this does
not generalize to most situations in which the di�usion coe�cient is time de-
pendent. In the short di�usion time limit (t → 0), a di�using particle is only
interacting with its immediate surroundings and di�usion is characterized by
the intrinsic di�usion coe�cient of the medium D0. In Figure 3.1B, the root
mean squared displacement initially grows at the same rate for all di�usion
types, determined by D0. As the di�usion time increases, the particles explore
more of their surroundings and their movement is a�ected by the obstacles in
their environment. For di�usion times that result in particle displacements that
are greater than the length scale of the obstacles, hindered di�usion resembles
free di�usion with a diminished value of D, referred to as the e�ective di�u-
sion coe�cient: De�ective < D0. In restricted di�usion, the root mean squared
displacement is limited by the size of the restricting volume and thus an in-
creased di�usion time results in a lower value of e�ective di�usion coe�cient
if the di�usion coe�cient is calculated from the displacements during a given
experimental di�usion time.

In some situations, it is helpful to describe di�usion in terms of velocities
of particles instead of their displacements. �is formalism enables the dMRI
signal to be analyzed in the di�usion frequency domain103. By expressing the
displacement of a particle di�using in 3D as a time integral of its velocity v(t),
a relationship between the di�usion coe�cient and particle velocities can be
derived from Equation 3.2.6104:

D = lim
t→∞

1

6

∂

∂t

〈
|r(t)− r(0)|2

〉
= lim

t→∞

1

6

∂

∂t

〈(∫ t

0

v(t′)dt′
)
·
(∫ t

0

v(t′)dt′
)〉

= lim
t→∞

1

3

∫ t

0

〈v(t′) · v(t)〉 dt′

= lim
t→∞

1

3

∫ t

0

〈v(0) · v(t− t′)〉 dt′

=
1

3

∫ ∞
0

〈v(0) · v(t)〉 dt

, (3.2.8)

where 〈v(t′) · v(t)〉 is the velocity autocorrelation function describing how
correlated the particle velocities are at time points t′ and t, and which is in-
variant under time translation105. From the velocity autocorrelation function,
it is possible to calculate correlation time tc, the time period over which the
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molecular velocities becomes decorrelated104, as

tc =

∫ ∞
0

〈v(0) · v(t)〉
〈v2〉

dt, (3.2.9)

where the mean squared velocity 〈v2〉 is taken to be constant. Velocities of
freely di�using particles are autocorrelated only over very short time intervals,
but collisions with boundaries induce negative autocorrelations over longer
time scales in hindered and restricted di�usion. �e di�usion spectrum is the
Fourier transform of the velocity autocorrelation function103:

D(ω) =
1

2

∫ ∞
−∞
〈v(0) · v(t)〉 eiωtdt, (3.2.10)

where ω is the frequency. �e di�usion spectrum of free di�usion has equal ve-
locity contributions from all frequencies. However, in hindered and restricted
di�usion, collisions with the boundaries result the di�usion spectrum to devi-
ate from a uniform distribution.

3.3 Di�usion-weighted signal

�e e�ects of di�usion on the NMR signal in a spin echo experiment were �rst
observed and reported in the 1950s by Hahn12 and discussed in more detail by
Carr and Purcell13. In the 1960s, Stejskal and Tanner introduced the pulsed
gradient spin echo (PGSE) sequence (Figure 3.2) in which the di�usion encod-
ing time is separated from the experimental di�usion time, facilitating data
analysis. Although other di�usion encoding methods, such as oscillating gra-
dients106, have also been developed, PGSE EPI remains as the standard pulse
sequence in modern dMRI.

In di�usion-weighted NMR and MRI experiments, the spins are exposed to
additional time-dependent magnetic �elds that vary linearly over space, simply
referred to as gradients. �e phase shi� experienced by a spin is given by

φ(t) = γ

∫ t

0

B0 + G(t′) · r(t′)dt′, (3.3.1)

where γ is the gyromagnetic ratio of the nucleus, B0 is the static main magnetic
�eld, G is the gradient, and r is the spin’s position. B0 and G are e�ective
�elds which change sign a�er the application of the 180° RF pulse. Since B0 is
uniform over space, it has the same e�ect on all spins and therefore does not
cause phase dispersion. �e application of G, on the other hand, results in a
location-dependent phase shi� for each spin.

37



 90°
 180°

RF

G

q

0 TE/2 TE Time

Figure 3.2: A schematic representation of a pulsed gradient spin echo sequence.

Spins are excited with a 90° RF pulse and refocused with a 180° RF pulse which

occurs at TE/2. Two gradient pulses are applied on both sides of the refocusing

pulse. �e duration of the gradient pulse is denoted by δ and the di�erence between

the onsets of the gradient pulses is denoted by ∆. �e wave vector magnitude q is

proportional to the integral of gradient magnitude over time.

Gradient waveforms, i.e., the di�usion encoding gradient over time, are de-
�ned so that the total phase shi� by TE is zero for stationary spins, e.g., the
second gradient pulse in a PGSE experiment reverses the phase shi� caused
by the �rst one. Di�using spins experience non-zero phase shi�s as a con-
sequence of their random displacements during the experiment, resulting in
phase dispersion and a di�usion-a�enuated signal

S = S0

∫ ∞
−∞

P (φ) exp (iφ) dφ, (3.3.2)

where S0 is the measured signal without di�usion-weighing but with other
acquisition parameters being equal and P is the phase distribution of the spins
in the ensemble. Generally, the real component of the signal is the quantity of
interest. To factor out other signal loss mechanisms, it is useful to de�ne the
normalized di�usion-weighted signal as

E =
S

S0

. (3.3.3)

It is also helpful to de�ne the wave vector q as

q(t) = γ

∫ t

0

G(t′)dt′. (3.3.4)
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By applying integration by parts on Equation 3.3.1, the acquired phase can be
related to the spin’s velocity as

φ(t) = γ

∫ t

0

B0 − q(t′) · v(t′)dt′. (3.3.5)

�e magnitude of di�usion-weighting depends on both the di�usion time
and the magnitude of the applied gradient. �e contributions from these two
factors are summarized by the b-value107 which is equal to the trace of the b-
tensor b, which is also o�en referred to as the b-matrix or the measurement
tensor. It is a symmetric rank-2 tensor that relates to the wave vector as follows:

b =

∫ TE

0

q(t)qT(t)dt. (3.3.6)

For accurate estimation of di�usion from signal, the b-tensor should contain
the e�ects of all imaging and di�usion-weighting gradients.

�e theoretical analysis of a PGSE experiment can be greatly simpli�ed by
assuming the duration of the gradient pulses to be very short (δ → 0), meaning
that di�usion of spins during the gradient pulses does not need to be consid-
ered. In this case, the spins acquire phase at two points of their trajectories
and the wave vector can be represented by a point in q-space: q = γδG. �e
normalized signal at echo time is given by

E =

∫
R3

ρ(r1)

∫
R3

P (r1, r2,∆) exp [−iq · (r2 − r1)] dr2dr1, (3.3.7)

where ρ(r1) is the spin density at r1 during the �rst gradient pulse, andP (r1, r1,

∆) is the di�usion propagator, i.e., the probability of the spin to displace from
r1 to r2 during ∆. In practice, it is convenient to introduce a displacement
variable r = r2 − r1 and integrate over all initial positions to get

E =

∫
R3

P (r,∆) exp (−iq · r) dr, (3.3.8)

whereP (r,∆) is the average propagator representing the probability for a spin
to experience a displacement r during ∆.

Equation 3.3.8 shows that under the short pulse assumption, the normalized
signal is the Fourier transform of the average propagator. In q-space imag-
ing, the average propagator is estimated by applying a Fourier transform on
data acquired by densely sampling q-space108–110. �e well-known properties
of the Fourier transform naturally apply, namely, the resolution of the esti-
mated propagator is determined by the magnitude of the applied gradient and
the propagator �eld of view is determined by the sampling density in q-space.

39



In real experiments it is impossible to ful�l the short pulse length condi-
tion, which leads to an underestimation of di�usion. Instead of measuring
spin displacements during ∆, experiments with �nite pulse lengths measure
the di�erences in spins’ locations between their average positions during the
applications of the two gradient pulses111. �is general result applies to all
PGSE experiments.

Since the displacements of water molecules in the brain are constrained by
their microscopic environments, the di�usion-weighted signal contains valu-
able information on tissue microstructure. �e central problem in dMRI is to
infer relevant properties of tissue microstructure from the di�usion-a�enuated
signal. However, the di�usion propagator is related to the tissue microstructure
in a complex and time-dependent way. Furthermore, the relationship between
the di�usion propagator and the measured signal is highly dependent on the
chosen acquisition parameters, and the signal o�en changes very li�le as the
microstructure changes, making sensitivity an issue. Given these limitations,
characterizing neural tissue microstructure with dMRI is a very challenging
inverse problem.

3.4 Di�usion tensor imaging

DTI quanti�es the di�usion of water in a voxel using the di�usion tensor (Equa-
tion 3.2.7). Since its introduction in the 1990s25, it has become the standard
dMRI method in neuroscience112. �e voxel-level di�usion tensor can be con-
nected to the dMRI signal in a PGSE experiment by considering the di�usion
of net magnetization14,113, as described by the Bloch-Torrey equation114, an ex-
tension of the Bloch equation75 (Equation 2.2.2):

dM

dt
= γM×B− Mxi−Myj

T2
− Mz −M0

T1
k +∇ · (D∇M) , (3.4.1)

where B(r, t) = B0 + G(t) · r, the frame of reference is de�ned so that B0 is
aligned with the z-axis, Mx, My, and Mz are the Cartesian components of net
magnetization M, i, j, and k are unit vectors de�ning the axes of the coordinate
system, M0 is the initial magnitude of M, T1 and T2 are the magnetization
decay constants, and D is the di�usion tensor. Here, r represents a point in
space. As shown by Stejskal and Tanner14, it is helpful to de�ne the complex
transverse magnetization as

Mx(r, t) + iMy(r, t) = ψ(r, t) exp [−(iγB0 + 1/T2)t] , (3.4.2)
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where ψ is the transverse magnetization magnitude independent of T2 decay.
From Equations 3.4.1 and 3.4.2 it follows that the time evolution of ψ is given
by

∂ψ(r, t)

∂t
= −iγ [r ·G(t)]ψ(r, t) +∇ · [D∇ψ(r, t)] , (3.4.3)

which can be further simpli�ed by dividing the equation into real and imagi-
nary parts. �e solution to the imaginary part represents the system without
di�usion, and the real part represents the solution to the system with di�usion-
related a�enuation in transverse magnetization14. �e real part can be solved
by starting from

ψ(r, t) = M(t) exp [−ir · q(t)] . (3.4.4)

From Equation 3.4.3 we get

∂M(t)

∂t
= −M(t)qT(t)Dq(t), (3.4.5)

which has the following solution for Gaussian di�usion in a homogeneous in-
�nite medium113

M(t) = M(0) exp

(
−
∫ t

0

qT(t′)Dq(t′)dt′
)
, (3.4.6)

where M(0) is the transverse magnetization magnitude immediately a�er the
90° excitation pulse. Now the normalized di�usion-weighted signal can be ex-
pressed as

E = exp

(
−
∫ TE

0

qT(t′)Dq(t′)dt′
)
. (3.4.7)

In the case of Gaussian di�usion, the di�usion-weighted signal a�enuation
depends only on the b-value of the applied gradient and not on the exact tra-
jectory in q-space115. �erefore, the normalized signal can be expressed as

E = exp (−b : D) = exp

(
−

3∑
i

3∑
j

bijDij

)
. (3.4.8)

By representing the symmetric tensors b and D as one-dimensional vectors
in Voigt notation, the signals from all acquisitions can be wri�en as a system
of linear equations:

E = XD, (3.4.9)

where

E =


lnE1

...
lnEN

 , (3.4.10)
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X =


b1xx

√
2b1xy

√
2b1xz b1yy

√
2b1yz b1zz

... ... ... ... ... ...
bNxx

√
2bNxy

√
2bNxz bNyy

√
2bNyz bNzz

 , (3.4.11)

D =
(
Dxx

√
2Dxy

√
2Dxz Dyy

√
2Dyz Dzz

)T
, (3.4.12)

whereN is the number of acquisitions and the superscript refers to the acquisi-
tion number. Given that a minimum of six di�usion-weighted acquisitions with
di�erent directions and one acquisition without di�usion-weighting were per-
formed, D can be estimated by inverting X. However, the application of the
logarithmic transformation on the signal introduces heteroscedasticity into the
data, for which weighted least squares should be applied in case of multi-shell
data116,117. It is also possible to �t the signal model (Equation 3.4.8) directly to
data using non-linear least squares methods.

A�er the di�usion tensor has been estimated, it is straightforward to quan-
tify its magnitude and anisotropy using the metrics of mean di�usivity (MD),
axial di�usivity (AD), radial di�usivity (RD), and fractional anisotropy (FA)118:

MD =
Tr (D)

3
=

1

3
(λ1 + λ2 + λ3) , (3.4.13)

AD = λ1, (3.4.14)

RD =
1

2
(λ2 + λ3) , (3.4.15)

FA =

√
3

2

Varλ(D)

Varλ(D) + MD2 , (3.4.16)

where Tr( ) denotes calculating the trace of a matrix, the di�usion tensor eigen-
values are sorted (λ1 >= λ2 >= λ3), and Varλ( ) denotes an operator that
calculates the eigenvalue variance:

Varλ(D) =
1

3

3∑
i=1

(
λi −

Tr (D)

3

)2

. (3.4.17)

Changes in neural tissue microstructure may result in changes in the dif-
fusion propagator of water that can be detected with DTI. For example, de-
myelination of axons can lead to a reduction in FA and an increase in RD in
voxels containing tightly packed and aligned axons. �e DTI parameter maps,
illustrated in Figure 3.3, have been shown to be sensitive to microstructural
changes associated with, for instance, development119, aging120,121, and lesions
associated with neurological conditions122,123. However, DTI confounds the ori-
entation dispersion of anisotropic neurites with isotropic di�usion, which can
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Figure 3.3: Examples of DTI parameter maps in a healthy volunteer. (A) Mean

di�usivity. (B) Axial di�usivity. (C) Radial di�usivity. (D) Fractional anisotropy.

be seen in voxels containing crossing axonal bundles. Although di�usion in-
side individual axons is highly anisotropic, the voxel-level di�usion tensor is
less anisotropic as a consequence of orientation dispersion. �us, FA and RD
are not similarly sensitive to axonal degeneration in such voxels. Furthermore,
DTI is limited by the fact that it is not able to capture non-Gaussian di�usion
and thus does not provide a good �t to data in experiments with moderate to
high levels of di�usion-weighting (roughly b > 1 µm2/ms in the brain) when
the di�usion-a�enuated signal decay clearly deviates from a monoexponential
curve, revealing that the voxel-level average di�usion propagator is not Gaus-
sian, especially in white ma�er. �e following sections describe some methods
that have been developed to address these limitations.
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3.5 Signal cumulant expansion

�e di�usion-weighted signal in Equation 3.3.2 is the average of an exponential
function and can thus be expressed as a cumulant expansion124. �e signal
cumulant expansion is a powerful signal model in which the natural logarithm
of the signal is expanded in powers of the applied gradient. �e coe�cients
of the cumulant expansion, expressed in terms of correlations of molecular
velocity, quantify properties of the di�usion propagator. �is section brie�y
reviews the signal cumulant expansion and DKI as a natural extension of DTI
for quantifying non-Gaussian di�usion at the voxel level.

Consider a real-valued random variable X with probability density f . Its
nth raw moment is

µn = E (Xn) =

∫ ∞
−∞

xnf(x)dx, (3.5.1)

where E denotes the expected value. Given that the moment-generating func-
tion MX(t) exists, it can be expanded about the origin:

MX(t) = E
(
etX
)

=
∞∑
n=0

tn

n!
µn. (3.5.2)

�e cumulant-generating functionKX(t) is the natural logarithm of the moment-
generating function. �e cumulants κn are the coe�cients of its Taylor expan-
sion about the origin:

KX(t) = ln
[
E
(
etX
)]

=
∞∑
n=1

tn

n!
κn. (3.5.3)

�e �rst three cumulants are related to the raw moments as

κ1 = µ1,

κ2 = µ2 − µ2
1,

κ3 = µ3 − 3µ2µ1 + 2µ3
1,

(3.5.4)

from which we can see that the �rst cumulant is equal to the mean and the
second cumulant is equal to the variance of X .

By expressing the gradient in terms of wave vector magnitude, the natu-
ral logarithm of the normalized di�usion-weighted signal (Equations 3.3.2 and
3.3.3) can be expresed as

ln(E) =
∞∑
n=1

in

n!

∫ TE

0

κn(t1, ..., tn)q(t1)...q(tn)dt1...dtn, (3.5.5)
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Figure 3.4: (A) Examples of mesokurtic (K = 0), leptokurtic (K> 0), and platykur-

tic (K < 0) distributions. (B) An example of di�usion-weighted signal decay cor-

responding to a mesokurtic (K = 0) and leptokurtic (K = 1) di�usion propagators.

where κn denotes the nth cumulant of molecular velocity and the integration
is performed over all time variables. �e derivation is omi�ed here but can
be found in a book chapter by Kiselev124. Equation 3.5.5 is the general one-
dimensional signal cumulant expansion which is strictly valid at b → 0. In
the absence of bulk �ow, only the even terms contribute to di�usion-weighted
signal a�enuation because of the symmetry of the di�usion propagator. Since
the �rst terms dominate at di�usion-weighting levels typically used in human
neuroimaging and the validity of the truncated expansion diminishes with in-
creasing gradient strength, the cumulant expansion is o�en truncated a�er the
fourth term, corresponding to the second order in terms of b-value.

In 2005, Jensen et al. introduced DKI by showing that the truncated cumu-
lant expansion in a PGSE experiment can be wri�en as

ln(E) ≈ −bD +
1

6
b2D2K, (3.5.6)

where b is the b-value, D is the apparent di�usion coe�cient, and K is the ap-
parent kurtosis coe�cient. �e kurtosis coe�cient corresponds to the variance
of apparent di�usivities and quanti�es the magnitude of non-Gaussian di�u-
sion at the voxel level46. BothD andK are called apparent coe�cients because
they depend on ∆ and δ. In the context of dMRI, kurtosis generally refers
to excess kurtosis which is negative for distributions that have longer tails
than a Gaussian distribution (platykurtic) and positive for distributions that
have shorter tails than a Gaussian distribution (leptokurtic) (Figure 3.4A). �e
voxel-level di�usion propagator is generally leptokurtic in neural tissue which
consists of various microscopic di�usion environments, resulting in variance
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Figure 3.5: Examples of DKI parameter maps in a healthy volunteer. (A) Mean

signal kurtosis. (B) Mean kurtosis. (C) Axial kurtosis. (D) Radial kurtosis.

of apparent di�usivities and a deviation from a monoexponential signal decay
(Figure 3.4B).

In the brain, both D and K are orientationally variant, for which a tensor
representation of kurtosis was introduced46:

ln(E) ≈− b
3∑
i=1

3∑
j=1

ninjDij

+
1

6
b2(MD)2

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

ninjnknlKijkl,

(3.5.7)

where ni is the ith component of a unit vector representing the di�usion en-
coding direction, and Dij and Kijkl are the elements of the di�usion tensor D

and kurtosis tensor K, respectively. K is a symmetric rank-4 tensor with 15
unique elements. Estimating D and K requires a minimum of 22 acquisitions
consisting of at least 15 unique gradient directions and three di�erent levels of
di�usion-weighting (including b = 0). �e metrics of mean kurtosis (MK), ax-
ial kurtosis (AK), and radial kurtosis (RK), illustrated in Figure 3.5, quantify the
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magnitude K with respect to the eigenvector corresponding to the largest dif-
fusion tensor eigenvalue. Mean signal kurtosis (MSK) is equal to the apparent
di�usion coe�cient calculated by ��ing Equation 3.5.6 to data that has been
averaged over all the acquired di�usion encoding directions.

�e measured di�usion kurtosis is caused by two main factors, the vari-
ance in microscopic di�usion environments and restricted di�usion46,125. For
instance, consider a voxel containing tightly packed axons. Variance in the di-
ameters or orientations of the axons results in a non-Gaussian di�usion prop-
agator at the voxel-level even if di�usion inside each axon appears Gaussian
because the sum of di�erent normal distributions is not a normal distribu-
tion. �is is referred to as inter-compartmental kurtosis. Intra-compartmental
kurtosis, on the other hand, is caused by restricted di�usion within micro-
scopic di�usion environments. Inter-compartmental kurtosis is positive but
intra-compartmental kurtosis can be negative46,125. DKI can be sensitive to the
di�erent sources of kurtosis but its major limitation is the lack of speci�city.

3.6 Microstructural modelling

Microstructural models aim to relate the measured di�usion-weighted signal
to the biophysical properties of the tissue using descriptive metrics such as
mean axon diameter and intra-neurite volume fraction. �ese models require
the construction of a tissue model that is able to capture the relevant properties
of tissue.

Most microstructural models represent the tissue as a set of non-exchanging
microscopic di�usion environments, referred to as compartments. �e normal-
ized di�usion-weighted signal is expressed as the sum of signals from individ-
ual compartments:

E =
N∑
i=1

fiEi, (3.6.1)

whereN is the number of compartments in the voxel, fi is the signal fraction of
the ith compartment, and Ei is the normalized di�usion-weighted signal from
the ith compartment. �e signal fractions are normalized so that

∑N
i=1 fi = 1

and 0 ≤ fi ≤ 1 for all i. �e compartments are usually modelled as sim-
ple geometries that enable the signal to be expressed analytically with a small
number of parameters to facilitate ��ing the model. �e simplest models are
relatively straightforward to �t with standard non-linear ��ing algorithms and
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can be independent of the starting position126. �e more complex models how-
ever, are more challenging to �t due to the �atness of the ��ing landscape,
local minima, and their sensitivity to changes in the starting position127,126.
Exploring optimal ways of ��ing the models continues to be an active area of
research117,128.

Compartment models with di�erent ��ing constraints have been succes-
fully applied in estimating mean axon diameter129,51 and neurite density49,130

in animal experiments with very high magnetic �eld and gradient strengths.
However, their application in human neuroimaging has been less succesful.
It has been shown that axon diameter estimates have been inaccurate by up
to an order of magnitude131 and that di�erent �t constraints result in contra-
dictory estimates132,133. Such issues have been connected to inadequate models
and signal degeneracies62. Despite the accuracy issues, microstructural models
may be sensitive to scienti�cally and clinically valuable changes in the brain
microstructure. Some microstructural models are described in more detail in
Chapter 5.

3.7 Multidimensional di�usion encoding

All the methods discussed in the previous sections of this chapter belong to a
class of SDE methods as they are based on acquisitions measuring the displace-
ments of water molecules along a single dimension52. Despite being sensitive
to several scienti�cally and clinically relevant microstructural properties, SDE
methods are fundamentally limited because they confound two major sources
of non-Gaussian di�usion at the voxel level, namely, the orientation dispersion
of anisotropic di�usion and the size variance of microscopic di�usion environ-
ments, resulting in a lack of speci�city. For example, consider the hypothetical
voxels shown in Figure 3.6 that contain sets of non-exchanging microscopic
di�usion environments that are fully characterized by microscopic di�usion
tensors. �e sizes of the spherical microenvironments correspond to the pro-
jections of the anisotropic microenvironments. Since the measured signal de-
pends on the distribution of apparent di�usivities along the direction of the
applied gradient, the two voxels result in nearly indistinguishable signal decay
curves. �is simple toy model illustrates the fundamental degeneracy of SDE
acquisitions115.

Consider a more realistic voxel that can be divided into separate micro-
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Figure 3.6: Two hypothetical voxels that result in nearly indistinguishable signal

decay curves using SDE. �e voxel in (A) consists of highly anisotropic microscopic

di�usion environments with a high degree of orientation dispersion. �e voxel in

(B) consists of isotropic microscopic di�usion environments with high size vari-

ance. �e sizes of the microenvironments in (B) correspond to the sizes of the

projections of the microenvironments in (A). It has been shown that meningiomas

and glioblastomas can result in similar signal decay curves using SDE, although

at the microscopic level meningiomas resemble (A) and glioblastomas (B)55. In a

healthy brain, white ma�er consists mainly of highly anisotropic microenvirion-

ments, whereas isotropic size variance can be more easily observed in gray ma�er.

scopic di�usion environments. If the exchange of water between the microen-
vironments is negligible, the imaged tissue can be represented by a set of time-
dependent microscopic di�usion propagators. Given that the di�usion time is
long enough for the water molecules to thoroughly explore their environment,
each propagator beomes Gaussian, as explained by the central limit theorem100.
�erefore, in the long di�usion time limit (∆→∞), di�usion in each microen-
vironment can be characterized by a microscopic di�usion tensor Dµ, where
the subscript µ is used to distinguish it from the voxel-level di�usion tensor D,
which relates to the microscopic di�usion tensors as

D = 〈Dµ〉, (3.7.1)

where the averaging operator 〈 〉 represents averaging over all microenviron-
ments in the voxel.

A multidimensional b-tensor, as de�ned by Equation 3.3.6, can be de�ned
by applying di�usion encoding along two or three dimensions between the spin
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excitation and signal readout. For example, the following b-tensors correspond
to one-, two-, and three-dimensional acquisitions:

bLTE =

b 0 0

0 0 0

0 0 0

 , (3.7.2)

bPTE =
1

2

0 0 0

0 b 0

0 0 b

 , (3.7.3)

bSTE =
1

3

b 0 0

0 b 0

0 0 b

 , (3.7.4)

where b is the b-value, and the subscripts LTE, PTE, and STE stand for linear,
planar, and spherical tensor encoding, respectively. �e tensors are rotated
according to the di�usion encoding direction.

By combining acquisitions with di�erent b-tensor shapes it is possible to
disentangle the orientation dispersion of anisotropic di�usion from the size
variance of microscopic di�usion environments115. Figure 3.7 shows simulated
signal decay curves of acquisitions using linear and spherical with b-tensors.
�e deviation between the signal decay curves acquired with the two b-tensor
shapes indicates that the di�usion is anisotropic at the microscopic level, and
the non-monoexponential signal decay in STE acquisitions indicates size vari-
ance of microscopic di�usion environments115.

According to the conventions and nomenclature by Shemesh et al.52, mi-
croscopic di�usion anisotropy (µA) is de�ned so that it squared is proportional
to the average eigenvalue variance over the microscopic di�usion tensors in
the voxel:

µA2 ∝ 〈Varλ(Dµ)〉. (3.7.5)

Since µA depends on both the shape and magnitude of the microscopic di�u-
sion tensors, microscopic fractional anisotropy (µFA) has been introduced to
quantify microscopic di�usion anisotropy irrespective of the orientation dis-
persion and the magnitude of di�usion134,135:

µFA =

√
3

2

〈Varλ(Dµ)〉
〈Varλ(Dµ)〉+ 〈[Tr(Dµ)/3]2〉

. (3.7.6)
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Figure 3.7: Example of resolving the fundamental degeneracy of SDE acquisi-

tions by combining acquisitions with linear tensor encoding (LTE) and spherical

tensor encoding (STE). Similarly to Figure 3.6, the simulated voxel in (A) consists

of highly anisotropic microscopic di�usion environments with a high degree of

orientation dispersion, and the simulated voxel in (B) consists of isotropic micro-

scopic di�usion environments with high size variance.

µFA takes values between 0 and 1 and is equal to conventional FA if the mi-
croscopic di�usion tensors are aligned. A simple example highlighting the dif-
ferences between FA and µFA is provided in Figure 3.8. Since µA and µFA
do not depend on the orientation dispersion of axons, they may be clinically
valuable biomarkers for studying axonal degeneration. Indeed, promising re-
sults of microscopic anisotropy imaging have been reported in imaging multi-
ple sclerosis lesions56,60 and white ma�er degeneration in Parkinson’s disease
patients63. Furthermore, microscopic anisotropy imaging has been applied to
quantify the average cell shape in brain tumours64,55 and microstructural prop-
erties of brains of patients with schizophrenia65 and epilepsy59. µFA estimation
with DDE and QTE will be discussed in detail in Chapter 6 and Chapter 7, re-
spectively.
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Figure 3.8: Example of a hypothetical voxel consisting of the microscopic di�u-

sion tensors shown in (A) that correspond to a voxel-level di�usion tensor shown

in (B). FA of each tensor is shown. MD of each tensor is 1 µm2/ms. In this case,

µA = 0.88 µm2/ms and µFA = 0.84. �e voxel-level FA is lower than µFA because

of the orientation dispersion of the anisotropic microscopic di�usion tensors and

the presence of isotropic microscopic di�usion tensors.

3.8 Summary

�is chapter provided a concise overview of dMRI, describing how the MR
signal can be made sensitive to di�usion of water molecules, which in turn can
be used to study the microstructure of neural tissue. �e following chapters
describe the original contributions of the PhD candidate.
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Chapter 4

GPU-accelerated Monte Carlo
random walk simulator

4.1 Introduction

Microstructural parameters calculated from dMRI data have been successfully
applied to observe microstructural changes in neural tissue during normal de-
velopment and in pathologies. For instance, it has been shown that FA in white
ma�er tends to decline with aging120 and elevated MK values have been ob-
served in the basal ganglia of patients with Parkinson’s disease136. Despite their
potential utility as biomarkers, connecting the values of the estimated param-
eters to the biophysical properties of tissue is challenging because the ground
truth is usually unknown in in vivo experiments and the observed changes in
the metrics’ values can be driven by multiple factors. �us, the validation of
dMRI methods and the resulting parameter maps is an important problem.

Estimated parameter values can be compared to the ground truth, for ex-
ample, by imaging phantoms with a known microstructure137 or by performing
histology experiments on the imaged tissue138. However, such experiments are
expensive and time-consuming, especially if the acquisition is repeated using
several acquisition protocols or microstructural con�gurations. On the other
hand, simulations with a well-de�ned ground truth do not require the use of
expensive scanner time and provide a powerful tool for assessing the accuracy
and precision of parameter estimates. Generally, dMRI simulations are based
either on modelling di�usion in some geometry under a set of assumptions
about the di�usion process and the pulse sequence to obtain an approximate
solution to the di�usion equation, from which an expression for the di�usion-
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weighted signal can be derived139, or on a more generalizable Monte Carlo
random walk approach140.

Some of the simplest dMRI simulations model the tissue as a combination of
non-exchanging microscopic di�usion environments that can be characterized
by microscopic di�usion tensors. In this case, the normalized dMRI signal can
be expressed as

E =
1

N

N∑
i=1

exp (−b : Dµi) , (4.1.1)

where N is the number of compartments, b is the b-tensor used in the sim-
ulated acquisition, Dµi is the ith microscopic di�usion tensor, and : denotes
the generalized scalar product between the two tensors. Equation 4.1.1 pro-
vides a computationally inexpensive method for assessing the robustness of
microstructural parameter estimation methods against various tissue models
de�ned by distributions of microscopic di�usion tensors141. However, this
method fails to capture time-dependent di�usion and thus can not be applied
to study, for instance, the e�ect of gradient pulse duration or di�usion time on
the parameter estimates, for which more complicated simulations are needed.

Experiments of restricted di�usion in simple geometries, such as spheres
and cylinders, can be simulated using analytical signal expressions that can be
derived for gradient sequences that ful�l a set of assumptions, e.g., in�nitesi-
mal gradient pulses48. Simulation experiments of restricted di�usion in simple
geometries with arbitrary gradient sequences can be performed using the ma-
trix formalism, which represents the gradient by a succession of sharp gradient
impulses, enabling the signal a�enuation to be expressed as a computationally
inexpensive product of matrix operations142,143. Furthermore, �nite di�erence
methods, �nite element methods, and the la�ice Boltzmann method can be
used to numerically �nd an approximate solution to the Bloch-Torrey equation
in more complicated geometries144–146. �e Monte Carlo random walk method,
which models the di�usion process as an ensemble of random walks, is an-
other method that is easily generalizable to arbitrary geometries and gradient
sequences147–149.

�e Monte Carlo method involves repeated random sampling to obtain nu-
merical solutions to the studied problem150,151. In dMRI research, the Monte
Carlo method is o�en applied to simulate di�usion by generating a large num-
ber of random walks from which the simulated signal can be calculated. Such
simulations have been used since the 1990s152,140, and several open source so�-
ware packages, such as Camino153,147, wri�en in Java, and MC/DC154, writ-
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ten in C++, have been developed to facilitate performing simulation experi-
ments. Since the random walks are independent and generated from indepen-
dent and identically distributed pseudorandom numbers, they can be generated
in parallel, leading to a signi�cant reduction in simulation runtime. Recent
developments in the hardware and so�ware of general-purpose graphical pro-
cessing unit (GPU) computing have facilitated running scienti�c programs in
massively parallel155, i.e., simultaneously on at least hundreds of cores. GPU-
acceleration has been applied to random walk dMRI simulations156, however,
in many cases, the source code of GPU-accelerated simulations has not been
shared or is not easy to use or modify.

�is chapter presents Disimpy157, a GPU-accelerated random walk dMRI
simulator developed by the PhD candidate during the course of the doctorate.
Disimpy is wri�en in Python (Python So�ware Foundation), a programming
language know for its readability and clarity, which makes the source code very
approachable and easily extensible to researchers and students with li�le or no
prior experience in general-purpose GPU computing. �e GPU-acceleration
results in a signi�cant performance gain compared to serial computation, en-
abling simulation experiments to be performed on standard laptop and desktop
computers without needing to access high-performance computing clusters.

4.2 Simulator details

Disimpy is a massively parallel Monte Carlo random walk dMRI simulator that
generates random walks on Nvidia’s (Nvidia Corporation, Santa Clara, Cal-
ifornia, United States) CUDA-capable GPUs with compute capability 2.0 or
higher155. Disimpy provides a simple user interface for performing simula-
tions and useful helper functions for generating and manipulating gradient
arrays. �e source code is openly available on Github at h�ps://github.com/
kerkelae/disimpy/ under the MIT license. �e documentation, tutorial, and
contributing guidelines are provided on the simulator’s home page at h�ps:
//disimpy.readthedocs.io/. �e simulator requires the user to de�ne the simu-
lated microstructure, gradient waveforms, and at least the following parame-
ter values: number of random walkers, number of time steps, and di�usivity.
�e output of the simulator is the simulated signal for each waveform. Option-
ally, the trajectories of the random walkers and the signal from each individual
walker can also be saved. To generate synthetic dMRI signals, Disimpy follows
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the framework established by Hall et al.147 with some di�erences. �e details
of the simulator are described in the following sections.

Dynamics

�e di�usion process is modelled as an ensemble of three-dimensional random
walks over discrete time. Each random walker represents a di�using spin. �e
initial positions of the random walkers are drawn from a uniform distribution
across the di�usion environment or de�ned manually by the user. �e steps
are uniformly distributed over the surface of a sphere and have a �xed length

l =
√

6 ·D · dt, (4.2.1)

whereD is the di�usion coe�cient and dt is the duration of the time step. dt is
determined by the duration of the simulated dynamics and the number of time
points in the simulation. A single step is calculated as

s =
l

x2 + y2 + z2

xy
z

 , (4.2.2)

where x, y, and z are normally distributed pseudorandom numbers. �e pseu-
dorandom numbers are generated by randomly sampling from a uniform dis-
tribution on the interval [0, 1] using the xoroshiro128+ pseudorandom number
generator158. �e Box-Muller transform is then applied to obtain normally dis-
tributed pseudorandom numbers. �is method produces a uniform density of
steps across the surface of a sphere159.

Di�usion can be simulated without restrictions, inside simple analytically
de�ned geometries (cylinders, spheres, ellipsoids), and in arbitrary geometries
de�ned by triangular meshes160–162. Periodic and re�ective boundary condi-
tions are supported for triangular meshes. If the step of a random walker in-
tersect with a surface, it is elastically re�ected o� the intersection point in such
a way that the random walker’s total path length during dt is equal to l. �e
intersection check is repeated a�er the re�ection to check for multiple colli-
sions during dt. By default, the surfaces are impermeable. Permeable surfaces
can be simulated by enabling the walkers to pass through the surface with a
given probability. An example of restricted di�usion is shown in Figure 4.1.
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Figure 4.1: Example of restricted di�usion in an environment de�ned by a tri-

angular mesh. (A) Example mesh of 104 triangles de�ning the synthetic voxel

consisting of 100 spheres with gamma-distributed radii. (B) Example trajectories

of 100 random walkers whose initial positions were randomly positioned inside

the spheres. Some spheres contain more than one walker. (C) Example trajectories

of 100 random walkers outside the spheres. In this example, the boundaries of the

voxel are impermeable surfaces.

Signal generation

�e simulated signal is generated according to equations 3.3.1 and 3.3.2. Several
signals corresponding to di�erent di�usion encoding gradients can be gener-
ated from the same simulated dynamics. �e gradient waveforms are repre-
sented as three-dimensional arrays where the dimensions correspond to the
di�erent measurements, time points, and gradient magnitude along di�erent
directions. At every time point t in the simulation each random walker accu-
mulates phase

dφ = γG(t) · r(t)dt, (4.2.3)

where γ is the gyromagnetic ratio of hydrogen 1H, G is the di�usion encoding
gradient, and r is the location of the random walker. At the end of the simulated
dynamics, the signal is calculated as the sum of the real parts of the signals from
all random walkers:

S =
N∑
j=1

Re (exp (iφj)) , (4.2.4)

where φj is the phase shi� accumulated by the jth random walker and N is
the number of random walkers. �e normalized di�usion-weighted signal is
simply

E =
S

N
. (4.2.5)
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Implementation

Disimpy uses e�cient data structures and numerical methods from Numpy163

and Scipy164. Numba165 is used to compile Python code into CUDA kernels
and device functions155 which are executed on the GPU. All computation is
performed using double-precision �oating-point numbers. �e random walks
are generated in massively parallel on individual threads of one-dimensional
CUDA blocks, resulting in a performance gain of over an order of magnitude
when compared to Camino147 which runs serially on the central processing
unit (CPU) (Figure 4.2). �e maximum number of parallel threads is determined
by the GPU but is generally in the tens of thousands155.

Figure 4.2: Performance comparison between Disimpy and Camino147, a popular

dMRI simulator that runs single-threaded on the CPU. �e comparison was per-

formed on a desktop computer with an Intel Xeon E5-1620 v3 3.50 GHz x 8 CPU

and an Nvidia �adro K620 GPU. �e simulations were performed using a mesh

consisting of 104 triangles, shown in Figure 4.1. Signi�cantly improved Disimpy

runtimes can be achieved by using a more modern GPU because the GPU used in

this comparison is not particularly well suited for double-precision arithmetic. In

the future, GPUs with more parallel threads and faster cores will become increas-

ingly more a�ordable, and the runtime di�erence between the GPU-accelerated

and serially executed simulations will further increase.

4.3 Validation

Accuracy and precision of Disimpy has been validated by comparing it against
analytical signal expressions and results obtained from other established sim-
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ulators, such as Camino147. Furthermore, code modularity has been a priority
during development and unit tests have been wri�en to test the functionality
of individual functions. Two examples of the simulations used for validation
in terms of accuracy are shown in Figure 4.3

It is well-known that the results of Monte Carlo simulations are valid only
if a su�ciently large amount of random sampling has been performed151. To
assess the convergence in terms of the number of random walkers, simula-
tions of free and restricted di�usion were repeated with di�eret pseudorandom
number generator seeds and the signal variation was quanti�ed. �e results,
shown in Figure 4.4, reveal that the required number of spins depends on both
the simulated microstructure and the magnitude of the di�usion-weighted sig-
nal a�enuation. �e results suggest that at least 104 random walkers should
be used for all scenarios. However, since the convergence also depends on the
number of steps in the simulation and the simulated gradient sequence, a sim-
ilar analysis of convergence should be conducted when performing simulation
experiments to con�rm that su�cient convergence has been achieved.
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Figure 4.3: Two examples of the simulations performed to validate Disimpy’s

output. �e simulations were performed with 10 6 random walkers and 10 5 time

steps. (A) A comparison between the analytically calculated signal decay (Equa-

tion 3.4.8) and Disimpy’s simulated signal decay for free di�usion. �e simulated

gradient sequence was PGSE with ∆ = 40 ms and δ = 10 ms. (B) Reproduction

of the di�raction pa�ern that is observable in experiments with di�usion inside

cylinders perpendicular to the gradient direction and very high b-values166. �e

analytical minimum is equal to 0.61 · 2 · π/r where r is the cylinder radius167.

Di�usion was simulated inside an in�nite cylinder with radius of 10 µm. �e

simulated gradient sequence was PGSE with ∆ = 500 ms and δ = 0.1 ms.
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Figure 4.4: �e signal variation over repeated experiments with di�erent num-

bers of random walkers. (A)-(C) show the results for free di�usion. (D)-(F) show

the results for restricted di�usion using the mesh shown in Figure 4.1. �e simu-

lations were repeated 100 times. �e blue dots represent the mean signal and the

shaded area represents the 95% percentile range. �e dashed line is the ground

truth, which is known for free di�usion but unknown for restricted di�usion. �e

simulated gradient sequence was PGSE with ∆ = 60 ms and δ = 12 ms. �e simu-

lations were performed with 10 4 time steps.
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4.4 Discussion

Disimpy facilitates the development and validation of dMRI methods by en-
abling large amounts of synthetic signals to be generated on standard desktop
and laptop computers without needing to access high-performance computing
clusters. Disimpy can also easily be run on popular cloud computing plat-
forms, such as Google Colaboratory, that o�er access to CUDA-capable GPUs.
�e way Disimpy generates the simulated signal is very similar to Camino147.
However, on standard workstation computers, Disimpy is up to several orders
of magnitude faster than Camino. Furthermore, the source code of Disimpy is
very readable and easily extensible because it is wri�en in Python, making the
simulator accessible to other researchers and students. �is is an important dif-
ference to Camino153,147, wri�en in Java, and MC/DC154, wri�en in C++, which
are more di�cult to modify. Although the performance is su�cient for this
thesis, the implementation of some of the algorithms is suboptimal in terms
of computational complexity and memory management. �e long-term vision
is to optimize the code and add more features while Disimpy is used in future
research. However, there are several important issues that must be mentioned
here and considered prior to using Disimpy in research.

It is crucial to choose the simulated microstructure so that the simulation is
representative of the studied problem. �e simple geometries included in the
so�ware, such as in�nite cylinders, are most o�en not su�ciently represen-
tative of neural tissue microstructure. �us, the use of more realistic models
of tissue microstructure, o�en referred to as substrates, is encouraged. For ex-
ample, contextual �bre growth (ConFiG) is a recently developed method for
generating axon-mimicking �bres with geometrical properties that closely re-
semble those of real axons168. �e generation of realistic substrates is outside
the scope of this thesis, but Disimpy can be used with ConFiG, as is done in
Chapter 7. �e size of the simulated substrate is limited by the available mem-
ory on the GPU.

To obtain an accurate simulated signal, the parameter values have to be
chosen so that su�cient convergence is achieved. As demonstrated by the sim-
ulation results in Figure 4.4, which are in agreement with previously reported
results147,154, 105 random walkers and 104 time steps can be considered to be
the minimum as a rule of thumb. However, since the convergence of the re-
sults depends on the simulated microstructure and gradient sequence, a similar
analysis should be repeated to con�rm that the simulation results are accurate.
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In terms of performance, it is important that Disimpy’s runtime does not lin-
early depend on the number of random walkers until it is in the thousands or
tens of thousands (Figure 4.2), depending on the GPU.

Finally, there are several limitations that apply to Monte Carlo random walk
dMRI simulations in general. For example, the simulations do not consider any
other signal decay mechanisms besides di�usion and assumes that the magne-
tization relaxation properties are uniform across the simulated volume. Fur-
thermore, a simple elastic collision o� the simulated surface is probably not
a realistic representation of the interaction between the water molecules and
the cell membranes. However, despite the limitations, the simulations can be
a powerful tool for assessing the robustness of dMRI methods.

4.5 Conclusion

�is chapter presented the dMRI simulator developed by the PhD candidate.
�e so�ware enables e�cient simulations of time-dependent di�usion and is
used in Chapter 7 to study the accuracy and precision of µFA estimates.
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Chapter 5

Reproducibility of microscopic
anisotropy estimation using
microstructural modelling

5.1 Introduction

As an established method for analyzing dMRI data, DTI is regularly used in
both research and clinical se�ings112. �ere is a general consensus in the �eld
about the utility of DTI and its use is facilitated by its inclusion in the scanner
so�ware by several scanner manufacturers. However, as explained in Chap-
ter 3, DTI is unable to capture non-Gaussian di�usion, making it a suboptimal
method, given the acquisition protocols supported by modern scanners. Mod-
ern di�usion-weighted imaging protocols are o�en multi-shell PGSE, i.e., the
acquisitions are performed with more than one non-zero b-value. Such proto-
cols enable the quanti�cation of the signal deviation from a monoexponential
decay, a signature of non-Gaussian di�usion. Even though a plenitude of meth-
ods have been developed for analyzing multi-shell data, none of them have
yet become established standards like DTI. As a consequence, di�erent studies
have applied di�erent methods to quantify the same microstructural proper-
ties of interest and as a result it can be challenging to interpret reported results
in the literature. For a consensus to be achieved on the preferred method for
analyzing multi-shell data for a given situation, the accuracy and precision of
the proposed methods have to be carefully assessed.

As a logical extension of DTI, DKI o�ers a model-free way for quantifying
the rotationally variant signal deviation from monoexponential decay without
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a priori assumptions about tissue microstructure. However, DKI is not spe-
ci�c to the source of non-Gaussian di�usion which can be caused, at the voxel
level, by the orientation dispersion of anisotropic di�usion, size variance be-
tween microscopic di�usion environments, and time-dependent di�usion. Mi-
crostructural models, such as NODDI66 and SMT67,68, on the other hand, aim
to characterize the imaged microstructure using descriptive metrics, such as
intra-neurite volume fraction and mean axon radius. �e purpose of the work
presented in this chapter is to discuss the validity of these models methods in
estimating microscopic di�usion anisotropy and to quantify their reproducibil-
ity using a scan-rescan dataset acquired with a standard clinical multi-shell
protocol.

In the so-called standard model of dMRI in neural tissue, tissue is repre-
sented as a combination of non-exchanging Gaussian compartments and the
di�usion-weighted signal from each compartment is expressed as a convolu-
tion between the ODF and response kernel de�ned by microstructural param-
eters126. Due to the �at ��ing landscape of the standard model in the b-value
range achievable with typical human scanners, strict constraints have to be
imposed for e�cient and reproducible parameter estimation169. In fact, many
microstructural modelling methods known by their own acronyms can be seen
as iterations of the standard model with speci�c compartments and �t con-
straints49,66–68. In this study, the focus is on NODDI66 and SMT67,68, two ver-
sions of the standard model that have been developed so that they are possible
to �t to data acquired with a relatively small number of acquisitions and modest
gradient strengths, making them clinically feasible.

Since its introduction in 2012, NODDI has become a popular method that
has been applied to measure microstructural changes in the brain associated
with a wide variety of conditions, such as Alzheimer’s disease170, Parkinson’s
disease171, multiple sclerosis172, and sickle cell disease123. In NODDI, the val-
ues of the di�usion coe�cients and the shape of the ODF are �xed a priori to
facilitate ��ing the model. NODDI enables the estimation of the so-called vol-
ume fractions of intra-neurite di�usion, extra-neurite di�usion, and isotropic
di�usion as well as the degree of orientation dispersion of neurites.

SMT is a more recent method, introduced in 2015, that enables the esti-
mation of microstructural parameters irrespective of orientation dispersion
and which has been applied in studying microstructural changes associated
with multiple sclerosis173,174 and congenital hypothyroidism175, for example.
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In SMT, the model is �t to powder-averaged data, i.e., data averaged over all
the acquired di�usion encoding directions, to exclude the e�ects of orientation
dispersion.

Despite the popularity of these models, as well as other versions of the stan-
dard model, both NODDI and SMT have been shown to produce biased and
contradictory estimates which will be discussed more in the theory section of
this chapter132,133. However, given the popularity of these methods in neuro-
science research, it is important to assess their reproducibility. Furthermore,
even an inaccurate microstructural model may be valuable if it is sensitive to
relevant microstructural changes in the brain. �us, in the work presented
in this chapter, the reproducibility of the microstructural metrics extracted
from NODDI and SMT is evaluated and the results are compared to those ob-
tained from DTI and DKI. Speci�cally, this study focuses on the microstructural
metrics quantifying microscopic di�usion anisotropy, i.e., intra-neurite volume
fraction and microscopic fractional anisotropy.

5.2 �eory

NODDI

�e NODDI tissue model consists of three non-exchanging Gaussian compart-
ments: intra-cellular space, extra-cellular space, and CSF. Using this tissue
model, the normalized signal can be expressed as

ENODDI = (1− viso)(vicEic + (1− vic)Eec) + visoEiso, (5.2.1)

where viso and Eiso are the normalized volume fraction and signal of the CSF
compartment, vic and Eic are the normalized volume fraction and signal of the
intra-cellular compartment, and vec andEec are the normalized volume fraction
and signal of the extra-cellular compartment. It would be more appropriate to
refer to the volume fractions as signal fractions because the signal contribu-
tions of the di�erent compartments also depend on their magnetization relax-
ation mechanisms instead of only volumes. However, this chapter will follow
the terminology used in the publication that �rst introduced the model66.

�e cells in NODDI are highly anisotropic neurites inside which di�usion
is considered to be one-dimensional. A central assumption of NODDI is that
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the neurite ODF follows a Watson distribution:

ODF(u) = M

(
1

2
,
3

2
, κ

)−1
exp

[
κ(µ · u)2

]
, (5.2.2)

where u is the orientation represented by a unit vector, M is the con�uent
hypergeometric function, µ is the average orientation represented by a unit
vector, and κ is the concentration parameter measuring dispersion about µ.
Using the symmetry of the Watson distribution, the dispersion of the neurites
is quanti�ed with the orientation dispersion index (OD):

OD =
2

π
arctan

(
1

κ

)
. (5.2.3)

OD ranges from 0 for aligned neurites to 1 for neurites whose orientations
are uniformly distributed across the surface of a sphere. Given the ODF, the
normalized intra-cellular signal can be wri�en as

Eic =

∫
S2

ODF(u) exp
[
−bd||(n · u)2

]
du, (5.2.4)

where n is the direction of the applied gradient, b is the applied b-value, d|| is
the intra-neurite di�usivity, and integration is performed over the surface of a
sphere.

�e extra-cellular compartment covers the space outside the neurites that
includes cell bodies, glial cells, extra-cellular space etc. �e extra-cellular signal
is expressed as

Eec = exp

[
−bnT

(∫
S2

ODF(u)D(u)du

)
n

]
, (5.2.5)

where b is the b-value, n is the di�usion encoding direction, and D(u) is an
axially symmetric di�usion tensor with principal di�usion direction u and with
axial and radial components of d|| and d||(1− vic), respectively.

�e CSF compartment, represented by an isotropic di�usion tensor, is in-
troduced to account for partial volume e�ects from CSF. �e normalized signal
from CSF is simply

Eiso = exp (−bdiso) , (5.2.6)

where b is the b-value of the applied gradient and diso is the di�usivity of the
isotropic compartment.

�e values of d|| = 1.7 µm2/ms and diso = 3 µm2/ms are �xed a priori

to reduce the model to the following unknown parameters: vic, viso, κ, and µ.
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With these constraints the NODDI model can be �t to data acquired with just
two HARDI shells.

It is possible to calculate µFA from the NODDI parameter estimates using
Equation 3.7.6 by weighting the terms with the corresponding volume frac-
tions when calculating the averages. However, the resulting µFA estimate
would be biased for at least two reasons132. First, since NODDI is based on
SDE acquisitions, the signal su�ers from the fundamental degeneracy of SDE
acquisitions and thus the size variance of microscopic di�usion environments
is confounded with the orientation dispersion of anisotropic di�usion. Second,
the assumption that the intra-neurite volume fraction is directly connected to
the voxel-level MD predicts a greater contrast in MD maps between white and
gray ma�er than what is measured, raising questions about the validity of the
NODDI tissue model132,169.

SMT

SMT is a technique that consists of ��ing the standard model of dMRI in neural
tissue to powder-averaged SDE data which is invariant of the ODF, given that
the acquisition was performed with di�usion encoding directions that cover
the surface of the sphere su�ciently well. In 2015, a single-compartment model
of SMT was introduced67, followed by a two-compartment model of SMT in
201667. From herea�er, SMT1 refers to the single-compartment model and
SMT2 refers to the two-compartment model.

SMT1

In SMT1, the tissue is modelled as a combination of identical and axially sym-
metric microscopic di�usion environments characterized by microscopic dif-
fusion tensors with arbitrary orientations. Under this assumption, the normal-
ized powder-averaged signal can be expressed as

ESMT1 = exp (−bλ⊥)

√
πerf

(√
b(λ‖ − λ⊥))

)√
b(λ‖ − λ⊥)

, (5.2.7)

where b is the b-value of the applied gradient, erf is the error function, and λ‖
and λ⊥ are the axial and radial di�usivities of the microscopic di�usion tensor,
respectively.

SMT1 parameters can be estimated by ��ing Equation 5.2.7 to the powder-
averaged data. �e shape and size of the estimated microscopic di�usion ten-
sor can be quanti�ed using microscopic versions of the standard DTI metrics
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(Equations 3.4.13 - 3.4.16): µMD, µAD, µRD, and µFA, where µ is used to distin-
guish them from the voxel-level DTI metrics.

SMT1 is valid if the imaged microstructure can be accurately represented
by a distribution of identical microscopic di�usion tensors that only vary in
their orientation. However, this assumption does not hold in the human brain
where size and shape variance invariably exist between the microscopic dif-
fusion environments, e.g., axons and extra-axonal space. �us, SMT1 signif-
icantly overestimates µFA in the human brain because it interprets all non-
Gaussian di�usion to be caused by microscopic di�usion anisotropy133.

SMT2

SMT2 expanded the SMT framework to two Gaussian compartments represent-
ing intra- and extra-neurite di�usion. �e di�usivities and volume fractions of
the compartments are λintra and λextra, and vintra and vextra, respectively. Again,
signal fraction would be a more appropriate term than volume fraction but this
chapter follows the terminology used in the publication that �rst presented the
method67.

Similarly to NODDI, several a priori constraints are imposed to facilitate
��ing the model. First, di�usion inside neurites is considered to be e�ectively
one-dimensional: λintra

⊥ = 0. Second, axial di�usivities of the intra- and extra-
neurite compartments are assumed to be equal: λintra = λextra

‖ . �ird, extra-
neurite di�usion is assumed to follow the tortuosity model140: λextra

⊥ = (1 −
vintra)λ

extra
‖ . Given this model, the normalized powder-averaged signal can be

expressed as

ESMT2 = vintra

√
π

2

erf
(√

bλintra
)

√
bλintra

+

(1− vintra) exp
[
−b(1− vintra)λ

intra] √π
2

erf
(√

bvintraλintra
)

√
bvintraλintra

,

(5.2.8)

where b is the b-value of the applied gradient and erf is the error function. �e
model parameters of SMT2 can be estimated by ��ing Equation 5.2.8 to the
powder-averaged data.

Similarly to NODDI, µFA can be calculated from the SMT2 parameter esti-
mates using Equation 3.7.6 by weighting the terms with the corresponding vol-
ume fractions when calculating the averages. However, it has been shown that
SMT2 fails to accurately estimate µFA because the two-compartment model is
not su�cient to represent neural tissue133. For instance, as a two-compartment
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model, the model can not capture size variance of microscopic di�usion envi-
ronments. Furthermore, SMT2 can not resolve the fundamental degeneracy of
SDE acquisitions.

5.3 Methods

Volunteers

Eight healthy, right-handed volunteers with no known neurological conditions
participated in this study. Each volunteer gave wri�en and informed consent
prior to each scan. �e volunteers consisted of three females and �ve males,
with ages ranging from 23 to 57 years at the time of the �rst scan.

Data acquisition

All imaging data was acquired on a Siemens Magnetom Prisma 3T with maxi-
mum gradient strength of 80 mT/m, maximum slew rate of 200 T/m/s, and with
a 64-channel head coil (Siemens Healthcare, Erlangen, Germany). Each subject
was scanned with identical scanning protocols at two time points separated
by two weeks. An echo-planar multiband PGSE sequence with the following
acquisition parameters was used: ∆ = 28.7 ms, δ = 16.7 ms, b-values = 1 and
2.2 ms/µm2, 60 interleaved di�usion encoding gradient directions distributed
uniformly over half a sphere for both b-values, TE = 60 ms, TR = 3050 ms, FOV
= 220 x 220 mm, voxel size = 2 x 2 x 2 mm3, slice gap = 0.1 mm, 66 slices, and
phase partial Fourier = 6/8. 14 acquisitions were performed without di�usion-
weighting, one of which had the phase encoding direction reversed. Addition-
ally, an anatomical T1-weighted image with isotropic voxel size of 1 mm3 was
acquired. Data acquisition was performed by Cara Foley and Kiran Seunarine
at Great Ormond Street Hospital, London, United Kingdom.

Data preprocessing

All data was converted from DICOM to Ni�i using TractoR176. Using MR-
trix3177, the di�usion-weighted data was denoised with Marchenko-Pastur ran-
dom matrix denoising178 and Gibbs ringing artefacts were estimated and cor-
rected for with a sub-voxel shi� algorithm179. Susceptibility and eddy current
induced distortions were estimated and corrected for with topup and eddy180
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of FSL181. �e images were visually inspected throughout the preprocessing
stages to check for artefacts and to review image quality.

Brain segmentation

White matter

Cortex

Thalamus

Putamen

Hippocampus

Arcuate fasciculus

Corticospinal tract

Optic radiation

Figure 5.1: �e ROIs used in the study in a representative volunteer. �e ROIs

calculated using automated brain segmentation are shown in the top row. �e

white ma�er tracts de�ned with manually curated tractography are shown in the

bo�om row. Only one of the tracts is shown in each slice.

A region of interest (ROI) based analysis was chosen for this study. �e repro-
ducibility of the mean values of the microstructural parameters were assessed
in the following ROIs: white ma�er, cortical gray ma�er, thalamus, putamen,
hippocampus, arcuate fasciculus (AF), corticospinal tract (CST), and optic radi-
ation (OR). �e ROIs, shown in Figure 5.1, were de�ned using automated brain
segmentation and manually curated tractography.

White ma�er, cortex, thalamus, putamen, and hippocampus were delin-
eated in both hemispheres and each subject using Freesurfer by segmenting
the T1-weighted images according to the MNI305 atlas182,183. �e segmenta-
tions were then transformed to the space of the di�usion-weighted data using
a rigid registration and resampling.

AF, CST, and OR were delineated in both hemispheres and each subject
using a tractography pipeline illustrated in Figure 5.2. �e �bre ODFs were
estimated using multi-shell multi-tissue CSD32 with MRtrix3177. Seeds, target
regions, and inclusion/exclusion criteria were de�ned in their appropriate posi-
tions based on anatomical landmarks. Five million initial streamlines were gen-
erated for each tract using a probabilistic algorithm and the �nal tractograms
were �ltered to contain 5000 streamlines each. Tract volumes were calculated
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Figure 5.2: Manual tractography pipeline used for delineating the white ma�er

tracts. A�er ��ing CSD to data, the ROIs were manually drawn as depicted on

the colour encoded principal di�usion direction map (1). Seeds, target regions and

inclusion/exclusion criteria were de�ned in their appropriate positions based on

anatomical landmarks (1, 3). �e sets of streamlines (4) were converted into binary

tract maps (5) by thresholding based on streamline density.

from the tractograms by thresholding the streamline density at 20 streamlines
per voxel. �e tract segmentation was performed with Kan Yan Chloe Li.

�e consistency of the segmentation results was validated by visual inspec-
tion and by estimating the within-subject coe�cient of variation (CV) in ROI
volume by dividing the within-subject standard deviation in ROI volume by
the corresponding grand mean.

Parameter estimation

�e DTI and DKI parameter maps (i.e., MD, AD, RD, FA, MSK, MK, AK, and
RK) were estimated with a weighted least squares algorithm using Dipy184.
OD, vic, and viso were estimated by ��ing the NODDI model to the data using
the NODDI toolbox185. µAD, µRD, µMD, and µFA were estimated by ��ing
the SMT1 model to the data using the SMT toolbox186. vintra, λintra, and λextra

were estimated by ��ing the SMT2 model to the data using the SMT tool-
box186. Furthermore, SMT-based measures of orientation coherence (OCSMT1,
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OCSMT2) were calculated as the Kullback-Leibler divergence of the �bre ODF
with respect to the uniform spherical distribution as reference measure, where
the ODF was estimated using the kernel from SMT1 and SMT2 as described by
Kaden et al.68.

Statistical analysis

To quantify the reproducibility of the parameter estimates, a 1-way random
e�ects model was constructed187:

xij = µ+ si + eij, (5.3.1)

where xij is the value of the microstructural metric x in scan j for subject i,
µ is the population mean of x, si is the subject-level random e�ect, and eij is
the measurement error. It is assumed that sj and eij are mutually independent
and normally distributed: sj ∼ N (0, σ2

s), eij ∼ N (0, σ2
e). Since the subjects of

the study were healthy volunteers who were scanned two weeks apart with no
treatment or other signi�cant events taking place between the scans, a scan-
level �xed e�ect was not included in the model.

�e model parameters µ, σs, and σe were estimated as187,188

µ ≈ 1

nk

n∑
i=1

k∑
j=1

xij, (5.3.2)

σs ≈
√

MSBS−MSWS
k

, (5.3.3)

σe ≈
√

MSWS, (5.3.4)

where n is the number of subjects, k is the number of scans, and MSBS and
MSWS are the mean squares between-subjects and within-subjects, respec-
tively, calculated as follows:

MSBS =
1

n− 1

n∑
i=1

k∑
j=1

(
1

k

k∑
j=1

xij −
1

nk

n∑
i=1

k∑
j=1

xij

)2

, (5.3.5)

MSWS =
1

n(k − 1)

n∑
i=1

k∑
j=1

(
xij −

1

k

k∑
j=1

xij

)2

. (5.3.6)

To assess the reproducibility of the parameter estimates, the within-subject
coe�cient of variation (CV) and intra-class correlation coe�cient (ICC) were
calculated from the model parameters as

CV =
σe
µ
· 100%, (5.3.7)
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ICC =
σ2
s

σ2
e + σ2

s

. (5.3.8)

CV quanti�es the extent of variability relative to the mean value of the pop-
ulation and thus enables the comparison of variability between two metrics
that may have di�erent mean values. CV was multiplied by 100% to follow
the conventions in the �eld. ICC is a measure of how much of the total ob-
served variance is explained by the variance of interest which in this case is the
between-subjects variance. �e de�nition of ICC used here is widely known
as ICC(1, 1) according to the de�nitions by Shrout and Fleiss189.

�e con�dence intervals of CV and ICC were estimated using the con�-
dence intervals of the parameter estimates of a 1-way random e�ects model187.
�e estimated con�dence interval of CV is given by[√

SSWS
χ2
n(k−1),(1−α/2)·100

· 100%

µ
,

√
SSWS

χ2
n(k−1),(α/2)·100

· 100%

µ

]
, (5.3.9)

where SSWS = MSWS · n(k − 1) is the sum of squares within-subjects, χ2
a,b

denotes the bth percentile of a Chi-squared distribution with a degrees of free-
dom, and α = 0.05 is the signi�cance level. �e con�dence intervals of ICC
were estimated as [

F/FU − 1

k + F/FU − 1
,

F/FL − 1

k + F/FL − 1

]
, (5.3.10)

where F = MSBS/MSWS, and FL and FU denote the [(α/2) · 100]th and the
[(1 − α/2) · 100]th percentiles, respectively, of the F distribution with n − 1

and n(k − 1) degrees of freedom.

5.4 Results

A representative example of the brain segmentation in one of the volunteers is
shown in Figure 5.1. A visual inspection of the ROIs and the estimated within-
subject CV of ROI volumes con�rmed that the segmentation process met the
criteria for the reproducibility analysis. �e within-subject CV of ROI volumes
ranged from 0.1% to 8.0% with the mean CV calculated over all subjects and
ROIs being 2.1%. �e greatest variability in volume was observed in white
ma�er, for which the within-subject CV of averaged over all subjects was 2.6%,
whereas the lowest variability in volume was observed in the corticospinal
tract, for which the within-subject CV averaged over all subjects was 0.8%.
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Representative axial slices of the parameter maps in one of the volunteers
are shown in Figure 5.3. DKI results in highly noisy RK estimates in the vox-
els in the corpus callosum that contain tightly packed and aligned axons (Fig-
ure 5.3G). �is issue also a�ects MK but is not visible in MSK maps (Figure
5.3H). �e maps also reveal that NODDI and SMT2 result in strikingly di�erent
and contradictory estimates of intra-neurite volume fraction (Figures 5.3J and
5.3S). �e Spearman correlation coe�cient between NODDI’s vic and SMT2’s
vintra calculated over all voxels and all subjects was 0.51. As expected based on
NODDI’s model assumptions that connect vic to MD, the intra-neurite volume
fraction map calculated using NODDI shows less contrast between white mat-
ter and gray ma�er than SMT2. Interestingly, the contrast in vintra maps closely
resembles that of MSK maps with the Spearman correlation coe�cient calcu-
lated over all voxels and all subjects between vintra and MSK being 0.97. Fur-
thermore, SMT1 results in very high µFA estimates due to the model con�ating
all non-Gaussian di�usion with microscopic di�usion anisotropy (Figure 5.3O).

�e point estimates and con�dence intervals of the within-subject CV of
each microstructural metric mean value in every ROI are shown in Figure 5.4
and reported in Table 5.1. �e within-subject variability of each metric’s mean
value is dependent on the ROI in which it is calculated. Of the studied metrics,
NODDI’s viso su�ered from the greatest within-subject variability. For the mi-
crostructural metrics quantifying microscopic di�usion anisotropy, averaged
across all ROIs, the mean CV was 1.5% for NODDI’s vic, 1.1% for SMT1’s µFA,
and 2.7% for SMT2’s vintras. �ese values are comparable to the average CV of
the DTI metrics which ranged from 1.6% for AD to 2.9% for FA.

�e point estimates and con�dence intervals of the within-subject ICC of
each microstructural metric mean value in every ROI are shown in Figure 5.5
and reported in Table 5.2. Some of the ICC values are incorrectly estimated
to be less than or equal to zero which is a consequence of the modest amount
of data acquired for the study and an expected result of the used statistical
model187. �e ICC of each metric’s mean depends on the ROI in which it is
calculated. For the microstructural metrics quantifying microscopic di�usion
anisotropy, averaged across all ROIs, the mean ICC was 0.59 for NODDI’s vic,
0.39 for SMT1’s µFA, and 0.70 for SMT2’s vintra. For reference, the average ICC
values of the DTI metrics ranged from 0.68 for FA to 0.81 for RD. �e relatively
low ICC of SMT1’s µFA reveals that its low CV does not imply great speci�city
but rather low intra-subject variance.
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Figure 5.3: Representative axial slices of the microstructural maps used in this

study. (A)-(D) are from DTI. (E)-(H) are from DKI. (I)-(K) are from NODDI. (L)-(P)

are from SMT1. (Q)-(T) are from SMT2.
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Figure 5.4: �e estimated within-subject coe�cient of variation (CV) of the mean

microstructural metrics in each ROI. �e black lines denote the 95% con�dence

intervals.
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5.5 Discussion

In this chapter, microscopic di�usion anisotropy estimation using three mi-
crostructural models was discussed and the reproducibility of the model pa-
rameter estimates was quanti�ed. �e reproducibility of the parameter esti-
mates derived from DTI and DKI were provided for reference. �e analysis fo-
cused on the mean values in several scienti�cally and clinically relevant ROIs
which included all of white ma�er and the cerebral cortex as well as individual
subcortical gray ma�er structures and major white ma�er tracts. Estimates
of within-subject variability were provided and they were related to between-
subjects variability using ICC.

�e reproducibility of the kurtosis measures was observed to be lower than
the di�usivity measures, which was expected as the second order e�ects in
terms of the applied b-value are more susceptible to noise than the �rst order
e�ects. �ese results are in agreement with previous reports in the literature.
For instance, in a study by Palacios et al.190, the within-subject CV estimates
of DTI metrics averaged over large ROIs were found to be consistently below
5%, and in a study by Kasa et al.191, the kurtosis measures were found to be
less reproducible than the di�usitivity measures. RK’s high sensitivity to noise
in voxels containing tightly packed and aligned axons is a consequence of low
radial di�usivity and has been observed before. It has lead to some authors to
recommend smoothing the di�usion-weighted data prior to the DKI �t or us-
ing MSK for quantifying kurtosis instead46,192. Indeed, similar problems were
not observed in the MSK maps. NODDI’s and SMT’s metrics measuring micro-
scopic di�usion anisotropy did not su�er from this issue either.

When DTI and DKI were used as a reference, the reproducibility of the met-
rics quantifying microscopic di�usion anisotropy was found to be good. Of
the studied methods, SMT1 produced the most reproducible measure of micro-
scopic di�usion anisotropy when measured using the within-subject CV only.
However, when the within-subjects variability was related to between-subjects
variability using ICC, it was found that SMT2’s vintra was the most reproducible
measure of microscopic di�usion anisotropy and SMT1’s µFA the least repro-
ducible. SMT1’s µFA’s low within-subjects variability is due to the model con-
�ating all non-Gaussian di�usion with microscopic di�usion anisotropy133, re-
sulting in µFA estimates that are consistently very close to 1. Based on this
analysis, SMT2’s vintra is expected to be the most sensitive metric to microstruc-
tural di�erences between groups of over time.
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Although the focus of this work was on the estimation of microscopic dif-
fusion anisotropy, the analysis was also repeated for other model parameters.
Overall, the reproducibility of NODDI parameters was found to be comparable
to DTI with the exception of viso. �ese results are in good agreement with
previous studies that have reported precision issues with NODDI’s viso

193,194.
�e overall reproducibility of SMT1 and SMT2 was found to be comparable to
DTI and DKI parameters across all the model parameters.

�is study is limited by the modest number of subjects and scans which
resulted in some negative point estimates of ICC which are clearly meaning-
less. However, given the number of microstructural metrics and ROIs included
in the study, this was an expected property of the applied statistical model187.
�e provided con�dence intervals facilitate the interpretation of the results.
�e presented results may also change if the ROIs were de�ned di�erently,
such as using a di�erent tractography pipeline or parameter choices for binary
mask generation. Furthermore, the number of volunteers was su�cient for
the purpose of this study which was to relate the reproducibility of NODDI
and SMT to that of DTI and DKI. It is also important to mention that the repro-
ducibility of the studied methods also depends on the scanner hardware and
sequence parameters193. Overall, the results presented in this chapter support
using NODDI and SMT in situations where they o�er the greatest sensitivity
to microstuctural di�erences across groups or over time. However, due to the
invalid model assumptions, the parameter estimates are biased and thus it is
crucial not to take the parameter names literally and to interpret them with
caution.

5.6 Conclusion

�e results presented in this chapter show that despite the accuracy issues of
microscopic di�usion anisotropy estimation using SDE acquisitions and mi-
crostructural modelling, the reproducibility of most NODDI and SMT parame-
ter estimates is comparable to those derived from DKI and DTI, possibly mak-
ing them valuable in research and clinical se�ings. However, the accuracy is-
sues discussed in the theory section of this chapter must be taken into account
when interpreting the results. �e following chapters discuss more accurate
methods for estimating microscopic di�usion anisotropy using MDE.
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Chapter 6

Validation and noise robustness
of clinically feasible microscopic
anisotropy estimation using
double di�usion encoding

6.1 Introduction

Despite being sensitive to several clinically and scienti�cally relevant micro-
structural changes in the brain112, SDE acquisitions are fundamentally limited
because they confound two major sources of voxel-level non-Gaussian di�u-
sion, namely, the orientation dispersion of anisotropic di�usion and the size
variance of microscopic di�usion environments, resulting in a lack of speci-
�city. As explained in Section 3.7, this fundamental degeneracy of SDE ac-
quisitions can not be resolved without substantial a priori information about
tissue microstructure. Over recent years, MDE methods, such as DDE, have
gained signi�cant a�ention for their ability to disentangle the two sources of
voxel-level non-Gaussian di�usion, allowing microscopic di�usion anisotropy
to be estimated in a model-free way54,134,135,64,55–61,63.

DDE sequences contain two trapezoidal di�usion encoding pulse pairs sep-
arated by a mixing time (τ) as shown in Figure 6.1. �e two periods of di�usion
encoding allow the correlations of spin displacements along di�erent direc-
tions to be studied. In the context of estimating microstructural properties,
DDE was �rst proposed by Cory et al. in 1990 for measuring the anisotropy
of randomly oriented yeast cells195. It was soon shown theoretically that in
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Figure 6.1: A schematic representation of a DDE gradient waveform where two

trapezoidal gradient pulse pairs of equal magnitude and duration are separated

by a mixing time τ and a 180° RF pulse.

angular DDE experiments, i.e., experiments in which the angle between the
two gradient pulse pairs is varied, the amplitude of the signal modulation as a
function of the angle between the pulse pair directions depends on µA (Equa-
tion 3.7.5) in powder-averaged systems if the mixing time is long enough for
the positions of the spins during the two gradient pulse pairs to be uncorre-
lated196. In this context, a powder-averaged system refers to a sample that
contains a very large number of similar structures with random orientations
and that would therefore appear isotropic in DTI experiments. Following these
�ndings, several studies then applied DDE to measure µA in liquid crystals197,
porous media198, and ex vivo animal neural tissue199, for example.

Despite its potential, applying DDE in human neuroimaging has been chal-
lenging, and two major issues have most likely contributed to its slow adop-
tion. First, the theory behind µA estimation using DDE assumes the mixing
time to be long enough that the spins have time to completely sample their
microscopic environment200. Considering that DDE sequences consists of two
di�usion times and a mixing time, this requirement invariably leads to long
echo times and a diminished signal. Second, neural tissue is not a powder-
averaged system and therefore an orientationally invariant acquisition scheme
is required201. Along with poor vendor availability and long echo times, the
large number of acquisitions required for obtaining an orientationally invari-
ant signal has likely impeded DDE from becoming more common in human
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Figure 6.2: Di�usion encoding directions of the 5-design (A) and a symmetric

version of the minimal design (B). �e directions of the �rst gradient pulse pair

are shown in blue and the directions of the second gradient pulse pair are shown

in green. �e directions of the �rst pulse pair pointing towards the vertices of the

icosahedron are represented by longer arrows.

neuroimaging.
In 2013, Jespersen et al. introduced a theoretically justi�ed orientationally

invariant acquisition scheme termed the 5-design134 which is a set of 72 DDE
wave vector rotations that can be applied to estimate the powder-averaged
signal, i.e., the signal averaged over all possible di�usion encoding directions,
which is orientationally invariant. In 2017, Yang et al. proposed that, if dif-
fusion in the microscopic di�usion environments appears Gaussian, as few as
12 acquisitions could be su�cient for an orientationally invariant acquisition
scheme to map µA56. �is set of directions is herea�er de�ned as the minimal
design. Both the 5-design and the minimal design are illustrated in Figure 6.2.
�is simpli�cation is based on the idea that, if di�usion in every microscopic
di�usion environment can be fully characterized by a microscopic di�usion
tensor, some acquisitions with the orthogonal gradient pulse pair directions
in the 5-design are redundant as they correspond to the same in-plane trace of
the di�usion tensor. Additionally, asymmetric sampling of di�usion-weighting
directions covering half a sphere is su�cient in the absence of bulk �ow. �is
realization allows the 5-design to be simpli�ed from 12 + 60 acquisitions to
6 + 15 acquisitions for parallel and orthogonal gradient pulse pairs, respec-
tively. Using simulations of in�nite cylinders with orientation dispersion and
in vivo imaging experiments using a clinical human whole-body scanner, Yang

85



et al. experimentally showed that the design can be further reduced to 6 + 6
without signi�cant di�erences in the observed value of µA. Importantly, such
a dramatic reduction in directions, and hence in acquisition time, has strong
implications for the application of DDE in human neuroimaging.

However, the new minimal design has not been directly compared with the
more theoretically robust 5-design. Clearly, validation is important because
new µA estimation methods have been shown to produce biased results132,133,
and bias due to an insu�cient number of directions in estimating the powder-
averaged signal has been reported202. �is study sought to experimentally val-
idate the proposed approach by directly comparing it to the 5-design over a
range of relevant b-values in animal imaging experiments. Additionally, simu-
lation experiments were performed to assess the precision of µFA, a normalized
measure of µA, estimated from DDE data, a problem which has received li�le
a�ention thus far.

6.2 �eory

�is section provides a concise summary of the theory behind µA estimation
using DDE. A detailed description and derivation of the presented equations is
provided by Jespersen et al.203,200,134.

Consider a DDE sequence with two di�usion encoding gradient pulse pairs
with the same pulse length (δ), di�usion time (∆), and gradient magnitude
separated by a mixing time (τ ) (Figure 6.1). Under the short pulse assumption
(δ → 0), the gradient pulse pairs can be represented by points in q-space: q1

and q2. Breaking the short pulse assumption has the same e�ect as in regular
PGSE experiments, i.e., the acquisition is sensitive to the di�erences in the
water molecules’ average positions during the applied pulses111,200. Using the
cumulant expansion124 up to the fourth order in terms of the applied wave
vector magnitude, the natural logarithm of the normalized DDE signal from a
powder-averaged system can be expressed as200

ln(E) ≈− q2 [2∆(MD)−Q cos(θ)] +
1

3
q4∆2(MD)2Kzzzz

+
1

4
q4
[
cos2(θ) (Zzzzz − Zzzxx) + Zzzxx

]
− 1

3
q4 cos(θ)Szzzz,

(6.2.1)

where q = |q1| = |q2|, MD is the mean di�usivity, Q is the trace of the rank-2
correlation tensor Q203, θ is the angle between q1 and q2, Kzzzz is an element
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of the kurtosis tensor K, and Zzzzz , Zzzxx and Szzzz are elements of the rank-4
displacement correlation tensors Z and S.

In the long mixing time limit (τ → ∞), the displacements of the spins
during the two gradient pulse pairs become uncorrelated and the elements of
the tensors Q and S tend towards zero200. In the long di�usion time limit
(∆ → ∞), if the imaged microstructure can be characterized by a set of non-
exchanging microscopic di�usion environments, referred to as compartments
herea�er, the tensor Z becomes a measure of the heterogeneity of the average
compartment shape and orientation200. Under these assumptions, the above
expression of the powder-averaged signal can be reduced to134

ln (E) ≈ = −q22∆(MD) +
1

3
q4∆2(MD)2Kzzzz

+
1

4
q4
[
cos2(θ) (Zzzzz − Zzzxx) + Zzzxx

]
,

(6.2.2)

where the amplitude of the q4 cos2(θ) term is proportional to µA2. Since the
other terms do not depend on θ, µA can be directly measured by comparing
powder-averaged DDE signals acquired with two di�erent angles between the
gradient pulse pair directions.

In systems with an arbitrary orientation distribution, obtaining a powder-
averaged signal would entail sampling over all possible orientations of the gra-
dient pulse pair directions:

SPA =
1

8π2

∫
SO(3)

S(Lqê1,Lqê2)dL, (6.2.3)

where the superscript PA stands for the powder-averaged signal, S is the mea-
sured signal, q is the magnitude of the wave vector, θ is the angle between the
pulse pair directions represented by unit vectors ê1 and ê2, L represents a rota-
tion, and SO(3) is the rotation group. Jespersen et al. showed using quadrature
theory that, if S is equal to the signal cumulant expansion up to the ��h or-
der in q, the integral in Equation 6.2.3 can be calculated exactly with a �nite
number of rotations and the powder-averaged signal can be estimated as134

SPA ≈ 1

|χ|
∑
L∈χ

S(Lqê1,Lqê2)dL, (6.2.4)

where the set of wave vector rotations χ is known as the 5-design consisting
of 12 rotations for parallel wave vectors and 60 rotations for non-parallel (typ-
ically orthogonal) wave vectors.
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Given the powder-averaged data acquired with parallel and orthogonal
wave vectors, µA (Equation 3.7.5) can be estimated as

µA =

√√√√ln

(
SPA
‖

SPA
⊥

)
b−2, (6.2.5)

where the subscripts ‖ and⊥ denote acquisitions with parallel and orthogonal
wave vectors, respectively, and b is the b-value of one of the gradient pulse
pairs of the DDE sequence134. In realistic voxels, a distribution of microscopic
di�usion environments will invariably exist and thus the estimated µA will cor-
respond to the average over the microenvironments in the voxel134. Since µA
depends on both the shape and size of the microscopic di�usion tensors, µFA
is o�en used instead to quantify microscopic di�usion anisotropy irrespective
of the magnitude of di�usion (Equation 3.7.6). µFA can be approximately cal-
culated from µA as

µFA =

√
2

3

√
µA2

µA2 + 3
5
(MD)2

, (6.2.6)

where MD is the mean di�usivity135,56.
Because the formalism presented above is based on the truncation of the

signal cumulant expansion, µA estimates can be corrupted by non-vanishing
higher order terms. Introducing the following higher order correction to Equa-
tion 6.2.5 has been shown to improve the accuracy of the estimates204:

µA =

√√√√ln

(
SPA
‖

SPA
⊥

)
b−2 − P3b3, (6.2.7)

where P3 is non-negative. Furthermore, in terms of precision, since µA esti-
mation is based on observing the deviation between two signal decay curves,
precise quanti�cation of µA becomes more di�cult as the signal deviation be-
comes smaller.

6.3 Methods

Imaging experiments

�e accuracy of the proposed minimal design in neural tissue was validated by
performing three separate animal imaging experiments that were carried out
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by the PhD candidate and Rafael Neto Henriques at the Champalimaud Centre
for the Unknown, Lisbon, Portugal, according to the European Union Directive
2010/63. Competent institutional and national authorities preapproved the ex-
periments.

Specimen preparation

For the ex vivo experiments, a rat brain was extracted through standard tran-
scardial perfusion from a healthy adult animal and was then immersed in 4%
paraformaldehyde solution for 24 h, followed by immersion in a phosphate-
bu�ered saline solution for at least 48 h. �e extracted brain was inserted into a
Fluorinert-�lled (Sigma Aldrich, Lisbon, Portugal) 10 mm NMR tube and placed
in the scanner at 23° C.

In the in vivo experiments, a healthy rat (age = 135 days, weight = 288 g)
was anesthetized with iso�urane (4% for induction, 2% maintenance delivered
through a nose cone) and placed in the scanner. Respiration rate and rectal
temperature were monitored and kept stable over the entire experiment by
slightly adjusting iso�urane levels and circulating warm water, respectively.

Data acquisition

�e experiments were performed on a Bruker Biospec 9.4T (Bruker Corpora-
tion, Karlsruhe, Germany) harnessing an 86 mm volume coil for transmission
and 4-element array cryocoil for reception. A DDE EPI pulse sequence writ-
ten in-house was used with δ = 5 ms and ∆ = τ = 15 ms. Other relevant
imaging parameters were: TE = 69 ms in Experiment 1, TE = 65 ms in experi-
ments 2 and 3, voxel size = 0.2 × 0.2 × 0.8 mm3, FOV = 20 × 20 mm2, partial
Fourier = 4/5, slice gap = 0.5 mm, 3 slices in Experiment 1, and 5 slices in ex-
periments 2 and 3. �e di�usion encoding directions are shown in Figure 6.2.
Because acquisitions were repeated several times, rather than using six parallel
and six orthogonal gradient pulse pair directions distributed over half a sphere
as proposed by Yang et al.56, 12 + 12 directions distributed over the surface
of the sphere were used to eliminate the possibility of artefacts arising from
cross-terms between the imaging and di�usion encoding gradients205. �e 5-
design was acquired with 12 + 60 directions as usual. �e b-values reported
here refer to the total di�usion-weighting during the DDE experiment. For ev-
ery 5-design acquisition, 13 images without di�usion-weighting were acquired
for SNR estimation.
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In Experiment 1, the ex vivo rat brain was scanned with both the minimal
design and the 5-design using three b-values in the range typically used in clin-
ical se�ings: 1, 2, and 3 ms/µm2. To maximize SNR, the 5-design measurements
were averaged over 30 acquisitions and the minimal design measurements over
90 acquisitions to account for the di�erent number of directions. Additionally,
the 5-design experiment was repeated twice to measure the inherent variance
in µFA due to �nite SNR.

In Experiment 2, the b-value dependency of the comparison was investi-
gated by imaging the ex vivo brain with ten b-values uniformly distributed
between 0.5 and 5 ms/µm2. �e 5-design measurements were averaged over
eight acquisitions and the minimal design measurements over 24 acquisitions,
accounting for the di�erent number of directions.

In Experiment 3, the comparison of the two methods was repeated in vivo

to avoid bias due to the �xation process and temperature. �e experiment was
performed with b-values 1 and 2.5 ms/µm2. �e 5-design measurements were
averaged over eight acquisitions and the minimal design measurements over
24 acquisitions, accounting for the di�erent number of directions.

Data preprocessing

�e data was denoised using Marchenko-Pastur random matrix denoising178.
Gibbs ringing artifacts were reduced using a sub-voxel shi� algorithm179. To
correct for motion, the images registered to the �rst non–di�usion-weighted
image using a discrete sub-voxel Fourier transform algorithm206. No proce-
dure for eddy current induced artefact correction was applied because no eddy
current distortions could be visually observed in any of the images.

Parameter estimation

µFA maps were calculated from the powder-averaged data without the higher
order correction (Equation 6.2.7) using equations 6.2.5 and 6.2.6. MD used in
calculating µFA was estimated by ��ing a di�usion tensor to the data acquired
with parallel wave vectors at b = 1 ms/µm2 using DiPy184. Equation 6.2.5 was
�t to multi-shell data (Experiments 1 and 3) using a non-linear least squares
trust region re�ective algorithm207 in Scipy164. Voxel-speci�c SNR was quan-
ti�ed as the mean signal divided by the standard deviation in signal over the
images with no di�usion-weighting, and the average SNR was obtained by av-
eraging voxel-speci�c SNR values over the brain volume.
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Simulations

�e orientational variance and noise robustness of µFA estimation using the
minimal design was studied by generating synthetic data from axially sym-
metric di�usion tensors of various sizes and shapes. �e normalized signal
was simulated using the following equation:

E = exp (−b : D) , (6.3.1)

where b is the b-tensor used in the acquisition, D is the di�usion tensor, and
: denotes the generalized scalar product between the two tensors115. �e DDE
sequence with parallel and orthogonal wave vectors encode linear (Equation
3.7.2) and planar (Equation 3.7.3) b-tensors, respectively. Gaussian di�usion
was simulated instead of restricted di�usion because the minimal design is
based on the assumption that di�usion can be approximated as Gaussian in
every microscopic di�usion environment. µFA was calculated from the sim-
ulated single-shell DDE data according to equations 6.2.5 and 6.2.6 with MD
being equal to its ground-truth value.

First, the rotational variance of the 5-design and the minimal design was
quanti�ed by generating signals from single di�usion tensors with 100 unique
orientations uniformly distributed over half a sphere. �e standard deviation of
the resulting µFA estimates was calculated to quantify the rotational variance
of the two methods for a given di�usion tensor. �e simulated b-value was 2.25
ms/µm2. �e ground-truth µFA was varied from 0 to 1 and MD was varied from
0.1 to 3 µm2/ms. Fi�y uniformly distributed values for both µFA and MD were
used. Imaginary values of µFA caused by SPA

⊥ being greater than SPA
‖ , which

may occur as a consequence of noise or an inaccurately estimated powder-
averaged signal (Equation 6.2.3), were mapped to 0.

Second, the noise robustness of the minimal design was quanti�ed by adding
random noise to the synthetic data and quantifying its e�ect on the estimated
µFA. Noisy signals were generated as

Enoisy =

√
(E +X)2 + Y 2, (6.3.2)

whereE is the synthetic signal without noise andX and Y are randomly sam-
pled from a normal distribution with zero mean and standard deviation σ. Here,
SNR refers to the signal without di�usion-weighting divided by σ. Single ten-
sors aligned with the x-axis were used. �e ground-truth µFA was varied from
0 to 1, and MD was varied from 0.1 to 3 µm2/ms. Fi�y uniformly distributed
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Figure 6.3: Representative coronal slices of the powder-averaged data acquired

with parallel (top row) and orthogonal wave vectors (middle row) with three b-

values. µA can be clearly observed by subtracting the powder-averaged data ac-

quired with orthogonal wave vectors from the powder-averaged data acquired

with parallel wave vectors (bo�om row).

values for both parameters were used. �e simulations were performed using
b-values of 1.5, 2.25, and 3 ms/µm2. �e minimum SNR required for measuring
µFA within 0.1 from its asymptotic value with 95% con�dence was estimated
by repeating the noisy simulations 103 times over the whole parameter space
at 100 levels of SNR uniformly distributed between 1 and 103. �e asymptotic
value of the µFA estimate refers to the µFA value calculated from the simulated
single-shell data with in�nite SNR without the higher order correction, which
leads to an underestimation of µFA that increases with an increasing b-value204.
Imaginary values of µFA were not mapped to 0.

92



6.4 Results

Imaging experiments

�e results of the �rst ex vivo imaging experiment are illustrated in �gures 6.3
and 6.4. Figure 6.3 shows the powder-averaged data for parallel and orthogonal
wave vectors from a representative slice and at di�erent b-values. Average SNR
was 151. �e subtraction between the powder-averaged signals, dependent on
µA, shows a b-value dependent pa�ern increasing in intensity with higher b-
values, especially in white ma�er.

�e µFA maps derived using the 5-design and the minimal design are shown
in �gures 6.4A and 6.4B. �alitatively, the maps are nearly indistinguishable,
and when the maps are subtracted, no clear spatial pa�ern is observed (Figure
6.4C). When the µFA derived from each method were plo�ed against each other
voxel-wise (Figure 6.4D), a strong and statistically signi�cant correlation was
observed (Pearson’s R = 0.91, p < 10−3) with the data points very close to the
unity line. More importantly, only a small bias was observed as the distribution
of voxel-wise di�erences was centered near zero at 0.014 with a standard devia-
tion of 0.07. Figure 6.4E shows the voxel-wise di�erences plo�ed against their
mean value, revealing larger di�erences at lower values of µFA, as expected
based on the discussion in the theory section.

To test whether the small variance observed was due to the di�erent meth-
ods or due to noise, a simple test-retest experiment was performed using the
5-design (Figures 6.4F and 6.4G). �e di�erence image again shows no par-
ticular spatial pa�ern (Figure 6.4H), and when the test-retest µFA values were
plo�ed against each other voxel-wise, a very similar pa�ern was observed than
with the comparison of the minimal design against the 5-design (Figure 6.4I).
Indeed, the variance in this test-retest experiment was also similar to that ob-
served before, with the distribution of voxel-wise di�erences between test and
retest exhibiting a mean of 0.004 and a standard deviation of 0.06. �e Pearson’s
correlation coe�cient was 0.93 for the µFA maps acquired with 2 repetitions
of the 5-design (p < 10−3), and the data points closely followed the unity line.
�e voxel-wise di�erences are plo�ed against their mean values in Figure 6.4J,
again revealing larger di�erences at lower values of µFA and showing that the
precision of µFA decreases with decreasing µA.

In Experiment 2, the methods were compared over a larger interval of b-
values which was more densely sampled to see if the results deviate at higher
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Figure 6.4: Comparison of µFA maps calculated with the 5-design and the mini-

mal design. �e top row shows a comparison between the 5-design and the mini-

mal design (Experiment 1). �e middle row shows the same comparison between

2 repetitions of the 5-design experiment (Experiment 1). Bo�om row shows the

results of the in vivo experiment (Experiment 3). Di�erence stands for the map

obtained by reducing the map in the second column from the map in the �rst col-

umn. �e fourth and ��h columns show the voxel-wise comparison of the maps.

�e dashed lines in the fourth column are identity lines. �e dashed lines in the

��h column denote no di�erence.

b-values due to di�erences in how non-Gaussian di�usion a�ects the estimated
powder-averaged signal acquired with the two methods. Results shown in Fig-
ure 6.5 suggest that the accuracy of the minimal design is comparable to the
5-design with b-values up to 5 ms/µm2. Figure 6.5 also shows that increasing
di�usion-weighting leads to underestimation of µFA, because the maps were
calculated without a higher order correction.

Finally, in Experiment 3, the results of the ex vivo comparison were re-
peated in vivo to con�rm that the ex vivo experiments are representative of in

vivo conditions. �e results are shown in Figure 6.4K-O. �e very similar µFA
maps extracted from data acquired with the 5-design and the minimal design
are shown in �gures 6.4K and 6.4L. �e µFA values extracted from the 2 meth-
ods are highly correlated (Pearson’s R = 0.86, p < 10−3) with the data points
following the unity line. �e voxel-wise di�erence distribution’s mean is equal
to 0.012 with a standard deviation of 0.10.
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Figure 6.5: Voxel-wise comparison of µFA maps calculated from single-shell data

(Experiment 2) acquired with the 5-design and the minimal design over a range

of b-values. �e dashed lines are identity lines.

Simulations

�e standard deviations of the µFA estimates calculated from the simulated
signals with di�erent tensor orientations are shown in Figure 6.6. �ese results
reveal that the minimal design is more rotationally variant than the 5-design
when used for measuring µFA in aligned microscopic di�usion environments
with high anisotropy or di�usivity. �e standard deviation of the µFA estimates
ranges from 0 to 0.1 for the 5-design and 0 to 0.26 for the minimal design with
the mean of the standard deviation of µFA estimates over the whole parameter
space being 0.03 and 0.06 for the 5-design and the minimal design, respectively.
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Figure 6.6: �e standard deviations of the µFA estimates from 400 simulation ex-

periments of axially symmetric single di�usion tensors with directions uniformly

distributed over half a sphere with the 5-design (A) and the minimal design (B)

using a b-value of 2.25 ms/µm2. No noise was added to the data.

Figure 6.7 shows the estimated minimum required SNR for measuring µFA
within 0.1 margin from its asymptotic value with 95% con�dence using the
minimal design. �e simulation results reveal that the precision of µFA is
highly dependent on its value and that particularly low values of MD, 0.25
µm2/ms or less (depending on the SNR and the b-value), prevent precise mea-
surement of µFA irrespective of its value. �ese results suggest that an SNR
of 50 would enable reliable measurement of µFA values greater than 0.75, and
that an SNR of nearly 200 would be necessary for reliably measuring µFA val-
ues of less than 0.5. �e results also show that, by increasing the magnitude of
di�usion-weighting, reliable quanti�cation of µFA becomes possible in smaller
compartments. On the other hand, higher level of di�usion-weighting pre-
vents measurements in large compartments due to the signal having hit the
noise �oor. �ese results suggest that to maximize precision in human brain
tissue, where MD is usually around 0.8 µm2/ms, it is desirable to use a b-value
near 2.25 ms/µm2. Greater di�usion-weighting increases the precision of the
noisy estimate of small compartments’ µFA but without enabling precise mea-
surement of low values of µFA.

96



0.1 1.5 3.0
MD ( m2/ms)

1.0

0.5

0.0

FA

(A) b = 1.5 ms/ m2

25.00

50.00

100.00

200.00

0.1 1.5 3.0
MD ( m2/ms)

1.0

0.5

0.0

FA

(B) b = 2.25 ms/ m2

25.00
50.00100.00

200.00

0.1 1.5 3.0
MD ( m2/ms)

1.0

0.5

0.0

FA

(C) b = 3.0 ms/ m2

25.00 50.00 100.00

20
0.0

0

0

103

Re
qu

ire
d 

SN
R

Figure 6.7: �e minimum SNR required for measuring µFA within 0.1 margin

from its asymptotic value with 95% con�dence with 3 di�erent b-values and vary-

ing di�usion tensor size and shape. �e �gure was generated from 103 repetitions

of noisy simulations of axially symmetric single di�usion tensors aligned with the

x-axis using the minimal design at 100 levels of SNR equally distributed between

1 and 103. �e contour lines follow data smoothed with a Gaussian �lter (σ = 0.8

pixels).

6.5 Discussion

�e 5-design is a well-established method for estimating the powder-averaged
DDE signal from which µFA, a clinically and scienti�caly relevant microstruc-
tural parameter54,134,135,64,55–61,63, can be calculated without strict a priori as-
sumptions about tissue microstructure. �e minimal design enables crucial
acceleration of the method for human neuroimaging but prior to this study
its accuracy had not been validated against the theoretically justi�ed 5-design.
Hence, the study presented in this chapter had two main purposes. �e �rst
goal of the study was to experimentally validate the minimal design in neu-
ral tissue by directly comparing it to the 5-design using a pre-clinical scanner
that enables long acquisition times and high SNR. Second, simulation exper-
iments were performed to assess µFA’s noise robustness as a function of the
ground-truth µFA and MD over a range of relevant b-values.

While the 5-design requires 72 separate acquisitions per b-value, the min-
imal design requires a minimum of only 12 acquisitions. In this study, a sym-
metric version of the minimal design was used, consisting of 24 acquisitions to
eliminate the possibility of bias arising from cross-terms between the imaging
and di�usion encoding gradients205. A�er correcting for the di�erent num-
ber of acquisitions in the two protocols, a comparison of the µFA maps ac-
quired with the two methods revealed that the maps are nearly indistinguish-
able. In fact, µFA’s variance in the test-retest of the 5-design was very similar
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to the comparison of the 5-design and the minimal design. �us, the estimated
powder-averaged signal calculated from 72 measurements of the DDE 5-design
can be closely approximated in neural tissue, including both gray ma�er and
white ma�er tissues, by the minimal design in the b-value range that was stud-
ied here. �e results presented here hold for both ex vivo and in vivo conditions,
thereby excluding tissue �xation e�ects as confounders.

For every orthogonal gradient pulse pair in the 5-design, there are three
other gradient pulse pairs encoding the same b-tensor. �us, in case of Gaus-
sian di�usion and in�nite SNR, 15 orthogonal wave vector pairs are su�cient
for measuring the exact same powder-averaged signal than what is measured
with the 5-design. In voxels with su�cient orientation dispersion of the mi-
croscopic di�usion environments, this can be further reduced to 6 as shown by
Yang et al.56. However, if the microscopic compartments are perfectly aligned,
the minimal design su�ers from larger rotational variance than the 5-design, as
shown by the simulations presented here. �is result is in good agreement with
previous reports on the minimum number of directions required for estimating
the powder-averaged signal using QTE202.

�e underestimation of µFA due to higher order e�ects can be corrected
for by acquiring at least four di�usion-weighting shells (including b = 0) and
applying the higher order correction204. However, every shell consumes more
experimental time that is limited in human neuroimaging. In this study, the
higher order correction was not applied to avoid the prolonged acquisition and
therefore the µFA estimates are somwehat biased. Nevertheless, based on the
simulations in this study, the bias induced by the higher order terms is expected
to be, on average, less than 0.1 if b = 2.25 ms/µm2 and MD = 1 µm2/ms. �e
accuracy of several signal models for estimating µFA is discussed in detail in
Chapter 7. It is also worth mentioning that if the biased µFA is precise, it can
be highly useful both in neuroscience research and in the clinic.

�e investigation of µFA’s precision revealed two important features: µFA’s
precision depends strongly and nonlinearly on MD and on the actual µFA value.
When MD is very small, the estimation of µFA is hampered even with very high
SNR, and for reasonable values of MD, precise estimates of µFA < 0.5 require
very high (> 200) SNR. On the other hand, large values of MD result in very
diminished signal, impeding precise measurements. �e simulations also sug-
gest that the optimal b-value for measuring µFA in the brain, where MD ≈ 0.8
µm2/ms, is near 2.25 ms/µm2, a result which is consistent with previous stud-
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ies56. Combined, these �ndings suggest that caution needs to be exercised in
interpreting µFA maps, and the SNR should be reported to assess the con�-
dence in the estimates’ precision. In particular, µFA maps are more reliable in
areas with higher µFA, which should be taken into account upon interpreta-
tion of results. �erefore, µFA may be a powerful metric for observing axonal
degeneration in white ma�er voxels with high values of µFA but it lacks the
precision to be able to reliably pick up microstructural changes in gray ma�er
where µFA is low. �is lack of precision for low values of µFA have been previ-
ously reported with the µFA values derived from QTE experiments135,64. Also,
the large variance in voxels with low µFA can result in negative values of µA2,
leading to imaginary values of µFA. It is important to note that the simulations
incorporated di�usion tensors, rather than restricted di�usion, whose e�ects
were not the focus of this study. Still, given the experimental results, it seems
that the Gaussian regime was not severely violated in our experiments or the
µFA derived from the 5-design and minimal design would have signi�cantly
di�ered.

�ese results show that the minimal design provides an accelerated method
for estimating µFA approximately as robustly as the 5-design in neural tissue.
Additionally, it may be possible to use the minimal design to shorten the acqui-
sition time required for calculating µFA maps with the higher order correction,
providing more accurate estimates. However, three issues must be controlled
for when applying the minimal design. First, it is very challenging to reliably
measure values of µFA lower than 0.5, e.g., in gray ma�er, with SNR typically
achievable with clinical whole-body scanners. Second, the rotational variance
of the minimal design may result in biased signal powder average in tissues
where microenvironments are nearly aligned and highly anisotropic. �ird,
when using DDE with clinical whole-body scanners, it is important to control
for concomitant �elds, which can arise from asymmetric gradient waveforms
and give rise to substantial signal bias208. Furthermore, if the assumption of
apparent Gaussian di�usion is correct, then QTE would probably be more suit-
able for mapping µFA in the human brain due to more e�cient di�usion encod-
ing209. Microscopic di�usion anisotropy estimation with QTE will be discussed
in the next chapter.
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6.6 Conclusion

In conclusion, reducing the number of wave vector rotations in calculating the
powder-averaged DDE signal, as proposed by Yang et al.56, does not prevent
the accurate quanti�cation of microscopic di�usion anisotropy in neural tissue.
However, the SNR requirements for precise quanti�cation of µFA should be
carefully considered when applying the minimal design for estimating µFA.
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Chapter 7

Comparative analysis of signal
models for microscopic
anisotropy estimation using
q-space trajectory encoding

7.1 Introduction

DDE gradient waveforms consist of two trapezoidal pulse pairs separated by
a mixing time (Figure 6.1) and therefore require rather long echo times, re-
sulting in a diminished signal. Asymmetric DDE waveforms can also produce
signi�cant concomitant gradients in spin echo experiments, causing artefacts
and signal dropout208. QTE gradient waveforms, on the other hand, are de-
signed to enable shorter echo times by following an optimized trajectory in
q-space to de�ne a b-tensor with the desired shape, magnitude, and orienta-
tion (Equation 3.3.6)209. �is makes it feasible to perform MDE experiments
using more limited scanner hardware202, albeit at the cost of assuming di�u-
sion time dependency to be negligible because QTE gradient waveforms lack a
well-de�ned scalar di�usion time. If this assumption is not valid, a discrepancy
between the di�usion times of the gradient waveforms encoding di�erent b-
tensor shapes results in biased parameter estimates210. Furthermore, isotropic
di�usion encoding with QTE may be orientationally variant in the case of sig-
ni�cant time-dependent di�usion anisotropy211,212.

Promising results of the application of µFA (Equation 3.7.6), a normalized
measure of microscopic di�usion anisotropy that is equivalent to conventional
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FA if orientation dispersion is zero, have been reported in imaging brain tu-
mours64,55, multiple sclerosis lesions56,60, white ma�er degeneration in Parkin-
son’s disease patients63, and microstructural properties of brains of patients
with schizophrenia65 and epilepsy59. However, di�erent studies have applied
di�erent methods for estimating µFA and the di�erences between the meth-
ods have received li�le a�ention thus far. Understanding how di�erent µFA
estimation methods relate to each other is crucial in planning future studies
and interpreting reported results in the literature. Furthermore, it is important
to reach a consensus on the optimal method for measuring µFA, an essential
requirement for future clinical studies.

In this study, imaging experiments and simulations were performed to com-
pare the accuracy and precision of three µFA estimation methods: the truncated
cumulant expansion of the powder-averaged signal134,135,204,56,57, the gamma-
distributed apparent di�usivities assumption135,64,55,60, and q-space trajectory
imaging (QTI)65,59,63, a generalization of the truncated cumulant expansion to
individual acquisitions. �ese methods were chosen as they have each been
used in several studies and it is crucial to understand how they relate to each
other in order to interpret the reported results. �e µFA maps calculated from
the same data using the di�erent methods were compared and the precision
of the estimates was quanti�ed by repeatedly imaging a micro�bre phantom.
Furthermore, since the ground-truth value of µFA was unknown in the imag-
ing experiments, Monte Carlo random walk simulations were performed using
axon-mimicking �bres for which the ground truth was known. �e simulations
were also used to assess the e�ect of time-dependent di�usion on the param-
eter estimates. Although the work presented in this chapter focuses on QTE,
these signal models can be applied to analyze DDE data as well.

7.2 �eory

�is section provides a concise summary of the theory behind µFA estimation
using QTE. A more detailed description can be found, for example, in the re-
view by Topgaard115.

Conventional DTI represents di�usion at the voxel level by a symmetric
positive de�nite 3×3 tensor D that captures Gaussian di�usion. In imaging ex-
periments with moderate to high di�usion-weighting (roughly b > 1 ms/µm2

in the brain), the di�usion-weighted signal a�enuation clearly deviates from
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a monoexponential decay, revealing that the voxel-level di�usion is not Gaus-
sian, especially in white ma�er46. At the voxel level, non-Gaussian di�usion is
caused by restricted di�usion within the microscopic di�usion environments,
referred to as compartments herea�er, and varince in di�usion properties across
the compartments125.

If inter-compartmental exchange of water and intra-compartmental non-
Gaussianity of di�usion are negligible, the tissue in a voxel can be represented
by a distribution of microscopic di�usion tensors. In this case, the signal can
be expressed as

S = S0

∫
P6D(Dµ) exp (−b : Dµ) dDµ, (7.2.1)

where S0 is the signal without di�usion-weighting, P6D is the normalized dis-
tribution of microscopic di�usion tensors in the voxel, Dµ is a microscopic
di�usion tensor, b is the b-tensor used in the acquisition, : denotes the gen-
eralized scalar product between the two tensors, and integration is performed
over all symmetric positive de�nite 3× 3 tensors115.

Since recovering the six-dimensional microscopic di�usion tensor distri-
bution is an ill-posed problem115, several methods have been developed for
estimating relevant properties of it. One of these is µFA, a normalized measure
of the average eigenvalue variance of the microscopic di�usion tensors135,55:

µFA =

√
3

2

〈Varλ(Dµ)〉
〈Varλ(Dµ)〉+ 〈[Tr(Dµ)/3]2〉

, (7.2.2)

where Varλ( ) denotes an operator that calculates the eigenvalue variance of a
tensor, Tr( ) denotes the trace of a tensor, and 〈 〉 denotes averaging over the
microscopic di�usion tensor distribution.

q-space trajectory encoding

QTE is based on the idea that if the time dependency of the microscopic dif-
fusion tensors is negligible, the di�usion-weighted signal a�enuation depends
only on the applied b-tensor and not on the gradient wave vector’s trajectory
in q-space. A given b-tensor shape can be e�ciently encoded by de�ning a q-
space trajectory q(t) that maximizes the b-value. An optimized q-space trajec-
tory to be used in a spin echo experiment can be found by solving the following
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optimization problem209:

maximize
q

Tr(b)

subject to
∫ TE

0

q(t)qT(t)dt = b

b/Tr(b) = M

q(t) = q(TE) = 0

dq

dt

∣∣∣∣
t∈IRF

= 0∥∥∥∥ dqdt
∥∥∥∥ ≤ γGmax∥∥∥∥ d2qdt2
∥∥∥∥ ≤ γRmax∫ TE

0

(
dqi
dt

)2

dt ≤ ηγ2G2
max(TE), i = x, y, z,

(7.2.3)

where b is the b-tensor, M is a tensor de�ning the b-tensor shape, TE is the
echo time, IRF is the time interval during which the gradient amplitude has to
be zero because of the application of the refocusing pulse, γ is the gyromagnetic
ratio,Gmax is the maximum gradient amplitude,Rmax is the maximum slew rate,
and η ∈ [0, 1] is a parameter controlling the time given for the gradient coil to
cool down via heat dissipation.

Powder-averaged signal

�e powder-averaged signal, i.e., the signal averaged over all possible di�usion
encoding directions using the same b-tensor shape and magnitude, is orienta-
tionally invariant and thus enables the dimensionality of Equation 7.2.1 to be
reduced:

S = S0

∫ ∞
0

P (Dµ) exp (−bDµ) dDµ, (7.2.4)

where P is the distribution of apparent microscopic di�usivities in the voxel,
b is the b-value used in the acquisition, and Dµ is the apparent microscopic
di�usivity135. P depends on the shape of the b-tensor used in the acquisition.
�e powder-averaged signal can be estimated by averaging over the acquired
gradient directions, given that a su�cient number of gradient directions was
used134,202.

Using the cumulant expansion124 up to the second order in b, the powder-
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averaged signal can be expressed as

S ≈ S0 exp

(
−bMD + b2

V

2

)
, (7.2.5)

where MD = 〈Tr(Dµ)/3〉 is the voxel-level mean di�usivity and V is the sec-
ond central moment, i.e., variance, of P 135. By combining acquisitions with
di�erent b-tensor shapes, V can be decomposed into anisotropic and isotropic
variances, Vaniso and Viso, respectively. Vaniso is proportional to the average
eigenvalue variance of the microscopic di�usion tensors and Viso is equal to
the variance of mean di�usivities of the microscopic di�usion tensors115:

Vaniso =
2

5
〈Varλ(Dµ)〉, (7.2.6)

Viso = 〈[Tr(Dµ)/3]2〉 −MD2. (7.2.7)

In experiments performed with linear and spherical b-tensors, as is the case in
this study, the total variance relates to Vaniso and Viso as

VLTE = Vaniso + Viso, (7.2.8)

VSTE = Viso, (7.2.9)

where the subscripts LTE and STE represent acquisitions with linear tensor
encoding (Equation 3.7.2) and spherical tensor encoding (Equation 3.7.4), re-
spectively115.

�e limitation of estimating µFA as described above is that Equation 7.2.5 is
strictly valid at b→ 0. However, to estimate µFA, the applied b-value has to be
su�ciently high for the voxel-level non-Gaussian di�usion to be measurable.
�e accuracy of µFA estimation using the truncated cumulant expansion and
DDE has been shown to improve if an additional term is introduced to account
for higher order e�ects204:

S ≈ S0 exp

(
−bMD + b2

V

2
− b3P3

)
, (7.2.10)

where P3 is non-negative.
Another method for avoiding the invalidity of the cumulant expansion at

higher b-values is to a priori assume the distribution of apparent microscopic
di�usivities to be such that enables Equation 7.2.4 to be analytically evaluated,
e.g., gamma-distributed135:

P (Dµ; k, θ) =
(Dµ)k−1e−

Dµ
θ

θkΓ(k)
, (7.2.11)
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where k ∈ R+ and θ ∈ R+ are the shape and scale parameters of the gamma
distribution, respectively, and Γ is the gamma function. Under this assumption,
the powder-averaged signal can be expressed as

S ≈ S0

(
1 + b

V

MD

)−MD2

V

, (7.2.12)

where MD ≈ kθ and V = kθ2. However, the resulting parameter estimates are
naturally inaccurate if the distribution of apparent di�usivities is not gamma-
distributed.

Covariance tensor

�e second order cumulant expansion (Equation 7.2.5) has also been general-
ized to describe individual acquisitions instead of the powder-averaged signal.
In QTI65, the signal in an individual acquisition is expressed as

S ≈ S0 exp

(
−b : D +

1

2
(b⊗ b) : C

)
, (7.2.13)

where⊗ denotes the tensor outer product and C is a 3× 3× 3× 3 covariance
tensor de�ned as

C = 〈Dµ ⊗Dµ〉 −D⊗D. (7.2.14)

�e covariance tensor contains 21 unique elements and enables the estimation
of several relevant properties of the microscopic di�usion tensor distribution.
µFA can be calculated as

µFA =

√
3

2

〈Dµ ⊗Dµ〉 : Eshear

〈Dµ ⊗Dµ〉 : Eiso
, (7.2.15)

whereEiso = I6/3 andEshear = Eiso−(I3/3⊗ I3/3), where I denotes an identity
matrix, and the 3 × 3 × 3 × 3 rank-4 tensors are represented by 6 × 6 rank-2
tensors as described by Westin et al.65.

7.3 Methods

MRI data was acquired using a prototype MDE spin echo sequence213 on a
Siemens Magnetom Prisma 3T with maximum gradient strength of 80 mT/m,
maximum slew rate of 200 T/m/s, and a 64-channel head coil (Siemens Health-
care, Erlangen, Germany) at Great Ormond Street Hospital, London, United
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Kingdom. Images were preprocessed by applying random matrix denoising178

and Gibbs ringing correction179 using MRtrix3177 and distortion correction with
FSL’s181 topup and eddy180.

Volunteer experiments

�e brains of three healthy adult volunteers (two females and one male with
ages ranging from 27 to 42 years) were imaged with numerically optimized209

and Maxwell-compensated208, i.e., corrected for concomitant �elds arising from
gradient waveform asymmetry, gradient waveforms encoding linear and spher-
ical b-tensors (Figure 7.1A-B). �e volunteers gave wri�en and informed con-
sent prior to the scan. To reduce peripheral nerve stimulation and gradient
coil heating, the slew rate was constrained to a maximum of 65 T/m/s when
calculating the gradient waveforms using the so�ware provided by Sjölund et
al.209.

Under the Gaussian phase approximation214, the di�usion time of a QTE
gradient waveform can be quanti�ed by calculating the power spectrum of the
corresponding wave vector103:

PSD(ω) =

∣∣∣∣∫ TE

0

q(t) exp (−iωt) dt
∣∣∣∣2 , (7.3.1)

where PSD stands for power spectral density, q is the magnitude of the wave
vector along a single direction, and ω is the di�usion frequency. �is formalism
enables the problem to be analyzed in the di�usion frequency domain (Equa-
tion 3.2.10). �e power spectra of the Cartesian components of the waveforms
used in the imaging experiments are shown in Figure 7.1E-F.

Since the QTE waveform for spherical encoding exhibits spectral anisotropy
which may lead to an orientationally variant signal212, the orientational vari-
ance of the acquisition was quanti�ed using FA. DTI was �t separately to the
data acquired with linear and spherical tensor encoding using a weighted linear
least squares �t in Dipy184. If the STE acquisition is orientationally invariant,
non-zero values of FA are caused by noise and they are uncorrelated with the
FA values calculated from the LTE data.

Twelve di�usion encoding directions were used for b-values 0.1, 0.5, and 1
ms/µm2 and 32 directions for b-values 1.5 and 2 ms/µm2. Gradient waveforms
for both linear and spherical encoding were rotated213. �e directions were
distributed uniformly around the surface of a sphere by combining the vertex
coordinates of the icosahedron and the dodecahedron65. �e sequence also
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Figure 7.1: �e di�usion encoding gradient waveforms used in the imaging ex-

periments (A-B) and simulations (A-D) and the corresponding power spectra (E-

H). �e LTE waveforms in the TDE simulations were equal the x-components of the

corresponding STE waveforms. It is important to mention that the power spectra

of the unrotated TDE waveforms are identical along x, y, and z in the lab frame

but not along arbitrary directions.

included 15 images without di�usion-weighting, one of which had the phase
encoding direction reversed. Other relevant imaging parameters were: voxel
size = 2× 2× 2 mm3, FOV = 256× 256 mm2, 60 slices, TE = 103 ms, TR = 10 s,
partial Fourier = 6/8, and 2 repetitions. �e total scan time was approximately
40 minutes per volunteer.

Phantom experiments

A phantom consisting of highly hydrophilic hollow polycaprolactone micro�-
bres137 was imaged using the same acquisition protocol as the volunteers ex-
cept the following parameters: TR = 3 s, 10 slices, and 1 repetition.

�e phantom contained three ROIs with di�erent �bre con�gurations: par-
allel �bres, perpendicularly crossing �bres, and �bres with random orienta-
tions. �e inner diameter of the �bres was 9.9 ± 1.2 µm (mean ± standard
deviation) in the ROI containing parallel and crossing �bres, and 7.8 ± 0.5 µm
in the ROI containing randomly oriented �bres. �e randomly oriented �bres

108



(A) (B)

Figure 7.2: Representative scanning electron microscope images illustrating the

microstructure of the parallel micro�bre phantom (A) and the randomly oriented

micro�bre phantom (B). �e phantom with crossing micro�bres was made from

the same sample as the one with parallel micro�bres.

were placed randomly on a 2D plane. Scanning electron microscope images
illustrating the microstructure of the phantom are shown in Figure 7.2.

�e acquisition was performed 11 times to study the precision of the µFA
estimates. �e coe�cient of variation was calculated at each voxel as

CV =
σ

µ
· 100%, (7.3.2)

where σ is the standard deviation of µFA estimated using a given method over
the repeated acquisitions and µ is the mean µFA averaged over all acquisitions
and methods. A single value of µ was used to not penalize the methods that
produce lower values of µFA.

�e signal anisotropy of the acquisitions with the two waveforms was quan-
ti�ed using the same method as in the volunteer experiments.

Simulation experiments

GPU-accelerated Monte Carlo random walk simulations were performed using
Disimpy157 to compare the µFA estimates of the di�erent methods in a scenario
where the ground truth was known. �ree simulation experiments with dif-
ferent gradient waveforms were performed.

Simulation 1 was performed using the same waveforms as in the imaging
experiments. �en, in simulations 2 and 3, the simulation was repeated using
triple di�usion encoding (TDE). �e TDE waveforms consist of three gradient
pulse pairs with orthogonal directions and with identical di�usion encoding
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times (δ), di�usion times (∆) and gradient magnitudes. Similarly to DDE, the
di�erence between the onset of the subsequent gradient pulses with orthogonal
directions is referred to as mixing time (τ ). Following the approach proposed
by Lundell et al.210, Simulation 2 was performed with the waveform shown in
Figure 7.1C (δ = 35 ms, ∆ = τ = 44 ms) to reduce parameter bias due to
spectral anisotropy and the discrepancy in di�usion times between the gradi-
ent waveforms encoding linear and spherical b-tensors. �e linear waveform
in Simulation 2 was equal to the x-component of the spherical waveform. Fi-
nally, Simulation 3 was performed using a TDE waveform (Figure 7.1D) with a
shorter pulse length (δ = 3 ms), longer di�usion time (∆ = 100 ms), and longer
mixing time (τ = 100 ms) to enable the random walkers to more fully sam-
ple their environments to minimize the correlations between their positions
during the di�erent gradient pulse pairs. �e linear waveform in Simulation
3 was a TDE waveform with the same direction for the three pulse pairs and
with the same pulse length, di�usion time, and mixing time as the spherical
waveform. It is important to mention that the power spectra of the unrotated
TDE waveforms are identical along x, y, and z in the lab frame but not along
arbitrary directions.

�e simulated voxel, shown in Figure 7.3A, contained 381 axon-mimicking
irregular and impermeable �bres generated using ConFiG168. A histogram of
the simulated axon radii is shown in Figure 7.3B. �e thickness of the �bre
surface was zero. �e simulated voxel had periodic boundary conditions, i.e.,
the random walkers that le� the voxel encountered repeating identical copies
of the shown microstructure. �e volume of the simulated voxel was 39 × 39
× 32 µm3 of which 60% was occupied by the synthetic axons. 3 · 106 random
walkers were used. 1.095 · 106 random walkers were randomly placed in the
extra-axonal space and 5 · 103 inside each axon. Simulations 1, 2, and 3 were
performed with 104, 31720, and 62195 time steps, respectively, to keep the step
length constant (l = 0.31 µm) across the simulations. A uniform di�usivity of 2
µm2/ms was used.

To study the precision of µFA, SNR of the simulated signals was lowered to
25. Noisy signals were generated as

Snoisy =

√
(S +X)2 + Y 2, (7.3.3)

where S is the simulated signal without noise and X and Y are randomly
sampled from a normal distribution with zero mean and standard deviation σ.
Here, SNR refers to the signal without di�usion-weighting divided by σ.
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�e ground-truth µFA in each simulation was calculated according to Equa-
tion 7.2.2 by separately ��ing di�usion tensors to the LTE signals from each
compartment, i.e., the synthetic axons and the extra-axonal space. �e di�u-
sion tensors were estimated by ��ing di�usion and kurtosis tensors46 to data
using a weighted linear least squares algorithm in Dipy184. To vary the ground-
truth µFA, three signal fractions for the spins in the intra-axonal space were
used: 0.2, 0.6, and 1.
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Figure 7.3: (A) �e simulated voxel containing 381 axon-mimicking �bres. (B) A

histogram of the �bre radii (mean along the �bre length).

µFA estimation

Four µFA estimation methods were compared: regression of the cumulant ex-
pansion of the powder-averaged signal up to the second order in b and with a
higher order correction, the gamma-distributed di�usivities assumption, and
QTI. For brevity, these signal models will be referred to herea�er as the cumu-
lant model, higher order model, gamma model, and QTI, respectively.

�e cumulant model, higher order model, and gamma model were �t to the
powder-averaged data using a non-linear least squares trust region re�ective
algorithm207 in Scipy164 and equations 7.2.5, 7.2.10, and 7.2.12, respectively. S0,
MD, Viso, Vaniso, and P3 were used as �t parameters from which µFA was esti-
mated using equations 7.2.2, 7.2.6, and 7.2.7. P3 was included in the equation for
the signal acquired with linear b-tensors. �e �t parameters were constrained
to be non-negative real numbers. �e initial values of the �t parameters were:
S0 = average signal over images with no di�usion-weighting, MD = 1µm2/ms,
Viso = 0.1 µm4/ms2, Vaniso = 0.1 µm4/ms2, and P3 = 0.
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QTI was �t to data using the linear equation

β =
(
XTCX

)−1 (
XTC

)
S, (7.3.4)

where
β̂ =

(
lnS0 D C

)T
, (7.3.5)

X =


1 −bT

1
1
2
(b1 ⊗ b1)

T

... ... ...
1 −bT

n
1
2
(bn ⊗ bn)T

 , (7.3.6)

S =


logS1

...
logSn

 , (7.3.7)

where n is the number of acquisitions and D, C, bi, and (bi ⊗ bi) are column
vectors in Voigt notation65. �e diagonal matrix C with elements Cii = Si

was used to correct for heteroscedasticity in the log-transformed data116. �e
matrix inversion in Equation 7.3.4 was performed using the Moore-Penrose
pseudoinversion215 in Numpy163. µFA was calculated from the estimated values
of D and C according to equations 7.2.14 and 7.2.15.

7.4 Results

Volunteer experiments

Representative axial slices of the µFA maps in one of the volunteers are shown
in Figure 7.4. A visual inspection suggests that the gamma model results in
higher µFA values than the other methods and that the higher order model
results in noisier maps than the other methods.

�e Bland-Altman plots in Figure 7.5 show the voxel-wise di�erences be-
tween the methods’ µFA estimates against their mean values across all volun-
teers. �e good agreement between the cumulant model and QTI can be seen
in the small mean di�erence (0.01) and the small width of the 95% central range
of the di�erences (0.17). �e gamma model produced the highest values of µFA,
0.1 greater than QTI when averaged over all data. �e plots also highlight the
heteroscedasticity of µFA.

An ordinary least-squares linear regression of the di�erences on the aver-
ages revealed that the di�erences between the estimates are proportional to
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Figure 7.4: Representative axial slices of the µFA maps in one of the volunteers

calculated using the cumulant model (A), higher order model (B), gamma model

(C), and QTI (D).

the mean value of µFA for all pairs of methods (p < 10−3). However, since the
relationship between the methods’ estimates is non-linear, a linear regression
does not provide a satisfactory �t to data. Speci�cally, the higher order model’s
relationship to the other methods is strikingly non-linear. �e width of the 95%
central range of the di�erences was largest in the comparisons involving the
higher order model

A signi�cant correlation (Pearson’s R = 0.22, p < 10−3) was found be-
tween the FA maps calculated from the data acquired with linear and spherical
b-tensors, revealing that the acquisition with isotropic di�usion-weighting was
moderately orientationally variant.
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Figure 7.5: Voxel-wise comparison of the cumulant model (µFACUM ), higher or-

der model (µFAHO), gamma model (µFAGAM ), and QTI (µFAQTI). �e di�erences

in µFA are plo�ed against their mean value. �e dashed lines show the 2.5th and

the 97.5th percentiles of the distribution of the di�erences. �e solid black lines

depict the mean di�erence. Colour represents data point density. �e �gure was

generated using data from all volunteers a�er excluding the voxels in the cere-

brospinal �uid using a mask that was genereated by thresholding the MD map

with a threshold of 2 µm2/ms.
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Phantom experiments

µFA values averaged over the phantom ROIs from the repeated acquisitions are
shown in Figure 7.6A-C. �e gamma model consistently resulted in the great-
est values of µFA, followed by the higher-order model, cumulant model, and
QTI. �e di�erences in mean µFA calculated using the di�erent signal models
were statistically signi�cant in all pair-wise comparisons using an independent
samples t-test (p < 10−3). Despite the smaller �bre radius, µFA was the lowest
in the ROI with randomly oriented �bres due to the lower packing density of
the micro�bres.

�e distributions of the voxel-level CVs are shown in Figure 7.6D-F. �e
median CVs were well below 2%, indicating good repeatability in voxels with
high µFA. �e higher-order model stood out for having the lowest repeatabil-
ity, especially in the phantom ROIs with crossing or randomly oriented �bres.
A signi�cant correlation (R2 = 0.11, p < 10−3) was found between the FA
maps calculated from the data acquired with waveforms encoding linear and
spherical b-tensors.

�e average SNR was 123 as quanti�ed by the mean signal divided by the
standard deviation over the images without di�usion-weighting.

Simulation experiments

�e results of the simulation experiments are presented in Figure 7.7. �e
ground-truth µFA was 0.34 for fintra = 0.2, 0.59 for fintra = 0.6, and 0.97 for fintra

= 1.
In Simulation 1, all methods overestimated µFA and the bias was greater

at lower values of ground-truth µFA (Figure 7.7A-C). In Simulation 2, the ap-
plication of the TDE waveform whose power spectrum along three orthogonal
directions matches that of the linear waveform reduced the overestimation of
µFA for all methods (Figure 7.7D-F). In Simulation 3, the application of the TDE
waveforms with short pulses, long di�usion times, and long mixing times fur-
ther reduced the bias (Figure 7.7G-I). �ese results show that both the discrep-
ancy between the di�usion times of the waveforms encoding di�erent b-tensor
shapes, and the correlations between the spins’ positions during the di�usion
encoding along di�erent directions can result in overestimation of µFA. How-
ever, the simulations suggest that the bias is small in white ma�er, where µFA
is high. �e average positive bias caused by time-dependent di�usion, i.e., the
di�erence between the expected µFA in simulations 1 and 3, was 0.11 for fintra
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Figure 7.6: �e results of the phantom experiments. (A-C) µFA values averaged

over the phantom ROIs from the repeated acquisitions. (D-F) �e distributions of

the voxel-level coe�cients of variation. �e blue line denotes the median. �e

box spans the interquartile range. �e whiskers extend to the furthest data point

within 1.5 · IQR from the 1st or the 3rd quartile.

= 0.2, 0.09 for fintra = 0.6, and 0.04 for fintra = 1.
�e accuracy of the signal models for µFA estimation was assessed using

the results from Simulation 3 which are not confounded by the bias induced by
time-dependent di�usion. �e mean squared error (MSE) between the expected
value of µFA and the ground-truth value was 1.8 · 10−3 for the cumulant model,
5.4 · 10−3 for the higher-order model, 12.7 · 10−3 for the gamma model and 1.6
· 10−3 for QTI. In terms of precision, the average CV of µFA was 6.6% for the
cumulant model, 10.6% for the higher-order model, 6.6% for the gamma model,
and 8.5% for QTI. However, µFA is heteroscedastic and the precision of each
method strongly depended on the ground-truth µFA.

�e higher-order model is motivated by the b-value-dependent underes-
timation of µFA using the cumulant model. Indeed, the higher-order model
produced more accurate estimates of µFA when the cumulant model under-
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estimated µFA. However, because P3 was constrained to be non-negative, the
higher-order model could not produce lower values of µFA and thus it pro-
vided even more inaccurate estimates in situations where the cumulant model
overestimated µFA. Allowing P3 to take negative values improved the accuracy
(MSE = 2.0 · 10−3.) but greatly destabilized the �t (mean CV = 24%). In most
cases, at the b-values used in the simulations, the underestimation due to the
invalidity of the cumulant expansion of the powder-averaged signal was not
strong enough to cancel the overestimation.
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Figure 7.7: �e distributions of the µFA estimates calculated from the simulated

data a�er 104 repetitions of Rician noise addition to lower SNR to 25 using the cu-

mulant model (µFACUM ), higher order model (µFAHO), gamma model (µFAGAM ),

and QTI (µFAQTI). fintra is the signal fraction of the intra-axonal space. (A)-(C)

Results of Simulation 1. (D)-(F) Results of Simulation 2. (G)-(I) Results of Simu-

lation 3. �e dashed line denotes the ground-truth µFA. �e blue line denotes the

median. �e box spans the interquartile range (IQR). �e whiskers extend to the

furthest data point within 1.5 · IQR from the 1st or the 3rd quartile.
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7.5 Discussion

Over recent years, several microscopic anisotropy estimation methods have
been introduced134,135,65,216,204,125, yet the di�erences between the methods have
received li�le a�ention thus far. �e purpose of this study was to assess the
accuracy and precision of µFA estimates calculated using di�erent signal mod-
els. µFA was chosen as the metric of interest for its connection to conven-
tional FA that is well known in the neuroscience community. �e cumulant
model, gamma model, and QTI were chosen as the signal models of interest for
their numerous recent applications in neuroimaging studies64,55,65,56,60,59,63. �e
higher order model was included in the study for it being a simple extension to
the cumulant model that has been shown to improve the accuracy of µFA esti-
mation in animal studies using DDE204. Until now, a study by Reymbaut et al.217

is the only one to have explicitly compared µFA estimation methods. However,
they focused on computationally sampling the parameter space by modelling
di�usion as a distribution of microscopic di�usion tensors using Equation 7.2.1.
In another relevant study, Martin et al.218 estimated the covariance of the mi-
croscopic di�usion tensor distribution using QTI and investigated how µFA
relates to other microscopic anisotropy indices in terms of contrast-to-noise
ratio. In this study, four µFA estimation methods were applied on MRI data
acquired using a clinical whole-body scanner and on synthetic data generated
by simulating time-dependent di�usion.

In this study, the gamma model su�ered from the greatest bias, consis-
tently producing greater values than the other methods in the volunteer exper-
iments, phantom experiments, and simulations. �e disagereement between
the gamma model and the other methods can be understood by the fact that
the gamma model assumes the distribution of apparent di�usivities to follow
a gamma distribution whereas the other methods are all based on the trun-
cated cumulant expansion. However, Reymbaut et al.217 have reported that
the gamma model produces biased estimates when the signal strongly deviates
from a monoexponential decay, as is the case in white ma�er, and that QTI re-
sults in biased estimates in the case of signi�cant size variance of microsocpic
di�usion environments. �erefore, given the microstructure-dependent bias,
the results presented here can not be generalized to all situations.

In terms of precision, the higher order model stood out by being the most
sensitive to noise whereas the other three methods were more similar. �is is
most likely explained by the larger number of �t parameters compared to data
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points and the third order polynomial �t’s sensitivity to signal variation. In the
phantom experiments, the voxel-speci�c CV of µFA from all methods was low
with the majority CV values being well below 2%, indicating very good repeata-
bility in voxels with high microscopic di�usion anisotropy. Since the phan-
tom contained highly anisotropic micro�bres, this result was expected based
on previous reports of how the precision of µFA is high in voxels with high
anisotropy but quickly diminishes with a decreasing value of µFA135,64,202,219.
Because of this property of µFA and the possible overestimation of µFA by the
gamma model, it may be more sensitive to microstructural changes than the
other methods in some situations.

�e simulation experiments showed that the combination of trapezoidal
linear gradient waveforms and isotropic encoding with QTE can lead to a sig-
ni�cant overestimation of µFA, a result that has been discussed in detail by
Lundell et al.210. As a solution, they proposed designing the linear waveform so
that its power spectrum matches that of the spherical waveform at least along
one direction. Indeed, in the simulations, the accuracy of µFA estimates was
improved when the power spectra were matched. However, the simulations
also showed that this is not su�cient for accurate estimation of µFA. �e accu-
racy of µFA further improved when a TDE waveform with short pulses, long
di�usion time, and long mixing time was applied, eliminating the correlations
between the positions of the random walkers during the applications of the
gradient pulse pairs, an important assumption in the theory of µFA estimation
with DDE134. However, the simulated TDE waveforms are completely unrealis-
tic in today’s human neuroimaging experiments because of their duration and
gradient strength requirements. Considering that the bias in µFA induced by
time-dependent di�usion was small (< 0.1), and the e�ects of time-dependent
di�usion are easier to observe in Monte Carlo random walk simulations than in
the brain220, these results support using QTE for µFA estimation in the human
brain.

�is study has several limitations. Most importantly, the accuracy and pre-
cision of µFA estimation depend on the details of the acquisition protocol which
was kept constant here. For instance, the e�ect of b-values and di�usion en-
coding directions was outside the scope of this study. Also, the problem of
designing optimal gradient waveforms for MDE experiments, discussed in de-
tail by Szczepankiewicz et al.221, was outside the scope of this study. Further-
more, the acquisitions with the lowest b-value may be a�ected by perfusion
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e�ects that may cause parameter bias. However, the focus of this study was
to assess the performance of the signal models relative to each other when ap-
plied on the same data. Furthermore, the micro�bre phantom used for study-
ing the precision of µFA contains �bres that are too large to be representative
of white ma�er microstructure. Finally, in the simulations, the e�ects of ori-
entation dispersion, distribution of axon radii, and packing density were not
assessed because the simulated geometry was kept constant across the simula-
tions. Nevertheless, the simulated �bre geometry, generated using the modern
algorithm by Callaghan et al.168, resemble real axons and enabled the µFA es-
timates to be compared to the ground truth. Future studies should address the
mentioned issues to facilitate the optimal use of µFA.

7.6 Conclusion

�is study demonstrated that the di�erent signal models yield signi�cantly
di�erent µFA estimates when calculated from the same data. Considering that
QTI provided the most accurate estimates and also enables several other mi-
crostructural paremeters to be estimated, this study supports using it over the
other included methods. Furthermore, the simulations showed that matching
the power spectrum of the linear waveform to the power spectrum of a com-
ponent of the spherical waveform is not su�cient for accurate estimation of
µFA. Nevertheless, the simulations suggest that the bias in µFA caused by time-
dependent di�usion is small in human white ma�er.
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Chapter 8

Conclusions

�e aim of this thesis was to study the state-of-the-art dMRI methods for esti-
mating microscopic di�usion anisotropy in the human brain and to assess their
robustness to facilitate their adoption in the wider neuroscience research com-
munity and possible deployment in future clinical studies. �e thesis consists
of a comprehensive review of the relevant literature followed by four indepen-
dent research projects.

Chapter 4 presented Disimpy, a massively parallel dMRI simulator and a
contribution to the growing library of scienti�c Python packages. �e simula-
tor takes advantage of the recent developments in both the so�ware and hard-
ware of general-purpose GPU computing to enable large amounts of synthetic
signals to be generated on standard desktop and laptop computers without
needing to access high-performance computing clusters. �e simulator is writ-
ten in Python, a programming language known for its readibility and clarity,
making it very approachable and easily extensible to researchers and students
with li�le or no prior experience in massively parallel computing. Although
it was su�cient for the study presented in Chapter 7, the implementation of
some of the algorithms in Disimpy is suboptimal in terms of computational
complexity and memory management. �e long-term vision is to continue the
development of Disimpy by implementing more features, such as �ow, and op-
timizing performance while it is used in future studies.

In Chapter 5, the reproducibility of three commonly used microstructural
models for estimating µFA or intra-neurite volume fraction, a microstructural
metric closely related to µFA, was quanti�ed and the shortcomings of such
SDE methods in quantifying microscopic di�usion anisotropy were discussed.
�e results of the study show that despite the accuracy issues highlighted in
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the theory section, the reproducibility of most of the microstructural metrics
calculated using both NODDI and SMT is comparable to the reproducibility of
DTI and DKI parameters. �erefore, NODDI and SMT may be valuable tools
in situations where they o�er the greatest sensitivity to relevant di�erences
in the brain microstructure across groups or over time. However, due to the
invalid model assumptions, the resulting parameter estimates are biased and
thus the parameter names should not be taken literally.

In Chapter 6, the challenges and limitations in estimating microscopic dif-
fusion anisotropy using DDE in the human brain were discussed and a clini-
cally feasible acquisition protocol was validated using animal imaging experi-
ments. Furthermore, the precision of the resulting µFA estimates was quanti-
�ed using simulations. �e results of the study support using DDE in human
neuroimaging but raise hitherto overlooked precision issues when measuring
low values of µFA using DDE. Finally, although preliminary DDE experiment
using the proposed clinically feasible protocol was performed with a clinical
whole-body scanner, unfortunately, it was not possible to acquire more scans
as a consequence of the Covid-19 pandemic. An interesting direction for fu-
ture research would be to optimize the used acquisition protocol, minimize the
signal bias caused by concomitant gradients208, and apply the recently devel-
oped correlation tensor imaging (CTI) in the human brain125. CTI is a recently
developed method that enables intra-compartmental kurtosis to be estimated
from DDE data. Furthermore, a comprehensive comparison between DDE and
QTE should be performed to understand which di�usion encoding method is
more suitable in a given situation.

In Chapter 7, µFA estimation using QTE, an MDE method speci�cally devel-
oped with the hardware and time limitations of human neuroimaging in mind,
was discussed and four previously introduced signal models were compared in
terms of accuracy and precision. It is worth mentioning that the signal mod-
els discussed in Chapter 7 can be applied to estimate µFA from data acquired
with both DDE and QTE. �e results show that the di�erent methods result
in signi�cantly di�erent values of µFA when calculated from the same data.
Furthermore, the simulations of time-dependent di�usion showed that all the
studied methods may overestimate µFA if there is a discrepancy between the
di�usion times of the gradient waveforms encoding di�erent b-tensor shapes
or if there is signi�cant time-dependent microscopic di�usion anisotropy. Nev-
ertheless, the results suggest that the resulting bias in µFA is less than 0.1 in
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human white ma�er. Considering that QTI provided the most accurate µFA
estimates and also enables several other microstructural parameters to be cal-
culated from the estimated covariance tensor, this study supports using it in-
stead of the other included signal models. An interesting direction for future
research would be to design optimal gradient waveforms for minimizing the
parameter bias and maximizing the sensitivity to the relevant microstructural
length scales. �e development of more realistic and diverse simulated tissue
microstructures would also be useful in validating the signal models. Disimpy
could be used in these studies to simulate the signal with which the models
can be validated. Furthermore, since QTI is based on a standard weighted least
squares �t, future studies should optimize it by applying more advanced meth-
ods.

Overall, the work presented in this thesis shows that microscopic di�usion
anisotropy can be robustly estimated in white ma�er of the human brain us-
ing multidimensional di�usion encoding to solve the fundamental degeneracy
in data acquired with single di�usion encoding. However, the current meth-
ods lack the precision to reliably map microscopic di�usion anisotropy in gray
ma�er or other brain regions with low microscopic di�usion anisotropy. As
discussed in Section 3.7, the measurement of microscopic di�usion anisotropy
without signi�cant a priori information about tissue microstructure requires
combining acquisitions with at least two di�erent b-tensor shapes. DDE wave-
forms can be used to generate linear and planar b-tensors with well-de�ned
di�usion times and thus the data can be analyzed without assuming the e�ects
of time-dependent di�usion to be negligible. QTE waveforms, on the other
hand, enable more e�cient di�usion encoding for arbitrary b-tensor shapes,
although the resulting waveforms lack a well-de�ned scalar di�usion time, a
factor that must be taken into account when analyzing the data. �e choice be-
tween DDE and QTE waveforms depends on the application and the available
scanner hardware. It is important that future studies investigate the optimal
choice of waveform type for a given scenario.

In conclusion, since µFA is not a�ected by the orientation dispersion of ax-
ons and its precision is high in white ma�er, µFA can be very useful in measur-
ing white ma�er integrity and axonal degeneration associated with a variety
of neurological conditions.
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[198] N. Shemesh, E. Özarslan, T. Adiri, P. J. Basser, and Y. Cohen, “Nonin-
vasive bipolar double-pulsed-�eld-gradient nmr reveals signatures for
pore size and shape in polydisperse, randomly oriented, inhomogeneous
porous media,” �e Journal of chemical physics, vol. 133, no. 4, p. 044705,
2010.

[199] N. Shemesh and Y. Cohen, “Microscopic and compartment shape
anisotropies in gray and white ma�er revealed by angular bipolar
double-pfg mr,” Magnetic resonance in medicine, vol. 65, no. 5, pp. 1216–
1227, 2011.

[200] S. N. Jespersen, “Equivalence of double and single wave vector di�usion
contrast at low di�usion weighting,” NMR in Biomedicine, vol. 25, no. 6,
pp. 813–818, 2012.

[201] M. Lawrenz, M. A. Koch, and J. Finsterbusch, “A tensor model and
measures of microscopic anisotropy for double-wave-vector di�usion-
weighting experiments with long mixing times,” Journal of Magnetic Res-

onance, vol. 202, no. 1, pp. 43–56, 2010.

[202] F. Szczepankiewicz, J. Sjölund, F. Ståhlberg, J. Lä�, and M. Nilsson,
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