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Abstract

We derive equations of motion and its solutions in the form of solitons from deformational
energy functionals of a coupled system of microscopic and macroscopic deformations. Then
criteria in constructing the chiral energy functional is specified to be included to obtain soliton-
like solutions.

We show various deformational measures, used in deriving the soliton solutions, can be
written when both curvature and torsion are allowed, especially by means of microrotations
and its derivatives. Classical compatibility conditions are re-interpreted leading to a universal
process to derive a distinct set of compatibility conditions signifying a geometrical role of the
Einstein tensor in Riemann-Cartan manifolds.

Then we consider position-dependent axial configurations of the microrotations to construct
intrinsically conserved currents. We show that associated charges can be written as integers
under a finite energy requirement in connection with homotopic considerations. This further
leads to a notion of topologically stable defects determined by invariant winding numbers for a
given solution classification.

Nematic liquid crystals are identified as a projective plane from a sphere hinted by the
discrete symmetry in its directors. Order parameters are carefully defined to be used both
in homotopic considerations and free energy expansion in the language of microcontinua. Mi-
cropolar continua are shown to be the general case of nematic liquid crystals in projective
geometry, and in formulations of the order parameter, which is also the generalisation of the
Higgs isovectors.

Lastly we show that defect measures of pion fields description of the Skyrmions are related
to the defect measures of the micropolar continua via correspondences between its underlying
symmetries and compatibility conditions of vanishing curvature.
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Impact Statement

Descriptions of deformational propagations in coupled systems of microscopic and macro-
scopic continua are shown to be the form of solitons. This further can be extended to a quantised
soliton system which can be seen in the Euclidean Yang-Mills theory under the non-relativistic
limit.

A notion of zero curvature in the Einstein-Cartan theory is explicitly related to elasticity
in the context of compatibility conditions. And homotopy groups are used to classify these
compatibility conditions. This can be related to the theories in understanding the microscopic
gravitation when one considers the elasticity in the curved space.

A construction of position-dependent axial microrotational fields as field configurations for
conserved currents is discussed. Associated total charges of the conserved currents are shown to
be topologically and geometrically invariant integers. In constructing field configurations, chiral
structures on the given manifold is highly dependent on integers that embedded in axial fields.
Hence, it can be useful to consider the origin of the chirality especially using projective geometry,
for example in magnetic monopoles as seen as projected defects from higher dimensions.

Nematic liquid crystals are confirmed to be a special case of micropolar continua in terms
of order parameters and its projective geometrical properties. Further, micropolar continua are
identified as projective space of the Skyrmions of the spin-isospin system, sharing an identical
form of the compatibility condition for vanishing curvature. A number of phases of superfluid
liquid helium of 3He are known to exhibit similar symmetries of the spin-orbit system accompa-
nied by the well-established order parameter formalism, which is much similar to that of nematic
liquid crystals. Hence it is applicable to extend our generalisation of micropolar continua in
those phases of 3He.
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Notations

a : 3-vector and 3-component quantity
nv : normalised 2-component vortex field
n3 : normalised 3-component field
nN : normalised nematic liquid crystal field
nh : normalised 3-component hedgehog field
n4 : normalised 4-component field
A : 3 × 3 matrix of M3(R)
1 : 3 × 3 identity matrix
a : arbitrary n-component tensor
A : general n× n matrix of Mn(R,C)
I : general n× n identity matrix
z̄ : complex conjugate of z ∈ C
A∗ : complex conjugate of A ∈ Mn(C)
A† : transpose of complex conjugate of A ∈ Mn(C)
AT : transpose of A ∈ Mn(R,C)
ui : displacement vector u
uij : distortion tensor, grad u = ∂jui

ϵijk : Levi-Civita symbol, ϵ123 = 1 = −ϵ213
Γ : Nye’s tensor
F = ∇ψ = 1 + ∇u : deformation gradient tensor
F = RU = polar(F )U : classical polar decomposition
U = R

T
F : first Cosserat deformation tensor

R
T GradR : second Cosserat deformation tensor

(DivA)i = ∂jAij : divergence on the tensor A
(CurlA)ij = ϵjkl∂kAil : curl on the tensor A
(GradA)ijk = ∂kAij : gradient on the tensor A
(Div (grad A))i = ∂j∂jAi : divergence on the tensor (grad A)ij = ∂jAi

(div A) = ∂iAi : divergence on the vector A
(grad A)ij = ∂jAi : gradient on the vector A
(curl A)i = ϵijk∂jAk : curl on the vector A
sym M = (M +MT )/2 : symmetric part of matrix M
skew sym M = (M −MT )/2 : skew-symmetric part of M
dev M = M − tr(M)1/3 : deviatoric or trace-free part of M
A : B = ⟨A,B⟩ = tr(ABT ) = tr(ATB) : Frobenius product of matrices A and B
∥X∥2 = ⟨X,X⟩ = tr(XXT ) : Frobenius norm of X
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Part I

Defects in microstructures
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Chapter 1

Microcontinuum

It all started from a question. What does microscopic deformation look like when a large
body undergoes elastic deformation? Then a following question arises. Can it be the same
description that we know from the classical elasticity or something completely different? The
same questions may have occurred to the brothers, François Cosserat (1852–1914) and Eugéne
Cosserat (1866–1931), when they started to explore the theory of microscopic deformable body.
In Part I, we would like to present solutions for deformational propagations in deformable media,
based on the variational principle in attempting to understand deformations in coupled systems
of microscopic and macroscopic continua. Part I is mainly based on our published works [1, 2].

1.1 Introduction

Classical elasticity is based on considering materials whose idealised material points are struc-
tureless. Any possible internal properties are neglected in the classical theory.

A microcontinuum, on the other hand, is a continuous collection of deformable material
points. The characteristic aspect of the theory with a microstructure is that we assume a
microelement to exhibit an inner structure attached to vectors called directors, which span
internal three-dimensional space. Directors can rotate, compress and shear, independently of
macroscopic deformations, to describe interior deformations of the microstructure.

The first ideas along those lines go back to the Cosserat brothers who pioneered such theories
[3] back in 1909, fully in its geometrically nonlinear setting. In some ways, their work was ahead
of their time and its significance had been overlooked for many decades. Starting from the 1950s,
interests in this theory increased and many advances were made since then [4–7,7–13].

The most general elasticity theories with microstructure contain nine additional degrees of
freedom which consist of three microrotations, one microvolume expansion, and five microshear
deformations. A comprehensive account of microcontinuum theories can be found in [9,14,15].
A material structure of this generalised theory is called micromorphic and if we disregard the
microshear deformations from the micromorphic, the theory is called microstretch in which
the directors can change its microvolume element and orientations under the microrotations.
Some example of micromorphic continua include turbulent fluids, blood cell and some models
of liquid crystals. Recent developments of nonlinear problems in generalised continua can be
found in [16–20].

If we restrict these microdeformations to be rigid, so we further disregard the microshear,
one deals with three degrees of freedom of the microrotations, in addition to the classical
translational deformation field. The resulting model is often referred to as Cosserat elasticity
or micropolar theory. A few example of materials exhibiting the micropolar structure are
ferromagnetic fluids, and fluids of rigid microelements. Animal bone structures are particularly
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good example of micropolar media, with pores in the bone are filled with micropolar materials
which can undergo rigid microrotations.

We would like to consider the nature of microdeformation in micropolar models in which
the rotation play a central role of the microscopic defects. If these deformations are time
dependent, we wish to consider dynamic evolution of the microdeformations which may or may
not be coupled to the macroscopic deformational measures. To do so, we would like to start
from total energy functions regarding microscopic and macroscopic deformations with a set of
appropriate classical and micropolar parameters. All other microscopic version of continuity
equations, constitutive equations and balance laws can be found in the literatures introduced
above, especially in [3].

Once one can identify and collect the relevant energy functionals for the micropolar elasticity,
equations of motion for the system can be found by the variational principle. Due to the highly
nonlinear nature of the system, various attempts were made to simplify the process under
relatively weak restrictions and a simple ansatz. Spinor methods were used in [21] to simplify
the Euler-Lagrange equation and subsequent works appeared in [22, 23], with an intrinsically
two-dimensional model studied in [24]. In [25], polarity of ferromagnets gave rise to descriptions
of the defects in order parameters as solitary waves under external magnetic stimuli, followed
by the study in the elastic crystals as a micropolar continuum in [26], again with descriptions
of soliton solutions for topological defects.

Variants of the geometrically nonlinear Cosserat model are also used to describe lattice rota-
tions in metal plasticity in [27]. Further recent developments in the theory including nonlinear
problems in generalised continua were studied rigorously for instance in [16–20,28–31].

1.2 Deformational measures in classical and microcontinuum
mechanics

In a usual rectangular Cartesian coordinate system with the origin O, suppose we have a fixed
region of space R0 occupied by continuously distributed matter. After a subsequent time t,
an original body B0 is moved or deformed to a new body B in the region R. One of critical
assumptions in continuum mechanics is that we are able to identify individual particle element
of the body so that we can track a point P in a body B0 at time t = 0 to a point p in B at an
arbitrary time t.

Then the motion of B can be written as a function of the new position vector x dependent
on the original position X and time t.

x = x(X, t) (1.2.1)

for all X ∈ R0 and x ∈ R. In practice, we can solve this for X to obtain

X = X(x, t). (1.2.2)

The configuration of B0 occupied by the position of particles at t = 0 is called the reference (or
material) configuration and we denote any quantity in the reference configuration by a capital
letter. The configuration of B with position of particles at x is called the spatial configuration
and we denote quantities in this reference by a lower case. And we call the expression (1.2.2)
as a spatial description in which we regard the spatial coordinate x as independent variables
and the expression (1.2.1) as the material description treating X as independent variables.

A displacement vector u describes macroscopic translations of a point particle at P with a
vector X to the point p with x and this can be written in the spatial description as

u(x, t) = x − X(x, t). (1.2.3)
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In this way, we can write quantities such as velocity v, acceleration a, etc. in terms of either
material or spatial description, defined by

v(X, t) = ∂u(X, t)
∂t

, a = ∂v(X, t)
∂t

. (1.2.4)

One of most important tensors describing deformations is a deformation gradient tensor F
defined by

FkK = ∂xk

∂XK
, (1.2.5)

which can be defined in a same way for the classical and microcontinuum theory. In the classical
continuum theory, this tensor can be decomposed using the polar decomposition as

F = RU = V R (1.2.6)

with a right stretch U and a left stretch tensor V satisfy, respectively,

U2 = F TF and V 2 = FF T . (1.2.7)

We assume that detF ̸= 0 and it is obvious that F T is also second-order tensor and so is
F−1, where

F−1
Kk = ∂XK

∂xk
. (1.2.8)

A displacement gradient tensor is defined by FiR − δiR, which is

FiR − δiR = ∂xi

∂XR
− δiR = ∂ui

∂XR
. (1.2.9)

A strain tensor is defined by the symmetric part of the displacement gradient tensor

uij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, uij = uji , (1.2.10)

where we made an approximation xi ≈ XR for small deformations.
Next, we consider forces acting in an interior of continuous body. Suppose that a part of

a body B occupies a region R which has a surface S. Let P be a point on the surface S, n a
unit vector directed along the outward normal to S at P and δS an area of an element of S
which contains P . We assume that S and R possess any necessary smoothness and continuity
properties (e.g. it is assumed that the normal to S is uniquely defined at P ).

It is also assumed that on the surface element with area δS, the material outside R exerts
force on the material inside R.

δf = t(n)δS. (1.2.11)

Force δf is called surface force, and t(n) mean surface traction transmitted across the element
of area δS from the outside to the inside of R.

We can approximate that the surface traction t(n) becomes a quantity that is independent
of the shape of the infinitesimal area as δS → 0 to write

t(n) = lim
δS→0

δf

δS
. (1.2.12)

In a system of rectangular Cartesian coordinates, we can write t(n) with respect to the usual
orthonormal base vectors ei by

ti = tijej , (1.2.13)
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for i, j = 1, 2, 3. Using ei · ej = δij , this becomes

tij = ti · ej . (1.2.14)

Projection of the traction ti in the direction of ej will define a tensor tij called the stress tensor.
For example, t11 is the component of t1 in the direction of e1. And t11 is positive if the material
on the x-positive side of the surface on which t1 acts is pulling the material on the x-negative
side. In particular, diagonal components {t11, t22, t33} are called direct stress components and
remaining components are called shearing stress components.

As an immediate application of the definition of the stress tensor, suppose the body in the
region R is in equilibrium so that resultant force and resultant couple about O on the continuum
in the region is zero. These give a set of statements that∫

S
t(n) dS +

∫
R
ρg dV = 0 ,∫

S
x × t(n) dS +

∫
R
ρx × g dV = 0

(1.2.15)

where ρg is the body force (e.g. gravitational, electromagnetic forces) per unit volume.
Using divergence theorem, (1.2.15) can be written in components∫

R

(
∂tij
∂xi

+ ρgj

)
dV = 0 , (1.2.16a)∫

R
ϵjpq

(
∂

∂xr
(xptrq) + ρxpgq

)
dV = 0 . (1.2.16b)

The equation (1.2.16a) will give the equation of equilibrium,

∂tij
∂xi

+ ρgj = 0 (1.2.17)

and (1.2.16b) will be reduced to ϵjpqtpq = 0, which characterises the symmetric property of the
stress tensor,

tpq = tqp . (1.2.18)

A microcontinuum, on the other hand, is a continuous collections of deformable and stable
(i.e. indestructible) material points [15]. We call these stable and deformable structures as
particles and a typical example of a particle in the microcontinuum is illustrated in Fig.1.1
(right). A cesium chloride (CsCl) is often used to illustrate the inner structure of the microcon-
tinuum [15] with Cs+ ion located at the centre of the cube and Cl− ions at eight corners of the
cube. This model can be constructed from alternating layers of equally spaced cesium layers and
chloride layers in bulk. The cubane of chemical formula C8H8 with its genuine individual cubic
molecular structure provides good model of micropolar medium with eight hydrogen molecules
are attached in the conners of the cubic. In cesium chloride model, we can assign a position of
Cs+ a vector X at P in the material configuration but at this time, we need an additional set of
vectors for Cl− to describe the inner structure of the cubic crystalline solid and its deformations.

In other words, the particles are assumed as point particles with infinitesimal size in the
classical theory. But since they are deformable by definition in the microcontinuum theory, it
is clear that we need an extra set of degrees of freedom to describe the theory of these particle’s
deformability, in addition to the vectors assigned to P in the classical theory as being treated
as a point particle. This means, in addition to the classical translational deformation field, the
body as a collection of point particle P can be deformable in a classical (macroscopic scale) way
and the inner structure of the particle can only experience microdeformations.
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The inner microdeformation and macroscopic displacement are illustrated in Fig.1.1. For
the inner structure, we assign a new set of vectors, the directors, Ξ in the reference configuration
and ξ in the spatial configuration, so that after time t,

X
t−→ x and Ξ X,t−→ ξ . (1.2.19)

A micromorphic continuum is the most general deformable inner structure with its macroscopic
motions are described by X → x of (1.2.1), while the microelement undergoes transformations
described by its directors Ξ → ξ. And the transformations are uniquely invertible, so there
exist χkK and XKk such that

xk = xk(XK , t) inverse−→ XK = XK(xk, t)
ξk = χkK(XK , t)ΞK

inverse−→ ΞK = XKk(xk, t)ξk

(1.2.20)

where rank-two tensors χkK ∈ GL(3; R) and its inverse X are called microdeformation tensors.
In addition, the condition of indestructible microdeformation implies that the microelement

and its infinitesimal volume element cannot shrink or explode. This condition is ensured by
imposing the Implicit Functions Theorem, which states the existence of inverse relation of
(1.2.20) by non-negative volume measures of J and j, defined by determinants,

J ≡ det
(
∂xk

∂XK

)
and j ≡ det

(
∂ξk

∂ΞK

)
= detχkK = 1

detXKk
. (1.2.21)

Now, the deformation gradient tensor satisfy

∂xk

∂XK

∂XK

∂xl
= δkl and ∂xk

∂XK

∂XL

∂xk
= δKL , (1.2.22)

and similarly, for the microdeformation tensor we have

∂ξk

∂ΞK

∂ΞK

∂ξl

= δkl and ∂ξk

∂ΞK

∂ΞL

∂ξk

= δKL (1.2.23)

which is
χkKXKl = δkl and χkKXLk = δKL . (1.2.24)

When we need to distinguish macrodeformations from microdeformations, we will put a bar
over the micro-deformational measures. For example, if we define

F kK = ∂ξk

∂ΞK
= χkK , (1.2.25)

we may apply the polar decomposition to write (1.2.25 in terms of some microrotation R and
microstretches U and V

F = R U = V R . (1.2.26)

Then
U

2 = χT χ, V
2 = χχT . (1.2.27)

A special case arises when U
2 = V

2 = 1 which yields χ−1 = χT . This means

χT = X and χX = 1 . (1.2.28)

From (1.2.21) we have j = 1 and we can see this is the precise condition for the rigid microdefor-
mation and the deformation is described by the microrotation only. And R ∈ SO(3), provided
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Figure 1.1: On the left, the transformation of the inner structure of the microelement with centroids
positioned at P and p in the reference configuration and the spatial configuration, respectively, is illus-
trated. This shows how the directors Ξ in the original body B0 undergoes microdeformation under χkK

transform to ξ, while the original body B0 experiences displacement to become a deformed configuration
body B in three-dimensional space under the macroscopic displacement u. The typical particle modelled
by cubane as a micropolar continuum is shown in its microscopic cubic molecular structure in the bulk
body on the right.

we can rescale the magnitude of the directors {Ξ, ξ} to unity to retain the rigidity of the inner
structure.

A microstretch continuum is characterised by the property

XKk = 1
j2χkK . (1.2.29)

As illustrated in Fig.1.1, the microrotations R are responsible for the inner rotations of the
directors such that

ξk = RkKΞK and ΞK = RKkξk . (1.2.30)
The finite microrotation of an angle ϕ about a normalised axis n is represented by Rkl,

Rkl = cosϕ δkl − sinϕ ϵklmnm + (1 − cosϕ)nknl (1.2.31)

where
ϕ = (ϕkϕk)1/2, nk = ϕk

ϕ
, Rkl = RkLδLl (1.2.32)

For small rotations, the expression (1.2.31) becomes

Rkl ≈ δkl − ϵklmϕm . (1.2.33)

i.e. the rotation tensor can be represented by a vector ϕk, and this limit becomes apparent
when one represents the rotation by an exponential of an antisymmetric matrix as in (8.4.13).
In classical continuum mechanics, the macrorotation tensor due to a change of line elements is

RkK = ∂xk

∂XL
C

−1/2
LK . (1.2.34)
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This follows from the polar decomposition (1.2.6), where CLK is the classical deformation tensor
known as the right Cauchy-Green tensor, defined by

CLK = ∂xk

∂XL

∂xk

∂XK
, C = F TF. (1.2.35)

In the linear theory, the macrorotation (1.2.34) reduces to an infinitesimal rotation tensor in
classical continuum mechanics,

R̃km ≡ Rkm − δkm = 1
2

(
∂uk

∂xm
− ∂um

∂xk

)
, (1.2.36)

where uk is the displacement vector. For small angle consideration, from (1.2.33) and (1.2.36),
we can identify the difference between macrorotation R and microrotation R.

We introduce some useful deformational measures as follows.

CKL ≡ ∂xk

∂XK

∂ΞL

∂ξk
= ∂xk

∂XK
XLk = ∂xk

∂XK
χkL

CKL ≡ ∂ξk

∂ΞK

∂ξk

∂ΞL
= χkKχkL = CLK

ΓKLM ≡ ∂ΞK

∂ξk

∂χkL

∂XM
= XKk

∂χkL

∂XM

(1.2.37)

where CKL is called the deformation tensor, CKL the microdeformation tensor, and ΓKLM the
wryness tensor. In case of micropolar continua, the deformation tensor CKL is known as the
first Cosserat deformation tensor and the wryness tensor reduces to

ΓKL = 1
2ϵKMN

∂χkM

∂XL
χkN , (1.2.38)

from which we recognise χkN ∈ SO(3).

1.3 Deformational energy
We would like to look at formulation of an energy function Velastic(F,R) in a coupled form of the
displacement gradient tensor F and the microrotation R, and an energy function Vcurvature(R)
due to the microrotation entirely and its implications briefly. More comprehensive treatments
in deriving general energy functionals can be found in [21,23].

In constructing energy functions, we must note that the energy function must be a function
of the strain tensor (classical or microcontinuum), as emphasised in [32]. In addition, we would
like to have each term in the energy functionals remains invariant under the rotation, if the
rigidity in the microelement is imposed. These conditions in formulating the energy functionals
suggest that we need a set of independent scalars of second-order tensors to form the energy
functional. For this purpose, we introduce the Cartan-Lie decomposition for any 3 × 3 matrix
M ,

M = dev sym M + skew M + 1
3trM · 1 , (1.3.1)

where dev sym M is the traceless symmetric part of M and skew M is the skew-symmetric part
of M .

The most general form of the energy function, in the classical theory, Vclassical satisfying
above mentioned conditions is

Vclassical = µ∥uij∥2 + λ

2 ∥uii∥2 , (1.3.2)
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where µ and λ are called Lamé coefficients. The first term on the right-hand side represents
the energy associated to the pure shear and the second term represents the energy associated
to the volumetric expansion (or compression). These can be seen if one calculate and compare
a undeformed volume element dV and a deformed volume element dV ′.

The energy function (1.3.2) indeed leads to the classical Hooke’s law and the force f is
defined by

fi = ∂tij
∂xj

. (1.3.3)

By Newton’s third law, interaction between two forces fi and fj (i ̸= j) is cancelled internally.
Hence the total force per unit volume f is a sum of the individual fi for a given internal surface
element of the body, so that we can write∑

i

∫
R
fi dV =

∫
R

f dV . (1.3.4)

The resultant integral on the right-hand side of (1.3.4) represents the sum of all forces acting
on all surface element for a given body volume. In other words, the sum of integral over a given
volume element is transformed into the integral over the surface elements, and all the internal
stresses can be transformed into integral over the surface. This agrees with the definition of
force given in (1.3.3) and (1.2.11) in terms of the stress tensor, hence we can write∫

R
fi dV =

∫
R
∂jtij dV =

∫
S
tij dSj . (1.3.5)

We can generalise this idea in formulating the elastic energy functionals for the microcon-
tinuum theory. Using the decomposition (1.3.1), we can write

Velastic(F,R) = µ
∥∥∥sym(RT

F − 1)
∥∥∥2

+ λ

2
[
tr
(
sym(RT

F − 1)
)]2

(1.3.6)

where the term R
T
F is the first Cosserat deformation tensor in the coupled system of microro-

tation R and the classical displacement gradient tensor F . Analogous to (1.3.2), the first term
on the right-hand side of (1.3.6) represents energy for the pure shear and the quantity RT

F − 1
is symmetrised in accordance with the symmetric classical strain tensor uij , which can be seen
directly from (1.2.9) under the limit R → 1. The second term of (1.3.6) represents energy
associated to the volumetric expansion. Hence, we can see that the elastic energy functional
(1.3.6) is a natural generalisation of the classical expression (1.3.2).
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Chapter 2

Dynamical Cosserat media

In Section 2.1, we present the full treatment for solutions of elastic and rotational propagations
of deformations in the complete dynamical Cosserat problem. This involves a total energy
functional given by

V = Velastic(F,R) + Vcurvature(R) + Vinteraction(F,R) + Vcoupling(F,R) .

We will obtain equations of motion, from variations of
δVtotal
δF

and δVtotal

δR
(2.0.1)

where Vtotal is energy function including kinetic terms.
Primary mathematical interests in finding the equations of motion using the variational

calculus come from the fact that many terms in the energy functionals contain quantities such
as

R
T CurlR , R

T polar(F ) , R
T
F

throughout the calculations. Since, in general, the elements in SO(3) do not commute, the
variations require careful treatment in the calculations. There are two approaches we can take
in varying those quantities. One way is to put a Lagrangian multiplier λ in a Lagrangian L
in a form of λ(RTR − 1) to obtain the Euler-Lagrangian equation, and another is to use the
exponential representation of the rotational matrix R = eA under certain condition such as the
small rotational angle assumption.

In Section 2.2, after stating each energy functional in terms of F and R, we use the variation
of the total energy functional including kinetic energy terms. We collect terms from variational
field expressions with respect to F and R, to obtain a complete coupled system of equations
of motion. It turns out that if we impose certain set of restrictions (e.g. small displacements),
newly generated nonlinear coupling terms in the complete description are indeed responsible for
the contribution in additional terms of the sine-Gordon type equation.

This observation reduces the problem to solving the double sine-Gordon equation [33] of a
function of ϕ = ϕ(z, t). In the final part, we illustrate effects of rotational and displacement
propagations in a simple model of microcontinua with additional features of a kink-antikink
form of solutions, and profiles of a wave number k and a wave velocity v.

2.1 Energy functions
If we assign a set of time-dependent functions to a microrotational measure R and a macroscopic
displacement gradient F , the field equations will be descriptions of propagating defects in a
certain direction.
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We introduce each energy functional for the full treatment of the geometrically nonlinear
Cosserat problem in three-dimensional space. We will include kinetic energy terms to appro-
priate energy functionals before deriving the equations of motion. First, the energy functional
for elastic deformations is

Velastic(F,R) = µ
∥∥∥sym(RT

F − 1)
∥∥∥2

+ λ

2
[
tr
(
sym(RT

F − 1)
)]2

(2.1.1)

where λ and µ are the standard Lamé parameters. The microrotations are governed by
Vcurvature(R),

Vcurvature(R) = κ1
∥∥∥dev sym(RT CurlR)

∥∥∥2
+ κ2

∥∥∥skew(RT CurlR)
∥∥∥2

+ κ3
[
tr(RT CurlR)

]2 (2.1.2)

where κi are the elastic constants for the microrotations. The operation of Curl on any 3 × 3
matrix M is defined by

CurlM =

∂yM13 − ∂zM12 ∂zM11 − ∂xM13 ∂xM12 − ∂yM11
∂yM23 − ∂zM22 ∂zM21 − ∂xM23 ∂xM22 − ∂yM21
∂yM33 − ∂zM32 ∂zM31 − ∂xM33 ∂xM32 − ∂yM31

 (2.1.3)

or in components, this is
(CurlM)ij = ϵjkl∂kMil . (2.1.4)

Formulation of this energy functional follows immediately from the decomposition of (1.3.1)
with the required conditions mentioned before. The quantity

R
T CurlR (2.1.5)

is called a dislocation density tensor and it originates back in Nye’s pioneering work [34]. A
fairly straightforward explanation of this quantity can be found in [35], in developing a total
displacement known as Burgers vector, caused by continuous distribution of dislocations (hence
the name). We will find that this rank-two tensor (2.1.5) will be one of our central ingredients
in understanding both in microscopic and macroscopic deformations especially when we regard
the notion of torsion, accompanied by more formal definition and its use in Part II.

Interaction between elastic displacements and microrotations is described by irreducible
parts of the elastic deformations and microrotations, such as RT

F−1 and RT CurlR respectively,
to form a energy functional Vinteraction(F,R), defined by

Vinteraction(F,R) = χ1tr(RT CurlR)tr(RT
F )

+ χ3⟨dev sym(RT CurlR), dev sym(RT
F − 1)⟩.

(2.1.6)

where χ1 and χ3 are coupling constants, while the vanishing χ2 term can be seen from the
absence of skew(RT

F − 1) term in (2.1.1). We denote the Frobenius product of matrices A and
B by

⟨A,B⟩ = A : B = tr(ABT ) = tr(ATB) .
Lastly, we will consider the Cosserat coupling term which is given by

Vcoupling(F,R) = µc

∥∥∥RT polar(F ) − 1
∥∥∥2

(2.1.7)

where µc is the Cosserat couple modulus, and polar(F ) is the polar part in the classical de-
composition of F = RU . This energy function explicitly distinguishes the microrotation R and
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the macrorotation defined by polar(F ), but express non-trivial coupled energy between them.
This can be easily seen from the fact that Vcoupling(F,R) vanishes when R → polar(F ). Couple
modulus in the classical elastic theory can be found in [6, 36], and various limiting cases of the
Cosserat couple modulus are studied in [37,38].

Variations of the energy functionals, in the following expression, are quite technically in-
volved.

δV (F,R) = δVcoupling(F,R) + δVinteraction(F,R) + δVelastic(F,R) + δVcurvature(R) . (2.1.8)

All detailed results are stated explicitly in Appendix A, but the principle idea is to vary term
by term according to the basic variational calculus such as

δV (F,R) = ∂V

∂F
: δF + ∂V

∂R
: δR

with the help of chain rules in varying the matrices summarised in Appendix A.
Now, we gather all the variational terms (A.0.5), (A.0.13), (A.0.15) and (A.0.19), we will

obtain the complete variational functional of the theory for the dynamical case as follows.

δVelastic(F,R) =
[
µ(RF TR+ F ) − (2µ+ 3λ)R+ λtr(RT

F )R
]

: δF

+
[
µFR

T
F − (2µ+ 3λ)F + λtr(RT

F )F
]

: δR+ ρü δu (2.1.9a)

δVcurvature(R) =
[
(κ1 − κ2)

(
(CurlR)RT (Curl (R)) + Curl

[
R(CurlR)TR

])
+ (κ1 + κ2)Curl

[
CurlR

]
−
(
κ1
3 − κ3

)(
4tr(RT CurlR)Curl (R) − 2R

(
grad

(
tr[RT CurlR]

))⋆
+ 2ρrotR̈

]
: δR

(2.1.9b)

δVinteraction(F,R) =
{(
χ1 − χ3

3
)(

2tr(RT
F )Curl (R) + tr(RT CurlR)F −R

[
grad

(
tr[RT

F ]
)]⋆)

+ χ3
2
(
Curl (F ) + (Curl (R))RT

F + FR
T (Curl (R)) + Curl (RF TR)

)}
: δR

(2.1.9c)

+
{
χ1tr(RT CurlR)R+ χ3

2
(
Curl (R) +R(Curl (R))TR

)
− χ3

3 tr(RT Curl (R))R
}

: δF

δVcoupling(F,R) = −2µcR : δR− 2µc

det(Y )
[
RY (RTR−R

T
R)Y

]
: δF (2.1.9d)

where dots imply the time derivatives for the variation in the kinetic terms ρü δu = ρ∂ttψ δψ.
We defined Y = tr(U)1 − U , and the kinetic term for Vcurvature by

Vcurvature,kinetic = ρrot∥Ṙ∥2 = ρrottr(Ṙ Ṙ
T ) .

The next step will be collecting various expressions with respect to F and R to construct the
field equations.

2.2 Equations of motion and solutions
In the recent paper [39], the dynamical Cosserat model was investigated by analysing the ge-
ometrically nonlinear and coupled nature of the system, in which linearised energy functionals
are considered to simplify the problem. It allowed reduction of the coupled system of partial
differential equations to a sine-Gordon equation, which in turn yielded soliton solutions both in
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microrotational and displacement deformations under the assumption that displacements are
small while microrotations can be arbitrarily large.

By the nature of micropolar continua, the microrotation can be represented by an arbitrary
rotational angle ϕ = ϕ(x, y, z, t) about an arbitrary axis n = n(x, y, z, t) in three spatial dimen-
sions. In other words, every individual point in the micropolar continua can have independent
rigid rotational degrees of freedom. Moreover, since we are dealing with the dynamic problem,
an elastic wave (if there is any) of microrotation ϕ and macrodeformation ψ can propagate in-
dependently with different velocities which may propagate in the form of either longitudinal or
transverse through the given media in each case, hence four different combinations are possible.
This means, if we consider a general case, the equations of motion would be highly nonlinear
by nature, and it might not be possible to solve them analytically. Therefore, we would like to
make following assumptions.

1. We assume that points in our microcontinuum can only experience rotations about a fixed
axis, say the z-axis, which allows us to write

R =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 . (2.2.1)

In this case, the variation of microrotation is simply

δR =

− sinϕ δϕ − cosϕ δϕ 0
cosϕ δϕ − sinϕ δϕ 0

0 0 0

 . (2.2.2)

2. We will look for solutions of ϕ and ψ, or coupled system, in which both microrotational
and macro-displacement waves are longitudinal about the same axis, the z-axis in this
case, so that we can write forms of wave equations by

Microrotation: ϕ = ϕ(z, t)
Macro displacement: ψ = ψ(z, t) .

(2.2.3)

Hence the displacement vector, in F = 1 + ∇u, is just

u =

 0
0

ψ(z, t)

 and ∇u =

0 0 0
0 0 0
0 0 ∂zψ(z, t)

 . (2.2.4)

Under these assumptions, we might expect that the dynamic problem will be simplified sig-
nificantly while the central properties of Cosserat problem are retained, but even with these
simplified situation, the equations to be solved can be quite challenging.

We are ready to collect relevant terms with respect to F and R separately. Unlike the case
of δR, in which the variational kinetic term is readily written with respect to R, the variational
kinetic term from the interaction energy functional is written with respect to δu. But the
variation with respect to F can be restated as the variation with respect to u, hence with
respect to ψ as we will see shortly.
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Collecting terms for δF from (2.1.9) gives

 A11 A12 0
−A12 A11 0

0 0 A33

 =
[
µ
(
RF TR+ F

)
− (2µ+ 3λ)R+ λtr(RT

F )R
]

+
[
χ1tr

(
R

T CurlR
)
R+ χ3

2
(
CurlR+R(CurlR)TR

)
− χ3

3 tr
(
R

T CurlR
)
R

]
+ 2µc

det Y
[
RY

(
R

T
R−RTR

)
Y
]
, (2.2.5)

where

A11 = 1
3 cosϕ

[
6(λ+ µ)(−1 + cosϕ) + (6χ1 + χ3)∂zϕ+ 3λ∂zψ

]
A12 = −1

3 sinϕ
[
−6λ− 6µ+ 6λ cosϕ+ 6µ cosϕ− 6µc + (6χ1 + χ3)∂zϕ+ 3λ∂zψ

]
A33 = 2λ(−1 + cosϕ) +

(
2χ1 − 2χ3

3

)
∂zϕ+ (λ+ 2µ)∂zψ .

(2.2.6)

Now, the terms which appear in the variation with respect to F can be transformed into the
variation with respect to ∇u, for any matrix A, as shown below.

A : δF = AijδFij −→ −∂jAijδui = −(∂1A31 + ∂2A32 + ∂3A33)δψ , (2.2.7)

up to a boundary term. In this case, the contribution comes only from A33 ,and we are left with

[
2λ sinϕ ∂zϕ−

(
2χ1 − 2χ3

3

)
∂zzϕ− (λ+ 2µ)∂zzψ

]
δψ . (2.2.8)

We now include the kinetic variational term ρü δu = ρ∂ttψ δψ to obtain the equation of
motion for F ,

− λ (∂zzψ − 2∂zϕ sinϕ) − 2µ∂zzψ + ρ∂ttψ + 2
3(χ3 − 3χ1)∂zzϕ = 0 . (2.2.9)

In the same way, we collect terms for δR to obtain

 B11 B12 0
−B12 B11 0

0 0 B33

 = 2ρrotR̈+ µFR
T
F − (2µ+ 3λ)F + λtr(RT

F )F − 2µcR

+ (κ1 − κ2)
[
(CurlR)RT (CurlR) + Curl

(
R(CurlR)TR

)]
+ (κ1 + κ2)

[
Curl (CurlR)

]
−
(
κ1
3 − κ3

) [
4tr(RT CurlR)CurlR− 2R

(
grad

[
tr(RT CurlR)

])⋆]
+
(
χ1 − χ3

3

)(
2tr(RT

F )CurlR+ tr(RT CurlR)F −R
[
grad(tr(FRT ))

]⋆)
+ χ3

2
(
CurlF + (CurlR)RT

F + FR
T (CurlR) + Curl (RF TR)

)
(2.2.10)
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where

B11 = − 2(λ+ µ+ µc) + 6χ1 cos2 ϕ ∂zϕ+ λ∂zψ

+ 1
3 cosϕ

[
3(2λ+ µ) − 6ρrot(∂tϕ)2 + (κ1 − 3κ2 + 24κ3)(∂zϕ)2 + 2(3χ1 − χ3)∂zϕ(1 + ∂zψ)

]
+ 1

3 sinϕ
[
−6ρrot∂ttϕ+ 2(κ1 + 6κ3)∂zzϕ+ (3χ1 − χ3)∂zzψ

]
B12 =1

3 sinϕ
[
3µ+ 6ρrot(∂tϕ)2 − (κ1 − 3κ2 + 24κ3)(∂zϕ)2 − 2(3χ1 − χ3)∂zϕ(1 + ∂zψ)

]
+ cosϕ

[
−6χ1 sinϕ ∂zϕ+ 1

3 (−6ρrot∂ttϕ+ 2(κ1 + 6κ3)∂zzϕ+ (3χ1 − χ3)∂zzψ)
]

B33 = − 2µc + 2λ cosϕ(1 + ∂zψ) + 1
3(1 + ∂zψ)

[
(6χ1 − 2χ3)∂zϕ+ 3(−2λ− µ+ (λ+ µ)∂zψ)

]
.

(2.2.11)

Applying B : δR gives

B : δR = tr
[
BT δR

]
= −(2B11 sinϕ+ 2B12 cosϕ)δϕ , (2.2.12)

which is [
4(λ+ µ+ µc) sinϕ− 2(λ+ µ) sin 2ϕ− 2λ sinϕ ∂zψ + 4ρrot∂ttϕ

− 4
(
κ1
3 + 2κ3

)
∂zzϕ− 2

(
χ1 − χ3

3

)
∂zzψ

]
δϕ .

(2.2.13)

Therefore, from (2.2.9) and (2.2.13), we obtain two equations of motion by varying the total
energy functional with respect to F and R, respectively, as follows

− (λ+ µ+ µc) sinϕ+ 1
2(λ+ µ) sin 2ϕ+ 1

2λ sinϕ∂zψ − ρrot∂ttϕ

+
(
κ1
3 + 2κ3

)
∂zzϕ+

(
χ1
2 − χ3

6

)
∂zzψ = 0 , (2.2.14a)

− λ (∂zzψ − 2∂zϕ sinϕ) − 2µ∂zzψ + ρ∂ttψ + 2
3(χ3 − 3χ1)∂zzϕ = 0 . (2.2.14b)

These can be written in components form by(
∂ttϕ
∂ttψ

)
= M

(
∂zzϕ
∂zzψ

)
+
(

0 λ sin ϕ
2ρrot

−2λ sin ϕ
ρ 0

)(
∂zϕ
∂zψ

)
− (λ+ µ+ µc)

ρrot

(
sinϕ

0

)
+ λ+ µ

2ρrot

(
sin 2ϕ

0

)
(2.2.15)

where
M =

(
(κ1 + 6κ3)/3ρrot (3χ1 − χ3)/6ρrot
2(3χ1 − χ3)/3ρ (λ+ 2µ)/ρ

)
. (2.2.16)

From this, we can see immediately that the off-diagonal entries of M are responsible for the
coupled system, and due to the remaining nonlinear terms, it is difficult to diagonalise the whole
system to uncouple the variables. Also, we note that we will recover the result obtained in [39]
if we assume the linearised energy functionals which lead to the approximations such as λϕ ≪ 1
and µϕ ≪ 1, while the matrix elements M remain unchanged.

A similar problem was investigated in [26], and its revised results were stated in [15], in
which case the longitudinal wave is expressed as the displacement vector u(x, t) along the x-
axis with the rotational deformation ϕ(x, t) about x-axis. The equations of motion are described
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as a system of coupled expressions,
(
∂ttϕ
∂ttu

)
= N

(
∂xxϕ
∂xxu

)
+
(

0 2λ′ sin ϕ
ρ0J

−2(λ′+2µ′+κ′) sin ϕ
ρ0

0

)(
∂xϕ
∂xu

)
+ 2λ′

ρ0J

(
sinϕ

0

)
+ 2λ′ + µ′

ρ0J

(
sin 2ϕ

0

)
(2.2.17)

where α, λ′, µ′, κ′ are isotropic material moduli used in [15], and

N =
(

α
ρ0J 0
0 λ′+2µ′+κ′

ρ0

)
. (2.2.18)

Since the matrix N is diagonal, we do not have second order coupling terms in the equations
of motion. Unlike our current case, the system (2.2.17) is readily solvable under the small
displacement limit, using the conventional method for the one-dimensional d’Alembert’s solution
subject to appropriate boundary conditions.

2.3 Solution for the double sine-Gordon equation

What we obtained so far is a system of nonlinear coupled partial differential equations (2.2.14)
and a non-diagonal matrix representation of M in (2.2.16). We note that we cannot make any
assumptions for the parameters in M unless any specific physical system is assumed to simplify
the problem significantly.

We will generalise the previously considered deformations in [39] of limited case to include
the fully nonlinear model with arbitrarily large rotations and displacements. This discussion
will give us further insights into the nature of the nonlinear geometry of Cosserat micropolar
elasticity.

Now, before we solve the equations, we make an additional assumption that the elastic and
rotational waves propagate with the same constant wave speed v, and ψ = g(z − vt), so that ψ
satisfies

∂ttψ = v2∂zzψ . (2.3.1)

First, we denote the diagonal entries of M by v2
rot = M11 and v2

elas = M22. Then (2.2.14b)
becomes

g′′(z − vt) = ∂zzψ = M21
v2 − v2

elas
∂zzϕ− 2λ

ρ(v2 − v2
elas)

sinϕ ∂zϕ . (2.3.2)

Integrating with respect to z once gives

g′(z − vt) = ∂zψ = M21
v2 − v2

elas
∂zϕ+ 2λ

ρ(v2 − v2
elas)

cosϕ (2.3.3)

in which we set the constant of integration to zero by imposing following boundary conditions
for ψ = g(z − vt),

ψ(±∞, t) = 0 and ∂zψ(±∞, t) = 0 . (2.3.4)

The first asymptotic condition for ψ(z, t) is reasonable in a sense that the elastic macrodeforma-
tion will not affect the point located far away from the place where the deformation currently
occurs, and the material point should return to its original configuration as we approach spatial
infinity z → ±∞. The second condition follows from the finite energy requirement when one
integrate over the region for the continuum.

17



Substituting (2.3.2) and (2.3.3) into the remaining equation of motion (2.2.14a) gives

∂ttϕ−
[
v2

rot + M12M21
v2 − v2

elas

]
∂zzϕ− λ

2(v2 − v2
elas)

[
M21
ρrot

− 4M12
ρ

]
sinϕ ∂zϕ

+ (λ+ µ+ µc)
ρrot

sinϕ−
[

λ2

2ρrotρ(v2 − v2
elas)

+ λ+ µ

2ρrot

]
sin 2ϕ = 0 .

(2.3.5)

Moreover, if we rescale z by

z =
(
v2

rot + M12M21
v2 − v2

elas

)1/2

ẑ (2.3.6)

then (2.3.5) reduces to, the double sine-Gordon equation

∂ttϕ− ∂ẑẑϕ+m2 sinϕ+ b

2 sin 2ϕ = 0 , (2.3.7)

where
m2 = (λ+ µ+ µc)

ρrot
and b = − 1

ρrot

[
λ2

ρ(v2 − v2
elas)

+ (λ+ µ)
]
. (2.3.8)

The apparent singularity in b as v2 approaches v2
elas can be removed if we make a further

transformation on v by

v −→
(
v2

rot + M12M21
v2 − v2

elas

)1/2

v̂ . (2.3.9)

We note that this transformation on v would not change our assumption on ψ along with the
rescaling on z, since ∂ttψ = v2∂zzψ implies ∂ttψ = v̂2∂ẑẑψ.

The general solution of (2.3.7) is given in [33] as

ϕ(ẑ, t) = 2 arcsin(X(ẑ, t)) (2.3.10)

where
X(ẑ, t) = u√

1 + 1
2u

2
(
1 + b

m2+b

)
+ 1

16u
4
(
1 − b

m2+b

)2
, (2.3.11)

in which u = u(ẑ, t) must satisfy following two conditions

∂ttu− ∂ẑẑu+ (m2 + b)u = 0 ,
(∂tu)2 − (∂ẑu)2 + (m2 + b)u2 = 0 .

(2.3.12)

The simplest form of solution satisfying these conditions would be

u(ẑ, t) = exp

√m2 + b

1 − v̂2 (ẑ − v̂t) ± δ

 (2.3.13)

for some constant δ.
Now, we can write the solution ϕ using the identity arcsin(x) = 2 arctan

(
x

1+
√

1−x2

)
. After

some straightforward calculations, one obtains

ϕ(ẑ, t) =


4 arctan

[
1
2e

+
√

m2+b

1−v̂2 (ẑ−v̂t)] if e
2
√

m2+b

1−v̂2 (ẑ−v̂t)
< 4 ,

4 arctan
[
2e−

√
m2+b

1−v̂2 (ẑ−v̂t)] if e
2
√

m2+b

1−v̂2 (ẑ−v̂t)
> 4 .

(2.3.14)
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This solution corresponds to the kink and antikink solution of ϕ, and the bifurcation into
these two branches from the original solution (2.3.10) arises quite naturally in translating the
solution in terms of arcsin into arctan functions, see Fig. 2.1.

For the next step, we would like to put the rescaled variables {ẑ, v̂} back to the original
variables {z, v}. This can be done if we apply inverse transformations of (2.3.6) and (2.3.9),
but we would like to consider a simpler method by comparing the previously obtained result
in [39]. The microrotational propagation solution ϕ0, based on the linearised energy functionals,
is obtained

ϕ0 = 4 arctan e±k0(z−vt)±δ (2.3.15)
with corresponding k0 and m0 are given by

k2
0 = v2

elas − v2

v4 − tr(M)v2 + det(M)m
2
0 , m2

0 = µc

ρrot
. (2.3.16)

Now, consider the term which enters into the exponential of (2.3.13)

±

√
m2

0
1 − v̂2 (ẑ − v̂t) ± δ (2.3.17)

where we see now that δ = ln 1
2 . We would like to see if this agrees with the argument of the

exponential in (2.3.15). This can be done if we apply a reverse operation (2.3.6) of z, and an
inverse transformation (2.3.9) of v. After some calculations, we obtain

±

√
m2

0
1 − v̂2 (ẑ − v̂t) ± δ −→ ±k0(z − vt) ± δ . (2.3.18)

Hence, we can express the solution of ϕ0 in terms of rescaled variables {ẑ, v̂} or the original
variables {z, v} with k0 of (2.3.16), and find

ϕ0 = 4 arctan e±k0(z−vt)±δ = 4 arctan e±
√

m2
0

1−v̂2 (ẑ−v̂t)±δ
. (2.3.19)

For the current case, by following the same reasoning, we find that the rescaled variables
and original variables are interchangeable, by the following relation,

±

√
m2 + b

1 − v̂2 (ẑ − v̂t) ± δ −→ ±k(z − vt) ± δ (2.3.20)

in which k2
0 and m2

0 are now replaced by k2 and m2, which are

k2 = v2
elas − v2

v4 − tr(M)v2 + det(M)(m2 + b) , m2 = λ+ µ+ µc

ρrot
. (2.3.21)

Therefore, we can write the solution (2.3.14) of ϕ in terms of z and v by

ϕ = 4 arctan e±k(z−vt)±δ (2.3.22)

with δ = ln 1
2 .

• We note that the matrix M used in (2.3.21) and (2.3.16) are identical to that of (2.2.16).

• The Lamé parameters λ and µ are brought into play in the fully nonlinear case through
the quantity m2, while those parameters are missing in m2

0 when considering the approx-
imations λϕ ≪ 1 and µϕ ≪ 1, which effectively lead to the results b = 0 and m → m0.
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Figure 2.1: Two branches of solution ϕ = 4 arctan e±k(z−vt)±δ of (2.3.14) are plotted where the orange
solution is for +k and the green solution is for −k case, corresponding to a kink and an antikink solution
respectively. These two branches meet at z = ln 4/(2k) + vt as indicated by the blue vertical dashed
line. The overlap is essentially the solution of the form ϕ = 2 arcsin(X) as in (2.3.10). We set k = 1.5,
v = 0.1 at t = 7.0.

• Consequently, we have to treat a more complicated form of k replacing k2
0 with an addi-

tional contribution from b.

For the solution of ψ, first we write X (hence u) in terms of {z, v} instead of {ẑ, v̂}.

X = u√
1 + 1

2u
2
(
1 + b

m2+b

)
+ 1

16u
4
(
1 − b

m2+b

)2
, u = e±k(z−vt)±δ . (2.3.23)

Now, since we obtain the solution ϕ of (2.3.22), we use this to find ψ. This can be done if we
put the solution (2.3.22) into (2.3.2) to obtain

g′′(z − vt) = 4M21k
2

v2
elas − v2

e±k(z−vt)±δ(e2(±k(z−vt)±δ) − 1)
(e2(±k(z−vt)±δ) + 1)2 (2.3.24)

+ 2λ
ρ(v2 − v2

elas)
±k(m2 + b)2

(
64e6(±k(z−vt)±δ)m4 − 1024e2(±k(z−vt)±δ)(m2 + b)2

)
(
e4(±k(z−vt)±δ)m4 + 16(m2 + b)2 + 8e2(±k(z−vt)±δ)(m2 + b)(m2 + 2b)

)2 .
If we put s = z − vt, then this becomes a second-order ordinary differential equation for g(s).
We integrate twice with respect to s using the boundary conditions (2.3.4) to obtain

ψ(t, z) = 4M21
v2 − v2

elas
arctan e±k(z−vt)±δ + 4λ

ρk(v2 − v2
elas)

√
1 + m2

b
acrtanh(Y ) + C , (2.3.25)

where

Y =


8b2 + 12bm2 +m4(1

4e
2k(z−vt) + 4)

8
√
b (m2 + b)3/2

if e2k(z−vt) < 4 ,

8b2 + 12bm2 +m4(4e−2k(z−vt) + 4)
8
√
b (m2 + b)3/2

if e2k(z−vt) > 4 .
(2.3.26)

The boundary conditions (2.3.4) fix the value for the constant C by

C = − 4λ
ρk(v2 − v2

elas)

√
1 + m2

b
acrtanh

(
8b2 + 12bm2 + 4m4

8
√
b (m2 + b)3/2

)
. (2.3.27)
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Using the restriction λϕ ≪ 1 and µϕ ≪ 1, the solutions (2.3.22) and (2.3.25) reduce to the
solutions we obtained in [39]

ϕ0 = 4 arctan e±k0(z−vt)±δ

ψ0 = 4M21
v2 − v2

elas
arctan e±k0(z−vt)±δ .

(2.3.28)

k=1.0 k=3.0 k=6.0 k=1.0 k=3.0 k=6.0

k=1

k=3

k=6

Microrotations Macro displacements

Figure 2.2: For small values of k (the blue shaded wave, pendulums and beads), we observe
the width of microrotational/displacement deformation is broad, while we observe narrow microrota-
tional/displacement deformations for large values of k (the green shaded wave, pendulums and beads).

In Fig. 2.2, the soliton solutions for ϕ(z, t) and ψ(z, t) are given at t = 0 with corresponding
values of k. As the rotational wave ϕ(z, t) propagates with a speed v along the z-axis, the
points of microcontinuum (displayed as pendulums along the z-axis) experience microrotational
deformations perpendicular to the axis. In the same way, the longitudinal solution ψ(z, t) gives
rise to the compressional deformation wave propagating with the same speed v, on the points of
macroscopic continuum (shown as beads) along the same axis. As we vary the values of k, the
widths of the soliton solutions are changed, and this affects overall deformational behaviours
both in microrotations and macrodisplacements.
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The soliton solutions for both rotations and displacements were obtained from the equations
of motion, and these allowed us to understand the geometric interpretation of the deformation
waves. Physically dominant parameters of the complete model in determining the overall be-
haviour of deformational soliton wave are the Lamé parameters {λ, µ} and the Cosserat couple
modulus µc. This fact becomes evident by looking at the k dependency, or equivalently m
dependency, of the soliton solutions on these parameters.

The various values for k in the soliton solutions for ϕ and ψ give different overall behaviours
while other values of parameters are fixed. Regarding the microrotations, the effect becomes
apparent for large values of k, which induces high-frequency of localised energy distribution
on the narrow-width affected cross section both for the microrotational and displacement de-
formations, whereas small values of k induce gradual and broad energy distribution for the
deformations over the microcontinuum media. The role of k can be understood using a simple
model of beads and pendulums as shown in Fig. 2.2.

In the remaining part of this Chapter, we would like to consider some properties of the
solution and its behaviours in limiting cases.

2.4 Properties of solutions

We notice that there might be possible singularity issues in the amplitude of ψ(z, t) in (2.3.25)
as v2 approaches v2

elas. Similar situation arose in case of ϕ(z, t) in the value of b, but this
has been resolved by a simple transformation (2.3.9). In order to resolve the current problem,
we would like to look closely at k as a function of v taking account of all nine parameters,
{κ1, κ3, χ1, χ3, ρ, ρrot, µc, λ, µ}. We will see that the values for v are restricted to certain ranges
for a given k, so we might expect that this would resolve the singularity problem. This is to
specify a profile of v in terms of k which is often seen in dispersion relations.

We consider only positive roots of k2 of (2.3.21) to understand the possible range of k for a
given v. After putting all relevant parameters in (2.3.21), we obtain

k = 3
(

λ2 + (λ+ 2µ− v2ρ)µc

3(λ+ 2µ− v2ρ)(κ1 + 6κ3) − 9v2ρrot(λ+ 2µ− v2ρ) − (3χ1 − χ3)2

)1/2

= 3
√
ρρrot

(
λ2 + µcρ(v2

elas − v2)
v4 − (v2

elas + v2
rot)v2 + (v2

elasv
2
rot −M12M21)

)1/2

.

(2.4.1)

Now, to determine whether k possesses any singularity, we compute the discriminant of the
quartic of v in the denominator regarding it as a quadratic equation for v2.

(v2
elas + v2

rot)2 − 4(v2
elasv

2
rot −M12M21) = (v2

elas − v2
rot)2 + 16ρrot

ρ
v4

χ , (2.4.2)

where we put v2
χ ≡ M12. The expression (2.4.2) is strictly non-negative, so that we can have

four possible roots of v in the denominator of (2.3.28), which will cause the singularity of k.
We denote four distinct roots as vi, i = 1, 2, 3, 4, and assume that v1 < v2 < 0 < v3 < v4. In
particular, we write explicitly

v2 = 1
2

(
(v2

elas + v2
rot) ±

√
(v2

elas − v2
rot)2 + 16ρrot

ρ
v4

χ

)
. (2.4.3)

The square root of this gives the four roots of vi where two positive roots v3 and v4 are related
to two negative roots v1 and v2 by v3 = −v2 and v4 = −v1.
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It can be recognised immediately that the values of velas and vrot are restricted by

v1 ≤ −velas,−vrot ≤ v2 and v3 ≤ velas, vrot ≤ v4 .

Also, we will have k = 0 if v becomes

v2
0 ≡ (λ2/ρµc) + v2

elas . (2.4.4)

Now, we plot the profiles of v as a function of k and we consider only the positive values of
v for the sake of simplicity. At this time, we only have two asymptotic lines of v3 and v4 (again
we assume v3 < v4). And we assume that velas > vrot.

Two characteristic types of parameter ranges for v with various values for a set of parameters
with relevant asymptotic lines, and the locations of v0, velas and vrot are given in Fig. 2.3. If
v0 > v4 we will have the type (a) and if v0 < v4 then the type (b).

• The threshold in transition from the type (a) to (b) is evidently the relative positions
between v0 and v4. The values of velas and vrot are located inside (or on the boundary
of) the shaded region surrounded by asymptotic lines, which can be shown directly from
(2.4.3).

• The dominating set of parameters in determining the characteristics is the set of constants
{λ, µ, µc} of the energy functional Velastic. Notably, we observe that we only alter the value
of the parameter µc to obtain the type (b) solution from the type (a) solution, while keeping
all remaining parameters unchanged.

0 1 2 3 4
0

2

6

8

0 1 2 3 4
0

2

6

8

type (a) type (b)

Figure 2.3: The dashed lines indicate the position of v0, the dot-dashed lines are for velas and vrot.
The positions of asymptotic lines v3, v4 are shown in dotted lines. We put the values of parameters
(κ1, κ3, χ1, χ3, ρ, ρrot, µc, λ, µ) = (0.7, 0.5, 0.5, 0.1, 0.1, 0.1, 0.3, 1.0, 0.5) for type (a). For type (b), we alter
one value of parameters µc = 1.2. In this way, we obtain two distinct types of behaviours of v and k.
This again determines two characteristic overall behaviours of the soliton solution of Fig. 2.2.

In both types (a) and (b) solutions, there exist regions (the shaded regions) in which v
cannot be defined for a given k, solutions with such parameter choices do not exist. In case
of type (a), the values of v are defined in v ∈ [0, v3) and v ∈ (v4, v0]. The upper limit of v is
bounded by v0 and we can see that v0 → ∞ as µc → 0, which is evident from (2.4.4), see Fig.
2.4.

On the other hand, for the type (b), the position of v0 is v3 < velas < v0 < v4. Now, the line
of v0 acts the role of the boundary line along with v3 in (b). So v takes the values in the region
v ∈ [0, v3) and v ∈ [v0, v4). We must notice that for type (b) solutions, the value of v0 cannot
be exactly velas due to the restriction (2.4.4), as long as we have a nonzero λ. We observe that
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v0 approaches velas as µc → ∞, but the lower profile of v in (b) will be shifted to the right
indefinitely, i.e. k → ∞, see Fig. 2.4.

In the limit µc → ∞, it is clear that we will have a profile of type (b). Also we can see from
(2.3.21) that m2 → m2

0, hence k2 → k2
0. This agrees with the observation we made earlier that

b becomes negligible, and we will be left with the soliton solution ϕ → ϕ0 of the form (2.3.15).
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Figure 2.4: We indicate the modified profiles of the type (a) and (b) solutions as dot-dashed and dotted
lines in the two limits of µc → 0 and µc → ∞. As µc → 0, the upper boundary v0, in the type (a) of
Fig. 2.3, is pushed up to the infinity (left). In the limit µc → ∞ the lower profile of type (b) will shift
to infinity along the k axis (right).

Next, we consider the limit
ρrot
ρ

v4
χ

(v2
elas − v2

rot)2 ≪ 1 . (2.4.5)

In this limit, we can approximate the expressions of v3 and v4 given by (2.4.3) as follows

v4 ≈ velas

(
1 +

2ρrotv
4
χ

ρ(v2
elas − v2

rot)v2
elas

)
, v3 ≈ vrot

(
1 −

2ρrotv
4
χ

ρ(v2
elas − v2

rot)v2
rot

)
. (2.4.6)

Hence we can see that velas approaches v4 and vrot approaches v3 for the type (a) parameter
choice. In case of type (c) of Fig. 2.5, we set vχ = 0 (i.e., 3χ1 − χ3 = 0) to illustrate that
velas = v4 and vrot = v3, and that lines of velas and vrot play the role of asymptotic lines. In this
case, the matrix M of (2.2.16) becomes diagonal and the system looks similar to (2.2.17). Of
course, if we had assumed that velas < vrot, then we would have vrot = v4 and velas = v3. We
may obtain the similar observation in type (b) diagram by adjusting µc, but velas, vrot → v3.
Furthermore, in the same limit of vχ = 0, if we set an additional condition that velas = vrot,
then we will have one asymptotic line velas as shown in the diagram, type (d) of Fig. 2.5 and
the matrix M will simply become the identity matrix (up to the rescaling).

Now, we return to the singularity problem of the amplitude ψ in (2.3.25) affected by two
coefficients (the matrix element M21 can be written in terms of v2

χ ≡ M12),

16ρrotv
2
χ

ρ(v2 − v2
elas)

and 4λ
ρk(v2 − v2

elas)
. (2.4.7)

The analytic investigation on the profiles of v as a function of k provides us the clue that the
amplitude of ψ cannot be arbitrarily large. To see this, as k → ∞, we know v2 → v2

elas. But
the statement that the value of v2

elas approaches v2
4 is equivalent to say that v2

χ → 0, as we
can see directly from (2.4.6). Hence the first coefficient of (2.4.7) is assumed to remain finite
in this limit. Similarly, the second coefficient cannot be arbitrarily large. In other words, k
and (v2 − v2

elas) will compensate each other as k → ∞. This is shown in the type (c), or more
extreme case, the type (d) in Fig. 2.5.
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Figure 2.5: For (c), we put (κ1, κ3, χ1, χ3, ρ, ρrot, µc, λ, µ) = (0.7, 0.5, 0.5, 1.5, 0.1, 0.1, 0.3, 1.0, 0.5) so
that 3χ1 − χ3 = 0 and we obtain v4 = velas = 4.47214 and v3 = vrot = 3.51188. For (d), we only altered
value of parameter κ1 = 3.0 so that velas = vrot = v3 = v4 = 4.47214.

2.5 Galilean transformations and Lorentzian transformations
If a given system is invariant under certain symmetry, then we can apply the same symmetry
to a solution of the Euler-Lagrangian equation from the system to see whether the symmetry
remain valid or not. This gives us a clue about the nature of solution space. For example,
suppose we have a system of scalar field ϕ(z, t) with a Lagrangian

L = 1
2

(
∂ϕ

∂t

)2
− 1

2

(
∂ϕ

∂z

)2
− U(ϕ) (2.5.1)

for some potential U(ϕ). The equation of motion can be obtained by(
∂2

∂t2
− ∂2

∂z2

)
ϕ = −∂U

∂ϕ
. (2.5.2)

We can write total energy H defined by an integration of energy density H over all space,

H =
∫
dz H

=
∫
dz

[
1
2

(
∂ϕ

∂t

)2
+ 1

2

(
∂ϕ

∂z

)2
+ U(ϕ)

]
,

(2.5.3)

where energy density H in terms of conjugate momentum π = ∂L/∂ϕ̇ is defined by

H = πϕ̇− L . (2.5.4)

Now, if we consider a static case in evaluating the solution, we have

∂2ϕ

∂z2 = ∂U

∂ϕ
. (2.5.5)

In particular, if we have the potential U given by

U(ϕ) = 1
4
(
ϕ2 − 2m2

)2
,

then the solution is the well-known form of a pair of kink and antikink soliton solutions subject
to boundary conditions similar to (2.3.4),

ϕ(z) = ±
√

2m tanh
(√

m2 z
)
. (2.5.6)
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Further, we impose that the Lagrangian is invariant under the Lorentz transformation. This
means that if we apply the same transformation to the wave equation we obtained, it will still
remain as a valid solution to the given system. This is a widely known technique in solving a
time-dependent partial differential equation from its static case [40], when a certain symmetry
group for the Lagrangian is identified, and applicable to the static solution. We would like
to emphasise here that the same method can be applied in our solution, by noting that the
Galilean transformation is a limiting case of the Lorentz transformation.

Now, if we apply the Lorentz boost (the Lorentz transformation in one direction) to the
static wave solution (2.5.6) along, say the z-axis, then what we can expect is that the wave
packet starts moving in the direction along the transformation applied with a nonzero velocity.
Hence a time-dependent wave solution for (2.5.2) is simply

ϕ(z, t) = ±
√

2m tanh

√ m2

1 − v2 (z − vt)

 , (2.5.7)

in which z is replaced by (z− vt)/
√

1 − v2, according to the Lorentz boost along the z-axis (we
put the speed of light c = 1),

t′ = t− v/c2z√
1 − v2/c2 , z′ = z − vt√

1 − v2/c2 , x′ = x , y′ = y . (2.5.8)

For our case of the soliton solution for the microrotation governed by ϕ, suppose we have
started with a static case with an equation of motion, instead of the full dynamic case (2.3.7),

− ∂2ϕ

∂z2 +m2 sinϕ+ b

2 sin 2ϕ = 0 , (2.5.9)

in which we dropped the hat for the rescaled quantities for now. It is easy to check that the
solution for this is of the form,

ϕ(z) = 2 arcsin(X(z)) (2.5.10)

with the identical form X of (2.3.11), but now the static function u in X is

u(z) = exp
[√

m2 + b z
]
. (2.5.11)

If we apply the Lorentz boost in the z-axis to this static solution, then the time-dependent
soliton solution would be (2.3.10) with

u(z, t) = exp

√m2 + b

1 − v2 (z − vt) ± δ

 , (2.5.12)

which agrees with the solution we obtained in (2.3.10).
Of course, the key ingredient in facilitating the analysis we used in solving the coupled

system given in (2.2.15) is strictly based on the dynamic assumption that the displacement
wave propagation satisfies (2.3.1),

∂ttψ = v2∂zzψ ,

and the underlying symmetry in the energy functional is the global Galilean transformation
with the speed of light is taken to be c → ∞ in (2.5.8)

t′ = t , z′ = z − vt , x′ = x , y′ = y . (2.5.13)
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However, we would like to emphasise the fact that the equation of motion and its soliton solution
for the microrotation we obtained is well compatible with the system which contains the Lorentz
transformation as its fundamental symmetry group, once one identifies the equation of motion
can be derived to the form of (2.3.7).

This also signifies the effect and its validity of applying the Lorentz boost to the static
solution to obtain the time-dependent solution, when the soliton solution describes the particle-
like isolated behaviour prevented from any possible interference from undesired interaction to
lose its solitonic character, in particular when one considers the multi-soliton system. This is
exactly the case when we have k → ∞ in (2.3.21), see Fig. 2.2, in our soliton solution ϕ of
(2.3.22).
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Chapter 3

Chiral energy

3.1 Chiralities in continua

A group of geometric symmetries which keeps at least one point fixed is called a point group.
A point group in N -dimensional Euclidean space is a subgroup of the orthogonal group O(N).
Naturally this leads to the distinction of rotations and improper rotations. Centrosymmetry
corresponds to a point group which contains an inversion centre as one of its symmetry elements.
Chiral symmetry is one example of non-centrosymmetry which is characterised by the fact that
a geometric figure cannot be mapped into its mirror image by an element of the Euclidean
group, proper rotations SO(N) and translations. We denote this property as chirality, and
quantities responsible for this property by chiral terms.

This non-superimposability (i.e. chirality) to its mirror image is best illustrated by the left
and right hands. There is no way to map the left hand onto the right by simply rotating the left
hand in the plane. And there is no mirror symmetry line within one hand to map into another.
This geometrical feature of chirality can be found in many molecules which can have distinct
chemical properties. A fairly stable or harmless substance can have an unstable or noxious
substance as its chiral counterpart [41].

If one applies the Lorentz boost discussed in Section 2.5 to a spinning particle in its mo-
mentum direction in one frame of reference, while retaining its spin orientation, this will cause
an opposite direction of momentum to another frame of reference. This discrete symmetry is
known as parity and leads to the notion of left or right-handedness in particle physics.

In continuum mechanics, it is often observed that chiral materials in three-dimensional
space lose their chirality [42–44] when projected into a two-dimensional plane. A linear energy
function (quadratic energy in small strains) for an isotropic material in the centrosymmetric
case was studied in [10], and the absence of odd-rank isotropic tensors implicitly implied the
lack of material parameters for the non-centrosymmetric case. Similar works [42,45] considered
an energy function which contains a fourth order isotropic tensor with chiral coupling terms by
identifying axial tensors as being asymmetric under the inversion. When one attempts to apply
these ideas to the planar case, the chiral coupling term turns out to vanish [43, 44], and one
arrives at an isotropic (and centrosymmetric) model without chirality.

A rank-five isotropic tensor is introduced in [46] to impose chirality on the energy containing
a single chiral material parameter. This type of chirality is related to the gradient of rotation,
which led to the existence of torsion. Based on the assertion that hyperelastic Cosserat materials
are hemitropic, invariant under the right action of SO(3), if and only if the strain energy is
hemitropic, a set of hemitropic strain invariants can be found in [47]. Many attempts were
made to understand the mechanism behind the loss of chirality, and in constructing a generic
two-dimensional chiral configuration without referring to higher dimensions. A chiral rank-four
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isotropic tensor is used in [44] to derive a chiral material constant in the equations of motion,
and in subsequent works [48,49] the two-dimensional chirality problem is further considered. A
planar micropolar model is proposed in [50] with the help of the irreducible decomposition of
group representation.

Recent growing interests of planar chirality [51–55] concerns the polarised propagation of
electromagnetic waves. The optical behaviour indicates that planar chirality behaves differ-
ently from its three-dimensional counterpart. In [56] a two-dimensional chiral optical effect in
nanostructure is studied in comparison with three-dimensional chirality. The two-dimensional
micropolar continuum model of a chiral auxetic lattice structure in connection with negative
Poisson’s ratio is discussed in [43,50,57,58]. The theoretical analysis of planar chiral lattices is
compared with experimental results in [59].

A schematic description of chiral transformations and changes of the number of symmetry
groups from higher dimensions (macroscale chiral layers) to lower dimensions (molecules of chiral
line structure) is outlined in [60], backed by various experimental results. Further developments
in three-dimensional chiral structures can be found in [61–63].

Let us begin with an immediate observation regarding the rotational field in line of our inter-
ests. In three-dimensional space it is in general non-Abelian, while it may become Abelian group
structure in lower dimensions. So, a certain loss of information is expected when projecting to
lower dimensional space.

In this Chapter, we will construct a new geometrically nonlinear energy term which is
explicitly chiral in three dimensions, and which does not lose this character when applied to
the planar problem. This will shed light in understanding the genuine property of energy terms
which gives rise to chirality in various models.

We would like to introduce the so-called first planar Cosserat problem briefly here. The
displacement vector is given by u = (u1, u2, 0) while planar rotations are described by a rotation
axis n = (0, 0, n3). Then the dislocation density tensor (2.1.5) defined by

K = R
T CurlR

is nonzero. Since the microrotations are described by the orthogonal matrix R ∈ SO(3), it does
contain a 2×2 zero block matrix in the planar indices. This induces several orthogonal relations,
for example, with the first Cosserat deformation tensor Ũ = R

T
F , which makes it impossible

to construct coupling terms in the energy which do not vanish identically in the plane, see the
detailed discussions in [24,64].

Let us illustrate a simple example regarding chirality in three dimensions which can be trans-
lated into two dimensions. In Fig. 3.1, two chiral dice are given which cannot be SO(3)-rotated
to superimpose onto each other in three dimensions on the top, and two chiral hexagons are
given which again cannot be SO(2)-rotated to superimpose onto each other in two dimensions
on the bottom. In the middle, there are two specific procedures to preserve the chirality from
three dimensions when projected to two dimensions. One of them is the way of labelling the
number of dots on the chiral dice to be projected to the chiral hexagon, and another is to specify
the choice of perspective.

This example suggests, at least at an intuitive level, that one can construct a three-dimensional
chiral structure and a projection, such that the resulting two-dimensional structure inherits the
chirality in a certain way. However we must note that if we had a different way of labelling
dots on the chiral dice or with a different choice of perspective, we would not find a chiral
hexagon on the plane. In other words, the chirality preservation through the projection into
the lower-dimensional space depends critically on its construction.
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Figure 3.1: We project the image of a chiral dice into a two-dimensional plane along with a particular
point of view to obtain a regular hexagon with numbered balls on its vertices, where the numbers are
exactly in the order as printed on the given die. Further, we map even numbers into white balls and odd
numbers into black balls. We get a chiral hexagonal two-dimensional structure.

3.2 Construction of chirality in deformational measures
We state our definition of chirality formally, and its application to the deformation gradient
tensor and the dislocation density tensor. First, we define a coordinate-inversion operator #
that acts on a function φ = φ(x, y, z),

φ#(x, y, z) = φ(−x,−y,−z) . (3.2.1)

This means we evaluate the function φ at the inverted coordinates (−x,−y,−z). On the
deformation gradient tensor this operator acts as

F# = (∇φ)# = −∇φ(−x,−y,−z) = −F (−x,−y,−z) . (3.2.2)

i.e. under the operator #, F picks up the negative sign at the inverted coordinates.
The stretch part of F defined by U =

√
F TF , in the polar decomposition, is invariant under

# since
U# =

√
(F TF )# =

√
(F T )# F# =

√
F TF = U . (3.2.3)

We note that the operation #, when acting on a product of matrices, does not reverse the order
of the multiplication, unlike for example the transpose operation (AB)T = BTAT .

On the other hand, to see the action of the operator # on the polar part of F , polar(F ) = R,
we consider the action on the polar decomposition of F ,

F# = (RU)# = R# U# = R# U = −F (−x,−y,−z) . (3.2.4)

This implies that the orthogonal matrix R = polar(F ) transforms under # as

R#(x, y, z) = −R(−x,−y,−z) (3.2.5)

in complete analogy to the transformation of F . Consequently,

(R#)T = −RT (−x,−y,−z) = (RT )# , (3.2.6)
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which means that F (or F T ) and its polar part R (or RT ) transform in the same way under #.
There is a deep meaning of acquiring the additional minus sign when one applies the inver-

sion # to the rotation, in particular, if one takes the rotation R such as (2.2.1) with a fixed
rotational axis. For example, if we consider the general rotational representation (1.2.31), the
transformation properties of a general rotational matrix under inversion can be understood
quite naturally. Consider the transformation from the reference configuration XL to the spatial
configuration xi = RiLXL by a rotation

RiL = δiL cosϕ+ ϵijLnj sinϕ+ (1 − cosϕ)ninL (3.2.7)

where ni is an axis of rotation and ϕ is a rotational angle in spatial configuration. nL is an
axial vector in the reference configuration. Then applying the inversion operator # gives

R#
iL = −δiL cosϕ− ϵijLnj sinϕ− (1 − cosϕ)ninL , (3.2.8)

in which δiL acquires a negative sign in the spatial configuration, and ni changes its direction
under the inverted coordinates but nL remains unaffected in the reference configuration. This
agrees with result (3.2.5). More generally speaking, for R ∈ O(3), we have detR = ±1 and we
can write

R = s eA , detR =
{

+1 if s = +1 ,
−1 if s = −1 ,

(3.2.9)

where A is a 3 × 3 skew-symmetric matrix. This classification identifies the relation between
R ∈ SO(3) and its chiral counterpart R#. If detR = +1 we have detR# = −1, and vice
versa. We note that these arguments are valid not only in case of macrorotations, but also in
microrotations in which the relations are defined by (1.2.25) in terms of directors.

On an equal footing, the deformation gradient tensor is defined by FiR = ∂xi
∂XR

for xi =
Xi + ui(Xk), and applying the operator # gives

F#
iR = ∂(−xi)

∂XR
= −FiR , (3.2.10)

also in agreement with (3.2.4).
Now, consider the operation Curl of (2.1.4) on R#,

(CurlR#)ij = ϵjkl∂kR
#
il . (3.2.11)

It is easy to observe that each partial derivative gives additional minus signs to the matrix
elements of R# using the chain rule, for instance

∂yR
# = −∂yR(−x,−y,−z) = ∂−yR(−x,−y,−z) = (∂yR)(−x,−y,−z) (3.2.12)

so that the partial derivative of R with respect to y is evaluated in the usual Cartesian coordi-
nates, but the quantity ∂yR is viewed in the inverted coordinate system (−x,−y,−z). Then

Curl (R#)(x, y, z) = (CurlR)(−x,−y,−z) . (3.2.13)

Hence, we see that the operator Curl negates the minus sign obtained when # is acted on
R. But we can easily construct a deformational measure which transforms like (3.2.4). The
dislocation density tensor is such an example, satisfying

(RT CurlR)# = (R#)T CurlR# = −(RT CurlR)(−x,−y,−z) . (3.2.14)
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It is no coincidence that the dislocation density tensor is exactly of this form. Clearly, we will
arrive at the same conclusions for R = polar(F ) and F ∈ GL(3; R)

F
#(x, y, z) = −F (−x,−y,−z) , (3.2.15a)

R
#(x, y, z) = −R(−x,−y,−z) , (3.2.15b)

K
# = (RT CurlR)#(x, y, z) = −(RT CurlR)(−x,−y,−z) = −K . (3.2.15c)

In this way, we would like to investigate some frequently appearing matrix quantities in the
Cosserat elasticity energy functional, accompanied by conventional matrix operations such as
transpose, trace or Frobenius scalar product. We will see whether they are chiral or not. This
will lead to a simple combination of products which yields a chiral energy functional.

3.3 Constructing chiral energy functionals
We show the construction of one possible chiral term which can form the building blocks in
constructing a multitude of other chiral terms. In searching for a generic objective [65] and
chiral term for a chiral energy functional, we begin by recalling objectivity.

We call an energy functional objective if it is invariant under the left-action of global rotations
Q with detQ = +1, here Q ∈ SO(3) is a constant position-independent orthogonal matrix.
Under the global rotation of Q on F and R, respectively, we have

F = RU −→ QF = QRU and R −→ QR . (3.3.1)

It is easy to verify that the dislocation density tensor K is objective, under the global rotation
Q acting on R

K = R
T CurlR −→ (QR)T Curl (QR) = R

T
QTQCurlR = K . (3.3.2)

Therefore, K is objective and also chiral quantity due to (3.2.15c).
These observations allow us to construct two additional terms which are both objective and

chiral quantities from which we wish to use in constructing the chiral energy term, namely

L = RT CurlR and M = R
T CurlR . (3.3.3)

Here, again, R is the orthogonal part of the polar decomposition, while R is the microrotation.
In principle one could also consider the term K = RT CurlR.

Now, we have a set of chiral and objective terms at our disposal

{K,K,L,M,K
T
,KT , LT ,MT , · · · } , (3.3.4)

from which we can construct a chiral energy functional. We note that a product of an odd
number of chiral terms is required to preserve chirality.

In addition to the notion of objectivity, an energy functional is hemitropic if it is invari-
ant under right-action of global rotations excluding inversions, i.e. right-invariant under the
elements of SO(3) [65]. In particular, the invariance under the right-action of O(3) is called
isotropy. Considering the (right) rotation Q2 ∈ SO(3), we find that F and R transform as

F = RU −→ RQ2U and R −→ RQ2 . (3.3.5)

This implies the following property

K = R
T CurlR −→ (RQ2)T Curl (RQ2) = QT

2 R
T CurlRQ2 = QT

2 KQ2 . (3.3.6)
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Likewise, we find

L = RT CurlR −→ (RQ2)T CurlRQ2 = QT
2 LQ2 ,

M = R
T CurlR −→ (RQ2)T CurlRQ2 = QT

2 MQ2 .
(3.3.7)

Finally, we consider the energy functional

Vχ = χtr
(
K K K

)
, χ ∈ R . (3.3.8)

We note its three main properties as follows.

1. K is invariant under the left action of SO(3), hence Vχ is invariant under the left action
of SO(3), thus it is objective.

2. K is chiral, Vχ is odd in K and hence Vχ is chiral, V #
χ = −Vχ.

3. Vχ is invariant under the right action of SO(3), so it is hemitropic. This is because

Vχ = χtr
(
K K K

)
−→ χtr

(
QT

2 KQ2Q
T
2 KQ2Q

T
2 KQ2

)
= χtr

(
QT

2 K K KQ2
)

= Vχ ,

due to the cyclic property of the trace.

This means Vχ is objective, hemitropic and chiral. Clearly, following the same approach, one
can consider similarly structured terms based on cubic combinations of K, L and M . For the
sake of simplicity, we will focus on the easiest of these terms.

3.4 Variations of a chiral equation
The chiral energy term Vχ is by no means guaranteed to lead to a non-vanishing contribution
to the equations of motion when the planar problem is considered. However, it will turn out
to produce the necessary terms to preserve planar chirality. In the following we will define an
energy functional from which we will derive equations of motions. After constructing an explicit
solution, we will discuss the chiral properties of the solution.

Let us begin by defining the total energy functional now including a chiral term Vχ of the
form (3.3.8) for the Cosserat material which is given by

V = Velastic(F,R) + Vcurvature(R) + Vχ(R) − Vkinetic(u, R) , (3.4.1)

where the individual terms are

Velastic(F,R) = µ
∥∥∥sym(RT

F − 1)
∥∥∥2

+ λ

2
[
tr
(
sym(RT

F − 1)
)]2

(3.4.2a)

Vcurvature(R) = κ1
∥∥∥dev sym(RT CurlR)

∥∥∥2
+ κ2

∥∥∥skew(RT CurlR)
∥∥∥2

+ κ3
[
tr(RT CurlR)

]2
(3.4.2b)

Vχ(R) = χtr
(
K K K

)
(3.4.2c)

Vkinetic = 1
2ρ∥u̇∥2 + ρrot∥Ṙ∥2 . (3.4.2d)

Following the results from Chapter 2, the variation of the total energy functional

δV = δVelastic(F,R) + δVcurvature(R) + δVχ(R) − δVkinetic(u, R) (3.4.3)
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will lead to the equations of motion by collecting corresponding terms of δR and δF separately.
The detailed calculations for varying functionals Velastic and Vcurvature are given in Appendix A.
The variation of Vχ can also be found in Appendix A and we write these variational terms,

δVelastic(F,R) =
[
µ(RF TR+ F ) − (2µ+ 3λ)R+ λtr(RT

F )R
]

: δF

+
[
µFR

T
F − (2µ+ 3λ)F + λtr(RT

F )F
]

: δR+ ρü δu (3.4.4a)

δVcurvature(R) =
[
(κ1 − κ2)

(
(CurlR)RT (Curl (R)) + Curl

[
R(CurlR)TR

])
+ (κ1 + κ2)Curl

[
CurlR

]
−
(
κ1
3 − κ3

)(
4tr(RT CurlR)Curl (R) − 2R

(
grad

(
tr[RT CurlR]

))⋆
+ 2ρrotR̈

]
: δR

(3.4.4b)

δVχ = 3χ
[
(CurlR)(K2) + Curl [R(K2)T ]

]
: δR . (3.4.4c)

Collecting δF terms gives 3 × 3 matrix A

µ(RF TR+ F ) − (2µ+ 3λ)R+ λtr(RT
F )R = A . (3.4.5)

As we did in Chapter 2, the δF terms are evaluated using the fact

A : δF = AijδFij −→ −∂jAijδui = − (∂1A31 + ∂2A32 + ∂3A33) δψ ,

for any matrix A, where a total derivative term was neglected.
Likewise, collecting δR terms from these variations can be summarised to a single matrix

B as shown in the following

3χ
[
(CurlR)(K2) + Curl [R(K2)T ]

]
+ µFR

T
F −

(
2µ+ 3λ

)
F + λtr(RT

F )F

+ (κ1 − κ2)
(
(CurlR)RT (Curl (R)) + Curl

[
R(CurlR)TR

])
+ (κ1 + κ2)Curl

[
CurlR

]
−
(κ1

3 − κ3
)(

4tr(RT CurlR)Curl (R)

− 2R
[
grad

(
tr[RT CurlR]

)]⋆)
+ 2ρrotR̈ = B . (3.4.6)

3.5 Equations of motion and solutions

Now we are in position to state explicitly the dynamic equations of motion in the plane, and
show that chirality does not vanish. We then solve those equations and explain their chiral
structure. In order to study the equations of motion in the plane, we will make the following
identical assumptions we used in Chapter 2. These are

1. Material points can only experience rotations about one axis, say the z-axis.

2. Displacements occur along this axis of rotation.

3. Elastic displacement waves and microrotational waves are both longitudinal, and propa-
gate with the same constant wave speed v.

Consequently, the microrotation matrix, the displacement vector and deformation gradient ten-
sor are exactly identical to (2.2.1) and (2.2.4). This implies F = U and polar(F ) = R = 1.
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And from these, we can write the explicit forms of the dislocation density tensor K defined by
K = R

T CurlR,

K =

∂zϕ 0 0
0 ∂zϕ 0
0 0 0

 . (3.5.1)

Now, under these assumptions, only the A33 contributes in the δF term, which is given by

A33 = 2λ(cosϕ− 1) + (λ+ 2µ)∂zψ . (3.5.2)

This gives the equation of motion of ψ,

ρ∂ttψ + 2λ sinϕ ∂zϕ− (λ+ 2µ)∂zzψ = 0 . (3.5.3)

On the other hand, the quantity B : δR becomes

B : δR = tr[BT δR] = tr


B11 −B12 0
B12 B11 0
0 0 B33


− sinϕ − cosϕ 0

cosϕ − sinϕ 0
0 0 0


 δϕ

= −(2B11 sinϕ+ 2B12 cosϕ)δϕ .

(3.5.4)

The required components of B are given by

B11 = −2(λ+ µ) + 1
3 cosϕ

[
3(2λ+ µ) − 6ρrot(∂tϕ)2 + (∂zϕ)2(κ1 − 3κ2 + 24κ3 + 18χ∂zϕ)

]
+ λ∂zψ + 2

3 sinϕ
[
−3ρrot∂ttϕ+ (κ1 + 6κ3 + 9χ∂zϕ)∂zzϕ

]
, (3.5.5a)

B12 = 1
3 sinϕ

[
(3µ+ 6ρrot(∂tϕ)2 − (∂zϕ)2(κ1 − 3κ2 + 24κ3 + 18χ∂zϕ)

]
+ 2

3 cosϕ
[
−3ρrot∂ttϕ+ (κ1 + 6κ3 + 9χ∂zϕ)∂zzϕ

]
. (3.5.5b)

Putting everything together gives the equation of motion for ϕ, together with the previous
equation for ψ of (3.5.3). This coupled system of equations is given by

ρrot ∂ttϕ−
(
κ1 + 6κ3

3

)
∂zzϕ− 3χ∂zϕ ∂zzϕ+ (λ+ µ)(1 − cosϕ) sinϕ− λ

2 sinϕ ∂zψ = 0 ,

(3.5.6a)
ρ ∂ttψ + 2λ sinϕ ∂zϕ− (λ+ 2µ)∂zzψ = 0 .

(3.5.6b)

Now, we seek solutions of the form ϕ = f(z−vt) and ψ = g(z−vt), where v is the same wave
speed for both the elastic and the rotational wave propagation according to our assumptions.
This means they both satisfy the wave equations

∂ttf = v2∂zzf and ∂ttg = v2∂zzg .

We introduce a new variable s = z − vt, and denote the differentiation with respect to s by
a prime. Putting this ansatz into the equation of motion of ψ (3.5.5b) gives

ρv2g′′ + 2λ sin(f)f ′ − (λ+ 2µ)g′′ = 0 ,

which can be rewritten by

(ρv2 − (λ+ 2µ))g′′ − 2λ sin(f)f ′ = 2λ d
ds

(cos(f)) . (3.5.7)
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Since it is reduced to a second-order ordinary differential equation, we can now integrate with
respect to s which gives

g′ = 2λ
ρv2 − (λ+ 2µ) cos(f) + C1 , (3.5.8)

for some constant of integration C1. Since ∂zψ = g′ we can now eliminate this term from the
equation of motion (3.5.6a) which becomes

ρrotv
2f ′′ −

(
κ1 + 6κ3

3

)
f ′′ − 3χf ′f ′′ + (λ+ µ)(1 − cosϕ) sinϕ

− λ

2 sin(f)
( 2λ
ρv2 − (λ+ 2µ) cos(f) + C1

)
= 0 .

(3.5.9)

After rearranging terms, this can be rewritten as follows

ρrotv
2f ′′ −

(
κ1 + 6κ3

3

)
f ′′ − 3χf ′f ′′ +

[
(λ+ µ) − λ

2C1

]
sin(f)

− 1
2

[
(λ+ µ) + λ2

ρv2 − (λ+ 2µ)

]
sin(2f) = 0 .

(3.5.10)

When setting χ = 0, this becomes the double sine-Gordon equation, we saw in Chapter 2 for the
soliton solution we constructed with the line of symmetry passes through the peak of the wave
packet, hence non-chiral. However, with a nonzero chiral parameter χ, there is an additional
contribution from the non-linearity of the form χf ′f ′′, and this might give the desired result for
the chirality in the solution.

3.6 Constructing approximate solutions
Inspection of equation (3.5.10) shows that each of these five terms can be integrated after the
entire equation is multiplied by f ′. This yields

1
2

[
ρrotv

2 −
(
κ1 + 6κ3

3

)]
(f ′)2 − χ(f ′)3 −

[
(λ+ µ) − λ

2C1

]
cos(f)

+ 1
4

[
(λ+ µ) + λ2

ρv2 − (λ+ 2µ)

]
cos(2f) = C2 ,

(3.6.1)

where C2 is another constant of integration. Formally, this is a cubic equation in f ′ (quadratic
in f ′ if χ = 0) which can, in principle, be solved for f ′ and will give three different solutions in
general. The resulting equation is always of the general form f ′ = H(f) and is hence separable.

• This means we have reduced finding a solution to our system of nonlinear wave equations
(3.5.6a) and (3.5.6b) to an integration problem. Note that this solution depends on the
eight parameters {v, λ, µ, ρ, κ1, κ3, ρrot, χ} and two constants of integration C1 and C2. In
general, these solutions will involve special functions if an explicit solution can be found.

• With nonzero chiral parameter χ, we cannot approach with the analytic method used
in the double sine-Gordon equation. But we will construct an approximated solution to
(3.6.1), using a suitable choice of the constants of integration.

The chiral parameter χ is assumed to be small so that a series expansion in this parameter
can be made. We choose C1 = 2(λ+ µ)/λ, put F(s) = 2f(s) and choose C2 such that one can
write

(F ′)2 − χ̃(F ′)3 = 2m̃2(1 − cos(F)) (3.6.2)
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where the following constants are introduced

χ̃ = 3χ
ρrotv2 − (κ1 + 6κ3) and m̃2 = 3v2ρ(λ+ µ) − 3µ(3λ+ 2µ)

(λ+ 2µ− v2ρ)(κ1 + 6κ3 − 3v2ρrot)
. (3.6.3)

Now, to solve this, we use regular perturbation methods. First we write the function F(s) as a
series expansion

F(s) = F0(s) + χ̃F1(s) + χ̃2F2(s) + · · · (3.6.4)
in the chiral parameter χ̃ which we assume to be small χ̃ ≪ 1. Further, we impose initial
conditions followed by the periodicity of F(s) = 2f(s), and the resemblance from the previously
obtained solution in (2.3.22), and the assumption of the dominant term in the expansion is the
first term F0(s),

F(0) = F0(0) = π and F1(0) = F2(0) = · · · = 0 . (3.6.5)

Let us begin with the function F0(s) which satisfies

dF0
ds

= ±m̃
√

2[1 − cos(F0)] , (3.6.6)

the solution of which is well known

F0(s) = 4 arctan(e±m̃s) . (3.6.7)

Again, this is a pair of kink/antikink solutions. The deviation from this solution comes from
the nonzero χ̃ term, when we substitute F(s) into the equation of motion (3.6.2), and make a
series expansion in χ̃ up to the first order to obtain

− (F ′
0)3 − 2m̃2 sin(F0) F1 + 2 F ′

0 F ′
1 = 0 , (3.6.8)

where
F ′

0 = 2m̃ sech(m̃s) = 2 m̃

cosh(m̃s) = 4 m̃

em̃s + e−m̃s

follows from (3.6.7). With the initial condition F1(0) = 0, we obtain

F1(s) = m̃ sech(m̃s)
(
4 arctan(em̃s) − π

)
= 1

2F ′
0(F0 − π) , (3.6.9)

which gives the first order solution

F(s) = 4 arctan(em̃s) + χ̃m̃ sech(m̃s)
(
4 arctan(em̃s) − π

)
. (3.6.10)

Using similar perturbative expansion, one can obtain the second order F2(s) satisfying

− m̃2 cos(F0)(F1)2 − 2m̃2 sin(F0)F2 − 3(F ′
0)2F ′

1 + (F ′
1)2 + 2F ′

0 F ′
2 = 0 . (3.6.11)

This depends on the lower order solutions F0 and F1. We can solve this by using the already
obtained results for F0 and F1, with the initial condition F2(0) = 0. The solution is given by

F2(s) = 1
8F ′′

0

(F0 + (F ′
0)2

F ′′
0

− π

)2

−
(

(F ′
0)2

F ′′
0

)2

− 12

 . (3.6.12)

Following the identical boundary condition under the elastic base (2.3.4), for all time t we
have

ϕ(±∞, t) = 0 and ∂zϕ(±∞, t) = 0 .
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To incorporate these boundary conditions, the kink and antikink solutions (3.6.7) are readily
applicable. So, we can redefine F0(s) as follows

F0(s) =
{

4 arctan(e+m̃s) if s < 0 ,
4 arctan(e−m̃s) if s > 0 .

(3.6.13)

Next, we can apply the same reasoning to the first order contribution (3.6.9). We note that the
solution F1(s) is invariant under the change m̃ → −m̃, which is the equivalent to s → −s in
this case. This is clear from (3.6.9) using the identity arctan(x−1) = π/2 − arctan(x).

Now, putting back s = z − vt and ϕ(z, t) = f(z − vt) = F/2, and using (3.6.10), the first
order solution for ϕ(z, t) becomes

ϕ(z, t) =
{

2 arctan(e+m̃(z−vt)) + χ̃m̃
2 sech(m̃(z − vt))(4 arctan(em̃(z−vt)) − π) if z < v t ,

2 arctan(e−m̃(z−vt)) + χ̃m̃
2 sech(m̃(z − vt))(4 arctan(em̃(z−vt)) − π) if z > v t .

(3.6.14)
The solution constructed in this way gives rise to a localised wave which propagates along the
z-axis. The amplitude decreases exponentially such that the material recovers its original shape
once the wave passes through, which is the boundary condition we imposed in Chapter 2 in the
framework of the elasticity, see Fig. 3.2.

Figure 3.2: Left panel: The kink and antikink solutions obtained in (3.6.10) are shown at t = 0,
indicating the asymptotic behaviours of ϕkink(+∞, t) and ϕantikink(−∞, t). Right panel: The piece-wise
definition (3.6.14) of ϕ(z, t) is shown for χ̃ = 0 and χ̃ ̸= 0.

If we apply the inversion operator to (3.5.10), it will yield a new equation of motion where
ϕ(z, t) is replaced by ϕ#(z, t) = ϕ(−z, t). Then the χ term in (3.5.10) acquires an additional
minus sign due to the presence of three derivatives with respect to z, one second derivative and
one first derivative. This results in[

ρrotv
2 −

(
κ1 + 6κ3

3

)]
∂zzϕ

# + 3χ∂zϕ
#∂zzϕ

# +
[
(λ+ µ) − λ

2C1

]
sin(ϕ#)

− 1
2

[
(λ+ µ) + λ2

ρv2 − (λ+ 2µ)

]
sin(2ϕ#) = 0 .

(3.6.15)

This is precisely the equation of motion we would have obtained if we have started with the
total energy of V #

χ . At first sight, it is not straightforward to see that (3.6.15) is the chiral
counterpart of (3.5.10) other than the sign change of the χ term. However, first of all, the wave
speeds for both wave equations are identical and, formally, we will arrive at the same solution,
as it should be.

We know from ϕ#(z, t) = ϕ(−z, t) that the solution to one equation gives the solution to
the other by a reflection. In other words, the wave solution of (3.5.10) will be the right-moving
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wave while the solution of (3.6.15) describes the left-moving wave. Also we note that ϕ(z, t) is
an even function if χ = 0 while this is not the case when χ ̸= 0 as expected.

Furthermore, the left-moving wave will be governed by the rotation matrix R# = −R with
respect to the inverted axis −z. Hence the orientations of left-moving wave and right-moving
wave for the material elements, which experience microrotations in xy-plane, are identical but
reflected. Therefore, we can conclude that two wave solutions are chiral to each other. The
right-moving waves rotates anti-clockwise while the left-moving one rotates clockwise.

We emphasise that this inversion operation on R only takes effect on the terms coupled
to the chiral part. Specifically, only the chiral energy Vχ(R) is responsible for generating the
chiral counterpart R# while the other energy functional terms are invariant under this inversion
operation. This is also evident from the variation with respect to δR. Consequently, the chiral
coupled term in the equation of motion and its solutions experience the effects of the inversion
operation on the rotational matrix as the wave propagate along the axes. The travelling wave
solutions are shown in Fig. 3.3.

V #
χ ⇐⇒ Vχ

⇐⇒

Figure 3.3: In analogy with Fig. 2.2, this shows the rotational deformations governed by the micro-
rotation occurring on the xy-plane the material elements, modelled by pendulums as the deformational
waves propagate. The right-moving wave along the z-axis corresponds to the chiral energy Vχ (right
panel). On the other hand, the left-moving wave gives the same rotational defects resulted from V #

χ as
it propagates to the left (left panel). We set χ̃ = 0.6 and m̃ = 2.

We started by defining the inversion operator # in three-dimensional space to define what
is meant by chirality. In words, an energy term which acquires an additional minus sign when
evaluated in the inverted coordinates. By recognising the fact that it is possible to construct
chiral terms, which are objective and hemitropic, we suggested various chiral energy functionals
and formulated a total energy functional. This consisted of elastic energy functionals accompa-
nied by a chiral term. This chiral term will appear again in Section 8.4 when we consider the
theory of defects of liquid crystals under the free energy expansion formalism.

An interesting question to consider in general is whether the chiral energy Vχ should change
its sign under inversions or not. If it does, as we assumed in the above, one of the two chiral
states has a lower energy state than the other. Consequently one of the two chiral states is
favoured energetically. This is somewhat at odds with the fact that simple chiral molecules
appear in equal proportion in chemical experiments. On the other hand, there are also known
examples [41] where the chiral counterpart is unstable, hence justifying a lower energy for one
of the two states.

Our proposed model is able to take into account both setups by simply setting either χ# = χ
or χ# = −χ. The case χ# = χ corresponds to the chiral counterparts having a different energy
states, hence it will be useful in modelling a system where one of chiral states is favoured in
terms of energy stability. When working with χ# = −χ, the energy of both chiral states is
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identical. Our solution is suitable for both types of models as the value of the chiral parameter
only affects the shape of the localised solution, but does not change any of the interpretation.
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Part II

Defects in Riemann-Cartan
manifolds
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Chapter 4

Background and motivation

4.1 Differential geometry and elasticity

In continuum physics, there are two distinct measures of defects, called disclination and dislo-
cation. In this Chaper, we will see that these measures are related to curvature and torsion,
respectively. These defect measures can be detected due to the broken symmetries, for exam-
ple, in Bravais lattices, the idealised approximation of crystalline. When defects are detected,
these can be explained by the broken rotational symmetries caused by the disclination, and the
broken translational symmetries caused by the dislocation [66–69].

In general relativity, the notion of curvature has been the main ingredient in describing
deformed spacetime, and the notion of torsion is largely omitted. Nonetheless, in developing
the theory for generalised local symmetry under the Poincaré group, the theory similar to those
of Yang-Mills theory [70] in the curved spacetime, the notion of torsion has essentially become
evident in completing the theory with the spinning particles coupled to torsion [71–75] under
the minimal prescription by promoting ordinary partial derivatives to covariant derivatives with
appearances of new local gauge fields. Hence, the needs for the non-Riemann manifold arises
naturally which can contain the Cartan’s torsion tensor.

Riemann-Cartan manifolds contain both curvature and torsion, and provide a suitable back-
ground when one brings concepts of curvature and torsion to a given manifold at the same time,
using the method of differential geometry in describing the intrinsic nature of defects and its
classifications. Pioneering works using this mathematical framework were explored in [66,76–79].
Inspired from similarities and its applicabilities, links between the theories of the continuum
physics and the Einstein-Cartan theory in describing the defects were made in [80–84]. It is
worth noting that these geometrical considerations are commonly used in the Einstein-Cartan
theory [74,85,86], teleparallel gravity [87], gauge theories of gravity [88–90] and the condensed
matter system [91–93]. In a microscopic point of view, microrotations and torsion were explored
in [21–23,82,94]. Recent developments in incorporating the elasticity theory and spinning par-
ticles using the tetrad formalism can be found in [95,96].

Since the Riemann curvature tensor satisfies various geometrical identities such as Bianchi’s
identities, it is natural to expect that these identities also play a role in continuum mechanics,
if one considers the possibility that the Riemann curvature tensor can contain both measures
of pure curvature originated from the metric tensor and torsion which can arise independently
of the metric field. In particular, we will see that the vanishing Riemann curvature and its
related measures imply the theory is in the regime of elasticity, and a set of partial differential
equations may lead to an integrability condition which is commonly called the compatibility
condition in some cases.

This will be our starting point in connecting the theories of defects in continuum physics
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to those of the gravitational theory via the Riemann-Cartan geometry to see how torsion and
curvature can be conceived in both settings. For example, in [97], the notion of metric elasticity
in the Riemann manifold is introduced, hence it is essentially required to bring the notion
of force in the formalism which is one of distinct features from the conventional theory of
gravitation [85].

It is well known that the vanishing Riemann curvature tensor in the deformed body yields
the compatibility conditions equivalent to the Saint-Venant compatibility conditions [98–103]
in the classical elasticity theory, which are otherwise derived by considering higher order partial
derivatives, that have to necessarily commute. After revisiting these basic results in the classical
theory of continuum, we will show that one of compatibility conditions known as the Vallée’s
compatibility condition, is in fact equivalent to the vanishing of the three-dimensional Einstein
tensor using tools of differential geometry and we will develop its further implications. In Part
II, we will follow closely the results obtained in [104].

4.2 Compatibility conditions
Compatibility conditions in continuum mechanics form a set of partial differential equations
which are not completely independent of each other. They may impose certain conditions among
unknown number of functions which are often derived by applying higher-order mixed partial
derivatives to given system of equations. They are closely related to integrability conditions.

In 1992 Vallée [105] showed that the standard Saint-Venant compatibility condition of linear
elasticity, known since the mid-19th century, can be written in the convenient form

Curl Λ + Cof Λ = 0 , (4.2.1)

where the operators Curl and Cof in (4.2.1), for 3 × 3 matrices, are defined by

(Curl Λ)ij = ϵjmn∂mΛin , and (Cof Λ)ij = 1
2ϵimsϵjntΛmnΛst , (4.2.2)

and ϵijk is the totally antisymmetric Levi-Civita symbol for i, j, k = 1, 2, 3. The 3 × 3 matrix Λ
is given by

Λ = 1
detU

[
U(CurlU)TU − 1

2tr
[
(CurlU)TU

]
U

]
. (4.2.3)

This formulation is based on Riemannian geometry where the metric tensor is written as gµν =
Ua

µU
b
νδab. Here U is the right stretch tensor of the polar decomposition of the deformation

gradient tensor F = RU of (1.2.6), and R is an orthogonal matrix which is the polar part.
Condition (4.2.1) is derived by finding the integrability condition of the system for the right

Cauchy-Green deformation tensor C defined in (1.2.35),

C = (∇Θ)T (∇Θ) . (4.2.4)

The deformation of the continuum is expressed by a diffeomorphism Θ : M → R3 in the classical
theory, such that x = X +u with u being the displacement vector. Hence, the tensor C assumes
the role of a metric tensor in the given smooth manifold M . Later [106], the existence of such
an immersion Θ is proved which maps an open subset of R3 into R3 in which the metric tensor
field defined by C with U in the polar decomposition ∇Θ = RU . The expression (4.2.1) will
be shown to be equivalent to the vanishing of the Riemann curvature tensor in this setting
and the zero curvature characterises the differential equation (4.2.4) to be integrable. For a
small displacement field u, the notion of zero curvature reduced to the classical Saint-Venant
integrability conditions.
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Much earlier, in 1953 Nye [34] showed that there exists a curvature related rank-two tensor
Γ of the form

Γ = 1
2tr

(
RT CurlR

)
1 − (RT CurlR)T , (4.2.5)

satisfying the identical form of compatibility condition

Curl Γ + Cof Γ = 0 . (4.2.6)

The object Γ is often called Nye’s tensor, and is written in terms of the dislocation density
tensor K = RT CurlR we used in constructing the energy functional Vcurvature and Vχ in Part I,
for example (3.2.14) and (3.3.8). We note that the dislocation density tensor here only depends
on the orthogonal matrix R.

We would like to show that these two compatibility conditions (4.2.2) and (4.2.6), seemingly
arose from different and incomparable settings, are in fact special cases of a much broader
compatibility condition which can be formulated in Riemann-Cartan geometry.
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Chapter 5

Deformational measures in
Riemann-Cartan manifold

We introduce frame basis and co-frame basis, also called tangent and co-tangent basis respec-
tively, together with its polar decompositions. Then we define various quantities including a
general affine connection, a spin connection, and torsion formally. We decompose these tensors
into two parts, one which is torsion-free and one that contains torsion. The Riemann tensor will
be expressed in various ways using above mentioned tensors. We then introduce the Einstein
tensor in terms of Riemann curvature tensor in three dimensions.

5.1 Frame fields and non-frame fields
Let us begin with a three-dimensional Riemannian manifold M with coordinates x, and let us
introduce a set of bases for the tangent space and co-vectors (or 1-forms) for the co-tangent
space, respectively, at some point x ∈ M

Eµ
b (x) and ea

µ(x) (5.1.1)

where the Latin indices a, b, · · · = 1, 2, 3 are tangent space indices, and Greek letters µ, ν, · · · =
1, 2, 3 denote coordinate indices. This basis is often called a (co-)tetrad field. For the frame
field, we define the tangent basis

Ea = Eµ
a

∂

∂xµ
, (5.1.2)

where Eµ
a is an element of 3 × 3 real general linear group GL(3; R). So we can say that Ea is

obtained by the transformation of the frame fields {∂/∂xµ} by some element Eµ
a . Similarly, we

define the co-frame field (or co-tangent field), the dual fields of frame field,

ea = ea
µdx

µ , (5.1.3)

where ea
µ is also an element of GL(3; R). These satisfy orthogonal relations

ea
µE

ν
a = δν

µ and ea
µE

µ
b = δa

b . (5.1.4)

Here δν
µ and δa

b are the Kronecker deltas in their respective spaces. We emphasise that for a
given manifold, we can find these tangent bases locally so that we can relate different sets of
tangent bases in different points by simple transformations defined by an element GL(3; R).

However, it is impossible to find a single frame field which is nowhere vanishing globally,
unless the manifold is completely parallelisable. For example, the hairy ball theorem [107]
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illustrates that we cannot comb the hair on a 2-sphere S2, embedded in three dimensions,
smoothly everywhere. Hence this justifies the use of the locally defined diffeomorphism as the
immersion of Θ : M → R3 used in (4.2.4).

In the framework of tetrad formalism, the metric tensor emerges as a secondary quantity
defined in terms of tetrad fields. We have

gµν(x) = ea
µ(x)eb

ν(x)δab , (5.1.5)

where δab is the globally flat Euclidean metric with the signature (+1,+1,+1) in three dimen-
sions. And it is easy to see that its inverse is gµν , defined by

gµν(x) = Eµ
a (x)Eν

b (x)δab .

Using these, we can raise and lower indices of the (co-)tangent frame objects by applying gµν ,
δab, and its corresponding inverses. In Riemannian geometry, the metric (5.1.5) gives rise to an
invariant length element under a general diffeomorphism and a tangent space transformation,

(ds)2 = gµνdx
µdxν = ea

µe
b
νδabdx

µdxν = eaebδab , (5.1.6)

and similarly for the Eµ
a field.

This means we can use the co-tangent basis ea
µ to describe the local deformation given by the

metric tensor gµν from the flat space δab written in the coordinate basis. As a result, the metric
tensor gµν is obtained from the flat Euclidean metric δab by a set of deformational informations,
encoded in ea

µ(x) ∈ GL(3; R) at each point x ∈ M . Since any deformation can be regarded
as a combination of rotation, shear and compression, the common terms in (micro)continuum
physics, we can apply the polar decomposition to ea

µ as we did in Part I,

ea
µ(x) = Ra

b(x)U b
µ(x) , (5.1.7)

where Ra
b is an orthogonal matrix (a pure tangent space object with Latin indices) while

the field U b
µ is a symmetric and positive-definite matrix. Whenever we need to distinguish

the microdeformations from the macrodeformations, we will put a bar over the corresponding
tensor. When this decomposition is applied to (5.1.5) one arrives at

gµν = Ra
cRadU

c
µU

d
ν = δcdU

c
µU

d
ν , (5.1.8)

which shows that the metric is completely independent of Ra
b and only depends on U b

µ. This is
a well-known result in differential geometry, namely, the metric field is independent of tangent
space rotations. The polar decomposition for the inverse frame can be similarly written by

Eµ
a = R b

a U
µ
b , (5.1.9)

so that Uµ
b is the inverse of Ua

µ , both of which are positive-definite and symmetric. Consequently,
the co-tangent basis given by a specific metric tensor (5.1.5) is not uniquely determined. This
can be seen by counting the number of required independent parameters in the expression of
the symmetric metric tensor (5.1.5). Hence, the additional number of degrees of freedom on the
tetrad fields implies that any two (co-)tetrads ẽa

µ and ea
µ will yield the same metric provided

they are related by a rotation

ẽa
µ = Qa

be
b
µ , Qa

b ∈ SO(3) . (5.1.10)

A metric compatible covariant derivative is introduced in differential geometry through the
condition

∇λgµν = 0 . (5.1.11)
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This introduces the Christoffel symbol components Γλ
µν as the general affine connection. From

(5.1.5), it is natural to assume that in the tetrad formalism,

∇µe
a
ν = 0 . (5.1.12)

This, in turn, will uniquely determine the spin connection coefficients ω a
µ b(x),

0 = ∇µe
a
ν = ∂µe

a
ν − Γλ

µνe
a
λ + ω a

µ be
b
ν , (5.1.13)

where Γµ
λν is a general affine connection, and the lower indices in this connection are not nec-

essarily symmetric. Using the orthogonality (5.1.4), we can rewrite (5.1.13) by

ω a
µ b = ea

λΓλ
µνE

ν
b + ea

ν∂µE
ν
b . (5.1.14)

Note that the spin connection is invariant under global rotations but not under local rotations.
And the derivative terms will pick up additional terms, this is of course expected when working
with connections.

The covariant derivative for a general vector V µ in coordinate space is defined by

∇λV
µ = ∂νV

µ + Γµ
λνV

ν . (5.1.15)

Being equipped with the frame (and co-frame) field, we might introduce a quantity,

V a = ea
µV

µ (5.1.16)

which denotes the tangent space components of a general vector V µ. We can see that the vector
V µ is rotated by the tetrad ea

µ to become V a in the tangent field. It is easy to see that its inverse
relation is simply V µ = Eµ

aV
a. Naturally, the covariant derivative of V a can be described using

the spin connection, in view of (5.1.15). This gives

∇µV
a = ∂µV

a + ω a
µ bV

b , (5.1.17)

and can be extended to higher-rank objects in the same way.
For completeness, we state the inverse of (5.1.14), so that the general affine connection is

expressed in terms of the spin connection

Γλ
µν = Eλ

aω
a

µ be
b
ν + Eλ

a∂µe
a
ν . (5.1.18)

Equations (5.1.14) and (5.1.18) together with the (co-)frame allow us to express geometrical
identities in either the tangent space or the coordinate space.

In general, unlike the coordinate bases ∂/∂xµ, the non-coordinate bases Ea = Eµ
a∂µ do

not commute, and one introduces the object of anholonomity as follows. Let u be a smooth
differentiable function, then a direct and straightforward calculation gives

[Ea, Eb]u = Eµ
aE

ν
b (∂νe

c
µ − ∂µe

c
ν)Ecu . (5.1.19)

This must be valid for the arbitrary u, so we can write

[Ea, Eb] = f c
abEc , (5.1.20)

where the f c
ab are the structure constants, which are given by

f c
ab = Eµ

aE
ν
b (∂νe

c
µ − ∂µe

c
ν) . (5.1.21)
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5.2 Torsion and curvature

Given a general affine connection, the torsion tensor is defined by

T λ
µν = Γλ

µν − Γλ
νµ , (5.2.1)

which is the antisymmetric part of the connection.
Throughout this paper, we will use the decomposition of the various tensor quantities into

a torsion-free part and a separate torsion part. These correspond to the quantities in Riemann
space and the quantities in non-Riemann space. Also we will use the notation “ ◦ ” specifically
indicating the torsion-free quantities, or equivalently the quantities written in terms of the
metric compatible connection which is generally referred to as the Christoffel symbol.

The main reason for this process is that by applying these decompositions to various defor-
mational measures both in Riemann and non-Riemann space, we might hope to see the relations
between the compatibility conditions, introduced in Section 4.2, originated from the distinct
space connected by some additional fields.

First we decompose the general affine connection

Γρ
νσ =

◦
Γρ

νσ +Kρ
νσ , (5.2.2)

which introduces the contortion tensor Kρ
νσ. Using the definition of torsion (5.2.1), we im-

mediately have
T λ

µν = Kλ
µν −Kλ

νµ , (5.2.3)

which one can also solve for the contortion tensor. This yields

Kλ
µν = 1

2
(
T λ

µν + T λ
ν µ − T λ

µν

)
, (5.2.4)

which in turn implies the antisymmetric property Kλ
µν = −K λ

νµ .
The Riemann curvature tensor is defined by

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ (5.2.5)

where Γρ
νσ are the general affine connections.

Using the frame fields, we can introduce those tensors with mixed components (indices
for coordinate space and tangent space), which will turn out to be useful for our subsequent
discussion. We define a GL(3; R)-rotated torsion tensor by

T a
µν = ea

λT
λ
µν , (5.2.6)

Using (5.1.18), or the expression ∇µe
a
ν − ∇νe

a
µ = 0, we can write the torsion tensor in the

following equivalent way,

T a
µν = ∂µe

a
ν − ∂νe

a
µ + ω a

µ be
b
ν − ω a

ν be
b
µ . (5.2.7)

Similarly, we can rewrite the Riemann tensor with mixed indices

Ra
bµν = ea

ρR
ρ
σµνE

σ
b , (5.2.8)

which allow us to write the Riemann tensor entirely in terms of the spin connections

Ra
bµν = ∂µω

a
ν b − ∂νω

a
µ b + ω a

µ eω
e

ν b − ω a
ν eω

e
µ b . (5.2.9)
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In addition to the antisymmetry in the last two indices in the Riemann tensor, this satisfies

Rabµν = −Rbaµν . (5.2.10)

In this way, we can recognise the torsion and Riemann curvature tensors of (5.2.7) and
(5.2.9) are two-forms in the language of differential geometry, written conveniently

T a = dea + ωa
b ∧ eb , (5.2.11a)

Ra
b = dωa

b + ωa
e ∧ ωe

b . (5.2.11b)

These are known as the Cartan’s structure equations.
As a consequence of the decomposition (5.2.2), we apply the same concept to the spin

connection to write its decomposition

ω a
µ b = ◦

ω a
µ b +Ka

µb , (5.2.12)

where we used Ka
µb = ea

νK
ν
µσE

σ
b . Inserting the relation (5.2.12) into (5.2.9) gives the decom-

position of the Riemann tensor,

Rρ
σµν =

◦
Rρ

σµν +
[ ◦
∇µK

ρ
νσ −

◦
∇νK

ρ
µσ +Kρ

µλK
λ
νσ −Kρ

νλK
λ
µσ

]
, (5.2.13)

where the Riemann tensor
◦
Rρ

σµν is computed using the metric compatible connection
◦
Γρ

µν

entirely.
We note that, for a general vector V ρ, in the coordinate basis, the covariant derivative can

be rewritten using (5.2.2) such that

∇µV
ρ =

◦
∇µV

ρ +Kρ
µνV

ν . (5.2.14)

This relates the general covariant derivative ∇µ and the torsion-free, metric compatible covariant
derivative

◦
∇µ used in (5.2.13). In addition to (5.2.2) and (5.2.12), we can regard the contortion

tensor on the right-hand side as the connection between these two distinct covariant derivatives.

5.3 Einstein tensor in three-dimensional space
We define a rank-two quantity based on the spin connection by

Ωcµ = −1
2ϵabcω

ab
µ , (5.3.1)

which is equivalent to
ω ab

µ = −ϵabcΩcµ . (5.3.2)

This is somewhat similar to extracting information of an axial field from a generator of a
rotational matrix. A three-dimensional rotational matrix can be written in the exponential
representation R = eA with its antisymmetric generator Aij = θaij and the rotation of an angle
θ about the axis ni = −1

2ϵijkajk.
We note that this construction is only valid in three dimensions to arrive at a rank-two

object in (5.3.1). In the following, it will turn out that Ωcµ plays a crucial role in establishing
our compatibility conditions. The same approach was applied to the torsion tensor in [21] where
the setting was also R3.

We substitute (5.3.2) into the Riemann tensor (5.2.9), and find

Ra
bµν = ϵsa

b (−∂µΩsν + ∂νΩsµ) + ϵsa
eϵ

te
b (ΩsµΩtν − ΩsνΩtµ) . (5.3.3)
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Next, we define another rank-two tensor, constructed from the Riemann tensor,

Gσc = −1
4ϵ

abcRabµνϵ
µνσ , (5.3.4)

in which the Riemann curvature tensor on the left-hand side is antisymmetric in the first and
second pairs of indices. Let us emphasise again that this construction is only possible in three
dimensions, otherwise we would need to introduce a different rank in the Levi-Civita symbol.

Inserting (5.3.3) into (5.3.4), using the facts ϵabcϵsab = 2δc
s and ϵsaeϵ

abcϵteb = −ϵtcs, we obtain

Gσc = ϵµνσ∂µΩc
ν + 1

2ϵ
cstϵσµνΩsµΩtν , (5.3.5)

which can be written in the convenient form

Gσc = (Curl Ω)cσ + (Cof Ω)cσ . (5.3.6)

The quantity Gσc is, in fact, the Einstein tensor in three-dimensional space. This can be shown
using (5.3.5) and (5.2.8) explicitly to obtain the familiar expression for the Einstein tensor,

Gτλ = Rτλ − 1
2δτλR . (5.3.7)

Here Rτλ is the Ricci tensor defined by Rτλ = Rσ
τσλ, and the trace of Ricci tensor is the Ricci

scalar R. It is well known that in three dimensions, the Riemann tensor, the Ricci tensor, and
the Einstein tensor have the same number of independent components, namely nine, provided
torsion is included. Therefore, unlike the conventional theory of gravitation, the symmetric
Ricci tensor and Einstein tensor are not assumed. One can readily verify that following three
relations are equivalent to each other.

Ra
bµν = 0 ⇐⇒ Rτλ = 0 ⇐⇒ Gτλ = 0 . (5.3.8)

In other words, the vanishing curvature means vanishing Einstein tensor in three dimensions.
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Chapter 6

Compatibility conditions

We are in position to use the tools of differential geometry, various deformational measures, and
its decompositions. We will derive compatibility conditions in various physical settings using
a universal process. Firstly, Vallée’s result will be re-derived, followed by Nye’s condition. We
carefully explain the connection between these two compatibility conditions, all explanations
are originated from the vanishing Einstein tensor. We will show an extension of this result to
the microcontinuum theories, and lastly we will derive a general compatibility condition, which
is applicable to the case of nonzero curvature.

6.1 Vallée’s classical result
We consider the torsion-free spin connection

◦
Ωcµ = −1

2ϵabc
◦
ω ab

µ with the metric tensor (5.1.5).
The affine connection in torsion-free space is conventionally expressed by the metric compatible
Levi-Civita connection which enters into the decomposition of (5.2.2),

◦
Γλ

µν = 1
2g

λσ (∂νgσµ + ∂µgσν − ∂σgµν) . (6.1.1)

The torsion-free spin connection in terms of the Levi-Civita connection is simply
◦
ω a

µ b = ea
λ

◦
Γλ

µνE
ν
b + ea

ν∂µE
ν
b

= 1
2e

a
λg

λτ (∂νgτµ + ∂µgτν − ∂τgµν)Eν
b + ea

ν∂µE
ν
b ,

where we used (5.1.14). Inserting the explicit expression for the metric tensor (5.1.5) will give,
after a lengthy but straightforward calculation,

◦
ω a

µ b = 1
2E

σ
b

(
∂σe

a
µ − ∂µe

a
σ

)
− 1

2δ
adδfbE

σ
d

(
∂σe

f
µ − ∂µe

f
σ

)
+ 1

2δ
adgµσ (∂dE

σ
b − ∂bE

σ
d ) (6.1.2)

in which we defined ∂a = Eσ
a ∂σ. This expression for the torsion-free spin connection is particu-

larly useful in such a way that we can write the spin connection in terms of polar decomposition
of co-frame field basis ea

µ = Ra
bU

b
µ to write ◦

ω ab
µ entirely in terms of Ra

b and U b
µ, and its deriva-

tives. By doing so, we can split deformational measures in terms of the metric-dependent part,
which only sees the stretches U b

µ, and the metric-independent part depending only on the rota-
tions Ra

b. The resulting expressions will be further simplified if we consider the cases Ra
b = δa

b

and U b
µ = δb

µ separately, to see whether these will lead to the desired compatibility conditions.
First, when Ra

b = δa
b , after multiplying ϵabc to both sides of (6.1.2), we have

ϵabc
◦
ω ab

µ = ϵabcϵσµνU
aν(CurlU)bσ − 1

2ϵabcϵστρU
aρU bσ(CurlU) τ

f Uf
µ . (6.1.3)
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We can extract the determinant of U from the first and the second term in the right-hand side
of this,

ϵabcϵσµνU
aν(CurlU)bσ = 6

detU
[
U(CurlU)TU

]
cµ
,

ϵabcϵστρU
aρU bσ(CurlU) τ

f Uf
µ = 6

detU Ucµtr
[
(CurlU)TU

]
.

(6.1.4)

Therefore, we find

◦
Ωcµ = −3 1

detU

[
U(CurlU)TU − 1

2tr
[
(CurlU)TU

]
U

]
cµ
. (6.1.5)

The vanishing Riemann tensor in three-dimensional space ensures the vanishing Ricci tensor,
hence the vanishing Einstein tensor

◦
Gµc = 0, as stated in (5.3.8). This leads to the compatibility

condition in the torsion-free space of vanishing Riemann curvature, with the help of (5.3.6),

Curl
◦
Ω + Cof

◦
Ω = 0 . (6.1.6)

Of course, we can rescale −1
3

◦
Ω = ΛU to match the Vallée’s result [105] exactly

ΛU = 1
detU

[
U(CurlU)TU − 1

2tr
[
(CurlU)TU

]
U

]
, (6.1.7)

which reads
Curl ΛU + Cof ΛU = 0 . (6.1.8)

This result indicates that, as long as ΛU satisfies the compatibility condition (6.1.8), the
deformation can be compatible to that of trivial case Ua

µ = δa
µ regardless of the details of the

stretch Ua
µ , where the deformational description of Ua

µ itself undergoes the transformation by the
metric tensor gµν . This implicitly suggests that the compatibility condition (6.1.8) is invariant
under the diffeomorphism in a given manifold. Therefore, we can conclude that the larger class
of solution space for the expression (4.2.4), which depends on Ua

µ , can be classified as the distinct
set of equivalent classes.

This means that the elastic deformation is nothing but the diffeomorphism described by a
metric tensor with an associated metric compatible connection

◦
Γλ

µν as the fundamental measure
of the deformation. Then, the prescription of elastic deformations requires vanishing curva-
ture and torsion, hence the compatibility conditions (6.1.8) in the absence of the torsion or
equivalently Ra

b = δa
b in this case, is precisely the statement of the elasticity.

We should also note the results of Edelen [108] where compatibility conditions were derived
using Poincaré’s lemma. This resulted in the vanishing Riemann curvature two-form, Eq. (3.3)
in [108] while assuming the metric compatible connection, Eq. (3.4) in [108]. These conditions
explicitly contained torsion due to the affine connection being non-trivial but curvature free.

6.2 Nye’s tensor and its compatibility condition
Next, we set U b

µ = δb
µ but assume a non-trivial rotation matrix Ra

b. This will give the expressions
completely independent of metric tensor. And we might hope to see how the rotational fields
contribute to the deformational expressions. To do so, we notice that the setting is already
given in (6.1.2) and we put the non-trivial rotations Ra

b but the trivial stretches Ua
µ = δa

µ,
hence we are still in the regime of zero curvature. This space is often referred as Weitzenböck
space especially in the field of Teleparallel Gravity.
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The calculation is identical if we replace the stretch parts by the rotation parts in deriving
(6.1.8), starting from the torsion-free spin connection (6.1.2) after applying the decomposition
ea

µ = Ra
bU

b
µ. The final compatibility condition is then

Curl ΛR + Cof ΛR = 0 , (6.2.1)

where the quantity ΛR is given by

ΛR = R(CurlR)TR− 1
2tr

[
(CurlR)TR

]
R . (6.2.2)

This confirms the replacing U c
µ with Ra

b in (6.1.7) and using detRa
b = +1.

It turns out that the quantity ΛR is (up to a minus sign) Nye’s tensor Γ which is known
to satisfy the compatibility condition (6.2.1). This is quite a remarkable result which follows
immediately from our geometrical approach to the problem.

• We emphasise that the metric tensor is independent of the rotations which implies that
U c

µ = δc
µ yields a vanishing (torsion-free) Levi-Civita connection

◦
Γλ

µν . Consequently the
Levi-Civita part of the curvature tensor vanishes identically,

◦
Rρ

σµν = 0.

• The compatibility condition simply ensures that the micropolar deformations governed
by Ra

b do not induce curvature in the deformed body. We will see the mathematical
justification of this fact shortly, but most importantly, nonzero torsion do not contribute
the Riemann curvature tensor (hence the Einstein tensor), and we obtain the compatibility
condition by simply replacing Ua

µ by Ra
b from the previously obtained result.

Now, one of most significant consequences of the decomposition (5.2.2) we started with is
the following. In the space where

◦
Γλ

µν = 0, or equivalently U c
µ = δc

µ but with non-vanishing
torsion, the general affine connection reduces to the contortion. Moreover, in the manifold
of vanishing curvature, the Cartan’s structure equation (5.2.11b) of the Riemann curvature
two-form becomes

dω = −ω ∧ ω .

It is known that the spin connection depends purely on the symmetry group of an inertial
frame [87] (e.g the Lorentz transformation, or the Galilean transformation in the non-relativistic
limit). Then one can choose such a frame so that dω = 0. In other words, the curvature two-
form now induces an integrable expression for the spin connection. Further, with the use of
Frobenius theorem as introduced in [109], the spin connection becomes trivial, and one can put
ω a

µ b = 0 in (5.1.18) without loss of generality. Then we have

Γλ
µν = (R b

a δ
λ
b )∂µ(Ra

cδ
c
ν) = δλ

b δ
c
ν(R b

a ∂µR
a
c) = δλ

b δ
c
νδ

d
µ(R b

a ∂dR
a
c) . (6.2.3)

The final term in the brackets is recognised to be the second Cosserat tensor when written in
index free notation RT GradR, see for instance [110].

In the following, we will briefly discuss how the compatibility condition for Nye’s tensor can
also be derived directly without referring to the general result we will see in Section 6.4. In
order to have completely vanishing curvature tensor (5.2.13) with U c

µ = δc
µ, we note another

observation in addition to above mentioned consequences. That is, we can replace
◦
∇µ with ∂µ

in (5.2.13). Under these circumstances, the Riemann curvature tensor (2.3.7) reduces to

Rρ
σµν = ∂µK

ρ
νσ − ∂νK

ρ
µσ +Kρ

µλK
λ
νσ −Kρ

νλK
λ
µσ . (6.2.4)
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Now, we would like to formally define a rank-two tensor Kλσ which is the dislocation
density tensor [21, 31, 111], by contracting the contortion tensor with ϵσµν , in a similar way
we did in (5.3.1),

Kλσ = ϵσ
µνKλµν . (6.2.5)

This also gives a relation between the torsion tensor and the dislocation density tensor by

Kλσϵσµν = T λ
αβ . (6.2.6)

For our explicit choice of the contortion tensor in (6.2.3), we can write the dislocation density
tensor by

Kλσ = ϵ µν
σ δλbR

b
a ∂µR

a
cδ

c
ν =

(
RT CurlR

)
λσ

. (6.2.7)

This is nothing but the dislocation density tensor (2.1.5), we used throughout Part I, as appeared
in the formulation of the energy functionals (2.1.2) (we dropped the bar here).

For Nye’s tensor, we contract the first and third index of the contortion tensor

Γλν = −1
2ϵ

ρσ
λ Kρνσ . (6.2.8)

In turn, the relation between Nye’s tensor and the contortion tensor becomes Γλνϵ
λ

µρ = −Kµνρ.
From this, the contortions can be substituted into (6.2.4) to write the Riemann curvature in
terms of Nye’s tensor entirely. This immediately yields

Curl Γ + Cof Γ = 0 . (6.2.9)

This is our second compatibility condition written in terms of Nye’s tensor, for the vanishing
curvature and nonzero torsion tensor.

We note that combining the definitions of (6.2.5) and (6.2.8) together leads to the usual
expression of Nye’s tensor, originally introduced in [34]

Γλν = 1
2tr

(
RT CurlR

)
δλν − (RT CurlR)T

λν . (6.2.10)

Inversely, we can express the dislocation density tensor in terms of Nye’s tensor

Kλσ = Γµ
µδλσ − (ΓT )λσ . (6.2.11)

One might get an impression from (6.2.4) that non-vanishing curvature might be induced
by the non-vanishing contortion or torsion. However, this is not the case. As indicated in
Section 10.3, the contortion tensor is of Maurer-Cartan form K = RTdR which satisfies the
Maurer-Cartan equation

dK = −K ∧ K , (6.2.12)
which is equivalent to the expression of the vanishing Riemann curvature tensor entirely in the
form of (6.2.4).

6.3 Eringen’s compatibility conditions
Now we would like to see how we can apply the results we obtained so far to the theory
of microcontinuum, especially to the micropolar case. We will follow the notations used by
Eringen in [15]. Strain measures introduced in (1.2.37) and (1.2.38) are

CKL = ∂xk

∂XK
XLk CKL = χkKχkL = CLK

ΓKLM = XKk
∂χkL

∂XM
ΓKL = 1

2ϵKMN ΓNML

(6.3.1)
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with the directors ΞK and ξk in material coordinate XK , and spatial coordinate xk, respectively.
Now we recognise that the symmetric microdeformation tensor CKL is analogous to the metric
tensor in the form of (5.1.5).

In case of micropolar continua, it is easy to see the existence of the compatibility conditions
by counting and comparing the total number of independent variables and the number of par-
tial differential equations in the definitions of (6.3.1), for a given dimension. Specifically, with
the possible symmetric property in mind, we note that the variables {xk, χkX} are not inde-
pendent, but these are related to each other. So, the simplest form of integrability conditions
for these variables can be constructed from first-order partial differential equations ∂Kxk = 0
and ∂LχkK = 0, where ∂K = ∂/∂XK . And the necessary and sufficient condition for these
integrability conditions are

∂2xk

∂XP∂XQ
= ∂2xk

∂XQ∂XP
and ∂2χkK

∂XP∂XQ
= ∂2χkK

∂XQ∂XP
. (6.3.2)

The deformational tensors of (6.3.1) can be decomposed into rotation and stretch parts,
again the polar decomposition, as we did in the tetrad bases ea

µ and Eν
a . For example, after

changing indices in accordance with the current use, we can rewrite the transformations between
directors, χ and X, with the above mentioned deformational tensors,

χa
c = R

a
bU

b
c (6.3.3a)

X c
a = R

b
a U

c
b (6.3.3b)

Cµ
a = X c

a F
µ

c = R
b

a U
c
bR

d
c U

µ
d (6.3.3c)

Cbc = χa
bχac = R

a
eU

e
bRadU

d
c (6.3.3d)

Γklm = χa
k∂mχal = R

a
bU

b
k∂m(RacU

c
l ) , (6.3.3e)

in which we used bars over the the micro-deformations and used definition for the (macro)deformation
gradient tensor F , with its polar decomposition into macrorotation and macrostretch.

The compatibility conditions for the micromorphic body [15] are given by

ϵKP Q (∂QCP L + CP RΓLRQ) = 0 , (6.3.4a)
ϵKP Q (∂QΓLMP + ΓLRQΓRMP ) = 0 , (6.3.4b)

∂MCKL − (ΓP KMCLP + ΓP LMCKP ) = 0 . (6.3.4c)

It is evident from (6.3.3e) that the wryness tensor ΓKLM can be viewed as the contortion
tensor in differential geometry, so we can make a replacement ΓP KM → KP

MK , hence the
compatibility condition (6.3.4c) now becomes

∂MCKL −KP
MKCP L −KP

MLCKP = 0 . (6.3.5)

Using the decomposition (5.2.2) with
◦
ΓP

MK = 0, this will further reduce to

∇MCKL = 0 . (6.3.6)

This condition is now equivalent to the assumption (5.1.11) on the metric tensor, one of our
assumptions of the geometrical approach, which is not derived from the integrability condition
(6.3.2).

Next, we consider condition (6.3.4b). Using the replacement of ΓP KM → KP
MK gives

∂QK
L

P M − ∂PK
L

QM +KL
QRK

R
P M −KL

P RK
R

QM = 0 . (6.3.7)
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The left-hand side of this is precisely in the form of the Riemann curvature tensor (5.2.5), hence
this condition is equivalent to RL

MQP = 0. The same result can be derived if one expands the
expression using the definitions of (6.3.1) and the conditions (6.3.2), in which the symmetry in
P and Q, and antisymmetry in ϵKP Q yield the zero.

Lastly, for (6.3.4a) one writes

ϵKP Q

(
∂QCP L +KL

QRCP R

)
= 0 , (6.3.8)

which is known as the compatibility condition for the disclination density tensor. After some
algebraic manipulation ,(6.3.8) can be rewritten as

∇QC
L
P − ∇PC

L
Q + TR

P QC
L
R = 0 , (6.3.9)

and can be seen as the definition of torsion on the manifold, equivalent to (5.2.7).
For the micropolar case, by setting the the change of microvolume element (1.2.21) to the

unity
j ≡ det

(
∂ξk

∂ΞK

)
= detχkK = 1

detXKk
= 1 , (6.3.10)

i.e. χkK ∈ SO(3), the rigid microrotation, the compatibility conditions of (6.3.4) are reduced
to

ϵKP Q

(
∂CP L

∂XQ
+ ϵMLN ΓNQCP M

)
= 0 , (6.3.11a)

ϵKP Q

(
∂ΓLQ

∂XP
+ 1

2ϵLMN ΓMP ΓNQ

)
= 0 , (6.3.11b)

where
ΓKL = 1

2ϵKMN
∂χkM

∂XL
XNk = 1

2ϵKMN ΓNML = −1
2ϵKNMKN

LM (6.3.12)

which agrees with our definition for the Nye’s tensor (6.2.8). Now, in the micropolar case, we
put microstretch and macrorotation to be identities in (6.3.3) so that

χa
c = R

a
c , Cµ

c = Eµ
c , Cbc = δbc . (6.3.13)

Then the condition (6.3.11b) remains as the statement of vanishing Riemann curvature tensor,
and the condition (6.3.6) of the micromorphic case disappears. This is because we have now
the trivial expression CKL = δKL for the micropolar, hence the metric tensors do not see the
microrotations, as expected.

6.4 Geometrical compatibility conditions for the general case
We considered the compatibility conditions under two settings so far, namely the implications
of Ua

µ = δa
µ and Ra

b = δa
b separately,

U c
µ = δc

µ =⇒
◦
Γλ

µν =
◦
Ωcµ = ◦

ω a
µ b = 0 =⇒

◦
Rρ

σµν = 0 and Rρ
σµν = 0 ,

Ra
b = δa

b =⇒ Kλν = Γλν = Kανβ = 0 =⇒ T λ
µν = 0 .

(6.4.1)

However, the converses of these statements are not true in general, as will be shown shortly,
when deriving the general form of the compatibility conditions.

The geometrical starting point for all compatibility conditions is the Bianchi identity which
is satisfied by the curvature tensor, and is given by, see for instance [112]

∇ρR
ab

µν + ∇νR
ab

ρµ + ∇µR
ab

νρ = Rab
τνT

τ
µρ +Rab

τµT
τ
ρν +Rab

τρT
τ
νµ . (6.4.2)
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For completeness, we also state the well-known identity

Rρ
σµν +Rρ

µνσ +Rρ
νσµ = ∇σT

ρ
µν +∇µT

ρ
νσ +∇νT

ρ
σµ−T ρ

σλT
λ
µν −T ρ

µλT
λ
νσ −T ρ

νλT
λ
σµ , (6.4.3)

for the Riemann curvature tensor which will also be required. Using Rab
µν = Rλσ

µνe
a
λe

b
σ, and

contracting twice over indices λ and ρ, and σ and ν, gives the well-known doubly contracted
Bianchi identity,

∇ρ

(
Rρ

µ − 1
2δ

ρ
µR

)
= Rλ

τT
τ
µλ + 1

2R
λσ

τµT
τ
λσ . (6.4.4)

The term in the first bracket on the left-hand side is the Einstein tensor, so that the most
general compatibility condition can be written as

∇ρG
ρ
µ = Rρ

τT
τ
µρ + 1

2R
ρσ

τµT
τ
ρσ . (6.4.5)

Equation (6.4.5) can be seen as a compatibility or integrability condition in the following sense.
One cannot choose the curvature tensor and the torsion tensor fully independently as the above
equations need to be satisfied for a consistent geometrical approach. Hence we might expect
there is some relation between the torsion and curvature related measures.

Let us now recall (5.3.6), the Einstein tensor in terms of Ω, which is G = Curl Ω + Cof Ω.
Next, we use the decomposition of the spin connection (5.2.12) into the definition of Ω of (5.3.1)
to obtain

Ωcµ = −1
2ω

ab
µ ϵabc = −1

2
(

◦
ω ab

µ +Ka b
µ

)
ϵabc =

◦
Ωcµ + Γcµ . (6.4.6)

When this decomposition is put into the expression of the explicit Einstein tensor, a straight-
forward calculation yields,

Gλc = (Curl Ω)cλ + (Cof Ω)cλ

= Curl (
◦
Ω + Γ)cλ + Cof (

◦
Ω + Γ)cλ

= (Curl
◦
Ω)cλ + (Curl Γ)cλ + 1

2ϵ
cabϵλµν

( ◦
Ωaµ + Γaµ

) ( ◦
Ωbν + Γbν

)
=
{

(Curl
◦
Ω)cλ + (Cof

◦
Ω)cλ

}
+
{

(Curl Γ)cλ + (Cof Γ)cλ
}

+ ϵcabϵλµν
◦
ΩaµΓbν .

(6.4.7)

The final term is a cross-term which mixes the curvature and the torsion parts of the connection.
Without this term one of the compatibility conditions would necessarily implies the other, hence
it is precisely the presence of this term which gives the general condition a much richer structure.

Using (6.4.5) and (6.4.7), we are now ready to present a universal process in deriving the
complete description of compatibility conditions encountered so far

Case I: No curvature and no torsion

Let us set Rρ
σµν = 0 and T λ

µν = 0 in (6.4.7). Then we must also have Kbν = Γbν = 0 by the
definitions, and we find the compatibility condition

◦
Gλc = (Curl

◦
Ω)cλ + (Cof

◦
Ω)cλ = 0 , (6.4.8)

which is Vallée’s result (6.1.6) discussed earlier.
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Case II: No curvature and nonzero torsion

Let us set Rρ
σµν = 0 and T λ

µν ̸= 0 in (6.4.7) which becomes

Gλc =
{

(Curl Γ)cλ + (Cof Γ)cλ
}

+ ϵcabϵλµν
◦
ΩaµΓbν = 0 . (6.4.9)

Furthermore if we impose the condition Ua
µ = δa

µ , then as observed in (6.4.1),
◦
Ωaµ = 0 the

compatibility condition reduces to

Gλc = (Curl Γ)cλ + (Cof Γ)cλ = 0 (6.4.10)

which is the Nye’s result (6.2.9) and the micromorphic case (6.3.7).

Case III: No torsion and nonzero curvature

The nonzero Einstein tensor alone cannot constitute any of compatibility conditions. But using
Rρ

σµν ̸= 0 and T λ
µν = 0 in (6.4.5) we have the compatibility condition

◦
∇µ

◦
Gµσ = 0 , (6.4.11)

where
◦
Gµσ is now a symmetric tensor. These equations are well known in the context of General

Relativity (in this case one works on the four dimensional Lorentzian manifold) where they imply
the conservation equations for the stress-energy-momentum tensor.

In four-dimensional case, along with the correspondence between matter and geometry [113,
114], the Einstein tensor can be related to the stress-energy-momentum tensor Tµσ by

◦
Gµσ = kTµσ , (6.4.12)

where k = 8πG/c4 with the constant of gravitation G. The stress-energy-momentum tensor
Tµσ is symmetric and it contains the symmetric stress tensor tij of (1.2.14) for i, j = 1, 2, 3
as its subcomponents. The condition (6.4.11) suggests that the conservation equation for the
stress-energy-momentum tensor reduces to the continuity equation similar to that of (1.2.17).

Case IV: Both nonzero curvature and torsion

In this case, the Einstein equation is related to the canonical stress-energy-momentum tensor
Σµσ, [74]

Gµσ = kΣµσ . (6.4.13)

The symmetry in the indices is not guaranteed when one brings the torsion in the equation, but
the symmetric part of Σµσ is Tµσ in four dimensions.

There are no compatibility equations as such to satisfy. However, one should read (6.4.5) as
integrability or consistency condition in the following sense. In deriving (6.4.2) and (6.4.3), as
(6.4.5) is the consequence of these two expressions, we cannot expect that an arbitrary torsion
field can arise in a manner that completely independent of the arbitrary curvature tensor, but
there must be a relation between curvature and torsion tensor. A simple example of such a
relation between curvature and torsion tensors will be given in Section 7.1, in the form of a
continuity equation, after we define density tensors for both in curvature and torsion tensors,
followed by brief consideration on homotopic classifications of the compatibility conditions.
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Chapter 7

Manifold structures and the
compatibility conditions

7.1 Burgers vector and Frank’s vector

In this Section, we would like to see various integral forms of Burgers vector and Frank’s vector
that originated from the broken translational and rotational symmetries, due to the non-trivial
torsion and curvature respectively.

For a n-dimensional manifold M , its interior and boundary, int(M) and ∂M , are submani-
folds of M with dimensions n and n − 1, respectively. An (n − 1)-form α = αµ1···µn−1 defined
on ∂M , and an n-form dα defined in int(M) for some differential operator d, are related by∫

∂M
α =

∫
int(M)

dα . (7.1.1)

This is a generalisation of the Stoke’s theorem for a vector field A∮
C

A · dr =
∫

S
(∇ × A) · dS (7.1.2)

where C is the boundary (a closed contour) for the interior (a surface) S.
The integral forms of Burgers and Frank’s vectors, using the similar settings of Chapter 6

and Chapter 7, are given in [81]. Nonetheless, we would like to use the results we obtained
so far and the above generalised Stoke’s theorem, to identify and interpret the classical terms
of dislocation density and disclination density tensors following the precise manner we have
developed in torsion and curvature tensors.

Before we proceed, we would like to note that there are two scenarios when the spin con-
nection vanishes. The first possibility is, as mentioned before, when the curvature is zero the
spin connection is trivial [109] and becomes pure gauge. This is somewhat similar asymptotic
behaviour to that is known in Euclidean Yang-Mills configuration and General Relativity. The
second one is when we choose the normal coordinate system, we can put the spin connection to
be zero but with nonzero derivative terms, which is also well-known in General Relativity.

Now, in the classical theory [68, 115], the Burgers vector is the sum of total changes in
displacement vector δu, caused by the dislocation when one measures the defects around a
closed simple contour C. The dislocation line will be deformed in a way that an initially closed
small loop might not be closed due to the broken translational symmetry. This breaking of the
closed loop is analogous to the analysis of the torsion in general relativity [116], if we start with
an infinitesimal parallelogram that is initially closed before the deformation.
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In the manifold with zero curvature and nonzero torsion, by following the construction of
the metric tensor given in Section 5.1, we can define the Burgers vector b by the integration of
the total defects caused by the non-trivial tetrad field in analogous with the classical definition
u = ∆x along the contour C ∮

C
ea

µ dx
µ = −ba . (7.1.3)

The nonzero dislocation density tensor implies a nonzero torsion tensor. Hence the above
definition can be written using the generalised Stoke’s theorem by∮

C
ea

µ dx
µ =

∫
S

(
∂µe

a
ν − ∂νe

a
µ

)
dxµ ∧ dxν = −ba . (7.1.4)

We recognise the term
(
∂µe

a
ν − ∂νe

a
µ

)
acts the role of dislocation density tensor. But this is

indeed the form of the torsion tensor (5.2.7) where we used the fact that the spin connection
ω a

µ b vanishes when we have the zero curvature. Also this fact agrees with the previous relation
of the dislocation density tensor Ka

ρ and the torsion tensor T a
µν in (6.2.6). So we can write

further ∮
C
ea

µ dx
µ =

∫
S
T a

µν dx
µ ∧ dxν =

∫
S
Ka

ρϵ
ρ
µν dx

µ ∧ dxν = −ba . (7.1.5)

In addition, non-vanishing term of
(
∂µe

a
ν − ∂νe

a
µ

)
implies the anholonomic property (5.1.21),

which is exactly the current case.
On the other hand, in the space of the nonzero curvature tensor and the zero torsion tensor,

the Frank vector F can be defined by

F c = 1
2ϵ

abcFab (7.1.6)

where the quantity F ab is defined by ∮
C

◦
ω ab

µ dxµ = F ab . (7.1.7)

Again, using the Stoke’s theorem, we can write∮
C

1
2

◦
ω ab

µ ϵ c
ab dxµ =

∫
S

1
2
(
∂µ

◦
ω ab

ν − ∂ν
◦
ω ab

µ

)
ϵ c
ab dxµ ∧ dxν = F c . (7.1.8)

We see that the terms in the brackets of (7.1.8) is the Riemann curvature tensor
◦
Rab

µν of
(5.2.9) where the quadratic terms vanish if we choose the normal coordinate system. This
agrees with the classical definition of the disclination density tensor [115, 117] which measures
the disclination of planar defects with a given uniaxial system. Then∮

C

1
2

◦
ω ab

µ ϵ c
ab dxµ =

∫
S

1
2

◦
Rab

µνϵ
c

ab dxµ ∧ dxν = F c . (7.1.9)

Furthermore, from the definition of the Einstein tensor (5.3.4) we can write
◦
Gσc = −1

4ϵ
c

ab ϵ
σµν

◦
Rab

µν = −1
2ϵ

c
ab ϵ

µνσ∂µ
◦
ω ab

ν (7.1.10)

and
◦
Gσcϵσµν = −1

2ϵ
c

ab

◦
Rab

µν . (7.1.11)

A similar analysis can be found in [81] as we mentioned, but here we emphasise the identifications
that the Einstein tensor acts as the disclination density tensor. Then we can rewrite the Burgers
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and the Frank’s vectors in terms of various forms of dislocation and disclination density tensors,

∮
C
ea

µ dx
µ =

∫
S
T a

µν dx
µ ∧ dxν =

∫
S
Ka

ρϵ
ρ
µν dx

µ ∧ dxν = −ba , (7.1.12a)∮
C

1
2

◦
ω ab

µ ϵ c
ab dxµ =

∫
S

1
2

◦
Rab

µνϵ
c

ab dxµ ∧ dxν =
∫

S
−

◦
Gσcϵσµν dx

µ ∧ dxν = F c . (7.1.12b)

Now, we go back to the general case of manifold in which both curvature and torsion tensors
are nonzero. The contracted form of Gσc with ϵ σc

a followed by the decomposition (5.2.12) gives

ϵ σc
a Gσc = −1

2ϵ
σc

a ϵlbcϵ
µν

σ∂µ

(
◦
ω lb

ν +K l b
ν

)
= 1

2ϵ
cσ

a ϵlbcϵ
µν

σ∂µK
l b
ν + ϵ σc

a

◦
Gσc ,

(7.1.13)

in which we have now the symmetric Einstein tensor
◦
Gσc on the right-hand side, hence it

vanishes. Using the definition of Nye’s tensor (6.2.8) and its relation with the dislocation
density tensor (6.2.11), we obtain

∂µK
µ

a + ϵ cσ
a Gcσ = 0 . (7.1.14)

This continuity equation signifies the fact that the disclination density tensor (i.e. the Einstein
tensor) acts as the source or the sink of the dislocation density tensor. Also this supports our
statement given in the end of Section 6.4 that the torsion and curvature cannot be determined
arbitrarily at the same time. Similar continuity equations in the classical theory linking the
dislocation and disclination density tensors can be found, for example, in [67, 115] without
identifying the Einstein tensor as the disclination density tensor in general.

7.2 Homotopy for the compatibility conditions

In [118], it is shown that the existence of the metric tensor field (4.2.4) for a given immersion
Θ : Ω → E3 requires the condition Rρ

σµν = 0 in Ω ⊂ R3 and Ω to be simply-connected. It is
further shown to be necessary and sufficient. If the subset of the given manifold is just connected
subset, then Θ is unique up to isometry of Euclidean space E3 to ensure the existence of the
metric field

C = (∇Θ̃)T (∇Θ̃) , (7.2.1)

where Θ = QΘ̃ + T for Q ∈ SO(3) and T is translation.
We saw in Section 6.3 that the integrability for the partial differential equation ∂Kxk = 0

requires the condition
∂2xk

∂XP∂XQ
= ∂2xk

∂XQ∂XP
,

which in turn implies the vanishing curvature tensor
◦
Rρ

σµν = 0. But this formalism is highly
dependent on the symmetric property of the metric tensor under the diffeomorphism. The
nonzero torsion and the existence of the non-trivial Burgers vector, as we saw in Section 7.1,
implies the anholonomy (5.1.21). This signals the departure from the compatibility condition
based on the diffeomorphism such as the classical Vallée’s result.

Now, we wish to establish how many compatibility conditions, or more precisely, how many
classifications of such compatibility conditions are derivable from the condition Rρ

σµν = 0. One
possible approach to answer this question would be the consideration of homotopy classification
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πn(M), where n is a dimension of an n-sphere Sn, a probe of defects in the space M , in which
an order parameter is defined. We can take the order parameter as a measure for degrees of
ordered state for now, but we will see more details in Part III. For example, in a completely
random state in a high temperature, the order parameter becomes zero in some physical model.
In our case, we can put the order parameter to simply be the tetrad field ea

µ so that M = SO(3),
a measure for the rotational fields hence a measure for the nonzero torsion tensor.

It is well-known that the dislocation tensor or equivalently the torsion tensor can be mea-
sured by following a small closed path in the crystal lattice structure, and the curvature tensor
can be computed in a similar manner as we mentioned in the previous Section. For this purpose,
we can put n = 1 to consider the fundamental group for SO(3), which is a homotopy group for
the line defects in three dimensions

π1(SO(3)) ∼= Z2 . (7.2.2)

This suggests that we can have two distinct classifications for the compatibility conditions under
Rρ

σµν = 0. One of them is the trivial class, the elastic regime so that all elastic deformations
belong to the same compatible condition. And the non-trivial classification is for the microstruc-
ture description where one is only dealing with microdeformations. Similar group theoretical
analysis can be found in [68,119,120].

Interestingly, in some simplified Skyrme models [121], the homotopy class π4(SO(3)) is
identified with π1(SO(3)). Since SO(3) is not simply connected, it is straightforward to see that
its fundamental group is isomorphic to Z2. Further, using J-homomorphism (see Appendix B),
we can state

π4(SO(3)) ∼= π1(SO(3)) ∼= Z2 . (7.2.3)

This characterises the equivalent classes of the compatibility conditions, hence the possible
solution space for the system in describing the deformations, as below.

{0} : Configurations that can be continuously deformed uniformly via diffeomorphisms.
{1} : Configurations that cannot be continuously deformed in a way of {0}.

(7.2.4)

The elastic compatibility condition including the Vallée’s result (6.1.8) falls into the classification
{0}, vanishing curvature and torsion. The conditions of Nye (6.2.9) and the micropolar case
(6.3.11b) belong to {1}, vanishing curvature and nonzero torsion. These classifications are
particularly significant if one interprets that every description of deformations within one class,
say {0}, must remain in that class while further smooth and small deformations are admissible.
This is equivalent to say that all deformational descriptions can be classified by its discrete
equivalent classes, in which different configurations of system can be continuously deformed
from one to other without violating any physically sensible requirements such as the finite
energy condition.

We will see more of the formal homotopy classification, and the group theoretical treatment
of soliton solutions, the deformational description of Part I, with the help of physical systems
of condensed crystal models and systems with a spinor structure in Part III.
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Part III

Defects in director fields
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Chapter 8

Theories of directors

We review some of topological properties in the projective space, and the well-known fact
that the real projective space RP 2 can be viewed as a manifold for the nematic liquid crys-
tals [32, 69, 122–124]. The relation between the projective space RP 2 and the sphere S2 will
essentially allow us to view the micropolar continua as the projective space but this shall wait
until Chapter 10. After we define the order parameter, we will take the nematic liquid crystals
as our model to investigate the role of order parameters on the projected subspace. Then we
consider the free energy formalism to understand the nematic liquid crystals in the framework of
the micropolar continua, by comparing with the deformational measures we developed in Part
II. The deformational measures used in Part II, notably the quantity ∂µR, would be meaningless
if the rotational axis and angles are constant. In Part I, we based on the assumptions such as
a constant axis of the rotation to simplify the problem and to obtain the overall picture for
the microrotational deformations. In Part III, along with arbitrary angular fields, we would
like consider position-dependent axial configurations for the microrotations. Part III is mainly
based on the work [125].

8.1 Projective space and homotopy classification

Suppose we have a system which lies on a two-dimensional sphere S2 in R3. We would like
to find the correspondence between the projected space on R2 from the unit sphere S2, using
the stereographic projection. For S2, we denote n∞ = (0, 0, 1) the north pole, and for a given
point s ∈ S2, an intersecting point of line connecting n∞s and xy-plane be p. For this purpose,
the stereographic projection is most instructive to illustrate the projective space. In three
dimensions, the stereographic projection is defined by

π : S2\{n∞} −→ R2

π(s1, s2, s3) =
(

s1
1 − s3

,
s2

1 − s3

)
= (x, y)

(8.1.1)

for a point s = (s1, s2, s3) ∈ S2 such that s2
1 + s2

2 + s2
3 = 1 and (x, y) ∈ R2. Inversely, we can

express a point on S2 in terms of (x, y) on R2 with r2 = x2 + y2 by

s =
(

2x
r2 + 1 ,

2y
r2 + 1 ,

r2 − 1
r2 + 1

)
(8.1.2)

and we can see that s → n∞ = (0, 0, 1) as r → ∞. If we identify the point on the xy-plane in
the limit of r → ∞ as a north pole of S2, then we have a bijection between the extended complex
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Figure 8.1: Left: A unit sphere in polar coordinate system with its centre located at the origin. The
great circle (the equator) corresponds to the unit disk S1 lying on the xy-plane. Right: The extended
line segment n∞s will intersect the xy-plane in the point p located outside the sphere if s is on the
northern hemisphere, and p will locate on the interior of S1 if s is on the southern hemisphere. The
south pole with the coordinate (0, 0,−1) ∈ S2 corresponds to the origin by the projection.

plane C∞ and S2. Under this identification, S2 is the Riemann sphere, the compactification
of an infinite radius of the plane into a sphere.

Next, we would like to review briefly the real and the complex projective space. These two
spaces will play significant roles in developing connections between two topological spaces by
recognising antipodals on the given unit sphere as a hypersurface for a given manifold.

8.1.1 Real projective space

The n-dimensional real projective space RPn is the space of all lines through the origin in Rn+1.
And this space is obtained from Sn ⊂ Rn+1

Sn = {x ∈ Rn+1 | |x| = 1}

by taking the quotient of Rn+1\{0} under the equivalence classes

x ∼ λx for λ ∈ R, λ ̸= 0 .

We can always find a λ such that |λ| = 1 for all x ∈ Rn+1\{0}. Hence there are two such λ,
namely λ = +1,−1. This implies that the real projective space RPn can be recognised as the
quotient space

RPn ∼= Sn/{antipodal} , (8.1.3)

by identifying a pair of antipodals {x,−x} on the surface of Sn. This allows us to view RPn as
the quotient space of a hemisphere of Sn with antipodals on the boundary of ∂Sn are identified.
Since the boundary, with antipodal points identified, is again RPn−1 we see that RPn can be
constructed from RPn−1 by attaching an n-cell with the quotient projection Sn−1 → RPn−1 as
the attaching map [126]. And it is well-known that the n-sphere Sn is a covering space RPn for
n ≥ 2.

We consider RP 2 to illustrate the real projective space both in geometrical and topological
points of view. From a geometrical point of view, we can represent RP 2 as a subset of R2 plane
with ideal points as equivalence classes x ∼ λx passing through the origin. These lines will
meet at infinity, and point the opposite directions. But these lines are merely the projection of
rays passing through the origin of R3, from which we can recognise that the horizontal rays are
ideal points in RP 2 when they are projected on the plane. See Fig. 8.2.
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Figure 8.2: Left: Ideal points passing through the origin on R2. Right: Equivalent rays passing through
the origin in R3 are shown. One special class of rays are those lie on the disk S1, which are projected to
be ideal points on the plane.

If we construct curved space which intersects all rays in R3, this will effectively reduce the
number of equivalence classes. So, we can identify two points n = −n on the sphere S2 for
n = (n1, n2) satisfying n2

1 +n2
2 = 1. Hence, we have RP 2 ∼= S2/{antipodal}. This identification

of the antipodals allows us to remove the redundancy by removing the upper hemisphere (equally
we can remove the lower half). And we recognise that rays are only ideal points which meet at
two points on the equator of the hemisphere of S2. Using the definition of the projective space
with antipodals and rays on the sphere, and ideal points on the projected plane, a schematic
process of removing the redundancy on S2 is shown in Fig. 8.3.

Figure 8.3: Left: We start from identifying rays and antipodals on S2. Middle:We remove the upper
hemisphere by identifying n = −n but keep the points of the rays on the equator. Right: We flatten
the hemisphere to obtain a disk with its interior filled with the projection from S2, and the boundary
consists of the ideal points of rays.

In order to get the better idea, we flatten the hemisphere to obtain a disk D2 with ideal
points on the boundary. In this way, we can construct RP 2 in the interior of D2 with ideal
points on its boundary ∂D2. In general, we can regard RPn as an n-dimensional disk Dn with
the ideal points on the boundary ∂Dn ∼= Sn−1, so that

RPn ∼= Dn ∪ ∂Dn ∼= Dn ∪ Sn−1 . (8.1.4)

There is an additional important feature in the projective plane that the projective plane
can be non-orientable. In other words, it may contain a Möbius band. To see this, we go back
to the sphere with rays, and consider the cylindrical portion on S2 with equivalent antipodal
points represented by the same colours as shown in Fig. 8.4.

We know there are two identifiable points on the edge of the band. This means we can cut
the band half, and glue it after half twist to match antipodal points n = −n. By gluing we really
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Figure 8.4: Left: Antipodals can be shown as a pair of outward vectors {−n,n} on the edge of cylindric
portion of the sphere with the same colour. Right: We can assign a direction following on the boundary
of the disk D2 to the edge of the Möbius band with antipodals identified on S2 after obtaining the most
compact representation of RP 2 after removing all possible redundancies.

mean that we identify the space topologically and, on the other hand, identifying antipodals
emphasises the geometrical sense. This geometrical recognition will reveal its physicaly relevant
system in Section 8.3. As a result, we will obtain the Möbius band M2. Further, we combine the
remaining part of the hemisphere which is topologically equivalent to the flattened disk D2 with
its boundary ∂D2 representing the set of all ideal points. We finally obtain the most compact
topological representation of the real projective space RP 2, after removing all the redundancies
as much as possible, by a union of a Möbius band and a disk D2. See Fig. 8.5.

RP 2 ∼= M2 ∪D2 . (8.1.5)

∼=

Figure 8.5: We can follow the arrows on the hemisphere and a bisected cylindrical portion on the sphere
illustrated in Fig. 8.4 to represent the fundamental polygon of RP 2. This further reduces to a union
of Möbius band and a disk with its corresponding representations. The dotted lines are free, and the
directed solid lines are identifiable. i.e. it can be glued together if the direction of arrows are identical,
if not, we can twist them to identify the directions as in the case of the Möbius band.

8.1.2 Complex projective space

In analogy to the real case, the complex projective space CPn is the space of complex lines
through the origin in Cn+1. This space is constructed by considering a complex manifold of
nonzero (n+ 1) complex coordinates

z = (z1, · · · , zn+1) ∈ Cn+1\{0} .

As the case of the real projective space, the equivalence classes are defined by

z ∼ ζz for ζ ∈ C, ζ ̸= 0 .

Again, we can always find a ζ ∈ C such that |ζ| = 1. Hence, this equivalent class is the quotient
of the unit sphere

S2n+1 ⊂ Cn+1 ,
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which can be seen from the fact that

S2n+1 ⊂ R2(n+1) ∼= Cn+1 .

But vectors in S2n+1 ⊂ Cn+1, with its last component is real and non-negative, are precisely
vectors of the form

(ω,
√

1 − |ω|2) ∈ Cn × C, |ω| ≤ 1 .

In particular, we can regard this as a disk D2n bounded by the sphere S2n+1 if it consists of
vectors

(ω, 0) ∈ Cn × C, |ω| = 1 ,
where we used the identifications of spheres, disks and its boundaries for a given Rn+1 by

Sn ⊂ Rn+1, Dn ⊂ Rn, ∂Dn = Sn−1 .

Hence, each vector in S2n+1 is equivalent under the identifications z ∼ ζz to a vector in D2n

and the vectors are unique if its last component is nonzero. If the last coordinate is zero, we
can always have the identifications z ∼ ζz for z ∈ S2n−1. In other words, every line in Cn+1

intersects the unit sphere in a circle and we can write

CPn ∼= S2n+1/S1 . (8.1.6)

This is analogous to the real projective space (8.1.3) in which the quotient space is taken by the
set of antipodals. So, the difference between the real and the complex projective space arises
by identifying the equivalence classes in each space of Rn+1 and Cn+1, in such a way that

RPn ⊂ Rn+1 : x ∼ λx |λ| = 1, λ ∈ R {antipodals}
CPn ⊂ Cn+1 : z ∼ ζz |ζ| = 1, λ ∈ C S1 .

(8.1.7)

Moreover, a pair of antipodals in the real and the complex projective spaces are invariant under
discrete symmetry x → −x and under SO(2), respectively.

8.1.3 Homotopy and projective space

The principal fibre bundle structure {E,M,G, π, ψ} consists of total space E and its projected
base space M by a map π. The action of the group G is defined on the total space by a map
ψ : E ×G −→ E. With a notion of fibre bundle F , it is conveniently expressed by a sequential
expression

F ↪→ E → M . (8.1.8)
We note that the complex projective space CPn carries the structure of a complex manifold
of Cn and the structure of a real manifold R2n. In particular, if n = 1 the complex projective
space CP 1 is identified with the Riemann sphere. This is known as the Hopf fibration, and
its fibre bundle structure is conventionally written by

S1 ↪→ S3 → CP 1 . (8.1.9)

In general, we summarise some important fibrations as follows.

SO(n− 1) ↪→ SO(n) → Sn−1 , (8.1.10a)
SU(n− 1) ↪→ SU(n) → S2n−1 , (8.1.10b)
S0(= Z2) ↪→ Sn → RPn , (8.1.10c)

S1 ↪→ S2n+1 → CPn . (8.1.10d)
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In addition, we summarise fundamental group properties of some well-known compact groups
in Table 8.1 with the simply-connected group structure for the later use. And, if the given
group is not simply-connected, the relation with its universal covering group can be given.
For example, suppose the given manifold M (and its isomorphic group structure) is simply-
connected, then any simple closed loop contained in the given manifold can be continuously
deformed into another loop and eventually can be deformed to a point. Then, by definition of
the first homotopy or the fundamental group, we will have a trivial homotopy

π1(M) ∼= {e} (8.1.11)

On the other hand, if the manifold is not simply-connected, its fundamental group will be non-
trivial. We denote the identity element of a given group by {e}. When the group operation
is defined by the addition, we simply denote the identity element by {0}. Some of useful and
well-known higher homotopy groups are listed in Appendix B, with a number of generalisations
and corresponding theorems [126–128].

Compact group Simply connected Fundamental group
SO(2) No Z

SO(n), n ≥ 3 No Z2
U(n) No Z
SU(n) Yes e
S1 No Z

Sn, n ≥ 2 Yes e
RP 1 No Z

RPn, n ≥ 2 No Z2
CPn Yes e

Table 8.1:

Since all Sn, for n ≥ 2, are simply-connected, we have π1(Sn) ∼= {e} for n ≥ 2. Hence Sn is
the universal covering space of RPn. By the Lifting Properties of the fundamental group [126],
this recognition further gives isomorphisms

πn(Sn) ∼= πn(RPn) ∼= Z, n ≥ 2 . (8.1.12)

8.2 Order parameter and homotopy
In general, when a physical system undergoes a phase transition, the symmetry of the system
will be altered, and this reduction in the symmetry is described by degrees of order of the system
defined in the order parameter space M [122, 129, 130]. If the system is in the completely
random state, say in a high temperature, we can regard that there is no meaningful measure of
ordered state, and we say the order parameter is zero.

As the system undergoes the phase transition, for example as the temperature decreases,
there may be points, lines or surfaces in the medium on which the degrees of order are not
uniquely defined. They are called the defects, and the names of defect with respective dimen-
sions are given in Table 8.2. These defects can be understood in connection with topological
invariant quantities, and can be found in diverse physical systems with order parameters de-
scribing the defects of distinct nature [131,132].

For example, the three-dimensional Ising model takes its degrees of alignment of the spin
direction in the order parameter space M of two different spin states S, namely spin-up |↑⟩ and
spin-down |↓⟩, so that we can put M =|↑⟩∪ |↓⟩. If the system is not completely isotropic, then
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Dimensions Names
0 Point defects: Monopoles
1 Line defects: Vortices
2 Surface defects: Domain walls

Table 8.2:

there might be a region in which the degrees of alignment of the spin are not well defined but
with the mixed states of the spins. In other words, if S =|↑⟩ for x < 0 and S =|↓⟩ for x > 0,
there is a defected region called domain wall in the yz-plane at x = 0. i.e. the region in which
the order parameter is not uniquely determined. A similar analysis can be done in Heisenberg
ferromagnet system with the spontaneous magnetisation.

In this way, a uniform system takes its value in a certain region M , the order parameter space
and degrees of order are called the order parameters. The mixed uses of these terminologies
are often seen in the literature. The order parameter space can be viewed as an internal space,
and generally differs from the physical space where the medium resides. The order parameter
space can be characterised by its dimension (again may differ from the physical dimension) and
topological properties such as simply connectedness and compactness. See Table 8.1.

If the system is in an inhomogeneous state through the phase transition, when one considers
the energy required in the phase transformation, the derivatives of the order parameter cannot
be negligible and the degrees of order parameter may not be in M as we noted.

The defects are classified by the homotopy groups according to their dimensions. To see
this, let E be space which is filled with the medium under consideration. Apart from the notion
as a measure of some state of the system, it is more appropriate to regard the order parameter
as a function Ψ(x) depends on the point x ∈ E that maps E to M in which the order parameter
is defined,

Ψ : E −→ M . (8.2.1)

This assignment emphasises that the order parameter Ψ(x) is a subset of order parameter space
M , in general.

Now, we consider the reduction of symmetry group in the system in terms of order param-
eter space M . Suppose there is a group G under which a homogeneous configuration remains
invariant when the system exhibits completely random degrees of order, for example, in a high
temperature. As the temperature decreases, the state of randomness may decrease and the
group G will be no longer valid but it will be altered to its subgroup H, ideally its normal
subgroup, see Fig. 8.6. This means we have a spontaneous symmetry breaking, and this
can be represented by a group R which is isomorphic to a coset group structure defined by

R ∼= G/H . (8.2.2)

Consequently, the modified order parameter space M will be acted by the reduced group struc-
ture, and if there is an isomorphism between them we can assign

M ∼= G/H . (8.2.3)

Now, we establish the connection between order parameter and homotopy classification.
Suppose there is a defect in the medium, for example, a line defect (i.e. vortices) in the three-
dimensional medium. Imagine a unit circle S1, as the order parameter encircles the line defect.
If each part of S1 is far from the line defect, much further than the coherence length scale of
molecules at the stable energy level, we may assume the order parameter along S1 to take its
value in the order parameter space M = U(1). This is how the fundamental group can be put
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Figure 8.6: On the left, the system is in its homogeneous state, and shows zero degrees of order where
the arrows represent the direction of spin or simply director of the internal molecular structure. This
state is invariant under the group G, a composite of local rotations and local translations. After the phase
transition, as shown on the right, the state starts to show the nonzero degrees of order of alignment and
the local rotation is no longer valid but only the global rotation and the translation are valid symmetries,
represented by the subgroup H. Hence there exists a certain spontaneously broken symmetries in the
system.

into action, and we can classify the defect for a given dimensionality. In this case, we have loops
in topological space U(1) and the map

S1 −→ U(1) (8.2.4)

is classified by the homotopy group. We can regard the map (8.2.1) for the general case of
the correspondence between the n-dimensional sphere surrounding the possible defect of the
physical space and the d-dimensional internal space where the order parameter is defined. We
may write this correspondence simply by

Sn
phy −→ Sd

int . (8.2.5)

For the map (8.2.4), since (see Appendix B)

π1(U(1)) ∼= Z ,

we may assign an integer to classify the line defect (we will see shortly why we took this
particular homotopy group). This integer is called the winding number, since it literally
counts how many times the image of S1 winds the space U(1). See Fig. 8.7.

Figure 8.7: The map (a) and (b) show no complete winding, and the map (b) can be continuously
deformed to the map (a) so that both belong to the trivial homotopy class {0}. The map (c) describes
a complete winding and this cannot be continuously deformed into the class {0} but it belongs to the
class {1}. By counting the winding numbers, we can assign a distinct set of integer-valued classification.
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• If two defects have the same winding number, it can be continuously deformed to the
other. This means that two defects belong to the same homotopy group, and they are
regarded equivalent.

• If two defects l1 and l2 merge together, the new defect belongs to the homotopy class of
the product of the homotopy classes to which l1 and l2 belonged before coalescence.

• Since the group operation of Z (in this particular example) is an addition, the new winding
number is a sum of the individual winding numbers. In particular, a uniform distribution
of the order parameter corresponds to the constant map Ψ(x) = x0 ∈ M , belongs to the
unit element {0} ∈ Z.

• If two defects of opposite winding numbers merge together, this will lead to the defect-free
configuration of {0}. For example, the collision of vortex and anti-vortex with correspond-
ing winding numbers +1 and −1 will annihilate each other.

In practice, in order to determine the homotopy groups we will proceed according to the following
steps.

i) We identify the dimension of the manifold m where the medium is defined. This can be
different from the dimension of physical space where the medium is located.

ii) We take account of the dimensionality d of the physically possible defect.

iii) We identify the n-sphere Sn which surrounds the region of defects.

In general [133] , the dimension of Sn is restricted by the d-dimensional defect in am-dimensional
medium and is classified by the homotopy group

πn(M), n = m− d− 1 . (8.2.6)

This expression can be seen as the defects with dimension d is being measured by a probe with
dimension n of Sn separated by a line of dimension 1, and all of them are in the manifold of
interest with dimension m. We can assign the degrees of defect from the measure with a ruler Sn

a point in the manifold M . This will show the continuous deformation from one description of
the defect to other in the form of equivalent classes, hence the homotopy group representation.

For example, a point defect can be investigated in a three-dimensional medium surrounded
by S2 (2 = 3 − 0 − 1) and the defect is classified by

π2(M) .

Then, what we are left with is to identify the topological nature of the order parameter space
to determine the dimension of M . Particularly intuitive case is that if there is an isomorphism
between the order parameter M and m-sphere Sm. This allows us to investigate the possible
class of defects by relatively simple homotopic consideration of counting the number of winding
of Sn over Sm

πn(M) ∼= πn(Sm) . (8.2.7)

This will give us the clue whether the defects classified in Table 8.2 are trivial {0} so that we
cannot expect to see any of these defects for the given system, or something else.
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8.3 Nematic liquid crystals
Certain organic crystals exhibit quite interesting optical properties when they are in the isotropic
fluid phases in which orientations and positions of directors are randomly distributed. They
are called liquid crystals, characterized by their optical features. We are particularly interested
in the so-called nematic liquid crystals. These are characterised by its long axes oriented
along a certain direction while the positions of the centre of individual molecule are isotropic.
An example of this is would be Octyloxy-Cyanobiphenyl. See Fig. 8.8.

Figure 8.8: Left: By following a pair of antipodals on the cylindrical portion in constructing the Möbius
band on S2, it is easy to associate opposite signed directors n and −n on the sphere. Right: A molecule
model of rod-like shaped Octyloxy-Cyanobiphenyl with chemical formula C21H25NO is shown with one
oxygen atom in the middle (red) and one nitrogen atom attached in the end (blue) among the compound
of hydrogen and carbon molecules in the aligned bulk along the direction of vector nN.

In this case, we can take the order parameter M as the measure of the degree of alignment
among the molecules, and is proportional to the director aligned to a vector nN. And it is given
by the average direction of the rigid rod-like molecular structure. This suggests the rotational
symmetry is broken while the translational symmetry still holds through the symmetry reduction
process from the completely random state. Although the molecule possesses the apparently
distinguishable head and tail feature, we do not distinguish the directors. i.e. If the molecules
are aligned in one direction, then it possesses the discrete symmetry, nN → −nN. We might
assume that this vector is normalised, so that

nN · nN = 1 . (8.3.1)

Further, if we assign a point of the nematic liquid crystal x ∈ R3, we can express a pair of
identifiable directors in the polar coordinate system,

nN = (θ, ϕ) and − nN = (π − θ, π + ϕ) . (8.3.2)

From (8.2.7) and (8.3.2), we can see these constitute a point on S2 ⊂ R3 representing the same
state. We see that the identification of nN = −nN is nothing but the identification of the
antipodals on S2. Therefore the order parameter space of the nematic liquid crystals is the
projective plane RP 2.

In general, the director field depends on the position x ∈ S2 ⊂ R3 and we may define a map
following (8.2.1),

Ψ : S2 −→ RP 2 . (8.3.3)
This particular example emphasises the difference between the space S2 where the medium
exists and the order parameter space RP 2 due to the identification nN = −nN. This map is
called the texture. Sometimes, the actual order parameter configuration in R3 is also called the
texture.
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If we bring back the construction of the Möbius band in Section 8.1, we recognise the topo-
logical identification of antipodals directly corresponds to the identification of the geometrical
and physical identification of directors nN = −nN. See Fig. 8.8. Therefore, using (8.1.12), we
can write an expression for the general homotopy group, now the order parameter space M is
recognised,

πn(S2/{antipodal}) ∼= πn(RP 2) . (8.3.4)

Let us investigate various possible defects whether (8.3.4) gives us any meaningful indication.
For the line defects, we have the dimension d = 1 and the dimension of media is m = 3. So that
n = 3 − 1 − 1 = 1, and this gives the first homotopy group we can work with,

π1(RP 2) ∼= Z2 = {0, 1} . (8.3.5)

This implies that there exist two kinds of line defect in nematic liquid crystals [69,123,124,133],

{0} : one can be continuously deformed into a uniform configuration,
{1} : one cannot be continuously deformed into a uniform configuration.

(8.3.6)

The latter represents non-trivial defect, a stable vortex, and we can see how the loop is mapped
to RP 2 by this texture.

For the point defect, we can consider the case for m = 3, d = 0 and n = 3 − 0 − 1 = 2, so
that the corresponding homotopy group is now

π2(S2) ∼= π2(RP 2) ∼= Z . (8.3.7)

where we used (8.1.12). This indicates that there are stable point defects in the nematic liquid
crystals classified by some integers, and this classification can be equally applied to the field
configuration defined on S2. This idea of linking an integer with homotopy group is a central
ingredient to represent the topological invariants that we will see in Section 9.2.

In this way, in principle we can investigate the classifications of defects in various physical
models, after defining i) the order parameters and ii) the order parameter space by recognising
the underlying symmetries in the system in each case. In particular, we would like to consider the
homotopy and the physical meaning of RP 3 with its topological implication. This is essentially
the generalisation of the nematic liquid crystals case. Before that, we shall go back to the notion
of directors in micropolar theory and its characteristic deformational measures to consider the
energy functions within the framework of the free energy formalism.

8.4 Free energy formalism and its expansion

8.4.1 Order parameters in the energy expansion

External factors such as a temperature, chemical interaction, an electromagnetic field or a
gravitational field can induce the phase transition and the order parameter acquires nonzero
values, if one started from the completely random state, defined in certain order parameter
space. Then it is natural to expect that some of symmetric properties in the isotropic state are
broken during the phase transition, and the energy density can be expressed as a function of
the field of the order parameter.

The free energy formalism for the liquid crystals was established by Oseen [134] and Frank
[135]. Later the theory was further developed by Ericksen and Leslie [136–138], incorporating
inequalities in the nematic liquid crystals within the framework of the continuum theory. The
free energy formalism is based on the notion of the energy required for deviations from the
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isotropic state in which the order parameter is taken to be zero [139]. This immediately suggests
that we can take the director ξa as the order parameter to investigate potential deformations
(or deviations from the initial state). Therefore, the energy density must be proportional to the
derivative of the order parameter,

F ∝ (∇ξa)2 . (8.4.1)

The free energy density can be written in terms of the power expansion of the order param-
eter and its derivatives, under the assumption that the spatial variations are slow relative to the
characteristic length scale, for example, the range of interaction or the coherent length in the
lattice space for a given system. This form of expansion is highly dependent on the nature of
the order parameter itself in the given physical system. It can be a single real scalar parameter
or an n-component complex field. But we are particularly interested in its simple form of free
energy expansion in the case of nematic liquid crystals given in terms of the directors.

For the nematic liquid crystals, the energy expansion is written by the linear expansion
of the polynomial of the order parameter Q up to finite powers to ensure the stability of the
system and its derivative combinations [32, 140]. In each expansion of the energy function, the
3×3 matrix Q is known as traceless and symmetric written in such a way that each term in the
expansion of F is invariant individually under the global rotation. Terms containing derivative
operator of Q are called the gradient free energy, and it is written up to second order. And
terms without the derivative operator are known as the bulk free energy up to fourth order, so
that the free energy density is written as

F = Fbulk + Fgrad . (8.4.2)

Specifically, we can write the expansion [141] with some elastic moduli ki

Fbulk = k1tr Q2 + k2tr Q3 + k3[tr Q2]2 , (8.4.3a)
Fgrad = k4 (∇ × Q + k5Q)2 + k6 (∇ · Q)2 . (8.4.3b)

where we can rewrite the fourth power term in (8.4.3a) by tr Q4 = 1
2 [tr Q2]2, for Q is 3 × 3

traceless matrix.
Now, we would like to specify the form of the order parameter Q which must be a function

of the director nN, and it must be zero when the system is in the completely random state losing
all its degrees of alignment, so that it is no longer the nematic but in an isotropic configuration.
There are number of approaches in the literature to determine the order parameter Q, but we
would like to take one that can encompass the theory of the microcontinuum.

The relation of vanishing order parameter and the resulting isotropic configuration can be
found in consideration of the so-called microinertia defined by Eringen [142]. The microinertia
for micropolar continua is defined by

jij = χiAχjBJAB , (8.4.4)

where jij and JAB are microinertia described by the directors ξk and ΞK in the spatial frame
and reference frame respectively, and we identify χiA as the microrotation of SO(3) following
the discussion in Section 6.3. A special case arises when we have jij = JAB. Then this means
the microinertia is conserved regardless of the choice of the local microrotational axis, and the
system is in the isotropic configuration. Further, since χχT = 1, the expression (8.4.4) becomes

jχ = χj .

Using the Schur’s Lemma [143], we can regard the microinertia as the map of the finite-
dimensional vector space V to itself. So that for a nonzero eigenvector v ∈ V with a nonzero
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eigenvalue λ ∈ R, jv = λv implies j(χv) = χ(jv) = λχv for all v ∈ V . Therefore the
eigenspace is invariant under the microrotation as expected and j must be proportional to the
identity. Hence, we can write the microinertia in the form

jij = 2
3jkkδij . (8.4.5)

Now, in the nematic state, this microinertia will be modified to take the form, according to [142]

jij = σ(δij − nNinNj) (8.4.6)

where σ is some constant, and nNi are normalised directors satisfying nN · nN = 1. Then we
can determine the form of the order parameter Qij as the measure of its deviation from the
isotropic state by

Qij = 2
3jkkδij − jij

=
(
nNinNj − 1

3δij

)
σ

(8.4.7)

which is traceless and symmetric. And we can confirm that Qij → 0 when the system approaches
the isotropic state jij → 2

3jkkδij as expected.
If we insert the form of the order parameter Qij of (8.4.7) into the free energy F (8.4.2),

then the form of F will be written entirely in terms of the directors nN and its derivatives [141],

F = 1
2K1[∇ · nN]2 + 1

2K2 [nN · (∇ × nN)]2 + 1
2K3[nN × (∇ × nN)]2 , (8.4.8)

where Ki are some material constants relating ki in (8.4.3), and the higher order terms are
ignored. Also, we dropped the surface terms knowing that the total energy function is obtained
after the volume integration accompanied by the density constant. Each term attributes forms
of defects, namely, splay (divergence), bend (curvature) and twist (torsion) terms, respectively,

[∇ · nN]2, [nN × (∇ × nN)]2, [nN · (∇ × nN)]2 , (8.4.9)

satisfying a set of required symmetries in the energy function. We can see that these satisfy the
global rotation and the discrete symmetry nN → −nN. In particular, it is widely known [140]
that if the system requires the chirality such as cholesteric liquid crystals, we need an additional
energy term

nN · (∇ × nN) , (8.4.10)

with an appropriate coupling parameter.
Similar form of the free energy formalism can be found in the general Ginzburg-Landau

expansion [144], if the systems satisfying certain criteria, for example, when the order parameter
is small and uniform near the critical temperature Tc during the phase transition.

Some useful identities in the expansion are

(∇n)2 = (∇ · n)2 + (∇ × n)2 + ∇ ·
[
(n · ∇)n − n(∇ · n)

]
, (8.4.11a)

[(n · ∇)n]2 = [n × (∇ × n)]2 , (8.4.11b)
(∇ × n)2 = [n · (∇ × n)]2 + [n × (∇ × n)]2 . (8.4.11c)
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8.4.2 Torsion terms in the energy expansion

Now, we are particularly interested in the twist term in connection with the term which played
the central role in developing the torsion throughout Part I and Part II. This quantity is
RT CurlR which can be related to the term nN ·(∇×nN) to investigate the torsion contribution
to the given system with the energy configuration as the invariant linear combinations of those
terms. For instance, we can derive the form of the free energy functional as discussed in [15] to
compare the energy functionals we used in (2.1.1) and (3.4.2). So, the first step is to establish
the relationship between

RT CurlR and nN · (∇ × nN) . (8.4.12)

We would like to look closely at the rotational matrix to investigate the role of its axis and
the angle for our purpose. The matrix R ∈ SO(3), describing the rotation of the angle θ about
the normalised axis n, can be expressed as the exponential of the antisymmetric matrix A,

R = eA for AT = −A . (8.4.13)

where the matrix A can be written

Aij = θ(n · J) ≡ θaij (8.4.14)

and the generators J = (J1, J2, J3) of SO(3) are

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0

−1 0 0

 , J3 =

0 −1 0
1 0 0
0 0 0

 (8.4.15)

satisfying the commutation relation,

[Ji, Jj ] = ϵijkJk . (8.4.16)

The axial vector ni for the rotation is defined by

ni = −1
2ϵijkajk and aij = −ϵijknk . (8.4.17)

Both variables of ni and θ can be arbitrary functions of space x = (x, y, z) and time t, but
we only consider the static case so that both axis and rotational angle are time-independent
functions. We can write the rotational axis by

n = (n1(x), n2(x), n3(x)) satisfying n · n = 1 . (8.4.18)

There are number of known representations for the rotation R, and one of them is Rodrigues’
formula

Rij = δij + aij sin θ + (a2)ij(1 − cos θ) . (8.4.19)

Using the fact that (a2)ij = aikakj = −δijnlnl + ninj , we can write the equivalent expression,

Rij = cos θ · δij + ninj(1 − cos θ) − ϵijmnm sin θ . (8.4.20)

We note that because of the normalisation constraint n2
1 + n2

2 + n2
3 = 1, the total number of

independent parameters required is three, which agrees with the number of generators J in
(8.4.15). These representations of matrices Aij and Rij are particularly useful if one considers
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an anisotropic system. For example, in the planar case, the axial vector n can be perpendicular
to the director fields which might give rise to the solution that minimises the energy function.

Now, we return to the issue of relating RT∂R and nN · (∇ × nN). Intuitively, one might
hope to write the contortion (6.2.3) by

Kpiq = Rdp∂iRdq = R−1∂iR = ∂i log R = ∂iApq . (8.4.21)

when the rotation is expressed by the exponential form of the antisymmetric matrixA of (8.4.13).
This is not true in general, simply because in the matrix Aij = θaij = −ϵijknkθ, the rotational
angle θ and the axis n are position-dependent functions. Nonetheless, if the angle θ is small,
using the definition of contortion with the exponential representation of rotation R = eA, we
can show that

Kpiq ≈ ∂iApq . (8.4.22)

But, if the normalised rotational axis is constant in space, which is the case we have seen in Part
I of (2.2.1), while the rotational angle can be an arbitrary function of space, then the contortion
tensor can be written exactly as

Kpiq = ∂iApq . (8.4.23)

To see this, first we write an N product of the generators A of R ∈ SO(3)

(AN )ij = θail1θal1l2 · · · θalnn = θNa1l1 · · · alnj ,

with its derivative
∂m(AN )in = ail1 · · · alnn∂mθ

N = N(AN−1∂mA) .

Using this, the contortion K = RT∂R becomes

Kpiq = (eA)T
(

1 +A+ 1
2!A

2 + · · ·
)
∂iA

= (eA)T eA∂iA

(8.4.24)

which gives the result, for RTR = 1. In particular, the dislocation density tensor (6.2.5) and
Nye’s tensor (6.2.8) simply become,

Kpj = δjp∂iθni − ∂pθnj , (8.4.25a)
Γji = ∂iθnj . (8.4.25b)

Further, the torsion tensor defined by Tipq = Γipq − Γiqp in (5.2.1) can be written in terms
of the contortion tensor under the assumption that U b

µ = δb
µ in the decomposition (5.2.2),

Tpiq = apq∂iθ − api∂qθ . (8.4.26)

In other words, the torsion tensor can be written as the gradient of the scalar field if the
rotational axis do not change in space. Torsion as the gradient of the scalar field is discussed
extensively in [75].

In Weitzenböck space (i.e. the space of zero curvature but nonzero torsion), the general
affine connection is identified with the contortion tensor, so the Riemann curvature tensor can
be written entirely with the contortion tensor. Then, a straightforward calculation using (8.4.23)
and (8.4.14), gives the expression (6.2.4)

Rρσµν = ∂µKρνσ − ∂νKρµσ +KρµλKλνσ −KρνλKλµσ (8.4.27)

which again agrees with the result we obtained in Section 6.2.
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Now, in the language of the micropolar deformation, we can relate the directors ξa and rota-
tions R with respect to the orthonormal basis ei in the Cartesian coordinate system, following
similar reasoning used in [142, 145, 146]. We may assign the tetrad field Eµ

a ∈ GL(3; R) and its
dual ea

µ, the χkK and its inverse in (1.2.20), in describing the transformations of the directors
in the spatial frame and the reference frame to write

ξa = Eµ
a Ξµ and Ξµ = ea

µξa . (8.4.28)

In the case of micropolar continua, according to the decompositions (6.3.3a) and (6.3.4b), the
transformation can be described only by the microrotation so that ξa = Ra

µΞµ, or vice versa.
The director Ξµ, as the description of the internal structure, is highly dependent on the individ-
ual molecular structure. However, if we have a model such as cubane as shown in Fig. 1.1, we
may put the director in the reference frame to the usual orthonormal Cartesian basis to write

ξc = Rcbeb . (8.4.29)

i.e. we can regard that the director ξa is obtained after applying the rigid rotation to the
standard orthonormal basis in three dimensions. Then the contortion becomes

Kaµb = Rca∂µRcb = ξa∂µξb . (8.4.30)

Consequently, the dislocation density tensor becomes

Kad = ϵdµbKaµb = ξaϵdµb∂µξb = ξa(Curl ξ)d . (8.4.31)

And Nye’s tensor becomes

Γji = −1
2ϵjpqKpiq = −1

2ϵjpqξp∂iξq . (8.4.32)

Now, it becomes clear that the quantity corresponding to the twist in (8.4.8) [ξ · (Curl ξ)] is
the trace of the dislocation density tensor

tr K = [ξ · (Curl ξ)] . (8.4.33)

Furthermore, from the relation between Nye’s tensor and the dislocation density tensor (6.2.11),
we obtain the explicit relation between Nye’s tensor and the measure for the twist, as given
in [142] and [145]

tr Γ = 1
2tr K = 1

2ξ · (Curl ξ) . (8.4.34)

We also note that (8.4.33) and (8.4.34) are precisely the simplest form of the chiral energy
form we discussed in Section 3.3,

Vχ = χtr(K). (8.4.35)

In words, a system with no mirror symmetry is defined by the chirality, and this system must
accompanied by the chiral energy form Vχ which in turn induced by nonzero torsion in the form
either by the dislocation density tensor or Nye’s tensor via contortion tensor. Consequently, for
such a system the parameter, now we can set k5 = χ, is nonzero in (8.4.3b).

In case of nematic liquid crystals [142, 146], the directors nN are obtained simply following
the same reasoning of (8.4.29) but by fixing ei to be e3,

nNi = Ri3e3 . (8.4.36)
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In this way, it is easy to see that the result we obtained so far can be translated into the forms
such as

ξ · (Curl ξ) −→ nN · (∇ × nN) . (8.4.37)

Then it is straightforward to see that the nematic liquid crystals are in its homogeneous
anisotropic configuration seen as the special case of micropolar theory, as claimed by Erin-
gen in [142]. In particular, the term with K2 on the right hand side of (8.4.8) is in its even
power of (8.4.37). This manifests that the energy functional for the liquid nematic crystals is
the non-chiral case, following the conclusion of Section 3.3. Therefore, we can set the constant
k5 = 0 in (8.4.3b).

8.4.3 Order parameter for the micropolar continua

Lastly, we would like to make some remarks on the equation of motion for the general micropolar
continua obtained in Chapter 2 in connection with those in [15].(
∂ttϕ
∂ttψ

)
= M

(
∂zzϕ
∂zzψ

)
+
(

0 λ sin ϕ
2ρrot

−2λ sin ϕ
ρ 0

)(
∂zϕ
∂zψ

)
− (λ+ µ+ µc)

ρrot

(
sinϕ

0

)
+ λ+ µ

2ρrot

(
sin 2ϕ

0

)
(8.4.38a)(

∂ttϕ
∂ttu

)
= N

(
∂xxϕ
∂xxu

)
+
(

0 2λ′ sin ϕ
ρ0J

−2(λ′+2µ′+κ′) sin ϕ
ρ0

0

)(
∂xϕ
∂xu

)
+ 2λ′

ρ0J

(
sinϕ

0

)
+ 2λ′ + µ′

ρ0J

(
sin 2ϕ

0

)
(8.4.38b)

where

M =
(

(κ1 + 6κ3)/3ρrot (3χ1 − χ3)/6ρrot
2(3χ1 − χ3)/3ρ (λ+ 2µ)/ρ

)
, N =

(
α

ρ0J 0
0 λ′+2µ′+κ′

ρ0

)
. (8.4.39)

In our case, we obtained the equations of motion by collecting all relevant energy functionals
in terms of the microrotation and the macro-displacement. And the variational principle led
to (8.4.38a). For (8.4.39b), it is based on the different approach starting from the constitutive
equations for the micropolar media and identifying two order parameters CKL and ΓKL in the
free energy density F given by

TKl = ∂F
∂CKL

χlL and MKl = ∂F
∂ΓLK

χlL , (8.4.40)

where Piola-Kirchhoff tensors are defined by

TKl = J
∂XK

∂xk
tkl and MKl = J

∂XK

∂xk
mkl

for tkl and mkl are the stress tensor and the couple tensor, respectively, and the determinant
J is given by (1.2.22). The free energy density (8.4.8) is then given by the simplified linear
expansion of powers of two order parameters [146, 147], with the aids of identities (8.4.11), in
the form

F = 1
2λ

′I2
1 + µ′I2 + (µ′ + κ′)I4 + 1

2α
′I10 + β′I11 − γ′I13 (8.4.41)

where {λ′, µ′, κ′, α′, β′, γ′} are some elastic parameters. The invariants in (8.4.41) are

I1 = tr C, I2 = 1
2tr C2, I4 = 1

2tr (CCT ) ,
I10 = tr Γ, I11 = 1

2tr Γ2, I13 = 1
2tr (ΓΓT ) . (8.4.42)
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The appearance of two different kinds of order parameters of the first Cosserat deformation
tensor C and Nye’s tensor Γ in the expansion explains the setting we are dealing with. This
is the coupled system of micro and macro-deformations leading to the two deformational wave
propagations. Moreover, the constitutive equations (8.4.40) is of the form we used in (2.0.1),
and the identification between the trace of Nye’s tensor and the dislocation density tensor in
terms of the twist measure of the director explains the similarity.

In a sense, our formalism (2.0.1) in varying the total energy functional in terms of the
microrotation R and the deformation gradient tensor F , is equivalent to the formalism based
on the constitutive equations (8.4.40). The chain rules introduced in Appendix A would be
particularly useful in varying the first Cosserat deformation tensor (U = R

T
F in our convention)

and Nye’s tensor (as the product of the microrotation and its derivative). This essentially leads
to the close similarity in the final coupled set of equations of motion as shown in (8.4.38).

In principle, one may adjust the parameters in the matrix M to obtain a diagonalised
matrix to match the entries of the matrix N under certain circumstances in evaluating the
constitutive equations exactly. Then the simple ansatz, such as the microrotation with fixed
axis (2.2.1), can be imposed to yield the identical set of equations of motion from the rather
different approaches. We note that while Nye’s tensor is extensively used as the order parameter
in literature [15, 26, 142, 146], we can equally use the dislocation density tensor K as the order
parameter according to (8.4.34).
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Chapter 9

Topological invariants and conserved
currents

We would like reconsider the soliton solutions we obtained in Part I through some simple cases
to investigate the relationship with the homotopy to classify the solution space in describing
the defects. This solution space can be arbitrarily large if there exist underlying symmetries of
infinite order group structures.

Various systems which yield a soliton solution are introduced, and we will see that the finite
energy requirement is the crucial feature in determining the asymptotic behaviour of the soliton
solutions and this will further be related to the homotopic classifications.

These asymptotic conditions are responsible for the existence of topological invariant charges
Q, and these topological invariants are different from the conventionally derived quantities, such
as Noether’s current, from the continuous symmetry in the Lagrangian of the system leading to
the conservation of energy and momentum. Depending on the physical system, this total charge
Q can be of the form of a mass, an electric charge or an intrinsic quantum number. Also this
charge will turn out to be a unique topological invariant in classifying the defects introduced in
Table 8.2.

The associated conserved current is used extensively throughout Skyrme’s pioneering works.
From a mathematical point of view, the theories of solitons are rigorously developed in various
contexts in connection with the physical systems, and comprehensive discussions of the soliton
theory can be found, for example, in [40].

9.1 Simple soliton solutions in low dimensions

In this Section, we will use the metric tensor with its signature (+1,−1, · · · − 1) in n spatial
dimensions with one time component of the tensors defined in an (n+ 1)-dimensional differen-
tiable manifold. For example, the Lorentzian metric tensor ηµν for µ, ν = {t, x, y, z} in (3 + 1)
dimensions will give the invariant length element (5.1.6) (we put the speed of light c = 1)

(ds)2 = ηµνdx
µdxν = (dt)2 − (dx)2 − (dy)2 − (dz)2 ,

and the indices of vectors are naturally raised and the indices of derivatives are naturally lowered.
Let us start with a scalar field ϕ in a (1 + 1)-dimensional model without stating any specific

form of the Lagrangian. The zero dimensional sphere S0 is the set of two points which can
be taken to be x = ±∞. The corresponding homotopy group for the order parameter, using
(8.2.3), is therefore

π0(M) ∼= π0(G/H) . (9.1.1)
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This particular homotopy group counts the number of components of the order parameter space
M . So, π0(M) is nonzero if M is discrete, or equivalently G is discrete. We will see that this
implies that the disconnected groups impose (1 + 1)-dimensional soliton solutions.

Let us start with the currents for the scalar field ϕ defined by

Jµ = ϵµν∂νϕ (9.1.2)

where ϵµν is the totally antisymmetric Levi-Civita symbol in two dimensions with µ, ν for the
spacetime indices in (1+1) dimensions. It is easy to see that this is conserved, by its construction

∂µJ
µ = 0 . (9.1.3)

And the corresponding total charge is defined by the integration of the time component of the
current J over all space,

Q =
∫ ∞

−∞
dx J t =

∫ ∞

−∞
dx

∂ϕ

∂x
= ϕ(+∞, t) − ϕ(−∞, t) . (9.1.4)

under the assumption that J t approaches zero as |x| → ∞, hence (9.1.4) states that a conserved
current implies a conserved charge in time. It is easy to show that the charge Q is a time-
independent quantity, hence it possesses an intrinsic topological property.

For the finite energy requirement, the total charge must be localised. If the amplitude of
ϕ(±∞, t) increases (or decreases) indefinitely or oscillates arbitrarily, we cannot expect to have
the finite-valued total charge. This will eventually violate the finite energy requirement for the
given system, and it is required to set the asymptotic values for ϕ(x, t) to obtain the meaningful
physical solution.

One solution for such condition would be the constant solution, but we can put this constant
to be zero without loss of generality, so that the trivial solution is

ϕ(±∞, t) = 0 , (9.1.5)

to give Q = 0. But for the non-trivial case, we will have the nonzero-valued Q and we might
have a situation that

ϕ(+∞, t) ̸= ϕ(−∞, t) , (9.1.6)

where each ϕ(+∞, t) and ϕ(−∞, t) approaches distinct finite asymptotic values. This analysis
agrees with the asymptotic condition we imposed in the case of elastic wave propagations
in (2.3.4). The distinct asymptotic values for ϕ(+∞, t) and ϕ(−∞, t) can impose different
interpretation when we consider the elastic deformation.

Soliton solutions are characterised by their solitary wave form with non-dissipative terms
and its interference-free properties from the collision or long-ranged interaction between distinct
waves. We would like to derive the soliton solutions similar to those we used in Part I, but
through much simpler and familiar examples.

First, the Lagrangian for the ϕ4 theory of the real scalar field in (1 + 1) dimensions is

L = 1
2∂µϕ∂

µϕ+ 1
2µ

2ϕ2 − 1
4λϕ

4 , (9.1.7)

where we understood that ∂µϕ∂
µϕ = (∂tϕ)2 − (∂xϕ)2 and µ, λ are real coupling constants. The

only symmetry in this system is O(1) ∼= Z2, which is simply the identity and its reflection,

ϕ −→ −ϕ . (9.1.8)
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The homotopy group in this case is a map between the physically allowed space and the internal
space, therefore using (8.2.5) we have

π0(Z2) ∼= Z2 . (9.1.9)

Hence, we can expect that there are two classes of solutions, namely

ϕ(+∞, t) = ϕ(−∞, t) and ϕ(+∞, t) ̸= ϕ(−∞, t) .

This shows that by following a simple reasoning on the structure of order parameter space M
and its associated symmetry, we can have some approximate ideas about the solution space well
before we actually tackle the equation of motion to solve it.

Now, the equation of motion can be obtained by

∂µ∂
µϕ ≡ ∂2ϕ

∂t2
− ∂2ϕ

∂x2 = µ2ϕ− λϕ3 (9.1.10)

with constant solutions for the first class of {0} ∈ Z2 yielding the zero charge Q, called a vacuum
solution,

ϕvac = 0 and ϕvac = ± µ√
λ
. (9.1.11)

For the solution of the second class ϕ(+∞, t) ̸= ϕ(−∞, t), for the nonzero total charge, we
consider the static solution of (9.1.10), and this can be done by integrating both sides with
respect to x after multiplying by ∂ϕ/∂x, to obtain

x = ±
∫ 1√

1
2λϕ

4 − µ2ϕ2 + k
dϕ , (9.1.12)

for some constant k, and we put the integration constant to be zero. This is in the form of an
elliptic integral, hence the solution ϕ can be periodic in the complex plane. But if we have the
repeated roots in the square, we can integrate exactly, and this is the case when k = µ4/2λ.
Then (9.1.12) reduces to a simple integration and we obtain the kink/antikink solution,

ϕkink(x) = ± µ√
λ

tanh
[
µ√
2
x

]
. (9.1.13)

Using the result we obtained in Section 2.5, we can obtain the time-dependent wave solution
propagating with the velocity v, by applying the Lorentz boost in the direction of x provided
the Lagrangian is Lorentz invariant

ϕkink(x, t) = ± µ√
λ

tanh
[
µ√
2

1√
1 − v2

(x− vt)
]
. (9.1.14)

It is clear that these solutions belong to the classification of ϕ(+∞, t) ̸= ϕ(−∞, t), and their
asymptotic behaviour indicates that

ϕkink(x, t) −→ ϕvac as x → ±∞ .

This solution leads to the finite energy with respect to the vacuum, if we insert the kink solution
(9.1.14) into the Hamiltonian H defined by the integration over the energy density H(x) of
(2.5.3),

H =
∫
dx

(
1
2

[(
∂ϕ

∂t

)2
+
(
∂ϕ

∂x

)2]
− 1

2µ
2ϕ2 + λ

4ϕ
4
)
. (9.1.15)
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From this, we obtain the finite-valued energy as shown in Fig. 9.1,

Hϕkink −Hϕvac = 2
√

2
3

µ3

λ
(9.1.16)

as expected, and the nonzero value for the charge Q is given by

Q = |ϕkink(+∞) − ϕkink(−∞)| = 2µ√
λ
. (9.1.17)

Therefore, the discrete order parameter space M ∼= Z2 gives rise to the existence of the kink
solution along with the constant solution prescribed by (9.1.11).

Figure 9.1: A static kink solution ϕ(x) by taking the positive sign in the solution (9.1.13) is shown,
satisfying the asymptotic condition considered. The constant finite-valued energy H with the localised
energy density H(x) are shown according to the result (9.1.15) and (9.1.16).

Our second example of the soliton solution in (1+1) dimensions is the sine-Gordon equation

∂µ∂
µϕ+m2 sinϕ = 0 , (9.1.18)

which is the equation of motion of the system with the Lagrangian

L = 1
2∂µϕ∂

µϕ−m2(1 − cosϕ) . (9.1.19)

In addition to the discrete symmetry (9.1.8), this is invariant under the transformations

ϕ −→ ϕ+ 2πN, N ∈ Z (9.1.20)

i.e. the system is invariant under the infinite dihedral group D∞ = Z⋊Z2, semi direct product
such that Z ∪ Z2 = {0}, and we have infinite solution space determined by integers N .

For the static solution, we follow the same steps, as we did in (9.1.14), to obtain the soliton
solution

ϕsol(x) = 4 arctan em(x−x0) . (9.1.21)
As before, the time-dependent solution can be obtained to give the solution of the form (2.3.15)
after applying the Lorentz boost. We obtain the static solution by recognising a degenerate
elliptic function separating two infinite-energy regimes, and we find the energy difference is
finite,

Hϕsol −Hϕvac =
∫
dx

[
1
2

(
∂ϕsol
∂x

)2
+m2(1 − cosϕsol)

]
= 8m . (9.1.22)

In this case, the internal invariance group is D∞ and the stability group is Z2. Hence the order
parameter space M is isomorphic to D∞/Z2 ∼= Z, and the homotopy classification is an infinite
set of classifications

π0(M) ∼= π0(D∞/Z2) ∼= π0(Z) ∼= Z . (9.1.23)
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The solution (9.1.21) is the special static case when we put b = 0 in the double sine-Gordon
system of (2.3.7) we considered in Part I,

∂ttϕ− ∂ẑẑϕ+m2 sinϕ+ b

2 sin 2ϕ = 0 .

And this will further reduce to the Klein-Gordon type system (9.2.3) when only small angle is
allowed. This suggests there is a direct link between the solution space as the prescriptions of the
deformable configuration and the topological invariant quantity N . In particular, we proposed
the boundary conditions (2.3.4) based on the elasticity for the displacement propagation

ψ(±∞, t) = 0 and ∂zψ(±∞, t) = 0 ,

which in turn converted to the a set of boundary conditions for the microrotation propagation

ϕ(ẑ, t) = 2 arcsin(X(ẑ, t)) , ϕ(ẑ = ±∞, t) = 0 , ∂ẑϕ = 0 ,
ϕ(z, t) = 4 arctan e±k(z−vt)±δ , ϕ(−∞, t) ̸= ϕ(+∞, t) , (9.1.24)

where the discrepancy in the forms of boundary conditions occurred in the process of converting
the rescaled ẑ to the original one as shown in Fig. 2.1. The condition ∂ẑϕ = 0 as z → ±∞ is
compatible to the condition ∂xϕsol = 0 to minimise the static energy H of (9.1.22). Therefore,
our form of the solution (2.3.22) incorporates both type of boundary conditions as seen through
the kink/antikink model and the sine-Gordon system of (9.1.5) and (9.1.6).

Also, in (7.2.4), the homotopy consideration is briefly mentioned in terms of classification of
the compatibility conditions of the micropolar deformations in the manifold. In this manifold,
both curvature and torsion are admissible with the explicit expression of the Einstein tensor,
started from the polar decomposition of the tetrad basis ea

µ. In the following Section, we will
investigate these topological invariant numbers N ∈ Z of (9.1.23) from the topological and
geometrical consideration.

9.2 Conserved current, soliton and homotopy
We would like to extend the observations obtained from the previous Section to the case of
normalised multi-valued real fields of the nonlinear O(N) model. We investigate the geometrical
origin of the intuitive notion of the winding number. We start from the well-known form of
the conserved current Jµ, with its associated charge Q, in two dimensions and we generalise
the result up to the d = n + 1 dimensional configuration with the necessary requirement to
retain the integer-valued charge Q. In particular, the current in (3 + 1) dimensions is used
throughout Skyrme’s pioneering works representing its associated topological invariant charge
by the baryon number as we will see in Section 10. Interesting and stimulating historic accounts
on Skyrme’s works can be found in [148].

9.2.1 Vortex field and winding number

The Lagrangian for the ϕ4 theory (9.1.7) in (1+1)-dimensional space is related to the Lagrangian
for the linear sigma model [149],

L = 1
2∂µn2∂

µn2 − 1
2m

2(n2 · n2 − 1) (9.2.1)

where n2 = (n1(x, t), n2(x, t)) is a real-valued field satisfying the constraint

n2 · n2 = n2
1 + n2

2 = 1 . (9.2.2)
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Here, the term m2 in (9.2.1) can be regarded as the Lagrangian multiplier. This system is
invariant under the global rotation SO(2), and the associated equation of motion is the Klein-
Gordon equation,

(∂µ∂
µ +m2)n2 = 0 . (9.2.3)

The constraint (9.2.2) implies that the field n2 resides on S1, and we can assign a new degree
of freedom, using the polar coordinate system, ϕ = ϕ(x, t) to write

n2(ϕ) = (cosNϕ, sinNϕ) . (9.2.4)

Now, there exists a conserved current (we will see more details of the origin of this current
later)

Jµ = 1
2πϵ

µνϵabna∂νnb (9.2.5)

where µ, ν are the spacetime indices, and a, b = {1, 2} for the components of n2 = (n1, n2)
describing the internal degrees of freedom. This current is again conserved quantity by its
construction,

∂µJ
µ ∝ ∂(n1, n2)

∂(t, x) . (9.2.6)

The quantity ∂µJ
µ is proportional to the Jacobian matrix, recognised as the determinant

of ∂µna, between the set of spacetime variables and the newly generated coordinates n2 =
(cosNϕ, sinNϕ) under the constraint n2 · n2 = 1, hence it vanishes. In this case, the homotopy
group is

π1(S1) ∼= Z . (9.2.7)

The associated conserved total charge is then obtained by the integration

Q =
∫ +∞

−∞
J t dx = N

2π

∫ +∞

−∞

∂ϕ

∂x
dx = N

2π [ϕ(+∞, t) − ϕ(−∞, t)] . (9.2.8)

Now, if we impose the asymptotic condition n2(±∞, t) approaches some finite values, as we did
in evaluating the charge Q in (9.1.17), then we can assign the angular variable ϕ(x, t) to satisfy
the condition

ϕ(+∞, t) = ϕ(−∞, t) + 2π . (9.2.9)

This gives the identification that the total charge is nothing but the integer N ∈ Z,

Q = N . (9.2.10)

Since the classification of the solution space is characterised by the homotopy consideration
(9.2.7), this identification gives a direct link between the topological invariants and the number
of equivalent solution classification, as we will see more details in the next Section.

Geometrically, the nature of the invariant number N ∈ Z, we call it the winding number
without loss of generality henceforth, can be understood from the differential point of view for
a two-dimensional static field in polar coordinates,

n2(ϕ) = (cosϕ, sinϕ) , (9.2.11)

where ϕ is a now time-independent function, ϕ(x, y) = arctan y/x. Now, we can write

dϕ = ∂ϕ

∂y
dy + ∂ϕ

∂x
dx = 1

r2 (xdy − ydx) , (9.2.12)
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where r2 = x2 + y2. Then the identical integer N can be obtained in the static two-dimensional
case from the purely geometric interpretation that N is the integration of the total changes in
the angular variable ϕ along the simple closed contour C divided by 2π, which is the genuine
and intuitive notion of the counting the winding number,

N = 1
2π

∮
C
dϕ = 1

2π

∮
C

1
r2 (xdy − ydx) . (9.2.13)

As shown in the above discussion, if we consider the spatial two-dimensional static config-
uration, we would have the same topological invariant N in the geometrical static space with
the same homotopy group of the (1 + 1)-kink, but now S0 is changed to S1, on account of the
two-dimensional spatial space (9.2.11). Therefore, the homotopy is a map from S1 to S1 so that

π1(S1) ∼= Z . (9.2.14)

For the field configuration in static case which yields the integerN under the identical constraint,
we used n2 ·n2 = 1, the natural candidate for this purpose would be the two-dimensional vortex
field nv with an integer number N ,

nv = (cos(Nϕ), sin(Nϕ)) . (9.2.15)

The form of the conserved current (9.2.5) is still valid with the indices are now {µ, ν} = {x, y}.
Then in terms of its angular variable ϕ(x, y), this is explicitly

Jµ = N

2πr r̂ , (9.2.16)

where r̂ = (x, y)/
√
x2 + y2 and r2 = x2 + y2. Now, a question arises. In the static vortex con-

figuration, how one can evaluate the total charge Q =
∫

all space J
t without the time component

of the current? The answer comes from the purely geometrical consideration of (9.2.13) where
we can write the component of the current in terms of spatial derivatives of the angular variable
ϕ. With the help of Green’s theorem, we can rewrite (9.2.13) by

N =
∫

R
∇ · J dxdy (9.2.17)

where R is the region surrounded by the closed contour C. But we note that the integrand is
the expression of the conserved current ∂µJ

µ = ∇ · J = 0. The clue for this problem comes
from the fact that the form of the current (9.2.16) is not defined in the origin, but elsewhere.
Hence, it will lead to the conclusion that it is the Dirac delta function in two dimensions [150]

∇ · J = N

2π∇ · r̂

r
= N

2πδ
2(r) . (9.2.18)

The configuration of (9.2.11) is a trivial case of N = 1, and any other vortex (or antivortex
with negative integers) configuration with the same topological number N can be obtained by
smooth deformations from the vortex field configuration (9.2.15) ensured by the topological
invariant total charge Q = N , hence belongs to the equivalent solution space.

Now, in order to understand the geometrical meaning of the winding number N better,
we would like to consider a physical system of nematic liquid crystals of Section 8.3. In this
system, the optical apparatus, such as two layers of mutually orthogonal polarisers, gives a
characteristic feature of the defects in its directors nN of (8.4.36) in the planar case formed by
patterns called brushes, also known as the Schlieren texture [124]. Since we can distinguish four
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Figure 9.2: The four patterns we can count around a given point are shown in red boxes which are
filtered by double-layered polarisers on the model of planar nematic liquid crystals also shown as the
vector field.

patterns through double-layered polarisers, we can trace the pattern around the given loop of
the planar rotation to count the number of patterns, see Fig. 9.2.

For example, if we count four distinct patterns around the point of interest, this means we
can assign a unity to classify the defect occurred around that particular point. This physical
measure imposes some difficulties especially if one counts the pattern far away from the defect
region which might give different counts around the given loop.

From the mathematical point of view, this counting of the pattern is identical to the winding
number defined by (9.2.13), and it is also closely related to the Frank’s vector F as the measure
of disclination we introduced in terms of the Einstein tensor (7.1.12b)∮

C

1
2

◦
ω ab

µ ϵ c
ab dxµ =

∫
S

1
2

◦
Rab

µνϵ
c

ab dxµ ∧ dxν =
∫

S
−

◦
Gσcϵσµν dx

µ ∧ dxν = F c , (9.2.19)

where ◦
ω ab

µ is the metric compatible spin connection (6.1.2) satisfying ◦
ω ab

µ = − ◦
ω ba

µ . In partic-
ular, if the defect in the nematic liquid crystals is governed by a fixed uniaxial vector ni with a
planar rotational angle ϕ, from (8.4.14) and (8.4.17) we can write

niϕ = −1
2ϵijkϕ ajk = −1

2ϵijkAjk (9.2.20)

where aij and Aij are antisymmetric 3 × 3 matrices in the exponential representation R = eA

of R ∈ SO(3). Then we have, around a simple closed loop C in the plane,∮
C
d(niϕ) = ni

∮
C
dϕ = −ni

∮
C

1
2ϵijkdAjk = ni2πN. (9.2.21)

The integer N comes from the vortex field configuration (9.2.15) with the geometrical definition
of the winding number in the form of (9.2.13).

Furthermore, if we assign ∂µA
jk = − ◦

ω jk
µ into (9.2.19) provided Ajk is smooth, we obtain

ni

∮
C
dϕ = −ni

∮
C

1
2ϵijk∂µA

jk dxµ = ni2πN = Fi . (9.2.22)

Therefore, the integer N gives us the notion of the winding number at least three different
occasions, i) the geometrical integration, ii) the vortex field, iii) the number appears in the
Frank’s vector as the measure of disclination in this case. Of course, in principle we might have
half integers in the vortex field but we would like to restrict ourselves to the integer N . The
reason for this becomes apparent when we consider the conserved integer Q in Section 10.

As shown in Fig. 9.3, we can simulate the winding number contribution entirely comes from
the vortex field configuration (9.2.15). In particular, in the case of N = 1, we can read off four
distinct patterns around the centre which gives the winding number one by definition.
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N = −1 N = 1 N = 2 N = 3

Figure 9.3: Vortex field configurations with various integers N solely using (9.2.15) are shown with the
computer generated corresponding defects in the directors.

9.2.2 Conserved current in higher dimensions

We can extend our discussion to the field configuration n3 = (n1, n2, n3) satisfying n3 · n3 = 1
in three dimensions, now n3 is on S2. The current in three dimensions is given by

Jµ = 1
8πϵ

µνρϵabcna∂νnb∂ρnc (9.2.23)

where µ, ν, ρ are spacetime indices in (2 + 1) dimensions and a, b, c = 1, 2, 3 are for the compo-
nents indices of n3 = n3i. This current is again conserved and its divergence is proportional to
the Jacobian matrix similar to (9.2.6). We can compute the J t component which will give the
total charge Q when we integrate it over all space,

J t = 1
4πn3 ·

(
∂n3
∂x

× ∂n3
∂y

)
. (9.2.24)

This can be viewed as the volume element of a parallelepiped spanned by {n3, ∂xn3, ∂yn3}.
This form of the current is related to the so-called Mermin-Ho relation [151] expressing the curl
of the velocity in the form of the current (9.2.23) when one considers the director field of the A
phase of superfluid helium 3He.

Next, we would like to find an expression for the field configuration in three dimensions,
which imposes the winding number N in a natural way, and satisfy the constraint n3 · n3 = 1.
One such an expression comes from the idea that we might regard the non-trivial vortex field
nv of (9.2.15) as a projection from the higher dimensional vortex field. This suggests we can
simply introduce an additional component in the higher dimensional configuration [152] while
we can retain the constraint n3 · n3 = 1.

This can be done if we combine the non-trivial vortex field nv into the first two component
of n3, in such a way that

n3 = (sin θnv, cos θ)
= (sin θ cosNϕ, sin θ sinNϕ, cos θ) .

(9.2.25)

The topological density (another name for the J t component) for this general field configuration
can be obtained simply inserting n3 into (9.2.24)

J t = 1
4π det

(
n3,

∂n3
∂x

,
∂n3
∂y

)
= −N

4π sin θ ∂(ϕ, θ)
∂(x, y)

= N

4πrθ
′ sin θ ,

(9.2.26)
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where θ′ = ∂θ/∂r, r2 = x2 + y2, and the Jacobian matrix of coordinate changes between the
spherical and the Cartesian coordinate system is

−N sin θ = ∂(n1, n2, n3)
∂(ρ, ϕ, θ) . (9.2.27)

Then, the conserved topological charge can be obtained from the integration,

Q =
∫
dxdy J t

= N

2 [cos f(0) − cos f(∞)] .
(9.2.28)

If we set the radial function to satisfy, cos θ(0) − cos θ(∞) = 2 or equivalently θ(0) − θ(∞) = π,
we obtain

Q = N . (9.2.29)
The homotopy group in this case is a map from S2

phy to S2
int, hence

π2(S2) ∼= Z . (9.2.30)

For the pure spatial three-dimensional field configuration n3 = (n1, n2, n3), we can consider
the field introduced by Polyakov [153], the hedgehog field nh lies on S2, see Fig. 9.4

nh = 1
r

(x, y, z), r2 = x2 + y2 + z2 , (9.2.31)

corresponding to the N = 1 case of the trivial configuration n3 = (sin θ cosϕ, sin θ sinϕ, cos θ),
and we will see more of this in Section 9.4.

We can calculate the associated total charge Q, using the divergence theorem to obtain∫
dxdydz ∂µJ

µ =
∫
dSµJ

µ

= 1
8π

∫
dSµϵ

µνρϵabcna∂νnb∂ρnc

= 1
4π

∫
dS n3 ·

(
∂n3
∂x

× ∂n3
∂y

)
.

(9.2.32)

In three dimensions the area of S2 sphere is 4π. This factor exactly cancels out the factor
1/4π. Therefore, the topological density indeed agrees with (9.2.24). And we see that we
will obtain the identical total charge Q regardless we integrate J t from the time-dependent
field configuration in (n+ 1) dimensions over n spatial dimensions, or we integrate the spatial
components J from the static field configuration over (n + 1) purely spatial total space using
the divergence theorem. The latter will give the direct notion of the topological invariant as
the degree of mapping of the surface S2 surrounding the defects on the sphere where the field
n3 with the information of winding number N is embedded under the constraint n3 · n3 = 1
to yield the homotopy (9.2.30).

Our next task is to construct a field configuration n4 satisfying n4·n4 = 1 in four dimensions.
This can be done by writing, from our experience of (9.2.25)

n4 =
(
sinω(r)n3, cosω(r)

)
(9.2.33)

where n3 is defined by (9.2.25) with the integer N firmly embedded. The conserved current,
also known as Skyrme’s current, is

Jµ = 1
12π2 ϵ

µνλρϵabcdna∂νnb∂λnc∂ρnd . (9.2.34)
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nv(N = 1) n3(N = 1) nv(N = 2) n3(N = 2)

Figure 9.4: Two-dimensional vortex field configurations with various integers N using (9.2.15) and its
corresponding n3 fields on S2 of (9.2.25) are shown where n3(N = 1) is essentially the isotropic director
distribution of hedgehog configuration nh.

One can compute the topological density by inserting (9.2.33) into (9.2.34)

J t = N

2π2 sin θ sin2 ω(r) ∂(ϕ, θ, ω(r))
∂(x, y, z)

= − N

2π2
ω′(r)
r2 sin2 ω(r) ,

(9.2.35)

where we used the Jacobian matrix, similar to that of (9.2.27)

N sin θ sin2 ω(r) = ∂(n1, n2, n3, n4)
∂(ρ, ϕ, θ, ω(r)) . (9.2.36)

The associated total charge can be obtained

Q = N

π
[ω(0) − ω(∞)] − N

2π [sin 2ω(0) − sin 2ω(∞)] . (9.2.37)

Now, we notice that the second term on the right-hand side of (9.2.36) may impose the
condition against the consideration we discussed in terms of the finite energy requirement. But
if we write

sin 2ω(0) − sin 2ω(∞) = 2
[
sinω(0) cosω(0) − sinω(∞) cosω(∞)

]
,

then we can choose the arbitrary radial function ω(r) in such a way that it removes the possible
singularity by putting sinω(0) = sinω(∞) = 0. Consequently, the function ω(r) removes the
divergence in the energy when r → ∞. Under these conditions, the problematic terms vanish
and the total charge becomes

Q = N

π
[ω(0) − ω(∞)] . (9.2.38)

In order to ensure the finite integer-valued Q, we further use the identity

sinA− sinB = 2 sin
(
A−B

2

)
cos

(
A+B

2

)
,

so that the condition sinω(0) = sinω(∞) = 0 implies that the identical asymptotic condition
on the radial function when we derived (9.2.29), ω(0) − ω(∞) = π. Therefore, the total charge
becomes

Q = N , (9.2.39)
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as expected, and the homotopy group in this case is a map from S3
phy to S3

int so that

π3(S3) ∼= Z . (9.2.40)

In deriving the expressions Q = N in (9.2.29) and (9.2.39), we can obtain the identical
results but with an additional minus sign. To see this, as noted in [154], let us bring back the
stereographic projection space we considered in Section 8.1. The vortex field travels from the
south pole to the north pole, or it can travel in the reverse direction on S2 (or on S3), as r
increases from the origin to infinity on the projective plane or in the reverse order. Then, the
total charge Q may acquire a minus sign depending on the choice of the path between the poles,
hence Q = ±N . The factor that determines the sign is sometimes called the polarity.

Lastly, we would like to consider the mechanism that lies beneath in evaluating the inte-
grations in various dimensions to assure the integer-valued Q in accordance with the homotopy
classification πn(Sn) ∼= Z. In general d dimensions, the form of the integration for the charge
Q would be ∫

ddx ∂µJ
µ =

∫
dSµJ

µ . (9.2.41)

We can regard the term dSµ on the right-hand side as an infinitesimal surface element of the
hypersurface Sd−1 embedded by the volume element ddx of the integration in d dimensions,
defined on the left-hand side in the direction of the current Jµ. To see this, for the Euclidean
length element x, defined by the strictly positive-definite Euclidean metric tensor, the arbitrary
volume element in d dimensions ddx can be written by

ddx = dΩd dx x
d−1 (9.2.42)

where
∫
dΩd is the area of a unit n-sphere Sn in d = n + 1 dimensions. This technique is

commonly used when one considers the dimensional regularisation in quantum field theory to
remove the possible divergences in evaluating the integration [155]. Therefore, we can construct
a conserved current in the general d dimensions

Jµ = 1
n!
∫
dΩd

ϵµµ1···µnϵaa1···anna∂µ1na1 · · · ∂µnnan , (9.2.43)

where the factor n! comes from the number of permutations in the indices, and the explicit
evaluation of

∫
dΩd will be given shortly. This will give the topological invariant Q by the

integration (9.2.41) with the factor
∫
dΩd will be canceled out exactly in the integration. In

particular, when one considers a static d dimensional problem, the conserved current will take
the form

Jµ = N∫
dΩd

r̂

rd−1 , r = (x1, · · · , xd) (9.2.44)

which yields the d-dimensional Dirac delta function,

∂µJ
µ = N∫

dΩd

(∫
dΩd

)
δd(r) . (9.2.45)

The corresponding field configuration in d dimensions is

nd = (sinωd(r)nd−1, cosωd(r)) , n2 = nv , d ≥ 3 (9.2.46)

with some angular functions ωd(r), satisfying nd · nd = 1 in d = n+ 1. The mapping between
the field configuration on the sphere Sn

phy and the sphere Sn
int in the integration (9.2.41) gives

precisely the homotopy classification we observed in (9.2.14), (9.2.30) and (9.2.40)

πn(Sn) ∼= Z . (9.2.47)
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Nonetheless, the field configuration (9.2.46) is not unique for the purpose of obtaining the
topological invariants N . In [156] various forms of Jµ are given, for example, by noting the
similarities from the sine-Gordon system which gives a set of distinct Q sectors. Notably,
in [157], the form of field configuration n3 is given using an equality based on the lower bound
for the finite-energy consideration

∂µn3 = ±ϵµν (n3 × ∂νn3) . (9.2.48)

This further yields a conclusion that when the field configuration n3 is projected on the complex
plane to form the analytic complex function w = w1 + iw2, then any such analytic function
will give the topological invariants when one writes w in the power expansion of order N . The
solution space itself imposes the scale invariance and the translational invariance.

The expression (9.2.42) can be illustrated in simple cases for d = 2 and d = 3, where the
infinitesimal elements to be integrated are expressed as the product of its differential angular
elements and radial elements in the polar coordinate system, for example

d = 2 : dxdy = (dθ)(rdr) ,
d = 3 : dxdydz = (sin θdθdϕ)(r2dr) .

The factor
∫
dΩd in general case is given by

∫
dΩd = 2π d

2

Γ
(

d
2

) . (9.2.49)

Using the properties of Gamma function,

Γ(n+ 1) = nΓ(n), and Γ
(1

2 + n

)
= (2n)!

4nn!
√
π ,

we can summarise some special cases that frequently appears, as below.

Dimension d 1 2 3 4∫
dΩd 2 2π 4π 2π2 (9.2.50)

9.3 Topological sectors

In the previous Sections, we started from the conserved current Jµ a priori to derive the con-
served charge Q in the simple (1 + 1) dimensions up to the general case of (9.2.43). Unlike the
conventionally derived conserved current such as Noether’s current, the topological invariants
we considered are entirely dependent on the asymptotic boundary conditions, and its conserved
invariant property comes from the finite energy requirement from the expression

Q ∝ ϕ(+∞, t) − ϕ(−∞, t) .

And we saw explicit field configurations for the associated conserved current in various dimen-
sions, leading to the topological invariants

Q = N .

It becomes evident that our true starting point in developing the argument should be the finite
energy requirement rather than the seemingly ad hoc construction of the currents Jµ. This
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statement can be rephrased that the solution space ϕ should satisfy some finite-valued asymp-
totic conditions. In this Section, we would like to justify the relation between the topologically
invariant total charge and the homotopy classification using a simple case.

Let us start again with the system of a single scalar field ϕ(x, t) in two dimensions. We
write the Lagrangian by

L = 1
2∂µϕ∂

µϕ− U(ϕ) , (9.3.1)

where the potential U(ϕ) might have an integer number of degenerate minima. In particular,
the sine-Gordon system of (9.1.18) imposes the infinite number of minima of the system, with
the potential U(ϕ) = m2(1 − cosϕ) due to the periodicity in the solution space with the integer
N .

If the system possesses a set of degenerate minima, the field (static or time-dependent)
must approach a minimum of U(ϕ) at every point on spatial infinity for a given t, to retain its
finite energy requirement. In this case, as we already imposed in (9.1.5) and (9.1.6), we define
formally such asymptotic conditions by

ϕ(+∞, t) = lim
x→+∞

ϕ(x, t) ≡ ϕ+∞ , ϕ(−∞, t) = lim
x→−∞

ϕ(x, t) ≡ ϕ−∞ . (9.3.2)

And there are two possibilities that either ϕ+∞ = ϕ−∞ or ϕ+∞ ̸= ϕ−∞ within the finite energy
requirement. Then, the field ϕ(x, t) will change continuously as the time t varies and the solution
space itself is derived from the equation of motion

∂µ∂
µϕ = −∂U

∂ϕ
. (9.3.3)

The trivial solution for this differential equation is again constant vacuum solution ϕvac, and if
not, it will be a description of the continuous deformation of the system as we saw in Part I.
Therefore, in a sense, the non-trivial solution can be regarded as a fluctuation ϕf of the vacuum
solution restricted by a finite-energy requirement

ϕ = ϕvac + ϕf (9.3.4)

belongs to each homotopy classification of the solution space, with the asymptotic behaviour
that ϕ → ϕvac as seen in the ϕ4 theory and the sine-Gordon system in Section 9.1.

The continuously deformable condition and the smoothness of the function ϕ suggests that
we cannot expect the transition in the configuration of the system have an abrupt change from
ϕ−∞ to ϕ+∞. Hence the transition within the given minima must occur smoothly in such a
way that the points of minima remain as the stationary points of U(ϕ) within the given class
of solution space.

Therefore, there exist a number of regions called sectors [40] in the solution space in which
the system is allowed to deform continuously around the point of minima while the finite energy
requirement is maintained. The sectors are topologically disconnected regions in the solution
space, in a sense that fields configuration from one sector cannot be deformed continuously into
another without violating the finite energy requirement. But the field configuration in any given
sector stays within that sector as time changes.

Hence, this classification of sectors is closely related to the equivalent homotopy classification
of the solution space. This is an analogous analysis we made in (7.2.4) in Section 7.2. In
particular, if there is only one unique minima, we have only one sector for the solution space
and this corresponds to the case of ϕ(+∞, t) = ϕ(−∞, t) which is equivalent to the trivial
case Q = 0. This is the class {0} ∈ π1(SO(3)) we considered in (7.2.4), the equivalent set of
configuration that can be continuously deformed uniformly via diffeomorphism.
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Let us follow the example given in [40]. If we have the ϕ4 system of (9.1.7), then the potential
is given by

U(ϕ) = λ

4ϕ
4 − µ2

2 ϕ
2 (9.3.5)

with two minima ∂U/∂ϕ = 0 at ϕ = ±µ/
√
λ. Therefore, there are four distinct sectors in this

case given by paths along the curve called the orbits defined by intervals of these minima,

i):
(

− µ√
λ
, − µ√

λ

)
, ii):

(
µ√
λ
,
µ√
λ

)
, iii):

(
− µ√

λ
,
µ√
λ

)
, iv):

(
µ√
λ
, − µ√

λ

)
, (9.3.6)

As shown in Fig. 9.5, there are two physically meaningful orbits, namely type I (i) and ii)) which
starts and ends at the same minimum, and type II (iii) and iv)) connecting distinct minimum
points among the given set of degenerate minima. Hence we have two distinct types of sectors
which are related to the homotopy classification of (9.1.9).

Figure 9.5: The transitions of the field configuration along the orbits (dotted lines) are shown, starting
from one of minima and ending either to the same point or the distinct minimum configuration.

Similar conclusion can be made if we consider the sine-Gordon system which gives infinite
numbers of types in sectors in analogy with (9.1.20). But we must note that the symmetries
we considered in the ϕ4 theory, the sine-Gordon system, and in the nonlinear O(N) models, all
are the global symmetries for the respective Lagrangians. This means, if we have a solution
space that possesses a different kinds of symmetry structure, often called the internal or the
local symmetry, then our consideration on the sector can break down.

The above discussion can be extended to a general system of n-coupled scalar fields in two
dimensions with the Lagrangian

L = 1
2∂µϕ∂µϕ − U(ϕ) , (9.3.7)

where the n-component scalar field is given by

ϕ(x, t) = (ϕ1(x, t), · · · , ϕn(x, t)) .

The equations of motion are

∂µ∂
µϕa = − ∂U

∂ϕa
, a = 1, · · · , n . (9.3.8)

The requirement that the solution have finite energy leads to the condition that minima of U(ϕi)
must be obtained for some field ϕ as x → ±∞ in n-dimensional field space, and the sectors can
be determined by the intervals defined by those minima.
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Now, we must note that there are significant differences from the single field case. In case
of the single field, once the smooth continuous deformation starts from one of minima, the
transition must terminate at another minima or return to the starting point to lose the kinetic
energy. In case of the coupled multi-component field, if U(ϕi) has a unique minimum the
situation is identical to that of the single field case. But if there are degenerate minima, once
the transition is initiated from one point towards another point in the n-dimensional ϕa-space,
the transition can occur along the orbits and return to the starting point without losing all its
kinetic energy. Further, if we impose some constraint on the field, such as

ϕ · ϕ = (ϕ1)2 + · · · + (ϕn)2 = 1 , (9.3.9)

or a unitary condition for the complex-valued field, the system will remain invariant under the
certain internal symmetry, preferably a Lie group, under which the system configuration can be
transformed from one into another continuously.

To illustrate this internal symmetry that differs from the global symmetry of the system,
consider the real two-component field ϕ = (ϕ1, ϕ2) with a potential U(ϕ1, ϕ2) so that the solution
space is defined in the {ϕ1, ϕ2} plane. Suppose U(ϕ1, ϕ2) has two distinct minima at point A
and B on the field plane. And we can see that the possible orbits are given by the similar set
of (9.3.6) but the transition can occur through the internal circle through the point A and B to
become a periodic orbit which constitutes the internal symmetry. This internal circle is indeed
the local symmetry of the system, originated from the internal constraint such as (9.3.9). See
Fig. 9.6.

Figure 9.6: The orbit starts and ends at the minimum A and orbits connecting A and B are shown.
The orbits can be periodic that eventually lose all its kinetic energy, and terminates its loop at one of
minima on the planar solution space.

Now, suppose the Lagrangian and the potential U(ϕ) are invariant under some symmetry
transformation acting on ϕ(x). If U(ϕ) had a unique minimum at some ϕ = ϕ0, then ϕ0 itself
must remain invariant under that transformation. In the case of a set degenerate minima with
distinct sectors, the full set of minima is invariant under the symmetry of the Lagrangian of
the system (often it is the global symmetry) but each individual minimum can exhibit the local
symmetry differs from the original symmetry for the system.

As a simple example, we know that the system (9.3.5), with four topological sectors, has
a U(ϕ) invariant under ϕ → −ϕ. But its two minima are not separately invariant but they
are transformed into one another under the different symmetry, namely the rotation in phase.
This property is also known as the spontaneous symmetry breaking, and this may lead to the
existence of the non-trivial topological sectors with a set of degenerate minima of the potential.

In the next Section, we would like to consider another example of the multi-component
field ϕ = (ϕ1, ϕ2, ϕ3) with the identical form of the potential U(ϕ) of the ϕ4 theory. This
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configuration is known as the Polyakov’s hedgehog field with the solution nh we saw in (9.2.31).

9.4 Polyakov’s hedgehog field
In 1974, Polyakov showed [153] that under the weak interaction assumption, the finite range of
mass spectrum can be obtained from the Hamiltonian H following the finite energy requirement
of the system with the Lagrangian of the higher dimensional ϕ4 theory in (1 + 1) dimensions
we considered in (9.1.7). For (3 + 1) dimensions, the Lagrangian is given by

L = 1
2∂µϕ∂µϕ − U(ϕ) , (9.4.1)

where
U(ϕ) = −µ2

2 ϕ2 + λ

4 ϕ4 , (9.4.2)

for the three-component field ϕ = (ϕ1, ϕ2, ϕ3). The equation of motion identical to (9.3.8), is
given by

∂µ∂
µϕa −

(
µ2 − λ(ϕ · ϕ)

)
ϕa = 0 . (9.4.3)

A solution for the static case is given by

ϕa = nhaΘ(r), nha = 1
r

(x, y, z) (9.4.4)

where r2 = x2 + y2 + z2 and nh = nha for a = 1, 2, 3 is the field configuration of (9.2.31). An
angular function Θ(r) satisfies the second-order ordinary differential equation

Θ′′ + 2
r

Θ′ +
(
µ2 − 2

r2

)
Θ − λΘ3 = 0 . (9.4.5)

Apart from the trivial vacuum solutions, i.e. the zeros of the potential U(ϕ), the non-trivial
solution must impose the asymptotic condition that approaches the vacuum solution

Θ(r → ∞) = µ√
λ
, (9.4.6)

The solution (9.4.4) is called the hedgehog solution, as we can see that these are isovectors
directed along the radial vector at a given point.

For the rank-two tensor field, also known as the isotensor Higgs field, it is suggested by
Polyakov that the solution shall be of the form

ϕab =
(
nhanhb − 1

3δab

)
Θ(r) , a, b = 1, 2, 3 (9.4.7)

in place of ϕa in (9.4.4). We note that this is the identical form of the order parameter Q of
(8.4.7) for the nematic liquid crystals we obtained in Section 8.4.

Qij =
(
nNinNj − 1

3δij

)
σ , i, j = 1, 2, 3 . (9.4.8)

This enters into the energy density function F of (8.4.3) in the various forms of the invariant. We
note that Θ(r) in (9.4.7) is a function of the position, but σ is a mere constant parameter. This
implies, unlike the space S2 where the nematic liquid crystals with directors nN are identified
as the antipodals, we might need higher dimensional space with an additional degree of freedom
to harbour the higher-ranked field configuration with some analogous notion of the antipodal
identification on that space. It is tempting to promote (9.4.7) to be the order parameter for
the micropolar continuum, in line of generalisation of nematic liquid crystals to the micropolar
continuum in terms of director fields we saw in Section 8.4. This is the subject we would like
to investigate in the next Chapter, followed by formal justification.
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Chapter 10

Micropolar continuum and the
Skyrme model

A finite energy configuration requires appropriate asymptotic conditions in the total charge Q,
for example in (9.2.28) and (9.2.38), to satisfy certain criteria as we observed in the previous
Sections with the currents Jµ in various dimensions. We would like to focus on the field
configuration n itself constituting such currents Jµ in higher dimensions. This includes the
Skyrme model as the spinor system in which the relation between SU(2) and SO(3) signifies
its role in various forms of the representation. This further will give us a unique point of view
to understand the result we obtained in Part II to connect the deformational measures we used
so far.

It is hinted in [35] that the order parameter for the micropolar continua can be taken as
SO(3) or RP 3, and in [120] the elements of R ∈ SO(3) are briefly mentioned as the antipodals
on S3. Using the fibrations between the unit spheres and the real projective space, we would
like to generalise the idea that micropolar continua can be regarded as the projective space
that contains the nematic liquid crystals as its submanifold followed by the topological and ge-
ometrical consideration. This approach is different from that of [142] promoting the micropolar
continua as the general case of nematic liquid crystals.

10.1 Rotations of SO(3) and SU(2)
An element R of the orthogonal rotation group SO(3), satisfying RTR = 1, can be expressed
by the real 3 × 3 matrix representation we considered in (8.4.20), which is equivalent to (1.2.31)

Rij = cos Θ · δij + n3in3j(1 − cos Θ) − ϵijkn3k sin Θ . (10.1.1)

This describes the rotation of an angle Θ about the normalised axis

n3 = n3i satisfying n3 · n3 = 1 . (10.1.2)

where i, j, k = 1, 2, 3. We are particularly interested in the position-dependent axial configura-
tion. For this purpose, we can choose the axis to be the hedgehog field nh of (9.2.31) or the
general field n3 of (9.2.25), which gives the topological invariant N in three dimensions. In
particular, when N = 1, the hedgehog field is just the static n3 in the usual polar coordinate
system

nh = (sin θ cosϕ, sin θ sinϕ, cos θ) , (10.1.3)

where ϕ = arctan(y/x) and θ = arctan(
√
x2 + y2/z).
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An element U of the unitary rotational group SU(2), satisfying U †U = I, can be represented
by a complex 2 × 2 matrix with two complex parameters a, b ∈ C

U =
(
a −b̄
b ā

)
where |a|2 + |b|2 = 1 . (10.1.4)

Since there is a direct isomorphism of Cn ∼= R2n, we can assign a set of four real parameters
(n1, n2, n3, n4) in such a way that a = n4 + in3 and b = −n2 + in1. Then (10.1.4) becomes

U =
(
n4 + in3 in1 + n2
in1 − n2 n4 − in3

)
= n4 · I + i(n · σ) , (10.1.5)

where n4 = (n, n4) = (n1, n2, n3, n4) satisfies the condition

n4 · n4 = 1 . (10.1.6)

We should not be confused with the first three components n of n4 and n3 ∈ S2 satisfying
n3 · n3 = 1 which enters into the representation of (10.1.1) as the normalised axis field in three
dimensions. The Pauli matrices σ = (σ1, σ2, σ3) in (10.1.5) are the generators of SU(2), defined
by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (10.1.7)

It is sometimes convenient to write elements U ∈ SU(2) and R ∈ SO(3), respectively,

U = eiω(r)n3·σ and R = eiΘn3·J . (10.1.8)

The quantities ω(r) and Θ are the rotational angles about respective axes. Under these rep-
resentations, the generators σ and J for SU(2) and SO(3), respectively, satisfy commutation
relations [

σi

2 ,
σj

2

]
= iϵijk

σk

2 and [Ji, Jj ] = iϵijkJk . (10.1.9)

Using the identity for the Pauli matrices,

σiσj = δij · I + iϵijkσk , (10.1.10)

we can show that (n3 · σ)2 = I. This implies that the even power of (n3 · σ) is I, and the odd
power becomes (n3 · σ). Hence, the form of the element U ∈ SU(2) is indeed,

eiω(r)n3·σ = cosω(r) · I + i(n3 · σ) sinω(r)
= n4 · I + i(n · σ)

(10.1.11)

where we put n = n3 sinω(r) and n4 = cosω(r) for n3 · n3 = n4 · n4 = 1. This is precisely the
field configuration n4 of (9.2.33) we used in deriving the topological invariant N by Skyrme’s
current Jµ of (9.2.34).

n4 =
(
sinω(r)n3, cosω(r)

)
. (10.1.12)

An explicit relation between R ∈ SO(3) and U ∈ SU(2) can be explained in many ways,
but we would like to take a quaternion for the apparent topological benefit. A quaternion q is
defined by

q = a+ bi + cj + dk (10.1.13)
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such that a, b, c, d ∈ R satisfy

a2 + b2 + c2 + d2 = 1 and i2 = j2 = k2 = −1 . (10.1.14)

So, it is easy to see that q lives on the sphere S3, and there is a direct isomorphism between
U ∈ SU(2) of (10.1.5) and the representation of the quaternion. Explicitly, this is

q = a · I + (b, c, d) · (i, j,k) (10.1.15)

or equivalently, the isomorphism of
iσ ∼= (i, j,k) . (10.1.16)

In particular, if we have a pure imaginary quaternion there is a one-to-one correspondence
between a quaternion and an element of R3 which transforms under the rotation SO(3). This
allows us to take the Pauli matrices σ to transform under the rotation, regarding it as a three-
component vector acted by the rotation in such a way that

σi = σjRji .

On the other hand, since each Hermitian matrix of the three-component σ transforms under
U ∈ SU(2), we must have

σi −→ U †σiU .

Hence, as introduced in [158], the relation between U ∈ SU(2) and R ∈ SO(3) can be written
by

σiRij = U †σjU . (10.1.17)

After applying σk on both sides, we take traces using the identity tr(σiσj) = 2δij which can be
easily seen from (10.1.10). Then (10.1.17 gives an explicit correspondence between U ∈ SU(2)
and R ∈ SO(3), used in [159], by

Rij = 1
2tr

(
σiU

†σjU
)
, (10.1.18)

where the trace are taken over 2 × 2 matrices is understood if we write this in components

Rij = 1
2
[
σkl

(i)U
†
lt

]
kt

[
σtl

(j)Ulk

]
tk
. (10.1.19)

Since U and −U will give rise to the identical R, this confirms the two-to-one mapping between
SU(2) and SO(3). Straightforward calculation of (10.1.19) by inserting the matrix elements of
U of (10.1.5) gives the representation of Rij in terms of (ni, n4) for i, j = 1, 2, 3

Rij = 2ninj − 2ϵijknkn4 + δij(2n2
4 − 1) (10.1.20)

in which, we used the constraint n2
i + n2

4 = 1 of (10.1.6), and trace identities

trσi = 0, tr(σiσj) = 2δij , tr(σiσjσk) = 2iϵijk, tr(σiσjσsσt) = δijδst − δisδjt + δitδjs .

Therefore, we can confirm the well-known correspondence SU(2) −→ SO(3) stating that SU(2)
is a double cover of SO(3)

SU(2)/{−I, I} ∼= SO(3) .

Moreover, if we put
ni = n3 sin Θ

2 and n4 = cos Θ
2 , (10.1.21)

into (10.1.20), we will recover the previous representation (10.1.1).
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10.2 Spinors

10.2.1 Spin system

A system with spinors is characterised by its acquisition of an additional minus sign to its
original state after 2π rotational transition, and return to its initial state after a full 4π rotation.
This peculiar character of the spinor is observed in many physical systems, notably in the twistor
theory by Penrose and Newman [160,161] in which the Dirac’s spinors are regarded as a special
case. The discussion of the spinor property of spinning particles can be found in [119, 162],
and pedagogical yet motivating discussions can be found in [119, 154, 162]. One finds some
illustrating explanations of spinors in both macroscopic and microscopic aspects in [163].

It is particularly well-known in particle physics [164, 165] that the spin-1/2 particle takes
4π rotational transition to return to its original state. So let us start with a spin-1/2 particle.
It takes one state out of two possible states, namely spin-up |↑⟩ and spin-down |↓⟩. Often it is
convention to represent these states by

|↑⟩ =
(

1
0

)
and |↓⟩ =

(
0
1

)
.

Suppose we have a spin-up state aligned with the z-axis with no spin-down component initially.
So, we write the initial state by a probability function P (|↑⟩, |↓⟩) = (1, 0) which indicates that
the probability of finding |↑⟩ distribution is the total space. In this way, we may construct a set
of axes to represent orthogonal references with the probability P for the given spin states, with
the associated angular variable to express the transition from the initial state. This angular
variable is referred as the generalised phase of the state.

After 2π rotation, it will only acquire a minus sign to its original spin state. If we wish to
represent this property in a circular motion with the angular variable representing the trans-
forming spin states, we consider the full circle rotation by 4π rather than the usual 2π rotation.
See Fig. 10.1.

Figure 10.1: A transition of spin states along the 4π full circle is illustrated on the left. The equivalent
fibre bundle structure of the Möbius band acted by the element of the order two group Z2 = {0, 1}
implying that the two 2π rotations are required to return to its original configuration in the bundle
structure, while it takes only one 2π rotation to return to its initial configuration on the projected base
manifold S1.

So, it is natural to associate the midpoint of this transition of state from zero to 2π rotation,
the angle π for which the polarisation of the initial state |↑⟩ vanishes completely, and only the
other state |↓⟩ exists occupying the total space P (|↑⟩, |↓⟩) = (0, 1). The angle between these
transition represents the mixed states of α |↑⟩ + β |↓⟩ for some parameters α, β. Therefore, if
we regard a full circle as the abstract circle to return a spin-1/2 particle to its original state, it
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will take 4π rotation rather than the usual 2π rotation in the physical space.

Angle(phase): 0 π 2π 3π 4π
State: |↑⟩ |↓⟩ − |↑⟩ − |↓⟩ |↑⟩

In Fig. 10.1, a fibre bundle structure {S1, S1,Z2, π} is shown describing the particle circling
on S1 becomes the opposite configuration from the original one after 2π rotation in the bundle
space. We can regard the bold lines in Fig. 10.1 as the edge of the Möbius band. It will take
two such rotations to return to its original configuration. This structure is projected to the base
manifold S1 by a map π with the usual full circle of 2π rotation. Each dot on the base S1 will
have two distinct configurations when the group Z2 is acted on the fibre bundle. That means,
we can associate 2π rotation an element {1} and 0 or 4π rotation an element {0}.

10.2.2 Fibration in the projective space

Now, since we have the correspondences between SU(2) and SO(3), as we saw in the previous
Section where each of these are isomorphic to the respective spaces,

SU(2) ∼= S3 and SO(3) ∼= S2 , (10.2.1)

what is left to do next is to establish the explicit relation between S3 and S2. Such a relation
can be understood by Hopf fibration of (8.1.10). In particular the fibration

S1 ↪→ S3 → S2 (10.2.2)

gives a unique identification CP 1 ∼= S2 via a fibration

S1 ↪→ S2n+1 → CPn . (10.2.3)

For the n = 1 case, we have an isomorphism in terms of the complex projective space

CP 1 ∼= S3/S1 ∼= S2 . (10.2.4)

To see this relation more closely, we note that a real-valued field x = (x1, · · · , x2n) ∈ R2n can
be translated into a complex-valued field z = (z1, · · · , zn) ∈ Cn by setting

z1 = x1 + ix2, z2 = x3 + ix4, · · · , zn = x2n−1 + ix2n .

In particular, if we impose a constraint x2
1 + · · · + x2

2n = 1 for the real-valued field, then this
field configuration lies on S2n−1. For example, if n = 1 we only have z = x1 + ix2 such that
x2

1 +x2
2 = 1. This corresponds to a complex number z ∈ C with a modulus 1 on S1, i.e. |z| = 1.

If n = 2, we have

x = (x1, x2, x3, x4) ∈ S3 and z = (z1, z2) ∈ C2 .

So that we may define a complex doublet z ∈ C2 which lives on S3 as the doublet acted by
U ∈ SU(2) of (10.1.5) on the state |↑⟩. For example

z =
(
z1
z2

)
= U |↑⟩ = U

(
1
0

)
=
(
n4 + in3

−n2 + in1

)
(10.2.5)

satisfying n2
1 + n2

2 + n2
3 + n2

4 = 1, or equivalently |z1|2 + |z2|2 = 1. Similarly, we can define the
action of U ∈ SU(2) on the spin down state by ω = U |↓⟩.
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These particular choice of states in (10.2.5) remove the redundancy in expressing the ele-
ments of U ∈ SU(2) that comes from its unitary property U †U = I. This justifies the field
configuration is indeed on S3 with the constraint (not to be confused with zz†, which is irrele-
vant in this case)

z†z = 1 . (10.2.6)
Hence, we can interpret the doublet z as the wavefunction of the spin-1/2 particle, and this
field is invariant under the phase transformation,

z −→ eiαz . (10.2.7)

where eiα ∈ U(1) ∼= S1 as we noted in Fig. 10.1. In other words, the doublet z imposes an
internal symmetry U(1) in addition to the originally imposed symmetry on the space SU(2) ∼= S3

by the constraint n4 · n4 = 1. Hence, we can recognise the field configuration z on S3 must be
in the complex projective space CP 1, by taking the quotient space with its internal symmetry
U(1). Therefore, it is the fibration (10.2.4).

In case of the real projection space, the fibration is

S0(= Z2) ↪→ Sn → RPn , (10.2.8)

So that the corresponding quotient space is

RP 3 ∼= S3/Z2 (10.2.9)

in which we recognise Z2 the antipodals {n,−n} in the real space. Therefore, in the complex
projection space (10.2.4) the (complex)antipodals on S3 are taken to be S1. We also note that
the antipodals in real and complex space are invariant under SO(2) and U(1) respectively,

Quotient space Antipodals Symmetry group
S3/S0 ∼= RP 3 : {n,−n} SO(2)
S3/S1 ∼= CP 1 : {z, eiαz} U(1)

(10.2.10)

in which SO(2) and U(1) are related by the so-called σ-structure introduced by Trautman [109]
explaining the appearance of the new gauge fields Aij and its associated gauge invariant field
Fij shown by Utiyama [71] in formulating the general local symmetry group SU(N).

10.2.3 Hopf map

The homotopy groups from the fibrations of the real and the complex projective space are given
by

π2(CP 1) ∼= π2(S3/S1) ∼= π2(S2) ∼= Z (10.2.11)
and

π1(RP 3) ∼= π1(S3/S0) ∼= Z2 . (10.2.12)
Now, the Hopf map H gives an explicit expression for the transformations from the field

z ∈ S3 into the axial field n3 ∈ S2 defined by

H : S3 −→ S2

H(z) −→ z†σz
(10.2.13)

where σ are the Pauli matrices. One such coordinate representation of CP 1 is given by the
doublet z acted by U of (10.1.5), with its matrix entries are given by n4 of (10.1.12), on the
state |↑⟩,

z = U |↑⟩ = U

(
1
0

)
=
(

cosω(r) + i cos θ sinω(r)
ieiNϕ sin θ sinω(r)

)
. (10.2.14)
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It is a straightforward calculation to show that (z†σz) · (z†σz) = 1, the equivalent constraint
of n3 · n3 = 1 for the normalised axial field on S2.

Next, we would like to consider the 3-sphere S3 ⊂ R4(∼= C2) and its projection according to
the fibration (10.2.8). We consider a map which induces an element U ∈ SU(2) from a point

Figure 10.2: The correspondence between S3 and its projection RP 3 with the asymptotic values of
U ∈ SU(2) acting on the point on S3 is shown. In particular, the transition from n∞ to n0 is the phase
rotation zero to 2π, expressed by the angular variable Θ on S3. And this transition is projected on the
RP 3 plane by the corresponding transition that brings a point from infinity to the origin.

x ∈ R3 where x is not necessarily a normalised vector,

x −→ (σ · x + i · I) (σ · x − i · I)−1

= 1
1 + |x|2

(
x2

1 + x2
2 + (i+ x3)2 2(ix1 + x2)

2(ix1 − x2) x2
1 + x2

2 + (i− x3)2

)
.

(10.2.15)

It is easy to check that the 2 × 2 matrix representation on the right-hand side of (10.2.15) is
indeed an element of U ∈ SU(2) satisfying U †U = I, hence this is a map associating each
x = (x1, x2, x3) a unitary matrix of SU(2). The transformation (10.2.15) can be regarded as an
inverse map of the stereographic projection from a 3-sphere S3 onto x-space, where the complex
unitary 2 × 2 matrix group SU(2) having the same topology of S3.

What we can do with this correspondence is that we can restrict the domain x-space as the
subspace RP 3 ⊂ R3 to construct the correspondence

P : RP 3 −→ S3 . (10.2.16)

And the representation (10.2.15) satisfies the boundary conditions for U ∈ SU(2),

U =
{

+I when |x| → ∞
−I when x = 0 .

(10.2.17)

Suppose we set the coordinate of the north pole on S3 by n∞ = (0, 0, 0,+1). This cor-
responds to the point |x| → ∞ on the projected space RP 3. Now, we apply an element of
U ∈ SU(2) on this state to see the transition by the angular variable Θ as the phase changes
from the north pole to the south pole. The south pole is denoted by n0 corresponds to the
point x = 0 of RP 3 accordingly. But, by the asymptotic conditions (10.2.17), we see that the
coordinate of the south pole will be n0 = (0, 0, 0,−1). This means the original state from the
north pole acquires a minus sign while the phase transition undergoes the 2π rotation on S3,
along the great circle S2.
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The presence of the factor 1/2 that appears in the field configuration for n4 of (10.1.21)
may look a bit artificial at first sight, although it is required to recover the representation
for R ∈ SO(3) of (10.1.1) from the representation that does not contain any explicit angular
expression (10.1.20). But we now can see, for example through the coordinates for the north
pole and the south pole on S3, it is absolutely required to validate the arguments we developed
so far. A different approach in explaining for the origin of this half angle can be found in [114].

The north pole n∞ and the south pole n0 on S3 satisfy the following asymptotic conditions,
while the transition of the element U ∈ SU(2) changes +I → −I as the phase changes from 0
to 2π using (10.2.15),

Phase SU(2) S3 RP 3

0 +I n∞(0, 0, 0,+1) |x| → ∞
2π −I n0 (0, 0, 0,−1) x = 0

(10.2.18)

For example, if we put a spin state |↑⟩ at the north pole n∞ on S3, this will be projected to
|x| → ∞ on the RP 3 plane. If we bring this to the point x = 0 on the real projective plane, the
corresponding state will travel along the great circle on S3 marking the 2π rotation. In turn,
this state will acquire additional minus sign. We summarise the transitions as follows.

n∞ : (0, 0, 0,+1) n0 : (0, 0, 0,−1)
S3 : z = I |↑⟩ = +

(1
0
)

−→ z′ = −I |↑⟩ = −
(1

0
)

RP 3 : |x| → ∞ −→ x = 0
(10.2.19)

This establishes the direct link between the state lives on S3 acted by SU(2), and the state
lives on RP 3 acted by SO(3). But what physical system shall we put on S3 and RP 3 acted
upon by these rotations respectively? We would like take such a state on S3 as the Skyrmion
and we will consider the possible candidate for the state living on the projective space RP 3 in
the following Sections.

10.3 Skyrmions
In a series of papers [159, 166–169] Skyrme introduced a nonlinear field theory in describing
strongly interacting particles. This work has motivated many subsequent studies, and noted
some interesting links between baryon numbers (the sum of the proton and neutron numbers)
and topological invariants in field theory.

Skyrme defined the field of complex doublet z ∈ C2 acted by an element of U ∈ SU(2)
which lies on S3 [170–172], as we defined in (10.2.5) or (10.2.14)

z =
(
n4 + in3

−n2 + in1

)
, (10.3.1)

satisfying n2
1 + n2

2 + n2
3 + n2

4 = 1 which we know from the representation (10.1.5)

U = n4 · I + i(n · σ) .

The construction of this field comes from the fact that two distinct SO(3) transformations
act on the intrinsic elementary particle spin space and isospin space consists with a pion field
(π0, π+, π−) independently. Then the property of SU(2) as the double cover of SO(3) is used to
contain the complex doublets z. Therefore, two independent full circles in each SO(3) for the
spin-isospin coupled field means one 4π full circle in SU(2) ∼= S3. We note that the operator
in the isospin space has nothing to do with the physical spin space. But it acts on the three
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states of pion field, and its generators I share the identical group structure with those of the
usual generators J of SO(3), such as the commutation relation (10.1.9).

A fieldBa
µ is defined as the gradient of pion field z, or equivalently the gradient of U ∈ SU(2)

on S3 by
∂µU = iσaBa

µU (10.3.2)
where a, b, c = 1, 2, 3 are for the isospin space, µ, ν, ρ for the (3 + 1)-dimensional spacetime
indices. We will use i, j, k = 1, 2, 3 for the spin space. Then using the identity tr(σaσb) = 2δab,
one can obtain

Ba
µ = 1

2itr
(
U †σa∂µU

)
. (10.3.3)

Further, it can be shown that by inserting the representation for the rotation R ∈ SO(3) of
(10.1.20),

Rab = 2nanb − 2ϵabcncn4 + δab(2n2
4 − 1)

directly into the definition of (10.3.3) using the relation (10.1.18), an equivalent expression of
Ba

µ can be obtained by

Ba
µ = −1

4ϵ
abcRbd∂µRcd . (10.3.4)

Now, let us suppress the index notation for the coordinates µ, ν = 1, 2, 3 for now. Then we notice
that the term on right-hand side Rbd∂µRcd of (10.3.4) is precisely the form of the contortion
tensor Kbµc of (6.2.3), when it is applied by global rotations Q ∈ SO(3) according to QTKQ.
This gives the relation between Ba

µ field and Nye’s tensor (6.2.8) as follows.

Ba
µ = 1

2Γa
µ . (10.3.5)

This relation between two fields gives us a unique identification in what we have discussed
extensively in Part II, the compatibility conditions. A Maurer-Cartan form M = A−1dA, for
A is an element of a Lie matrix group, M satisfies a Maurer-Cartan equation as we briefly
mentioned in (6.2.12). Since Ba

µ is in the Maurer-Cartan form by definition, or iσB = U †dU ,
it must satisfy the Maurer-Cartan equation

dB = −B ∧B , (10.3.6)

which can be equivalently written

∂µB
a
ν − ∂νB

a
µ + 2ϵabcB

b
νB

c
µ = 0 . (10.3.7)

After applying ϵνµσ, we obtain
CurlB + 2Cof B = 0 .

Then, using the definition of the Cof of (4.2.2) and the relation (10.3.5), we recover our com-
patibility condition for Nye’s tensor (6.2.9),

Curl Γ + Cof Γ = 0 . (10.3.8)

We recall that this is essentially derived from the setting (6.2.4) of vanishing curvature but
non-trivial torsion,

Rρ
σµν = ∂µK

ρ
νσ − ∂νK

ρ
µσ +Kρ

µλK
λ
νσ −Kρ

νλK
λ
µσ . (10.3.9)

Again this is in the form of the Maurer-Cartan equation, for the contortion tensor K = RTdR
satisfying

dK = −K ∧K . (10.3.10)
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In [168], Skyrme used the explicit field configuration for (10.2.5) in terms of (10.1.21),

ni = n3 sin Θ
2 and n4 = cos Θ

2 , (10.3.11)

but with n3 is given by the tetrad field ea
i-rotated hedgehog field

n3 = ea
inh satisfying n3 · n3 = 1 . (10.3.12)

In words, the field configuration n3 is obtained from the ea
i-transformed isotropic nh in the

spin-isospin system. Moreover, the constraint n3 · n3 = 1 immediately indicates that the tetrad
field ea

i must be an orthogonal matrix, hence it can be regarded as the microrotation χa
µ when

we use the polar decomposition (5.1.7) and (6.3.3). And when we insert (10.3.11) into (10.3.3),
the explicit expression for Ba

i is obtained by

Ba
i = ea

j

1
2r
[
(δij − nhinhj) sin Θ + nhinhj rΘ′ − ϵijknhk(1 − cos Θ)

]
(10.3.13)

where B is now a strictly 3 × 3 matrix, representing the gradient of the spinor field, in terms
of three position-dependent hedgehog fields under the constraint nh · nh = 1 and an arbitrary
radial function Θ.

Skyrmions are field configurations for the quantised invariant number defined by the total
charge of integration of the conserved current Jµ of (9.2.34) we saw in Section 9.2. This
topological invariant number is regarded as a particle-like quantity, and postulated to be baryon
number. In particular, under the configuration (10.3.11), one can obtain the topologically
conserved charge Q = N = 1. In this case, one proton or one neutron. This is because the field
configuration is expressed in terms of the hedgehog field nh, which does not contain any vortex
field but the trivial one N = 1, as we noticed in (9.2.31). In other words, if we use the general
spinor configuration such as (10.2.14), we will obtain a non-trivial baryon number N by the
integration

N = 1
12π2

∫
d3x ϵtνλρϵabcdna∂νnb∂λnc∂ρnd

= − 1
2π2

∫
d3x detB .

(10.3.14)

Using the relation with Nye’s tensor (10.3.5), this can be rewritten by

N = − 1
(4π)2

∫
d3x det Γ . (10.3.15)

Furthermore, after a rather lengthy calculation using the relation with the contortion tensor K
of (6.2.8), this becomes

N = 1
96π2

∫
d3x tr (K ∧K ∧K) . (10.3.16)

All three expressions (10.3.14), (10.3.15) and (10.3.16) will give an identical topological invariant
integer N , satisfying the finite energy requirement we considered in Section 9.2. The form of
integration (10.3.15) has been noted in [145,173] in the context of Cosserat elasticity.

In particular, (10.3.16) can be derived from a Chern-Simons type action in terms of the
contortion tensor, seen as gauge fields [22],

S = 1
4π

∫
d3x tr(K ∧ dK + 2

3K ∧K ∧K) . (10.3.17)
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Moreover, by varying the action S of (10.3.17) with respect to contortion, one arrives at the
equation of motion

dK +K ∧K = 0 , (10.3.18)

which is again the Maurer-Cartan equation (10.3.10), the vanishing Riemann tensor with
nonzero torsion.

When N = 1, the expression (10.3.14) manifests [168, 169] that a proton (N = 1) cannot
decay into the pions (N = 0). In other words, the field configuration belongs to the homotopy
classification {1} cannot continuously deform to be in {0} classification. And (10.3.15) or
(10.3.16) states that the point defects on RP 3 belongs to the non-trivial class {1}, emphasising
nonzero torsion, differs from {0}. Both expressions of micropolar continua with nonzero torsion
of (10.3.15) and Skyrmions with Q = 1 (10.3.14) share the identical geometrical setting of
the vanishing Riemann curvature tensor via the identical compatibility condition of the form
(10.3.8).

We are ready to find the field configuration that occupies the RP 3 plane. This system is, as
already suggested from the relation (10.3.5) and the isomorphism (10.2.9), indeed the micropolar
continua. This can be shown by the antipodals on S3 in analogy with the antipodals on S2 are
for the nematic liquid crystals. Hence this can be viewed that the micropolar continua are the
general case of the nematic liquid crystals.

10.4 Micropolar in the projective space
We are now ready to describe the field on the RP 3 plane, the antipodals of S3 in connection
with the micropolar continua. Let us begin with the fibration (8.1.10c) when n = 3,

S0 ↪→ S2 → RP 2 .

This gives rise to the nematic liquid crystals by identifying the antipodals nN = −nN on S2, as
we saw in Section 8.3. The natural extension of this consideration would be the fibration,

S0 ↪→ S3 → RP 3 . (10.4.1)

This is the central subject of Section 10.2 and in Section 10.3, when we considered various
asymptotic conditions. We now know the suitable setting for S3 is the spinor complex doublet
z of (10.2.14) with a natural invariant N is embedded in it. There is one remaining problem in
understanding the fibration (10.4.1). This is to interpret the geometrical meaning of identifying
the antipodals on S3. In case of S2, it comes to the realisation quite intuitively by the molecular
structure of nematic liquid crystals with the relatively simple property of the director field. We
would like to apply similar consideration but with some additional features.

As before, identifying the antipodals will be the statement similar to that of nematic liquid
crystals, but we put the antipodals to be two identifiable normalised axial field n3 of (9.2.25)

n3 = (sin θ cosNϕ, sin θ sinNϕ, cos θ) , n3 · n3 = 1 (10.4.2)

where the antipodals implies n3 = −n3 along with the outward-directed rays on S3. This
reduces to the hedgehog field nh if we put N = 1. Now, we must have an additional degree of
freedom to describe the antipodals on S3 under the normalisation constraint, and the natural
candidate for this is the position-dependent angular variable Θ.

This is precisely the angular variable Θ we considered in (10.3.11) describing the phase
rotation of the spinor along the great circle S2 on S3, as shown in Fig. 10.2. We can assign
the angular variable Θ the rotational angle about the axis taken by the axial field n3 on the

115



surface of S3. As shown in Fig. 10.3, suppose a spinor on a point of S3 undergoes an angular
transition along the great circle S2 with the orientation of the spin by following, for example,
left-hand thumb aligned with the axis of rotation initially. Then, through a 2π rotation it will
acquire an additional minus sign in the assigned state and we can take these two points on S3

as the pair of antipodals. We can apply an identical analysis on any set of antipodals on the
sphere, separated by a 2π rotation along S2.

Figure 10.3: Suppose we have started from two identical spin orientations with the same axis. As one
spinor configuration undergoes a smooth transition along the great circle, separating from the initial
configuration which is kept in the initial state, the spin configuration changes gradually. When the phase
reaches its 2π rotation, the spin configuration becomes the complete opposite.

Now, we know that the topological identification of antipodals by means of the fibration and
the quotient space S3/{antipodals} ∼= RP 3. On the other hand, the geometrical identification
of antipodals is equivalent to the statement that the rotation of 2π− Θ about n3 is identifiable
to the rotation Θ about −n3 as indicated in Fig. 10.3. This is precise the statement of the
rotation R ∈ SO(3). Therefore, the isomorphism is clearly

RP 3 ∼= SO(3) . (10.4.3)

Consequently, we have
S3/{antipodals} ∼= RP 3 ∼= SO(3) . (10.4.4)

This justifies the identification of antipodals on S3 both geometrical and topological point of
views, and the homotopy classifications we discussed earlier in (7.2.2) and (10.2.12),

π1(SO(3)) ∼= π1(RP 3) ∼= Z2 . (10.4.5)

Moreover, in the case of nematic liquid crystals, the angular variable (i.e. the phase tran-
sition) has been alway Θ = π to be restricted on S2 ⊂ S3, see Fig. 10.3. In turn, with the
identified antipodals on S2, we know that this space will be projected to the RP 2 plane con-
stituting the space for the nematic liquid crystals, as we saw in (8.2.1). Hence there has been
no need for the angular variable consideration but the identification nN = −nN suffices as the
description for the antipodals on S2. For a set of points on S3 along a constant latitude, the
angular variable must be identical with possibly different set of axial fields n3. In particular, the
great circle passes through the equator of S3 is an equator S2 with Θ = π. Therefore, if a state
of configuration for the micropolar continua undergoes the continuous 2π rotational transition
on S3 from the north pole along the great circle, the nematic liquid crystals constitute the set
of points on the equator on S3 during this particular transition, when the micropolar continua
are projected on RP 3 plane. See Fig.10.2.
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Further, if we consider the element R ∈ SO(3) as the microrotation, then we can conclude
the geometrical identification of antipodals are micropolar continua that live on RP 3 governed
by the microrotational deformations of an angular function Θ about the position-dependent
normalised axis n3 with the nematic liquid crystals are contained in its submanifold.

We can envision the space of axial fields on the sphere, as the space filled with tiny grains ro-
tating independently along with rotational angles about axes determined by parameters {Θ,n3}.
Once we identify the antipodals on S3, these grains are projected to RP 3 constituting the mi-
cropolar continua satisfying the boundary conditions we discussed in (10.2.19). Moreover, as we
noted in Section 8.4 and Section 7.2, we can regard the microrotation Rij as the order parameter
in evaluating the energy functionals as we did in Section 2,

δVtotal
δF

and δVtotal

δR
(10.4.6)

where
V = Velastic(F,R) + Vcurvature(R) + Vinteraction(F,R) + Vcoupling(F,R) .

Since the microrotation R can be represented by an angular variable Θ and an axis vector n3,
we can take the Qij , the form of isotensor Higgs field that appears in the Polyakov field (9.4.7),
as the order parameter of the micropolar continua but now equipped with the integer N ,

Qij =
(
n3in3j − 1

3δij

)
Θ , i, j = 1, 2, 3 (10.4.7)

where n3i = n3 is (9.2.25), the normalised rotational axis with the integer N in three dimensions.
This leads us to the following consequences.

1. The equation of motion of (9.4.1) in (3 + 1) dimension is of the form

∂µ∂
µQ = ∂2Q

∂t2
− ∇2Q = −∂U

∂Q
(10.4.8)

where U is the potential of the given system and ∇2 is the Laplacian operator. There exists
an isomorphism of the order parameters consideration between Qij of (10.4.7) and the
microrotation Rij of (10.1.1). Then, after applying the normalisation condition n3 ·n3 = 1
to remove factors of n3i in Qij , the equation of motion (10.4.8) in (1 + 1) dimensions is
the variation of Vtotal with respect to the microrotation in (10.4.6) with the kinetic term,
which is just our dynamic equation of motion for the microrotational angle Θ in (1 + 1)
dimensions given by (2.3.7)

∂ttΘ − ∂ẑẑΘ + ∂Ũ

∂Q
= 0 , (10.4.9)

where Ũ is a modified potential accordingly and ẑ is the rescaled axis. This observa-
tion reinforces the statement that our formulation in deriving the equations of motion is
equivalent to the approach from the constitutive equations with order parameter given by
(8.4.42) in the free energy formalism. Moreover, the form of the order parameter (10.4.7)
in RP 3 for the microcontinuum is the generalised form of the order parameter (8.4.7) for
the nematic liquid crystals, both are in traceless and symmetric forms.

2. The 2π rotation will correspond to the maximum energy required in transition of the
phase on S3. On the projective plane RP 3, the maximum energy required will correspond
to bring a field configuration from infinity |x| = ∞ to the origin x = 0. This is the
energy difference experienced by a point of continua when it undergoes transition from
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a total deformation-free state to its peak deformed configuration, with its maximum mi-
crorotational angle before it return to its original configuration, provided the deformation
occurs in the elastic regime. Hence, when we consider the static solution of our equation
of motion (2.3.17) by putting t = 0 and the phase shift δ = 0, the maximum amplitude of
the solution is acquired at the origin, see Fig. 2.2.

3. Depending on the form of potential Ũ , the equation of motion (10.4.9) can be either the
simple ϕ4 theory, the Klein-Gordon type, the since-Gordon type or more exotic form of
equations we saw in solving the chiral case in Chapter 3. Notably these all satisfy the finite
energy requirement in the framework of the elasticity leading to the degenerate minima
corresponding to the distinct set of topological sectors

Θ(±∞, t) −→ Θ0 ,

for some fixed vacuum solution Θ0 which minimises the energy in the given Hamiltonian
H. Of course, we can set the trivial angular variable vacuum solution by Θ0 = 0, the
configuration on the north pole of S3, to be projected to the configuration for |x| → ∞
on RP 3.

4. Since SU(2) is a double cover of SO(3), we can apply the Lifting Properties of the fun-
damental group to classify the various forms of defects such as monopole, vortex, and
domain walls, according to (8.1.12). For example

πn(Sn) ∼= πn(RPn) ∼= Z, n ≥ 2 , (10.4.10)

relating various possible defects in micropolar continua and spinor systems. One of such
example is the explicit relation between Skyrmions and Nye’s tensor (10.3.5) to describe
the vanishing curvature but nonzero torsion on the manifold. In words, Skyrme’s field Ba

µ

describes the gradient of the pion field through the complex doublet z on S3 and Nye’s
tensor describes the defect of the director field ξa of the micropolar continua on RP 3. Two
deformational descriptions on the different physical systems share the identical homotopic
classification (10.4.10), and more explicitly, the analogy can be seen in the integrations
such as (10.3.14) and (10.3.16).

We summarise the results we obtained with corresponding homotopy classifications which
would be useful to identify the defects in various situations. In particular, once the antipodal
points are identified on the sphere Sn, we can write the corresponding projective space. See
Table 10.1.

Models Sphere Projection Homotopy
S1 RP 1 π1(RP 1) ∼= Z

π2(RP 1) ∼= π3(RP 1) ∼= {0}
Nematic liquid crystals S2 RP 2 π1(RP 2) ∼= Z2

π2(RP 2) ∼= π3(RP 2) ∼= Z
Micropolar continua S3 RP 3 π1(RP 3) ∼= Z2

π2(RP 3) ∼= {0}
π3(RP 3) ∼= Z

Table 10.1:

We would like to conclude this Section with one additional remark on the antipodals on S3.
If we are allowed to identify the antipodals, this corresponds to match two opposite rotations,
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or to glue together as shown in Fig. 10.3. But now we would like to see this topological
identification on the antipodals from a different point of view instead of recognising them as the
elements of RP 3. This is indeed identical to the constructing of a Klein bottle in S3 ⊂ R4. It is
widely know that the Klein bottle K3 can be constructed in subspace embedded in R4 without
self-intersection unlike the usual Klein bottle we are familiar with, and K3 is homeomorphic to
the connected sum of two projective planes RP 2 [126,174].

Figure 10.4: A fundamental polygon for the Klein bottle can be constructed in four dimensions without
self-intersection. Then it can be divided into two (chiral) Möbius bands.

We note that the construction of the Klein bottle K3 in R4 is very similar to identifying the
antipodals on S3 for the RP 3. But this is not by coincidence as we show briefly here. Using
the fact that RP 2 is a union of a disk D2 and a Möbius band M2 of (8.1.5), and similarly, the
projective space RP 3 is a union of S2 and D3 using (8.1.3)

RP 3 ∼= D3 ∪ ∂D3 ∼= D3 ∪ S2 . (10.4.11)

However, the Klein bottle is a union of two Möbius bands as shown in Fig. 10.4. Therefore,
identifying the antipodals on the sphere S2, the relation (10.4.11) becomes the correspondence
between the projective space RP 3 and the Klein bottle K3,

RP 3 −→
(
M2 ∪D2

)
∪
(
M2 ∪D2

)
∼= RP 2 ∗ RP 2 ∼= K3 (10.4.12)

in which ∗ is the connected sum along the common disk D2.
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Chapter 11

Conclusions and outlooks

Soliton solutions are obtained in Part I from the variational principle after collecting the most
general energy functionals with the set of appropriate coupling moduli. These soliton solutions
are descriptions for the coupled system of microscopic and macroscopic deformations both under
the achiral and chiral energy considerations. As the chiral solution, we specified the requirements
for chiral energy functionals in the higher dimensions by investigating the inversion properties
of the individual characteristic deformational measures, such as rotations, translations and
deformation gradient tensors. We found that the dislocation density tensor K = RT CurlR
is one of the suitable measures for this purpose among other possible combinations of chiral-
inducible energy functionals.

In Part II, we found that the dislocation density tensor played the central role along with the
contortion tensor in the manifold where both curvature and torsion are permissible. Within the
scope of vanishing curvature, we derived and reinterpreted the compatibility conditions both
for vanishing torsion and non-vanishing torsion. The general expression for the Einstein tensor
in the Riemann-Cartan manifold gave us a unique opportunity to understand the universal
geometrical process to derive various forms of the compatibility conditions. These are widely
applicable in micromorphic continua and the Skyrme model we studied in Part III within the
framework of the Einstein-Cartan theory.

We also observed there are distinct classifications in the field configurations under the con-
dition of the vanishing curvature by the simple homotopic consideration to obtain two distinct
classes such as {0} and {1}. The former defines the diffeomorphic deformational class and the
latter is for the non-trivial torsion space which cannot be described by the metric tensor.

In Part III, we considered the criteria for the systems with soliton solutions under the
finite energy requirement in connection with the elastic asymptotic conditions. This led us
to understand the topological and geometrical origins of the conserved current in the general
dimensions in such a way that the integer N , originated from the vortex field in two dimensions,
can be embedded to the field configuration in the higher dimensions. This further yields the
total charge, in the form of the integration of the current, is again the topologically invariant
as integers N in agreement with the finite energy requirement. We found that these conserved
topological invariants correspond to the homotopic classification, and conserved charge in the
various dimensions and physical models such as the ϕ4 theory, the Klein-Gordon system, and
the sine-Gordon system. These are the topologically stable defects within the given sector
determined by the associated charge Q = N .

In Part I, we made use of a number of ansatz simplifying the situation to obtain the solutions
both analytically and numerically. The ansatz included the same velocities in the microscopic
and macroscopic deformational propagations and a fixed microrotational axis. Noting that the
general micropolar continua can be occupied by the field of position-dependent axial vectors for

121



the microrotations in inhomogeneous settings, we derived the conserved currents associated to
the topological invariants which can be written in terms of normalised axial field configurations
in various dimensions. In particular, to serve the role in the representations of the rotational
matrix Rij equipped with the non-trivial vortex field embedded in it.

After establishing a firm relation between the nematic liquid crystals on S2 and the projec-
tive plane RP 2, by identifying the antipodals in its topological and geometrical implications,
we briefly considered the role of order parameter in homotopic consideration to re-derive the
topological invariants N in the theory of defects such as monopole, vortex and domain wall by
tracing the possible defect that can occur in the given order parameter space.

The free energy formulation in terms of order parameter in the classical nematic liquid
crystals and in the theory of the micropolar continuum led us to generalise the order parameter
of the Higgs isovector in the form of the order parameter that we can use in the micropolar
theory. This is consistently applicable to the previously obtained soliton solutions. These
are followed by the investigation on the viability of the hedgehog field configuration in three
dimensions both for our micropolar model and the Skyrme model supported by the relation
between the defect measures of pion fields and Nye’s tensor, of which can be written in the
identical form of the compatibility condition we obtained in Part II.

The geometrical considerations on S2 confirms that the nematic liquid crystals can be re-
garded to be defined on the RP 2 plane with the help of the rather simple assignment of the
directors to its molecular nature, by identifying the antipodals on the sphere. As the extension
of the identification between S2 and RP 2, we chose the model on S3 as the Skyrmions based
on the fact that the spin-isospin symmetry of two independently acting SO(3) constitutes the
transformation of SU(2). And this consequently yields the realisation that the projective plane
RP 3 is for the micropolar continua when we identify the antipodals on S3. This comes nat-
urally through the Hopf fibration between SU(2) and SO(3). Along with the Hopf fibration,
this correspondence links the pion fields as represented by the complex doublet on C2 and n3
as the axial fields for the microrotations in the projective space. This again enters into the
microrotational matrix Rij as the components of n4 field, with the topological invariant N and
an additional angular variable, to identify that the antipodals on S3 is the microrotations for
the micropolar continua.

We obtained the soliton solutions in Part I and Part II without the specifications of ther-
modynamic effects, dissipative factors, chemical potentials, electromagnetic interferences or the
gravitational attraction to the media. Hence in reality, considering all possible such effects, the
soliton solution may lose its characteristic feature of propagating without changing its wave
form, not to mention the potential interference from each other when one considers the multi-
soliton systems. But if we consider the deformational propagation in a specific physical system
such as the continuum consideration in vacuum or a perfect fluid in a low temperature, we might
hope to obtain the relevant results we obtained here. For that purpose, we believe the tech-
niques developed in this work to be applicable to certain phases of liquid superfluid helium as
good candidates which also possess the spin-orbit symmetry that can be separately represented
by SO(3) both in isotropic and anisotropic settings.
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Appendix A

Variations of energy functionals

We would like to vary each energy functional using some of identities listed in Notation and
Appendix. First, for Velastic, we can expand the expression using the definition of ∥X∥2 =
⟨X,X⟩ = tr(XXT ) and symM = 1/2(M +MT ) as

Velastic(F,R) = µ
∥∥∥sym(RT

F − 1)
∥∥∥2

+ λ

2
[
tr
(
sym(RT

F − 1)
)]2

=
(

3µ+ 9
2λ
)

+ 1
2µtr

(
R

T
FR

T
F
)

+ 1
2µtr(FF T ) − (2µ+ 3λ) tr(RT

F ) + λ

2
[
tr(RT

F )
]2

.

(A.0.1)

Variation of this is

δVelastic(F,R) =
[
µ(RF TR+ F ) − (2µ+ 3λ)R+ λtr(RT

F )R
]

: δF

+
[
µFR

T
F − (2µ+ 3λ)F + λtr(RT

F )F
]

: δR.
(A.0.2)

If we want to study the dynamical problem, we must take the kinetic term into account in the
elastic energy functional

Velastic,kinetic = 1
2ρ∥φ̇∥2 , (A.0.3)

where ρ is the constant density and φ is the deformation vector. If we vary this term we will
obtain

δVelastic,kinetic = −ρφ̈ δφ . (A.0.4)

But, since ∇φ = 1 + ∇u implies δφ = δu and φ̈ = ü, the variation of the elastic kinetic term
can be rewritten as δVelastic,kinetic = −ρü δu, and the variation of dynamical expression for the
elastic energy functional becomes

δVelastic(F,R) =
[
µ(RF TR+ F ) − (2µ+ 3λ)R+ λtr(RT

F )R
]

: δF

+
[
µFR

T
F − (2µ+ 3λ)F + λtr(RT

F )F
]

: δR+ ρü δu .
(A.0.5)

Similarly, for the curvature functional, we can expand it as

Vcurvature(R) = (κ1 − κ2)
2 tr

[
R

T (CurlR)RT (CurlR)
]

+ (κ1 + κ2)
2 tr

[
(CurlR)T (CurlR)

]
−
(κ1

3 − κ3
)(

tr
[
R

T (CurlR)
])2

.

(A.0.6)

123



This is a functional dependent only on R, but the actual variation will involve rather complicated
quantities such as δCurlR multiplied by a tensor. To overcome this problem, we introduce the
following identity. Let A(R) and B(R) be two matrix valued functions depending on the rotation
R. Then, by a direct calculation, one can show that an identity for any rank-two tensors A and
B,

tr(A)B : δ(CurlR) = −
[
B
(
grad tr(A)

)⋆] : δR+ tr(A)CurlB : δR (A.0.7)

where (
grad tr(A)

)⋆
ik

= ϵijk∂jtr(A) . (A.0.8)

The identity (A.0.7) can be shown if one uses the convention

CurlB = ϵjrsBis,rei ⊗ ej = −B,i × ei .

In particular, if we put A = 1 then (A.0.7) reduces to

B : δ(CurlR) = CurlB : δR . (A.0.9)

And this will play an important role in simplifying the calculation of variation of the energy
functionals significantly. For example, the first variational term in (A.0.6) would be

δ
(
tr
[
R

T (CurlR)RT (CurlR)
])

= 2
[
R(CurlR)TR

]
: δ(CurlR) + 2(CurlR)RT (CurlR) : δR

= 2
(
Curl

[
R(CurlR)TR

]
+ (CurlR)RT (CurlR)

)
: δR .

(A.0.10)

In this way, we find the variation of the curvature term

δVcurvature(R) =
[
(κ1−κ2)

(
(CurlR)RT (Curl (R))+Curl

[
R(CurlR)TR

])
+(κ1+κ2)Curl

[
CurlR

]
−
(
κ1
3 − κ3

)(
4tr(RT CurlR)Curl (R) − 2R

(
grad

(
tr[RT CurlR]

))⋆]
: δR . (A.0.11)

Again, for the dynamical case, we need to include the kinetic term defined as

Vcurvature,kinetic = ρrot∥Ṙ∥2 = ρrottr(Ṙ Ṙ
T ) (A.0.12)

with variational form given by δVcurvature,kinetic = −2ρrotR̈ : δR.
Therefore, the variation of dynamical expression for the curvature energy functional can be
written as

δVcurvature(R) =
[
(κ1−κ2)

(
(CurlR)RT (Curl (R))+Curl

[
R(CurlR)TR

])
+(κ1+κ2)Curl

[
CurlR

]
−
(
κ1
3 − κ3

)(
4tr(RT CurlR)Curl (R) − 2R

(
grad

(
tr[RT CurlR]

))⋆
+ 2ρrotR̈

]
: δR . (A.0.13)

For the interaction energy functional, we expand terms dev sym(RT CurlR) and dev sym(RT
F−

1) to write

Vinteraction =
(
χ1 − χ3

3

)
tr(RT CurlR)tr(RT

F )

+ χ3
2
(
tr
[
(CurlR)TF

]
+ tr

[
R

T (CurlR)RT
F
])

.

(A.0.14)
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The variation of this involves the quantity δCurlR as in the case of Vcurvature, so we use the
identity (A.0.9) to obtain

δVinteraction(F,R) =
{(
χ1 − χ3

3
)(

2tr(RT
F )CurlR+ tr(RT CurlR)F −R

[
grad

(
tr[RT

F ]
)]⋆)

+ χ3
2
(
CurlF + (CurlR)RT

F + FR
T (CurlR) + Curl (RF TR)

)}
: δR

+
{
χ1tr(RT CurlR)R+ χ3

2
(
CurlR+R(CurlR)TR

)
− χ3

3 tr(RT CurlR)R
}

: δF . (A.0.15)

We write the coupling energy functional as

Vcoupling(F,R) = µc

∥∥∥RT polar(F ) − 1
∥∥∥2

= 2µc(3 − tr[RT polar(F )]) . (A.0.16)

We note that this depends on R and R = polar(F ), hence depends on R and F . Therefore, the
variation of coupling energy functional is of the form

δVcoupling(F,R) = −2µcR : δR− 2µc

[
∂

∂F

(
tr[RT

R]
)]

: δF . (A.0.17)

The term in the brackets in the second term can be written as
∂

∂F

(
tr[RT

R]
)

=
( dR

dFml

)
: ∂

∂R

[
tr(RT

R)
]

=
( dR

dFml

)
: R = 1

det(Y )
[
RY (RTR−R

T
R)Y

]
(A.0.18)

where Y = tr(U)1−U . In the first step, we used the chain rule, and in the second and last steps
we used the identities given in (A.0.21). Then the variation of the coupling energy becomes

δVcoupling(F,R) = −2µcR : δR− 2µc

det(Y )
[
RY (RTR−R

T
R)Y

]
: δF . (A.0.19)

Lastly, we vary the chiral energy functional Vχ = χtr(K3) as follows

δVχ = 3χ(K2)T : δK = 3χ
[
(K2)T

ijδ(R
T CurlR)ij

]
= 3χ

[
(K2)T

ij

(
δRmi(CurlR)mj +Rmi(δCurlR)mj

)]
= 3χ

[
(CurlR)mj(K2)T

ijδRmi +Rmi(K
2)T

ij(δCurlR)mj

]
= 3χ

[
(CurlR)(K2) : δR+R(K2)T : δCurlR

]
= 3χ

[
(CurlR)(K2) : δR+ Curl [R(K2)T ] : δR

]
= 3χ

[
(CurlR)(K2) + Curl [R(K2)T ]

]
: δR .

(A.0.20)
We list some useful matrix identities below.

∂

∂X
tr(F (X)) = [f(X)]T ,

∂

∂X
tr(X) = I ,

∂

∂X
tr(XA) = AT ,

∂

∂X
tr(AXB) = ATBT ,

d

dX
(tr(XXT )) = 2X ,

d

dX
(tr(XA)) = AT ,

(A.0.21)

and
d

dX
(tr(AXBX)) = ATXTBT +BTXTAT ,

dg(R(F ))
Fml

= tr
[
dR

dFml

(
dg(R)
dR

)T
]

= dR

dFml
:
(
dg(R)
dR

)
,

(A.0.22)

where f stands for the scalar derivative of F .
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Appendix B

List of homotopy groups

A list of useful homotopy groups and some of its implication, and justification followed by some
important theorems.

π1 π2 π3 π4 π5 π6
SO(2) Z 0 0 0 0 0
SO(3) Z2 0 Z Z2 Z2 Z12
SO(4) Z2 0 Z + Z Z2 + Z2 Z2 + Z2 Z12 + Z12
SO(5) Z2 0 Z Z2 Z2 0
SO(6) Z2 0 Z 0 Z 0
SO(n) n > 6 Z2 0 Z 0 0 0
U(1) Z 0 0 0 0 0
SU(2) 0 0 Z Z2 Z2 Z12
SU(3) 0 0 Z 0 Z Z6
SU(n) n > 3 0 0 Z 0 Z 0
S1 Z 0 0 0 0 0
S2 0 Z Z Z2 Z2 Z12
S3 0 0 Z Z2 Z2 Z12
S4 0 0 0 Z Z2 Z2
RP 1 Z 0 0 0 0 0
RP 2 Z2 Z Z Z2 Z2 Z12
RP 3 Z2 0 Z Z2 Z2 Z12
RP 4 Z2 0 0 Z Z2 Z2
CP 1 0 Z Z Z2 Z2 Z12
CP 2 0 Z 0 0 Z Z2
CP 3 0 Z 0 0 0 0
CP 4 0 Z 0 0 0 0
Sp(1) 0 0 Z Z2 Z2 Z12
Sp(2) 0 0 Z Z2 Z2 0
Sp(3) 0 0 Z Z2 Z2 0
Sp(4) 0 0 Z Z2 Z2 0
G2 0 0 Z 0 0 Z3
F4 0 0 Z 0 0 0
E6 0 0 Z 0 0 0
E7 0 0 Z 0 0 0
E8 0 0 Z 0 0 0
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1. Since Spin(4) = SU(2) × SU(2) is the universal covering group of SO(4), we have

πn(SO(4)) ∼= πn(SU(2)) ⊕ πn(SU(2)), n ≥ 2 .

2. There exists a map J called the J-homomorphism, introduced in [175]

J : πk(SO(n)) −→ πk+n(Sn) .

It is known that the J-homomorphism is an isomorphism if k = 1, and we have

π1(SO(n)) ∼= πn+1(Sn).

For example, in [121] it is observed that

π1(SO(2)) ∼= π3(S2) ∼= Z ,

π1(SO(3)) ∼= π4(S3) ∼= π4(SU(2)) ∼= π4(SO(3)) ∼= Z2 .

3. The Bott periodicity theorem states that

πk(U(n)) ∼= πk(SU(n)) ∼=
{

0 if k is even
Z if k is odd

for n ≥ (k + 1)/2

πk(O(n)) ∼= πk(SO(n)) ∼=


0 if k = 2, 3, 5, 6 (mod 8)
Z2 if k = 0, 1 (mod 8)
Z if k = 3, 7 (mod 8)

for n ≥ k + 2

πk(Sp(n)) ∼=


0 if k = 0, 1, 2, 6 (mod 8)
Z2 if k = 4, 5 (mod 8)
Z if k = 3, 7 (mod 8)

for n ≥ k − 1
4 .

4. For the real projective space, we have RPn ∼= Sn/Z2 and

πn(RPm) ∼=


0 n = 0
Z n = 1,m = 1
Z2 n = 1,m ≥ 2
πn(Sm) n ≥ 2 .

5. For the complex projective space, we have CPn ∼= S2n+1/S1 and

πn(CPm) ∼=


0 n = 1
Z n = 2
πn(S2m+1) n ≥ 3 .

6. For tori, we have Tn = S1 × · · · × S1︸ ︷︷ ︸
n

πn(Tm) ∼=


Z ⊕ · · · ⊕ Z︸ ︷︷ ︸

m

n = 1

0 n ≥ 2 .
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