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Abstract 

 
Background: Oesophageal adenocarcinoma (OAC) carries a grave prognosis. 

Existing early detection strategies are flawed predominately because of reliance 

upon symptoms known to occur late when the disease is often incurable. 

Detection of individuals with Barrett’s Oesophagus (BO), a known pre-malignant 

condition, is problematic and the vast majority will not develop OAC.  

 

Aim: To explore novel methods of identifying patients with or at risk of OAC 

through machine learning (ML) techniques and biomarker identification. 

 

Materials and Methods: Initial work utilised novel ML on two existing patient 

symptom and risk factor questionnaire datasets. Additionally, targeted 

expression analysis was performed to establish whether transcriptomic 

biomarkers were present in blood and saliva of affected patients. Optimal RNA 

extraction techniques and saliva collection strategies for sufficient quality and 

quantity RNA were determined. Whole mRNA sequencing was performed on 

patient salivary RNA to identify biomarkers for future assessment. Epigenetic 

analysis was performed on salivary DNA to identify biomarkers. ML techniques 

analysed these data to derive a risk prediction tool. 

 

Results: ML techniques on questionnaire data produced satisfactory sensitivity 

(90%), but accuracy not appropriate for population screening (AUC 0.77). Blood 

and saliva extraction and collection methods were established and samples 

found to contain biomarkers. Targeted transcriptomic expression analysis 

demonstrated 12 / 22 tested genes were significantly aberrantly expressed in 

patients. 5 genes, combined with 6 questionnaire data-points, identified those 

with or at risk of OAC 93% sensitivity, AUC 0.88. Whole mRNA sequencing 

identified a further 134 genes implicated in OAC pathogenesis requiring future 

testing. Epigenetic analysis found 25 differentially methylated regions, when 

combined, identified those with or at risk of OAC to 99.9% accuracy. 
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Conclusion: Utilisation of salivary biomarkers is a potentially effective means to 

identify individuals with or at risk of OAC. Further work exploring transcriptomic 

and epigenetic data established in this thesis should be performed.   
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Impact Statement 

 

There has been little improvement in the grave prognosis of oesophageal 

cancer despite the advances in endoscopy, surgery and oncology. Key to this 

are the issues surrounding the difficulty in detecting this cancer in its early stage 

due to the late presentation of symptoms. It is therefore of paramount 

importance to develop a means to identify individuals with or at-risk of 

developing oesophageal cancer without a reliance on symptoms.  

 

The work in this thesis explores using novel machine learning techniques to 

analyse symptom and risk factor data derived from patient questionnaires and 

also for biomarker analysis obtained from salivary RNA and DNA to identify 

these individuals. This work has the potential to significantly alter the grave 

prognosis of oesophageal cancer through early detection. It could lead to a 

change in how we screen for this and potentially other diseases and result in 

less invasive tests such as endoscopy being performed. This would mean less 

unnecessary investigations being performed and through earlier stage of 

detection fewer operations and fewer patients requiring oncological intervention 

creating a significant reduction in healthcare resource usage. Should we detect 

patients at an earlier stage then their treatment could consist of endoscopic 

therapy which would lead to improved quality of life when compared to those 

who undergo surgery. It is not implausible that biomarkers for other cancers or 

diseases could be found in patient saliva and thus one could potentially 

envisage this simple test being used to screen the population for a vast range of 

disease. At present the predictive tool created in this thesis for the early 

detection of oesophageal cancer has been patented by University College 

London (patent number: WO2017137427, 

https://patents.google.com/patent/WO2017137427A1/en) and could potentially 

be developed commercially. The work has been presented at national and 

international conferences. It has led to further funding through research grants 

from the Rosetrees Trust and CORE Digestive Disorders Foundation and the 

creation of the SPIT study (Saliva to Predict Disease Risk) which is currently 

recruiting patients from 11 sites around the UK. 
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Chapter 1 - Oesophageal cancer and the existing early detection 
strategies. 
 

1.1 The epidemiology and prognosis of oesophageal cancer 

 
The incidence of oesophageal adenocarcinoma (OAC) has risen significantly 

across all Western populations since the 1970’s. This rising incidence has been 

so significant that it has been reported in literature and media outlets as a ‘quiet 

epidemic’[4, 5].In the UK there has been a 43% rise in oesophageal cancer 

since 1970 [5].There has been an interesting shift in the epidemiology of 

oesophageal cancer. Squamous cell carcinoma of the oesophagus (SCC) 

remains the most common histological type of oesophageal cancer worldwide, 

accounting for 87% of cases, but in Western populations OAC is now the 

predominant subtype [6]. Epidemiological studies suggest that this steep rise in 

OAC incidence appears to have plateaued although there is conflicting literature 

suggesting that although the rise has slowed, from 8% per year to 2% per year, 

there remains a statistically significant increase [5-8].  

 

 
Figure 1: UK oesophageal cancer incidence rates 1993 – 2015 [5] 

 

 

One must remember that although OAC incidence is rising, it remains a 

relatively uncommon cancer. Overall, oesophageal cancer is the 13th most 

common cancer in the UK[5]. Importantly, however, despite its relative 

uncommon occurrence, it is the 6th most common cause of cancer death 

[5].This is largely due to the combination of the bleak prognosis of late stage 
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disease and the stage at which oesophageal cancer is diagnosed. Schlansky et 

al demonstrated that upon diagnosis 89% of oesophageal tumours were either 

at T3 or T4 stage [9]. Although it has been improving over the last 20 years, the 

overall 5-year survival remains only 16.5% [5].Thus the vast majority who 

develop oesophageal cancer will die of the disease. Not only are the costs of 

oesophageal cancer great in terms of lives lost but also in terms of cost of NHS 

resource. A report published by Cancer Research UK in 2014 demonstrated the 

significant costs associated with treatment for late stage cancers in comparison 

to that of early stage therapy and the significant savings that could be made 

should cancer be diagnosed at an earlier stage [10]. 

 

1.2 Barrett’s oesophagus and oesophageal adenocarcinoma 

 
Barrett’s oesophagus (BO) is defined, according to the British Society of 

Gastroenterology (BSG), as; “An oesophagus in which any portion of the normal 

distal squamous epithelial lining has been replaced by metaplastic columnar 

epithelium, which is clearly visible endoscopically (≥1 cm) above the gastro-

oesophageal junction and confirmed histopathologically from oesophageal 

biopsies”. A British surgeon in 1950 named Norman Barrett described the 

columnar-lined oesophagus that now bears his name although the lesion had 

been described 50 years earlier by a pathologist named Tileston who noted the 

similarities between the mucosa of the stomach and that of the diseased 

oesophagus. Barrett maintained for many years that the condition was 

congenital, due to a short squamous oesophagus, although he did recognise a 

link between its presence and the presence of a hiatal hernia and severe 

oesophagitis [11]. It was not until the mid-1970’s that it became widely accepted 

that BO was associated with severe gastro-oesophageal reflux disease (GORD) 

[12, 13].The importance of BO is now widely recognised. BO is the only known 

precursor lesion to OAC and it is thought that the majority of all OAC arise from 

BO [14, 15]. 

 

The prevalence of BO within the population is difficult to determine as we do not 

presently offer universal endoscopic screening. There are two European studies 

that have attempted to ascertain the prevalence of BO by offering an 
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endoscopy to an unselected adult population. These studies performed an 

endoscopic examination on over 1000 patients each and found the prevalence 

to be 1.3% and 1.6% [16]. However, there is concern that both these studies 

have a selection bias due to the low participation rate. In other work attempting 

to ascertain the prevalence of BO the estimates have ranged from 0.4% to 25% 

[17]. Given the issues in knowing the true prevalence of BO, it is difficult 

therefore to accurately state what risk BO incurs to an individual. Although we 

state that the majority of OAC arises in BO, the vast majority of OAC occurs in 

individuals with no previous diagnosis of BO [18]. Irrespective of the true 

prevalence and risk, it is fair to say that although BO may be present in the 

majority of OAC cases, the majority of BO does not progress to OAC. At 

present we determine an individual’s risk of their BO progressing to OAC based 

on the histopathological findings of either metaplasia or dysplasia.  

 

1.2.1 Metaplasia-Dysplasia-Carcinoma Sequence 

OAC arising from BO is thought to occur in a stepwise progression, recognised 

histologically, named the metaplasia-dysplasia-carcinoma sequence [19]. 

Metaplasia originates from the Greek language and translates to a “change in 

form”. This change in form is classically thought to be in response to chronic 

tissue damage resulting in regeneration. In BO the tissue damage is 

predominantly thought to be an association with the consequences of acid-

reflux in GORD[16]. Metaplasia can also occur due to a selective overgrowth of 

the minor cell types originally contained in an organ, through the differentiation 

of stem cells or by a switch occurring in pre-existing differentiated cells [20]. In 

BO the normal squamous epithelial lining of the oesophagus is replaced by a 

mosaic of columnar epithelia with or without goblet cells[21]. A type of 

metaplasia known as intestinal metaplasia has been demonstrated in a 

multitude of studies to be biologically unstable and carry a significant risk of 

progression to OAC [16]. In response to this the American Gastroenterological 

Association (AGA) state that the presence of intestinal metaplasia is required 

for the diagnosis of BO as it is the ‘only type of columnar oesophageal 

epithelium that clearly predisposes to malignancy’[22]. However, this view is 

controversial and is at odds with the BSG with both societies recognising that 

there is a paucity of evidence on the risk associated with other forms of 
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metaplasia [16, 22]. This issue was recently addressed by Lavery et al who 

demonstrated that cardia type metaplasia without goblet cells in BO carried 

malignant potential, a finding which is in keeping with other published work [21, 

23, 24]. Thus, whilst the type of metaplasia associated with OAC in BO remains 

controversial, it is fair to say that the presence of metaplasia is regarded as the 

first step in the progression towards OAC. Patients with metaplastic BO 

(otherwise known as non-dysplastic Barrett’s oesophagus, NDBO) are regarded 

as having an increased risk of OAC and as such undergo lifetime surveillance 

endoscopies in the UK and worldwide (discussed in 1.3.2). However, it is 

important to remember that despite this recognised increased risk the actual 

risk of progression in these individuals remains low. In three large cohort 

studies, a Dutch study with 42,207 patients, a Danish study with 11,028 

patients, and a Northern Irish study with 8522 patients, the annual risk of 

progression ranged from 0.12% to 0.4% [25]. 

 

At present, the only robust, routinely used, clinical marker of progression 

towards OAC is the presence of dysplasia found on histological analysis of 

biopsy sampling of BO. According to the revised Vienna classification, dysplasia 

is divided into two groups, low-grade and high-grade dysplasia, although one 

should note the existence of those determined as indefinite for dysplasia in 

which the morphological features are blurred and the differentiation between 

dysplasia and inflammation is difficult [16, 26]. Despite dysplasia being our most 

robust marker there remain issues with its use, not least the difficulties faced by 

a histopathologist in making the diagnosis. A high level of intra-observer and 

inter-observer variability has been demonstrated in many studies thus 

suggesting that a more robust, consistent method of recognising those who 

have progressed, or are at risk of progressing, is required [26-29]. It is worth 

noting also that BO is a heterogenous disease with a range of progression from 

NDBO to HGD seen on surgical OAC specimens. Therefore, representative 

sampling is key.  

 

Low grade dysplasia (LGD) is characterised by the glandular architecture being 

relatively preserved with the diagnosis made on the basis of cytological atypia. 

One of the key features is the evidence of a loss of “surface maturation” where 

cytological atypia seen in deeper glands moves into the surface epithelium. 
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Other key features include elongated, enlarged and hyperchromatic nuclei, mild 

pleomorphism, mucin depletion, mild loss of polarity, nuclear crowding, and 

stratification of nuclei up to three-quarters of the height of the cell, but not 

touching the luminal surface [16, 26].The diagnosis of LGD can be challenging 

for a histopathologist. This was demonstrated by Duits et al who performed a 

large retrospective analysis of patients diagnosed with LGD in which only 27% 

of the cases were confirmed upon consensus review of the biopsies by expert 

histopathologists. Importantly, this study also demonstrated that those with a 

confirmed diagnosis of LGD had an annual progression rate to high-grade 

dysplasia (HGD) or OAC of 9.1%. In those who were down-staged to NDBO or 

indefinite for dysplasia the progression rate fell to 0.6% and 0.9%. This 

demonstrated the increased malignant potential of LGD whereas as previously 

there had been debate over its natural history with progression rates in other 

studies varying from 0.6% to 13.4% thought to be due to the issues of inter-

observer variability [30, 31]. In response to this study and other published work, 

including studies on therapeutic intervention in LGD, the BSG updated their 

guidelines to reflect the established significant risk of progression of LGD and 

recommended those with a confirmed LGD diagnosis (on two occasions) be 

offered therapy (discussed in 1.2.2). 

 

In contrast, whilst the exact rates of progression have been debated, there has 

been little debate over the significant risks of progression of HGD to OAC. In 

HGD there are marked architectural changes alongside further nuclear atypia. 

These changes include a papilliary or villous surface alongside branching, 

complex budding or back to back crowding arrangements [16]. In addition to 

this, intraluminal papillae, bridges, and cribriform patterns are also seen as well 

as atypical mitoses, together with mucin depletion and a loss of nuclear 

polarity[16]. As mentioned previously, the diagnosis of HGD may also be 

problematic, to a lesser extent than with LGD, with the continued observer 

variability, although agreement between pathologists rises to as high as 80% 

[27-29]. There is agreement that the risks of progression of HGD to OAC are 

significant. Those risks range from 16-59% at 5 years according to studies with 

the actual risk thought to be more in the region of 50% as per Buttar et al and 

Reid et al [32-34]. In addition to the risks associated with HGD it is also reported 

that up to 12-75% of those diagnosed with HGD are found to have occult 
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adenocarcinoma in surgical resection specimens [35, 36], although it should be 

noted that these statistics were obtained through analysis of older studies prior 

to the advances in endoscopic imaging and resection techniques. It is 

reasonable to assume that these data would be improved now. As a 

consequence of this risk, it has long been accepted that patients with HGD 

should be offered therapy. In 2010 the UK National Institute of Clinical 

Excellence (NICE) published guidelines approving the use of radiofrequency 

ablation (RFA) and endoscopic mucosal resection (EMR) in treating HGD in BO 

[37].Since 2013 endoscopic therapy for HGD and early non-invasive cancer 

(intramucosal cancer, IMCa) has been recommended by the BSG[16]. This was 

in response to the excellent results from studies using endoscopic resection 

and ablative therapies in BO, not least the US and UK HALO Registries, and 

the significant morbidity and mortality associated with oesophagectomy. The 

2012 UK National Oesophago-Gastric Cancer Audit found that the 

intraoperative mortality for all patients undergoing an oesophagectomy was 2-

4%, although it should be noted that in those having surgical intervention for 

HGD the mortality was less, although still 1%. Additionally, 40% of patients 

faced not insignificant morbidity with the normal quality of life returning only 

after nine months [38]. Although still significant, these surgical statistics are an 

improvement on the 10% mortality patients faced in the 1990’s [39]. As a 

consequence of the associated morbidity and mortality with this operation, there 

was a drive to find a less invasive answer to treating those with high-risk pre-

malignant HGD and early cancers. The promising data associated with 

endoscopic therapies resulted in a change in the treatment algorithm for 

patients with dysplastic BO and intra-mucosal cancer (IMCa) with endoscopic 

resection and ablative techniques becoming first line therapies [16]. 

Additionally, it is generally accepted that in selected patients endoscopic 

therapy can be used for those who have a cancer that has only reached the first 

part of the submucosa (known as Sm1 disease) [40]. In these individuals, who 

have no other adverse pathological features, the risk of lymph node metastases 

is comparable to the 30-day mortality of an oesophagectomy. In those in which 

the lesion extends deeper than SM1, or have other adverse pathological 

features, the risk of lymph-node metastases does rise accordingly and surgery 

is recommended, if appropriate[41-44].  
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1.2.2 Therapeutic interventions in Barrett’s oesophagus 

In 2006 Dunkin et al published work demonstrating complete removal of the 

oesophageal epithelium, without damage to deeper structures, using RFA on 

patients prior to them undergoing an oesophagectomy [45]. This work initiated 

further high-quality trials exploring the use of RFA in the treatment of dysplastic 

BO. The AIM dysplasia trial was the first multi-centre, randomised-control study 

looking at the use of RFA for BO versus a sham procedure. In this study, at 12 

months, 90% of patients with LGD and 81% of patients with HGD had complete 

eradication of dysplasia compared to 22% and 19% of the patients receiving the 

sham procedure, respectively. Following on from the AIM dysplasia trial, further 

large-scale studies were performed in the US, across Europe, and within the UK 

with the eradication of dysplasia in these studies ranging from 86% to 96% [46-

48]. 

 

There is little doubt that RFA in BO is an effective treatment. However, over 

time our skills to both recognise and treat lesions have also improved, helped 

by evolving endoscopic technologies. As such we have seen a paradigm shift in 

the therapeutic management of dysplastic BO and IMCa. The UK HALO 

Registry was founded by Professor Lovat in 2008 with the intention of collecting 

real-life data (rather than data collected within the confines of a clinical trial) on 

patients undergoing therapy for their BO. The first results were published in 

2013 [48]. In 2014 Haidry et al demonstrated that over time our practice had 

altered to include EMR of any visible lesions prior to RFA. This shift in 

management has resulted in improved outcomes for patients [38]. In those 

treated between 2008-2010 the rates for the clearance of dysplasia were 77% 

compared to 92% in those treated between 2011-2013 [38]. This paper 

identified a significantly higher number of EMRs performed prior to RFA in the 

2011-2013 group, although it may be that some of this improved dysplasia 

clearance can also be attributed to improving skills in delivering RFA. It is now 

accepted practice that resection of all visible lesions should be performed prior 

to RFA to achieve the optimal outcomes. 

 

Importantly, also, endoscopic therapy is safe and durable. The AIM dysplasia 

trial demonstrated that 98% of patients were free of dysplasia at 3 years [49]. 

The UK HALO registry showed that 94% of 270 patients were dysplasia free at 
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19 months and 92% free in a paper looking at 6-year outcomes[38, 48]. Haidry 

et al also demonstrated that the cancer progression rate in the individuals 

receiving endoscopic therapy was 2-4%, which is similar to that demonstrated 

by Orman et al [38, 50]. Additionally, it should be noted that endoscopic therapy 

is a day-case procedure with low complication rates. Large scale studies have 

shown that the rates of perforation are 0.5% in the hands of experienced 

physicians and significant bleeding occurred in 1.2% [51, 52]. Stricturing of the 

oesophagus is problematic in both RFA (6%) and EMR (up to 41-88% in 

circumferential EMR’s) [51, 52]. Importantly, NICE demonstrated in their 2010 

analysis that these therapies are cost-effective [37]. Recently, Filby et al 

analysed endoscopic therapy in HGD and modelled it to be cost-effective and 

Pollit et al suggested that endoscopic therapy was cost-effective in all types of 

dysplasia [53, 54]. 

 

1.2.3 Screening for Barrett’s oesophagus 

Given the risks of BO and the time taken to move from BO to OAC, it has long 

been discussed whether either the whole population or only selected at-risk 

groups within the population should be screened. This remains a controversial 

issue to this day. The first aspect to the debate is trying to ascertain the exact 

prevalence of BO within the population. This is problematic for many reasons, 

not least because at least 25% of individuals with BO are thought to be 

asymptomatic [55]. As stated earlier, two European studies have estimated the 

prevalence of BO to be around 1.3%-1.6% [16]. Secondly, it should be noted 

that the incidence of OAC is too low for it to be classified as a major health 

problem and as such the risk of dying from cancer even in those with BO is also 

low [17]. Thirdly, the cost of screening the whole population would be vast, also 

because those who are found to have BO would then be entered into a 

surveillance programme in which they would continue to have endoscopic 

surveillance incurring more cost. The benefits of these surveillance programmes 

are also dubious (discussed in 1.4). Consequently, the BSG guidelines state 

that it is neither feasible nor justified to screen an unselected adult population 

[16]. These guidelines do state that screening can be considered for certain 

high-risk groups linked to key risk factors associated with BO and OAC, such as 

male sex, age over 50 years, white race, obesity, and GORD. When 
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considering screening these groups, one should also remember the unwanted 

consequences such as patient anxiety, unnecessary follow up examinations 

caused by false positives, and the potential difficulties in obtaining life insurance 

and other types of insurances. Given that endoscopic examination is the only 

current diagnostic technology available to the population at present, screening 

does not appear to be practical or cost-effective.  

 

Research into answering these issues with devices such as transnasal 

endoscopy and the Cytosponge are showing some promise [16]. Cytosponge in 

particular has attracted attention as a minimally invasive cell sampling device 

that is swallowed by the patient and then pulled back through the oesophagus. 

This is further discussed in section 1.4.3. 

 

1.3 Risk factors for oesophageal adenocarcinoma and Barrett’s 
oesophagus 

 

Clearly, if we aim to improve the bleak prognosis of OAC we need to identify 

individuals with OAC at an earlier, curable stage, ideally when the minimally 

invasive, low-risk, effective therapies that already exist can be applied. This task 

would be aided by identifying those in the population who are at risk of OAC 

through the development of BO who could be closely monitored and treated 

using the same endoscopic therapies when appropriate. The identification of 

these individuals is difficult as the vast majority are asymptomatic or have 

symptoms indistinguishable from benign disease [9]. As such we need to find 

novel ways to identify these people. In order to do this, we need to understand 

what puts an individual BO patient at risk. This is a complex interplay between 

our genetics (discussed in Chapter 2), diseases we develop such as GORD or 

obesity, and environmental exposures such as cigarette smoking. This interplay 

is nicely highlighted by work demonstrating that a polymorphism in the gene 

encoding the insulin-like growth factor receptor and obesity increases an 

individual’s risk of oesophageal cancer. However, those with the polymorphism 

alone were at no increased risk [56]. As such, in this section we explore some 

of the key risk factors associated with BO and OAC. The genetics, epigenetics 
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and transcriptomics involved in BO and OAC are discussed in chapter 2, but 

clearly play a role alongside the below outlined risk factors. 

 

1.3.1 Gender 

An individual’s gender is known to impact on many aspects of disease, and 

cancer is no exception. Generally speaking women are more commonly 

affected by autoimmune diseases and in men the incidence of cancer and 

infections is higher. In addition, cancer survival is poorer in men [57]. The 

reasons for this are not entirely clear. BO occurs at a ratio of 2:1 in men to 

women and almost 70% of cases of OAC in 2013 were in men [5, 25]. The 

general perception of this increased cancer risk in men is due to men engaging 

in more high-risk behaviours than women. For example, a greater proportion of 

men smoke or are obese. However, although these factors certainly play a role 

in the increased risk they do not completely explain the phenomenon. There are 

some known X chromosome-linked genetic mutations that explain some of the 

increased risk in men. There are other genetic mutations seen only in men that 

gain increase cancer risk. There is also an array of proposed physiological 

differences that may contribute to sex discrepancy in various cancers. Included 

within this are the hormonal differences, in particular oestrogens and 

androgens, that also play a role in cancer susceptibility. For example, higher 

oestrogen levels are thought to be protective in gastric and liver cancer [57, 58]. 

In addition, there is published literature, mainly in mice, showing significant 

differences in gene expression and protein production in men and women in 

genes linked to many diseases including cancer. Furthermore, women appear 

to produce higher innate and adaptive immune response than men and these 

immune differences may explain why certain diseases have a sex discrepancy 

[57].Finally, there is also thought to be a sex difference in the tissue response to 

carcinogens which is thought to underlie, at least in part, why there is a 

significant rise in the incidence of lung cancer in women [59]. 
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1.3.2 Age 

It has long been known that increasing 

age is a leading risk factor for many 

cancers and their pre-cancerous 

lesions, including OAC and BO. The 

reasons for this remain unclear. 

Specifically related to OAC and BO, the 

incidence of BO increases with age with 

the average age at diagnosis being 60 

years-old whereas the average age of 

OAC diagnosis is 68 [5, 17]. The 

general view is that the development of cancer is dependent on the sequential 

accumulation of epigenetic alterations and oncogenic genetic mutations. The 

incidence of these mutations increases with age. Armitage and Doll published 

work reporting that an individual needs to develop 6-7 age-dependent, 

oncogenic mutations in order for cancer to develop [3]. This time-dependent 

view has been challenged. For example, De Gregori observed that the cancer 

incidence increases quickly in later life, but the accumulation of oncogenic 

mutations occurs at a maximal rate during puberty (see figure 2). Therefore, 

one would expect to observe more cancers occurring at a younger age. De 

Gregori further points out that oncogenic mutations are present in large 

numbers in healthy cells at an incidence that is greater than the incidence of 

cancer within these cells. He concludes that it is not necessarily the incidence of 

mutations that is key, although clearly mutations are required, but the 

deterioration of the mechanisms in place for the body to combat these 

mutations[3]. Recently Xu et al published strong evidence for the role of the 

epigenome in the age-related increased cancer incidence. Their work looking at 

27,000 age specific methylation sites in 1000 women that was then compared 

to additional datasets and to seven different cancer types from “The Cancer 

Genome Atlas”, found that 70-90% of the age-related sites they identified 

showed significantly increased methylation in all seven of the cancer types. This 

suggests that age-related methylation changes play a significant role in 

expression of certain genes leading to oncogenesis [60]. It is fair to say that the 

mechanisms behind the age-related increased cancer incidence remain 

debated, although it is undoubtedly a key risk factor for many cancers. 

Figure 2: Comparing time courses of the onset of 
malignancy and accumulation of mutations in mice 
[3] 
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1.3.3 Race 

There is huge disparity in the incidence of oesophageal cancer depending on 

ethnicity. Worldwide oesophageal SCC is the most common histological 

subtype, seen mainly in Africa and what has been dubbed the ‘Asian 

oesophageal cancer belt’ (an area extending from Eastern Turkey, through Iraq, 

Iran, and the southern part of the former Soviet Union, including Kazakhstan, 

Turkmenistan, Uzbekistan, Tajikistan, to Mongolia and Western/Northern 

China). Whereas in Western populations, as discussed earlier, OAC is the most 

common subtype with an prominent rise in recent decades. Focusing on BO 

and OAC within the UK, somewhat unsurprisingly the ethnic variations in 

incidence of BO are echoed in OAC. The incidence of both diseases is 

significantly higher in white men and women. For OAC, age-standardised rates 

in the UK are 13.9-14.4 per 100,000 and 5.5-5.7 per 100,000 in white men and 

women, respectively. For black males the rates are 6-10.2 per 100,000 and for 

black females 2.5-4.2 per 100,000. The rates of OAC in Asian women is almost 

identical to that of black women and in Asian men the rate is 3.6-6.1 per 

100,000 [5]. Again, the reason for these variations is not clear. Certainly, there 

are behavioural differences as well as contributing disease incidences, such as 

obesity and GORD, seen between different populations around the world and 

ethnic groups within a country that are likely to be a factor. This is demonstrated 

in the sharp rise of OAC incidence in China which may be linked to the 

increasing tobacco consumption or Western diet [61]. There are also certainly 

likely to be genetic factors involved, with genes linked to increased risk of both 

oesophageal SCC and OAC identified in genome wide association studies 

within the populations in which these respective cancers have high incidence 

[61]. However, there is little in the way of comparative studies between the 

various high-risk populations to determine what genetic reasons there may be 

behind differential cancer incidence across populations [61]. 

 

1.3.4 Gastro-oesophageal reflux disease 

As discussed earlier, Norman Barrett who originally described BO, initially 

thought that this was a congenital abnormality. Despite the observation of the 

increased incidence of factors such as oesophagitis and hiatus hernia, the 
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debate over its origin continued for many years until 1970 when Bremnar et al 

demonstrated the development of columnar-lined mucosa in an experimental 

model of GORD [62]. It is now accepted that BO is a complication of GORD. BO 

is found in approximately 10-15% of individuals undergoing an endoscopy for 

GORD and the odds ratio for BO in patients with symptoms of GORD for 1-5 

years is 3.0 which rises to 6.4 in those who have had symptoms for over 10 

years [17]. Similarly, the presence of at least weekly GORD symptoms has an 

odds ratio of 7.7 for the development of OAC. Clearly, therefore, the severity 

and longevity of GORD is a major risk factor for development of BO and OAC 

which is why, when discussing the possibility of screening for these conditions, 

GORD symptoms are often highlighted [17]. Acute mucosal injury alone is not 

sufficient to induce the development of BO as acute damage is often followed 

by squamous regeneration. Moreover, a chronic abnormal environment is 

required for the columnar mucosa to develop, thought to be a protective change 

in response to chronic reflux. Hence the incidence of BO and OAC increases 

with the duration of GORD. Support for this need for chronic exposure is 

demonstrated with the observation that increased oesophageal acid exposure is 

seen in over 90% of individuals with BO, the proximal progression of BO over 

time, and the induction of BO in experimental models [62]. 

 

1.3.5 Obesity 

The detrimental effects of the worldwide obesity epidemic on population health 

and healthcare resources is a significant problem. In the UK, the prevalence of 

obesity has doubled in the last 25 years. Currently 25% of the adult population 

is obese (as defined by a Body Mass Index >30) with these numbers predicted 

to rise to 40% of adults and 25% of children by 2030 [5, 63]. The association 

between obesity and the development of diseases such as T2DM, heart 

disease, pulmonary disorders, and some cancers (including gastrointestinal, 

hepatobiliary, kidney and breast) is well documented [5, 64, 65]. It is thought 

that more than 5% of all cancers are attributed to obesity with obesity 

associated with the pathogenesis of 39% of OAC cases. Overall obese patients 

with cancer have a worse prognosis than those of normal weight [66]. The 

incidence rates of OAC have risen 65% in men and 14% in women in the UK 

since the 1970’s[5]. This is in parallel with the obesity epidemic [56, 64]. It is 
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stated that there is a 2 to 3-fold increased risk of BO and OAC in obese 

individuals, but some studies have suggested up to a 10-fold increased risk [56, 

67]. 

 

Initially the link between obesity and BO and OAC was thought to be due to the 

mechanical alterations that occur in obesity that predispose an individual to 

GORD. Firstly, it was noted that there is a higher prevalence of hiatal hernias in 

obese individuals and secondly there is an increase in intra-abdominal pressure 

in obesity which displaces the lower oesophageal sphincter. The combination of 

these factors was thought to increases the likelihood of GORD and thus cause 

the increased risk of BO and OAC [68]. It is now accepted, however, that this 

view has been too simplistic. There have been several high-quality, large-scale 

studies exploring the link between obesity and GORD with mixed results. Some 

have shown a modest association at most, whereas others have demonstrated 

no significant association [69]. Consequently, focus has shifted to the endocrine 

and molecular changes that occur in obesity that place an individual at 

increased risk not just for BO and OAC, but for the development of numerous 

obesity-associated diseases. 

 

Obesity causes a derangement of the cellular and molecular mediators of 

immunity and inflammation resulting in a chronic low-grade inflammatory 

response [65]. Consequently, inflammatory markers such as TNF-α, C-reactive 

protein and IL-6 are increased in obese individuals, although not to the same 

extent as observed in classic inflammatory conditions [70]. Adipose tissue is an 

active secretory organ involved not just in appetite and energy expenditure but 

also endocrine and reproductive systems, bone metabolism and inflammation 

and immunity [70]. It is a major source of chronic inflammation [71]. 

Inflammation observed in adipose tissue is likely to serve as a feedback signal 

locally in adipose tissue and systemically for energy expenditure. In adipose 

tissue, inflammation inhibits adipocyte expansion and differentiation, changes 

adipocyte endocrine function and induces extracellular matrix remodelling[72]. 

The local response is translated into a systemic response through cytokines 

and free acids released from adipose tissue. Hypoxia in adipose tissue induces 

the secretion of pro-inflammatory adipocytokines (e.g. leptin) and cytokines 

(e.g. TNFα, IL-6, IL=8, IL-10, IL-1) that promote angiogenesis and upregulate 
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key inflammatory pathways. The products of these pathways are responsible for 

the transcription of genes that mediate proliferation, invasion, angiogenesis, 

survival, and metastasis [66].  This chronic low-grade inflammation has also 

been linked to the pathogenesis of many diseases including insulin resistance, 

hyperglycaemia, and the development of T2DM, as well as the cause of 

cardiovascular disease due to dyslipidaemia and hypertension [70, 73]. Insulin 

resistance, T2DM, and metabolic syndrome have been demonstrated to be 

significant risk factors for cancer development thought to be associated with the 

pro-proliferative properties of insulin. High levels of adipose cytokines have 

deleterious effects on glucose homeostasis leading to chronic hyper-

insulinaemia and insulin resistance. This is further worsened by the 

deregulation of the inflammatory pathways producing increased nitric oxide 

levels and consequently increasing insulin resistance and further worsening 

inflammation [66]. 

 

Additionally, adipose tissue is infiltrated by macrophages with the number of 

macrophages found directly correlating to the adiposity of human subjects. 

These macrophages are known to express growth factors, cytokines, 

chemokines and proteolytic enzymes involved in the regulation of tumour 

growth, angiogenesis, invasion and metastatic spread [70, 74]. Adipose 

macrophages may act similarly to tumour-associated macrophages found in the 

tumour stroma [74]. Activated adipose macrophages affect adipose tissue 

function, increasing insulin resistance, thereby enhancing the mitogenic effects 

of insulin, and increasing inflammatory cytokine production [66]. 

 

1.3.6 Smoking 

The relationship between smoking and the incidence of BO and OAC go hand 

in hand. There is an increased risk of BO in those who smoke and this risk 

increases with greater pack-years [75]. Similarly, the risk of OAC is 85-96% 

higher in people who have smoked compared to “never-smokers” and, again, 

this risk increases with higher pack-years. OAC risk is 2.5 times higher in 

people who smoke over 20 cigarettes per day compared with those who have 

never-smoked. In regards to smoking cessation OAC risk is 29% lower in ex-

smokers who quit over 10 years previously compared to current smokers, 
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however, these ex-smokers remain at considerably higher risk than those who 

have never smoked (72% higher risk) [5]. 

 

The mechanisms behind the increased risk associated with smoking are 

multifactorial and not fully understood. Many of the carcinogenic contents of 

tobacco products have been linked to gastrointestinal cancers. There are 

approximately 60 carcinogens in cigarette smoke that have been demonstrated 

to be carcinogenic in humans or animals. Of particular note of these are the N-

nitroso compounds that are a potent carcinogen in oesophageal cancer [76, 

77]. Additionally, it has been demonstrated that cigarette smoke causes the 

creation of genotoxic DNA adducts that are central to carcinogenesis. A well-

documented DNA mutation linked to cigarette smoke is mutation to the p53 

gene that is known to be strongly linked with the development of OAC [1, 77].  

 

1.3.7 Family history 

Although it is thought that the majority of BO and OAC are sporadic, there is 

evidence for its clustering within families. The Wellcome Trust performed 

genome wide association studies to determine the heritability of BO and OAC 

and published results in 2012 and 2015. Within this work they identified more 

than 1000 variants contributing to the BO phenotype and estimated a heritability 

of 9.9%. The Barrett’s and Esophageal Adenocarcinoma Consortium published 

work in 2013 estimating the heritability to be 35% [78]. The work within this field 

continues, although the requirement for large-scale studies limits its progress. 

 

1.4 The existing early detection strategies for oesophageal 
adenocarcinoma  

 
The consequences of the grave prognosis of OAC leads to the huge impact it 

has on worldwide morbidity and mortality as well as healthcare finances. OAC, 

like all cancers, has a significantly better survival if treated in its earlier stages. 

As such it is logical that attempts are being made to detect it earlier on. Within 

the UK there are three strategies currently being adopted that are either general 

to all cancers or specific to OAC alone. These are discussed in the section 

below. 
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1.4.1 The “two-week wait” expedited referral pathway 

Reacting to UK cancer mortality rates amongst the highest in Europe and long 

waiting lists, the two-week wait referral system was introduced at the end of the 

20th century [79, 80]. This guaranteed that institutions would face financial 

penalty, unless patients with symptoms suspected to be consistent with a 

cancer diagnosis were seen by a specialist within two weeks and receive a 

diagnosis and commence treatment within further time restrictions. There was 

little scientific foundation to its introduction and was seen by some as a political 

public relations exercise rather a measure to improve the standards of care in 

the UK [81]. Consequently, hospitals have been flooded with two-week wait 

referrals and the system is poorly adhered to within primary care. Analysis of 

the two-week wait system since its introduction has given weight to those who 

were sceptical. A wealth of evidence demonstrates that there is a low yield of 

cancer diagnosis through the two-week wait pathway across all cancers. 

Specific to the gastrointestinal tract only 9% of two-week wait referrals for 

colorectal cancer and 6% for oesophageal cancer yielded a cancer diagnosis 

[82, 83]. It is important to also note that this referral system does not even 

capture the majority of cancers with approximately two-thirds of cancers 

diagnosed via an alternate route [80, 82]. Thus, it is felt that a disproportionate 

amount of healthcare resource is invested in supplying demand for a system 

that appears to be of little benefit. Similarly, there is little evidence that the two-

week wait referral system leads to diagnosis at an earlier stage and, in fact, 

data demonstrates that it offers no improvement in survival benefit [80, 82, 84]. 

Specific to OAC analysis of survival outcomes show that patients whose cancer 

is diagnosed following referral for routine gastroscopy have a better prognosis 

than those referred through the two-week wait pathway, although referral bias 

may be an issue in this analysis [79, 85]. 

 

As already discussed, symptoms occur late in OAC. Symptoms of early OAC or 

its pre-malignant form (BO) are often either absent or indistinguishable from 

benign disease. As such, it is illogical to think that the two-week wait referral 

system, based upon symptoms, will be an effective means for early diagnosis in 

OAC. A vast amount of healthcare resource is invested into the two-week wait 
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system with data demonstrating that referral rates are increasing year upon 

year [86].In lieu of any evidence supporting its clinical benefit, this is now clearly 

a flawed approach.  

1.4.2 Public Health England “Be Clear on Cancer” campaign 

In 2011 Public Health England, working in partnership with the Department of 

Health, NHS England, and Cancer Research UK, launched the “Be Clear on 

Cancer” campaign. The idea behind this was to improve early detection of 

specific cancers through raising the public’s awareness of key symptoms and 

encouraging the public to seek medical attention should they suffer from any 

one of these. To date this campaign has addressed bowel, breast, ovarian, 

lung, kidney, bladder, and oesophago-gastric cancers. The campaign in relation 

to oesophago-gastric cancers was launched in 2015 with specific focus on 

heartburn. Once again, this is an attempt to improve early detection of OAC 

through symptoms. In our opinion, this approach is flawed. There is little data at 

present for the success of this campaign. However, the pilot campaign noted a 

significant increase in referrals through the two-week wait pathway following the 

campaign which was confirmed in one study. This study also demonstrated no 

improvement in survival or stage of diagnosis [87, 88].  

 

1.4.3 Barrett’s oesophagus surveillance programmes and the emergence of 

Cytosponge 

Several learned societies have issued guidelines on the endoscopic 

surveillance of BO including the BSG. The BSG advocates surveillance for 

patients with known BO [16]. As such, people with BO undergo regular 

endoscopic observation throughout their lives with the aim of identifying 

progression to dysplasia or OAC at an early, curable stage. Patients with NDBO 

therefore undergo endoscopic examination every 2-5 years, depending on the 

length of the BO segment, with close inspection followed by targeted biopsies of 

any areas of concern and then random four quadrant biopsies every 2cm. It is 

fair to say, however, that the quality of endoscopic examination and adherence 

to these guidelines varies greatly throughout institutions within the UK and 

globally, affecting standards and outcomes of BO surveillance [89]. Thus, the 

merits of surveillance for BO is not without its controversies.  
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Retrospective analysis of data on patients undergoing Barrett’s surveillance 

have demonstrated that those undergoing surveillance who developed OAC 

were found to have an earlier stage of disease and improved survival. This is 

supported by other studies demonstrating similar findings, however, all of these 

are vulnerable to both lead and length time bias [17, 90]. In fact, an expert 

panel in the US concluded that there are no controlled studies to support 

surveillance. Similarly, a UK governmental review concluded that surveillance 

may do more harm than good and there are significant gaps in available 

evidence supporting that surveillance reduces morbidity and mortality from OAC 

[91]. Population-based studies have demonstrated that overall mortality rate in 

patients with BO is similar to that of the general population and that OAC is in 

fact an uncommon cause of death in these patients [91]. It is also of note that 

less than 10% of OAC occurs in patients with a known diagnosis of BO and that 

90% of individuals with BO die of unrelated causes. Additionally, it has been 

found that 93% of OAC are not detected in current screening strategies and 

instead present with advanced, incurable disease [92]. Regular surveillance of 

individuals with BO is therefore unlikely to impact on global prognosis [93]. The 

role of surveillance for BO is being explored in the ongoing BOSS study in 

which 3400 patients have been randomised to routine surveillance versus at 

need endoscopy determined by patient symptoms or concerns. The study will 

aim to determine if there is an overall survival benefit in either group alongside 

also providing data on cost effectiveness, cancer-specific survival time, time to 

OAC diagnosis and stage of diagnosis, morbidity and mortality related to any 

interventions and frequency of endoscopy. This study will hopefully shed further 

light on the role of endoscopic surveillance in BO [94]. 

 

Cytoponge 
 
In the search for better ways to screen the population to improve detection of 

BO and OAC the Cytosponge has been developed. This is a minimally invasive 

non-endoscopic cell collection device which is a 30-mm polyurethane sponge, 

contained within a capsule attached to a string. The capsule is swallowed and 

dissolves within the stomach after 3–5 min. The sponge is retrieved by pulling 

on the string, thus collecting cells on its return. The test has been shown to be 

acceptable for patients and the cells obtained undergo immunohistochemical 
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labelling for Trefoil Factor 3 (TFF3), which is a biomarker known to be linked to 

BO as it labels goblet cells in intestinal metaplasia. This biomarker was 

ascertained from a gene expression study designed to distinguish between BO 

cells and those from the gastric cardia, squamous oesophagus, and 

oropharynx, which are serially sampled by the Cytosponge as it is retrieved. 

Ross-Innes et al reported a sensitivity of 79.9% and specificity of 92.4% for 

detecting BO using this device. The sensitivity increased to 87.2% with two 

passes of the Cytosponge which obviously incurs acceptability issues [95].  

 

The BEST2 study explored the use of the Cytosponge as a means to risk 

stratify patients known to have BO in order to determine those at low risk of 

having progressed and thus not requiring a surveillance endoscopy. This was 

achieved by combining the biomarkers (P53 abnormality, glandular atypia, and 

AurKA staining) with clinical variables (patient age, length of BO and obesity) 

and using logistic regression to determine an individual’s risk. Whilst this study 

was successful in identifying these low-risk patients it did not demonstrate an 

ability to detect high-risk individuals [95]. 

 

The BEST3 study outcomes have recently been published. This study aimed to 

detect individuals within the community through primary care with BO by 

comparing the existing management of patients with reflux symptoms, identified 

as those on reflux medications, with offering these individuals a Cytosponge 

examination and consequent endoscopy if they are found to be TFF3 positive. 

The “usual” management was defined as giving lifestyle advice, commencing 

anti-reflux medication if required and offering an endoscopy if clinically 

indicated. The primary outcome was the identification of patients with BO at 12 

months between these two groups and the study lasted 2 years. Interestingly of 

the 6834 patients who were randomised to the Cytosponge arm only 1750 

attempted to undergo the procedure and 5% (n=96) of these failed to swallow 

the capsule. 12% of these patients (n=202) had to undergo a repeat procedure 

due to insufficient sampling. From the 5084 who did not undergo the 

Cytosponge procedure, 310 failed the screening interview and the other 4774 

either declined the procedure or did not respond. Although not fully addressed 

in the study this is a concerningly high number of people who did not 

successfully undergo the procedure (75%). For those that did undergo the 
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Cytosponge procedure 2% (140/1654) were found to have BO and in the 

comparison group this was <1% (13/6388). 9 individuals were found to have 

dysplasia or early OAC in the Cytosponge group and none were found to have 

dysplasia in the “usual” management group. However, it should be noted that 

the follow up for this study was only 12 months and it is not stated how many of 

the 6388 patients in the “usual” management group underwent an endoscopy 

and therefore had the opportunity for BO or OAC to be diagnosed (as this can 

only be diagnosed at endoscopy). Given that they state <1% were found to 

have BO and this was 13 patients it would suggest that only a small percentage 

of these 6388 patients actually had an endoscopy. Clearly longer follow up is 

needed for this group and is a significant limiting factor [96]. Whilst this study 

shows promise as a possible option in screening the population for BO and 

OAC it also, in my opinion, raises concerns on how acceptable the procedure is 

and thus how successful it’s uptake will be. 

 

1.5 Chapter summary 

 
Although the incidence of OAC is low, its poor prognosis means the vast 

majority who do develop the disease will die from it. As such, OAC contributes 

significantly to overall cancer deaths in the UK, particularly amongst men. It is 

established that BO represents the only known pre-cancerous lesion in the 

progression towards OAC and that the majority of OAC arises from within BO. 

The majority of those who develop OAC are, however, unaware they have BO. 

It has also been demonstrated that by the time individuals develop symptoms 

and signs of OAC their cancer is often advanced and incurable. It is therefore 

reasonable to hypothesize that identifying individuals with BO within the 

population might aid in the earlier detection of OAC, potentially at an earlier 

stage of development. 

 

Endoscopic therapies for the treatment of dysplastic BO and early OAC (those 

confined to the mucosa or the first part of the submucosa) have been 

demonstrated to be effective in ridding individuals of these pre-cancerous and 

early cancerous lesions. The published long-term data demonstrate that these 

therapies are safe and durable with individuals undergoing treatment having 
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significantly less risk of developing OAC. Therefore, we already have in our 

therapeutic armoury effective measures to alter the incurred risks of dysplastic 

BO and effectively treat early OAC. 

 

The means to identify high-risk individuals remains problematic. At present the 

only means of identification we have is an invasive and expensive endoscopic 

procedure. Population screening using this means is impractical. There are also 

significant issues with the endoscopic surveillance of those with BO with 

programmes seemingly providing no reduction in cancer risk. We therefore 

need a low-cost, non-invasive means to accurately identify individuals with BO 

or early OAC within the general population and perhaps even better risk stratify 

those with BO on surveillance programmes to minimise the need for endoscopic 

surveillance. This is, perhaps, where Cytosponge fits in but patient acceptability 

is a concern. By addressing this key issue of accurate identification of those 

with or at risk of OAC we will significantly alter the bleak prognosis of OAC. 
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Chapter 2 – The genome, transcriptome and epigenome. Focusing on 
oesophageal cancer 
 
In 1990 the largest ever collaborative scientific project, The Human Genome 

Project, was launched with the aim of mapping all the genes in the human 

genome. Thirteen years after its initiation and at a cost of approximately $3 

billion it was declared complete. At this announcement President Clinton 

claimed that it would ‘revolutionise the diagnosis, prevention and treatment of 

most, if not all, human diseases’. There is no doubt that The Human Genome 

Project has had its successes, but this prediction has so far failed to materialise. 

Through this project hundreds of genetic variants identified have been 

associated with human disease and traits and valuable insights have been 

gained on their complex genetic architecture. But these variants seem to confer 

little in the way of incremental risk to an individual and only a fraction of the 

genetic basis for disease has been identified [97]. This is highlighted by Paynter 

et al in which 101 genetic variants were tested to determine whether they could 

provide a predictive risk score for cardiovascular disease. The conclusion of this 

study was that the variants had little value in predicting disease, whereas a 

family history taken by the physician remained a useful predictive tool [98]. 

Additionally, the Human Genome Project has highlighted how similar the human 

genetic architecture is to lower animals such as the earthworm and that the 

human genome has around 25,000 genes - instead of the anticipated 120,000 

genes - suggesting that the mechanisms of regulation of gene expression are 

key in understanding the molecular basis of disease. This has emphasised the 

vital and complex roles played by the epigenome and transcriptome in disease 

development. Thus, rather than answering the uncertainties of diagnosis, 

prevention and treatment of disease, perhaps the Human Genome Project has 

raised more questions.  
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This analysis paints a too simplistic picture of the impact of the Human Genome 

Project. An obvious success was the significant improvement in genetic 

sequencing technologies that now allow scientists to sequence an entire 

genome within hours and at a fraction of the 

previous cost. This has led to huge advances 

in scientific research and biological 

understanding in areas such as 

neurodevelopmental disorders, mitochondrial 

disease or other unknown disease in children 

in which a disease causing genetic mutation 

can be found in 19-33% of cases [99]. 

Additionally, the medical oncology field now aims to provide personalised 

medicine in which an individual’s tumour can be sequenced to identify the best 

therapies. None of these advances would have been possible without first 

knowing the reference genome that was outlined within The Human Genome 

Project. This project also triggered the birth of other vital branches of science 

including proteomics, bioinformatics and medical genomics. Areas such as 

these allow us to continue to develop our understanding of disease and enable 

us to strive to revolutionise the diagnosis, prevention and treatment of disease. 

 

Within this chapter a thorough review of the literature on the genomics, 

epigenetics and transcriptomics of BO and OAC will be presented. 

 

2.1 Genetic heterogeneity and clonality in tumours and pre-malignant 
lesions 

 

There is known to be a great deal of heterogeneity within tumours and pre-

malignant lesions across most cancers. This heterogeneity refers to the 

coexistence of different biological, morphological, phenotypic and genotypic 

profiles, between tumours known as inter-tumour heterogeneity and within 

tumours (intra-tumor heterogeneity). There is also spatial heterogeneity 

between the primary cancer and metastases) and temporal heterogeneity which 

occurs during the course of disease progression. Finally, the tumor 

microenvironment which is the complex ecosystem in which cancer cells 

 
Figure 3: Decreasing cost of genetic 
sequencing [2] 



 43 

interact with non-cancerous cells also represents an additional source of intra-

tumor heterogeneity. Tumours and pre-malignant lesions are composed of 

clones that are distinguished on the basis of a number of features including 

genetic alterations. As discussed by Turajlic et al, whilst the evolution of cancer 

and pre-malignant lesions is an extremely complex series of events it arises 

from a relatively simple, underlying evolutionary processes of mutation, genetic 

drift and selection, involving a large number of interacting agents [100]. The 

clones that make up the tumour mass are those that have mutations which have 

demonstrated a survival advantage and can proliferate best. Swanton 

demonstrated that branched evolution occurs in tumours and leads to spatial 

and temporal intra-tumour heterogeneity [101]. 

 

In cancer, genetic information is most frequently obtained through a biopsy 

despite the many known limitations of this approach. The first issue one faces is 

in the acquisition of the tissue that often involves an invasive procedure that 

carry risks to the patient and are expensive to perform. In addition to this, 

tumours can often be inaccessible, or the procedure obtains insufficient 

samples. These issues are often seen in cancers such as small cell lung 

cancer, where up to 31% are inaccessible, or in pancreatic tumours where 

sampling can often be problematic particularly with small tumours where the 

diagnostic yield can be as low as 40% [102, 103]. Furthermore, should tissue 

be obtained, preservation issues, such as using formalin, can cause genetic 

changes leading to false positive results [102]. As highlighted by Gerlinger et al, 

there is a vast amount of tumour heterogeneity and a biopsy only identifies the 

minority of the genetic aberrations seen within the whole tumour [104]. Thus, 

biopsy sampling can suffer from spatial bias and mislead the physician. 

Similarly, a biopsy can only provide information on the tumour at the time of 

sampling. In clinical practice, a tumour is often only biopsied once, at the start to 

confirm diagnosis, and as such analysis of this biopsy provides information on 

the tumour only at that given point. Tumours are known to be dynamic, 

especially after drug therapy, and as such basing our decisions on past findings 

that may be inaccurate is inadequate [102].Clearly, therefore, there are spatial 

and temporal bias issues with relying on biopsies to lead our decision-making 

and from a population screening perspective this approach is likely to be 

inappropriate. It has been demonstrated that chromosomal instability, which 
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generates intra-tumour heterogeneity, is often implicated in poor cancer 

outcomes both in regard to biomarker identification and resistance to therapy 

[104]. One can therefore appreciate that alternatives to a biopsy led strategy 

would be appropriate from a diagnostic and therapeutic point of view and this is 

where the role of “liquid biopsies” are key.  

 

Liquid biopsies are further discussed in Chapter 5. Within the rest of this 

chapter, I address the heterogenous genomic, epigenetic and transcriptomic 

landscape of BO and OAC. 

 

 

2.2 Overview of the genomics of Barrett’s oesophagus and 
oesophageal adenocarcinoma 

 
The ease with which the oesophagus can be sampled and the known existence 

of the pre-malignant states of OAC (NDBO and dysplastic BO) has meant that 

this cancer has been frequently studied in an attempt to determine the 

molecular basis behind cancer pathogenesis. Despite intense work, however, 

the exact genetic relationship between BO and OAC is poorly understood. The 

majority of BO cases appear to be sporadic although two genome wide 

association studies, the Wellcome Trust Case Control consortium and the 

Barrett’s and Esophageal Adenocarcinoma CONsortium (BEACON), have 

reported its heritability to be 9.9% and 35%, respectively. Further work is 

required in this area but this would suggest that the genetic susceptibility to BO 

is not insignificant [78]. 

 

The pathogenesis of BO remains poorly understood. It is well established that 

GORD plays a significant role and it is thought that the reflux of bile acids may 

also trigger oxidative DNA damage and cell death through an increase in 

reactive oxygen species. The continuous cycles of injury and repair associated 

with the chronic inflammatory state caused by acid and bile reflux causes 

alterations in gene expression. CDX1 and CDX2 are caudal related homeobox 

transcription factors that play a key role in the regulation of intestine specific 

gene expression and the differentiation of the intestinal epithelium. It is thought 

that GORD induces the expression of the CDX genes through BMP4 and 
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possible EGFR activation leading to these being found to be expressed in BO, 

but not in the normal oesophagus. This is evidenced by a reduction in 

methylation in the CDX gene promoter. However, it should be noted that 

attempts to recreate this morphological change towards metaplasia in in vivo 

and in vitro studies by inducing the ectopic expression of the CDX genes has 

not yielded metaplastic conversion, although the validity of such models 

remains in question. Other genes implicated in the pathogenesis of BO are 

those from the HOXB family. HOXB 5, 6 and 7 have been demonstrated to be 

upregulated in BO and their ectopic expression has induced intestinal 

differentiation markers, including MUC2, in normal oesophageal cells. 

Additionally, the Notch and Wnt signalling pathways have been implicated in the 

pathogenesis of BO. Their role is in the maintenance of stem cells and 

differentiation in the intestine. Further studies are required to elucidate these 

pathways further [105-107]. 

 

Once BO is established the inflammatory environment produces cytokines and 

reactive oxygen and nitrogen species that sustain the DNA damage through a 

resistance to apoptotic cell death. This is achieved through activation of 

inflammatory pathways including the NF-κB and IL-6/STAT3 pathways [108]. 

Studies have demonstrated that BO is highly mutated, even in non-dysplastic 

biopsy material. Interestingly, frequent mutations found in NDBO are also noted 

to be present in OAC. Given that few people with NDBO will progress to OAC, it 

is not clear what functional role, if any, these mutations play [105-107, 109, 

110]. This was highlighted by Weaver et al who had expected to find a stepwise 

progression of mutations towards OAC, but instead found that the complex 

mutational landscape was present at the same frequencies in NDBO as it was 

in HGD and OAC. In fact, it was only mutations in SMAD4 and TP53 that 

accurately defined the boundaries 

between NDBO, HGD and OAC. 

SMAD4 mutations were only found 

in 13% of OAC cases although it 

was only seen in OAC whereas as 

mutations to TP53 were seen in 

72% of cases of HGD, 69% of 

cases of OAC, but only 2.5% of Figure 4: Recurrently mutated genes found in BO and 
OAC [1] 
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cases with NDBO [1]. Figure 4 from the Weaver et al paper demonstrates the 

recurrently mutated genes found in their study and nicely highlights that the 

mutated genes seen in NDBO are frequently also seen in HGD and OAC. 

Interestingly, although the mutational frequency between NDBO, HGD and OAC 

varied little, Ross-Innes et al observed that the frequency of copy number 

aberrations increased towards the development of OAC [110]. These copy 

number changes, known as aneuploidy, have also been investigated by Li et al 

who demonstrated the copy-number profile of patients with NDBO who did not 

progress to OAC remained static, whereas the percentage of the genome 

harbouring somatic chromosomal alterations increased rapidly from 0 and 50% 

at baseline to approaching 100% within 48 months of the cancer diagnosis in 

those who did progress [111]. 

 

Maley et al proposed that a mutation that confers a selective advantage to a cell 

sweeps across the Barrett’s segment and is present in the majority of cells 

within BO. Additional advantageous mutations, most commonly the loss of 

TP53, accumulate and can expand across the Barrett’s segment with cancer 

developing as a result of an accumulation of mutations [112]. Others however, 

propose a more heterogeneous model in which multiple independent clones 

arise and their associated genetic aberrations expand according to the 

competitive advantage of the clone [110]. Certainly, the most frequently studied 

genes in regard to progression of NDBO towards OAC are the tumour 

suppressor genes TP53 and CDKN2A. CDKN2A is a cyclin-dependent kinase 

inhibitor that acts as a tumour suppressors through inhibitory regulation of the 

cell cycle. Germline mutations in CDKN2A are implicated in familial cancer 

syndromes and somatic alterations have been detected in a wide variety of 

cancers. The CDKN2A allele has been noted to have lost expression, usually 

through methylation of its promoter, in 85% of NDBO cases and mutations are 

thought to occur through oxidative damage. This oxidative damage causes a 

loss of heterozygosity which has been observed in dysplastic BO. It is notable 

that the CDKN2A locus is also responsible for encoding p14ARF that prevents 

degradation of TP53. Thus, studies have focused on the role of the CDKN2A 

locus in the progression of BO [107, 113]. 
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The role of TP53 in the regulation of the cell cycle and the triggering of 

apoptosis following genomic damage is well established. Oncogenic stress 

triggers TP53 to cause cell cycle arrest and DNA repair. Should the DNA 

damage be irreparable TP53 will induce apoptosis. Thus, its role in protecting 

DNA is vital and as such TP53 mutation and loss of function play a key role in 

the development of cancer.  The deletion of one allele in the short arm of 

Chromosome 17 and a mutation causing inactivation of the other allele are 

common genetic abnormalities found in numerous cancers. In fact, mutations of 

TP53 are the most prevalent genetic lesion seen in human cancer. This 

includes the development of OAC from BO [114, 115].  

 

Studies exploring the genomic landscape of OAC demonstrate it to be highly 

mutated cancer with a mutation burden of up to 10 single nucleotide variations 

per megabase. Additionally, it has been demonstrated to be a heterogeneous 

cancer with only a few genes being recurrently mutated. Studies commonly 

report mutations to tumour suppressors such as TP53, SMAD4 and CDKN2A. 

Additionally, members of the SWI/SNF chromatin remodelling complex such as 

MYO18B, SEMA5A, SMARCA4 and ARID1A have also been implicated. These 

also exert a tumour suppressor function through their role in regulating cell 

growth and division, DNA repair and chromosome segregation. Their mutation 

results in the favouring of self-sufficiency in cell growth and escape from 

growth-regulatory cell signals that play a role in the pathogenesis of cancer. 

The proto-oncogene ERBB2 (also called HER2) has also been identified as 

being recurrently mutated in OAC which exerts its effects through causing cell 

proliferation and preventing apoptosis. Thus, loss of regulation leads to 

uncontrolled cell growth. Finally, receptor tyrosine kinases, in particular KRAS, 

EGFR, IGF1R and VEGF-A, have also been demonstrated to be recurrently 

altered which results in an interruption in the regulation of normal cellular 

processes [110, 111, 116]. 

 

Finally, Gharahkhani et al performed a meta-analysis of all genome-wide 

association studies in relation to BO and OAC. This work included 6167 patients 

with BO, 4112 patients with OAC, and 17,159 representative control patients. 

This meta-analysis identified 16 independent risk loci for the development of BO 

and OAC. All the risk loci identified for BO were also linked with the 
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development of OAC. This again highlights the highly mutated environment of 

non-dysplastic BO and questions the role these mutations play in BO 

progression. There was one risk locus on chromosome 3q27, near HTR3C and 

ABCC5 that was specific to OAC. Of the 16 risk loci outlined within this paper 7 

of these had been previously identified to be linked to BO and OAC 

development. MHC, FOXF1, GDF7 and TBX5 have been associated with the 

development of BO, and CRTC1, FOXP1 and ALDH1A2 have been associated 

with the development of both BO and OAC. Of note, BARX1 that has been 

previously identified to be associated with the development of BO and OAC did 

not meet the threshold of significance for this study, but was still strongly 

associated. This study identified 9 new risk loci associated with BO and OAC 

these were linked to the following genes; SATB2, HTR3C, TPPP/CEP72, 

KHDRBS2/MTRNR2L9, CFTR, MSRA, LINC00208/BLK, TMOD1 and LPA. The 

most strongly linked of these was associated with CFTR which is of interest as it 

is known that patients with cystic fibrosis have an increased incidence of GORD 

and this may suggest a common pathophysiological process [117]. 

 

The existing literature suggests that the options to identify key genomic 

biomarkers for early detection of the at-risk individual with BO are limited. The 

majority of individuals with NDBO will not progress to OAC and identification of 

individuals with NDBO may well lead to many patients being over-diagnosed 

and subjected to invasive surveillance with little evidence that it improves 

survival. Thus, it is important to identify individuals who progress to dysplastic 

BO in order to truly impact on the prognosis of this disease without placing 

further, unmanageable strain, on healthcare resource. The manner of which 

cancer develops also plays a significant role in the early detection of cancer. 

For many years a linear model of progression was postulated with cancer 

occurring due to an accumulation of molecular abnormalities including single 

point mutations and structural aberrations. A window of opportunity for 

identification of the at-risk individual may therefore exist provided the key steps 

along that linear progression can be identified. Modern genomic technologies 

now suggest a branched somatic genome evolution in OAC. Additionally, 

neoplastic evolution can be accelerated by increased mutation rates or 

punctuated by catastrophic chromosomal events that can occur in a few cell 
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divisions. This, therefore, impacts on the possibility that genomic events might 

provide windows of opportunity to identify the at-risk individual[118].  

 

2.3 Overview of the epigenetics of Barrett’s oesophagus and 
oesophageal adenocarcinoma 

 

The initial theory was that cancer was a genetic disease caused by a change in 

the DNA sequence, an accumulation of mutations and eventual cancer 

pathogenesis. It is now clear that the epigenome plays a significant role in the 

development of cancer. The epigenome regulates gene expression via the 

promoter region of DNA through three processes; DNA methylation, histone 

modification, and post-transcriptional gene regulation by micro ribonucleic acid, 

also known as microRNAs (or miRNA). Importantly, it is apparent that these 

epigenetic alterations are heritable between cell lineages [119]. 

 

DNA methylation is the most well-studied epigenetic regulator. The regulation of 

genes through methylation plays a vital role in genome integrity, genomic 

imprinting, transcriptional regulation, and developmental processes. DNA 

methylation usually occurs at the 5’ position of a cytosine ring within a CpG 

dinucleotide. CpG dinucleotides are distributed unevenly throughout the human 

genome, however, the areas in which they are densely concentrated are called 

CpG islands. CpG islands are often located at the start of a gene with 50-60% 

of gene promoters located within CpG islands. The methylation of a gene 

silences it as it denies access for transcription factors and chromatin associated 

proteins as well as recruiting methyl-CpG binding domain proteins that are 

associated with histone modification [119]. 

 

A histone is the chief component of chromatin and acts as a spool around which 

DNA winds. It plays a key role in gene regulation, which is performed through 

post-translational modifications of histone tails which alter the structure of 

chromatin and thus affecting the transcriptional status of the gene within that 

locus. Genome-wide studies have demonstrated that histone modifications lead 

to an “open” or “closed” structure resulting in activation or repression of gene 
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expression[119]. Histone modification may therefore play a role in 

carcinogenesis.  

 

The third epigenetic regulatory process of gene expression is through miRNAs. 

These exert their affect through post-translational control of messenger RNA 

(mRNA) translation into proteins. They can also regulate gene expression 

through causing histone modification and DNA methylation. Approximately 1000 

miRNAs have been computationally predicted, each targeting multiple protein-

coding transcripts. It is thought they regulate translation rate in more than 60% 

of protein coding genes. miRNAs play a key role in normal physiology and their 

mis-expression has been linked to numerous diseases, including cancer.   

 

There have been numerous studies on the epigenome in BO and OAC. 

Importantly it has been demonstrated that aberrant DNA methylation has been 

shown to occur early in the metaplasia – dysplasia – carcinoma sequence. 

Additionally, it has been demonstrated that methylation status of multiple genes 

is a powerful biomarker for risk prediction and a strong predictor of survival and 

of recurrence [120, 121]. Many studies have focused on the hypermethylation 

and consequent inactivation of tumour suppressor genes. Work by Agarwal et al 

demonstrated that areas of hypomethylation were strongly associated with the 

progression of BO to OAC. This, therefore, suggests that with hypomethylation 

the activation of growth promoting genes plays a significant role in BO 

progression. Their work highlighted 3 genes with which hypomethylation was 

associated; IGF1R, TLX3 and JUN-D. IGF1R is a tyrosine kinase receptor 

functioning as an anti-apoptotic agent promoting cell survival. It has been 

demonstrated to be highly over-expressed in malignant tissues. TLX3 is a DNA-

binding nuclear transcription factor and has been associated with poor 

prognosis in leukaemia. Finally, JUN-D is a proto-oncogene that protects cells 

from TP53-associated senescence and apoptosis [122]. 

 

Environmental, behavioural and demographic factors influence epigenetic state 

and an individual’s behaviours, or those of their predecessors, through 

epigenetic inheritance, can influence the epigenome and thus susceptibility to 

cancer [121]. Kaz et al demonstrated that obesity and tobacco smoking affected 

the methylation status of patients with BO, dysplastic BO, and OAC. In regard to 
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obesity it was identified that overweight BO patients differentially methylated 

promoter regions [121]. Cases of HGD and OAC were hypermethylated in all 

functional areas when patients with high body mass index (BMI) were compared 

to those with a low/normal BMI. When pathways were mapped according to the 

methylation status it was noted that it mapped to insulin growth factor pathways, 

pro-inflammatory pathways (IL1B), and pathways that directly effect TP53 (NCI-

PID). All of these have been linked to cancer pathogenesis. A similar picture 

was seen with tobacco smoking in which significant differences were seen in 

those with BO, HGD and OAC. Interestingly, again when these methylation 

changes were mapped they linked to genes known to be linked to cancer 

pathogenesis. This included GFI1 that is a transcriptional repressor involved in 

the regulation of TP53 activity and Notch signalling [121].  

 

The following genes have been demonstrated to be frequently hypermethylated 

in BO outlined in Agarwal et al[120]; 

 

AKAP12. This maps to chromosome 6q24-25.2 that is involved in cell 

signalling, cell adhesion, mitogenesis and differentiation and possesses tumour 

suppressor activity. It has been shown to be frequently deleted in cancer. A 

study by Jin et al using 259 oesophageal tissues demonstrated a 

hypermethylation frequency in AKAP12 of 38.9% in BO and 52.5% in patients 

with dysplastic BO and OAC compared to 0% in normal oesophageal tissue 

[123]. 

 

APC. This is a known tumour suppressor gene involved in colorectal cancer 

progression and defects are also thought to mediate chromosomal instability. 

Methylation of the APC promoter has been demonstrated in 0-25% of normal 

oesophageal tissues (NB it should be noted that higher levels of APC 

methylation have been seen in normal tissue from OAC cases), 50-95% of 

NDBO cases, and 61-100% of dysplastic BO cases. Another study 

demonstrated that methylation of the APC promoter was a better predictor of 

survival and tumour recurrence than age or stage. Hypermethylated APC DNA 

has also been observed in plasma with one study demonstrating its presence in 

25% of patients with OAC.  
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CDH13. This maps to chromosome 16q24 which, again, has been 

demonstrated to undergo deletion in cancers including OAC. In another study 

by Jin et al using 259 oesophageal biopsy specimens, hypermethylation of 

CDH13 was seen in 0% of normal oesophagi, 70% of those with BO, 77.5% of 

dysplastic BO, and 76.1% of those with OAC. 

 

DAPK1. This is a mediator of gamma-interferon induced programmed cell death 

and as such acts as a tumour suppressor. Work by Kuester et al demonstrated 

hypermethylation of the DAPK promoter in 20% of normal oesophagi, 50% of 

those with BO, 53% of those with dysplastic BO, and 60% of those with OAC. 

The consequent loss of protein expression as a result of this hypermethylation 

was associated with advanced depth of tumour invasion and advanced tumour 

staging.   

 

GPX and GST. These gene families are involved in antioxidative systems that 

catalyse the conjugation of exogenous and endogenous chemicals, including 

gastric and bile acids, and thus protect cells against oxidative damage. Peng et 

al analysed the promoter regions of 23 genes in the GST and GPX families on 

37 normal, 11 NDBO, 11 dysplastic BO and 100 OAC samples. In this study 

they found the range of methylation for normal oesophageal tissue to be 0-

8.1%, 12.5-90% for NDBO, 37.5-87.5% of dysplastic BO and 15-69.1% of OAC 

cases. This echoed work by Lee et al who demonstrated hypermethylation in 

GPx3 promoter in 16.7% of normal oesophagi, 81.1% of NDBO, 82.2% 

dysplastic BO, and 88% of OAC cases. 

 

MGMT. This gene maps to chromosome 10q26 and is involved in DNA repair, 

in particular protecting cells against G to A mutations. Multiple studies have 

explored the involvement of this gene in the pathogenesis of OAC. Methylation 

of MGMT in normal oesophageal tissue ranges from 1.8-54.8%, 25-88.9% of 

NDBO, 71.4-100% of dysplastic BO, and 23.4-78.7% of OAC cases. 

Hypermethylation of MGMT has also been shown to correlate with advanced 

disease stage. 

 

NELL1. This locus frequently shows a loss of heterozygosity in cancers 

including OAC. NELL1 encodes for a protein involved in signalling molecules 
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controlling cell growth and differentiation. The exact role of NELL1 is not known 

however it has been demonstrated that overexpression apoptosis. NELL1 

hypermethylation has been demonstrated to correlate with the length of BO and 

also with survival in patients with OAC. Hypermethylation of NELL1 was shown 

to have a frequency of 0% in normal oesophagi, 41.7% in NDBO, 52.5% in 

dysplastic BO, and 47.8% in OAC. 

 

REPRIMO / RPRM. This gene encodes for a protein that is controlled by TP53. 

As such it is involved in the regulation of the TP53 mediated cell cycle. 

Methylation frequency of REPRIMO has been found to be 0% in normal 

oesophageal tissues, 36% of NDBO, 63.6% of dysplastic BO, and 62.6% of 

OAC cases. Promoter methylation of REPRIMO was also associated with 

length of BO with those with long segment BO having significantly increased 

methylation.  

 

CDKN2A. As discussed previously this is a tumour suppressor gene that is 

commonly linked with cancer pathogenesis via the cell cycle. The most common 

alterations in the CDKN2A gene are mutations, loss of heterozygosity, and 

hypermethylation which leads to a loss of regulation of cell proliferation and 

causes genomic instability. Multiple studies have reported on methylation status 

of CDKN2A with the range of methylation frequency being 0-24.4% in normal 

oesophageal tissues, 7.4-27.5% of NDBO, 22.2-55% of dysplastic BO, and 39-

59.5% of OAC cases. It has also been shown that CDKN2A is significantly more 

methylated in patients who have progressed to OAC from NDBO when 

compared to those who have not. 

 

SFRP. These are tumour suppressor genes that modulate the Wnt pathway. 

Five SFRP genes have been identified with three of them found to be 

consistently methylated in BO and OAC. In normal oesophageal tissues the 

SFRP genes were methylated in 0-13% of cases, but 73-89% of cases of BO 

and 73-93% of cases of OAC. This was further evidenced by a lack of SFRP 

mRNA and protein expression being seen in cases of BO and OAC. 

 

SOCS. These genes are involved in cytokine signalling and in particular are 

cytokine-inducible negative regulators of cytokine signalling. It has been 
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observed that in normal oesophageal tissues there is no methylation of the 

SOCS genes, whereas in BO SOCS-3 was found in be methylated in 13% of 

cases and in 74% of dysplastic BO cases. This supports the theory that SOCS 

genes are involved in progression towards OAC. 

 

SST. Within the GI tract somatostatin regulates endocrine and exocrine 

secretion, modulates motor activity and is the primary inhibitor of gastric acid 

secretion. SST gene promoter methylation has been noted to increase as 

tissues progress towards OAC. In normal oesophageal tissue hypermethylation 

was noted in 9% whereas it was seen in 70% of BO case, 71.4% of HGD cases 

and 71.6% of OAC cases. It has also been noted that hypermethylation 

correlates with the length of BO with more frequent hypermethylation occurring 

in longer segments. 

 

TAC1. This gene has been mapped to chromosome 7q21-22 which has been 

identified in multiple studies to undergo a loss of heterozygosity in cancer 

including OAC. The role of TAC1 in carcinogenesis is not fully understood 

although part of its function is to encode for substance P which has been 

demonstrated to have proliferative and anti-apoptotic effects. Jin et al 

demonstrated a significant rise in the frequency of TAC1 hypermethylation as 

tissues progress towards OAC. Hypermethylation was seen in 7.5% of normal 

tissues, 55.6% of BO cases, 57.5% of dysplastic BO cases and 61.2% of cases 

of OAC. Again, hypermethylation was seen more frequently in longer segment 

BO. Interestingly, circulating hypermethylated TAC1 DNA was identified in 

patients with OAC. 

 

TIMP3. Again, the silencing of this gene due to loss of heterozygosity or 

hypermethylation has been frequently observed in cancer. It acts as a tumour 

suppressor gene as it can inhibit tumour growth and angiogenesis as well as 

playing a role in apoptosis. This has been reported on in multiple studies with 

hypermethylation occurring in 0-19.3% of normal tissues, 54.1-87.5% in BO, 

71.4-77.8% of dysplastic BO, and 19.5-86.3% of OAC cases. 

 

WIF1. This gene plays a role in carcinogenesis through its function as an 

antagonist to the Wnt signalling pathway. The Wnt signalling pathway has been 
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strongly linked to the pathogenesis of cancer and the overexpression of its 

signalling components and the downregulation of its antagonists plays a vital 

role. The hypermethylation of WIF1 has been demonstrated to range from 0% in 

normal oesophagus to 51.6% in BO and 83.3% in OAC. WIF1 hypermethylation 

was also more frequently seen in patients who had progressed from BO to OAC 

than those who had not. 
 
Panels of epigenetic markers have been used on endoscopic biopsies in 

attempt to accurately detect patients at high-risk of progressing from BO to 

OAC. An example of this is where a combination of APC, TIMP3 and TERT 

promoter hypermethylation was observed in 91-100% of cases of progressors, 

whereas it was only seen in 17-36% of non-progressors [120]. Additionally, a 

retrospective, double blind trial by Jin et al used 8 genes and studied 145 non-

progressors and 50 progressors. This panel demonstrated an area under the 

curve (AUC) of 0.84 meaning it had higher predictive sensitivity and specificity 

than clinical features[124].A study by Alvi et al found that four genes could 

distinguish between NDBO and dysplastic BO / OAC with an AUC of 0.988 

[125]. Epigenetic panels have also been used on plasma for the detection of 

OAC. APC and DAPK were studied with 61% of patients with OAC having 

detectable levels of methylated promoter DNA which was also associated with 

worse prognosis [120]. 

 

Finally, it is also important to recognise the work exploring miRNA in BO and 

OAC as these provide a potentially alternate means of risk stratification and 

early detection. miRNA-196a has been identified as a potential biomarker in 

OAC and a study using a panel of 4 miRNA including this found that expression 

of these four miRNAs was significantly higher in patients who progressed from 

NDBO to OAC than those who did not. Additionally, studies have identified 

miRNA-21 as being implicated in the carcinogenesis of numerous cancers 

including OAC and it has been shown to be upregulated in a progressive 

manner through the metaplasia-dysplasia-carcinoma sequence [126].  Work by 

Slaby et al compared samples of 24 normal oesophageal mucosa, 33 NDBO 

cases, 21 LGD cases, 6 HGD cases and 35 cases of OAC. This identified four 

diagnostic miRNA that could distinguish between normal and BO cases (NDBO 

and dysplasia) with an AUC of 0.971, between normal and OAC cases with an 
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AUC of 1.0, between NDBO and dysplastic BO with an AUC of 0.856 and 

between NDBO and dysplastic BO / OAC with an AUC of 0.886 [127]. Finally, 

Drahos et al found, in a study looking at 150 OAC cases and 148 BO cases, 46 

distinct miRNAs that significantly increased in OAC when compared to BO. Of 

note in this study, when cases of early stage OAC were looked at (T1b and T2 

cancers) 35 miRNAs could distinguish between BO and early stage OAC. This 

provides particular promise in the pursuit of the early detection of OAC [128]. It 

is important to note, however, that whilst mRNA directly relates to the protein 

and thus phenotype, miRNA is part of a complex regulatory network involving 

multiple target mRNAs.  

 

2.4 Overview of the transcriptomics of Barrett’s oesophagus and 
oesophageal adenocarcinoma 

 

Much of the work on the pathogenesis of BO and OAC has focused on the 

genomics behind the diseases. As discussed earlier it is apparent that the BO 

and OAC, like all cancers and their pre-cancerous conditions, have a highly 

heterogeneous genetic landscape making the search for the key mutations in 

the pathogenesis of OAC from BO a difficult task. Cancers and their pre-

cancerous conditions clearly accumulate genetic changes but not all of these 

will drive tumour progression. It is also becoming clear that cancers are not 

homogenous cells undergoing transformation by themselves but are instead 

complex biological systems of intertwined interactions and signalling within their 

microenvironment. Within progression of BO it is thought that the cells 

accumulate genetic and epigenetic alterations that are influenced by 

surrounding cells, external factors and their microenvironment [129]. Thus, 

alterations in gene expression highlighted by over or under expression through 

the metaplasia-dysplasia-carcinoma sequence provides invaluable insights into 

disease progression. Importantly it is vital to note that alterations to gene 

expression are not only caused by mutations to a gene but also through 

changes to gene regulation that can occur at the epigenetic, transcriptional, 

post-transcriptional, translational or post-translational levels. Advances in 

biotechnology, in particular the development of complementary DNA (cDNA) 

microarray technology and the accompanying bioinformatics, have allowed for 
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gene expression profiles of cancers and their pre-cancerous conditions to be 

performed. These allow in-depth study of the pathways associated with cancer 

pathogenesis and progression [130, 131]. 

 

Greenawalt et al performed gene expression profiling on biopsy samples using 

cDNA microarrays from 25 patients with NDBO, 38 with OAC and compared 

these to 39 normal patients. Following normalisation and background 

correction, unsupervised hierarchical clustering separated the tissue types with 

BO and OAC tissues being closely related. They summarise that the BO and 

OAC samples had overexpression of genes involved in tissue development, 

specifically keratinisation, intercellular junctions, calcium-ion binding and 

endopeptidase activity. The BO tissues were noted to have overexpression of 

genes associated with digestion and alcohol metabolism. In keeping with known 

literature genes in the MUC and TFF families were noted to be overexpressed 

in BO. In the OAC tissues, overexpression of genes associated with response 

to external or biotic stimuli, immune and inflammatory responses, collagen 

catabolism, and proteolysis were noted [131].  

 

Hyland et al performed gene expression profiling on matched normal 

oesophagus, normal cardia and NDBO tissue from 40 patients using Affymetrix 

microarray chip. In keeping with known data, they also observed genes such as 

the TFF family (1, 2 and 3), MUC5AC, and genes involved in keratinisation were 

up-regulated in BO. In keeping with known data, this work noted significant 

increased expression of genes within the HOX family and the activation of their 

downstream intestinal markers in the BO tissues. HOX genes have been 

demonstrated to be involved in pathogenesis of cancer through coding for 

proteins that regulate transcription factors during development. This includes 

regulating apoptosis, receptor signalling, differentiation and angiogenesis. 

When performing pathway-based analysis Hyland et al demonstrated the 

involvement of TGF-β signalling pathway, showing a possible loss of TGF-β 

signalling when comparing BO with normal oesophagus. Alterations in TGF-β 

signalling have been demonstrated previously to be involved in the metaplasia-

dysplasia-carcinoma sequence. This paper also reported alterations in the 

Notch signalling pathway, which is also linked to the metaplasia-dysplasia-

carcinoma sequence. They noted 19 genes (of 32) to be down-regulated in BO 
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when compared to normal oesophagus and in contrast 23 genes to be up-

regulated when compared to normal cardia. Hyland et al hypothesised that the 

role of these two pathways in BO may be through disrupting the ability of the 

cells to differentiate or maintain their differentiated state [132]. 

 

14 studies exploring gene expression profiling in BO were reviewed by Wang et 

al.  Six of these studies made their raw data publicly available and, of those, the 

authors selected 3 studies to analyse the data and a further single study to 

validate their findings. In the three studies used for analysis there were 75 

normal controls, 56 patients with NDBO and 43 with OAC. This work identified 

40 genes that were differentially expressed in BO from normal controls. These 

were validated with immunohistochemistry. Wang et al found that the 

BMP/TGFβ pathway and transcription factors such as CDX1 and CDX2 were 

linked to the development of BO. The genes involved included those in the 

MUC, TFF, and FOX families that have been previously linked to the 

development of BO [133].  

 

The ability to differentiate patients with NDBO from those with dysplasia is of 

key importance as it would allow the identification of individuals at high risk of 

progression to OAC rather than those with a low risk. Sabo et al obtained 

microarray data from formalin-fixed paraffin embedded (FFPE) samples of 

patients with HGD and NDBO and then selected the genes with the greatest 

differential expression between the two categories (16 upregulated and 11 

downregulated) to confirm these findings on 17 new samples (8 NDBO and 9 

HGD) using real-time polymerase chain reaction (PCR). The results of this work 

were in keeping with previously published work on altered gene expression in 

the progression to OAC. Notably, the expression of calgranulin B (S100A9) 

which has a role in chemotaxis and proliferation, was noted to be consistently 

upregulated in HGD. Additionally, ADAMTS12 and pleckstrin homology-like 

family domain were also seen to be upregulated in HGD as reported in other 

work. MUC5AC and TFF1 that have been well described to be upregulated in 

NDBO was noted to be down-regulated in HGD[134]. Murao et al had similar 

aims of identifying the high-risk individuals when comparing the expression 

profile of biopsies (and brushings) from the Barrett’s segment of 9 patients with 

OAC and 50 with NDBO. Their most notable finding was that CD55 (DAF), 
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linked to numerous cancers and involved in the innate immune response, was 

over-expressed in the brushings of those with OAC [135].  

 

Finally, Visser et al performed a systemic review of all studies, between 2000 

and 2015, exploring gene expression profiles in patients with either OAC or 

SCC of the oesophagus with the aim of identifying prognostic gene signatures. 

They analysed the results of 22 studies and interestingly identified that the 

findings were heterogeneous with only 12 of all the genes reported within these 

studies being identified in more than one study. Pertinently there were 6 studies 

looking at OAC alone. In 5 of these studies gene signatures were identified that 

associated with survival. This included one study producing a 4 gene signature 

that, if present, reduced 5-year survival from 58 to 14%. Another study 

produced a separate 4 gene signature, whilst a third found a 2 gene signature 

of SPARC and SPP1 over-expression being linked to poor outcome. Two 

studies produced large gene signatures of 165 and 59 genes, respectively, 

which were associated with better survival. Whilst this work demonstrates the 

heterogeneous landscape of OAC and these gene signatures require validation 

in large studies, it does demonstrate the potential for the development of gene 

signatures that might accurately identify individuals with OAC (and potentially 

BO) as well as predict risk, progression, and prognosis. Similar work to this has 

been validated in both breast and colon cancer [136]. It should be noted that 

unsupervised clustering is not effective at deconvoluting heterogenous 

signatures and thus can struggle to identify key pathways and specific 

molecules. A way to resolve this issue is to use Gene Set Enrichment Analysis 

that has been used to identify potential biomarkers in BO [137]. 

 

The role of miRNAs is an area of interest in cancer and their role in the 

diagnosis of oesophageal cancer has been studied. miRNAs are small 

noncoding RNAs that play a role in the regulation of the translation of genes in 

many physiological and pathological processes including cancer development. 

Aberrant expression of miRNAs has been demonstrated in many types of 

cancer and been utilised in the diagnosis and prognostication of patients[138]. 

Jia et al reported on miR-25 being overexpressed in SCC tissue when 

compared to normal tissue. miR-150 has been demonstrated to be under-

expressed in oesophageal SCC tissue when compared to normal which is 
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thought to cause the overexpression of Glioma-associated oncogene homolog 

1 and consequently a loss of cell cycle regulation through Cyclin D1[139]. Much 

of the work in relation to oesophageal cancer and miRNAs have focussed on 

SCC and the utilisation of tissue. However, Zhang et al demonstrated that 

serum concentrations of 4 miRNAs (overexpression of miR-25-3p and miR-

151a-3p and under-expression of miR-100-5p and miR-375) were significantly 

different in patients with OAC when compared to normal controls[140]. 

 

The canonical view put forward by early studies on cancer tissues promoted the 

view that the development of cancer occurred through a stepwise acquisition 

and accumulation of genetic alterations [141]. However, this view is now 

challenged through the recognition that individual tumours show great 

heterogeneity in their patterns of genetic alterations, epigenetic changes and 

gene expression even within single histological groups [142]. Additionally, it has 

been demonstrated that malignant phenotypes can be maintained solely by a 

sub-population of cells with stem cell properties [143].Finally, it has also been 

shown that early stage cancer has a similar gene expression profile to 

metastatic cancers and, interestingly, in regards to OAC it has been shown that 

gene expression profiles, particularly in stromal gene expression associated 

with tumour growth, is found to be similar both in BO and OAC[144]. Therefore, 

one can hypothesise that diagnostic tests based purely on genomics may be 

challenging as epigenetics and transcriptomics provide a more complete and 

dynamic view of a tumour or disease phenotype. The epigenome can inform on 

the environmental changes that affect disease, whilst the transcriptome is 

closely related to the proteins and thus the disease phenotype. Genomic 

biomarkers tend to provide an accurate diagnosis for inherited diseases rather 

than complex diseases such as cancer and autoimmune conditions. 

Consequently, a diagnostic test focussed only on genetic mutations may fail to 

identify individuals at an early or ideally high-risk pre-malignant stage.  

 

2.5 Chapter summary 

 

It is clear that the genomic, epigenomic and transcriptomic landscape of BO and 

OAC are complex and heterogeneous with this landscape not only affected by 
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interactions with each other but also through the influence of external factors 

and the microenvironment. Whilst consistent markers have been found to 

identify individuals with BO such as TFF3, this does not necessarily improve the 

prognosis of OAC as the vast majority of these individuals will not progress and 

the identification of those that will remains highly problematic. This potentially 

leads to the subjection of more individuals to invasive testing at the cost of great 

healthcare resource with little in the way of improved patient outcomes. Clearly, 

however, further work in these fields holds the key to early identification of 

individuals with or at risk of developing OAC and as such improving its grave 

prognosis. 
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Chapter 3 -  Hypothesis and aims of this thesis 
 

The hypothesis for this thesis is; 

 

Individuals with or at-risk of OAC can be accurately identified through analysis 

of questionnaire data and / or liquid biopsies. 

 

In summary the specific aims of this thesis are; 

 

1. Can individuals with or at-risk of OAC be accurately identified through 

analysis of demographic, symptom and risk factor questionnaire data? 

 

2. Can sufficient quality and quantity of RNA and DNA be extracted from 

blood and / or saliva to be used in downstream analysis for biomarker 

discovery that could potentially identify the at-risk individual? 

 

3. Can saliva potentially be used as a liquid biopsy for population 

screening? 

a. What are the optimum collection and storage procedures to 

provide the best quality and quantity sample? 

b. What biomarkers can be detected utilising salivary DNA and RNA 

from epigenetic and transcriptomic analysis? 

c. Can the discovered biomarkers be utilised with or without clinical 

questionnaire data to accurately identify the at-risk individual and 

potentially create a population screening tool?  

 

The central aim of this thesis is to develop a novel non-invasive means to 

identify individuals who already have or are at risk of developing OAC. For this 

work the at-risk individual will be defined as those with the precursor lesion BO 

either in its low-risk form, NDBO, or its high-risk form of HGD. Patients with 

LGD were excluded from the analysis due to the complexities of its diagnosis 

outlined in Chapter 1.  

 

This will be approached in differing manners acknowledging that a population 

screening tool will need to be safe and acceptable. Chapter 4 explores the use 
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of novel artificial intelligence (AI) analysis of patient demographic, risk factor 

and symptom data (collected via a patient questionnaire) to determine whether 

this alone can identify at-risk individuals. The AI analysis was performed by 

Professor Avi Rosenfeld at Jerusalem College of Technology. AI analytical 

techniques were developed on an already existing data-set collected as part of 

a previous study on OAC. Following this work, this thesis explores whether 

additional data collected through a specifically designed questionnaire, with 

enhanced data points, can improve our ability to identify individuals with or at 

risk of OAC. 

 

This thesis then explores whether the identification of at-risk individuals can be 

improved by either integrating transcriptomic and / or epigenetic data with the 

questionnaire data or whether this biomarker data alone is sufficient to identify 

at-risk individuals. In Chapter 5, focus is on whether sufficient RNA can be 

extracted from blood and / or saliva for downstream analysis and biomarker 

discovery. Optimisation of extraction techniques are undertaken and preliminary 

biomarker work is performed using matched blood and saliva samples for 

targeted expression analysis. 

 

Taking the salivary diagnostic work further, Chapter 6 explores the use of saliva 

as a tissue for population screening. Further method optimisation work is 

performed to determine the ideal collection and storage of salivary samples. 

Following this biomarker discovery is performed on a large cohort of patients 

using salivary RNA for targeted expression analysis and whole mRNA 

sequencing is performed on a smaller cohort of patients to identify future 

potential biomarkers that require validation. Additionally, DNA is extracted from 

the saliva samples and submitted for epigenetic analysis using the Illumina 

EPIC array.  

 

Chapter 7 concludes and summarises the key findings of the work presented as 

well as outlines future work required.  
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Chapter 4 - Identification of the at-risk individual through analysis of 
questionnaire data using machine learning 
 

4.1 Introduction. Using machine learning to analyse questionnaire data 

 

4.1.1 Overview of artificial intelligence in medicine 

Artificial intelligence (AI) is the science and engineering behind the creation of 

intelligent machines and / or intelligent computer programs. Machine learning 

(ML) is a subset of AI and is a branch of data mining that applies mathematical 

models to generate computerised algorithms. These can create novel prediction 

models.  ML involves a computer ‘learning’ important features of a dataset to 

enable predictions about other, unseen, data. This can be particularly useful to 

create predictive models about which subjects have a disease. 

 

The medical field has lagged behind using AI although there is an increasing 

clinical footprint. There are complex issues behind this. Firstly, physicians had 

felt uncomfortable with the risks of medical error and, although in some areas 

the clinical risks may be no higher when using AI, are generally reluctant to 

embrace the “black-box nature” of an automated system. A cofounding factor in 

this was that there were early instances in which the AI systems were unable to 

perform as well as the physician. An example was the use of AI to analyse 

clinical and demographic data and 477 electrocardiogram (ECG) biomarkers 

from 33,144 women to predict mortality in post-menopausal women. Whilst the 

results of this were encouraging, it was not as effective as already existing risk 

prediction scores [145]. This is not always the case, however, AI improved the 

detection of ovarian and breast cancers using ultrasonography [146, 147]. It has 

also aided in the classification of prognosis in melanoma, to predict 

susceptibility for cerebrovascular disease, risk of recurrence of breast cancer, 

and diagnosis of thyroid disease with outcomes as good as, if not better, than 

specialists within those fields[148-150]. Within the field of gastroenterology 

there is now an increasingly large AI footprint, particularly within endoscopy. AI-

assisted endoscopy with recognition and characterisation of lesions is now 

becoming increasingly common and part of an endoscopists every day work 

[151]. 
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A second obstacle is the data that is provided to the AI programs. If the inputs 

are limited, known as “supervised learning”, then their ability to perform is 

equally limited. An example of this is the AI automated interpretation of ECG’s 

in which it has been given a limited number of diagnoses and patterns to 

recognise and consequently provides only a limited interpretation. In this 

scenario, the program can only perform as well as a physician. In many 

applications of AI in medicine the data supplied has been limited to what is 

known. There are, however, examples where AI systems were developed 

without constraints. For example, Beck et al published work aiming to improve 

the identification of high-risk breast cancer cases by analysing pathological 

specimens called “C-Path”. In this work, instead of using the historical markers 

of risk such as atypical nuclei, the AI system used image processing to identify 

6642 predictors that, when tested on 2 independent test sets, were superior to 

results achieved by pathologists. These results were significantly associated 

with 5-year survival beyond any established clinical or molecular markers [152, 

153]. Examples like this are currently rare. The opportunity and appetite to 

collect the required huge amounts of unbiased data from a large cohort of 

individuals is costly, particularly when there is a possibility that little will be 

learned from doing so. We therefore frequently see new algorithms being 

applied to old data. 

 

Examples like the above suggest that AI may have a role in providing support 

for under-resourced areas of medicine such as decreasing the burden on 

histopathologists who are facing increasing numbers of cases to review as a 

result of the increasing numbers of diagnostic tests being performed. A study by 

Bejnordi et al demonstrated that an AI model was able to detect breast cancer 

better than 11 pathologists if the pathologists were allowed only 1 minute to 

review the slides. The mean of the 5 best performing algorithms had an AUC of 

0.966 with the pathologists having a mean AUC of 0.810. It should be noted, 

however, that when the pathologists had no time constraints they performed as 

well as the AI model (AUC 0.960) and the pathologists were able to find difficult 

to detect cases more often[154]. Another example of AI being used to challenge 

the current accepted means of service delivery was with a recent study 

exploring the decision making of a multidisciplinary team in 638 breast cancer 
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patients. In this study the AI model (Watson for Oncology) gave 

recommendations that were highly concordant (93%) with that of the 15-

member team of physicians [155]. 

 

AI is of course vulnerable to being affected by small subsets of data that differ 

from the general pattern. This can lead to the creation of algorithms that are 

inaccurate when tested in larger cohorts. However, combining this analysis with 

molecular biology creates “anchors” that prevents data being swayed. The field 

of molecular biology is an area in which AI has huge potential. One study using 

AI on mRNA data from 1208 kidney transplant biopsies was able to predict 

allograft loss better than current histological methods[155]. The use of AI for 

accurate diagnosis and prognostication is becoming more frequent in the field 

of clinical oncology. Cheng et al have published and won the Breast Cancer 

Prognosis Challenge for their work on building predictive models using genomic 

and clinical data in breast cancer. They also published work on so-called 

attractor metagenes in which they identified, using unsupervised learning of 

genomic data, clusters of genes required for cancer progression in multiple 

tumour types. They found that by combining both genomic and clinical data they 

were able to build predictive models that out-performed any known system 

[153]. 

 
Clearly AI offers great potential within the field of medicine. It is hoped that the 

utilisation of big data will allow for better disease surveillance, earlier detection, 

improved diagnosis, uncover new treatments and bring the prospect of 

personalised medicine into reality. Additionally, it is hoped that AI will obviate 

the repetitive tasks that strain healthcare resources such as documentation and 

the review of straightforward histology or imaging. However, with this potential 

there are also fears that AI will disrupt the physician-patient relationship 

removing the crucial role of emotional intelligence, empathy and human 

judgement to guide and advise. 

 

There are many branches of AI. However in this work, through a collaboration 

with Professor Avi Rosenfeld, Professor of Data Mining at the Jerusalem 

College of Technology, we focus on machine learning. Machine learning 

involves using intelligent computer programs and algorithms to collate, 
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aggregate, and analyse large data sets that were traditionally too large for 

interpretation and analysis to reveal patterns, trends, and associations. The 

computer program operates not by following explicitly programmed instructions 

but by building models using the algorithms created from the data inputs. This 

allows the program to iteratively learn as it receives more data inputs. Professor 

Rosenfeld utilised Bayesian machine learning for this work in which the 

algorithm was developed around a set of variables and their conditional 

dependencies e.g. what is the probability of outcome A, if variable B occurs. In 

medicine this can be applied as; what is the likelihood of developing OAC if a 

patient smokes tobacco. The model can then be built exploring a multitude of 

variables and in various combinations, referred to as a Bayesian Network. 

 

Machine learning is applied for the analysis of heterogeneous data sets and as 

such is often used in the field of medicine when analysing questionnaire or 

molecular biology data. There are three categories of machine learning; 

supervised, unsupervised and reinforcement learning. Supervised learning is 

most commonly used in medicine as it analyses the data when the outcome is 

known. With unsupervised learning the data is uncategorised and the AI model 

looks to find hidden patterns of groups within the data. Finally, reinforcement 

learning uses simulated data and as such is rarely used in medicine. Within this 

work Professor Rosenfeld utilised supervised learning to identify specific trends 

across the data. In general terms, this process involves an algorithm being 

applied to pre-processed data (the cleaning of data, removal of incomplete data 

and addressing any missing information) that has undergone transformation 

that includes accurate scaling, decomposition (splitting attributes into 

constituent parts) and / or aggregation (combining related attributes into a 

single feature). These steps maximise learning from a training set and allow for 

the creation of algorithms that can be applied to the testing set. The AI model 

then undergoes cross-validation by splitting the data into subsets and testing 

the model a number of times on each subset. The prediction error is then 

averaged over the number of trials on each subset to obtain the total 

effectiveness of the AI model. Once complete statistical methods are utilised to 

provide parameters such as sensitivity and accuracy and should this be 

acceptable the algorithm can be applied to further data sets.  
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Alongside machine learning, the use of an AI technique called “feature 

selection” in analysing bioinformatics data has become an essential tool. It 

allows the analysis of a large volume of data which may feature numerous 

irrelevant features. This approach avoids the pitfalls of over-fitting the data, 

provides faster and cost-effective models and generates results that provide a 

deeper insight into processes [156].Generally speaking there are three types of 

selection techniques: filter, wrapper and embedded. For our work, Professor Avi 

Rosenfeld focused on using the multivariate filter techniques alongside a novel 

filter technique created by himself in collaboration with our team, called MIAT 

[157]. MIAT is an acronym for “Minority Interesting Attribute Threshold” and is 

unique in that it is designed to identify significant data that is strongly correlated 

to a diagnosis that only occurs in a minority of instances. By identifying those 

thresholds, it can adaptively identify subgroups from a big dataset that correlate 

to clinical variables. 

 

Several screening tools for BO have been evaluated with variable degrees of 

success [158]. In addition, the annual incidence of OAC in patients with BE may 

be as low as 0.1% [159]. The merits of current surveillance approaches for BO 

therefore remain controversial. The minimally invasive Cytosponge may add an 

important triaging step as it can be administered in general practice, is 

acceptable to patients, and has a sensitivity of 87% for patients with >3cm of 

BE with a specificity of 92% [160, 161]. An important question that then arises is 

which patients to screen with this test.  

 

The obvious groups to target would be those with symptoms of disease as well 

as those with known risk factors. The main factors include age, sex, reflux 

symptoms, obesity, cigarette smoking, and family history [162]. Ethnic 

background has also been suggested [163]. Further risk factors for 

oesophageal cancer include ingestion of red meat and pickled vegetables, 

although the latter are probably only relevant in squamous cell cancer, whereas 

processed meat may be important in OAC [164]. Anticholinergic drugs have 

been shown to significantly increase risk of OAC [165]. We have previously tried 

to identify patients at risk by analysing these factors, with relatively poor 

success [166].  
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We hypothesised that machine learning techniques may yield better and more 

reproducible discrimination between patients with and without BO compared to 

the statistical models used previously.  Previous works often did not validate 

their results and those that did found large reductions in model accuracy 

between the training and validation cohorts [161, 163, 167]. Additionally, most 

studies focused on only a few symptoms, making comparison to previous work 

difficult. For example, individual studies have been published reporting risk 

factors associated with BE including older age [168, 169] , male gender [156, 

168, 170], Caucasian race [171-173], gastro-oesophageal reflux disease 

(GORD) [169, 174, 175], smoking [176-178], and central obesity [178, 179]. To 

our knowledge, no studies exist which considered all of these factors together, 

particularly whilst considering cofounding effects.  In this current study we 

evaluate two extensive independent datasets to develop the model with an 

additional independent validation set. 

 

4.2 Aims of chapter 

 
The aim of this chapter is to establish whether using machine learning 

techniques to analyse medical data enhances our ability to identify individuals 

with Barrett’s oesophagus when compared to traditional medical statistical 

analytical techniques. The targeted objective of this chapter is: 

 

1. Compare machine learning analysis to traditional medical statistical 

analysis by applying techniques to an identical dataset to determine 

whether superior results are achieved by artificial intelligence. 

 

This work has now been published [180] 
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4.3 Methods 

4.3.1 Study design and Participants 

In this prospective study, machine learning risk prediction in Barrett’s 

oesophagus (MARK-BE), we collected data from two case-control studies done 

in the UK to construct training, testing, and external validation datasets. We 

collected data on patients with Barrett’s oesophagus and controls, both as 

defined in the inclusion criteria of the studies. All patients with a diagnosis of 

dysplastic Barrett’s oesophagus or oesophageal adenocarcinoma were 

included in the Barrett’s oesophagus group and those with ultra-short segment 

Barrett’s oesophagus (Prague classification of less than C1Mx or C0M3) were 

removed from the analysis completely to create a clear distinction between the 

groups.  

BEST2 (ISRCTN 12730505) was a case-control study undertaken nationwide in 

14 UK hospitals, with patients recruited between 2011–14, that compared the 

accuracy of the Cytosponge-trefoil factor 3 test for the detection of BO with 

endoscopy and biopsy as the reference standard [95, 181]. BO was defined as 

endoscopically visible columnar-lined oesophagus (Prague classification > C1 

or M3), with histopathological evidence of intestinal metaplasia on at least one 

biopsy sample. Controls were symptomatic patients without BO referred for 

routine endoscopy. Of 1299 patients, 880 (67·7%) had BO, 40 (3%) had 

invasive oesophageal adenocarcinoma, and 419 (32·3%) were controls. In 

parallel to assessing the accuracy of the Cytosponge test, patients were asked 

to complete a questionnaire giving details of 40 symptoms and risk factors of 

their condition to analyse whether these symptoms and risk factors could be 

used to stratify patients by risk, such as we have done previously [182]. 

Questionnaire data were collected from all 1299 participants. For the current 

study, we randomly split this large dataset (6:4) using a computer algorithm into 

a training dataset (n=776) and a testing dataset (n=523). We split the dataset 

using this ratio to allow sufficient training data to quantify the model’s 

complexity, while maintaining adequate data to validate the model.  

BOOST (ISRCTN 58235785) was a case-control study undertaken in four 

European hospitals (two in the UK in London and Nottingham, one in Leuven, 
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Belgium, and one in Madrid, Spain), with patients recruited between 2013–15, 

that used enhanced endoscopic techniques to target high-risk lesions that occur 

in patients with BO [168]. Clinical and demographic data were collected. 

Controls were patients referred by their primary care physician with suspected 

oesophageal cancer who had neither BO nor oesophageal adenocarcinoma 

and were analogous to those in BEST2. Although BOOST was a multicentre 

study, questionnaires were only collected from 398 patients at a single site, 

University College London Hospital, London, UK. 197 (50%) of 398 participants 

who completed questionnaires were controls and 24 (6%) of 398 had 

oesophageal adenocarcinoma. Patients were asked to complete a 

questionnaire similar to that in BEST2. This questionnaire was designed from 

the outset to include the same questions as in the BEST2 questionnaire so that 

the cohort could be used as a validation dataset for a symptom-based algorithm 

that was to be generated from the BEST2 dataset in line with TRIPOD 

guidelines [169]. However, some extra questions were included relating to food 

intake, anxiety, and depression. We used this dataset as the external validation 

dataset.  

The primary outcome of both studies was a diagnosis of BO, which was 

ascertained by histopathologists who were masked to predictor variables.  

For BEST2, symptoms of gastro-oesophageal reflux disease (GORD) were 

collected with a questionnaire adapted from the GERD Impact Scale together 

with the GORD questionnaire [158]. BOOST also included the hospital anxiety 

and depression scale. The total number of variables reported in BEST2 was 40 

and in BOOST was 204. In both studies, data were collected on paper case-

report forms and transferred into electronic databases by investigators.  

4.3.2 Data Handling and Machine Learning approaches 

We imputed missing data for nominal and numerical features with the modes 

and means of the training data. Here we describe how predictors were handled, 

and the workflow is shown in the figure below.  
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We used feature analysis to process data and identify important predictors. For 

the training dataset, we analysed data using two accepted feature selection 

filters: information gain and correlation-based feature selection. Information gain 

is a machine learning univariate filter that compares each feature separately 

and its correlation with the class. Features are chosen on the basis of how 

much each one discriminates between the groups being investigated; in our 

case, BO versus no BO. Correlation-based feature selection filtering is a 

multivariable filter that specifically considers features’ correlation to each other 

and removes redundant features that are highly correlated. The final set of 

features is then used to generate the analysis model.  

Both information gain and correlation-based feature selection are filter feature 

selection methods and thus have the advantage of being fast, scalable, and 

independent of the classifier [156]. Independence from the classifier is crucial to 

our study because it allows us to understand which features are being selected 

by the algorithm and their medical importance. As made clear by Nie and 

colleagues [170], filters that are independent of the classifier enable improved 

interpretability. They should also lead to more stable algorithms than 

conventional statistical approaches, such as backward logistic regression, 

because they minimise data overfitting. Similar to our previous work [182], we 

Figure 5: Machine learning work ow for data processing 
and model development  
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initially identified k features that had at least a minimal correlation to BO. We 

then plotted the change in mean area under the receiver operator curve (AUC) 

for prediction of BO using between 1 and k features.  

We identified the smallest number of independent features in the BEST2 

training dataset to create our model. The smaller the set of predictors, the more 

stable and robust the model, which minimises the risks of overfitting the data.  

Once our features were defined, we considered five different machine learning 

methods: logistic regression, a decision tree based on the Gini measure of 

quality, a naive Bayes classifier assuming a Gaussian distribution, a support 

vector machine using the radial bias function kernel, and a random forest 

classifier using ten trees. These five algorithms were chosen for comparison 

because they are well-accepted machine learning methods in medical 

applications [171-176]. The relative strengths and weaknesses of learning 

algorithms remain a major research topic but in principle, when training data are 

restricted, simpler models usually perform better because they will generalise 

more reliably e.g. linear and logistic regression models. Random forest and 

decision trees usually perform better when training data are abundant and a 

complex interaction exists between features. Support vector machines can be 

extremely robust if the number of predictive features is very large compared 

with the number of training examples, a situation in which overfitting often 

occurs. Naive Bayes should be preferred over logistic regression if data are 

sparse but one is confident of the modelling assumptions [177]. We also 

considered using deep neural networks, but given the lack of dimensionality of 

our data, these models are substantially less accurate and interpretable [178, 

179, 183]. Although we considered several options for building a supervised 

prediction model, unless otherwise specified, we present the results from a 

logistic regression prediction model.  

We developed a prediction model using 90% of the BEST2 training dataset to 

train and 10% to internally test the model (Figure 8). This process was repeated 

ten times. We used the mean AUC to determine which model performed best, 

which was then tested with the BEST2 testing dataset. Finally, we validated the 

model on the BOOST external validation dataset. For the AUC calculation, we 
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set the sensitivity of the model to 90%, because we deemed this sensitivity to 

be clinically relevant.  

Because the AUC measurements might have restricted accuracy for 

imbalanced datasets, we calculated precision recall and log loss to show the 

stability of the derived model. We calculated and present extended metrics for 

the machine learning application for the training model when applied to the 

BEST2 testing dataset, and for the BEST2 training model after external 

validation on the BOOST dataset. We present accuracy, which is the ratio of the 

correctly labelled participants to the whole dataset; recall, which is equivalent to 

sensitivity (of all the people with BO, how many could we correctly predict?); 

precision, which is equivalent to positive predictive value (how many of those 

labelled with BO actually have it?) measured at the highest point on the receiver 

operator curve; and the F-measure, which is the harmonic mean (average) of 

the precision and recall.  

The input datasets included obvious biases, such as different sex prevalences 

in the BO and control groups and duration of symptoms. Patients with BO are 

known to have a higher prevalence of long-term gastro-oesophageal reflux 

disease [161, 164]. Additionally, controls presented with new symptoms 

whereas those with BO were mostly in surveillance programmes. We 

reconstructed the datasets so that race, sex ratios, and age profiles were similar 

across all datasets. We also removed all features relating to symptom duration. 

We then repeated all machine learning with this reconstructed dataset to build a 

new risk prediction panel. The risk prediction panel was tested on both the 

BEST2 testing dataset and the BOOST independent validation dataset with the 

actual diagnoses withheld. Once the panel had predicted the diagnoses, the 

results were compared with the true diagnoses and the accuracy of the model 

was then calculated.  

4.3.3 Statistical analysis 

This Article is reported in alignment with TRIPOD guidelines [169]. No generally 

accepted approaches exist to estimate sample size requirements for derivation 

and validation studies of risk prediction models. We used all available data to 
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maximise the power and generalisability of our results. Model reliability was 

enhanced by our use of an external validation cohort.  

We present discrete variables as numbers and percentages and continuous 

variables as mean (SD). We calculated p values for the association of each 

factor with presence and absence of BO using Student’s t test or the χ2 

method. We calculated AUCs by generating a univariate logistic regression 

model using only that feature.  

We present the ranked features from the training dataset using regression 

coefficients of the association of each feature in the final prediction model. We 

present the risk of BO associated with each feature using odds ratios and 95% 

CIs.  

We did all analyses using the RWeka, cvAUC and pROC packages in R 

(version 3.6.1).  

4.3.4 Role of funding sources  

The funders of the study had no role in study design, data collection, data 

analysis, data interpretation, or writing of the report.  

4.4 Results 

Demographic and symptom characteristics for all three datasets are shown in 

Figure 6 below:  
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BO patients were generally older than those without BO and were also more 

likely to be male and smokers, had more central obesity, took more anti-reflux 

medication, and had less frequent stomach pain. Additionally, those with BO 

had experienced acidic taste and heartburn for significantly longer than those 

without.  

In the case-control BEST2 training dataset, all cases had a confirmed diagnosis 

of BO. We selected features with a non-negligible information gain. In line with 

previous work [184], we used a threshold of 0·01 (i.e. above a negligible zero 

value) to select features that would positively affect the model. Features with a 

weaker correlation to disease were removed. A total of 19 features were 

selected (Figure 7). 

Figure 6: Demographics and symptom characteristics of the three datasets by the presence or absence of Barrett’s 
BO Oesophagus 
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We sorted these features from highest to lowest information gain correlation 

with BO and considered subsets with the top k features ranging between 1 and 

24. We selected the eight features with the highest information gain and found 

no significant increase in the AUC (p value of the moving average of the next 10 

points compared with the original values being 0·7; Figure 8 below).  

 

Figure 7: Ranked features in the BEST2 training 
dataset 

Figure 8: Performance of the model using the BEST2 training dataset Increasing the number of features strengthens 
the model to a plateau point that is reached around eight features. The model AUC remains unaffected when up to a total 
of 19 features are added. AUC=area under the receiver operator curve.  
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This finding is consistent with the concept that adding features, even those with 

strong correlation to BO (Figure 7), does not necessarily improve model 

performance.  

We developed multivariable models using correlation-based feature selection 

based on all 24 common features. Correlation-based feature selection selected 

eight features as independent predictors of BO (age, sex, waist circumference, 

stomach pain, taking anti-reflux medication, duration of heartburn, duration of 

acidic taste in the mouth, and smoking; Figure 9A below).  

 

 

 

These features were not the same as the top eight features identified with 

information gain analysis (Figure 7).  

The prediction model was based on the features selected via the correlation-

based feature selection analysis (Figure 9A). Once we had our small panel of 

features, we tested the five different machine learning methods and found that 

logistic regression yielded the best median AUC, and so we elected to use this 

model (Figure 10).  

Figure 9: Risk prediction model panels for Barrett’s oesophagus 
(A) The eight features selected by correlation-based feature selection for the BEST2 training dataset, and the 
direction of association with presence of Barrett’s oesophagus. (B) Of the eight features identified, those that are 
still associated using the correlation-based feature selection model using the reconstructed datasets, excluding 
potential age, sex, race and symptom duration biases, are shown in black, with those no longer associated in grey. 
Arrows show the direction of association, with an arrow pointing up indicating an increased likelihood of Barrett's 
oesophagus.  
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Furthermore, this model is most readily understandable to a medical audience 

making it easy to convert into a usable tool for clinical practice.  

We used the testing dataset to provide an upper estimate of the model’s 

predictive ability (Figure 11). Using the BEST2 testing dataset, the AUC was 

0·87 (95% CI 0·84–0·90) and, for a sensitivity arbitrarily set at 90%, the 

specificity was 68%.  

We validated this model using the BEST2 testing dataset. The model 

reproduced well, with an AUC of 0·86 (95% CI 0·83–0·89), with sensitivity set at 

90%, and specificity of 65%. The model was finally tested on the independent 

validation BOOST dataset. Here the model achieved an AUC of 0·81 (95% CI 

0·74–0·84), with a set sensitivity of 90%, and a specificity of 58%. This three-

stage development process led to a stable, reproducible model.  

For completeness, we also present the accuracy, recall, precision, and F-

measure results of the training model applied to the BEST2 training dataset and 

the external validation model on the BOOST dataset (Figure 11). The results 

were in a relatively narrow range (e.g. accuracy 76·88–84·51% and F-measure 

0·77–0·84) with the lowest values being recorded when validating the BEST2 

model on the BOOST data. These results are consistent with the AUC results.  

Figure 10: Comparison of model’s AUC with different machine learning classification algorithms 
Box plots show AUCs and 95% CIs. AUCs when using the BEST2 training dataset with 13 features. AUC=areas 
under the receiver operator curve.  
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We repeated our analyses using reconstructed databases to remove potential 

biases. Reconstructing the cohorts reduced the BEST2 training dataset from 

776 to 394 patients; the BEST2 testing dataset from 523 to 297 patients; and 

the BOOST external validation dataset from 398 to 162 patients (Figure 12).  

 

  

Figure 11: Extended metrics for evaluating the machine learning application, by 
dataset 

Figure 12: Demographic and symptom characteristics of reconstructed datasets, by presence or absence of 
Barrett’s Oesophagus 
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We used the same workflow to create a new model. We determined the new 

correlation-based feature selection variables (Figure 9B). The same features 

remain apart from age, sex, and symptom duration. No new features entered 

the correlation-based feature selection analysis. As for the initial analyses, we 

selected features with non-negligible information gain, and selected a total of 

seven features. We then built multivariable models based on correlation-based 

feature selection on these seven features. Three were selected as independent 

predictors of Barrett’s oesophagus (waist circumference, frequent stomach pain, 

and taking anti-reflux medication; Figure 9B). The overall accuracies are lower 

than the original eight features, but a clear difference remains between patients 

with and without BO. The initial model had an AUC of 0·84 (95% CI 0·79–0·88; 

sensitivity 90%, specificity 43%), which decreased to 0·78 (95% CI 0·72–0·84; 

sensitivity 90%, specificity 41%) after testing internally, and to 0·77 (0·64–0·81; 

sensitivity 90%, specificity 37%) after external validation.  

Most features identified through both iterations of the model are readily 

understandable such as age, male sex, longer duration of symptoms, taking 

anti-reflux medications, and central obesity (i.e. waist circumference). However, 

the feature of lower frequency of stomach pain appears counterintuitive.  

4.5 Discussion 

We have shown that a panel with eight features, including detailed stomach and 

chest symptoms, can predict the presence of BO with high sensitivity and 

specificity in a case-control population. The currently used system for identifying 

patients with BO, or those at risk of oesophageal adenocarcinoma, is flawed 

because it is based on symptoms that trigger expensive and unpleasant 

invasive tests. Simple triaging of individuals might be possible on the basis of 

predictive panels that include variables that are widely available or easy to 

obtain. Work on the QResearch database has shown the usefulness of this 

approach to predict oesophageal cancer [185]. This approach is slowly being 

incorporated into general practice but it has not yet been robustly confirmed to 

detect the premalignant phenotype of BO, potentially because BO is frequently 

asymptomatic and takes many years to develop into cancer. Nevertheless, this 

condition needs to be recognised because of the success of early intervention 

in preventing oesophageal adenocarcinoma with its dire prognosis [186].  
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In our study, we specifically did not include patients with ultrashort Barrett’s 

oesophagus (i.e. Prague classification of <C1 or <M3). Differences exist 

between UK and US guidelines on follow-up for this low-risk group and our aim 

was to create a prediction tool that avoided this ambiguity. Although the 

methods we used are generally applicable and should be considered for 

prediction of other diseases, we focused on BO as an example of how a tool 

could be used by primary-care physicians to better target people for formal 

screening. Patient age and sex, together with medication and smoking history, 

are routinely captured in primary care systems. Additionally asking about 

duration of heartburn and acidic taste, frequency of stomach pain, and 

measuring waist circumference should be simple for physicians. Alternatively, a 

patient could do a self-assessment using a web-based app and generate a 

personalised BO risk profile. Precise cut-offs between patients and controls will 

need to be defined once this risk prediction panel is tested prospectively in a 

primary care population in which the prevalence of BO is lower than in our 

cohorts. For a particular AUC, the sensitivity chosen for use in clinical practice 

can be altered depending on the clinical question. If triaging for cancer in 

symptomatic individuals would require a sensitivity of 95% or greater, missing a 

diagnosis of BO might not be so critical, and a sensitivity of even lower than 

90% might be adequate. Indeed, machine learning might offer a way to create 

accurate predictive panels to pre-screen for many other diseases and could be 

tuned to achieve the desired sensitivity depending on the importance of the 

disease in question.  

Reflux duration is strongly correlated with cancer risk and is longer in patients 

with BO. In our panel, use of anti-reflux medicines was a strong BO predictor. 

Metabolic obesity characteristically presents with truncal obesity and is also a 

risk factor for BO [187], which explains why our model predicted patients with 

BO to have greater waist circumference. Waist circumference is not routinely 

collected, but is an easy measurement to collect, particularly for patients who 

wish to self-triage. A clear correlation exists between waist circumference and 

body mass index (BMI), which is routinely collected. Our method identified the 

most important independent predictors of BO. In routine practice, replacing 

waist circumference with BMI might be more practical but the model would then 

need to be reworked. Another finding that initially appears counterintuitive is the 
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negative correlation between BO and frequency of stomach pain; however, on 

further investigation this correlation makes sense. Most patients with 

oesophageal adenocarcinoma are not identified before cancer develops despite 

many of them having BO. Indeed, 40% of patients with oesophageal 

adenocarcinoma have not previously had symptomatic reflux and many 

probably had BO [188]. Therefore, BO has been hypothesised to not be 

associated with severity of reflux symptoms [189], which fits with the model 

determined from our data.  

Our panel of features differs from the QResearch database work for 

oesophageal cancer [190]. The QResearch panel includes dysphagia, appetite 

loss, weight loss, and anaemia as predictors for cancer and does not include 

duration of symptoms or central obesity data. These differences reflect the 

different realities of BO and oesophageal adenocarcinoma.  

Previous works have identified risk factor panels, including multiple biomarkers, 

such as leptin and interleukin levels, or data from genome-wide association 

studies, which are not easily available, and others included only a few 

symptoms [158, 191]. For those in which the risk factor panels were larger, 

several key differences exist between our analyses and these previous works. 

We confirmed the importance of older age [161, 191, 192], male sex [159, 160, 

162], gastro- oesophageal reflux disease [158, 159, 161, 164, 192, 193], 

smoking [165, 166, 191, 192], and central obesity [191, 192, 194]; however, we 

found that many of these risk factors were cross-correlated in our data analysis. 

We overcame the challenge of panels failing external validation through a 

combination of univariate and multivariable feature selection techniques that 

yielded a stable panel. The results are better than previous panels with 

sensitivities of 70–80% and specificities of 50–60% or AUCs of 0·7 or lower 

[158, 159, 191, 192]. By contrast, our panel validates between completely 

different datasets with an AUC of at least 0·81 when only considering eight risk 

factors. This predictive panel of risk factors might be adequate to be used as a 

BO triaging tool in clinical practice. 

Three recent studies support our risk prediction panel. Xie and colleagues 

followed-up 63000 patients for 20 years in Norway for risk of developing 

oesophageal adenocarcinoma and they constructed a model based on a very 
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similar risk panel to ours [195]. Their data were taken from a patient cohort 

without the level of symptom granularity we achieved by using data from 

cohorts in which patients were interviewed. The AUC of their model to identify 

15-year risk of oesophageal adenocarcinoma was 0·84 (95% CI 0·76–0·91) but 

it did not attempt to identify patients with BO. Similarly, Kunzmann and 

colleagues examined 355 034 individuals from the UK Biobank for risk of 

developing oesophageal adenocarcinoma [195]. Their panel including age, sex, 

smoking, BMI, and history of oesophageal conditions or treatments and they 

identified individuals who would later develop oesophageal adenocarcinoma 

with an AUC of 0·80 (95% CI 0·77–0·82). Once again, their study did not 

specifically aim to identify BO, although the features are remarkably similar to 

those we identified, suggesting that many patients they identified might have 

undiagnosed BO [196]. We found one study that targeted sporadic BO alone 

that was undertaken in a small Australian cohort in which their choice of risk 

factors was determined by complex deduction; however, this approach did lead 

to a tool with an AUC of 0·82 (95% CI 0·78–0·87) [197]. This tool was later 

validated in an independent dataset [197, 198]. One additional feature of that 

model was hypertension, which was not identified as an independently 

important feature in our model even though we queried for it, raising the 

question of the stability of their model.  

Because our aim was to create a tool for pre-screening, we intentionally used 

the BEST2 and BOOST datasets, which had a higher incidence of BO than the 

general population. Generally, an open challenge to machine learning is how to 

properly identify important so-called minority categories, such as BO. Because 

BO is relatively uncommon, with a prevalence as low as 2% found in Mexico 

[199], one could create extremely accurate models by assuming no individuals 

have BO. In the BEST2 and BOOST datasets, this issue was mitigated by use 

of a targeted collection of suspected at-risk individuals, which led to a 

distribution of BO that is much higher than that in the general population. 

Several methods exist to computationally rebalance the data beyond or in 

addition to this approach. The most common approach is under-sampling, 

whereby existing records belonging to a prevalent category are intentionally 

removed to create a different ratio between the classes. Here, the relatively high 

number of BO patients could be adjusted by randomly removing some of the 
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patients. Alternatively, oversampling could be used, whereby control individuals 

without BO are added to generate a new balance between the target patients. 

One popular example of this approach is the synthetic minority oversampling 

technique [200], which synthetically adds artificial cases to the minority class. 

Another approach would be to apply a ratio of controls to known cases to train 

the model with a prevalence that more closely aligns with the real-world setting.  

The advantage of using datasets that inherently have higher distributions of 

patients with BO is that our data are non-synthetic and thus more likely to be 

effective as a screening tool; although, one could argue that undertaking this 

study in a cohort with a prevalence of BO that is similar to that of the general 

population might yield different results. However, further studies are needed to 

confirm this hypothesis and to study any potential effects of false positives or 

false negatives generated in a real-world setting. To this end, we propose that 

our algorithm should be applied to the data generated from the BEST3 study, 

which is a pragmatic, multisite, cluster-randomised controlled trial set in primary 

care centres in England, UK, where the prevalence of BO is representative of 

the general UK population and in which the same questions have been asked 

as in BEST2 and BOOST. We are also undertaking another prospective study 

(ISRCTN 11921553) to test this hypothesis independently in a second 

population that more closely aligns with the general population prevalence of 

the disease.  

The methods used to apply the machine learning analysis also present a 

challenge. Many researchers carry out both univariate and multivariable 

analyses of each dataset independently, which often leads to selecting similar 

features in both datasets. We have previously used this approach ourselves. 

We made very small changes in our definitions of BO (i.e. with or without 

intestinal metaplasia), each of which was associated with different risk factors 

being important in the ensuing algorithms. These differences stem from a lack 

of so-called stability in the features that each model independently selected 

[182], too many features, even those with relatively high prediction value, often 

reduces the model’s power.  

One current solution to both these challenges is effective feature selection. We 

approached this challenge by identifying which features add information. This 
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approach is called information gain, a univariate approach. In our previous 

work, we used a threshold of 0·1 within χ2 with one degree of freedom to select 

eight features in the dataset [182]. An advantage to using feature selection to 

determine important features is that they are based on a filter approach to 

selection, which is undertaken without any connection to a specific learning 

algorithm. Similarly, no human bias is involved. We incorporated this approach 

as one step in our current analysis.  

Our results show stability across the BEST2 and BOOST datasets. Although 

each of these datasets was collected independently, their collection 

methodologies and definitions were similar enough for effective comparison. 

This study shows that such analyses are possible if stable features are 

identified that are not influenced by random artefacts in the data collection 

process [201].  

We considered using other multivariate feature selection algorithms including 

least absolute shrinkage and section operator (LASSO) [202]. LASSO is one 

type of feature selection that is embedded in logistic regression because its 

feature analysis is inherently linked to this machine learning method. It has a 

similar limitation to the support vector machine recursive feature selection 

(RFE-SVM) approach [203]. Both approaches are limited to only one algorithm, 

in the case of RFE-SVM, the support vector machine algorithm that we also 

considered. Because we aimed to consider a variety of machine learning 

methods, we preferred using information gain and correlation-based feature 

selection, which are filter methods and can be used without any connection to a 

specific machine learning prediction model, thus facilitating improved medical 

understanding [156, 183].  

We also considered correlations between features, which often exist in medical 

datasets. We used the multivariable correlation-based feature selection 

algorithm to do this. We reasoned that features selected by correlation-based 

feature selection should be more stable than other approaches. This hypothesis 

is borne out by the high AUC of the predictive model and its stability against the 

independent validation cohort.  
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Having created our dataset, we considered possible biases and sought to 

minimise these by reconstructing the cohorts to avoid any age, sex, or race 

bias; however, we found that our model remains robust.  

The risk prediction panels we generated are easy to use in practice. 

Theoretically, people could enter their symptoms into a smartphone app and 

receive an immediate risk factor analysis. These data could then be uploaded to 

a central database (e.g. in the cloud) that would be updated after that person 

sees their medical professional.  

Our study had several limitations. Because both datasets were collected from 

at-risk individuals, the dataset was enriched for BO patients. Additionally, 

patients attending for symptom assessment are more symptomatic than those 

undergoing surveillance endoscopy. Nevertheless, all BO patients undergoing 

surveillance would have presented initially with symptoms. Notably, many 

individuals with BO have no symptoms and so this risk prediction panel is 

unlikely to work for these people. Nonetheless, given the robustness of the 

models generated, the predictive panel produced here could be of benefit to 

rapidly triage symptomatic patients for minimally invasive screening tools, such 

as the Cytosponge test, because many symptomatic individuals currently 

undergo no testing at all [204].  

Further prospective data collection is needed using a cohort study design in a 

primary care setting where BO prevalence will be much lower to confirm the 

validity of our findings and to establish the final best risk prediction model 

parameters.  

4.6 Chapter conclusions 

 
The work within this chapter demonstrates that demographic, symptom and risk 

factor data may be of use in identifying individuals with BO who are at risk of 

OAC. Additionally, the encouraging results obtained using AI analysis over 

standard medical statistical analysis suggests that this is an area deserving of 

further exploration. However, although the results presented are encouraging, 

they may not be sufficiently successful on their own to be used as a screening 

tool and the reliance on self-reporting of medical data is vulnerable to bias 
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which will damage the ability of the predictive system. The AUC of 0.77 

(following external validation) demonstrates that using this method alone would 

result in many undergoing unnecessary testing. As such, whilst this work would 

suggest this data can be used to identify at risk individuals, we should not rely 

on it alone. More robust, consistent means are required.  
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Chapter 5 - Biomarker discovery using different tissue types 
 

5.1 Introduction 

 
The work outlined in Chapter 4 demonstrates some promise in regard to the 

ability to identify those with or at risk of OAC through AI analysis of 

questionnaire data. However, as discussed in Chapter 4 there are two key 

issues with the reliance on this form of data. Firstly, there are the issues in 

regards to the consistency and accuracy of responses obtained through 

questionnaire data and the impact this has on outcomes [205]. Secondly, the 

specificity obtained through this analysis was low and thus, should it be used for 

population screening, this would result in large numbers of normal individuals 

being subjected to invasive and expensive investigations. Clearly we need to 

create a more robust system that offers identification with higher specificity. It is 

at this juncture that the possible addition of genomic, epigenetic, and 

transcriptomic data becomes appealing.  

 

5.1.1 Liquid biopsies 

At present, genetic information is obtained in some diseases, particularly within 

the field of oncology, to aid in the management of the disease. There is little use 

of transcriptomics or epigenetics currently in clinical practice [206, 207]. 

However, as discussed in Chapter 2 the epigenetic and expression profiles of 

tumours and other disease states provides invaluable data on the phenotype 

that genomic information alone cannot. Clearly basing diagnosis or clinical 

decision making on genomics alone has limitations. Furthermore, as discussed 

in section 2.2 a biopsy led approach to diagnosis and therapeutic management 

of pre-malignant and malignant lesions is flawed and this is where liquid 

biopsies can provide benefit. 

 

In 1948 Mandel and Metais published work on circulating free DNA 

(cfDNA)[208]. Unbeknownst to them, this discovery was the first step to the 

development of liquid biopsies, an area of research that has received a lot of 

attention of late due to the push for personalised medicine. It has, however, 

taken many years for this research to begin to be seen in clinical practice. 
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Liquid biopsies provide a non-invasive means of disease detection and 

monitoring and have advanced greatly in recent years aided by the evolution of 

sensitive technologies that can detect and analyse cfDNA. There are issues 

with the collection of this informative genetic material with variation in quantity 

and quality seen in differing storage methods, extraction processes including 

delays in time of extraction, and natural variation amongst individuals even 

whether they have exercised prior to sample collection. However, the advancing 

technologies are addressing these issues which is allowing for the analysis of 

even lower quantity and quality genetic material [102]. It is now possible to 

sequence a tumour’s entire genome from peripheral blood [209]. The non-

invasive, low cost means by which a liquid biopsy can be obtained also allows 

for the potential for them to be used not just as a means of disease detection, 

but also a means to longitudinally monitor an individual including identification 

of potential relapses or recurrences.  

 

The question arises as to the origin of the genetic information that is obtained in 

liquid biopsies. There are three discussed, and not mutually exclusive, 

mechanisms by which DNA and RNA can enter the bloodstream from a lesion. 

The majority of work focusses on CTC DNA with little work exploring the use of 

cfRNA or CTC RNA. The mechanisms are outlined below: 

 

Circulating tumour cells (CTC) are shed into the blood stream or lymphatics 

from a primary tumour and may act as a seed for the tumour to metastasise. 

They were first described by Thomas Ashworth in 1869 who reported them to 

be “cells identical to those of the cancer itself”. CTCs are present, at varying but 

generally low frequencies, in many different types of metastatic tumour, but are 

rarely found in pre-malignant diseases [210]. Their frequency is so low that Zhe 

et al estimated that among the cells to have detached from the primary tumour 

only 0.01% can form metastases [211]. Due to their low frequency of 

occurrence, it is necessary to isolate the CTCs from other cells prior to analysis. 

The Food and Drug Administration have approved the use of CellSearch in the 

United States, a means to isolate and analyse CTCs, where it has been used 

as a prognostic indicator for breast, lung, colorectal, and prostate cancer. 

However, it should be noted that CTCs are fragile and degrade quickly. Thus 
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collected samples need to be processed, when using CellSearch, within 96 

hours[102]. 

 
cfDNA is primarily thought to occur due to the release of nuclear and 

mitochondrial DNA from cells that have undergone apoptosis or necrosis. In 

normal physiological conditions the role of phagocytes is to clear this cellular 

debris and thus healthy individuals will have low levels of cfDNA. However, in 

certain circumstances the phagocytes are unable to clear this debris sufficiently 

and as such the level found in the blood rises. This is found in inflammatory 

conditions, following exercise and in relation to tumour mass [212]. cfDNA has 

also been demonstrated to be present in pre-malignant conditions. For 

example, Perrone et al demonstrated that cfDNA was present in those with 

early colorectal cancer as well as those with pre-malignant disease. However, it 

should be noted that in this study the ability to predict those with cancerous or 

premalignant lesions using cfDNA quantification was found only to be significant 

for those with early cancers [213]. cfDNA tends to be fragmented, 

approximately 150-180 base pairs in length, and has a high prevalence of 

tumour associated mutations. When cfDNA and CTC’s were compared for their 

mutation detection, there was a higher abundance of the mutation found in the 

cfDNA of the same patient [102]. Another advantage of cfDNA is that it can be 

analysed from bio-banked fluids, it is not as fragile as CTC DNA. However, 

there are limitations to the use of cfDNA. It should be noted that cfDNA can 

provide genetic and epigenetic information in regards to a tumour, but cannot 

inform on the transcriptome or proteome [102]. 

 

The establishment of exosomes as a means by which to extract and analyse 

DNA, RNA and protein in the field of research has grown significantly. 

Exosomes are actively released extracellular vesicles that are found in biofluids 

such as serum, plasma, saliva and urine. Their function remains debated 

although it is thought they have a role in intercellular communication and 

specifically in cancer contribute to micro-metastasis, angiogenesis and immune 

modulation[102, 214]. A key advantage of using exosomes is that they are 

stable carriers of DNA and RNA. Studies have reported finding tumour specific 

mutations, using both RNA and DNA, years after their collection and storage in 

a freezer [102]. Although the size of an exosome means that a whole 
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transcriptome cannot be identified inside, due to their abundance most of the 

transcriptome can be identified [215]. RNA derived from exosomes has been 

used to profile not only cancer, but also many other diseases including 

inflammatory, neurodegenerative, cardiovascular and metabolic diseases [102]. 

 
The use of liquid biopsies has generated a lot of excitement and has been 

discussed frequently in the media. In relation to cancer there has been 

published work exploring the use of liquid biopsies in the following fields: 

 

Bettegowda et al performed work using liquid biopsies as a prognostic indicator 

in colorectal cancer. Their work found that the detection of KRAS-mutant cell-

free circulating tumour DNA in those with a KRAS mutant colorectal tumour was 

associated with a decreased two-year survival with a sensitivity of 87.2% and 

specificity of 99.2% [216].In breast cancer it has been reported that persistent 

tumour-associated microsatellite DNA alterations, detected in the blood using 

PCR following mastectomy, has been associated with tumours with vascular 

invasion, metastasis to more than 3 lymph-nodes and higher histological grade. 

And similarly, in breast cancer, the presence of tumour-associated genetic 

aberrations and loss of heterozygosity found in the blood correlated to overall 

survival. Overall, there have been studies demonstrating a statistically 

significant correlation between disease stage and tumour-associated genetic 

aberrations in the blood in numerous cancers including prostate, ovarian, 

breast, pancreatic, colorectal, lung, and oral cancer [212]. 

 

The use of liquid biopsy to identify those with a relapse or recurrence of cancer 

is a promising field. Diehl et al reported that by monitoring for tumour specific 

aberrations, including KRAS, TP53 and APC, they were able to identify those 

with recurrence of colorectal cancer with 100% sensitivity. This work has 

recently been followed up byTie et al who report the ability to identify those at 

high-risk of disease recurrence following resection of their colorectal cancer 

using circulating tumour DNA [212, 217]. Similar work exploring this field has 

been done in other cancers, including work on ovarian cancer that has recently 

been reported in the media [218].  
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Current publications show clearly that liquid biopsies have great potential to 

diagnose cancers at an earlier stage. This is key to improve the prognosis of 

any cancer. Exciting work by Ilie et al found that the detection of CTCs in 

patients with chronic obstructive pulmonary disease (COPD) without clinically 

detectable lung cancer lead to an early diagnosis of the disease [216]. 

 
An area in which there has been a lot of research using liquid biopsies is in the 

response to treatment and monitoring acquired resistance. As discussed earlier, 

at present we are reliant on biopsies to guide targeted therapy for cancers, 

which is prone to spatial or temporal bias. Work has been published 

demonstrating that liquid biopsies can be used to monitor an individual’s HER2 

status in breast cancer following treatment, the response to anti-EGFR therapy 

via KRAS mutations in colorectal cancer, and the response to therapy in lung 

cancer [212]. Furthermore, liquid biopsies have been shown to be able to 

demonstrate the changing landscape of a tumour following therapy and in 

particular identify resistant clones. This work has been done in lung, colorectal, 

melanoma and gastrointestinal stromal tumours with the aim to identify a means 

to continue to target therapy at a tumour using novel combinations of drugs 

[212]. 

 

The use of liquid biopsies is clearly exciting with an abundance of research 

being performed in this field. However, whilst the collection of blood can 

certainly be described as minimally invasive it is still invasive and the collection 

of blood still requires trained personnel, specialised equipment for collection 

and storage, and a degree of discomfort for an individual. This does not take 

into account that the prevalence of needle phobia is reported to be 10%, in 

American adults, which was thought to be underestimate [219]. Therefore, the 

question arises as to whether saliva offers a more acceptable option. 

5.1.2 Salivary diagnostics 

The use of saliva as a diagnostic tissue dates as far back as the early 20th 

century when Kirk and Michaels identified protein biomarkers in saliva for 

rheumatism and gout [220]. However, it is not until recent years in which the 

field of salivary diagnostics has generated more interest particularly in the 

diagnosis of disease. Saliva has been described as the ‘mirror of the body’ 
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[221]. Whilst saliva is predominantly made up of aqueous solution, the other 

constituents include a variety of enzymes, hormones, antibodies and growth 

factors that enter the saliva from the blood. The porous, tightly packed 

capillaries that surround the salivary glands allow constituents to enter the 

saliva through spaces between cells by transcellular (passive intracellular 

diffusion and active transport) or paracellular routes (extracellular ultrafiltration). 

Importantly, exosomes circulating in the blood have also been identified in 

saliva. In fact, saliva has been shown to contain identical components to blood 

and is thus able to reflect the physiological state of the body similar to blood 

[222]. The main hurdle for the use of saliva as a diagnostic fluid has been that 

the informative constituents of saliva are at a low level and thus difficult to 

obtain and analyse. However, with the advances in technology this is becoming 

less of a barrier. As such we are seeing the potential for saliva to be used as a 

clinically useful tool, providing insights into prognosis, diagnosis and the 

monitoring and management of patients. Increasing bodies of work are utilising 

saliva and are detecting useful biomarkers in fields such as cardiovascular 

disease, renal disease, diabetes and infections, although more work is required 

in these fields [223]. 

 

Specific to cancer, emerging work is finding both DNA and RNA signatures 

associated with cancer risk in saliva. Mutations to TP53 and other cancer 

related genes have been reported to be found in the saliva of breast cancer 

patients. Similarly, CA125 has been found in the saliva of those with ovarian 

cancer [223]. Other work has identified salivary biomarkers linked to oral, 

oesophageal, and pancreatic cancer [224-226]. The latter of these studies is of 

particular interest as it demonstrates the potential for salivary biomarkers to 

detect individuals with resectable pancreatic cancer with high specificity and 

sensitivity [226]. Similar to OAC, pancreatic cancer is often diagnosed late when 

the majority of patients are incurable. 

 

The use of saliva as a diagnostic tissue carries great potential but is still in its 

infancy. However, certainly, the potential use for liquid biopsies in the early 

detection of OAC could significantly impact on its grave prognosis. Similarly, 

one would want to address the potential for liquid biopsies to also identify those 

with BO who are at increased risk of OAC. The ability to identify these 
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individuals, particularly those with dysplasia within their BO who are at highest 

risk, without the need of an endoscopy, could significantly alter the prognosis as 

well as address the vast sums of healthcare resource that is wasted performing 

invasive and unpleasant investigations on healthy individuals.  

 

5.2 Aims of chapter 

 
The aim of this chapter is to determine whether transcriptomic biomarkers, 

linked to those with or at risk of OAC, can be found in blood and / or saliva. The 

targeted aims are: 

 

1. Can sufficient quality and quantity RNA be extracted from blood and 

saliva samples for downstream analysis? 

 

2. Does blood and / or saliva contain potentially useful biomarkers for the 

detection of those with or at risk of OAC? 

 

3. Is the RNA expression data comparable between the two tissue types 

and thus do the biomarkers found in saliva mirror those found in blood?  

 

5.3 Objective 1 – Establishing RNA extraction methods from blood and 
saliva 

 
In this preliminary work the focus was establishing the methods for sufficient 

quality and quantity RNA to be extracted from blood and saliva samples that 

could potentially be used for downstream analysis. 
 

5.3.1 Objective 1 – RNA extraction from salivary samples utilising spin 

columns. Methods  

  
The extraction of RNA from patient samples is notoriously problematic due to 

the fragility of RNA. As such when embarking upon this work the optimisation of 

the extraction process was going to be key to the downstream results. It was 

decided initially that the ideal approach to RNA extraction was to utilise spin 
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columns as they provide a quick and simple means of nucleic acid extraction. 

The focus was to determine how much patient sample was required to provide 

sufficient RNA, what ratio of phenol / chloroform used for sample lysis provided 

optimal results and then whether there was a notable difference in outcome 

depending on the make of spin column used. Prior to use on patient samples, 3 

healthy volunteers within the research department provided whole saliva 

samples for this process. I anticipated that the extraction of RNA from saliva 

would be most challenging, due to the known degradation, and as such the 

initial optimisation process focused purely on salivary RNA extraction. Each 

volunteer was asked to provide a 3x1ml samples of saliva on multiple 

occasions, each 2-4 days apart. The collection process for the saliva is 

discussed in chapter 6. The samples were immediately stored in a -80°C freezer 

and were only freeze-thawed once for extraction. On the day of extraction 

samples were thawed on ice.  

 

In detail, the three variables initially tested were: 

1 - Quantity of patient sample 
Using a minimal amount of patient sample to obtain RNA is ideal as it allows for 

the rest of the sample to be stored and used for further testing and validation. 

Similarly, I found that people can struggle to provide more than 1ml of saliva, 

particularly after fasting. Thus, the quantities of patient saliva sample initially 

tested were 200μl, 400μl and 600μl. 

 

2 - Phenol / chloroform ratio 
The column-based methods require the sample to be lysed and RNA isolated 

prior to purification using the columns. This initial step is done using a phenol / 

chloroform-based method. Following a literature review of RNA extraction using 

columns on varying tissue types there were multiple varying ratios of phenol to 

chloroform used for this initial step. The two most common ones identified were 

5:1 (i.e. 1ml of phenol to 200μl chloroform) and 4:1 (i.e. 1.2ml of phenol to 300μl 

chloroform). Thus, these two ratios were tested on the aforementioned differing 

patient sample quantities. 

 
3 - Column type and centrifugation method 
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Although there are multiple spin column-based RNA extraction kits available, I 

decided to test two that had previously been used by Prof. Rifat Hamoudi for 

RNA extraction in different tissue types from saliva. These were the Qiagen 

RNeasy (Qiagen, Hilden, Germany) and the RNA Purification and Clean Up 

(Cambridge Bioscience, Cambridge, UK). The methods used for these steps 

were as per the manufacturers protocol, however, both the protocols supplied 

state that centrifugation can be performed at room temperature. Given that I 

was aware of the fragility of RNA I decided to test both centrifugation at room 

temperature and at 4°C which a literature search suggested had been 

performed for RNA extraction in different tissue types.  

 

For each variable 6 samples were tested, two from each volunteer. An overview 

of the variables tested is as follows: 

 

 
Phenol / 

chloroform ratio 
5:1 

(1ml Phenol : 200μl chloroform) 

4:1 

(1.2ml Phenol : 300μl chloroform) 

 Sample quantity 

Column 200μl 400μl 600μl 200μl 400μl 600μl 

Qiagen 6 samples 6 samples 6 samples 6 samples 6 samples 6 samples 

Qiagen 4°C 6 samples 6 samples 6 samples 6 samples 6 samples 6 samples 

Cambridge 6 samples 6 samples 6 samples 6 samples 6 samples 6 samples 

Cambridge 

4°C 

6 samples 6 samples 6 samples 6 samples 6 samples 6 samples 

 

 

Turbo™ DNase (Thermo Fisher Scientific, Waltham, USA): 
Once successful extraction was confirmed via the NanoDrop (Thermo Fisher 

Scientific, Waltham, USA), discussed below, the samples underwent the vital 

removal of traces genomic DNA contamination using Turbo DNase (Thermo 

Fisher Scientific, Waltham, USA). This is necessary to ensure that there is no 

genomic DNA within the sample that can affect downstream quantitative real-

time PCR (qRT-PCR). For the work within this objective this step is also vital in 

order to ensure our method outcomes are not influenced by unwanted DNA. We 

elected to use Turbo DNase (Thermo Fisher Scientific, Waltham, USA) rather 

Table 1: Samples for column type and centrifugation method quality control  
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than a column-based treatment as this has been demonstrated to provide a 

more effective process. 

 

The 10x Turbo DNase Buffer (Thermo Fisher Scientific, Waltham, USA) and the 

Turbo DNase (Thermo Fisher Scientific, Waltham, USA) were added to the 

extracted RNA sample alongside nuclease free water. This was mixed using a 

pipette prior to incubation at 37°C for 30 minutes. Following this the DNase 

Inactivation Reagent (Thermo Fisher Scientific, Waltham, USA) was added to 

the sample and Turbo DNase (Thermo Fisher Scientific, Waltham, USA) 

mixture and again mixed using a pipette and left at room temperature for 2 

minutes. Following this, the mixture was centrifuged at 10,000 rpm at room 

temperature for 1.5 minutes and then the supernatant was transferred to a new 

1.5ml Eppendorf. Again, the sample had initial quality and quantity assessment 

performed using NanoDrop (Thermo Fisher Scientific, Waltham, USA) to ensure 

extraction had been successful prior to further quality control using the 

Bioanalyzer (Agilent Technologies, Santa Clara, USA) and then storage in a -

80°C freezer. 

 
NanoDrop (Thermo Fisher Scientific, Waltham, USA) 
For this work the NanoDrop (Thermo Fisher Scientific, Waltham, USA) alone 

was used for quality and quantity control to determine whether the extraction 

process had been successful. The NanoDrop (Thermo Fisher Scientific, 

Waltham, USA) provided an immediate assessment as to whether the 

extraction process had been successful. Samples underwent analysis on the 

NanoDrop 1000 (Thermo Fisher Scientific, Waltham, USA) immediately after 

the RNA extraction process and again after they had undergone the 

TurboDNase (Thermo Fisher Scientific, Waltham, USA) step.  

 

The NanoDrop™ (Thermo Fisher Scientific, Waltham, USA) is a 

spectrophotometer that provides quantity and quality assessment of samples 

through absorbance measurements although it is generally recognised that the 

quantity assessment can be an overestimate often caused by sample 

contamination. Nucleic acids absorb at 260 nanometres (nm) and as such the 

NanoDrop™ (Thermo Fisher Scientific, Waltham, USA) estimates quality by 

providing a 260/280 ratio and a 260/230 ratio. The 260/280 ratio should be 
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approximately 1.8 for DNA samples and 2.0 for RNA samples, the higher value 

for RNA representing the higher 260/280 ratio of uracil (when isolated) 

compared to thymine (when isolated), although it should be said that this will 

vary according to the composition of the nucleic acid. The 260/230 ratio is 

commonly around 2.0 and lower values reflect contamination of the sample in 

particular, with relevance to this work, with phenol that will come from the Qiazol 

(Qiagen, Hilden, Germany) used for RNA extraction. 

 

5.3.2 Objective 1 – RNA extraction from salivary samples utilising spin 

columns. Results 

 
The initial RNA extraction process using a spin column-based approach yielded 

disappointing results. Generally speaking none of the processes using 200μl of 

sample yielded any quantifiable RNA (as seen in table 2). Using either 400μl or 

600μl of sample produced inconsistent and unreliable RNA yields with the vast 

majority of these samples also not producing any quantifiable RNA. Those that 

did yield RNA were from differing volunteers and thus one cannot attribute this 

to inter-person variability. The best result was a single sample from the 4:1 

phenol to chloroform ratio, 400μl of patient sample and using the Qiagen 

RNeasy kit (Qiagen, Hilden, Germany) at room temperature in which the yield 

was 19.99μl/ml and the 260/280 and the 260/230 ratios were 1.84 and 1.91 

respectively (demonstrated in Figure 13). However, this was the exception 

rather than the rule. In total, quantifiable RNA was only extracted on 21 

occasions, out of a possible 144, and when this occurred it was often at low 

yields (5-10μl/ml) which makes its downstream use limited (demonstrated in 

Table 2 and Figure 13). The below table outlines when RNA was obtained using 

the varying methods:  
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Phenol / 
chloroform ratio 

5:1 

(1ml Phenol : 200μl chloroform) 

4:1 

(1.2ml Phenol : 300μl chloroform) 

 Sample quantity 

Column 200μl 400μl 600μl 200μl 400μl 600μl 

Qiagen 0/6 (0%) 2/6 (33%)  1/6 (16%)   0/6 (0%)    3/6 (50%)     2/6 (33%)      

Qiagen 4°C 0/6 (0%)    3/6 (50%)         2/6 (33%)      0/6 (0%)      1/6 (16%)     1/6 (16%)       

Cambridge 0/6 (0%)        1/6 (16%)       0/6 (0%)        0/6 (0%)        2/6 (33%)          0/6 (0%)        

Cambridge 4°C 0/6 (0%)        0/6 (0%)        1/6 (16%)       0/6 (0%)        0/6 (0%)      2/6 (33%)      

 

 

Given how infrequently RNA was successfully extracted it is impossible to make 

any real assessment of which of the variables provided a preferred method. The 

success of all these methods were so low that this approach could not be used 

reliably for the work on patient samples. Given that no RNA was extracted using 

200μl of patient sample, it was felt that this was too little a sample quantity to 

take forward. Similarly, there is a trend to suggest that the Qiagen RNeasy kit 

(Qiagen, Hilden, Germany) outperformed the RNA Purification and Clean Up 

(Cambridge Bioscience, Cambridge, UK) given that the former obtained some 

quantifiable RNA on 15 out of the 21 occasions. However, again the RNA that 

was extracted was often not usable thus rendering these results redundant.  

 

 

 

 

5.3.3 Objective 1 – RNA extraction from salivary samples utilising 

isopropanol and ethanol precipitation. Methods 

 
The spin column-based approach to RNA extraction did not consistently provide 

sufficient quantity of RNA for downstream analysis. As such following a 

Figure 13: Nanodrop results for 
column method 
a) Nanodrop demonstrating no 
RNA yielded 

Figure 13:  
b) Nanodrop demonstrating 
8.82μl/ml RNA yielded although 
likely over-estimate due to 
contamination 

Figure 13:  
c) Nanodrop demonstrating 
19.99μl/ml RNA yielded. 260/280 
= 1.84  
260/230 – 1.91 

Table 2: Results for column type and centrifugation method quality control  



 104 

literature search and discussion with Prof. Rifat Hamoudi it was decided to 

attempt RNA extraction using isopropanol and ethanol precipitation and 

purification after the phenol / chloroform lysis and isolation. Given that the 

results from the spin column work showed that RNA could be obtained, 

although inconsistently, with 400μl of sample being used it was decided to keep 

this amount of sample as a constant when using these new methods. Again, 

following a literature review of RNA extraction using this method from different 

tissue types there were 4 variables identified that required testing: 

 

1 – Phenol / chloroform ratio 
As discussed above. Given the paucity of data from the column-based 

approach this was tested again using the same two ratios.  

 

2 – Centrifugation temperature 
As discussed above, the fragility of RNA meant that many protocols published 

in the literature centrifuged at 4°C rather than room temperature. I, therefore, 

tested both. 

 

3 – Isopropanol / sample ratio 
Following the initial phenol / chloroform step the upper 400μl of the aqueous 

phase is placed in isopropanol for purification and to increase yield. The 

isopropanol was kept at 4°C. Published literature uses different ratios of sample 

to isopropanol. The most common 2 were identified and tested. These were 1:1 

and 2:1 (i.e. 800μl isopropanol to 400μl sample). 

 

4 – Length and temperature of isopropanol incubation 
Again, published literature used differing lengths of incubation period for the 

sample / isopropanol mix and either at room temperature or on ice. As such 

three time periods were tested: 15 minutes, 30 minutes, and 60 minutes with 

samples left on ice or at room temperature in each of these.  

 

The final step of ethanol precipitation was consistent throughout the literature 

search and thus was kept constant. The ethanol was stored in a -20°C freezer. 

A summary table of the variables tested is as follows: 
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Phenol / 
chloroform ratio 

5:1 

(1ml Phenol : 200μl chloroform) 
4:1 

(1.2ml Phenol : 300μl chloroform) 
 
 

Isopropanol 
sample ratio 

1:1 

Isopropanol 
sample ratio 

2:1 

Isopropanol 
sample ratio 

1:1 

Isopropanol 
sample ratio 

2:1 
Isopropanol 
incubation 

    

Isopropanol 

15mins - ICE 

4 samples 

(centrifuged at 

RT) 
4 samples 

(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 
4 samples 

(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 
4 samples 

(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 
4 samples 

(centrifuged at 

4°C) 
Isopropanol 

15mins - RT 
4 samples 

(centrifuged at 

RT) 
4 samples 

(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 
4 samples 

(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 
4 samples 

(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 
4 samples 

(centrifuged at 

4°C) 
Isopropanol 

30mins - ICE 
4 samples 

(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 

(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

Isopropanol 
30mins - RT 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

Isopropanol 
60mins - ICE 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

Isopropanol 
60mins - RT 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

4 samples 
(centrifuged at 

RT) 

4 samples 
(centrifuged at 

4°C) 

 

 
Table 3: Samples for phenol / chloroform extraction method quality control  
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As per the methods in 5.3.1 the samples underwent the Turbo DNase (Thermo 

Fisher Scientific, Waltham, USA) process and quality control using NanoDrop 

(Thermo Fisher Scientific, Waltham, USA). 

 

5.3.3 Objective 1 – RNA extraction from salivary samples utilising 

isopropanol and ethanol precipitation. Results 

 
This method was more successful with RNA extracted on 79 out of 192 cases. 

The highest yield was obtained using 4:1 phenol to chloroform ratio, 1:1 

isopropanol to sample ratio with the sample left to incubate for 30 minutes and 

all centrifugation performed at 4°C. The highest yield was 50.70μl/ml with the 

260/280 and 260/230 ratios being 1.93 and 1.8 respectively. A summary of the 

overall results is outlined in the tables below (one table for room temperature 

centrifugation and one for 4°C): 
 

CENTRIFUGATION AT ROOM TEMPERATURE 
Phenol / 

chloroform ratio 
5:1 

(1ml Phenol : 200μl chloroform) 
4:1 

(1.2ml Phenol : 300μl chloroform) 
 
 

Isopropanol 

sample ratio 

1:1 

Isopropanol 

sample ratio 

2:1 

Isopropanol 

sample ratio 

1:1 

Isopropanol 

sample ratio 

2:1 
Isopropanol 
incubation 

    

Isopropanol 

15mins - ICE 

1/4 yield RNA 
(25%) 

0/4 yield RNA 
(0%) 

0/4 yielded RNA 
(0%) 

0/4 yield RNA 
(0%) 

Isopropanol 

15mins - RT 
0/4 yielded RNA 

(0%) 

0/4 yielded RNA 
(0%) 

0/4 yielded RNA 
(0%) 

0/4 yielded RNA 
(0%) 

Isopropanol 
30mins - ICE 

0/4 yielded RNA 
(0%) 

1/4 yield RNA 
(25%) 

2/4 yield RNA 
(50%) 

1/4 yield RNA 
(25%) 

Isopropanol 

30mins - RT 
2/4 yield RNA 

(50%) 

0/4 yielded RNA 
(0%) 

0/4 yielded RNA 
(0%) 

1/4 yield RNA 
(25%) 

Isopropanol 
60mins - ICE 

2/4 yield RNA 
(50%) 

0/4 yielded RNA 
(0%) 

0/4 yielded RNA 
(0%) 

2/4 yield RNA 
(50%) 

Isopropanol 

60mins - RT 
1/4 yield RNA 

(25%) 

0/4 yielded RNA 
(0%) 

2/4 yield RNA 
(50%) 

1/4 yield RNA 
(25%) 
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CENTRIFUGATION AT 4°C 
Phenol / 

chloroform ratio 
5:1 

(1ml Phenol : 200μl chloroform) 
4:1 

(1.2ml Phenol : 300μl chloroform) 
 
 

Isopropanol 
sample ratio 

1:1 

Isopropanol 
sample ratio 

2:1 

Isopropanol 
sample ratio 

1:1 

Isopropanol 
sample ratio 

2:1 
Isopropanol 
incubation 

    

Isopropanol 

15mins - ICE 

1/4 yield RNA 
(25%) 

2/4 yield RNA 
(50%) 

2/4 yield RNA 
(50%) 

1/4 yield RNA 
(25%) 

Isopropanol 
15mins - RT 

1/4 yield RNA 
(25%) 

1/4 yield RNA 
(25%) 

2/4 yield RNA 
(50%) 

2/4 yield RNA 
(50%) 

Isopropanol 

30mins - ICE 
2/4 yield RNA 

(50%) 

4/4 yield RNA 
(100%) 

3/4 yield RNA 
(75%) 

4/4 yield RNA 
(100%) 

Isopropanol 

30mins - RT 
3/4 yield RNA 

(75%) 

3/4 yield RNA 
(75%) 

4/4 yield RNA 
(100%) 

4/4 yield RNA 
(100%) 

Isopropanol 
60mins - ICE 

3/4 yield RNA 
(75%) 

2/4 yield RNA 
(50%) 

4/4 yield RNA 
(100%) 

3/4 yield RNA 
(75%) 

Isopropanol 

60mins - RT 
3/4 yield RNA 

(75%) 

2/4 yield RNA 
(50%) 

3/4 yield RNA 
(75%) 

4/4 yield RNA 
(100%) 

 

 

 

It was necessary to look at each variable individually to determine the optimum 

method for the extraction of RNA from saliva. 

 

Centrifugation temperature 
There is a striking difference in overall consistency of RNA extraction and yields 

between the room temperature and 4°C groups. RNA extraction was successful 

in 16 out of 96 samples (17%) centrifuged at room temperature whereas it was 

successful in 63 out of 96 samples (66%) in the 4°C group. When RNA was 

extracted at room temperature the yields tended to be low. Within this group the 

mean yield of the 16 samples in which RNA was obtained was 17.97μl/ml. The 

mean yield of the 63 samples centrifuged at 4°C in which RNA was obtained 

was 38.08μl/ml. It is, therefore, obvious that the samples need to be centrifuged 

at 4°C, which is not surprising given the known fragility of RNA.  

 

Given the inconsistency of RNA extraction when centrifuged at room 

temperature I did not use the data from this group of samples for analysis of the 

other variables. 

Table 4: Results for quality control using phenol / chloroform extraction method with centrifugation at room 
temperature and 4°C 
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Length and temperature of isopropanol incubation 
The next striking observation is that samples that were incubated in isopropanol 

for 15 minutes, either on ice or at room temperature, only yielded RNA on 12 

out of 32 occasions (38%). Whereas samples incubated in isopropanol for 30 

minutes or 60 minutes, either on ice or at room temperature, yielded RNA on 51 

out of 64 occasions (80%). It is clear, therefore, that a 15-minute incubation 

period is too short. It is also notable that those incubated for 15 minutes had a 

significantly lower yield, outlined in Table 10 below. However, when comparing 

30 minutes to 60 minutes incubation period there is little difference. RNA was 

successfully yielded in 27 out of 32 (84%) occasions when incubated for 30 

minutes, at either room temperature or on ice, and 24 out of 32 occasions 

(75%) when incubation was 60 minutes. There are no significant differences in 

the yields obtained although the quality of sample, according to the 260/280 

and 260/230 ratio is marginally better in those incubated for 30 minutes. 
 

INCUBATION 
PERIOD 

No. samples Mean. yield 260/280 260/230 

15 minutes 12/32 22.15μl/ml 1.82 1.24 

30 minutes 27/32 45.68μl/ml 1.94 1.42 

60 minutes 24/32 46.43μl/ml 1.78 1.35 
Table 5: Table demonstrating the quantity and quality of RNA extracted from saliva samples incubated for differing 

lengths of time in isopropanol 

 

Placing the sample / isopropanol mix on ice for the incubation period also 

seemed to make little difference. Overall, when samples were incubated on ice 

RNA was successfully extracted on 31 out of 48 occasions whereas when 

incubated at room temperature RNA was successfully extracted on 32 out of 48 

occasions. Removing the 15-minute incubation period group also makes no 

difference. RNA extraction was successful 13 out of 16 occasions in the 30-

minute group on ice and 14 out of 16 in the 30-minute group at room 

temperature. When incubating for 60 minutes RNA was extracted in 12 out of 

16 occasions in both groups. There is no significant difference in the yields 

obtained or quality of sample, according to the 260/280 and 260/230 ratios. 
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INCUBATION 
TEMP. 

No. samples Mean. yield 260/280 260/230 

ICE 31/48 37.46μl/ml 1.90 1.37 

ROOM TEMP 32/48 38.69μl/ml 1.87 1.41 
Table 6:Table demonstrating the quantity and quality of RNA extracted from saliva samples incubated at different 

temperatures 

 

Isopropanol / sample ratio 
This variable did not appear to make any significant difference in terms of RNA 

yield. In the 2:1 ratio group RNA was extracted on 32 out of 48 occasions and in 

the 1:1 ratio group RNA was extracted on 31 out of 48 occasions with the mean 

yield being similar in both groups. Similarly, incubation on ice or at room 

temperature did not impact on the isopropanol to sample ratio. Incubation on ice 

at 1:1 ratio yielded RNA on 15 out of 24 whereas incubation at 1:1 ratio at room 

temperature yielded RNA on 16 out of 24 occasions. At a 2:1 ratio incubating on 

ice or at room temperature yielded RNA on 16 out of 24 occasions. Again, little 

difference was observed in concentration or quality. 

 
Phenol / chloroform ratio 
The phenol / chloroform ratio used did make a difference. When using a 5:1 

ratio RNA was extracted on 27 out of 48 occasions with the mean yield being 

31.37μl/ml. Whereas, when using a 4:1 ratio RNA was extracted on 36 out of 48 

occasions with the mean yield being 44.79μl/ml. 

 

Overall, putting these results together one can say that all samples should be 

centrifuged at 4°C and the ideal phenol / chloroform ratio is 4:1. 15 minutes is 

too short an isopropanol incubation period but there is little difference between 

30 minutes and 60 minutes and the use of ice or room temperature for this 

period. Logistically thinking, therefore, a shorter period (30 minutes) off ice is 

the most straight forward and time efficient option. Finally, the ratio of sample to 

isopropanol also has little impact and thus again logistically thinking using less 

isopropanol will be more cost efficient when processing more samples. Putting 

this together when one looks at the group in which all samples are centrifuged 

at 4°C, a 4:1 phenol / chloroform ratio is used, a 1:1 isopropanol to sample ratio 

is used with samples incubated for 30 minutes at room temperature one notes 

that all the samples in this group (4/4) yielded RNA with a mean yield of 
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47.01μl/ml and acceptable 260/280 and 260/230 ratios were achieved. 

Importantly, the highest yielding sample is also found within this group (Figure 

14). This, therefore, was the preferred method. 
 

 
 

5.3.4 Objective 1 – RNA extraction from salivary samples optimal method 

 

The method utilised for the extraction of RNA from saliva samples is outlined 

below; 

 

Samples were allowed to defrost on ice. Once fully thawed they were mixed 

using a pipette prior to 400μl of the sample being placed in a 2ml Eppendorf. 

1.2ml of Qiazol (Qiagen, Hilden, Germany) was added, vortexed, and the mix 

left at room temperature for 5 minutes. Following this 300μl of chloroform was 

added to the mix, vortexed and again left for 5 minutes at room temperature. 

This mix was then centrifuged at 4°C for 10 minutes at 14,000 rpm. The upper 

400μl of the aqueous phase was pipetted off and placed in a 1.5ml Eppendorf 

with an equal volume of isopropanol added to it and vortexed. Only the upper 

400μl of the aqueous phase was used as it was approximately half of the 

aqueous phase and therefore avoided some of the contamination of the sample 

with DNA. This mix was left at room temperature for 30 minutes. This was then 

centrifuged at 4°C for 30 minutes at 14,000 rpm. The supernatant was then 

removed using a pipette, carefully avoiding the pellet, and 1ml of 70% ethanol 

was added to the Eppendorf. This was vortexed for 1 minute and centrifuged at 

4°C for 7 minutes at 14,000 rpm. Again, the supernatant was carefully removed 

and the sample allowed to air dry for 10 minutes. Following this 32μl of 

Diethylpyrocarbonate (DEPC) treated water was added and mixed with a 

pipette. Following initial quality control assessment using the NanoDrop 

(Thermo Fisher Scientific, Waltham, USA) to ensure the process had been 

Figure 14: Nanodrop image demonstrating 
the highest yielding sample using the 
preferred method 
 
Yield = 50.70μl/ml 
260/280 = 1.93 
260/230 = 1.80 
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successful, the samples then underwent the Turbo DNase (Thermo Fisher 

Scientific, Waltham, USA) process and again quality was checked using the 

NanoDrop (Thermo Fisher Scientific, Waltham, USA). 

 

5.3.5 Objective 1 – RNA extraction from blood samples. Method 

 
Following the results of the work outlined in section 5.3.4 the preferred 

extraction method was then applied to blood samples. For this, the same three 

volunteers provided 3 x 2mls of whole blood collected in a vacutainer blood 

collection tube containing ethylenediaminetetraacetic acid (EDTA). These were 

immediately stored in a -80°C freezer. Samples were thawed on ice prior to 

extraction and again followed the identical Turbo DNase (Thermo Fisher 

Scientific, Waltham, USA) process and quality checked using the NanoDrop 

(Thermo Fisher Scientific, Waltham, USA). Samples were stored at -80°C  for 

between 14-28 days. 

 

5.3.6 Objective 1 – RNA extraction from blood samples results 

 

The method, optimised with saliva, worked well for all 18 of the samples tested. 

In all samples RNA was extracted with the lowest yield being 56.32μl/ml and the 

highest being 258.74μl/ml. The mean yield of the 18 samples was 144.65μl/ml. 

The mean 260/280 and 260/230 ratios were 1.86 and 1.92 respectively. The 

poorest quality sample in regard to the yield and ratios was still of sufficient 

quantity and quality for downstream use. Given the success of this approach no 

further optimisation of the extraction process was performed. Examples of the 

NanoDrop (Thermo Fisher Scientific, Waltham, USA) images for the blood 

extractions are found below.  
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As a consequence of these results the extraction method outlined in section 

5.3.4 was used for both blood and saliva samples. 

 

5.4 Objective 2 – Do patient blood and saliva samples contain useful 
biomarkers for the detection of those with or at risk of OAC? 

  
Once extraction methods had been established the focus now moved towards 

whether these tissue types could potentially provide useful biomarkers.  

 

5.4.1 Objective 2 - Patient recruitment and sample collection 

 

The approval to collect samples for this, and other work within this project, was 

within the BOOST (ISRCTN 58235785) study outlined in Chapter 4. The 

inclusion and exclusion criteria are as follows: 

Inclusion Criteria 

 

1. Patients will be recruited from those with Barrett’s oesophagus or 

oesophageal cancer undergoing endoscopy 

2. Patients without Barrett’s oesophagus attending for a clinically indicated 

endoscopy may be recruited as controls. 

3. Patients must sign an informed consent form.  

 

Figure 15: Nanodrop results for RNA 
extraction from blood 
a) Nanodrop demonstrating 
258.74μl/ml of RNA yielded from 
blood. 
260/280 = 1.82 
260/230 = 1.9 

Figure 15: 
b) Nanodrop demonstrating 
135.04μl/ml of RNA yielded from 
blood. 
260/280 = 1.83 
260/230 = 1.91 
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Exclusion criteria  

 

1. Patients in whom endoscopy and biopsy is contraindicated. 

2. Patients who are unable to give informed consent 

3. Pregnant women 

4. People under the age of 21 years. 

5. People who are non-English speakers (due to potential issues in the 

collection of accurate questionnaire data, chapter 5). 

 

Once enrolled patients consented for questionnaire completion and the 

provision of saliva, blood and biopsy samples. Individuals were recruited who 

were attending UCLH to undergo an upper gastrointestinal endoscopy. For the 

purposes of this work the patients were grouped accordingly; 

 
Normal – Those referred for an upper gastrointestinal endoscopy based on 

symptoms of dyspepsia or GORD or those referred along the expedited two-

week wait pathway (as discussed in Chapter 1) who have a normal upper 

gastrointestinal tract found on endoscopy. Mild benign pathology, such as mild 

oesophagitis or gastritis, was allowed to be recruited as normal. These 

individuals must not be found to have a cancer or any new active disease in any 

other investigations performed as part of this referral.   

 

NDBO (low risk category) – Those known to UCLH for the surveillance of their 

NDBO. These individuals must have no history of dysplasia within their BO and 

no other active cancers. 

 

HGD (high-risk category) – Those referred to UCLH for confirmation and / or 

treatment of the HGD within their BO. Those recruited must not have undergone 

previous photodynamic therapy or RFA for their HGD. EMR was permitted prior 

to recruitment. These individuals should also not have any other active cancers. 

 

OAC – Those with known OAC. These individuals must not have undergone 

any chemo or radiotherapy prior to recruitment. They must also not have any 

other active cancer.  
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Patients eligible for recruitment received an information sheet outlining the 

research and their potential involvement at least 48 hours prior to attending 

UCLH for their endoscopic procedure. All patients were recruited prior to their 

endoscopy. On the day of the procedure informed consent was taken by a 

member of the research team and patients were offered the opportunity to ask 

any questions. Once consented, patients completed the enhanced 

questionnaire (discussed in chapter 4) and provided a 1ml saliva sample 

collected in 15ml Corning centrifuge tubes (Sigma-Aldrich, St Louis, USA) and 

3mls of blood collected in a vacutainer blood collection tube containing 

ethylenediaminetetraacetic acid (EDTA). The intricacies of the saliva collection 

process are discussed further in Chapter 6. These samples were then 

immediately stored in a -80°C freezer.  

 

Patients were placed in one of the four diagnostic groups following review of the 

endoscopy report and corresponding histology (if biopsies were taken) and 

review of the patient’s medical history obtained via the hospital computer 

records system. Diagnoses were then confirmed by another physician following 

an identical review of the hospital records.  

 

For this work the number of patients with matched blood and saliva that 

underwent the RNA extraction process and analysis were as follows: 
 

Diagnosis No. of patients recruited 
Normal 7 

NDBO 5 

HGD 7 

OAC 7 

 
 

 

The power calculation for this work was performed by Dr Rifat Hamoudi who 

based this on whole transcriptomic data, where it has been shown that the 

standard deviation for detection of differentially expressed genes is 0.35 (s = 

0.35) and the delta (the measure of effect) is 1 [227, 228]. The power 

calculation was carried out using R statistical software version 2.14.2 with p = 

0.01 (1% significance testing) and power of 90%. This found that minimum 

Table 7: Number of patients recruited into each diagnostic 
category for matched blood and saliva analysis  
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number of patients is n = 5.55289 suggesting we required a minimum of 6 

samples in each group in order for a significant transcriptomic signature to be 

discovered.   

 

5.4.2 Objective 2 – RNA extraction, quality control and targeted expression 

analysis. Methods 

 

The extraction method outlined in 5.3.4 was used for the RNA extraction in the 

patient samples, however, they also underwent a further quality control 

assessment prior to targeted expression analysis utilising the Bioanalyzer 

(Agilent Technologies, Santa Clara, USA).  

 

Bioanalyzer (Agilent Technologies, Santa Clara, USA).  
This utilises chips, such as the Nanochip, to generate a reliable assessment of 

RNA quality and quantity. The chip comprises of sample wells, gel wells and an 

external standard (ladder) interconnected with a series of channels. During the 

preparation of the chip it is filled with a sieving polymer and fluorescent dye 

which is then followed by the samples and ladder into their respective wells. 

Once filled the chip becomes an electrical circuit with the 16-pin electrodes of 

the cartridge arranged to fit into the wells of the chip. The charged 

biomolecules, such as RNA, are driven electrophoretically by a voltage gradient 

through the sieving polymer matrix and separated by size. The dye intercalates 

with the RNA and is detected by laser-induced fluorescence. The Bioanalyzer 

(Agilent Technologies, Santa Clara, USA) generates data into electrophoresis 

like gels and electropherograms. 

 
Quality control, using the Bioanalyzer (Agilent Technologies, Santa Clara, USA), 

was carried out using the RNA 6000 Nano Kit (5067-1511, Agilent, Santa Clara, 

CA, USA) according to the manufacturer’s instructions. 1μl of each sample and 

RNA ladder were aliquoted and incubated at 70°C for 2min in thermal cycler. 1μl 

nano dye concentrate was added to 65μl aliquot of filtered nano gel matrix and 

centrifuged for 10minutes at room temperature at 14,000rpm. 

 



 116 

The RNA Nanochip was primed on chip priming station, with 9μl gel-dye remix 

pipetted into the well labelled “G” in the third row of the nano chip. 9μl of gel-dye 

mix was pipetted into the other 2 “G” wells. 5μl of the RNA 6000 nano marker 

was pipetted into the “ladder” well and 12 sample wells. 1μl of RNA ladder was 

pipetted into the ladder well and 1μl of RNA sample were pipetted into each well 

(Figure 7). The Nanochip was vortexed for 60seconds at 2000rpm with the chip 

MS 3 vortexer (IKA) and read on the Bioanalyzer (Agilent Technologies, Santa 

Clara, USA). 

 

 
Figure 16: Pictorial representation of configuration of wells on the Agilent RNA 6000 nano chip 

 

Expert 2100 version B.02.08 (Agilent, Santa Carla, CA, USA) was used for 

bioanalysis. 

 

Figure 17 below demonstrates typical matched blood and saliva Bioanalyzer 

(Agilent Technologies, Santa Clara, USA) images. From this it is notable how 

degraded the salivary RNA sample is. The issues surrounding the degradation 

of salivary RNA are discussed in chapter 6. The average RNA integrity number 

(RIN), a measure of RNA integrity and quality, for the salivary RNA extracted 

was 3.85 (range 1.7 to 6) whereas the average RIN value for the blood RNA 

extracted was 7.8 (range 6.2 to 8.5). This is in keeping with published literature 

discussed in section 7.7.  
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Primer design and selection 
The targets selected to be tested on these extracted samples were those 

known to be linked to cancer development or their risk factors following a 

thorough literature search and reanalysis of publicly available transcriptomic 

dataset using absolute Gene Set Enrichment Analysis according to Hamoudi et 

al. and Rosebeck et al. [229, 230] and the genes that are differentially 

expressed were checked for mutations using COSMIC database [231]. The 

data set were obtained from published data [232-235]. 	

 

Figure 17a: Bioanalyzer (Agilent Technologies, Santa Clara, USA) image from salivary sample. RIN value 3.4 
 

Figure 17b: Bioanalyzer (Agilent Technologies, Santa Clara, USA) image from blood sample. RIN value 7.9 
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The literature review was performed by myself and Prof. Hamoudi, whilst the 

reanalysis of the dataset was performed by Prof. Hamoudi alone. For this 

preliminary work 6 targets were identified and tested which were known to be 

linked to OAC. However, the literature search and reanalysis of the dataset also 

identified additional targets which were used in further work outlined in chapter 

6. These additional targets included those linked with inflammation and the 

associated carcinogenesis [236-238]. 

 

For this preliminary work 5 genes were selected: TP53, CDKN2a, SMAD7, 

TLR6 and AMY2 with 2 different exons selected for CDKN2a, making 6 targets 

in total.  

 

Primers were designed by Prof. Hamoudi to be less than 150bp in length in 

order to cope with degraded samples [239], melting temperature (Tm) of 60°C 

and guanine-cytosine (GC) content of 30% or higher. The mutation targeted 

had around 25-30 base pair (bp) padding space, i.e. the mutation is generally in 

the middle of the amplicon. Primers are tested individually for specificity and to 

validate the correct length is obtained.  

 

AMY2_F TATAACTGTTCGTATTTCCCGG 
AMY2_R CTCATTAAATAGAGAAGCTAGC 
CDKN2A_R80_F CGGTGCAGCACCACCAGC 
CDKN2A_R80_R AGCGCCCGAGTGGCGGAGCTGC 
CDKN2A_R58_F ACTGCAACCTCCACCTCCCAGG 
CDKN2A_R58_R TATGGTGAAACCCCATCTCTTC 
SMAD7_118_F GTCCAGGGTCCTCCCTCCTCAG 
SMAD7_118_R TATCAGAACAGCCAATTTCCTG 
TP53-6_F CAGTTGCAAACCAGACCTCAG 
TP53-6_R CTCCTCAGCATCTTATCCGAGT 
TLR6_F AACAAGTACCACAAGCTGAAG 
TLR6_R CTCTAATGTTAGCCCAAAAGAG 

 

 

cDNA synthesis 
First-strand cDNA synthesis was conducted on the extracted RNA samples using 

the SuperScript First-Strand Synthesis System for RT-PCR (Part No.: 11904018, 

ThermoFisher Scientific, Waltham, MA, USA). An approximate amount of sample 

RNA required to obtain 200ng of RNA for each mixture was calculated. A RNA - 
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primer mixture was prepared with the components outlined in Table 8 with the 

final sample volume being 10μl in each PCR tube. Table 5 demonstrates an 

example of three of the samples used for this work. 18S rRNA gene specific 

primer (GSP) was used as an internal reference gene for normalisation and 

comparison of gene expression levels. Normalisation accounts for potential error 

in nucleic acid loading during the qPCR process[240]. 18S rRNA is a ribosomal 

structural gene and was chosen as it is stably expressed, regardless of 

experimental conditions. A No Template Control (NTC) mixture was prepared as 

well to detect any background signal. 
 

RNA sample 
type 

Concentration 
of eluted RNA 

(ng/μl) 

Volume of 
eluted RNA 

(μl) 

Volume of 
dNTP (μl) 

Volume of 
18S rRNA 
GSP (μl) 

Volume of 
GSP anti-

sense 
primer (μl) 

Volume of 
nuclease 
free water 

(μl) 

Saliva 34.5 5.8 1 1 1 2.2 

Saliva 45.6 4.39 1 1 1 3.61 

Saliva 53.8 3.72 1 1 1 4.28 

NTC N/A N/A 1 1 1 7 

 
Table 8: Volumes of various components in RNA/primer mixtures in first-strand cDNA synthesis 

 

 

The RNA/primer mixture was incubated at 65°C for 5 minutes in the Applied 

Biosystems 2720 thermal cycler (Thermofisher Scientific, Inc, Waltham, MA, 

USA), and cooled on ice for 2 minutes thereafter. 10μl reaction mixture (Table 8) 

was added and samples incubated at 50°C for 50minutes, followed by 85°C for 

15minutes. 2μl RNase H was added and samples were incubated at 20minutes 

at 37°C. Incubation times and temperatures are summarized in Figure 18. 
 

Components of reaction master mixture Volumes added for each reaction (μl) 
10x RT Buffer 2 

25nM MgCl2 4 

0.1M DTT  2 

RNaseOUT™Recombinant Ribonuclease Inhibitor 1 

SuperScript® III Reverse Transcriptase  1 

Total 10 

 
Table 9: Volumes of various components in reaction RNA/primer master mixture for first-strand cDNA synthesis 
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Figure 18: Illustration of steps for first-strand cDNA synthesis. The RNA/primer mixtures are first incubated at 65°C for 

5min to denature double-stranded RNA. The samples were then incubated with the reaction master mixtures incubated 

at 50°C for 50min to allow the synthesis of cDNA strand on the RNA template. The reaction was terminated by 

incubating the samples at 85°C for 15min. The samples were then incubated with RNase H for 20min at 37°C to 

degrade any remaining RNA molecules. 

 

qRT-PCR 
9μl of the master mixture (Table 10) and 1μl of the sample cDNA was pipetted 

into each well of aHard-Shell96-Well PCR Plate (HSP9641, Bio-Rad, Inc., 

Hercules, CA, USA). Each sample was pipetted in triplicate in addition to NTC. 

The plate was placed in the CFX Connect Thermal Cycler (185-5201, Bio-Rad, 

Inc., Hercules, CA, USA) and incubated according to the protocol described in 

Figure 19. Melting curve analysis was performed in addition to real-time 

quantification of amplicons. 
 

Components of reaction master mixture Volumes added for each reaction (μl) 
iTaq™ Universal SYBR® Green supermix by Biorad 
(172-5121) 

5 

Sense GSP 0.5 

Anti-sense GSP 0.5 

Nuclease free water 3 

Total 9 

 
Table 10: Volumes of various components in master mixture for qRT-PCR 
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Figure 19: Protocol of qRT-PCR cycling. The plate was heated at 95°C for 3minutes. One PCR cycle includes heating 

the plate at 95°C for 10seconds, followed by heating at 55°C for 45seconds. 40 cycles were carried out, followed by a 

melt curve analysis, in which the temperature was increased by 0.5°C for 5seconds from 55°C to 95°C. 

 

Statistical analysis 
Statistical analysis was performed by myself and Prof. Hamoudi with Microsoft 

Excel 2011 and IBM SPSS Statistics 22. Relative expression was calculated by 

comparing the cycle threshold (Ct) from each gene with that from the 18S rRNA 

which is the housekeeping gene. One-way analysis of variance (ANOVA) using 

Bonferroni post-hoc correction was used to carry out the multiple comparisons. p 

< 0.05 taken to be statistically significant, was used to analyse qRT-PCR results. 

Bio-rad CFX Manager was used for curve fitting and regression equation in 

qPCR.  

 

For each sample a ΔCt was calculated by comparing the Ct of each amplicon 

against 18S rRNA (housekeeping gene). A ΔΔCt was also calculated in order to 

compare the four categories of recruited patients (Normal v NDBO v HGD v 

Cancer) and demonstrate trends in data. The normal group are used as the 
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category to compare against and the fold change is calculated as a ratio 

compared to the control.  

 

5.4.3 Objective 2 – Targeted expression analysis results of matched blood 

and saliva patient RNA samples 

 

The below table demonstrates the key demographic data of the patients 

analysed: 
 

Diagnosis No. of patients 
recruited 

Sex Av. Age Av. Length 
of BO 

Staging of 
cancer 

Normal 7 5F, 2M 66 N/A N/A 

NDBO 5 5M 59 C3M5 N/A 

HGD 7 7M 67 C7M8 N/A 

OAC 7 6MF1 70 C3M6 
Not recorded 

in 4 cases 

3 x T1N0M0 

T2N1M0 

T2N1M1 

T2N2M1 

T3N1M1 

 

 

When analysing the data on this table one initially notes that in the NDBO, HGD 

and OAC groups the individuals recruited are predominantly male which reflects 

the gender disparity of these diseases (discussed in chapter 1). However, within 

the normal group the ratio of female to male patients is 5:2. The average age of 

those recruited is similar in all four groups and again reflects the age at which 

one would expect patients to present with BO or OAC. The length of BO is 

similar in those with NDBO and OAC, although the length of BO was not 

recorded in 4 out of 7 cases in the OAC group and is longest in those with HGD. 

In all three of these categories the average length of BO would be described as 

a long segment and thus be thought to be of higher risk. Finally, in the OAC 

group the staging of cancer is evenly split with 4 patients having resectable 

(curable) disease and 3 with incurable disease. 

 

Following targeted expression analysis, a ΔCt was calculated for each sample 

and then an average ΔCt was calculated for each diagnostic group. A ΔΔCt was 

then calculated using the normal patients as the reference. The table below 

Table 11: Demographic data for patients with matched blood and saliva undergoing analysis 
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demonstrates these results, with complete results found at the end of the 

chapter: 

 
BLOOD 

 ΔCt 
 TP53-6 CDKN2a_r58 SMAD7-118 AMY2 CDKN2a-

80 
TLR6 

DIAGNOSIS       

Normal 13.67 
 

3.68 
 

16.6 
 

19.86 
 

12.9 
 

17.88 
 

NDBO 16.23 10.18 13.3 21.78 12.83 21.02 

HGD 11.44 2.07 14.16 17.79 11.05 13.35 

OAC 13.3 3.5 12.8 19.66 11.37 15.82 

 ΔΔCt – Fold change 
DIAGNOSIS       

Normal 1.00 
 

1.00 
 

1.00 
 

1.00 
 

1.00 
 

1.00 
 

NDBO 1.19 2.77 0.80 1.10 0.99 1.18 

HGD 0.84 0.56 0.85 0.90 0.86 0.75 

OAC 0.97 0.95 0.77 0.99 0.88 0.88 

 

SALIVA 
 ΔCt 
 TP53-6 CDKN2a_r58 SMAD7-118 AMY2 CDKN2a-

80 
TLR6 

DIAGNOSIS       

Normal   11.39 
 

      2.63 
 

   13.36 
 

  19.44 
 

    10 
 

  10.36 
 

NDBO 11.81 6.32 10.48 19.95 9.61 8.08 

HGD 14.04 2.96 14.62 21.52 10.01 13.24 

OAC 11.39 -0.81 10 17.42 8.72 13.39 

 ΔΔCt – Fold change 
DIAGNOSIS       

Normal 1.00 
 

1.00 
 

1.00 
 

1.00 
 

1.00 
 

1.00 
 

NDBO 1.04 2.40 0.78 1.03 0.96 0.78 

HGD 1.23 1.13 1.09 1.11 1.00 1.28 

OAC 1.00 -0.31 0.75 0.90 0.87 1.29 

 

 

The numbers of patients in each diagnostic group are too small to be able to 

analyse them for use as a diagnostic tool. Thus, one cannot interpret these 

Table 12: Expression analysis results for patients with matched blood and saliva  
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results and make an assessment of an individual primer’s ability to detect those 

with or at risk of OAC. However, importantly one can see from these results that 

there are changes in the expression of the primers seen in both blood and 

saliva samples which would suggest that they are an adequate tissue to attempt 

to obtain informative data to identify those with or at risk of OAC. One can see 

from these results that there is aberrant over-expression of two of these primers 

in the saliva of those with NDBO and 4 of these primers in those with OAC. 

There is under-expression of 3 primers in HGD and 1 in OAC. For blood 

aberrant over expression is seen in 1 primer and under expression in 2 primers 

in those with NDBO, all 6 primers show over expression in those with HGD and 

3 show over expression with OAC. Whilst the cohort is too small to determine 

whether this is truly significant these results do provide promise. 

 

Furthermore, one can use this data to study the trends of the expression of 

these primers to determine whether blood and saliva have a similar expression 

pattern, in keeping with the theory behind liquid biopsies and salivary 

diagnostics. This is achieved by looking at the fold change, in which a 

difference of 0.1 signifies a 10-fold greater (or lesser) amount of expression. 

Thus, if a primer has a fold change of 0.9, when compared to the normal, then it 

is expressed approximately 10-fold higher in that diagnostic group than in the 

normal group. Looking at the SMAD7 primer one can see that there is a similar 

trend in terms of expression profile throughout the diagnostic groups (Figure 

20), although in the saliva SMAD7 group there is no difference between SMAD7 

expression in those with HGD whereas in the blood group there continues to be 

increased SMAD7 expression in the HGD group. 
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Figure 20 
Comparison of blood and saliva across the 
4 diagnostic groups using SMAD7 as the 
primer. 
 
FOLD CHANGE 
 
DIAG. Blood  Saliva 
Norm 1.00  1.00 
NDBO 0.80  0.78 
HGD 0.85  1.09 
OAC 0.77  0.75 
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Another similar trend, from these results is that in the CDKN2a-r58, CDKN2a-80 

and AMY2 primers is that the significant aberrant expression of these primers 

occurs in the blood of patients with HGD (but not OAC) and in the saliva of 

patients with OAC (but not in HGD). These results are discussed further in 

Chapter 6. 
 

 CDKN2a-r58 AMY2 CDKN2a-80 
DIAGNOSIS Blood Saliva Blood Saliva Blood Saliva 
HGD 0.56 1.13 0.90 1.11 0.86 1.00 

OAC 0.95 -0.31 0.99 0.90 0.88 0.87 

 
 

 

Interestingly also, aberrant expression is occurring in primers at points in which 

published literature support this data. For example, in both blood and saliva one 

can note that there is aberrantly higher expression of SMAD7 in patients with 

OAC when compared to those that are normal. SMAD7 is discussed further in 

Chapter 6, however, it has been published that higher levels of SMAD7 

expression are seen in colorectal cancer. Similarly, also, TP53 is significantly 

aberrantly expressed in the blood of those with HGD which again is in keeping 

with published work by Weaver et al looking at mutations in BO using biopsy 

samples [1]. 
 

5.5 Discussion 

 
When reviewing the literature behind means by which RNA extraction has been 

approached, in different tissue types, one notes variation in practice. Whilst 

these variations may appear to be minor, for example 5:1 phenol to chloroform 

ratio versus 4:1, they do seem to impact on the outcome of the RNA extracted 

in this work. As such, overall, this work highlights the issue of variation in 

technique, even on an individual basis, which can significantly impact on the 

downstream data. In the circumstances of research on small patient numbers 

this issue matters less as it is likely that only one or two technicians will be 

performing the work and therefore ensure their methods are identical. However, 

thinking further ahead should these techniques be used for population 

screening then one would need to ensure that all extraction techniques are 

Table 13: Table demonstrating the fold change of 3 primers when comparing blood and saliva in 

patients with HGD and OAC. 
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identical which becomes challenging if there are many people, perhaps in 

different laboratories, performing the work.  

 

One of the early striking aspects of this work were the poor results obtained 

using spin column-based extraction kits to obtain RNA. The column-based 

approach is used widely in molecular biology as it allows for a quick and simple 

means to extract DNA and RNA from varying tissues. Therefore, the use of a 

column-based approach is ideal as it allows for more consistency in technique 

which would eliminate the aforementioned issues of individual variation in 

technique. There is little in the way of published literature on comparing the 

methods of RNA extraction from saliva. Pandit et al published work comparing a 

similar isopropanol and ethanol precipitation technique to a commercially 

available spin column-base kit and found that the former out-performed the spin 

columns providing higher yields and better quality RNA [241]. However, in 

contrast to this although published literature on utilising salivary RNA is sparse 

other published work did use spin columns to obtain their RNA [224, 242]. 

Clearly, therefore, these groups were able to achieve more consistency using 

spin columns than I was able to replicate. A possible reason behind the poor 

results achieved with the spin columns is that the kits I used are designed to 

obtain RNA from tissue types such as cells and tissue in which the RNA is of 

higher concentration and less degraded. As such it is possible that in highly 

degraded tissues, such as saliva, the washing steps in the spin columns are too 

aggressive and cause the RNA not to remain bound to the silica. Whilst the 

pellet approach with the isopropanol and ethanol precipitation is more labour 

intensive it does allow for a gentler washing step. 

 

Centrifugation at room temperature yielded significantly worse results than 

when centrifuged at 4°C. Given how degraded the salivary RNA sample is, an 

issue that is further discussed in Chapter 6, there is little room for further 

degradation of the RNA. It is perhaps no surprise then that using chilled 

reagents and keeping the temperature of the centrifuge at 4°C allows for 

improved yields by ensuring that any lingering nucleases remain inactive. 

Centrifugation at 4°C is used in the majority of protocols that are published and 

also form part of the recommended RNA extraction methods utilised by Pandit 

et al. [241]. 
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It is notable from the Bioanalyzer (Agilent Technologies, Santa Clara, USA) 

images how poor the quality of the salivary sample is. The average RIN value of 

the salivary samples extracted was 3.85. This is due to the salivary enzymes 

and other proteins that degrade RNA and in keeping with published literature in 

regard to using saliva. However, this poor quality does not prevent its use for 

both targeted q-RT PCR and sequencing work using molecular biology methods 

such as shorter fragments and different bioinformatics strategies. There is an 

abundance of literature using FFPE samples for molecular analysis which often 

has a RIN value of less than 2. A value of greater than 1.4 is the accepted cut-

off for the ability to use the sample [243]. Whilst the use of snap-frozen samples 

remains the gold-standard there is a plethora of literature in which FFPE 

samples with similar degradation patterns as that seen in saliva that have been 

used for whole genome and transcriptome sequencing as well as targeted work 

[244, 245]. Whilst the field of salivary diagnostics remains new there is even still 

work using saliva for whole transcriptome sequencing [246].Thus whilst the 

degradation of the salivary sample does present some problems it does not 

devalue its use as a diagnostic tissue. 

 

The necessity of performing a DNase step is due to the issues of PCR products 

becoming contaminated with genomic DNA [247], however, the use of Turbo 

DNase (Thermo Fisher Scientific, Waltham, USA) to ensure removal of all DNA 

prior to targeted expression analysis is not performed by all. One reason behind 

this is that many of the washing reagents found within spin column kits contain 

DNase and as such it is felt by many that performing a separate DNase step, if 

a spin column has been used, is unnecessary. However, there is evidence from 

transcriptome sequencing that the DNase within kits is insufficient to remove all 

traces of genomic DNA and as such can cause downstream analytical issues 

especially in highly sensitive methods such as RNA sequencing. 

 

However, even when not using spin columns many people still do not perform a 

DNase step prior to targeted expression analysis. The justification behind this is 

that primers can be designed to anneal to sequences in exons on both sides of 

an intron, thus making any product amplified by genomic DNA too large to 

cause contamination. Alternatively, primers can be designed to span exon/exon 
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boundaries and thus span more than one intron resulting in them being unable 

to amplify genomic DNA. However, there are two issues with this approach. 

Firstly, approximately 5% of genomic DNA is intron-less which thus can cause 

issues with contamination of the PCR product regardless of primer design [247]. 

Secondly, when using saliva, one is dealing with highly degraded samples, 

providing low yields, and two of our target genes used (AMY2 and SMAD7) 

have low expression levels that are that are mono-exonic. Thus intron-spanning 

PCR primers cannot be used. This, therefore, makes the Turbo DNase (Thermo 

Fisher Scientific, Waltham, USA) process vital. 

 

When deciding to compare blood and saliva the decision was made to use 

whole blood rather than including fractionation into the components prior to 

RNA extraction. There are issues with this approach. It is noted that there are a 

high proportion of globin mRNA present in whole blood which can reduce the 

efficacy of expression profiling by inhibiting the detection of less abundant 

transcripts. Similarly, it has been noted that using whole blood results in 

increased noise and reduced sensitivity in gene expression assays [248]. 

However, there are reasons to study whole blood rather than its 

subpopulations. Firstly, from a practicality point of view the use of whole blood 

is quicker and less steps, in regard to fractionating the blood, leads to less 

opportunity for variation in individual methods and thus minimise sample to 

sample variability. Secondly, the handling of the sample during fractionating 

leads to artefacts and cell activation that impacts on downstream analysis. 

Thirdly, even following fractionating blood globin mRNA often remains the most 

abundant transcript and thus can affect the analysis. Finally, there are an 

abundance of subpopulations found within blood that each may contain 

valuable information when analysed. Analysing each individual population is 

costly and time-consuming. Thus, given that this work was performed to see 

whether there is the potential for blood to be used as a screening tissue it was 

felt most appropriate to use whole blood initially.  

 

Whilst this work did demonstrate similar trends in the expression profile of a few 

genes between blood and saliva, it was not shown across all the genes. This is 

to be expected as studies have shown partial concordance of mutations 

between different tissues [249]. The origins of RNA within saliva are complex 
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with oral epithelial cells, the microbial species and exosomes all contributing, 

with the majority thought to be from exosomes [250, 251]. Thus, the expression 

profile found within saliva will likely reflect the exosomal expression profile, 

although there may be variation depending on other factors in the local 

environment. Similarly, the expression profile of blood will be determined by a 

multitude of processes occurring throughout the body. Thus, one cannot expect 

the expression profile of these two tissues to match exactly on every gene. The 

RNA found within exosomes is thought to be key for intracellular communication 

and even play a role in tumour progression and metastasis. It is likely that the 

salivary expression profile will contain transcripts from a lesion should there be 

a driver mutations present. Thus, once a process becomes significant one 

would expect to observe the changes in expression profile within the saliva. 

This may go some way to explain why the results from this work observe 

aberrant expression within the blood in patients with HGD that then become 

significant in the saliva of those with OAC. It is possible that this earlier stage 

does not result in the release of diagnostically useful exosomes containing RNA 

from the genes I tested, which then find their way into the saliva. However, 

within this work we have only tested a limited number of primers, most of which 

are linked to cancer. One observes this phenomenon predominantly in the 

CDKN2a gene which is strongly linked to neoplastic change. However, should 

one want to detect exosomal RNA linked to NDBO or HGD then it is possible 

that different targets would identify this change. For example, in this work one 

notes the significant aberrant expression of TLR6 in those with NDBO. This 

finding is supported by recent work published by Huhta et al.l in which it was 

noted that TLR6 has increasing expression from normal to NDBO, to HGD, and 

OAC [252]. The reason that this change in salivary expression is no longer 

significant in those with HGD and OAC may be because more dominant 

processes are occurring, thus overshadowing TLR6, and are no longer reflected 

in the salivary exosomal RNA. 

 

5.6 Chapter conclusions 

 
In reference to the aims and objectives of this chapter, this work demonstrated 

that as proof of concept it is possible to extract sufficient quantity and quality 



 130 

RNA from blood and saliva for downstream expression profiling. In addition to 

this, the data produced in this work suggests that blood and saliva do potentially 

contain useful RNA expression biomarkers that can identify those with or at risk 

of OAC with CDKN2a and AMY2 giving the most significant fold change from 

this set of biomarkers. Although the number of patients analysed is too small to 

determine whether these differences are significant, this early data is 

encouraging. Whilst we have analysed a small number of patients and only 

used 6 primers one can also note trends in the expression data that are similar 

between blood and saliva. This is in keeping with the theory behind salivary 

diagnostics.  
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5.7 Complete results for section 5.4.3 

 
 

 
 

 TP53-6 CDKN2a_r58 SMAD7_118 AMY2 CDKN2a-80 TLR6 
 

Diagnosis Blood Saliva 
 

Blood Saliva Blood Saliva Blood Saliva Blood Saliva Blood Saliva 

Normal 13.67 11.39 3.68 2.63 16.6 13.36 19.86 19.44 12.9 10 17.88 10.36 
NDBO 16.23 11.81 10.18 6.32 13.3 10.48 21.78 19.95 12.83 9.61 21.02 8.08 
HGD 11.44 14.04 2.07 2.96 14.16 14.62 17.79 21.52 11.05 10.01 13.35 13.24 
OAC 13.3 11.39 3.5 -0.81 12.8 10 19.66 17.42 11.37 8.72 15.82 13.39 

 

 

 TP53-6 CDKN2a_r58 SMAD7_118 AMY2 CDKN2a-80 TLR6 
 

Diagnosis Blood Saliva 
 

Blood Saliva Blood Saliva Blood Saliva Blood Saliva Blood Saliva 

Normal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
NDBO 1.19 1.04 2.77 2.40 0.80 0.78 1.10 1.03 0.99 0.96 1.18 0.78 
HGD 0.84 1.23 0.56 1.13 0.85 1.09 0.90 1.11 0.86 1.00 0.75 1.28 
OAC 0.97 1.00 0.95 -0.31 0.77 0.75 0.99 0.90 0.88 0.87 0.88 1.29 

 

 

 

 

 

 

  

Table 14a: ΔCt  
 

Table 14: Mean ΔCt value and fold change for each primer at each 
diagnosis using blood and saliva  

Table 14b: Fold Change  
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Chapter 6  
 

Targeting saliva for population screening of OAC genetic 
risk 
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Chapter 6 – Targeting saliva for population screening of OAC risk 
 

6.1 Introduction 

 
The work outlined in chapter 5 demonstrated that saliva has the potential to 

provide biomarkers linked to the detection of those with or at risk of OAC. 

Clearly, as discussed earlier, a saliva sample is both safe and acceptable to use 

as a screening tissue type. It is non-invasive, simple to collect, and low-cost. 

Saliva has been described as ‘the mirror of the body’ with published literature 

demonstrating its potential for providing insight into oral and systemic disease 

[253, 254]. The field of salivary diagnostics has been around for some time. For 

example, Stephen et al postulated the use of saliva for drug level monitoring in 

1976 [255]. However, its use in the field of molecular biology was always limited 

by the poor quantity and quality of salivary DNA and RNA obtained that 

analytical techniques at that time could not process. However, the use of saliva 

as a clinically useful tool, providing insights into prognosis, diagnosis, 

monitoring and the management of patients is increasing. Bodies of work are 

utilising saliva and are detecting useful biomarkers in fields such as 

cardiovascular disease, renal disease, diabetes, infections and cancer [223]. 

Emerging work is finding both DNA and RNA signatures associated with cancer 

risk in saliva [224-226, 256]. Therefore, given the promising results outlined in 

chapter 5, I decided to focus on utilising saliva to determine whether it was 

appropriate and effective for identifying patients with or at risk of OAC using 

transcriptomic and epigenetics. 

 

6.2 Aims of chapter 

 

The aim of this chapter is to determine whether saliva is a practical and 

potentially useful tissue to identify those with or at risk of OAC through 

transcriptomic and epigenetic analysis. The objectives are: 

 

1. What are the optimum collection and storage processes to ensure the 

best quality and quantity of salivary RNA is obtained? 
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2. Does salivary RNA provide significant biomarkers either alone or in 

combination with clinical data for the detection of those with or at risk of 

OAC when targeted qRT-PCR is performed on a large cohort of 

patients? 

 

3. Can additional salivary RNA targets be identified through performing 

whole mRNA sequencing on selected saliva samples? 

 

4. Can DNA be extracted from the saliva samples and be utilised to provide 

further useful data through epigenetic analysis? 

 

6.3 Objective 1 - Optimising the collection and storage of saliva 

 
Although the use of saliva in the field of molecular biology is new, the optimum 

means to collect saliva has been discussed for some time due to its use in other 

fields. Saliva originates from three paired major glands (parotid, submandibular, 

and sublingual) and numerous minor glands. It is possible to obtain saliva from 

the individual major glands although the use of whole saliva, from all glands, is 

more frequently used and thought to be more clinically relevant [257]. Saliva 

can be collected under un-stimulated or stimulated conditions. Stimulation of 

saliva production can be achieved through the use of gustatory agents such as 

paraffin wax, rubber bands, gum base, and citric acid. However, it is thought 

that stimulants interfere with the contents of saliva [257, 258]. The flow rate of 

saliva displays diurnal, seasonal and postural variation and the contents of 

saliva are affected by eating, drinking, smoking and oral hygiene processes. 

Thus, ideally saliva collection should be standardised so that individuals are 

providing saliva at approximately the same time of day having not eaten, drunk, 

smoked or undertaken oral hygiene processes for 2 hours prior to donation. By 

standardising these processes, consistent results are achieved [257, 259]. 

 

There are four methods discussed for saliva collection: 

 

1. Draining method: Saliva is allowed to drip off the lower lip until the 

desired quantity is obtained. A collection device with a funnel is used for 
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this method. 

 

2. Spitting method:  Saliva is allowed to accumulate in the floor of the 

mouth and the subject spits it out until the desired quantity is obtained.  

 

3. Suction method: Saliva is continuously aspirated from the floor of the 

mouth into a test tube by a saliva ejector or an aspirator such as the 

RNAPro•SAL system (Oasis Diagnostics, Vancouver, USA)  

 

4. Swab (absorbent) method:  Saliva is collected through absorption into a 

pre-weighed swab, cotton roll, or gauze sponge placed in the mouth. The 

Salivette (Sarstedt, Nümbrecht, Germany) is a commercially available 

product for this. 

 

A comparative study of the four methods described found that the suction and 

swab methods provided the most variability and were thus the least reliable 

[257]. However, this is an old study and with the production of newer collection 

devices such as the RNAPro•SAL system (Oasis Diagnostics, Vancouver, USA) 

and the Salivette (Sarstedt, Nümbrecht, Germany) there is published data 

demonstrating that these collection methods provide consistent, reliable results 

[259, 260]. For all the saliva work within this project, the spitting method was 

adopted.  

 

A significant stumbling block in the use of saliva for molecular biology 

applications is the poor quality of RNA and DNA in the saliva sample. It was 

long thought that the presence of useful RNA in saliva was unlikely due to the 

hostile environment of the mouth complete with endonucleases, such as 

ribonucleases, that would destroy the fragile salivary RNA. The now established 

presence of RNA in saliva is thought to be due to a combination of: protective 

macromolecules; RNA being complexed with lipids, proteins, lipoproteins, or 

phospholipids; or protection from apoptotic bodies or other vesicular structures.  

Regardless of this protection, the degradation is still significant, preferentially 

targeting longer transcripts and randomly occurring at either end. Published 

literature reports the RIN to be approximately 2.5 and the average fragment 

length to be approximately 100bp [242, 261]. However, despite the nature of the 
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sample, thanks to the advancing molecular analytical technologies, salivary 

RNA can be used for targeted analysis and whole mRNA sequencing [242, 

246]. 

 

6.3.1 Objective 1 – Optimising the collection of saliva samples. Quantity of 

sample provided. Methods 

 

The means in which saliva is collected can impact on its quality and quantity. 

Work was performed to test key variables that can affect the quantity and 

quality of salivary RNA and therefore its downstream application. The initial 

work focussed on the amount of sample a patient could provide that still yielded 

consistent results. However, there are two issues with collecting larger 

quantities of saliva. Firstly, individuals can find it difficult to produce large 

quantities especially if they are unwell and / or have starved prior to donation. 

The acceptability of saliva as a population screening tool does also depend on 

an individual being willing to provide the sample. For example, some individuals 

do not wish to provide a stool sample for the colorectal screening programme 

and cite this as their reason not to participate. Secondly, it is logical to assume 

that at a certain point the aqueous solution content of saliva will increase whilst 

the other content, that contains the desired DNA and RNA, will decrease. Thus, 

providing large amounts of saliva may dilute the sample and make RNA 

extraction more challenging.  

 

For the work to determine how much saliva an individual could provide in one 

sitting 2 healthy volunteers provided 12 x 1ml of saliva over a 36-minute period 

(1ml provided every 3 minutes). Neither of these individuals had any known 

medical issues, took any regular medication or had recently had any short-term 

illnesses. The individuals had refrained from eating, drinking, smoking and oral 

hygiene procedures for two hours prior to donation. The subjects were seated 

comfortably with eyes open and head tilted slightly forward. They were asked to 

allow saliva to accumulate in the floor of their mouth prior to spitting it into the 

collection tube until the liquid (rather than the associated foam) reached the 

1mL line. Saliva was collected in 15ml Corning® centrifuge tubes (Sigma-

Aldrich, St Louis, USA). Unstimulated, whole saliva samples were obtained. 
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Each 1ml of saliva was immediately stored in a -80°C freezer and underwent 

RNA extraction 5 days later using the same method optimised and outlined in 

chapter 5. 

 

6.3.2 Objective 1 – Optimising the collection of saliva samples. Quantity of 

sample provided. Results 

 
The below table demonstrates the fall in concentration of RNA extracted as the 

individual provides more saliva. As one can see from this table the yield of RNA 

extracted from individual 1 becomes significantly lower after 6ml provided. In 

individual 2 a similar fate occurs after 8ml.  
 

 Individual 1 Individual 2 
Sample no. Yield (ng/μL) Yield (ng/μL) 

1 40.7 41.20 

2 23.76 27.32 

3 38.65 20.99 

4 18.57 31.21 

5 21.34 24.68 

6 23.8 17.64 

7 9.01 19.78 

8 10.63 19.01 

9 7.3 11.11 

10 5.11 13.55 

11 6.98 4.23 

12 3.8 6.69 

Table 15:Table demonstrating the concentration of RNA extracted from 12 saliva samples provided consecutively.  

 

When one looks at the NanoDrop (Thermo Fisher Scientific, Waltham, USA) 

images seen at 1ml and 6mls in individual 1 one can observe that although the 

yield has diminished significantly, the RNA extracted is likely still of sufficient 

quality to be usable. However, at 7ml, in individual 1 the NanoDrop (Thermo 

Fisher Scientific, Waltham, USA) images suggest that the saliva is now of 

insufficient quality and quantity to be useable. In individual 2 both the quality 

and quantity of salivary RNA extracted became unusable at 8ml. These 

observations are demonstrated in the NanoDrop (Thermo Fisher Scientific, 

Waltham, USA) images below. 
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The results of this work demonstrate that individuals could provide 2ml of saliva 

without affecting the quantity and quality of salivary RNA extracted. Should I 

wish to collect more saliva then this variable requires further testing on more 

individuals but, judging on this data alone, 4-5ml is probably a safe amount to 

donate prior to quantity and quality diminishing. Having reviewed the literature 

in other studies collecting saliva for RNA or DNA extraction, there does not 

seem to be any in which an individual has been asked to provide more than 

5ml. 

 

There has been no published work exploring the amount of RNA or DNA found 

in saliva at differing volumes provided. Studies using saliva tend not to ask their 

volunteers to provide any more than 5ml with saliva collection devices such as 

the Salivette (Sarstedt, Nümbrecht, Germany) and the RNAPro•SAL system 

(Oasis Diagnostics, Vancouver, USA) collecting only 1.5ml and 1ml respectively 

[261, 262]. My results demonstrate that in the two volunteers tested there was a 

drop in yield the more saliva that was provided with samples after 6ml in one 

individual and 8ml in another being unusable. The reason for this is unclear. 

Tanabe et al looked at the pH of saliva the more dehydrated an individual is, 

work that was performed in response to the observation that there is increased 

decay, missing, and filled teeth and the risk of tooth erosion in athletes. This 

study found that there was a significant drop in salivary pH following exercise 

[263]. One could postulate therefore that salivary pH also falls, and thus causes 

Figure 21: NanoDrop™ (Thermo Fisher Scientific, Waltham, USA) results for individual 1 at sample 1, sample 6 and 
sample 12 respectively 
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more damage to RNA, the more saliva an individual is asked to provide. 

However, this seems an unlikely explanation as an individual is not going to 

become dehydrated following providing over 6mls of saliva. An alternate 

explanation may be that the content of saliva alters at a certain threshold of 

volume provided in which the water content overwhelms that of the other 

constituents that provide the DNA and RNA. Saliva is already 99.5% aqueous 

solution and thus it would take only a small shift for this to occur. Again, there 

has been no work exploring this but it seems a reasonable hypothesis that the 

more demand one places on the salivary glands in short space of time the less 

cells, electrolytes, and enzymes the saliva will contain. 

 

6.3.3 Objective 1 – Optimising the collection and storage of saliva samples. 

Methods 

 
Avoiding the consumption of food and drink for 2 hours prior to donation may 

not sound like a long time but individuals can find this challenging. Providing 

saliva following this period of starvation can also become a challenge for some. 

As such I wanted to determine whether the avoidance of food and drink prior to 

saliva collection was necessary. The less pre-donation instructions one has to 

give the more likely that a sample will be received.  

 

The aim of this work is to establish a standardised and reproducible salivary 

collection method to produce high-quality RNA to improve the performance of 

downstream translational applications. Here we investigate factors within the 

collection process which could affect the quality of salivary RNA such as 

storage at ambient temperatures, fasting windows prior to saliva collection, and 

collecting saliva with and without the addition of a preservative.  

 

Cohort 

Saliva was collected as part of the ethically approved study ‘Saliva To Predict 

Risk of Disease Using Transcriptomics and Epigenetics’ (SPIT) study (ISRCTN 

Registration: 11921553). Participants were healthy volunteers (n=9) with no 

significant past medical history or recent illness. All volunteers gave informed 

consent. 
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Preservative comparison sample collection 

Each of the nine healthy volunteers who had fasted overnight were given three 

pre-prepared 30 ml tubes containing either 1 ml of DNA/RNA Shield, 1 ml of 

RNAlater or an empty tube (no preservative). Volunteers were allocated 

randomised orders of donation of saliva to prevent bias. Each volunteer donated 

1 ml of unstimulated whole saliva via passive drool per tube, agitating tubes 

containing preservative throughout collection. The tubes containing no 

preservative were immediately placed on ice. Samples containing preservatives 

were left at ambient temperatures for 1 hour. Three pools for each preservative 

condition were created, each containing saliva from three volunteers, to reduce 

variability between samples. The pools containing no preservative and DNA/RNA 

shield were immediately stored at -80ᵒC. The pool containing RNAlater was left 

at room temperature overnight before moving to -80ᵒC storage the following day 

in accordance with the manufacturer’s recommendations. This method of saliva 

collection was used for all following experiments with notable alterations 

described below. 

 

Storage temperature study and bacterial load study sample collection 

For these analyses, saliva samples were collected as described above. Three 

pools of saliva were then created and initially stored at room temperature. 800 µl 

of saliva was taken in the morning from each pool on each day for seven days 

and aliquots stored at -80ᵒC immediately.  

 

Saliva stability after storage at -80ᵒC  

1ml saliva samples were collected using the RNAlater method and stored at room 

temperature for 24 hours before pooling to create the three sample pools. Four 

aliquots of 800 µl of saliva was taken from each pool and immediately stored at -

80 ᵒC, then extracted after 1, 2, 3 and 4 weeks.  

 

Fasting study saliva collection 

Volunteers (n=9) fasted overnight and then provided 1 ml of saliva upon waking 

which was collected into RNAlater. All volunteers then ate and drank and rinsed 

their mouths with water before donating the first post-prandial saliva sample. 

They then fasted until the end of the study. All collections were made in the 
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morning at 1, 2, 3 and 4 hours after eating. Volunteers were allowed a few sips 

of water after each donation. All samples were stored at room temperature for 24 

hours before three sample pools were created for each collection time-point, each 

containing the same three volunteers for each pool. 800 µl of saliva was taken 

from each pool and stored at -80ᵒC prior to extraction.  

 

RNA extraction and Quality Control 

RNA extractions on samples not in preservative were performed using the 

methods outlined in section 5.3.4. For the samples collected in preservative a 

different method was required. Given the optimising of the methods outlined in 

Chapter 5, I decided to continue using isopropanol / ethanol precipitation method 

and to maintain the methodology processes established in Chapter 5. For 

samples collected in preservative there was a 1:1 ratio of sample to preservative. 

Therefore, I made the assumption that in 1ml of saliva / preservative mix there is 

500μL of sample which, from the work in Chapter 5, is sufficient to obtain RNA 

for analysis. Similarly, in the preferred method outlined in Chapter 5 there was 

three times as much Qiazol (Qiagen, Hilden, Germany) as there was sample 

(400μL sample to 1.2mL Qiazol). Thus, in the preservative cases, continuing this 

ratio meant that 1ml of sample required 3ml of Qiazol (Qiagen, Hilden, Germany). 

Consequently, continuing the 4:1 phenol / chloroform ratio established in Chapter 

5 resulted in 750μL of chloroform being required. The initial steps used were as 

follows: 

 

1. 1mL of the saliva / preservative mix was pipetted into a separate 15ml 

Corning centrifuge tubes (Sigma-Aldrich, St Louis, USA) following mixing 

with a pipette. 

 

2. 3mL of Qiazol (Qiagen, Hilden, Germany) was pipetted into the sample / 

preservative mix. This was then vortexed for 1 minute and left for 5 

minutes at room temperature. 

 

3. 750μL of chloroform was then added and again vortexed for 1 minute 

and left at room temperature for 5 minutes. 

 

4. The sample was then centrifuged at 4° for 10 minutes at 14,000 rpm. 
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5. The first 400μL of the upper aqueous phase was then removed and 

placed in a 1.5ml Eppendorf. 

 

6. Following this step, the methods were followed as for the other samples 

outlined in Chapter 5. 

 

RNA Quality Control methods are outlined in section 5.4.2 and were carried out 

following extraction. The total RNA yield (ng) and 260/230nm and 260/280nm 

ratios were analysed using the DeNovix DS-11 FX + 

Spectrophometer/Fluorometer. RNA integrity (RIN) was analysed using the 

Agilent Bioanalyzer and Agilent RNA 6000 Nano Chip Kit, using the Eukaryote 

Total RNA v2.6 assay software. After quality control, all samples were stored at 

-80ᵒC.  

 

qRT-PCR 

cDNA was synthesised and qRT-PCR were performed as per the methods in 

5.4.2. 

 

Data Analysis 

One-way ANOVA with Tukey’s post-test correction statistics were generated 

using GraphPad Prism™ software, with p < 0.05 deemed statistically significant. 

All averages are shown as the mean ± standard deviation. 

 

 

6.3.4 Objective 1 – Optimising the collection and storage of saliva samples. 

Results 

 

RNAlater preservative stabilises salivary nucleotides 

To investigate if quality and/or total yield of RNA isolated from saliva could be 

improved with the addition of commonly available preservatives, saliva was 

collected either without preservative or in the presence of the preservatives 

RNAlater or DNA/RNA Shield (Figure 22).  
 



 143 

 
 

 

RNAlater had a total RNA yield of 15473.2 ng (± 4824.7), in comparison to 

7073.2 ng (±1916.3, p=0.041) for DNA/RNA Shield and 4911.7 ng (±1824.1, 

p=0.015) for saliva collected without preservative. To assess RNA quality, 

samples were assessed using the bioanalyzer which showed saliva collected 

with RNAlater gave the highest mean RIN of 7.0 (±0.3), significantly higher than 

both saliva collected with DNA/RNA Shield (2.8, ±0.26, p=0.0001) and saliva 

collected without preservative (4.5, ±0.75, p=0.002) (Figure xB). As RNAlater 

Figure 22: Comparison of RNA yield and quality between when using and not using preservatives 
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gave the best results all additional experiments were completed with RNAlater 

only. 

 
Room temperature storage does not adversely affect nucleotides  

According to the manufacturer, saliva preserved in RNAlater should be stored at 

room temperature for one day before freezing. To assess the effects of this, 

samples were incubated at room temperature for up to seven days, with 800 µl 

of sample stored at -80 ⁰C on days 0, 1, 2, 3, 4, 5, 6, and 7. There was no 

significant change in either RIN or total RNA yield in samples incubated at room 

temperature for longer than 24 hours although there was an increase in total 

RNA yield from day 0 to day 1 in two out of the three pools (Figures 23A and 

23B). 
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Overnight fasting increases salivary nucleotide yield. 

Incrementally increasing fasting windows were used to investigate whether 

fasting has any effect on total RNA yield or quality. RNA yield increased from 

1970 ug ± 1458.2 immediately after eating to 8279.3 ng ± 3318.2 (p = 0.063) 

following an overnight fast. This trend towards higher yields did not quite reach 

statistical significance when a post-ANOVA, TUKEY test, was applied (p = 0.06, 

Figure 23: Assessing the impact of storing samples at room temperature on yield and RIN value 



 146 

Figure 24A). There was no change in RIN with increasing fasting length (p < 

0.27), (Figure 24B).  

 

 
 
 

Duration of freezing does not impact on nucleotide quality or quantity  

To investigate whether storing saliva for longer periods of time at -80⁰C prior to 

processing had any effect on total RNA yield or quality, the samples were 

frozen and extracted each week for four weeks. There are no statistically 

significant changes in either total RNA yield or RIN between samples that were 

frozen for up to one month (Figure 25A and 25B).  
 

Figure 24: Assessing the impact of overnight fasting on RNA yield and RIN 
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6.3.7 Objective 1 – Optimising salivary sample collection. Discussion  

One of the major challenges of working with saliva is the dilution of molecules 

compared to serum and the rapid degradation of analytes such as RNA. Currently 

there is no standardisation in saliva collection methods, and a previous study 

recommended a method of RNA extraction that avoids the use of RNA stabilizers 

[241]. 

 

Studies do not commonly use RNA stabilisers in their saliva collection methods, 

instead employing collection over ice and ultra-low temperature storage, with 

RINs of approximately 2.5 from salivary RNA previously reported [241, 242, 

253, 264-266]. We have demonstrated that a major advantage of using 

preservative is a statistically significant increase in total RNA yield and quality 

with the addition of the RNA stabilizer RNAlater, in comparison to saliva 

collected without preservative. Our collection method put the RNAlater directly 

Figure 25: Assessing the impact of freezing sample on RNA yield and RIN 
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into the pre-prepared collection tube, thereby ensuring saliva was mixed with 

preservative almost immediately on collection. We have reported marked 

improvement in the median RINs of 7.0 (±0.3) for healthy volunteers.  

 

Saliva has advantages as a matrix due to its ease of collection and accessibility, 

facilitating the possibility of samples being collected in the primary care setting, 

or even at home. Our data support the RNAlater manufacturer’s instructions 

suggesting that samples can be left up to a week without compromising RNA 

quality, enabling sample postage to a clinical laboratory (Figures 25A and 25B).  

 

As saliva production and molecular content alters after eating food, previous 

studies have employed a fasting window of 1-1.5 hours prior to saliva collection 

[264, 265]. Shorter fasting windows minimise patient discomfort. Our results 

suggest that the quality and yield of RNA is reduced with shorter fasting windows 

(Figures 24A and 24B). Although no statistical significance was found, our results 

suggest an overnight fasting window is optimal for RNA yield and quality, possibly 

because salivary flow rates fall to near zero at night [257]. The notable decrease 

in RNA total yield (p = 0.063) in saliva collected immediately after eating suggests 

that the stimulation of saliva through the mechanisms associated with eating and 

drinking do reduce the abundance of RNA. We show that the RIN increases to a 

consistent level after 1 hour fasting and the total RNA yield steadily increases 

between 1 – 4 hours fasted. This raises the possibility that only a 1 hour fasting 

window is required to produce intact RNA, with subsequent hours fasting 

increasing the yield. Our method can be tailored to the intended downstream 

application with two standardised fasting windows; a shorter one hour fast for 

high RINs or an overnight fast for higher yields. For the clinical work, given that 

for this study patients were being recruited upon their attendance to endoscopy, 

where they would be fasted for at least 6 hours pre-procedure, these findings 

suggest we have optimal conditions for collection from our patient cohort. 

 

All studies utilising saliva ask the recruited individuals to avoid eating and 

drinking 1-2 hours prior to saliva collection. One of the most often cited reasons 

for this is the fear that the food, in particular animal produce, will contaminate 

the extracted DNA and RNA. I did not perform any downstream molecular 

analyses of the RNA extracted from these healthy volunteers who had 
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consumed breakfast and thus I am unable to comment on this. Saliva plays a 

vital role in digestion. Two of its roles are to lubricate food with mucus and water 

in order for it not to damage the mucosa of the oesophagus and to begin the 

digestion process using salivary enzymes that breakdown food [267]. As such, 

following the consumption of food and drink, it is reasonable to postulate that 

the contents of saliva alter to respond to these roles. It is likely that the water 

and mucus content increases alongside an increased presence of salivary 

enzymes, which will include endonucleases. This creates a more hostile 

environment for RNA to survive in and thus it is likely that the inconsistent 

results seen in this aspect of the work are a consequence of the impact in the 

changes in salivary contents following food and drink consumption has on RNA 

transcript degradation.    

 

It should be noted that the RIN values of the most degraded group (DNA/RNA 

Shield) was 2.8, ±0.26. Whilst this represents a degraded sample it is on par 

with, if not better, than the RIN expected with the use of FFPE samples where 

this can be as low as 1.4 [268]. Despite this poor quality, both FFPE and saliva 

tissue samples have been used for targeted analysis using qRT-PCR as well as 

whole transcriptome sequencing [242, 244, 246, 268]. Thus, whilst we accept 

that saliva is a degraded sample, its use in molecular biology and its application 

as a screening tissue type has great potential. 

 

Finally, there are reports that cancer patients have increased RNase activity 

and thus it may be that the acceptable RIN values found in this work will be 

lower when applied to clinical practice. However, the promising findings outlined 

in Chapter 5 suggest saliva is a viable medium for assessing biomarkers in 

systemic disease, including cancer [269]. 

 

6.4 Objective 2 - Detecting transcriptomic biomarkers using salivary 
RNA on larger cohort of patients 

 
Whilst the early work, outlined in Chapter 5, had demonstrated that there was 

potential for salivary RNA to provide key biomarkers in the detection of 

individuals with or at risk of OAC further exploration was required from a larger 
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cohort of patients. Similarly, the initial proof of concept work, comparing tissue 

types, used only 6 primers which required expansion. Initially I wanted to 

explore whether biomarkers in saliva were able to differentiate individuals with 

or at risk of OAC to a significant level and thus work was performed looking at 

selected primers in a larger cohort of patients. 

 

6.4.1 Objective 2 – Detecting transcriptomic biomarkers using targeted 

expression analysis on a larger cohort. Methods  

 
Power calculation 
Again, this power calculation was performed by Prof. Rifat Hamoudi. Given that 

this was proof of concept work the standard deviation used was 1 rather than 

the higher 1.5 used for the proof of concept work described in Chapter 5. R 

statistical software version 2.14.2 was used to carry out the power calculation 

with p = 0.05 (5% significance testing) and power of 90%, n = 20.0211. As such 

we aimed to obtain 20 samples in each of the four categories in this targeted 

study to yield differentially significantly expressed genes across the groups[227, 

228]. 

 

Sample collection 
The ethical approval and inclusion and exclusion criteria for patients recruited 

for this work is outlined in Chapter 5. In short, patients were recruited upon 

attendance to UCLH for their endoscopic procedure. As such they had not 

consumed food for 6 hours and drink for at least two hours prior to collection as 

part of their preparation for the procedure. Patients were recruited into one of 

four groups; Normal, NDBO, HGD and cancer. The criteria for these groups are 

outlined in Chapter 5. Diagnoses were confirmed by myself following review of 

the endoscopy report, the patient’s notes available to me on the hospital 

computer records, and any relevant histology. All diagnoses were confirmed by 

another physician.  

 

Recruited patients were asked to complete the specifically designed enhanced 

questionnaire providing demographic, symptom and risk factor data, outlined in 

Chapter 4, and provide a 1ml saliva sample. Unstimulated, whole saliva 
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samples were obtained and collected in 15ml Corning centrifuge tubes (Sigma-

Aldrich, St Louis, USA). By nature of the fact that patients were recruited prior to 

endoscopy the saliva was collected at different times of day and the recruitment 

for this work took place between January 2015 and July 2015. Again, the 

recruited patients were seated comfortably with eyes open and head tilted 

slightly forward. They were asked to allow saliva to accumulate in the floor of 

their mouth prior to spitting it into the collection tube until the liquid (rather than 

the associated foam) reached the 1mL line.  

 

The samples for this clinical work were collected whilst the optimisation work, 

outlined in section 5.3, was being performed. At this point as per published work 

samples were placed on ice after collection and then immediately stored in a -

80°C freezer. Following the results of the optimisation work, I acknowledge that 

ideally for RNA quantity and quality these samples would have been collected 

in RNAlater, however, the results from this also demonstrated that collection 

without preservative and immediate freezing still provided RNA of sufficient 

quantity and quality for downstream analysis. 

 

RNA extraction and quality control 
RNA was extracted and underwent quality control following the same protocol 

outlined in Chapter 5. The longest a sample was left in the -80°C freezer prior to 

RNA extraction was 63 days and the shortest time was 6 days. Once the RNA 

was extracted and had gone through the quality control checks it was stored in 

a -80°C freezer until all samples for this work were collected, extracted and 

ready for downstream molecular analysis. From the initial thawing to the final 

results the samples were freeze / thawed a maximum of 3 times. 

 

Primer target selection and design 
Following on from the work outlined in Chapter 5 it was necessary to test further 

targets on the salivary samples to determine whether these would provide 

biomarkers for the detection of those with or at risk of OAC. The additional 

targets were identified using the process outlined in 5.4.1. In total 13 genes 

were selected with different exons within these genes targeted creating 22 

targets altogether. The genes selected were; AMY1, AMY2, CDKN2a, SMAD7, 

TLR6, TP53, BRAF, EGFR, KIT9, KRAS, NRAS, PIK3CA and PTEN. The 
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design of the primers was in keeping with the methods described in section 

5.4.2. 

 

cDNA and qRT PCR 
These steps were performed in an identical manner to those carried out and 

outlined in Chapter 5. 

 

Statistical analysis 
Again, once the qRT-PCR was performed the relative expression was 

calculated, ΔCt, by comparing the Ct of each amplicon against 18S rRNA 

(housekeeping gene). A ΔΔCt was also calculated in order to compare the four 

categories of recruited patients (Normal v NDBO v HGD v Cancer). Finally, 

systematic Mann-Whitney U test using SPSS version 22 was then carried out 

between all the groups involved and p < 0.05 was taken to be significant. This 

final step was performed by Prof. Hamoudi by systemically comparing the 

expression of each gene between each of the four groups. 

 

6.4.2 Objective 2 – Detecting transcriptomic biomarkers using targeted 

expression analysis on a larger cohort. Results  

 

The numbers of patients recruited into each category, with sufficient quality and 

quantity RNA for downstream molecular analysis, were as follows: 
 

Diagnosis Numbers recruited 

Normal 20 

NDBO 20 

HGD 19 

OAC 21 

Table 16: Patient numbers recruited to each diagnostic category 

 

The above table demonstrates that sufficient numbers of patients were recruited 

into each diagnostic category for conclusions to be drawn as to whether a 

significant biomarker can be detected using salivary RNA.  
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The basic demographics of those recruited in each of the four diagnostic 

categories is outlined in the following table: 
 

 Normal NDBO HGD Cancer 
Age 62 70 69 70 

Sex 9F, 11M 7F, 13M 3F, 16M 8F, 13M 

Av. length of BO N/A C3M5 C6M7 C4M6 

Stage of cancer N/A N/A N/A Range 
T1N0M0 – T3N2M1 

Smoking status 3 current, 5 ex-
smokers, 12 never 

2 current, 6 ex-
smokers, 12 never 

2 current, 3 ex-
smokers, 14 never 

3 current, 9 ex-
smokers, 9 never 

Mean BMI 26.8 29.6 27.3 25.1 

 

 

This demonstrates that the patient characteristics in all four groups were 

broadly similar. There were similar ages and numbers of current and ex-

smokers seen in all groups and in all four groups the patients BMI would be 

described as overweight. The slightly lower BMI seen in those with OAC may 

reflect their disease. The mean length of BO was long in the 3 groups. It should 

be noted however, that in the normal, NDBO, and OAC there was a relatively 

equal distribution of males to females whereas in the HGD there are 

considerably more males.  

 

The following tables demonstrate the average ΔCt values and fold change in 

each category, for each of the 22 targets.  

  

Table 17: Demographic data for patients recruited for salivary analysis 
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 NORMAL NDBO HGD OAC 
 ΔCt Fold 

change 

ΔCt Fold 

change 

ΔCt Fold 

change 

ΔCt Fold 

change 

AMY1 17.78 1.00 18.02 1.01 14.41 0.81 16.74 0.94 
AMY2 18.24 1.00 20.01 1.10 15.79 0.87 14.22 0.78 

CDKN2a_r58 3.79 1.00 0.31 0.08 -3.88 -1.02 -2.29 -0.60 

CDKN2a-80 6.60 1.00 7.63 1.16 3.15 0.48 6.18 0.94 
SMAD7-118 9.83 1.00 11.41 1.16 6.25 0.64 8.93 0.91 

SMAD7-129 19.68 1.00 21.14 1.07 16.58 0.84 16.38 0.83 

TLR6 16.74 1.00 15.44 0.92 10.94 0.65 13.66 0.82 
TP53-c63 15.79 1.00 15.73 1.00 11.72 0.74 14.80 0.94 

TP53-3 15.53 1.00 15.66 1.01 16.56 1.07 13.28 0.85 

TP53-5 16.62 1.00 19.86 1.20 19.24 1.16 14.16 0.86 
TP53-6 13.28 1.00 15.58 1.17 16.79 1.26 9.64 0.73 

TP53-7 8.15 1.00 10.26 1.26 7.74 0.95 7.06 0.87 

TP53-9 16.47 1.00 20.36 1.24 19.29 1.17 14.55 0.88 

TP53-10 13.63 1.00 14.43 1.06 18.48 1.36 12.22 0.9 
BRAF 14.14 1.00 16.59 1.17 16.38 1.16 13.46 0.95 

EGFR-d19 14.41 1.00 17.38 1.21 17.26 1.20 11.93 0.83 

KIT9 14.15 1.00 17.35 1.23 17.83 1.26 12.80 0.90 
KRAS 13.39 1.00 17.35 1.30 17.84 1.33 12.43 0.93 

KRAS-q61 15.93 1.00 17.96 1.13 16.08 1.01 14.28 0.90 

NRAS-1 16.63 1.00 20.35 1.22 19.25 1.16 16.15 0.97 
PIK3CA-7 16.42 1.00 20.07 1.22 19.21 1.17 16.17 0.98 

PTEN-3 6.35 1.00 7.78 1.23 5.89 0.93 6.17 0.97 
 

 

As discussed previously, a fold change of greater than 0.1 (i.e. 1.00 to 0.9) is 

around a ten-fold difference in expression. The lower value indicating increased 

expression. A difference of 0.1 in the fold change is considered to be significant. 

From this data one can note that there is significant aberrant expression of 

some of these primers at different stages of progression. Most notably in those 

individuals with HGD or OAC. 

 

As one can appreciate from the above data not all the primers that were tested 

had significant differences in their expression throughout the progression to 

OAC. This is in keeping with our knowledge of the progression towards cancer 

in which different pathways are activated at different times. A nice example of 

this is seen in the TP53 primers that have a significant difference in their 

expression late on, observed in the patients with OAC. There has been 

published work demonstrating the late stage of TP53 mutation and consequent 

high expression at the latter stages of cancer development [1].  

Table 18: Demonstrating the ΔCt and the fold change seen in each primer 
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A striking observation from the presented data is the significant expression 

change seen at all stages of progression in CDKN2a-r58. In this presented data 

CDKN2a-r58, which is linked to the P16 tumour suppressor gene, appears to be 

a key primer in identifying those with or at risk of OAC. Below is a diagram 

demonstrating the striking observation of the increasing expression of CDKN2a 

in patients with NDBO, HGD and OAC compared to the normal controls. In this 

diagram you will note that as the expression levels increase one can observe a 

significant proportion of the truly high-risk cases (those with HGD or OAC): 
 

 
 

 

A further observation from this data is the significant fold changes seen in 

SMAD7 and AMY2. SMAD7 is known to be linked to cancer whereas the role of 

AMY2 in this process has been far less studied. This is further addressed in 

section 6.4.3. Figure 27 is a graphical representation of the significant changes 

in expression observed in these two primers. 
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Figure 26: Demonstrating increasing expression of CDKN2a-r58 in patients from normal to OAC. Each 

square represents one patient’s diagnosis 

 

Figure 27: Graphs demonstrating the changes in expression between patients in each of the 4 

diagnostic categories for SMAD7-129 and AMY2 primers. 
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The following tables demonstrate the primers with statistically significant 

changes in expression when the diagnostic categories are compared. A value 

of less than p 0.05 was taken as significant: 

 

 

 

 

 

 

 

 

  
 
 

  

 

 

     
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 

Gene P value 

SMAD7-118 0.0468 

EGFR-d19 0.0253 

KIT9 0.0253 

KRAS 0.0179 

TP53-7 0.0217 

NRAS-1 0.0139 

PIK3CA-7 0.0139 

PTEN-3 0.0228 

TP53-5 0.0282 

Gene P value 

CDKN2a-r58 0.0139 

SMAD7-118 0.05 

TLR6 0.0127 

KIT9 0.0333 

KRAS 0.0248 

TP53-10 0.01 

Gene P value 

AMY2 0.0011 

CDKN2a-r58 0.003 

SMAD7-129 0.044 

TP53-6 0.0384 

 
Table 19a: NORMAL v NDBO 
 

 
Table 19b: NORMAL v HGD 
 

 
Table 19c: NORMAL v OAC 
 

Table 19: List of primers with statistically significant changes in expression when 
diagnostic categories are compared 
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In total 12 of the 22 genes that were tested had significant differences in 

expression observed at one or more stage of progression. Of these, again, the 

most striking observations are the significant differences in CDKN2a, TLR6, 

SMAD7 and AMY2. Whilst one acknowledges that this is a small cohort of 

patients and will require validation on a larger group, it appears that RNA 

biomarkers can be found in saliva that are linked to OAC and in particular these 

four genes seem to be of key significance.  

 

6.4.4 Objective 2 – Detecting transcriptomic biomarkers using targeted 

expression analysis on a larger cohort. Discussion  

 
As established in section 6.3 the optimum means by which to collect the saliva 

is with the patient having refrained from eating, drinking, smoking and oral 

hygiene processes for 1-2 hours prior to collection. In this patient group this was 

adhered to as they were all recruited prior to undergoing their endoscopy. 

However, as established in section 6.3 the optimum means of storing the saliva 

Gene P value 

AMY2 0.00001 

CDKN2a-r58 0.0118 

CDKN2a-80 0.0051 

SMAD7-118 0.0004 

BRAF 0.0432 

EGFR-d19 0.0158 

KIT9 0.0314 

KRAS 0.0257 

TP53-6 0.00136 

TP53-7 0.0043 

Gene P value 

AMY2 0.05 

CDKN2a-r58 0.0355 

CDKN2a-80 0.0036 

SMAD7-118 0.0011 

SMAD7-129 0.00261 

PTEN-3 0.0072 

 
Table 19e: NDBO v OAC 
 

 
Table 19d: NDBO v HGD 
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was by using preservative whereas in this group preservative was not used and 

instead the samples were placed immediately into a -80°C freezer. This 

occurred because the recruitment of patients coincided with the work on 

optimising collection and storage procedures.  As such the results were 

produced after these patients had already been recruited and their samples 

collected. The work in section 6.3 demonstrates that there is a definite 

improvement in the quality of RNA obtained in samples stored in preservative. 

However, although the average quality of the RNA sample was likely not to 

have been optimal the targeted nature of this qRT-PCR analysis means the 

results likely remain valid. The primers have been designed to work with 

degraded samples and the methods included using reverse primer specific 

rather than oligo DT. Oligo DT relies on the presence of less degraded samples 

with longer chains of RNA as it binds to the poly-A tail. Thus this requisite is 

avoided by using gene-specific reverse primers. 

 

Of the 13 genes tested in this work, eight provided a statistically significant 

result at least at one stage of the progression towards cancer. This will need 

validation with a larger cohort of patients, however, 5 of those genes 

demonstrated significance across multiple stages. The significant genes and 

their known relevance to BO and OAC are discussed here: 

 

CDKN2a had statistically significant expression differences when normal 

patients were compared with those with HGD and OAC and when NDBO 

patients were compared with those with HGD and OAC. In general, we 

observed increased expression of CDKN2a when the low risk patient (normal or 

NDBO) were compared with the higher risk patients (HGD or OAC).  

 

CDKN2a is a gene that encodes for the tumour suppressor protein P16. Its role 

in the cell cycle is to regulate the process by decelerating cells progression from 

G1 phase to S phase. Its role in cancer development has been well established 

with the inactivation of CDKN2A/p16 tumour-suppressor gene being one of the 

most common genetic abnormalities in human neoplasia [270, 271]. Igaki et al 

noted a high frequency of point mutations combined with loss of heterozygosity 

of CDKN2a in SCC of the oesophagus, however this was not observed in OAC 

[272, 273]. Bian et al demonstrated that the means by which p16 is inactivated 
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in OAC is through hypermethylation of CDKN2a promoter. Importantly, this was 

observed in high frequency in the latter stages of progression, but can also 

occur earlier on i.e. during metaplasia or dysplasia [272]. Logically speaking 

should there be evidence that the CDKN2A/p16 axis becomes inactivated in 

patients that have OAC or are progressing towards it then there should be less 

expression of the gene seen as patients progress towards cancer. This is not 

observed in our work. Reasons for this are unclear although we note some 

have suggested that p16 may be linked to clonal expansion per se, but not 

progression risk [MARTINEZ et al, Nature Comms 2016].   

 

Two different exons along the SMAD7 gene were tested in this work and when 

combined the differences in expression of this gene were statistically significant 

when all stages of progression were compared. When normal patients were 

compared to NDBO there was a lower expression of SMAD7 in those with 

NDBO. However, when normal patients and those with NDBO were compared 

with those with HGD or OAC, there was an increased expression of SMAD7 

seen in those with HGD and OAC. 

 

The SMAD proteins transduce extracellular signals from beta ligands (TGFβ) to 

the nucleus where they activate downstream gene transcription[274]. The 

SMAD7 protein, encoded by the SMAD7 gene, is an inhibitory protein that 

blocks formation of SMAD2 and SMAD4. SMAD7 has been demonstrated to 

have both pro and anti-tumour actions depending on the type of cancer and the 

stage of progression towards that cancer. It can exert tumour suppressive 

action through TGFβ by restricting growth of epithelial cells and maintaining 

their differentiation state. Alternatively, SMAD7 can encourage cancer 

progression and metastasis by increasing angiogenesis and inducing epithelial-

mesenchymal transition [275]. There has been little studied on the role of 

SMAD7 in OAC and BO although there is evidence in oesophageal SCC that 

increased expression of SMAD7 correlates with a worse prognosis [276]. In 

colorectal cancer Stolfi et al demonstrated that there was increased expression 

of SMAD7 in colorectal cancer tumours and their work on cell lines showed that 

silencing SMAD7 prevented colorectal cancer cell growth [277]. It is likely that 

these pro-tumour actions are why we are seeing increased SMAD7 expression 

in those with HGD and OAC. However, this does not explain why there is a 
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decrease in SMAD7 expression noted between those who are normal and 

those with NDBE. Onwugebusi et al noted that there was a significantly reduced 

expression of SMAD4 and SMAD2 in those with NDBE when compared to 

those who were normal. They noted that this was likely to be the result of 

several different mechanisms, including methylation, deletion, and protein 

modification[278]. The role of SMAD7 is to inhibit the formation of SMAD2 and 

SMAD4. Thus, if there is a decrease in their expression during the pathogenesis 

of BO then it is logical to assume that there would also be a decrease in 

SMAD7 expression as it would no longer be required to provide the negative 

feedback loop and inhibit their formation. 

 

AMY2 was noted to have statistically significant differences in expression 

despite it, unlike the other genes tested, being a low copy gene. This was 

observed when normal patients were compared to those with OAC and when 

NDBO patients were compared to those with HGD and OAC. It was noted that 

the expression of AMY2 was increased in those with the higher risk lesions 

(HGD and OAC). There is little in the way of published data on AMY2 and its 

link to cancer. However, work by Kang et al suggested it could play a role as a 

tumour suppressor gene in gastric carcinoma [279]. 

 

Five TP53 exons were tested within this work. Generally speaking the 

statistically significant expression differences were demonstrated when normal 

or NDBO patients were compared to those with HGD and OAC. In these groups 

there was noted to be an increased expression of TP53 in those with higher risk 

(HGD and OAC). Two of the TP53 primers also demonstrated a statistically 

significant expression difference when normal patients were compared to those 

with NDBO. In these cases, there was a reduced expression of TP53 in those 

with NDBO than compared with the normal patients. 

 

TP53 is a tumour suppressor gene that has the ability to induce cell cycle arrest 

at G1/S regulation point, repair DNA, is involved in senescence, and can initiate 

apoptosis. Despite the huge diversity in tumourigenesis amongst various 

cancers, TP53 mutation is reported to occur in almost every type of cancer 

ranging from 10% of haematopoietic malignancies to almost 100% of ovarian 

carcinomas [280]. This cements its position as a key regulator of various 
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signalling pathways involved in tumourigenesis. In OAC the mutation and over-

expression of TP53 has been demonstrated to occur late in its pathogenesis. 

Weaver et al noted that TP53 mutation was found in 72% of cases with HGD 

and 69% of cases of OAC, but only 1 of their 40 cases (2.5%) of NDBO [1]. 

Bian et al also demonstrated that over-expression of TP53 occurs 

predominantly in the dysplastic phase with 85% of their cases of HGD and 71% 

of their cases of LGD having TP53 over-expression. 67% of their cases of OAC 

had TP53 over-expression [115]. Other studies have the rates of TP53 over-

expression lower with LGD being 10-20% and HGD and OAC being 60% 

[281].The importance of TP53 over-expression has been replicated by others in 

which it has been demonstrated that individuals with over-expression of TP53 

had an increased risk of malignant progression [282]. Thus, our finding of 

increased TP53 expression in the latter stages of progression (HGD and OAC) 

has been replicated in other work. It should be noted that Weaver et al found 

one case of TP53 mutation in NDBO, Bian et al found no TP53 mutation or 

over-expression in any of their NDBO cases and other studies have shown a 

maximum of 5% of cases of NDBO with TP53 over-expression [1, 115, 281]. 

However, Bian et al and others outlined by Flejou demonstrated this by using 

immunohistochemical techniques and thus would not have been able to 

observe a reduction in expression seen if using qRT-PCR techniques. Thus, our 

observation that there is reduced expression of TP53 in those with NDBO 

compared to normal individuals may demonstrate a stage in the process of the 

development of BO in which normal individuals do not benefit from the 

protective actions of TP53 and subsequently develop NDBO. 

 
TLR6 was noted to have statistically significant differences in expression when 

normal patients were compared to those with HGD and OAC. Again, it was 

noted that there was increased expression of TLR6 in the higher risk groups 

(HGD and OAC). TLR6 is linked to NFkB which has been shown to be involved 

in the progression to OAC [283]. 

 

13 TLR receptors have been identified which act as receptors for the innate 

immune system to recognise and respond to pathogen or damage associated 

molecular patterns [284]. TLR6 responds to pathogen associated molecular 

patterns. TLRs play a key role in mediating the inflammatory response and have 
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been demonstrated to also be involved in the establishment and maintenance 

of disease [285]. In cancer TLRs have been noted to demonstrate pro-

carcinogenic and pro-inflammatory actions that contribute to the tumour 

microenvironment and are associated with poor prognosis [284]. It has been 

noted that the microbiome of the distal oesophagus is altered in BO and OAC 

and along with the abnormal TLR expression this supports the potential for the 

role of TLRs and their response to these changes in bacteria in the 

pathogenesis of OAC [284, 286]. Thus, our finding of increased TLR6 

expression in those with HGD and OAC may reflect these changes in the 

microbiome, the innate immune system’s response and the consequent 

inflammation. 

 
When the expression of EGFR of patients with NDBO was compared to those 

with OAC there was a statistically significant difference in expression. Those 

with OAC demonstrated a higher level of expression of EGFR. There was also 

noted to be a statistically significant reduction in expression of EGFR when the 

normal individual was compared to those with NDBO. 

 

EGFR acts as a receptor tyrosine kinase involved in cell signalling and 

controlling proliferation and differentiation. It has been demonstrated to be 

involved in the tumourigenesis of many cancers and is linked to poor outcomes 

[287]. The expression of EGFR in OAC was noted by Cronin et al to be 

increased 13-fold in those with OAC when compared to those with NDBO with 

80% of OAC specimens examined having increased EGFR expression [287]. 

This increased expression of EGFR in OAC has been demonstrated in other 

studies as well including work by Pretto et al [288]. Thus, our finding of 

increased EGFR expression in those with OAC when compared to those with 

NDBO is certainly in keeping with published literature. However, Pretto et al 

also demonstrated that there was increased expression of EGFR in those with 

NDBO, although to a lesser extent than in those with OAC, when compared to 

individuals with GORD. This is not in keeping with our findings in which there 

was reduced expression of EGFR when normal patients were compared to 

those with NDBO. This finding may reflect that the exon on the EGFR gene that 

was tested in this work was not over expressed during the pathogenesis of BO 

and as such was not over expressed.  
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6.4.5 Objective 2 – Creating a risk prediction tool utilising transcriptomic 

and questionnaire data  

 

Utilising the data obtained through this targeted expression analysis the 

question then became as to whether one could accurately predict who had or 

was at risk of developing OAC from salivary RNA samples when combined with 

the patient demographic, risk factor and/or symptom data collected in the 

enhanced questionnaires, discussed in Chapter 5. Therefore, this data was 

provided to Professor Rosenfeld alongside the salivary RNA expression data 

and was analysed using the AI techniques outlined in Chapter 4. This work 

yielded encouraging results. By utilising 6 RNA amplicons (including AMY2, 

CDKN2A, TP53 and SMAD7) and 5 questionnaire data (including waist / hip 

ratio, PPI use and previous cancer) we were able to accurately differentiate 

between the four groups as well as identify those with or at risk of OAC with 

93% sensitivity, 73% specificity and AUC 0.88. The full details of the RNA 

amplicons and questionnaire data used to create this tool have been patented 

by University College London (patent number: WO2017137427, 

https://patents.google.com/patent/WO2017137427A1/en). 
 

 
Figure 28: Utilising both salivary RNA expression and questionnaire data the developed tool’s AUC is 0.88. 
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6.5 Objective 3 - Identification of further targets through whole mRNA 
sequencing 

 

Whilst the above work does appear to show promise, it is obviously only 

preliminary data requiring further validation with a larger cohort of patients. 

Similarly, this preliminary work has been hypothesis-led with only 13 genes 

explored. As such, following on from the success of this preliminary work, it was 

felt important to perform a discovery set to ascertain if there are other genes 

that require investigation and expression analysis using qRT-PCR. Therefore, 

work was undertaken to perform whole mRNA sequencing (RNA-seq) on 

patient saliva samples. 

 

6.5.1 Objective 3 – Whole mRNA sequencing methods  

 
RNA-seq was performed using Ion AmpliSeq RNA Library Kit (4482335, 

ThermoFisher Scientific, Waltham, MA, USA) in accordance to manufacturer’s 

standards. This kit was designed for targeted amplification of more than 20,000 

distinct human RNA transcripts concurrently within the same primer pool, with 

150bp amplicon amplified for each targeted gene (ThermoFisher Scientific, 

Waltham, MA, USA). 
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The power calculation for this work was performed by Prof Rifat Hamoudi who 

based this on whole transcriptomic data, where it has been shown that the 

standard deviation for detection of differentially expressed genes is 0.35 (s = 

0.35) as more genes are being interrogated and the delta (the measure of 

effect) is 1 [227, 228]. The power calculation was carried out using R statistical 

software version 2.14.2 with p = 0.01 (1% significance testing) and power of 

90%. This found that n = 5.55289 suggesting we required 6 samples in each 

group in order for a significant transcriptomic signature to be discovered.   

 

Patient samples selected to undergo this process had to be of sufficient quality. 

Quality control was performed on RNA samples as per Chapter 5. It was 

determined that samples needed to have a fragment mean distribution of RNA 

Figure 29: Workflow diagram of whole transcriptome amplification. cDNA synthesised from RNA via reverse 

transcription is amplified using random primers. The amplicons are partially digested to remove part of the primer 

sequences, allowing for the binding of P1 adapters (allow amplicons to bind to ion spheres for sequencing) and 

barcodes (needed for library recognition by sequencing software). 
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transcripts of at least 110bp, demonstrated using the Bioanalyser (Agilent 

Technologies, Santa Clara, California, USA), to be of sufficient quality. The 

selected samples then underwent the following processes. 

First-strand cDNA synthesis 
Eluted RNA samples were incubated at 80°C for 10 minutes and then placed on 

ice for 2 minutes. A master mix was added to the RNA samples (Table 20). The 

RNA mixture was incubated at 42°C for 30 minutes, 85°C for 5 minutes and 4°C 

for 5 minutes (Figure 30). 
 

Components of reaction master mixture Volumes added for each reaction (μl) 
5x VILO™ RT Reaction Mix 1 

10x SuperScript® Enzyme Mix (includes SuperScript® 

III RT, RNase OUT™ Recombinant Ribonuclease 

Inhibitor and proprietary helper protein) 

0.5 

Eluted sample RNA 2 

Nuclease free water 1.5 

Total 5 

 

 

 

 

Table 20: Volumes of various components in master mixture for first-strand cDNA synthesis for whole transcriptome 

extraction 

 

Figure 30: Protocol of first-strand cDNA synthesis for whole transcriptome amplification. Samples were 

heated at 42°C for 30minutes, 85°C for 5minutes and at 4°C for 5minutes 
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Amplification of targets and primer digestion 
Following the creation of cDNA, 15μl of a master mix (Table 21) was added to 

the cDNA and the samples were incubated at 99°C for 2 minutes, cycled 40 times 

at 99°C for 15 seconds followed by 60°C for 16 minutes and held at 15°C (Figure 

22). 2μl FuPa reagent was added to the samples and then this mixture was 

incubated at 50°C for 10 minutes, 55°C for 10 minutes, 60°C for 10 minutes and 

held at 10°C (Figure 31). 
 

Components of reaction master mixture Volumes added for each reaction (μl) 
5x Ion Ampliseq HiFi™ Mix 4 

Ampliseq Expression Core Panel 8 
Nuclease free water 3 

Total 15 
 

 

 

 
 

 

Table 21: Volumes of various components in reaction master mixture for target amplification 

Figure 31:Protocol of target amplification for whole transcriptome. Samples were incubated in the thermal cycler at 

99°C for 2minutes, cycled 40 times at 99°C for 15seconds followed by 60°C for 16minutes, and held at 15°C 
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Ligation of adapters to amplicons 
Ion P1 Adapter and Ion Xpress Barcodes were prepared in the same 1:4 diluted 

mixture. 2μl barcode-adapter mixture and 4μl switch solution were added to the 

samples, vortexed vigorously and pulsed to collect condensate. 2μl DNA ligase 

was added and the samples were incubated at 22°C for 70 minutes, 72°C for 5 

minutes and held at 10°C. 

Amplification and purification of libraries 
45μl Agencourt AMPure XP reagent (A63880) from Beckman Coulter, Inc. was 

added to each library. The libraries were incubated at room temperature for 

5minutes before being placed on the DynaMag-96 Side Magnet rack (12331D) 

for 3 minutes to separate the bead pellet from the supernatant. The supernatant 

was discarded and the beads were washed with 150μl of fresh 70% ethanol and 

returned to the magnetic rack for 3 minutes. This step was repeated and then the 

beads were air-dried for 3 minutes in order for the residual ethanol to evaporate. 

50μl of 1X Library Amp Mix and 2μl 25X Library Amp primers were mixed with 

each bead pellet and the 50μl supernatant were transferred to fresh tubes and 

incubated at 99°C for 2minutes, in 5 cycles of 99°C for 15 seconds followed by 

64°C for 1 minute, and held at 10°C. The beads were purified with several washes 

with ethanol and air-dried before 50μl of low TE solution was added to each pellet 

Figure 32: Protocol of primer digestion of amplified transcriptome. Samples were incubated at 50°C for 

10minutes, 55°C for 10minutes, 60°C for 10minutes and held at 10°C 
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to disperse the beads. The tubes were returned to the magnetic rack for 3 minutes 

before 45μl of the supernatant was transferred to new tubes. 

Quality control of whole mRNA library using High Sensitivity DNA Assay 
Quality control of the whole mRNA library was carried out using High Sensitivity 

DNA Kit (5067-4626, Agilent, Inc, Santa Carla, CA, USA) in accordance with the 

manufacturer’s protocol. Briefly, 15μl blue dye concentrate was added to the High 

Sensitivity DNA gel matrix vial. The gel-dye mixture was then centrifuged for 10 

minutes at room temperature at 14,000rpm. 

 
The High sensitivity DNA chip was primed on a base plate of the chip priming 

station with 9μl of gel-dye remix pipetted into the well labelled “G” in the third row. 

9μl gel-dye mix was also pipetted into the other 2 “G” wells. 5μl of High Sensitivity 

DNA marker was pipetted into the ladder well and the sample wells. 1μl DNA 

ladder was pipetted into the ladder well and 1μl of the library samples were 

pipetted into each well, with 1μl of the marker in the unused wells. The DNA chip 

was then vortexed for 60 seconds and then read on the Bioanalyzer (Agilent 

Technologies, Santa Clara, USA). Reasonable quality samples were determined 

by a visible smear seen around the 100bp mark, indicating that the average 

transcripts are 100bp in length and thus the library amplification was successful.  

 

Library Quantitation using qPCR 
Ion Library TaqMan Quantitation Kit (4468802) was obtained from Thermo Fisher 

Scientific. Five 10-fold serial dilutions of DH10B Ion Control library (68pM) were 

performed at 1:10 (6.8pM) , 1:100 (0.68pM), 1:1000 (0.068pM), 1:10,000 

(0.0068pM),  and 1:100,000 (0.00068pM) to form a standard curve. 1:100 

dilutions of libraries were made and 11μl of the master mixture (Table 22) was 

pipetted into each sample well of the PCR plate with 9μl of diluted library and 

standard samples. The plate was incubated in the CFX Connect thermal cycler 

(BioRad) at 50°C for 2 minutes, in 5 cycles of 95°C for 20 seconds, followed by 40 

cycles of 95°C for 1 second with 60°C for 20 seconds. 
 

Components of master mixture Volume added for each reaction (μl) 

Ion Library TaqMan® qPCR Mix (2x) 10 

Ion Library TaqMan® Quantitation Assay (20x) 1 

Total 11 

 
Table 22: Volumes of various components in reaction master mixture for qPCR to quantify libraries 
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Next Generation Sequencing 
Preparation of Template-Positive Ion Sphere Particles (ISPs) by Emulsion 
PCR 
 
Ion PI Template OT2 200 Kit v3 (4488318, Thermo Fisher Scientific, Waltham, 

MA, USA) was used to produce template-positive ISPs from transcriptome 

libraries for semiconductor sequencing.150μL Ion OneTouch Breaking Solution 

was added to each of 2 Recovery Tubes placed within the centrifuge 

component of the Ion OneTouch 2 Instrument (Figure 20). An amplification plate 

was installed into the device and Reagent Tubes were filled with Ion OneTouch 

Oil and Recovery Solution. 

 

Libraries were grouped in 3s for emulsion PCR (ePCR) and enrichment to allow 

3 samples to be sequenced per chip. For ePCR, transcriptome libraries were 

diluted to either 100pM (if all 3 library concentrations were above 100pM) or to 

the lowest molarity of the 3 samples being run together (if one or more samples 

had molarity below 100pM). For those groups of libraries diluted to 100pM, 4μL 

of each diluted library was combined in one tube. 8μL of the combined libraries 

was then placed in a fresh tube and made up to 100μL with nuclease free water 

(NFW). For those groups diluted to concentrations below100pM, the total 

volume of combined libraries required was calculated using the equation: 

volume = 800 ÷ molarity. Library groups were then also made up to 100μL with 

NFW. 

 

An amplification solution was prepared by adding the components listed in 

Table 23 to a tube containing 2μL of Ion PI™ Master Mix. The amplification 

solution was loaded onto the IonOneTouch Reaction Filter alongside 200μL of 

Ion OneTouch Reaction Oil. The filter was the installed into the Ion OneTouch 2 

Instrument for ePCR. 

 

The supernatant from both Recovery Tubes was removed, leaving behind 

approximately 100μL of solution containing a pellet of template-positive ISPs. 

The ISPs were resuspended in solution and combined into one fresh tube. 

100μL NFW was added to each Recovery Tube to recover any residual beads 
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and the solution transferred to the tube containing ISPs. The template-positive 

ISP solution was made up to 1μL with NFW. 
 

Order Reagent Volume added (μl) 
1 NFW 80 

2 Ion PI™ Enzyme Mix 120 

3 Ion PI™ ISPs 100 

4 Diluted combined libraries 100 

              Total Volume incl. Ion PI™ Master Mix 2400 

 

 

 

Quality Control using Qubit 2.0 Fluorometer 
The percentage of template-positive ISPs in solution was calculated using Qubit 

2.0 Fluorometer (Q32866, Thermo Fisher Scientific, Waltham, MA, USA) as per 

manufacturer guidelines. Samples were aimed to have 16-30% template-

positive ISPs in order to proceed with enrichment and sequencing. 

 
Enrichment of Template-Positive ISPs 
Enrichment of ISPs was carried out using the Ion OneTouch ES (Thermo Fisher 

Scientific, Waltham, MA, USA). Melt-Off Solution was prepared by combining 

280μL Tween Solution with 40μL 1MNaOH. 100μL of resuspended Dynabeads 

MyOne Streptavidin C1 Beads were transferred to anew tube and placed on the 

DynaMag-2 magnet (12321D, Thermo Fisher Scientific, Waltham, MA,USA) for 

2 minutes. Supernatant was discarded and 1mL Ion OneTouch Wash Solution 

added to beads and vortexed for 30 seconds. The tube was returned to the 

magnet for 2 minutes and supernatant discarded. 130μL of MyOne Beads 

Capture Solution was added to the beads and the mixture vortexed for 30 

seconds. 

 

An 8-well strip was prepared using the components listed in Table 24. A new 

pipette tip and 0.2mLPCR tube were loaded onto the OneTouch ES alongside 

the filled wells and machine turned on for enrichment of ISPs. 

 

A summary of the enrichment process is shown in Figure 33. 

 

 
 

Table 23: Reagents added to Ion PI™ Master Mix to make amplification solution for ePCR. 
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Well Reagent Volume added (μl) 

1 Template-Positive ISP Solution (in Resuspension 
Solution) 

100 

2 Dynabeads® MyOne™ Streptavidin C1 Beads 
(resuspended in Capture Solution) 

130 

3 Ion OneTouch™ ES Wash Solution 300 

4 Ion OneTouch™ ES Wash Solution 300 

5 Ion OneTouch™ ES Wash Solution 300 

6 Empty - 

7 Melt-Off Solution 300 

8 Empty - 

 
 

 

 
 

 
 

Ion Semiconductor Sequencing 
Ion PI Hi-Q Sequencing 200 Kit (A26433) and Ion PI™ Chip Kit v3 (A26771) 

from Thermo FisherScientific were used for semiconductor sequencing. The Ion 

Proton System (4476610) (Figure 34) was initialised with Wash and Clean 

Solutions as well as 4 deoxyribonucleotide (dNTP) solutions (Figure 34). 
 

Table 24: Reagents added to 8-well strip for enrichment of ISPs. Image from Thermo Fisher Scientific 2011. 
 

Figure 33: Summary diagram of enrichment of Template-Positive IPSs using Ion OneTouch™ ES. 
Dynabeads® MyOne™ Streptavidin C1 Beads bind Biotin component of amplicons, isolating these from 
unbound ISPs when placed in the magnet. Adapted from Blervaque 2013. 
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Flushing Solution and 50% Annealing Buffer were prepared as per 

manufacturer guidelines. 5μL IonPI Control ISPs were added to the enriched 

ISP samples previously made. The mixture was centrifuged for 5 minutes at 

15,500 x g and supernatant removed leaving 10μL solution behind with the 

pellet. Ion PI Annealing Buffer (15μL) was added alongside 20μL of Ion PI 

Sequencing Primer. 

 

After vortexing the mixture, samples were placed in the thermal cycler for 2 

minutes at 95°C and 2minutes at 37°C. Ion PI Loading Buffer (10μL) was then 

added to the mixture creating a total volume of 55μL. 

 

Samples were loaded onto the Ion PI Chip v3 (Figure 35) and centrifuged for 10 

minutes in the IonChip Minifuge (4479672, Thermo Fisher Scientific, Waltham, 

MA, USA). In a 1.5mL tube, 49μL of 50% Annealing Buffer and 1μL Foaming 

Solution (10% Triton X-100) were injected with air by pipetting to create a foam. 

100μL of foam was then injected into the chip loading port, with expelled liquid 

removed from the opposite port. 55μL of 50% Annealing Buffer was placed in 

the chip loading well and centrifuged for 30 seconds. The foam and Annealing 

Buffer steps were repeated once again. The chip was injected with 100μL 

Flushing Solution twice followed by 100μL Annealing Buffer three times. Finally, 

6μL Ion PI Hi-Q Sequencing Polymerase and 60μL 50% Annealing Buffer were 

combined and injected into the chip loading port with any excess solution 

removed from the opposite well. The chip was incubated at RT for 5 minutes 

and then loaded onto the IonProton System for sequencing. 
 

Figure 34: (A) Ion Proton™ System for semiconductor sequencing. (B) List of reagents placed in 
containers and reagent tubes in Ion Proton™ System. dGTP, dCTP, dATP and dTTP represent the 4 
dNTPs. Taken from Thermo Fisher Scientific 2013. 
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Statistical Analysis 
Statistical analysis was performed by Prof. Rifat Hamoudi using Microsoft Excel 

2013 and IBM SPSS software 22.0. CFXManager (Bio-Rad, UK) was used for 

standard curve fitting and regression equation in qRT-PCR. Expert 2100 version 

B.02.08 (Agilent, CA, USA) was used for bioanalysis. 

 

Figure 35: Ion PI Chip v3. The loading port located within the loading well is demonstrated with the blue arrow. 
Image adapted from Thermo Fisher Scientific 2015. 
 

Figure 36: Flow diagram of steps involved in whole transcriptome amplification (blue boxes) and NGS (green 
boxes). QC= quality control. 
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Bioinformatics Analysis 
Bioinformatics analysis was completed by Prof. Rifat Hamoudi using the 

methods described in Figure 37. Whole RNA sequencing analysis was 

performed using Torrent Suite version 5.0.1 (ThermoFisher Scientific, MA, USA) 

and R/Bioconductor version 3.2. DESeq2 

(https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-

8) was used to normalise the whole transcriptome data. The Database for 

Annotation, Visualization and Integrated Discovery (DAVID) 

(https://david.ncifcrf.gov/home.jsp) and metascape 

(https://metascape.org/gp/index.html ) was used for annotation and visualisation 

of gene expression data. The Benjamini-Hochberg correction method was used 

to assess the False Discovery Rate (FDR), where p<0.05 and FDR<0.25 were 

deemed to be statistically significant. 

 

 
 

 
 

Reference transcriptome 
In order to interpret the results of this work it was necessary to have a reference 

transcriptome to provide comparison. Following discussion in regards of using 

saliva or oesophageal biopsies from normal individuals as the reference it was 

decided that given that our aims are to identify patients with or at risk of OAC 

we should use normal oesophagus as reference. As such snap frozen biopsies 

were obtained from three patients found to have a normal upper gastrointestinal 

tract following endoscopic examination. These were processed using the 

Figure 37: Sequential method used for bioinformatics analysis. FASTQ: file format containing raw nucleotide 
data, BAM (Binary Alignment Map): file containing sequence alignment data, BWA (Burrows-Wheeler 
Aligner): software used to map raw sequencing data to reference genome. 
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previously outlined methods in order to create the reference transcriptome. The 

transcriptomes obtained from the OAC data were compared with the reference 

to ensure that they are drivers for the risk to developing OAC.  

 

6.5.2 Objective 3 – Whole mRNA sequencing results  

 
Whilst the power calculation determined that 4 samples from each diagnostic 

group were required for statistical significance due to time constraints only 2 per 

group were performed as part of this work. The further samples will be analysed 

at a later date.  

 
Quality control of Ion PI™ NGS Chips 
Qubit 2.0 Fluorometer (Q32866, Thermo Fisher Scientific, Waltham, MA, USA) 

analysis was performed for quality control of ISPs. Percentage templated ISPs 

are shown in the below table, ranging from 20-30%. Given these values, it was 

possible to proceed with enrichment and NGS for all samples. 

 

An example of NGS chip quality control parameters is shown in Figure 38 

below. 

Table 25 shows the total usable transcript reads for each sample as well as 

base call quality and mean read length. For each chip, it was aimed to have 

around 1,000,000 good quality sequencing reads per sample in order for 

bioinformatics analysis to be performed adequately.  
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Figure 38: Example of NGS chip quality as displayed following sequencing 
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Sample 
number 

Diagnosis Reads Mean read 
length (bp) 

400 Normal 21,042,188 103 
402 Normal 10,321,584 96 

1186 Normal 5,398,939 83 

1259 Normal 4,583,510 50 
1229 Normal 2,361,540 33 

1260 Normal 6,678,010 72 

1205 NDBO 3,801,012 75 
1212 NDBO 3,587,223 72 

1231 NDBO 9,225,973 89 

1275 NDBO 9,343,506 45 
1256 NDBO 11,896,935 78 

1164 NDBO 10,076,580 95 

286 NDBO 7,773,873 92 
1098 NDBO 40,921,874 108 

410 HGD 17,774,573 89 

1085 HGD 14,042,854 78 

1234 HGD 4,367,633 67 
1235 HGD 7,288,375 42 

1253 HGD 11,285,009 75 

244 OAC 9,833,575 87 
263 OAC 12,460,236 84 

1207 OAC 28,055,265 100 

1195 OAC 47,390,240 107 
1261 OAC 13,401,333 70 

1240 OAC 60,370,169 109 

 

 

 

The initial work using targeted biomarkers, presented in section 6.4, 

demonstrated that salivary RNA could be used as a means to predict OAC risk. 

Taking this forward it was important to explore whether there were other 

biomarkers that could improve on this work and consequently improve the 

accuracy of the risk prediction. As a demonstration of the potential for this 

approach, two well characterised patients from each diagnostic group were 

chosen and their RNA extracted as previously outlined in Chapter 5. Whole 

transcriptome RNAseq was performed using the Ion Proton. 

 
Global Quality Control Measures of NGS 
An important aspect of the quality control is to determine the quality of 

alignment to the transcriptome and the genes that are significantly differentially 

Table 25: Usable transcript reads and mean read length for each sample  
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expressed. 

 

The patient samples that were analysed for this work were aligned to the 

reference transcriptome. The following histogram demonstrates that the 

samples processed had good alignment to the transcriptome. A p value < 0.05 

is taken as significant and this histogram demonstrates that the highest 

frequency peaks (seen in the first two columns) occurs at this level. Thus, for 

this work around 2,400 genes were differentially expressed between the 

different groups of the Barrett metaplasia-dysplasia-adenocarcinoma sequence. 

 

The initial quality control test to ensure the methodology worked correctly is to 

identify the number of differentially expressed genes from the whole 

transcriptome analysis across all the groups. This is carried out using p<0.05 as 

an indicator of statistical significance, a p-value histogram was generated to 

determine the proportion of transcripts which were significantly differentially 

expressed across all samples (Figure 39). Around 2,400 genes were found to 

be significantly differentially expressed between the groups. 
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This correlation plot provides an overview of how closely related the samples 

are to each other. The darker the colour on the plot, the more closely they are 

related. Interestingly, although perhaps not surprisingly given the incurred risk, 

one can observe from this plot that the samples that are Normal and NDBE are 

most closely correlated to each other but there is a mixture between the 

samples, indicating the high degree of heterogeneity that exist in the Barrett’s 

metaplasia-dysplasia-adenocarcinoma sequence.   
 

 

Figure 39: Histogram demonstrating number of genes with their respective P-values aligned to transcriptome 

P Value 
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Finally, as part of the quality control the following histogram represents the 

hierarchical unsupervised clustering of the 8 samples. Each column represents 

the genes that were aligned to the transcriptome and significantly differentially 

expressed (p < 0.05, Figure 41) with red indicating high expression and blue 

being low expression. Again, one can see that one of the NDBE does not relate 

to any other sample. One also notes that there is a large amount of 

heterogeneity between each sample which is in keeping with the literature 

[133]. One would also expect this heterogeneity to be more significant given 

that we are using a saliva sample, rather than a biopsy of the lesion, that is 

affected by a variety of local and systemic factors. In order to ascertain useful 

information from these samples, therefore, one must use multivariate statistical 

analysis to detect genes of significance. This approach has been published 

[229]. 

Figure 40: Correlation plot between samples following RNA-seq analysis 
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Differential Gene Expression Analysis 
In order to assess differential gene expression across different groups, 

transcript copies for each gene were combined across all members of individual 

groups (e.g. NDBO). Comparisons were then made between varying sets of 2 

groups using the unpaired t-test. Statistically significant differential expression 

was defined by a p-value <0.05. An adjusted p-value was then derived using 

Benjamini Hochberg correction method. GeneCards® (www.genecards.org) 

was used to determine gene annotation and any previously known association 

with cancer development.  

 

The bioinformatics analysis resulted in around 2,400 differentially expressed 

genes across all 8 samples. Multivariate statistics and variation filtering reduced 

it to 134 genes common between NDBE, HGD and OAC. Applying AI (MIAT) 

and pathway analysis to the 134 genes identified narrowed them down to 40 

genes. 

 

Figure 41: Histogram of hierarchical unsupervised clustering between samples 
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The below table outlines the number of genes found to be significantly 

aberrantly expressed between the diagnostic groups and the below list 

highlights some of the genes of interest. 
 

Diagnostic groups Number of genes aberrantly 
expressed (adj. p <0.05) 

Normal v NDBE 1024 

Normal v HGD 1147 

Normal v OAC 1347 

Gene Gene Name 
SERPINB1 Serpin family B member 1(SERPINB1) 
TLR6 Toll like receptor 
TM2D2 TM2 domain containing 2(TM2D2) 
SUSD4 Sushi domain containing 4(SUSD4) 
FOXRED2 FAD dependent oxidoreductase domain containing 2(FOXRED2) 
HEXIM2 Hexamethylene bisacetamide inducible 2(HEXIM2) 
LILRB2 Leukocyte immunoglobulin like receptor B2(LILRB2) 
SIGLEC14 Sialic acid binding Ig like lectin 14(SIGLEC14) 
BCL2L14 BCL2 like 14(BCL2L14) 
BPIFB1 BPI fold containing family B member 1(BPIFB1) 
CD44 CD44 molecule (Indian blood group)(CD44) 
COCH Cochlin(COCH) 
ECSIT ECSIT signalling integrator(ECSIT) 
FAM187B Family with sequence similarity 187 member B(FAM187B) 
H1FNT H1 histone family member N, testis specific(H1FNT) 
HOXA13 Homeobox A13(HOXA13) 
HS1BP3 HCLS1 binding protein 3(HS1BP3) 
NDRG3 NDRG family member 3(NDRG3) 
SERPINC1 Serpin family C member 1(SERPINC1) 
TCEAL4 Transcription elongation factor A like 4(TCEAL4) 
CDK2 Cyclin dependent kinase 2(CDK2) 
CLEC12A C-type lectin domain family 12 member A(CLEC12A) 
CD80 CD80 molecule(CD80) 
CD82 CD82 molecule(CD82) 
H3F3A H3 histone family member 3A(H3F3A) 

MAP4K3 
mitogen-activated protein kinase kinase kinase kinase 
3(MAP4K3) 

RUNX3 Runt related transcription factor 3(RUNX3) 
TLR1 Toll like receptor 1(TLR1) 
ZER1 Zyg-11 related cell cycle regulator(ZER1) 
CCND2 Cyclin D2(CCND2) 
SNORA9 Small Nucleolar RNA, H/ACA Box 9 
SNORA34 Small Nucleolar RNA 
SMAD7 SMAD family member 7(SMAD7) 
CDKN2A Cyclin dependent kinase inhibitor 2A(CDKN2A) 
TP53 Tumor protein p53(TP53) 
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The following figures focus on some key differentially expressed pathways that 

were found common to all the diagnostic groups or at each diagnostic stage. 

 

 

  
  Table 26: Genes significantly aberrantly expressed between the diagnostic groups during RNAseq and a list of some of the 

genes of interest 

 

Figure 42: Venn diagram showing the comparison of the significant differentially expressed transcriptomes across the 

Barrett’s sequence groups 

 
 

Figure 43: Differentially expressed pathways common between NDBO, HGD and OAC 
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This shows the retinoblastoma pathway to be over expressed (M279: PID RB 

1PATHWAY). The retinoblastoma pathway plays a key role in regulating the cell 

cycle by interacting with dimerization partner 1 (DP1) leading to transcriptional 

activation [289]. Other interesting pathways are GO:0006959: humoral immune 

response suggesting that acquired immunity is important in progression from 

NDBO to OAC and GO:0009617: response to bacterium suggesting that at the 

initial stages innate immunity probably play a role through activating 

inflammatory pathways either via bacterial infection or more likely via acid reflux 

or similar irritant. 
 

 
 

 

An interesting pathway in this analysis is CORUM:2217: MDC1-MRN-ATM-

FANCD2 complex that relates to DNA repair. This possibly shows that the 

tissue is exposed to constant damage resulting in DNA damage and 

consequently mutations that eventually lead to OAC. 
 

 
 

 

At this stage the pathways expressed suggest that there is a lot of attempted 

DNA repair occurring. However, failure to effectively repair the damage will then 

Figure 44: Differentially expressed pathways unique to NDBE 
 
 

 
 

Figure 45: Differentially expressed pathways unique to HGD 
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result in OAC. The aberrant expression of CORUM:513: TFTC complex (TATA-

binding protein-free TAF-II-containing complex), GO:0006284: base-excision 

repair pathway demonstrates this as it is involved with DNA repair. 

GO:0007095: mitotic G2 DNA damage checkpoint is aberrantly expressed 

showing that DNA damage checkpoint at G2 is activated to repair the DNA 

before progressing to mitosis. R-HSA-909733: Interferon alpha/beta signalling 

and R-HSA-389357: CD28 dependent PI3K/Akt signalling are immune 

pathways mostly at the checkpoint between B and T cell interaction and if those 

are not properly regulated they can lead to OAC as shown by the presence of 

activated GO:0032006: regulation of TOR signalling and M66: PID MYC ACTIV 

PATHWAY which are common cancer related pathways. This set of aberrantly 

expressed genes show a mixture of NDBO and OAC-related processes of DNA 

repair and cancer pathways as well as the interface of immune surveillance and 

checkpoint immune markers. 
 

 
 

 

This figure demonstrates the pathways that are related to tissue remodelling in 

cancer such as GO:0030099: myeloid cell differentiation and GO:0072161: 

mesenchymal cell differentiation involved in kidney development pathways are 

aberrantly expressed. Interestingly, the CORUM:6149: Codanin-1-

Asf1u2013histone H3.1-histone H4u2013importin-4 complex, cytosolic pathway 

is aberrantly expressed indicating that histones are involved. Examining the 

OAC differentially expressed genes shows a family of histones to be 

differentially expressed including HIST1H3E, HIST1H2BF, HIST1H2BC, 

HIST1H3E, HIST1H2BF and HIST1H2BC further indicating the involvement of 

histones at the later stage of the Barrett’s metaplasia-dysplasia-carcinoma 

sequence. Together, this demonstrates the end point shift in cellular pathways if 

Figure 46: Differentially expressed pathways unique to OAC 
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the DNA repair and homeostatic regulation mechanisms fail at the HGD stage. 

 

The figures below demonstrate the expression profile of some chosen genes 

within the 4 diagnosis groups: 
 

 
 
 

 

TLR6 

TLR1 

Figure 47: Expression profile of selected genes within each diagnostic group 

 

 

 
 

 
 

Figure 47a: TLR6 

 

 

 
 

 
 

Figure 47b: TLR1 
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CDKN2a 
 

H3F3A 

Figure 47c: CDKN2a 

 

 

 
 

 
 

Figure 47d: H3F3A 
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Of the 13 genes originally tested in the 80 patient group it was notable, as 

highlighted in Figure 26, how effective CDKN2a was in differentiating patients 

with or at risk of OAC. Following the sequencing of eight patients (two samples 

in each diagnostic category) it is again notable that when comparing the normal 

patients to any of the other diagnostic groups (NDBO, HGD, OAC) CDKN2a is 

significantly aberrantly expressed on each occasion. Whilst this sample size if 

not significantly powered it does continue to suggest that this marker may be of 

benefit in the early identification of those with or at risk of OAC.  

 

Of the other genes found to be significantly aberrantly expressed in the 80 

patient group, when compared to this sequencing group, there is little overlap, 

although again this sequencing group is not sufficiently powered. When the 

normal patients are compared to those with OAC TP53 is significantly 

aberrantly expressed which is in keeping with the literature.  

 

From this sequencing group alone there are some other additional interesting 

findings. Of particular note is Cyclin D2. The expression of this becomes 

progressively higher as samples progress from normal to NDBO and HGD 

before falling in patients with OAC although still remaining higher expressed 

than in normal patients.  This is discussed below. 

 

6.5.3 Objective 3 – Whole mRNA sequencing. Discussion 

 
The sample size used for this work is too small to allow definitive conclusions. 

However, this work does demonstrate that, despite the poor quality of salivary 

samples in regard to its RIN value, one can still perform discovery RNA-Seq 

and generate potentially meaningful results. Further work will be performed to 

complete this discovery set with the results used to interrogate whether they 

can be utilised to accurately identify individuals with or at risk of OAC.  

 

Despite this small sample size, it is interesting to note that of the samples 

processed two key genes found in the targeted expression analysis work, 

CDKN2A and TP53, were again found to be of importance. The role of these 
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genes in the progression towards OAC has been discussed previously within 

this thesis. The identification of these genes in the saliva samples of patients 

with or at risk of OAC again suggests that these salivary markers may be of key 

importance in future predictive tool creation. 

 

Cyclin D2 was noted to be of particular interest within this work. This became 

increasingly expressed as patients progressed from normal to NDBO and HGD. 

Although the expression became lower in the OAC group it remained up-

regulated in comparison to normal. The Cyclin D family is involved in the cell 

cycle regulation process as well as growth factor dependent intracellular 

pathways. Thus, defects in its regulation could lead to an absence of growth 

regulation of cancer cells. Cyclin D2 has been linked to cancer in other work 

including its overexpression in gastric cancer [290, 291]. There has been little 

work exploring Cyclin D2 in BO and OAC although published data demonstrates 

Cyclin D1 to be of importance in BO and SCC of the oesophagus [292, 293].  

 

Within the patients with HGD there are a further two genes of interest. PRKCA 

is noted to be significantly overexpressed in those with HGD. PRKCA is known 

to be a pan activator of the NFkβ pathway and as such is involved in the chronic 

inflammation linked to the progression to cancer. The role of this pathway is 

well-established to be linked to cancer, particularly within the gastrointestinal 

tract, and as such further exploration of this genes role in OAC is indicated 

[294]. Furthermore, recent work in animal models suggests that this gene is 

linked to BO and OAC [295]. The second gene of note within the HGD patients 

was AMZ2P1 which again was noted to be significantly overexpressed in those 

with HGD. This gene is known to be linked to the regulation of SMAD which has 

already been discussed to be important in the pathogenesis of BO and OAC. 

Additionally, AMZ2P1 has been linked to colorectal cancer [296]. 

 

Within the patients with OAC another gene of note is RRAGB which was noted 

to be significantly overexpressed. This gene is known as a signal transducer 

that essentially acts as a switch for the regulation of certain pathways including 

the mTOR, AKT and PI3K pathways. These pathways have been linked to 

cancer as well as BO and as such further work exploring whether RRAGB can 

act as a salivary biomarker should be performed should it remain significant 
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following completing the discovery set.  

 

The identification of histone family of genes (HIST1H3E, HIST1H2BF, 

HIST1H2BC, HIST1H3E, HIST1H2BF and HIST1H2BC) in OAC is also of 

interest. Graber et al demonstrated this to be expressed in 4/6 patients with 

OAC and 11/12 cancer cell lines (compared to 5/14 normal cell lines) [297]. This 

gene links to histone production which suggests an epigenetic role in the 

pathogenesis of OAC. This area is further explored in section 6.6. 

 

Finally, BPIFA1 and BPIFB1 were noted to be down-regulated in the 

progression towards OAC from normal. These genes are linked to the innate 

immune system and are known to be involved in the inflammatory response as 

well as linked to some cancers in particular lung cancer. It should be noted, 

however, that these genes are particularly linked with oral and nasopharyngeal 

disease and as such salivary samples will be particularly vulnerable to local 

disease. 

 

6.6 Objective 4 - Detecting epigenetic biomarkers using salivary DNA 

 
Following on from the discussion in Chapter 2 there have been limited genomic 

biomarkers discovered that have identified the high-risk individual and it is clear 

that the epigenomic regulation of the genome plays a key role in the 

pathogenesis of BO and OAC. As such I was keen then to explore whether the 

salivary epigenome could provide invaluable data that could identify the at-risk 

individual. Epigenetics is of particular interest in the development of BO and 

OAC as it provides the potential link of environmental variables in the 

pathogenesis of disease. We know that factors such as gastro-oesophageal 

reflux disease are heavily linked to BO and OAC and as such studies utilising 

epigenetic data may provide valuable insights. Additionally, it is well established 

that DNA is more robust than RNA because of its double helix structure 

whereas RNA is single stranded. As such should it prove that DNA analysis 

provides adequate data for the identification of those with or at risk of OAC then 

the population screening tool may utilise DNA only as it may allow for easier 
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collection and extraction conditions when using this for large scale whole 

population work.  

 

6.6.1 Objective 4 - Performing epigenetic analysis on salivary samples. 

Methods 

 
The samples used for the extraction of DNA were those also used for the 

extraction of RNA. Thus, the relevant processes are outlined in 6.4 

 

DNA extraction and quality control 
In order to extract the RNA only 400μl of the 1ml saliva sample was used. It 

would have been possible, therefore, to use the remainder of the sample for the 

DNA extraction process. However, ideally, we wanted to leave some patient 

sample remaining in case of the need to do future work on these samples. As 

such we decided to use the same sample that had undergone RNA extraction. 

Therefore, once the upper 400μl of the aqueous phase had been removed to 

undergo further RNA extraction processes the rest of the sample, containing 

Qiazol (Qiagen, Hilden, Germany), chloroform and patient saliva was placed on 

ice. Once the RNA extraction processes had been completed, the sample was 

retrieved from the ice and the DNA extraction processes began. The first step of 

this was to remove the upper 100μl of the aqueous phase to minimise the 

chances of RNA contamination. 

 

Back extraction buffer (BEB) was made by combining 4M Guanidine 

Thiocyanate, 50 mM Sodium Citrate and 1M Tris (free base) dissolved in 

millipore water. 500μl of the BEB was then placed in an Eppendorf containing 

the Qiazol (Qiagen, Hilden, Germany), chloroform and patient saliva mix. This 

was then inverted for 10 minutes prior to being spun in the centrifuge for 30 

minutes at 4°C. Similar to the RNA extraction process, the upper 400μl of the 

aqueous phase was removed following centrifugation and placed in a 1.5ml 

Eppendorf. An equal volume of isopropanol was added to the sample, vortexed 

for 1 minute and then left in ice for 2 hours. Following this it was spun in the 

centrifuge again for 30 minutes at 4°C and then the supernatant was removed 

whilst carefully avoiding the pellet. The pellet was then washed using 500μl of 
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70% ETOH, vortexed for 1 minute and spun in the centrifuge for 7 minutes at 

4°C. Finally, again, the supernatant was removed and the sample air-dried for 

10 minutes prior to 32μl of DPEC being added and the sample mixed using a 

pipette. The samples underwent initial quality control by using NanoDrop 

(Thermo Fisher Scientific, Waltham, USA). However, it was noted at this point 

that a significant proportion of the DNA samples (34 out of 80) had nanodrop 

curves with significant contamination from the extraction process that had 

potential to affect the downstream processes. Therefore, all the samples were 

further cleaned and concentrated using the Zymo DNA Clean & Concentrator™-

5 (Zymo Research, Irvine, CA, USA). This was performed following the protocol 

supplied by the manufacturer. Following completion, the DNA was of better 

quality as determined by the NanoDrop (Thermo Fisher Scientific, Waltham, 

USA) images. Once passed through the quality control processes the samples 

were stored in a -80°C freezer. 
 

 
 

 

 

Bisulfite conversion and epigenetic analysis 
Dr Amy Webster performed this aspect of the work. The DNA samples were 

thawed and underwent further quality control using Qubit Fluorometric 

Quantitation (ThermoFisher Scientific, Waltham, MA, USA). Suitable samples 

underwent bisulfite conversion using the Zymo EZ-96 DNA Methylation 

MagPrep (Zymo Research, Irvine, CA, USA) as per the manufacturer’s protocol 

prior to being sent to the UCL Genomics lab for epigenetic analysis using the 

Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, USA). This chip 

provides over 850,000 of methylation sites per sample at single nucleotide 

resolution.  

 

 

Figure 48: NanoDrop™ (Thermo Fisher Scientific, Waltham, USA) images of DNA extracted from patient 

samples demonstrating good quantity and quality obtained. 
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Data analysis 
 
In order to analyse the data Dr Rifat Hamoudi developed a specific pipeline 
using R 3.3 for the EPIC array methylome analysis. The pipeline has the 
following steps: 
 
1.  Calculate the detection p-values 
2. Examine mean detection p-values across all samples to identify any 

failed samples 
3. QC Report 
4. Remove poor quality samples 
5. Normalisation 
6. Examine higher dimensions to look at other sources of variation 
7. Filtering 
8. Probe-wise differential methylation analysis using t-statistics (ANOVA) 
9. Clustering 
10. Differential methylation analysis of regions (DMRs) 
11. Pathway analysis using Gene Ontology 
 
 

6.6.2 Objective 4 - Performing epigenetic analysis on salivary samples. 

Results 

 
The initial analysis of this work looked to ensure that sample quality was 

sufficient to yield meaningful results. As such as a methylation map was created 

to compare patients with OAC to those that are normal. This is demonstrated 

below and confirms that there was good sample quality. 

 

For normalisation the data generated was used to test different normalisation 
functions. 
 
 
 
 
 
Figure 49: Testing different normalisation functions. 
Epigenetic methylation map showing density of CpG sites. The peak at zero shows unmethylated sites and at 1 

shows methylated sites. Low values between confirm high sample quality 
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Figure 49a: BMIQ quantile normalisation 
 

Figure 49b: SWAN normalisation 
 



 196 

 
 
 
 
 

 
 

 

The above figures demonstrate that the best normalisation function is 

FUNNorm, therefore this was used to normalise the EPIC array data. Following 

filtering differential methylation was carried out on DMPs using ANOVA and 

Figure 49c: FUNNorm normalisation 
 

Figure 49d: Pre-process Illumina method normalisation 
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compared using IEVORA (performed by Professor Teschendorff) and MIAT 

(performed by Professor Rosenfeld) across the different sets. 

 

A heat map was then produced of the top 50 differentially methylated sites 

when comparing normal patients to those with OAC. This demonstrated some 

clear differences between the two groups. 
 

 
 

 

 

However, upon further analysis of these results it was noted that there were 

some confounding data. This was caused by cell-type composition, sex, ethnic 

group and even bead-chip. This is highlighted by the singular value 

decomposition plot below in particular in PC-2. 
 

Figure 50: Heat map of top 50 methylation sites for oesophageal cancer patient samples (box), 
compared to normal patients.  Clear differences are seen between the two groups   
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The sex confounding factor reflects the significantly higher prevalence of BO 

and OAC in males. It was dealt with by excluding XY chromosomes which is an 

established approach. It was also noted that that the majority of patients in this 

study were white-Caucasian which reflects the known racial disparity in the 

prevalence of BO and OAC. However, any patients recruited who were either 

from black or Asian ethnic backgrounds were invariably normal. As such this 

became a confounding factor. It was therefore decided to exclude any non-

white patients from this analysis. Following exclusion of all non-white racial 

groups the samples sizes were as follows; 9 normal patients, 17 NDBO, 15 

dysplasia and 15 OAC. The singular value decomposition plot below 

demonstrates the significance of associations between the principal component 

analysis and singular value decomposition after restriction to white-Caucasians 

and removing the XY chromosomes.  
 

Figure 51: Depicting singular value decomposition plot for epigenetic data 
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This plot demonstrates that the remaining top component correlates to 

“fBLOOD” which is the estimated fraction of immune cells in the samples. It was 

again decided to adjust the data for this as it removes the issues of our 

estimation of immune cells being inaccurate. Linear models (t-tests) were then 

run for comparison of each pair of diagnostic groups in order to create a 

histogram of p values. These are depicted below and demonstrate that, 

particularly when comparing OAC to normal and dysplasia to normal, we obtain 

encouraging results. If one uses a false discovery rate (FDR) of 0.2, meaning 

we have 80% confidence that the CpG’s with FDR’s of less than 0.2 are true 

positives then we note that there are approximately 1,600 differentially 

methylated regions (DMR) when comparing normal to OAC. This FDR threshold 

is an acceptable cut-off and has been used in published work including work 

creating a gene-expression signature predicting survival in breast cancer [298]. 
 

 

Figure 52: Depicting singular value decomposition plot for epigenetic data following removal of non-

Caucasians and XY chromosomes 
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The decision was then made to explore whether the approximately 1600 DMRs 

found when comparing normal patients to those with OAC demonstrated a 

similar pattern of differential methylation when comparing normal patients with 

those with dysplasia. This was performed using a scatterplot of the t-statistics of 

differential methylation between OAC and normal (x-axis) again as the 

corresponding statistics between normal and dysplasia. This highlights that the 

CpGs that are hypermethylated in OAC when compared to normal also tend to 

be hypermethylated in dysplasia when compared to normal. Likewise, this is 

also seen when comparing areas of hypomethylation. 

 

Figure 53: Depicting the histograms of P-values when comparing the various diagnostic groups. 
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The DNA methylation profiles for the top 25 DMRs when comparing OAC to 

normal patients were then created. This yielded exciting results, depicted below, 

in which a clear progression is seen when comparing all four diagnostic groups. 
 

 
 
 

 

Figure 54: Scatterplot comparing the CpGs that are hyper and hypomethylated when comparing 

OAC to normal and dysplasia to normal. 

 

Figure 55: The top 25 DMRs for OAC v normal patients when utilised across all diagnostic groups. A clear 

progression is seen as patients go from normal to NDBO, dysplasia and OAC. 
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When utilising these top 25 DMRs as a gene signature one is able to accurately 

differentiate between the four diagnostic groups with 99.9% accuracy. However, 

clearly this sample size is too small to be able to draw significant conclusions on 

their potential accuracy as a diagnostic tool, but it does show great potential.  

 

The genes in figure 55 above were mapped to DMR using the pipeline 

discussed above. The DMR’s mapped to the following genes (description from 

https://www.genecards.org/): 
 

DMR Location Gene Gene description 
cg19817165 N_Shore DYRK2 Family of protein kinases whose members are 

presumed to be involved in cellular growth and/or 
development. Among its related pathways 
are Regulation of TP53 Activity and Gene 
Expression. Also involved in tyrosine kinase 
activity. Phosphorylates p53/TP53 at 'Ser-46', and 
thereby contributes to the induction of apoptosis in 
response to DNA damage.  

cg16932364  NOS1 Belongs to the family of nitric oxide synthases, 
which synthesize nitric oxide from L-arginine. 
Nitric oxide is a reactive free radical, which acts as 
a biologic mediator in several processes, including 
neurotransmission, and antimicrobial and 
antitumoral activities. Diseases associated with 
NOS1 include Achalasia and Familial 
Oesophageal and Pyloric Stenosis 

cg20361427 S_Shelf MIOS Among its related pathways are mTOR signalling 
pathway (KEGG) and PI3K / Akt Signalling. 
Diseases associated with MIOS include 
Hereditary Non-Polyposis Colorectal Cancer. 

cg13365431  SLC4A2 The encoded protein regulates intracellular pH, 
biliary bicarbonate secretion, and chloride uptake. 
Reduced expression of this gene may be 
associated with primary biliary cirrhosis (PBC) in 
human patients, while differential expression of 
this gene may be associated with malignant 
hepatocellular carcinoma, colon and gastric 
cancers.  

cg16206511 Island MON2 Little known about this gene. Involved 
in binding and ARF guanyl-nucleotide exchange 
factor activity 

cg12965202 S_Shore GTF2A1 Plays an important role in transcriptional 
activation.  

cg21406606 N_Shore ADAT2 Related to Gene Expression and tRNA processing 
pathways.  

cg16203271 N_Shore EMILIN1 The encoded protein associates with elastic fibers 
and may play a role in the development of elastic 
tissues  

cg14430629  RNF112 Plays an important role in neuronal differentiation, 
including neurogenesis and gliogenesis, during 
brain development. Involved in the maintenance of 
neural functions and protection of the nervous 
tissue cells from oxidative stress-induced 
damage.  

cg24025644 N_Shore CRYAA Involved in autokinase activity and participation in 
the intracellular architecture.  

g03271007  RNF145 In response to bacterial infection, negatively 
regulates the phagocyte oxidative burst by 
controlling the turnover of the NADPH oxidase 
complex subunits.  

Table 27: Overview and description of the genes the DMR’s were mapped to. 
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6.6.3 Objective 4 - Performing epigenetic analysis on salivary samples. 

Discussion 

 
The epigenetic analysis on salivary DNA samples yielded exciting results. The 

strong correlation between the DMRs found when comparing those with OAC to 

normal and those with dysplasia to normal patients is in keeping with the 

literature on the epigenome in BO and OAC and demonstrates that these DMRs 

are likely to be true positives. Furthermore, when selecting the top 25 DMRs for 

the comparison between normal and OAC we see a clear progression from 

normal along the metaplasia-dysplasia-carcinoma sequence when all diagnostic 

groups are looked at. This is despite not explicitly searching for DMRs that 

provided this progression. This is significant and with this small sample of 

patients (n=56) the epigenetic signature allows for differentiation between 

diagnostic groups with 99.9% accuracy. However, this is obviously a small 

sample, with only 9 normal controls, and work on a larger cohort is clearly 

required.  

 

Interestingly when the DMRs were mapped to genes it is notable that some of 

these are related to well-known pathways involved in the progression of BO to 

OAC. DYRK2 is related to TP53 activity and tyrosine kinase activity that have 

been discussed within this thesis and well published in relation to OAC. 

Additionally, MIOS is related to PI3K / AKT signalling which has also been 

discussed within this thesis as known to have links with OAC. Alongside this 

SLC4A2 and NOS1 have been found to be relevant in other GI cancers / 

disease. The presence of these within the findings suggest that the DMR’s 

found in the salivary epigenome are relevant and worthy of further investigation.  

 

A further limitation of this work is that ethnicity was clearly a cofounding factor 

during the analysis. It is well-established that there is a huge variation in 

incidence of BO and OAC depending on ethnicity with white men and women 

being of particular risk. As such the vast majority of patients recruited with BO 

and OAC were white compared to the majority of those who were normal being 

non-white. It is well-established DNA methylation profiles vary between ethnic 

groups and that these differences are even present from birth [299]. As such 

the fact that the majority of normal patients, being used as the controls within 
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this study, were non-white and accordingly would have a different baseline 

methylation profile became problematic. Accordingly, because of the small 

sample size we had to exclude the non-white patients in order to analyse this 

data. These results are therefore only applicable to white-Caucasian patients 

rather than a whole, diverse population. Clearly further work with larger 

numbers, with sufficient representation of all ethnic groups is required. It may be 

that a gene signature for each ethnic group will need to be established, 

although ideally one for a whole population would be preferred for population 

screening. 

 

Another cofounding factor that had to be dealt with was the disparity between 

males and females and the more advanced disease. Within the normal control 

group there was an almost equal split of males and females (F=9, M=11) 

whereas in all other groups there are significantly more males. This again 

reflects the known higher incidence in males but causes issues when analysing 

epigenetic data due to the presence of sex chromosomes. The exclusion of the 

sex chromosomes for epigenetic analysis is not perfect and potentially ignores 

the role these play in the gender disparity within the disease. However, again 

because of the small sample sizes and the variation of male to female ratio 

within our diagnostic groups this became important in order to overcome this 

cofounding factor. Sex differences in DNA methylation have been studied with 

some data reporting higher methylation found in males over females. Work has 

demonstrated that the active female chromosome displayed similar DNA 

methylation patterns to that of the male X chromosome whereas others work 

found there to be higher methylation levels seen in the inactive female X 

chromosome compared to the active X. Analysis of sex differences in DNA 

methylation on the autosomal chromosomes have either revealed no, few or 

small changes whilst in cells found in saliva, females tend to have higher DNA 

methylation levels on both the X chromosome as well as the autosomes [300]. 

 

The use of a panel of epigenetic markers for the detection or prediction of 

outcome in cancer is not new with promising data being found in areas such as 

lung and breast cancer[301, 302]. The majority of work using epigenetic 

signatures for early detection utilises blood whereas this work using saliva 

offers great potential from a population screening tool point of view. 



 205 

Furthermore, as discussed earlier, the use of the more stable and more easily 

extracted DNA rather than RNA also offers great potential moving forward. It 

should be noted though that at present, with these results from this small 

sample of patients, fewer genes and thus a smaller panel of transcriptomic 

biomarkers have been required to differentiate patients. Alongside this the 

biomarkers used are those with well-known links to cancer progression and thus 

may provide more meaningful data. 

 

Further work is clearly needed on a larger cohort of patients to determine the 

true accuracy of this epigenetic panel. Additionally, one should explore the 

other DMRs highlighted within this work and perform a deeper pathway analysis 

through machine learning in order to ascertain how these DMRs fit into the 

pathogenesis of OAC.  

 

6.7 Chapter conclusions 

 
The work within this chapter has demonstrated that saliva has great potential as 

a biofluid containing invaluable biomarkers for the early detection of those with 

or at risk of OAC.  

 

Even though there were a limited number of genes targeted in the expression 

analysis it produced notable data with some genes like CDKN2A, H3FA and 

CDK2 providing exciting results. The further work completing the discovery 

RNA-Seq may highlight further genes of interest and potentially allowing for the 

accurate identification of individuals with or at risk of OAC using salivary RNA 

alone. At present, however, the data available exploring these 40 genes look 

promising but needs validation on the 80 cohort of patients that was used to 

carry out the proof of concept work. A patent was granted on this 

(https://patents.google.com/patent/WO2017137427A1/en) so further work may 

result in commercially approved tool for non-invasive diagnosis of onset of OAC 

using saliva. Having said that, an accurate tool was produced with the addition 

of limited patient questionnaire data. It is possible that the outcome of the RNA-

seq validation will provide a subset of genes resulting in the ability to create a 

transcriptomic based diagnostic tool rather than having to use the additional 
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questionnaire data. The advantage of this would be that one could potentially 

create a single colorimetric assay that could be used as a predictive test for BO 

or OAC. This is something that is not possible if one utilises an epigenetic 

diagnostic tool. 

 

However, it should be stated that the epigenetic data obtained within this work 

demonstrated great promise in the accurate identification of those with or at risk 

of OAC. Using just the top 25 DMRs when comparing those with OAC and 

those that were normal we were then able to demonstrate a progression 

throughout the metaplasia-dysplasia-carcinoma sequence and the ability to 

identify those with or at risk of OAC with 99.9% accuracy. It should be noted 

that 25 DMRs equates to a large number of individual data points, most not 

linked to gene regions, and as such this may affect its feasibility as a predictive 

test. Having said that, the epigenetic Thiswork demonstrates the clear role that 

environmental factors play in the pathogenesis of BO and OAC, however, given 

the small number of patients within this preliminary data one could see that the 

significance of these DMRs alter with changes in factors such as medication, 

smoking and GORD. Clearly further work is needed to determine the role of the 

epigenetic markers identified in the progression through the Barrett’s 

metaplasia-dysplasia-carcinoma sequence.   
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Chapter 7  
 

Conclusions and future work 
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Chapter 7 – Conclusions and future work 
 
 
There is little dispute that the early detection of individuals with or at high-risk of 

developing cancer is a key goal in improving cancer outcome. This becomes 

increasingly challenging, however, in cancers such as OAC in which the 

symptoms and signs of the disease often present in the later stages when the 

cancer is incurable [9]. As physicians we have long been taught to and have 

relied upon our clinical acumen to detect at-risk patients, however, in cancers 

such as OAC the data suggests that this is insufficient. The almost static 5-year 

survival rates for OAC over the past 40 years despite the advances in areas 

such as imaging, endoscopy, surgery and oncology demonstrate that the 

existing strategies for the early detection of OAC are ineffective [5]. It is clear 

that new strategies have to be developed and that these strategies must be 

acceptable from a patient perspective as well not placing further strain on 

limited healthcare resource.  

 

With this in mind the work within this thesis aimed to address those issues and 

explore the possibility of a new strategy for the detection of BO and OAC 

utilising AI analysis of patient data. Initial work explored the use of 

questionnaire data alone which, although would be low-cost, is susceptible to 

manipulation and inaccurate data entry alongside not proving specific enough to 

ensure vast numbers of individuals were not subjected to invasive testing 

unnecessarily. As such additional, more robust data was required. The use of 

biomarkers within medicine is now widely reported and data is accumulating at 

a rapid pace. With patient acceptability and cost as important factors in the 

uptake of any diagnostic test, once our early data demonstrated potential 

utilising saliva for biomarker detection, our work focussed on this biofluid.   

 

The work within this thesis has presented exciting data on the use of saliva as a 

diagnostic tool. I have demonstrated that adequate quantity and quality RNA 

and DNA can be extracted from saliva for further analysis. Furthermore, both 

the transcriptomic and epigenetic studies have yielded encouraging results in 

which we have been able to differentiate individuals with BO and OAC from 

normal individuals. Additionally, and perhaps importantly, this work has also 
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demonstrated promise in identifying individuals who are at high-risk of 

developing OAC with HGD and can potentially differentiate them and those with 

OAC from those with NDBO. This may be of importance as it would potentially 

allow us to survey those with BO through non-invasive salivary sampling rather 

than subject them to regular endoscopic examination. This provides both 

patient and healthcare benefits.  

 

Finally, the work outlined in this thesis can theoretically be applied to any 

cancer or disease process and thus one could hypothesise the future potential 

for individuals to be screened and surveyed for a large number of diseases 

simply by providing a sample of their saliva. The consequence of this could alter 

the manner in which we deliver healthcare through strengthening prevention 

and monitoring strategies. 

 

Clearly the data presented in this thesis is preliminary and more work is 

required. This thesis provides opportunity for numerous further studies 

gathering more data on what has been demonstrated so far and also exploring 

other potential uses of saliva as a liquid biopsy. In order to take this thesis 

forward the further studies would focus on four areas; increasing the patient 

cohort, biomarker discovery, understanding BO and OAC evolution and disease 

monitoring. 

 

Increasing the patient cohort 
This thesis has developed two diagnostic tools that require further validation 

with an increased patient cohort. The predictive tool using transcriptomic and 

questionnaire data (patent number: WO2017137427) was developed on 80 

patients (20 in each diagnostic category) and is now being tested on a larger 

number of patients as part of the SPIT study.  

 

The epigenetic data gathered within this work identified 25 DMRs that were able 

to accurately identify those with or at-risk of OAC with high accuracy. However, 

this work also needs further validation with a larger cohort of patients including 

variation in ethnicity. Our work was limited due to the small number of females 

and non-Caucasians represented and as such these had to be excluded from 
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the analysis in addition to heterogenous environmental factor affecting those 

patients. 

 

One would be able to follow the existing methods discussed in this thesis on the 

larger cohort of patients being gathered in the SPIT study in order to explore 

whether these predictive tools were an effective diagnostic tool.  

 

Biomarker discovery 
The transcriptomic work within this thesis was based upon only 13 genes that 

were targeted due to known links with BO and OAC following a literature 

search. The results of the RNA-seq validation performed within this thesis 

highlight more genes that require exploration. However, we need to perform 

RNA-seq on a sufficient number of patients in order to effectively highlight all 

genes that require testing as they may be of value in enhancing the salivary 

diagnostic tool. Once these genes have been identified one would create 

primers and perform qRT-PCR on patient samples as described within this 

thesis. The data generated could be analysed alongside the existing data to 

determine whether these additional genes enhance the tool. At present the 

transcriptomic work relies upon some questionnaire data in order to provide 

sufficient accuracy and ultimately one would aim to identify a panel of genes 

that would be able to identify the at-risk individual through salivary sampling 

alone. This would require the development of logistic mathematical model to 

integrate the biomarkers validated into a transcriptomic signature that can show 

predictive power for the Barrett’s sequence. 

 

Due to the limitations of the epigenetic data gathered, in particular due to the 

lack of diversity in the patients included, we will need to perform EPIC array 

methylome analysis on the more diverse population obtained through the SPIT 

study. This is likely to generate further DMRs of importance that will require 

testing on the larger cohort of patients. 

 

Understanding BO and OAC evolution 
In regard to the transcriptomic findings within this work and the future RNA-seq 

data one would like to be able to perform functional validation of the biomarkers 

identified using cell lines. This would hopefully enable us to identify the role 
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these genes play within the progression of BO to OAC and shed light on the 

disease pathogenesis and mechanistic insights into the development of OAC. 

This may also provide avenues for future work exploring potential therapeutic 

targets.   

 

The DMRs found within this study need to be mapped to genes in order to 

identify their potential role within the progression of BO and again identify 

potential targets for therapeutic intervention. Further DMRs will likely be 

identified when EPIC array methylome analysis is performed on the more 

diverse population gathered in the SPIT study which will again need to be 

mapped to genes and provides insights into progression. Included within the 

SPIT study is the collection of questionnaire data which will allow us to explore 

how the patient symptoms, risk factor and demographic data impacts on these 

DMRs. This would again potentially provide further insights into pathogenesis 

and progression of BO and OAC. 

 

Disease monitoring 
It would be beneficial to study the concordance of transcriptomic and epigenetic 

biomarkers between blood, saliva and biopsy samples in OAC and BO in order 

to provide insights into their future use within clinical practice in areas such as 

screening, disease monitoring, treatment response, and prognosis. Ideally one 

would hope to be able to obtain this data in a longitudinal fashion throughout a 

patient’s lifetime in order to gain these valuable insights into determining how 

these biomarkers alter as the disease progresses, undergoes treatment and 

potentially recurs.  

 

 

Whilst the work within this thesis provides multiple avenues for further research 

I believe that the data presented demonstrates that the transcriptomic and / or 

epigenetic information found in salivary samples could be utilised as a 

population screening tool to identify individuals at risk. It is possible that this 

data will need to be combined with demographic and / or symptom data, such 

as smoking history or measurements of obesity, in order to improve its 

accuracy.  I feel it is likely that a predictive tool composed of a combination of 

biomarkers is likely to yield highest accuracy. Further work in identifying 
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biomarkers, gathering data on larger cohorts of patients and testing the 

predictive tool developed is vital for success. As a population screening tool, I 

believe that the provision of saliva will likely be acceptable to individuals to 

perform and thus key to its applicability within healthcare will be finding a low-

cost, high throughput means to perform the test.  

 

This thesis demonstrates the great potential of saliva not only as a population 

screening tool but it may also have a role in many other aspects of disease 

management that are vital in altering the grave prognosis of OAC. 
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