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Abstract 

The analysis of object and face recognition by humans attracts a great deal of interest, mainly 

because of its many applications in various fields, including psychology, security, computer technology, 

medicine and computer graphics. The aim of this work is to investigate whether a PCA-based mapping 

approach can offer a new perspective on models of object constancy for faces in human vision. An 

existing system for facial motion capture and animation developed for performance-driven animation 

of avatars is adapted, improved and repurposed to study face representation in the context of 

viewpoint and lighting invariance. The main goal of the thesis is to develop and evaluate a new 

approach to viewpoint invariance that is view-based and allows mapping of facial variation between 

different views to construct a multi-view representation of the face. The thesis describes a computer 

implementation of a model that uses PCA to generate example- based models of the face. The work 

explores the joint encoding of expression and viewpoint using PCA and the mapping between view-

specific PCA spaces. The simultaneous, synchronised video recording of 6 views of the face was used 

to construct multi-view representations, which helped to investigate how well multiple views could be 

recovered from a single view via the content addressable memory property of PCA. A similar approach 

was taken to lighting invariance. Finally, the possibility of constructing a multi-view representation 

from asynchronous view-based data was explored. The results of this thesis have implications for a 

continuing research problem in computer vision – the problem of recognising faces and objects from 

different perspectives and in different lighting. It also provides a new approach to understanding 

viewpoint invariance and lighting invariance in human observers. 
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1. Introduction 

In the world, there is a widely held general belief that most people have incredible skill, which 

makes them experts at recognising faces. Some researchers claim that people are natural face 

recognition experts (Carey et al., 1992). Even though biometric authentication is now being used more 

and more to verify passengers at the airports, border guards still continue to match passengers’ faces 

to their photo ID. Same as workers at the bank, or police, who also often verify people’s identities using 

information received only from one photo. Evidence shows that the human visual system is highly 

effective in matching faces when it has prior information about those faces (Burton et al., 2011). 

Moreover, when it comes to familiar faces, humans can distinguish a face despite dramatic changes in 

illumination, viewing angle or partial occlusion (e.g. wearing sunglasses, scarf, hat, moustaches, etc.) 

(Hancock et al., 2000). This means that prior knowledge of the faces helps the human visual system 

effectively cope with problems arising from viewpoint and lighting changes in face matching tasks. 

An understanding of what kind of processes within the human visual system help it to recognise 

faces under challenging conditions would support the development of effective recognition systems. 

For this reason, the current thesis aims to introduce a new PCA-based model approach of multiple 

appearances that will be used to explain object constancy for familiar faces in the human visual system. 

Two different theories have been used in this thesis to explain how the visual system in humans deals 

with facial discrimination from various viewpoints and different lighting. One theory of such 

discrimination is that we can bind different images of the same object into a single unit using a 

temporal association. (Miyashita, 1993) suggested that a close temporal association between newly 

viewed images in the sequence is sufficient to induce some inferior temporal (IT) neurons to respond 

similarly to arbitrary image pairs. Another theory introduced by (Marr & Nishihara, 1978), claims that 

the visual system is capable of storing and manipulating 3D object models. When a new 2D image is 

presented, the visual system determines whether it is possible to invoke the images of the 3D object 

that is already stored in the visual system.  

This thesis favours a view-based approach over an object-centred approach as it has been 

inspired by humans’ ability for facial recognition and has studied human vision. The motivation for the 

thesis was obtained from studies in psychology and cognitive science on the human visual system. 

Therefore, Chapter 1 will provide a brief description of the face processing pathway, with attention to 

the vital part of the brain responsible for face perception. It will also introduce the current state of the 

art that will explain the most important processes and abilities of the human visual system in terms of 

face constancy in various viewing conditions and define the essential features of a face used for face 

discrimination. 
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Chapter 2 will address the main strategies for encoding and animating faces in computer vision 

that are used today, together with the key methods used in this thesis.  

As this thesis will apply an existing view-based approach developed by Cowe (2003) to build a 

computational model of the face that could cope with the viewpoint and lighting variations, this 

approach will be described in detail in chapter 3.  

In chapters 4, 5 and 6, empirical studies will be presented that investigated the performance of 

the computational model and explored whether it is possible to reconstruct a new view of the face 

from another viewpoint in different viewing conditions.  

Finally, Chapter 7 will provide some conclusions and suggestions for further research. 

1.1. A psychological model of processing visual information in human vision 

One of the most remarkable properties of human face recognition is the capability to 

discriminate faces in various scenarios. This capability is called object identification and is a process 

that works as a gateway from vision to cognitive processes in the brain (e.g. perception). 

 
Figure 1 Diagram of the human eye, with a detailed layout of the retina and all its neuron layers in the human's eye. 
(image reproduced from Gary Heiting, OD. Retrieved from URL https://www.allaboutvision.com/resources/retina.htm; 
https://basicmedicalkey.com/the-special-senses-2/, Figure 8-2)  

Visual perception in the brain starts as soon as the eye focuses light on the retina, where 

biochemical reactions are activated. The retina consists of five neuron types: photoreceptors, 

horizontal cells, bipolar cells, amacrine cells, and retinal ganglion cells. Photoreceptors consist of two 

types of cells called rods and cones. Due to rods, people can see in dimly lit places and observe motion, 

but only in black-and-white vision. Cone cells work in medium to bright light and are responsible for 

people's central vision and perception of the objects in colour. Photoreceptors are located at the back 

of the eye, so when the light reaches rods and cones, it is converted into an electric signal. This signal 

is then relayed via intermediate neurons (e.g. horizontal cells, bipolar cells and amacrine cells) towards 

the retinal ganglion cells (RGC). Then RGC, with their long parallel nerve fibres called axons, will help 

these signals to leave the eye. Axons create a bundle close to the optic disc (i.e. optic nerve head) and 
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form an optic nerve that helps transmit visual information obtained from the eye to the brain (see 

Figure 1).  

1) 
retina-geniculate-striate pathways 

 

2) 
 

 

 

3) 

 

Figure 2 The transfer of visual information in the human brain.  Image 1) presents a model of transferring visual 
information to the primary visual cortex (V1) that is located in the back of the human brain (image reproduced from 
Wikipedia, user: Mads00).  Image 2) presents neuronal connections between human eyes and lateral geniculate nuclei 
(LGN) (image reproduced from URL https://www.researchgate.net/figure/Schematic-illustration-of-neuronal-
connections-between-the-eyes-and-the-LGN-in-the_fig1_14059783 [accessed 6 Mar. 2021]). Image 3) presents how V1 
(grey) transmits information through two primary pathways of the visual system in the human brain. The dorsal stream is 
shown with green colour, and the ventral stream is presented in purple colour (image reproduced from Wikipedia, user: 
Selket). 

From the retinal ganglion cells, the electrical signals travel along the retina geniculate striate 

pathways (see Figure 2, 1). Axons cross over in the middle part of the optic chiasm and pass through 

the lateral geniculate nuclei (LGN) found in the thalamus. They then continue all the way to the region 

of the brain called the primary visual cortex (V1), which is positioned in the calcarine sulcus that is 

located in the back of the human brain. Parallel nerve fibres (Axons) are divided into left and right 

sections that are found in both left and right hemispheres of the human brain.  All inputs from the left 

visual field will be received by the right primary cortex (see Figure 2, 1), blue line), while the left primary 

cortex will receive inputs from the right visual field (see Figure 2, 1), red line). Within these pathways, 

there are a few more layers of neurons, this time located in the LGN (Meissirel et al., 1997): 

parvocellular layers, also called P layers (4 layers), and magnocellular layers (2 layers) or M layers. 

These layers of neurons are functionally distinct and are processed in different areas of the visual 

cortex. Neurons of P layers are anatomically smaller than neurons of M layers. Neurons of P layers are 

more responsive to colours, fine details or objects that are standing still or moving slowly, while M 

neurons respond more to object in motion (see Figure 2, 2).   

In the primary visual cortex, a transfer of visual information is divided into two pathways: the 

dorsal stream and the ventral stream (Ungerleider & Mishkin, 1982). Ungerleider and Mishkin (1982) 

suggest that the dorsal stream is responsible for the perception of visual-spatial information and the 

ventral stream for visual object identification information (Figure 2, 3). Hence, the dorsal stream is 

involved in recognising where the object is in space, while the ventral stream helps to identify and 

form object representation. This is a brief description of the pathway of how visual information is 
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transferred to the human brain. Next, we will define a vital part of the brain responsible for face 

perception. 

1.1.1. Functional specialisation of the face-specific area in the ventral stream 

A Fusiform Face Area (FFA) is a discrete brain region that is considered to be responsible for face 

perception in the human brain. It was initially described by (Sergent et al., 1992) and later deeper 

investigated and named by (Kanwisher et al., 1997). Kanwisher et al., in 1997, in their functional 

magnetic resonance imaging (fMRI) study, observed greater activation of this region in the middle 

fusiform gyrus (FG) when viewing faces as compared to objects. The FFA responded to human, animal 

or drawn faces much stronger than to the inanimate objects, body parts, back views of the heads, 

buildings, flowers, or scrambled images in healthy participants (Allison et al., 1999; Grill-Spector et al., 

2004; Parvizi et al., 2012; Rotshtein et al., 2005; Tong et al., 2000) (see Figure 3).  

 

Figure 3 shows FFA activation presented in the fMRI scan (In the top left image, orange arrow). In the top right, there is 
an image of a post-mortem brain with FFA coloured in pink (image reproduced from autism-center.ucsd.edu). 

An active discussion is ongoing if FFA may be a particular domain responsible specifically for face 

perception analysis, like face detection and recognition. Neuropsychology and studies on patients with 

lesions in this area suggest that such a specific place may exist. Due to brain specialisation, the loss of 

such a specialist area would selectively impair face processing and face identification. Dalrymple et al. 

in 2012, studied patients diagnosed with prosopagnosia, such people have problem with face 

recognition because they suffer from some form of pathological “face-blindness” when their natural 

face recognition skill is somehow missing or switched off (Behrmann & Avidan, 2005). Researches 

noted that these patients had a problem only with face identification while they were able to identify 

objects (Rezlescu et al., 2012). Thus they concluded that face processing might involve unique 

mechanisms that are different from those required for object processing. To have strong arguments in 

this discussion, researchers often use fMRI scanners that can easily present each region of the brain. 

Weiner and Grill-Spector, in their study, found two nerve clusters in the fusiform gyrus, entitled pFus 

and mFus, which had a stronger response to faces than to objects or body parts (Weiner & Grill-Spector, 

2010). This result suggested that the FFA could be composed of functional clusters that were at a finer 
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spatial scale than what has been measured previously. Parvizi et al. continued this work and showed 

that mild electrical intracranial stimulation of these functional clusters (pFus and mFus) could cause 

visible distortions in face perception (Parvizi et al., 2012). In 2014, Rangarajan et al. brought evidence 

of functional brain lateralisation for face processing (Rangarajan et al., 2014).  In their intracranial study, 

electrical stimulations were applied to the right hemisphere face areas, which caused distortions in 

face-selection. When similar stimulations were used on the left hemisphere, they did not affect face 

perception but caused non-face, simple distortions like phosphenes. These results suggest that there 

is some innate face-selective area in the human brain that is dedicated only to face processing. 

 On the other hand, Gauthier and Logothetis (2000) tried to prove that the FFA was an expertise 

area rather than a face-processing area. Their study tested both bird and car adepts and found small 

activation in the FFA area when bird adepts were recognising birds and car adepts were recognising cars. 

These results were replicated by Xu and McGugin et al., confirming that the effect of expertise was found 

in the FFA area (McGugin et al., 2012; Xu, 2005). Similar results were further demonstrated in other 

studies that used chess displays (Bilalic et al., 2011) or studies with faces presented in x-rays (Bilalic et 

al., 2016). Nevertheless, the discussion about the nature of the functionality of the FFA role remains 

open. 

The next subchapter will present the current state of the art in the research on the processes 

and abilities of human vision in terms of face constancy for familiar faces.  

1.2. Object constancy for faces 

Face perception is a complicated process performed by the human visual system that is essential 

to coexist in society. Many types of signals and information are visible on a human face, but processes 

and methods that extract this information are complicated. Faces differ from each other by shapes and 

sizes; moreover, they are covered with a large number of muscles, which adds diversity and complexity 

to the face (Bruce & Young, 1998). These unique variations of the face distinguish one face from 

another, and humans are capable of determining individuals by their faces effortlessly (Hancock et al., 

2000).  

However, face recognition can be challenging because the appearance of a face can alter a lot 

in different viewing conditions (DiCarlo et al., 2012; Johnston et al., 1992; Lander et al., 1999; 

Logothetis & Sheinberg, 1996; Pinto et al., 2008; Poggio & Ullman, 2013; Tanaka, 1996). The various 

conditions may include object direction, illuminance or variability (size, colour, and other category 

differences). One of the main difficulties that stop people from recognising two views of individual of 

being the same person is when this individual is unfamiliar to them, and they had no previous 

experience of seeing those two views at the same time (Natu & O’Toole, 2011; O’Toole, 2005, p. 360). 
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The thesis will address these limitations of the human vision in chapter 6, where the computational 

model will be created to investigate face constancy for unfamiliar faces. 

Although recognition of unfamiliar faces can be challenging, people can effortlessly recognise 

an object of interest under various conditions if they had prior knowledge of that object. This means 

that people have the skill to achieve object constancy. In psychology, object constancy is defined as a 

perceptual phenomenon when characteristics of an object appear to be perceived the same regardless 

of changes in viewpoint, presentation, lighting or distance from the observer. As we know, humans 

have this perceptual phenomenon, and the human visual system can easily disregard the problems 

that appear due to changes in pose or lighting. Does this mean that the human visual system achieves 

object constancy because it is view or lighting invariant?  

The scientific evidence suggests that this is not the case. An inversion effect is one piece of 

evidence that supports view dependency in the human visual system.  Faces are harder to recognise 

when they are upside down than when they are upright (Farah et al., 1998, p. 482; Yin, 1969, 1970). 

This evidence was used to argue that the FFA has an orientation dependency as a result of human 

experience being overwhelmingly biased towards upright faces. Thompson, in 1980, demonstrated 

this view dependency by creating a so-called Thatcher illusion Figure 4, where the eyes and mouth of 

an expressive face were excised and inverted (Thompson, 1980). When the face is upright, the resulting 

image looks grotesque. However, when the face is inverted, it is hard to note that there is anything 

different about the face. The Thatcher illusion is a perfect example of how face alignment affects 

human perception of faces. Also, the results of this experiment suggest that the human vision 

processes face holistically, rather than based on the single features on the face.   

                

a) 

                   

b) 

Figure 4 The Thatcher illusion. (a) Ms Thatcher’s head positioned upside-down; it is difficult to notice that the eyes 
are placed in the reverse direction in the right image. In (b), the face rotated upright; here, we can notice a strange 
face appearance (image adapted from Thompson 1980). 

 

Also, several psychophysical studies presented below confirmed view dependency of the human 

visual system.   

Hill et al., 1997, in their study, confirmed that participants performed poorly in face matching 

task when viewing positions were changing. However, once participants learned all faces, recognition 
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performance increased, and all the faces were matched well. In this study, participants turned to be 

quite poor at generalising a face across different views from a single face view. The decrease in 

performance was directly related to an increasing difference between the views. (Van der Linde & 

Watson, 2010) also noted that the highest face recognition performance is achieved when an angular 

offset between learned and tested face image is the least, while massive changes in yaw rotation are 

the most damaging. However, if humans would systematically experience changes in viewpoint 

directions, it would have a high impact on the process of face recognition. 

 Watson et al., on the other hand, found a difference in viewpoint-dependency for rigid and non-

rigid face motions. Their study showed that non-rigid facial transformations appeared to be less 

viewpoint-dependent than rigid motions of a face. According to Watson et al., "it seems that the 

currently prevailing theories of object recognition will in the future need to account for not only 

patterns of static object recognition but also those of object motion” (Watson et al., 2005). 

The human vision is also lighting dependent. Hill and Bruce, in their study of comparison tasks, 

used data of faces scanned with a laser and presented in various lighting and viewpoint conditions. 

They found that variations of light on a face (especially bottom lighting) can cause difficulties for the 

face matching performance (Hill & Bruce, 1996). Similar results were obtained by (Braje et al., 1998) 

(see Figure 5). 

 
Figure 5 Lighting stream applied the left and right side of the face. These two images demonstrate the kind of lighting used 
in an experiment by Braje et al. (1998). After showing the image demonstrated on the left, participants were very accurate 
in determining whether another image such as the one on the right presents the same or a different individual (in this 
case the same) (image reproduced from Braje et al. (1998)). 

 Also, Braje in 2003 discovered that illumination directed from the above gives advantages in the 

comparison tasks (Braje, 2003). This finding is coherent with evidence that says that the observer 

needs only one light source positioned approximately over the head to recover simple shape from 

shading patterns (Ramachandran, 1988). In addition, Johnston et al. (1992) found that if the light was 

directed from below and then the face was inverted, it was possible to reduce the effect of the face 

inversion for full-face views (see Figure 6).  
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Figure 6 presents a face in different lighting condition. These images were used by Johnston and colleagues Johnston et 

al., 1992) in an experiment to define if these face images belonged to the same participant. The image on the right 
represents a “ghost-like” face appearance which is harder to recognise than the rest of the images in the same row. (image 
reproduced from Johnston et al. (1992)) 

 All these findings on luminance directions provide strong evidence of some face encoding 

scheme. However, hollow face illusion, when a concave face mask appears to be convex, showed 

that the direction of the light source was not the only parameter that disrupted recovering of shape-

from-shading (Hill & Bruce, 1993). According to Hill and Bruce, familiarity with the 3-D depth 

structure of a face was “an important component” in the process of perceiving an illusion. 

 What about the size, does it impair face reconstruction in the same way as changes in viewpoint 

or lighting? Lee et al. (2006) used unfamiliar faces that differed in size up to fourfold and found that 

face matching performance is size invariant. Recently, Guo et al. (2013) investigated how a pose of 

face interacts with size changes. In their study, participants were very accurate in matching faces, 

regardless of the face sizes ranging from arm’s length to up to five metres. However, when the 

viewpoint was changed, the participants' ability to match faces decreased drastically. Evidently, the 

size does not significantly impact the face matching tasks as opposed to presenting a face from 

different viewpoints. 

 We know that a face in one pose will look different from different angles and project many 

different patterns onto the retina that may challenge human vision in obtaining viewpoint 

independence and finally achieving object constancy. Then, how is human vision capable of achieving 

viewpoint independence for faces while being so view-dependent?  

 Physiological experiments on the macaque monkey brain demonstrate that object recognition 

in the cortex is performed via the ventral stream, which carries visual information from the primary 

visual cortex (V1) to the secondary visual cortex (V2), continues to the visual cortical area (V4) and 

finally reaches the inferotemporal cortex called IT (Ungerleider & Haxby, 1994). The inferotemporal 

cortex is believed to be a fundamental component in object recognition. In IT, researchers found cells 

that are tuned mainly to the views of complex stimulus like faces. In an experiment, these cells had a 

strong activation response to face pose and little or no activation to objects such as bars, spots, edges, 
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hands or brushes (Bruce et al., 1981). Neuropsychological studies, together with fMRI studies, agree 

that the inferotemporal cortex is an essential component for object recognition also in human vision 

(Logothetis & Sheinberg, 1996; Ungerleider & Haxby, 1994). While moving up the visual hierarchy, the 

neurons increase receptive field sizes with the increasing complexity of stimuli. Neurons in V1 have 

small receptive fields and respond only to simple stimuli such as moving lines or bars (Hubel & Wiesel, 

1962). They are also selective to orientation and very dependent on the contrast of the stimulus (Polat 

et al., 1998). Whereas IT neurons have larger receptive fields than V1 neurons and, as previously 

mentioned, will respond selectively to complex stimuli such as objects and faces (Bruce et al., 1981; 

Desimone et al., 1984; Tsao & Livingstone, 2008). In other words, receptive fields are becoming more 

invariant to position and specific to structure as visual information proceed up the ventral stream from 

V1 to IT (Kobatake & Tanaka, 1994).  

 In addition, researchers Peret and Oram, in their study, presented that viewpoint invariance to 

any transformation can be achieved with a hierarchical model where outputs of cells that respond to 

different views of the same object are being pooled over to build up one object that is seen from 

different views (Perrett & Oram, 1993). Poggio and Edelman, a couple of years earlier, also proved that 

achieving viewpoint-invariance can be established with pooling operation (Poggio & Edelman, 1990). 

They trained a learning network called Gaussian Radial Basis Functions (GRBFs) that used a small set 

of object views (paperclip-like objects) to achieve object constancy for that specific object at any angle. 

Their approach showed that novel invariant views of the object are achieved by interpolation between 

already stored ("learned") views in the learning network. Psychophysical studies (Bülthoff & Edelman, 

1992; Logothetis et al., 1995; Tarr, 1995) together with physiological studies (Booth & Rolls, 1998; 

Kobatake et al., 1998; Logothetis et al., 1995)  discovered that the learning process forms IT neurons, 

which are tuned to full or partial views and found several neurons that are selective for view-

independent representations (Perrett et al., 1991).  

 Additionally, several researches found neurons that responded to a wide range of rigid head 

motion in yaw rotation (Desimone et al., 1984; Hasselmo et al., 1989). Perret et al. defined five neurons, 

each of them was responding to different but only one position of the head (e.g. to full face, profile, 

rare view head, head up or head down) (Perrett et al., 1992). These pieces of evidence seem to suggest 

that the brain is storing face frames in the two-dimensional face space. This way, every view of a face 

is collected and encoded separately in order to perform face discrimination in multiple viewpoints and 

in various viewing conditions. This evidence became one of the key reasons why this thesis chose to 

focus on a view-based approach to build a PCA-based model of multiple appearances. The multiple 

appearances model can use various views of a face and refer them to a single general cause (e.g. smile) 

using a multi-view vector. This multi-view vector will then be able to present how the smile will look 
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from a different perspective. In this way, one can get a representation by underlining the cause of 

expression in its various appearances. It is important to mention that the multiple appearances model 

is not a single appearance model, despite being composed of one multi-vector. Within this model, 

different appearances will be grouped to represent the same thing, making the multi-view vector an 

excellent mathematical alternative that reflects the biological processes in the human brain, where 

every view of a face is collected and encoded separately but represents the same face. A detailed 

description of this model will be given in chapter 4. 

1.3. Chapter 1 summary 

Face perception is a remarkable human ability and one of the most complicated tasks performed 

by the human visual system. People, having prior knowledge of a face, can easily distinguish a face 

despite dramatic changes in illumination or viewing angle. Hence, they can cope with those type of 

viewing variations in face matching tasks and achieve invariance in viewpoint and lighting. The 

information processing pathway for matching faces starts at the retina and runs through optic chiasm 

over the optic nerve, passing the lateral geniculate nuclei (LGN) until it reaches V1. Then it travels into 

the inferotemporal cortex (IT) containing the FFA face-specific region, where the face is finally 

perceived. The inferotemporal cortex (IT) is a fundamental component in object recognition. In IT, 

researchers found cells that are tuned mainly to the views of complex stimulus like faces. Moreover, 

psychophysical and physiological studies found that IT neurons are being formed through a learning 

process and are tuned to full or partial views. Besides, they found only several neurons that were 

selective for view-independent representations in the inferotemporal cortex. In addition, the human 

visual system process faces holistically rather than based on the single features on the face. 

Furthermore, some neuropsychological studies suggest that the human brain is storing human 

faces in a 2D format. The brain collects and encodes every view of a face separately. For this reason, 

the current thesis has chosen to use a 2D view-based approach to build a multiple appearances 

computational model to explain object constancy for faces. The topic of face constancy in various 

conditions, received significant interest in recent years, especially in the field of computer vision that 

aims to create realistically-looking computer animations of a face. As stated previously, this thesis is 

oriented to build a computational model of a face. Hence it will require to incorporate computer facial 

animations to create lifelike representations of a face. Therefore, the next chapter will discuss 

approaches on how to build the realistic reconstructions of a face that will be used to construct the 

computational model.  
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2. A computational model of a human face 

 As previously discussed, most people have incredible skill, which makes them experts at 

recognising faces. Humans can define if a face is familiar or unfamiliar, even under large rotations in 

the viewing angle or the very complicated lighting conditions, by merely looking at someone’s face. 

Psychological evidence showed that people transfer information obtained from the carrier's face to 

the brain, where it performs cognitive processes. Thus, the human's brain may be defined as a 

computer that runs vision algorithms to obtain object constancy for faces. 

 Hence, this chapter will present the main strategies for encoding and animating faces in 

computer graphics addressing their weaknesses and relation to psychological theory on encoding the 

dynamic change in faces in the brain. Also, the chapter will introduce key methods used in this thesis 

that will address these weaknesses based on natural processes that are happening in the human visual 

system described in Chapter 1. 

2.1. Computer facial animation 

Computer facial animation is a part of computer graphics that aim to create realistic animated 

representations of the head and face. It uses mathematical modules together with computer vision 

techniques to mimic realistic movements of both internal and external features of a face (e.g. facial 

expressions, head shape, hair and so on). The first question on how to generate realistic animated 

faces was raised several decades ago (Parke, 1972). However, this task is still very challenging, and 

there is still no clear answer. The challenges are due to complex mathematical calculations that are 

used to encode the sophisticated structure and multi-dimensionality of a face and the computational 

speed of hardware that is required to run all these calculations. This thesis is interested in generating 

a realistic representation of a face, which is based on natural processes that take place in the human 

brain. From the psychological theory introduced in chapter 1, we know that even though the human 

face is built in a three-dimensional shape, the brain processes the human face in a two-dimensional 

shape. Therefore, this subchapter will cover some methods of three-dimensional face modelling that 

will incorporate two-dimensional representations of a face. 

2.1.1. A 3D face modelling approach 

2.1.1.1. Polygons 
Frederic Ira Parke invented the first 3D face model in 1972. He digitised it by hand by merely 

drawing polygons (triangles connected at each vertex) on a real human face and then collecting several 

frames of pairs of orthogonal views of the face in different expressions. Next, he manually measured 

vertexes (key poses) from photographs and used a linear interpolation on the three-dimensional 
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position of the vertexes to obtain a non-rigid motion. Unfortunately, his model had several 

shortcomings. First, the model required some artistic skills to draw polygons on the face manually. 

Second, since faces have different shapes and sizes, the key poses taken from one face will not have a 

perfect fit on other face shapes. And finally, the whole process was very time-consuming.   

Already in 1987, Rydfalk introduced an automatic approach called Candide that created the 

most realistic 3D face model without computational complexity. This 3D face model used a small 

number of polygons to encode the human face (75 vertices and 100 triangles), which allowed a fast 

face reconstruction with relatively low hardware ability. Even though the created approach was fully 

automated with a short processing time, the generated face model had very edgy facial features that 

made it look unreal. This approach was not able to realistically reconstruct the volume of face shape 

and facial features (e.g. eyes, nose, cheeks, lips); hence face model lacked the complexity present in 

the real human face. (see Figure 7). 

 
Figure 7 Candide 3D face model consisting of 75 vertices and 100 triangles (image reproduced from (Rydfalk, 1987)). 

In the same year, Waters (1987) introduced a parametrised muscle approach to realistically 

reconstruct complex face structure in facial animations (see Figure 8, a). His approach also used polygon 

meshes together with The Facial Action Coding System (FACS) model. This model was created by Ekman 

and Friesen (Ekman & Friesen, 1978) and could define emotional states from the visible changes in the 

face called Action Units (AU). AU can consist of one or a group of muscles to obtain realistic movement 

of the skin in the face. Waters implanted ten AU in his face model. These AU were responsible for 

driving specific zones in the face, their key nodes in the facial model displaced with a circular cosine 

falloff function. Waters model became a foundation for physically based rendering in facial 

reconstruction. Later, Terzopoulos and Waters upgraded Water’s model by adding anatomical 

structure and facial dynamics, by adding three layers of deformable mesh that were responsible for 

the movement of skin elasticity (cutaneous tissue), fatty tissue (subcutaneous tissue) and muscle layer 

(Terzopoulos et al., 1993). Elastic springs connected each key node of deformable mesh at each layer. 

These elastic springs were adjusted with different non-linear stiffness values, separately for each layer, 

to obtain different properties of a face from these sub-layers.  This model gave very realistic results in 

deformations of skin in facial reconstructions and is broadly used in the film industry. For example, 

Weta digital used this model to create and move all Na’ vi characters in Avatar’s movie, directed by 
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James Cameron (Wikipedia contributors, 2019) (see Figure 8, b). Even though this model gave 

significant results in realistic face reconstruction and related to psychological theory, the biggest 

drawback of this method is that it required very complex computations and high-performance 

hardware to render these facial animations. 

a)  b)  

Figure 8 a) Figure shows Waters polygonal mesh method (image reproduced from (Waters, 1987)). b) The figure shows 
how Na’vi characters from the Avatar movie were composed of polygonal meshes based on three layers deformable mesh 
model (image reproduced from (Cameron, 2009)).  

2.1.2. Image-based approach 

Another technique that also relates to psychological theory, but requires slightly fewer 

computations and resources to build a realistic facial animation than the previously mentioned 

approaches, is the image-based approach. This approach uses only two-dimensional image 

information as a keyframe to construct a three dimensional morphable model of a face.   

 DeCarlo & Metaxas (1996) significantly contributed to the development of image-based 

techniques. They used the morph technique to blend the texture from two-dimensional images onto 

a three-dimensional face model. They were interpolating between keyframes to find a proper three-

dimensional position to achieve realistic facial animation. On the other hand, Pighin et al. (1998), in 

their approach, used a combination of both face shape and texture information. They created textured 

face meshes for every keyframe. These keyframes were linearly interpolated to achieve facial 

animation, then blended and wrapped onto a three-dimensional model. For both approaches, the 

image-based method gave realistic results. Still, both of them encountered a registration error that is 

the main disadvantage of these approaches because it affected the texture of the face making it slightly 

blurred. 

A method that handled this registration error was first introduced by Blanz and Vetter (1999).  

Their method used a dataset of 200 3D facial laser scans in various shapes and non-rigid movements 

to build a photo-realistic 3D morphable face model. Each face image contained approximately 70.000 

3D vertices and an RGB texture map. Image scans had to be pre-processed to remove global 3D 
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transformations. Image registration of the vertices was based on the optic flow method. 3D morphable 

face model automatically learned class-specific face information from the collected dataset, such as 

changes in viewpoint and illumination. The model used face shape and texture information extracted 

from images as vectors but analysed them separately in a statistical technique called Principal 

Component Analysis. The PCA technique successfully reduced the dimensionality of the model's 

dataset. Model’s shape vector is defined by (2.1) 

Where parameters x, y, z present pixel coordinates. Texture vector is defined by (2.2) 

 𝑻 = (𝑹𝟏, 𝑮𝟏, 𝑩𝟏, … , 𝑹𝒏, 𝑮𝒏, 𝑩𝒏)𝑻 (2.2) 

Where R, G, B present colour values. First, they computed an average value for shape and texture 

(𝑺, 𝑻). Then found eigenvectors (𝑺𝒊, 𝑻𝒊 ) and eigenvalues (𝜶𝒊, 𝜷𝒊) that were used to define coordinates 

of face images in the PCA face system. PCA face system is defined by (2.3)  

 𝑺𝒎𝒐𝒅 = 𝑺 + ∑ 𝜶𝒊 ∗ 𝑺𝒊 𝑎𝑛𝑑   𝑻𝒎𝒐𝒅 = 𝑻

𝒏−𝟏

𝒊=𝟏

+ ∑ 𝜷𝒊 ∗ 𝑻𝒊

𝒏−𝟏

𝒊=𝟏

 (2.3) 

 

Where shape and texture models 𝑺𝒎𝒐𝒅  and 𝑻𝒎𝒐𝒅 , are formed by 𝑺𝒊 and 𝑻𝒊  eigenvectors, and 𝜶𝒊, 

𝜷𝒊 eigenvalues. (see Formula 2.(2.2)). Figure 9 shows an average face and variations of shape and 

texture based on principal components (eigenvectors) with added eigenvalues. 

Average face 

 

Shape 

 
     −3𝜎       + 3𝜎      

Texture  

 
  −3𝜎          + 3𝜎       

Figure 9 shows an average face (a). Figure b) and c) shows a first two principal components (eigenvectors) of a data set 
in PCA face space with -3 and +3 standard deviation from the average face. b) The figure shows how face shape is changing 
with different eigenvalues while texture stays constant. c) The figure shows how the texture of a face is changing while 
keeping a face shape constant (image adapted from Blanz & Vetter (2003)). 

The previously mentioned Blanz and Vetter approach could generate a realistic representation of the 

3D face model that achieved pose and lighting invariance using only one image example of the face. 

However, to build a model, they used an image that contained a whole representation of a human face. 

Since humans cannot see all views at the same time, we will now describe image-based methods that 

 𝑺 = (𝒙𝟏, 𝒚𝟏, 𝒛𝟏, … , 𝒙𝒏, 𝒚𝒏, 𝒛𝒏)𝑻 (2.1) 



 27 

investigated face reconstruction under changes in the pose using face information taken only from one 

perspective.  

First 2D image-based method that synthesised a face in different perspectives was based on 

piecewise warping. The piecewise warping approach transforms the shape of the face image in a 

piecewise manner to another specified pose. Beier et al. presented a feature-based technique called 

morphing that smoothly transitioned one image into another by using an interpolation process 

between two images (Beier & Neely, 1992a). First, the morphing process warps two face images so 

that they have the same “shape”, next it cross-dissolves images to blend one image into another 

smoothly. In the warping process, images are aligned with lines that relate to positions established in 

the source and destination images. These lines are moved with high precision to where they are 

mapped to, and everything else is blended smoothly based on those positions. The biggest drawback 

of this method is that these positions are settled manually. In addition, this method had a problem 

with speed and control because it is a global method and all line segments needed to be referenced 

for every pixel. Sometimes, an algorithm was generating unexpected interpolations as it tried to guess 

what should happen far away from the line segments. This problem usually demonstrates itself as a 

“ghost” of a part of the image showing up in some unrelated part of the interpolated image. In the 

empirical study of chapter 4, we will compare the face reconstruction performance of this morph 

algorithm with the reconstruction performance of our method. 

One of the first image-based multi-view methods that handled pose variation in face recognition 

was suggested by Beymer and Poggio (Beymer & Poggio, 1995). In their approach, they used prior 

knowledge of a face to synthesise a face in new perspectives because prior knowledge integrated into 

the system improves face generalisation across views (Niyogi et al., 1998). Prior knowledge was one 

available real single view of a face that was used to synthesise this face in other poses. Beymer and 

Poggio introduced a parallel deformation method to synthesise a set of rotated virtual views from one 

real example view of the person. After estimating a pose of the face, the algorithm automatically found 

the first three points and then shifted the test images to match the candidate poses from the database. 

This method used a gradient-based optical flow algorithm to find displacement fields that collected 

changes on a pixel level between two poses of a face. These displacement fields were registered as a 

template displacement field (see Figure 10, (prototype flow)). 
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Figure 10 Method of parallel deformation. (A) with optical flow prototype flow shows changes  between images 𝒊𝒑and  

𝒊𝒑,𝒓,  (B) next, the prototype flow is applied onto the novel face 𝒊𝒏, and (C) the novel face image is mapped to the virtual 

view (image reproduced from Beymer and Poggio 1995). 

Next, linear combinations estimated a template displacement field of a given testing face image. 

After learning a displacement field, it was used to generate a new image under different poses. 

(a)  (b)  

Figure 11 Synthesis of virtual views on the generated shape. In (a), face mapping over multiple poses was made manually. 

In (b), face mapping was accomplished automatically with an image vectorizer (image reproduced from Beymer and Poggio 
1995). 

Their method performed manual technique and auto technique to generate new virtual views. Both 

techniques generated eight virtual views per person from one example view in about 15-degree 

rotation away from the original pose (see Figure 11). These face poses were ranging from -30o to + 30o 

(yaw) and from -20o to +20 o (pitch). The database consisted of 62 participants, where each participant 

was presented in 10 different poses. The method obtained better face reconstruction results with a 

manual technique (82 per cent ) than with an auto technique (75 per cent).  

Although this method meets the requirements of achieving object constancy represented in 

psychology theory and reproduce an authentic reconstruction of the complex structure of a face, it 

contains several significant shortcomings. First, this method performs very complicated calculations to 

find a relation between images. Second, this approach requires high data storage per participant. Third, 

it fails to reconstruct a face if the yaw angle between two poses is too large or some regions of the 

face become invisible due to self-occlusion, which leads to the loss of information on the face (see 

Figure 11, (b)). Moreover, it is unclear if this approach could be reused to work with nonuniform 

illumination conditions.  
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As we may observe, face reconstruction based on 3D methods appeared to be one of the most 

successful strategies for handling large pose variation and various lighting conditions. Thus, Blanz and 

Vetter reused their previous 3D approach (Blanz et al., 1999) to synthesise a new face from a single 2D 

face image (Blanz et al., 2002; Blanz et al., 2005; Blanz & Vetter, 2003). They described a synthesised 

face by a vector that used a combination of weighted functions with carefully chosen coefficients for 

both shape and texture in order to obtain as similar as a possible reconstruction of a face with an input 

image (see Figure 12). 

 

Figure 12 shows how the fitting process is accomplished in Blanz and Vetter 3D face model. In their fitting process, 

they carefully choose coefficients for both shape α and texture β to obtain a representation of a face Imod that would 
be similar as possible to the input image Iin. (image reproduced from Blanz & Vetter (2003)). 

As a result, their synthesised faces looked very realistic, even in various lighting or viewpoint 

conditions. However, in practice, this method had several shortcomings, such as manual initialisation 

in the model-fitting process and problems with face reconstruction with partial face occlusion and 

severe lighting conditions.  

A 3D method that also handled wide pose variations but did not require manual initialisation in 

the model-fitting process was presented by (Ding et al., 2016) (see Figure 13). This 3D method 

estimated the pose and shape of the face using only one 2D image. It detected a contour of the face 

and positions of five feature points (i.e. eyes, nose and corners of a mouth) to know their exact 

locations, where to transfer 2D face image in the 3D model and how to properly align a 2D face image 

onto the 3D face model. 

After transferring the texture information, a pose normalisation technique was applied to the 

image to correct potential deformation that appeared in the facial texture due to the pose variations. 

Unfortunately, similar to the previous 3D method by Blanz et al. (2003), this method also could not 

cope with the problem of restoring the facial texture information that was lost due to occlusion. Thus, 

this method used only non-occluded facial textures to perform face reconstruction (see Figure 13), 

where each patch represented a specific feature of the face, which later was stored in PCA space. 

Storing data in PCA space helped to reduce data dimensionality and to lower the noise. 

Due to the fact that the approach used limited information to estimate the pose and shape 

parameters of a face, generated reconstructions of a face were unprecise. Also, the method handled 
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poorly face reconstruction in wide poses that fell into the range from -90 to +90 degrees in the 

horizontal plane. 

 
Figure 13 Face reconstruction method using only one 2D example view of a face (image reproduced from Ding et al. 
(2016)).  

An approach that was better at handling face reconstruction in various poses of such a wide 

range was proposed by Jackson et al. (2017). They produced a 3D volumetric representation of the 

facial geometry and made spatial predictions at a voxel level. Their approach used a Convolutional 

Neural Network (CNN) as a database, which was trained on a dataset consisting of more than 60.000 

2D facial images and 3D facial models. Jackson and his colleagues claimed that their method is capable 

of realistically generating facial images from faces presented in a wide range of poses, in various facial 

expressions or faces that are partially occluded. However, it was not capable of capturing fine details 

of a face (e.g. wrinkles or spots). Also, the approach required predetermine positions of the facial 

landmarks; otherwise, it poorly reconstructed facial expressions. 

This was a brief overview of the main strategies for encoding and animating faces in computer 

graphics and their weaknesses. We will now proceed to introduce the key methods used in this thesis 

that addressed these weaknesses. 

2.2. 2D view-based key methods 

The 2D image-based multi-view method (Beymer & Poggio, 1995) or 3D face models such as 

polygonal meshes or image-based morphable face models (Blanz & Vetter, 2003; DeCarlo et al., 1998; 

Jackson et al., 2017; Waters, 1987), all these methods in their face reconstruction approaches took 

into account natural processes that take place in the human visual system how to achieve object 

constancy for faces. These methods required the implementation of sophisticated pre-processing and 

calculations and high-performance hardware where these calculations could be performed. However, 



 31 

none of them could obtain a reconstruction of a face fully invariant to wide poses and lighting changes. 

Therefore, this thesis introduces an alternative model that could replace complex face models and be 

able to realistically reconstruct faces in various viewpoints and illuminances, while using potential 

mechanisms built-in in the human visual system. This subchapter will describe key methods of this 

alternative model.   

2.2.1. The biological inspiration for using PCA 

In Chapter 1, a range of theories was presented that showed how face perception is performed 

in human vision. Faces are different in shape and sizes and contain many muscle tissues, bringing 

substantial complexity and diversity to a human face (Bruce & Young, 1998). Despite such a 

complicated structure of faces, people can perform face matching tasks without a lot of effort. In 1991, 

Valentine presented a framework called face-space to explain this human ability, which he insists is a 

potential psychological model that explains how the cognitive representations of faces are processed 

and stored in the human brain. The face-space framework made a great starting point for this study 

that aimed to explain how face recognition in humans is performed. This framework describes faces 

by multiple dimensions that encode the specific features of a face (e.g. internal, external or 

distinguishing) together with the space-based distance between the faces. Internal features can be the 

distance between the eyes; external features can be the length of hair, shape or size of a face, and 

even masculinity of a face; distinguishing features can be scars, tattoo or piercing. In this face-

framework every individual face has its own position, depending on its dimensions. When the distance 

between the faces is categorised as similar faces, similar faces are placed closer to each other while 

different faces lay further apart. 

Many researchers investigated the structure and dimensionality of a face-space framework, however, 

they were not able to come to one uniform theory that would explain how human vision is processing 

and storing facial information in the brain. One theory is that faces are distributed as norms (Giese & 

Leopold, 2005; Valentine, 1991). The norm-based model encodes faces based on their deviation from 

an average face located at the centre of a face-space. In this model, faces are represented by the 

vectors from an average face. The length of a vector shows the distinctiveness, and the direction of a 

vector shows features of a face or identity (Valentine et al., 2016). Another theory considers that faces 

are stored as exemplars (Lewis, 2004; Valentine, 1991). The exemplar-based model encodes faces as 

single points in the space without any specific reference to an average face. The distance between 

faces defines their measure of similarity to other faces; hence such distribution of faces within the 

face-space will point out the distinctiveness (Valentine, 1991). Similar faces will be located closer to 

the centre of the distribution for particular facial exemplar, while the distinctive faces will be located 
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in areas of a low density. The debate is still ongoing. Nevertheless, the face-space framework became 

a theoretical structure for many empirical studies, which were combined with computational studies 

to investigate face recognition in human vision  (Natu & O’Toole, 2011; O’Toole et al., 1993).  

The face-space framework in this thesis was used as a potential structure of how the human visual 

system may store faces in the brain. This thesis used this framework in combinations with the 

psychophysical evidence presented in Chapter 1, which suggested that human vision processes face 

holistically and in a 2D manner rather than based on the sole local features of a face, and incorporated 

them into the Principal Component Analysis (PCA) technique to perform as a face-space to imitate the 

human visual system.  The PCA approach in this thesis was chosen for a number of reasons as it works 

on holistic information of faces while holding face information in 2D, reduces the dimensions of big 

data sets, extracts and visualises essential visual information in faces that are required for face 

matching in various viewing conditions. The PCA component analysis method became a very popular 

tool in many research studies for its simplicity and successful performance in automatic face 

recognition (Blanz & Vetter, 2003; Blanz & Vetter, 1999). A detailed description of PCA space is 

presented below.  

2.2.2. What is PCA, and what are eigenfaces? 

Principal Component Analysis (PCA) is a statistical technique that reforms data from a high-

dimensional (multidimensional) space to a low-dimensional space while retaining most of the data 

information. Karl Pearson invented the PCA technique in 1901 (Pearson, 1901). PCA uses linear 

transformations to find directions of axes, along which samples of a high dimensional dataset vary the 

most. This approach helps to keep samples with the most information while reducing the 

dimensionality of a dataset and improve the computational efficiency of the algorithm. PCA can be 

calculated with eigenvalue decomposition of a data covariance matrix or singular value decomposition 

of a data matrix, but only after pre-processing a dataset, such as finding a mean vector of all samples 

and mean centring for every sample vector. Then from the calculated matrix, PCA will extract two 

separate components: directions of axes and variance. Axes that point to the most deviation of data 

are called principal components or eigenvectors. And variance that shows the value by which the 

eigenvector is scaled is called an eigenvalue. Sirovich and Kirby developed this approach further and 

tested PCA on a dataset composed of 2D face images (Sirovich et al., 1987). In their approach, they 

transformed every 2D face image from a database into a long vector. With PCA, they found principal 

components for that face database. These principal components are called eigenfaces. A small 

database of 9 images of faces was created to present the performance in a PCA space. Face images 

were taken from 5 different people in various expressions. Images were aligned based on a position 
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between the eyes. Finally, these images were transferred into PCA space and were described with 

eigenfaces and eigenvalues (see Figure 14). 
 

 V1 V2 V3 

 

 V4 V5 V6 

Figure 14 depicts six eigenfaces from PCA space, with maximum eigenvalue at V1 that becomes 

smaller when getting closer to V6. 
 

  

 

Input image Reconstructed image  

Figure 15 Input image reconstructed using only information of six eigenfaces. 

Figure 15 shows the face reconstruction results of an input image taken from a training set. It 

can be noticed that facial reconstruction is relatively weak. However, we can observe reconstruction 

of glasses on a top of a head, features of a face and expression that mimics facial expression in the 

input image. Such weak reconstruction can be improved with better image alignment and with 

increasing the number of eigenfaces, but that would require to increase the number of facial images 

in the database. With an increased number of eigenfaces, the reconstruction of a face will look more 

like an input image. Sirovich and Kirby noted such results in their work (Sirovich et al., 1987) together 

with Cowe (Cowe, 2003) and Berisha (Berisha, 2009). According to Cowe, with an extensive database, 

face reconstructions can be made even outside of a training set. 

PCA technique became a widespread approach to explain facial recognition.  O'Toole et al. in 

1993 used static faces to define face recognition for unfamiliar and familiar faces (O’Toole et al., 1993). 

They found that PCA encodes general information that is related to face recognition for unfamiliar 

faces in higher components, and later components encode unique information that is related to face 

recognition for familiar faces. Calder et al. in 2001 found that PCA components can encode facial 

identity and expressions (Calder et al., 2001). They used Ekman’s and Friesen facial dataset (Ekman & 
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Friesen, 1976) to analyse facial expressions. This facial dataset consisted of various images of people 

with different facial expressions. In their work, PCA was successful in the recognition of facial 

expressions. Also, they discovered components separation, where components were tending to code 

just facial identity or facial expression. Principal components with a more significant variance were 

coding facial identity while components with smaller variance coded facial expressions.  

Valentin showed that the PCA technique works like an auto-associative memory when Kohonen 

proved that this is how the human brain works— by finding that cortical networks are auto-associative 

where an element can retrieve a whole memory network from only a tiny sample of itself (Kohonen, 

1986; Valentin et al., 1994). 

Taking into account all the above mentioned, this thesis will incorporate a PCA technique to find 

eigenfaces from a facial dataset and to work as a content addressable memory that will be used to 

recover information stored in the PCA space. This technique in more details will be discussed in Chapter 

3.     

2.2.3. Facial mimicry tracking and optical flow 

As we know, human skin has a very complex structure, and this raises significant difficulties in 

obtaining realistic reconstructions of a face for many methods that were discussed previously. In this 

thesis, an optic flow method will be used to track facial movements and transfer them onto a 

computer-generated face model. This model became very popular in the analysis of facial expressions 

in recent years (Beymer & Poggio, 1995; Burriss et al., 2007; Dimberg et al., 2002; Essa & Pentland, 

1997). Optical flow technique presents the magnitude and direction of a facial movement. It became 

a handy method for tracking relatively small facial motions in video sequences because optical flow 

tracks motion between two 2D image frames at a pixel level.  

Optical flow method can be described not only with computer vision but also with psychology. 

Psychology explains optical flow as an apparent motion of objects, or edges of a scene, obtained as a 

result of the movement of the observer (e.g., retinal image from the eye) relative to the scene. 

An optic flow algorithm that will be used in this thesis is the Multi-channel Gradient Model (McGM). 

This model is a gradient-based optic flow technique that was developed by Johnston in 1999 (Johnston 

et al., 1999). It had been biologically motivated to introduce how motion perception processes may be 

accomplished in the human visual system. This model worked with spatiotemporal linear filters; the 

behaviour of simple cells in V1 motivated such decision. This model incorporated three spatiotemporal 

linear filters, which decreased its mathematical complexity. The first step of this model was to achieve 

a blurring effect in images by implementing convolution with Gaussian derivatives of various orders. 

Next, these blurred images were approximated with Taylor expansion up to first order. This step 

allowed to approximate and adjust image brightness at specific points in space and time. From these 
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basic measures, Johnston and colleagues computed a matrix of the inner product. Finally, from this 

matrix, they found ratio values that presented a speed direction of every point in every image. The 

McGM model will be used in tandem with a view-based approach introduced by Cowe (Cowe, 2003) 

that will be described in more details in Chapter 3.   

2.3. Chapter 2 summary 

The human visual system is capable of easily defining people faces in various complicated and 

uncontrolled viewing conditions (e.g. in large viewing angle, poor illuminance, familiar or unfamiliar 

faces). Such capability is mounted in the human brain and works like a computer that runs vision 

algorithms. The psychophysical pieces of evidence introduced in Chapter 1, state that the human brain 

process faces holistically and in a 2D manner. The computational model of a face that will be built in 

this thesis is based on these biologically motivated processes involved in face reconstruction in various 

viewing conditions. To build a good computational model of the face is not an easy task. Hence, this 

chapter introduced the main strategies for encoding and animating faces in computer graphics 

addressing their weaknesses and how they relate to biological pieces of evidence on object constancy.  

One of the earliest strategies that were used to replicate and realistically reconstruct the complex 

structure of a face was the polygon method. First attempts to use the polygons method produced poor 

results, but it has been drastically improved in recent years to give spectacular results in realistic 

animated face reconstruction.  However, this method required manual landmarks on a face to define 

which regions will need to be driven and integrated very complex mathematical computations with 

high-performance hardware to render these facial animations. Similar results and algorithm 

performance for face reconstruction was obtained with other image-based techniques. To address 

their weaknesses, several alternative models were developed using key methods based on natural 

processes that are happening in the human brain. One of the key methods is Principal Component 

Analysis (PCA). The PCA was integrated as a face-space framework, which was created to explain how 

face recognition in humans is performed. It is a well-known statistical technique that, while working 

on holistic information of faces, retains face information in 2D. The PCA component analysis method 

is a trendy tool in various research studies for its simplicity and successful performance in automatic 

face recognition. Another key method, that is biologically motivated and introduces how motion 

perception is processed in human vision, called Multi-channel Gradient Model (McGM). It is an optic 

flow algorithm that can be used to track relatively small facial motion in video sequences. This chapter 

closes the theoretical part of this thesis that describes its psychological and biological motivations on 

how the human visual system might work. Next chapters of this thesis will introduce empirical work 

which will investigate face constancy across varying viewing conditions, like object orientation, lighting 

and asynchronous data sets. 
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3. PCA-based computer-generated facial mimicry model 

 The main developments in the thesis are built on a PCA-based appearance model approach to 

encoding and representing dynamic faces.  This chapter will introduce the general methods that were 

used in the thesis, including synchronised video capture from multiple views and correction for 

geometrical distortion. Then it will proceed to explain the approach that was used to solve the face 

constancy problem in different lighting conditions. Finally, the method used for generating example-

based models of the face will be described1. 

3.1. Project’s hardware and software specifications 

 This subsection will introduce a detailed explanation of the infrastructure and fundamental 

methods used in this thesis.  

3.1.1. Camera capture 

One of the significant technical challenges of this thesis was synchronously capturing multiple 

views of a face in non-rigid motion. In order to overcome this problem, both hardware that captures 

facial movement and software that performs calibration and PCA analysis had to be appropriately 

configured. For this purpose, a capture rig consisting of six moveable cameras was constructed, and 

cameras were mounted on the rigid arc (see Figure 16). 

 

 

 

 

 

 

 

                                                           
1 The method was initially developed by Glyn Cowe (Cowe, 2003). 



 37 

1.  2.  

  3.  4.  5.  

Figure 16 Images 1,2,3 represent a capture rig that consists of six cameras mounted on an arc construction. Image 4 

represents the subject on which experiments were done. Image 5 shows the professional photography lamp on a stand 
which is placed in a way that the luminance conditions would be appropriate to reveal the most valuable information in 
the image. 

To enhance details in the face, professional photographic lamps were installed on stands 

around the capture rig. Selecting a proper light level over the images is very important, as too dark or 

too bright images will exclude valuable information from the face pattern. Hence, luminance should 

be chosen optimally, and the illuminance should be distributed symmetrically on the subject’s face 

(see Figure 17).  

 

Figure 17 The plastic head (left), human face (right). The light source is symmetrically situated on the plastic head and has 

the same light adjustments, and a similar approach was applied to the human’s face. 

The participant (Figure 16, Figure 17) is located in the middle of the capture rig such that all six cameras 

can be focused on him or her. The camera images could be combined in pairs to recover the stereo 

disparity and binocular depth, although this was not implemented in this work. Two conditions were 

chosen for the camera separation. First was around 5 cm to simulate human vision, and the second 

was around 18 cm. A relatively high frame rate of 60 fps was used in order to capture fast and smooth 

non-rigid movements of the face (Brand, n.d.). The cameras (Grasshopper GRAS-03K2C (FireWire), 

PointGrey), which are used in this project (Figure 18), have high capture rates (60 fps) and resolution 
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(640x480). Also, all the cameras are synchronised across the 1394 bus on the same personal computer 

within 125 microseconds of each other. The cameras simultaneously deliver video streams at 640x480 

image resolution with RGB 24 bit pixel format and 60 frames per second (fps) frame rate.  

 

Figure 18 Camera (Grasshopper GRAS-03K2C (FireWire) produced by PointGrey) is used to capture the facial motions of 
the subject. The camera is mounted on arc formed capture rig. Adapted http://flir.com. Retrieved from URL 
https://www.flir.com/support/products/firewire-cameras/#Overview 

Each camera has been updated and connected to a monitoring station. The monitoring station 

is a personal computer, Dell Intel(R) Xeon(R) CPU, with 12M Cache, 3.46GHz Clock Speed, 64bit 

Instruction set, 192GB of RAM and 500 GB of Hard Disk with the integrated operating system Windows 

7 and development environment Microsoft Visual Studio 2010. Processes, synchronisation of the 

cameras data recording and storage in the hard drive of the monitoring station was accomplished in 

Microsoft VS 2010, using the C++ programming language with no lost images. 

3.1.2. Camera calibration  

Camera calibration procedures are a necessary step in the computer vision system in order to 

reconstruct points on an object surface. The synchronised cameras had the same settings (gain, 

exposure, sharpness, saturation, shutter, brightness). They also had the same angle and elevation 

parameters, which allowed here to obtain comparable information about the face from various angles. 

However, it was not enough to obtain aligned and precise data about the face. The obtained data 

contained distortions due to the camera lenses and misalignments of the vertical axis. The data were 

corrected in software using geometric methods. That simplified the processes of relating the different 

views of the face obtained from the multiple cameras 

3.1.3. Camera settings  

 There are many methods of geometric camera calibration. These fall roughly into two categories 

photogrammetric and self-calibration. Photogrammetric calibration was introduced by Tsai (Tsai, 

1987). It requires corresponding metric information from 2D images of the three-dimensional (3D) 

world. The method recovers the interior orientation, the exterior orientation, the power series 

coefficients for distortion and an image scale factor that best fit the measured image coordinates to 

known target point coordinates. The drawback of this method is that it is challenging to implement 

and store the objects. Another approach described by Zhang (Zhang, 2000) involves filming a 2D planar 

object (usually a chessboard plane) that is designed for calibration. This approach needs only six 
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parameters to describe position and orientation. It is simpler, faster and cheaper than photometric 

calibration, as well as more precise and robust; hence this camera calibration approach has been 

integrated into the system. 

A camera calibration procedure used in this work is modified from the original model of Zhang 

to allow for the six viewpoints and was accomplished in several steps. The software was made using 

the Visual Studio 2010 development platform, with the help of the OpenCV (Open Source Computer 

Vision) library and was written in the C++ programming language. After calibration, distortion 

coefficients were obtained, which were used to improve the camera’s relation with real-world units. 

The steps in the procedure are in performed order: 

   1. Capture. All cameras observe a reference object (planar pattern) in different orientations 

(in our case, six different viewpoints). The increased number of orientations (six, increased from two 

in the method of Zhang) improves the accuracy of the camera calibration.       

   2. Feature points detection in the images. Take, for example, a planar pattern of a 9x6 

chessboard. The simple geometry of the chessboard structure allows the features to be found easily. 

Because of these advantages, at present, most camera calibration procedures use 2D reference objects 

such as these classical black-and-white chessboards.    

       

             Camera 1                Camera 2                   Camera 3        

       

  Camera 4               Camera 5                   Camera 6 

Figure 19 Camera calibrations that determine the camera’s relation between the camera’s natural units (pixels) and the 

real-world units (e.g. millimetres). 

We can observe a significant lens distortion in the images collected from the cameras. The 

corners of each square are detected as the intersection of the straight lines fitted to each chessboard 

square (see Figure 19). 
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3. Estimate the camera projection matrix. Five intrinsic parameters, as well as all the extrinsic 

parameters, should be estimated in order to obtain the camera projection matrix, which describes 

parameters that will be used to transfer 3D points from world coordinates into 2D image points 

A 2D point position in pixel coordinates can be denoted as [𝑢 𝑣 1]𝑇. A 3D point position in world 

coordinates is introduced as [𝑥𝑤 𝑦𝑤  𝑧𝑤 1]𝑇 . The relation of 2D points in pixel coordinates with 3D 

points in the world coordinates is represented in Formula (3.1)    

𝑧𝑐 [
𝑢
𝑣
1
] = 𝐴[𝑅 𝑇] [

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

]     (3.1) 

Here A is defined as the intrinsic matrix (see Formula 3.2)  

     A =[

α𝑥 γ 𝑢0

0 α𝑦 𝑣0

0 0 1
],      (3.2) 

The intrinsic matrix contains five parameters. The parameters are the focal length (measures 

amount of light that is captured by the lens), the image sensor format (which determines the angle of 

view of a specific lens with a specific camera), and the principal point (which is the point where the 

principal plane intersects the axis). The parameters α𝑥 = 𝑓 ∗ m𝑥 , α𝑦 = 𝑓 ∗ m𝑦  represent the focal 

length in terms of pixels, where m𝑥 𝑎𝑛𝑑 m𝑦 are scale factors relating to distance, and 𝑓 is the focal 

length in terms of distance. The γ (Hartley & Zisserman, 2003) parameter describes the coefficient of 

skewness of the two images axes x and y (often equal 0). 𝑢0 𝑎𝑛𝑑 𝑣0 are the optical centres, which would 

ideally be in the centre of the image, expressed in pixel coordinates (Figure 20). The R, T  are parameters 

of an extrinsic matrix; they define how the system will transform from a 3D external world coordinate 

system into a camera coordinate system. T is a translation vector that will show a new origin position 

in the camera coordinate system. The R is the rotation matrix that is used to encode camera orientation 

with respect to a given world frame.  
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Figure 20 shows what parameters of a camera are used to build the intrinsic and extrinsic matrices. Image adapted from 

ais.informatic.uni-freiburg.de. Reprinted 17 February 2020, page 12, from http://ais.informatik.uni-
freiburg.de/teaching/ws09/robotics2/pdfs/rob2-08-camera-calibration.pdf.  

4. Calculate the camera’s lens distortion. Lens distortion has two nonlinear effects: Radial 

and Tangential distortions. These distortions occur when physical elements in a lens are not perfectly 

aligned (Figure 21). 

 

Figure 21 Negative radial distortion ”pincushion” (left). Positive radial distortion ”barrel” (middle). No distortion (right). 

To obtain a corrected image point, the following set of formulae was used: 

1) Project (𝑢 𝑣 𝑧) to “normalised” image coordinates (Formula 3.3). 

𝑥′ = 𝑥/𝑧 

   𝑦′ = 𝑦/𝑧             (3.3) 

where 𝑥′, 𝑦′ are undistorted image point as projected by an ideal pin-hole camera. 

 

 

http://ais.informatik.uni-freiburg.de/teaching/ws09/robotics2/pdfs/rob2-08-camera-calibration.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws09/robotics2/pdfs/rob2-08-camera-calibration.pdf
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2) Apply the radial and tangential distortion (Formula 3.4). 

𝑟2 = 𝑥′2 + 𝑦′2 

𝑥′′ = 𝑥′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4) + 2𝑝1𝑥
′𝑦′ + 𝑝2(𝑟

2 + 2𝑥′2) 

              𝑦′′ = 𝑦′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4) + 𝑝1(𝑟
2 + 2𝑦′2) + 2𝑝2𝑥

′𝑦′  (3.4) 

where   𝑘1, 𝑘2  are the radial distortion coefficients and 𝑝1, 𝑝2   are the tangential distortion 

coefficients. 

3) Apply the focal length translation of the image centre (Formula 3.5), 

𝑢 =  𝛼𝑥 ∗ 𝑥′′ + 𝑢0  

                                              𝑣 =  𝛼𝑦 ∗ 𝑥′′ + 𝑣0  ,              (3.5) 

where 𝑢, 𝑣 are 2D points expressed in pixel coordinates. 

The camera calibration algorithm was applied to images. Results are presented in Figure 22. 
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Figure 22 Results of applying the camera calibration algorithm to images. The yellow dashed line represents changes after calibration in 

images along the horizontal and vertical axis. Notice the difference in the position of the checkerboard between the images. For instance, 
compare the calibrated image (top left) with the uncalibrated image in the bottom left. Inspection of the dashed yellow line reveals a gap near 
the bottom right of the checkerboard that is larger in the uncalibrated image than in the calibrated image. Next, compare the calibrated image 
(top left) with the uncalibrated image in the top right. Again, the dashed yellow line reveals a gap near the top right of the checkerboard that 

is slightly bigger in the uncalibrated images that in the calibrated. 

3.1.4. Geometric correction 

The epipolar geometry is a geometry that explains the relation between the two views. This 

geometry helps search for corresponding points in the process of stereo matching when an alignment 

problem arises from different captured images. In this thesis, this problem appeared due to the 

misalignment between cameras. In particular, the position of the subject over the captured images 

was slightly shifted along the horizontal axis. That can easily be noticed by following a blue dashed line 

over the images in Figure 23.  

Calibrated image Cam2 

Uncalibrated image, Cam2 

Uncalibrated image, Cam2 
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Figure 23 Alignment problem. The nose position changes between the cameras; it can easily be noticed by looking at the 
blue dash line over the images. 

The subject’s position of the nose stays relatively constant along a vertical line, in contrast with 

changing nose position along the horizontal line.        

 To correct this misalignment, all images were aligned based on the nose bridge of the subject. 

Therefore, the nose bridge was located on the subject’s face in each image. Nose bridge detection was 

accomplished using Haar feature-based cascade classifiers introduced by Paul Viola and Michael Jones 

in 2001 (Viola & Jones, 2001). This classifier is a machine learning approach and, therefore, needs to 

be trained. In order to train this technique, various data was used, for example, positive (images of 

faces) and negative (images without faces) images, to obtain better detection of objects in other 

images. Although epipolar geometry arises from the studies of stereo vision, it is also helpful in solving 

the general alignment problem. From Figure 24, we can observe two cameras pointed at the same 

object but from different view perspectives. The objective of epipolar geometry is to describe the 

relation between the two cameras’ resulting views. 

 

        

 Camera 1  Camera 2 

       
 Camera 4              Camera 3 

        

 Camera 5  Camera 6 
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 Figure 24 An example of epipolar geometry that will work on finding a relation between two different images of the 
same scene that taken simultaneously by two cameras, placed only in different perspectives. Reprinted from Wikipedia, 
13 February 2008, by Author Arne Nordmann. https://en.m.wikipedia.org/wiki/File:Aufnahme_mit_zwei_Kameras.svg 

To start describing an epipolar geometry, first, the three most crucial epipolar geometry constraints 

must be defined. These are the epipolar plane( 𝑪𝑳𝑸𝑪𝑹 ), epipolar lines( 𝒆𝑳𝒒𝑳  and  𝒆𝑹𝒒𝑹 ) and 

epipoles(𝒆𝑳 𝑎𝑛𝑑 𝒆𝑹) (see Figure 25). 

 
Figure 25 The epipolar constraints. Adapted from author ZooFari. Retrieved from URL 
https://commons.wikimedia.org/wiki/File:Epipolar_Geometry1.svg 

In Figure 25, there are two cameras 𝐶𝐿 , 𝐶𝑅 and 3D point Q (Object point) that create an epipolar plane 

𝐶𝐿𝑄𝐶𝑅 that is placed between these points.  Object point Q is projected in the point 𝑞𝐿 in the 2D image 

plane of the left camera 𝑃𝐿   also in the point 𝑞𝑅 in the 2D image plane of the right camera 𝑃𝑅. The 

epipoles  𝑒𝐿  𝑎𝑛𝑑 𝑒𝑅 are the points that intersect with baseline 𝐶𝐿  𝑎𝑛𝑑 𝐶𝑅  and image plane 𝑃𝐿  𝑎𝑛𝑑 𝑃𝑅. 

The baseline is a joining line between the optical centres of the left and right camera 𝐶𝐿 𝑎𝑛𝑑 𝐶𝑅. The 

point 𝑞𝐿 in the left camera image was created because of ray 𝑄𝑞𝐿. This ray is then projected onto the 

right camera’s image plane, and it creates a line 𝑒𝑅𝑞𝑅 , that is called the epipolar line. The object 

representation from point Q  on the image plane of the right camera will always lay on the epipolar 

line  𝑒𝑅𝑞𝑅 . Thus, each point 𝑞𝐿  in the image plane of the left camera corresponds to an epipolar 

line 𝑒𝑅𝑞𝑅 in the image plane of the right camera. In this case, a pair (corresponding point) for point 𝑞𝐿 

in the image of the right camera will lie only on the corresponding epipolar line  𝑒𝑅𝑞𝑅. Similarly, each 

point 𝑞𝑅 in the right image corresponds to an epipolar line  𝑒𝐿𝑞𝐿 on the left. 

So epipolar geometry searches for stereo pairs or verifies whether points of a pair build a 

stereo pair (i.e., a projection of some point in space). Epipolar geometry expressed in coordinates has 

a very straightforward notation. Assume we have a pair of calibrated cameras and let 𝑞𝐿  be a point in 

the image of one camera written in homogenous coordinates and  𝑞𝑅 be a point in the image of 

https://commons.wikimedia.org/wiki/File:Epipolar_Geometry1.svg
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another camera also presented in homogenous coordinates. The relation of these points 𝑞𝐿 , 𝑞𝑅 can be 

found by a fundamental matrix 𝑭 if these points satisfy relation in (3.6). 

                              𝑞𝑅
𝑇𝐹𝑞𝐿 = 0                   (3.6) 

The matrix 𝑭 is a fundamental matrix with a size of 3 x 3. Its rank is equal to 2, it is determined 

up to a nonzero factor and depends only on the matrices of the source cameras 𝑃 𝑎𝑛𝑑 𝑃′. 

The equations of the epipolar lines are also calculated with the fundamental matrix. For the point 𝑞𝐿, 

the vector defining the epipolar line will have a form 𝑒𝑅𝑞𝑅 = 𝐹𝑞𝐿, and the equation of the epipolar 

line itself will be (𝑒𝑅𝑞𝑅)𝑇𝑞𝑅 = 0. Similarly, for the point 𝑞𝑅, the vector defining epipolar line will have 

a form (𝑒𝐿𝑞𝐿) = 𝐹𝑇𝑞𝑅.  Also, rays that define projected points 𝑞𝐿 and 𝑞𝑅  onto the camera’s image 

planes, need to be coplanar, i.e., lay on the same epipolar plane, to satisfy (3.6). It is a necessary 

condition that points would form a stereo pair. 

To obtain the most reliable set of correspondences in images, the SIFT (Scale Invariant Feature 

Transform) algorithm was used proposed by David Lowe in 1999 (D.G. Lowe, 1999). This algorithm 

detects and describes local features in images at multiple scales and positions. These features are 

invariant to translation, rotation and re-scaling of the image. In addition, to find the best matches from 

detected features, we used the FLANN (Fast Library for Approximate Nearest Neighbour) algorithm 

introduced by Muja and Lowe (Muja & Lowe, 2009), which performs a fast search of nearest 

neighbours in a high dimensional space (Figure 26).  

 

Figure 26 SIFT (taken from Lowe 1999) and FLANN ( taken from Muja & Lowe 2009) methods practical results over the 

camera images by finding feature points and match them with other image feature points. The match of feature points is 
presented with colour lines (middle). Reference image (Camera 3 (left)), Unaligned image (Camera 5 (right)). 

These two algorithms are very convenient for the calculation of the fundamental matrix. A robust 

statistics tool such as RANSAC (RANdom SAmple Consensus) (Fischler & Bolles, 1981) was used to 

estimate F (fundamental matrix) over the most massive possible set of correspondences obtained with 

SIFT FLANN. First, the RANSAC method was randomly selecting two points in the possible N points 

dataset obtained with SIFT. Next, it was calculating an error value between the estimated solution and 

the rest of the points. If the error value would appear to be less than some initially chosen threshold 

value, all the calculations instantly will need to be stoped, and the method had to go back to the first 

step and repeat the process from the begging. RANSAC repeated the calculation process until the best 
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possible fit of a model was generated. In other words, the RANSAC method was used to calculate 

homography between two images and then eliminating weak feature pairs. 

 The process of computation of the fundamental matrix and model estimation with an 8-point 

algorithm looks as follows:          

 Fundamental matrix 3x3 is used to capture a relationship between corresponding points in two 

stereo views. In epipolar geometry, two corresponding points 𝑥 = (𝑥, 𝑦, 1) and 𝑥′ = (𝑥′, 𝑦′, 1)  in 

homogenous coordinates of stereoviews (here (x,y) are the pixel coordinates) can be related with 

epipolar line. Epipolar line 𝐹𝑥 = 0, shows where the corresponding point 𝑥′  must lie in the other 

image. Hence, the formula of relationship for all corresponding pairs will look as follows (3.7) 

𝑥′𝑇𝐹𝑥 = 0                 (3.7) 

This equation can be rewritten into (3.8) 

𝐴𝑓 = 0         (3.8) 

where 𝐴 is matrix 𝑛 × 9, presented in (3.9) with 𝑛 = 8, because of the chosen 8 point algorithm and 

𝑓 =  𝐹11, 𝐹12, 𝐹13, 𝐹21, 𝐹22, 𝐹23, 𝐹31, 𝐹32, 𝐹33  is a column vector that stores values of fundamental 

matrix 𝐹. 

𝐴 = (

𝑥1
′𝑥1 𝑥1

′𝑦1 𝑥1
′ 𝑦1

′𝑥1 𝑦1
′𝑦1 𝑦1

′ 𝑥1 𝑦1 1

𝑥2
′𝑥2 𝑥2

′𝑦2 𝑥2
′ 𝑦2

′𝑥2 𝑦2
′𝑦2 𝑦2

′ 𝑥2 𝑦1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛
′𝑥𝑛 𝑥𝑛

′𝑦𝑛 𝑥𝑛
′ 𝑦𝑛

′𝑥𝑛 𝑦𝑛
′𝑦𝑛 𝑦𝑛

′ 𝑥𝑛 𝑦1 1

)   (3.9) 

The easiest way to solve equation (3.9) is to find singular value decomposition (SVD) of 𝐴.                   

Where 𝐴 = 𝑈𝐷𝑉𝑇, where U and V are orthonormal matrices and D is a diagonal matrix containing 

singular values. The values of 𝑓  are defined by components of a column V matrix that define the 

smallest singular value. Finding the  𝐹 fundamental matrix from vector 𝑓 can look like an easy task. 

However, if an image has noise, a task may become complicated. We know that the fundamental 

matrix has rank 2, but in this case, the rank of the fundamental matrix will be different. It means that 

epipoles and epipolar lines will either not show their real position or will be randomly scattered in the 

image. To solve this problem, we will find singular value decomposition (SVD) of 𝐹 and decompose it 

into matrices 𝐹 = 𝑈 ∑𝑉𝑇 . Then, we set the smallest singular value at position (3,3) in the matrix  ∑  𝑡𝑜 

0, this will give us a required rank of 2. Finally, the fundamental matrix can be easily calculated with       

𝐹 = 𝑈 ∑ 𝑉𝑇
2  

The result of this resolved alignment problem is represented in Figure 27. It can easily be seen that the 

nose position is identical across all images, despite differences in the camera position.    
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Figure 27 Alignment problem solved. The nose position stays relatively the same between the cameras; it can be easily 
noticed by looking at the blue dash line over the images 

3.1.5. Lighting  

 This subchapter will explain how we set up the equipment to address the lighting invariance 

problem. To obtain synchronised non-rigid data of the face in various poses and different illuminance 

conditions is a very complicated task. To solve this task, we came up with the strategy of illuminating 

the face using primarily red, green and blue direct lighting from projectors in different locations. Then 

we separated each of the RGB colour channels from the facial images. The resulting grey-level images 

mimicked the effect of illuminating the faces with white light from different directions. First, we 

modified the capture rig by adding three projectors. These were QUMI Q5 projectors mounted on 

stands fixed to the capture rig, which also contained the six portable cameras mounted on a rigid arc 

(Figure 28). The three projectors were centred between each of the three pairs of cameras. Projectors 

were placed above the camera level to prevent direct interactions between projectors and cameras 

while collecting the non-rigid facial data.  

 

 

  

Figure 28 Qumi Q5 projector. Image adapted from vivitek.eu, n.d., Retrieved February 17, 2020, from 
https://www.vivitek.eu/Category/Discontinued-Projectors/3/Qumi-Q5 

     
 Camera 1    Camera 2 

   
 Camera 4   Camera 3 

    
 Camera 5    Camera 6 
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The QUMI Q5 projectors were chosen for their ability to produce a 60Hz frame-sequential signal. It 

proved beneficial to match the camera and projector’s frame rate to reduce asynchronous flickering 

in the captured images. Moreover, the projectors could generate 500 ANSI Lumens, allowing good 

control over the brightness level, which was necessary for our experiment. Also, the projectors were 

portable and easy to install. The Q5 displayed controlled lighting by projecting an image (640x480) in 

native format (PNG) from a USB flash drive. Each projector controlled only one of the R, G, B colour 

lights (see Figure 29). The red light had (255.0.0) colour value, green – (0.255.0) colour value and blue 

– (0.0.255) colour value. 

 

  
Figure 29 Colours that were used in projectors to control lighting. Each colour was saved as separate .png images with a 
resolution of 640x480. 

The projectors with controlled lights were distributed in such a way that they would project light over 

the whole face (Figure 30).  

 
Figure 30 All three controlled lights from projectors are distributed to cover the whole human face. 

 Red controlled light covered the right side of the face, green covered the left, and blue colour 

covered the middle part of the participant’s face (Figure 30). The position of controlled lights was set 

to obtain the illusion of different lights in different locations in the face. Applying only direct lights to 

the face images appeared to be having some dark areas (neck area, background, hair area). Hence, a 

new idea came up to add some diffuse light in addition to the direct lights; a diffuse white light was 

used to illuminate those dark areas in a face. 

 Moreover, in this experiment, white light was used in four different positions, white directional 
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lighting with the same spectrum was placed in different places so that it could mimic the effect of the 

different lights in different locations. It is worth to mention that there was no change in direct 

controlled lights; the only change was the position of diffuse white lighting. Next, we have collected 

four data sequences by altering the position of an additional diffuse white illuminant while keeping 

the direct coloured lighting in the same position. The collected data sequences were in RGB 24 bit pixel 

format, where one 8 bit byte was allocated for each Red, Green, and Blue colour component. In each 

component, the value of 0 refers to no contribution of that colour, 255 refer to fully saturated 

contribution of that colour. Then we split the Red, Green and Blue channels of an RGB image into 

independent greyscale images. For maximum efficiency, we had to take into account that in an RGB 

image, the brightness is not derived equally from the three colour channels. 

 The green component has the highest gain with respect to the brightness of our image, red is 

less important, and blue is the least significant. The green channel holds the most details about the 

source image when the red channel has low contrast, and the blue channel collects more noise. Hence, 

the brightness level adjusted so that most of the facial features would be visible. Figure 31, Figure 32, 

Figure 33, Figure 34 present four different illumination conditions, where only the position of diffuse 

white lighting was changed.  

 The first illuminance condition was obtained with a diffuse white light covering the left side of 

the participant's face (Figure 31). The second illuminance condition was obtained with the white light 

covered the right side of the participant's face (Figure 32). Third illuminance condition was created 

with diffuse light from below, highlighting the lower part of the participant's face (Figure 33). The 

fourth illuminance condition was uniform, with white diffuse illuminant distributed symmetrically over 

the participant's face (Figure 34). 

 The top row in Figure 31 presents the first illuminance condition; here, we may observe a human 

face presented in ¾ view illuminated with red, green and blue lights with the white diffusive light 

positioned to highlight the left side of the face. The middle row presents three images obtained from 

splitting channels R, G and B channels of RGB image into separate greyscale images. The histograms in 

the bottom row show how pixels are distributed in each image for each different channel. These 8-bit 

grayscale images have 256 different grey values for each pixel. As it was mentioned earlier, we have 

increased the brightness value for all of the greyscale images in all illuminance conditions. The biggest 

brightness value was added to the face from the blue channel, the red channel had a small increase in 

image intensity, and the green channel was changed least. These brightness variations do not have an 

essential influence on further processing. This process of brightness rescaling was repeated for all the 

other data in the four different illuminance conditions. Please see Figure 32, Figure 33 and Figure 34. 
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First illuminance condition 

 

 
Red 

 
Green 

 
Blue 

  
 

Figure 31 The figure presents the strategy of obtaining data for the illuminance experiment of light coming from the left side. The top row 
depicts an image that we will use to extract three colour channels. The middle row presents images of extracted colour channels. The 
lowermost row presents a histogram which shows a number of pixels and their intensities in every image from the middle row. We may 
observe that pixel intensity is much higher for a blue channel; for this reason, the blue image looks brighter than images captured in red 
and green channels, which contain lower pixel intensities. 
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Second illuminance condition. 

 

 
Red 
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Blue 

   

Figure 32 The figure presents the strategy of obtaining data when the light source is set on the right-hand side. The top row depicts an 

image that we will use to extract three colour channels. The middle row presents images of extracted colour channels. The lowermost row 
presents a histogram which shows a number of pixels and their intensities in every image from the middle row. We may observe that pixel 
intensity is much higher for blue channel, in this reason blue image looks brighter than images captured in red and green channels which 
contain lower pixel intensities 
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Third illuminance condition 

 

 
Red 

 
Green 

 
Blue 

   

Figure 33 The figure presents the strategy of obtaining data when the light source is set at the bottom. The top row depicts an image that 

we will use to extract three colour channels. The middle row presents images of extracted colour channels. The lowermost row presents a 
histogram which shows a number of pixels and their intensities in every image from the middle row. We may observe that pixel intensity is 
much higher for a blue channel; for this reason, the blue image looks brighter than images captured in red and green channels, which 
contain lower pixel intensities. 

The fourth light condition was a uniform, diffuse illuminant distributed symmetrically over the 

participant's face (Figure 34). This light condition differs from others regarding the intensity of 

controlled direct lights relative to the diffuse light. In Figure 34, it can be seen that the extracted colour 

channels have relatively low contrast and are less differentiated in relation to the lighting direction.  
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Fourth illuminance condition 

 

 
Red 

 
Green 

 
Blue 

Figure 34 The figure presents the strategy of obtaining data when uniform light distributed symmetrically over the human’s face. The top 

row depicts an image that we will use to extract three colour channels. The middle row presents images of extracted colour channels. We 
may notice that due to uniform light, the effects of controlled direct lights are muted over the human face. This procedure gave us small 
changes in illuminance over that human’s face.  

The reason we chose to develop this method to solve a lighting problem is that now we have 

a set up that delivers three different illuminants for every single frame. There is no need to switch 

between illuminants on a frame by frame basis, which would be very complicated to accomplish. This 

method is straightforward. The methodology of this infrastructure will be described in more detail in 

chapter 5. 

3.2. PCA method.  

Principal component analysis is a multidimensional statistical analysis that is commonly used 

to reduce data dimensions with a minimal loss of useful information (Pearson, 1901). From a 

mathematical perspective, the PCA method is an orthogonal linear transformation that maps data from 

the original feature space to a new space of a lower dimension. 

In this case, the first axis of the new coordinate system is constructed in such a way that the data 

dispersion along it would be maximised. The second axis is placed orthogonally to the first axis so that 

the variance of the data along it would also be maximised relatively to their remaining possible ones 

and so on. The first axis is called the first principal component, the second axis - the second principal 

component, etc. 
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Figure 35  shows PCA space and the first principal component that defines the biggest variance in the dataset ( image 

adapted from Wikipedia, by author Agor153, February 17, 2020, 
https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:FirstPrincipalComponent.jpg 

Figure 35 shows a dimensional reduction of the data, where after applying the principal component 

method, the data presented in 2D space (axis X1 and X2) reduced its dimensionality to 1D space. The 

first principal component (PC1) is orientated along the direction of the highest concentration of data 

points in a dataset. First principal component shows the greatest variance of the dataset. 

Unfortunately, we can see that data is scattered unevenly, and it means that with one principal 

component, it is impossible to define the dispersion of the whole dataset, hence other components 

need to be built. Altogether, these principal components will set up the dispersion for the entire 

dataset. It means that every principal component has its certain weight of the total variance of the 

dataset that is called loadings. The variance is a measure of data variability that may give valuable 

information about the content. Indeed, along with some PC axes, data variability can be high, along 

with some others, small or even absent. Principle components with higher variance will have a 

significant contribution in defining the model of a dataset. Principal components with a smaller 

variance will have less impact on the model; hence, they are assumed to be noise and can be discarded.  

3.3. Cowe‘s example-based model for encoding facial dynamics 

Glyn Cowe (Cowe, 2003) developed a technique for encoding facial dynamics and facial 

mimicry. His technique for mapping motion between faces requires two video sequences of faces in 

motion (i.e. driving and target sequences). The facial motion information of a person from the driving 

sequence will be extracted and mapped onto another person's face in the target sequence.  According 

to Cowe, a bigger variety of non-rigid motions of a face in both sequences may result in more realistic 

reconstructions due to some overlapping of the facial mimics. Each image in both video sequences is 

presented in the vectorised format. The vector contains information about how the shape of a target 

X1 

X
2
 

PC1 

https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:FirstPrincipalComponent.jpg
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face needs to be warped to cover a reference frame from the target sequence and the warped texture 

(i.e. the warped RGB image). Next, these vectors will be sorted with the principal component analysis 

(PCA) technique. This generates principal components that constituted a model of how the target face 

will vary. A detailed description of this technique presented below.   

3.3.1. Image vectorisation 

In the first step of Cowe’s method, he expressed 2D images in 1D image vectors with an image 

vectorisation approach (Sirovich & Kirby, 1987; Turk & Pentland, 1991). With this approach, the image 

was represented by a ℎ x 𝑤 matrix 𝑋 that held pixels’ intensity (where ℎ is height and 𝑤 is the weight 

of image). Then, he placed rows of image matrix on top of one another and created a 𝑁 x 1, 1D image 

vector 𝑥 (where N is ℎ x 𝑤) (see Figure 36). 

Keeping in mind that Cowe’s mapping method requires video sequences with 𝑀 number of 

images, these video sequences will be vectorised as following 𝑥1, 𝑥2, … 𝑥𝑀,  then sorted and presented 

with PCA space. In addition, the initial vectorisation approach was applied only on images of one colour 

channel, but Cowe improved this approach and applied onto images with three colour channels. 

3.3.2. Centring images 

In the second step, Cowe centred all frames of a sequence by initially chosen reference frame 

by using a mean Formulae. (4.0).  

                                                       𝝁 =
𝟏

𝑴
∑ 𝒙𝑖

𝑀
𝑖=1      (4.0) 

 
Figure 36 Vectorising 2D image. Image is defined by its pixel intensity values. N has size 𝒉 𝐱 𝒘 (reproduced from Cowe 

2003). 
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He created a common space for all faces, and reference face was their mean 𝝁. He had found a 

changing vector 𝝋  for every frame  𝒙  in the sequence. Vector expresses how frames vary from a 

reference face image. After centring images, each frame 𝑿 was expressed as a 𝝁 + 𝝋 (see Figure 37). 

Following Cowe’s suggestions, reference face frame had to have common features that were present 

overall images. 

3.3.3. Warping and morphing images 

In the third step, images were warped and then morphed to achieve the most realistic face 

reconstructions, with a face mapping approach.  

For the warping process, a reference frame 𝑹 should be chosen, and all images in a sequence 

must be warped and defined based on this single frame. The warping process expresses a relation 

between pixels of a source image 𝑹 and destination image, 𝑻  by calculating a flow field, [𝑼, 𝑽],  with 

the McGM algorithm (Johnston et al., 1999).  Parameters 𝑼 and 𝑽 are components of a flow field that 

represents horizontal and vertical position of every (𝑥, 𝑦) pixel.  Components will be vectorised and 

centred, as previously explained in 3.3.1. and 3.3.2. Image wrapping was used to decrease the blurring 

effect of sharp edges in images that appear due to a linear combination of images. Hence aligning 

images by some constant face shape will help to minimise the blur.  

Unfortunately, image reconstructions could not be fully accomplished with the warping 

process only because it fails to capture specific changes of the face. Thus, Cowe vectorised face images 

by morphing, where he combined warping and image blending processes. For the warping process, he 

mixed source and destination images to obtain a smooth transition between them. From the beginning, 

the weights of the contribution of the reference image had to decrease while coming closer to the 

destination image. The blending process looked like a source frame is fading on the background of the 

destination frame. Results of face reconstructions obtained with combined warping and image 

morphing are presented in (Figure 38).  

 
Figure 37 Initial face frame 𝐱 is represented with sequence mean 𝛍 and a change vector 𝛗 (reproduced from Cowe 2003). 
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Figure 38 presents results of using different approaches for face reconstruction from one image into another 
a) blending approach that used to map reference image R into destination image T; b) warping approach from 
R to T; c) warping approach from T to R; d) results of combining of two approaches warping and morphing 
together to obtain smooth transitions between faces. (image reproduced from Cowe 2003). 

After these steps, Cowe could represent images with shape and texture information concatenated to 

form one 1D long vector. Image shape information is obtained with a flow field [𝑼, 𝑽] that defines 

positions of features in the face, as  𝒙  and 𝒚 components in the vector. A texture is obtained from 

image morphing. When specific changes in the face could not be captured with warping, each frame 
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and its face shape information will need to be reversely warped onto the mean face shape. It will allow 

to sort all the face features and leave information related to illuminance, occlusions or noise. Such data 

will be used as texture and expressed with 𝑅, 𝐺, 𝐵 colour values for every pixel in the image (see Figure 

39).   

 
Figure 39 One dimensional morph vector of the face. (image 

adapted from Cowe (2003)). 

The above-listed steps of Cowe’s method describe how to create a PCA face space for one individual 

with non-rigid facial movements. In the next part of his work, he tested whenever it is possible to move 

between face spaces by transferring non-rigid facial information from one individual onto another. 

Both individuals in video sequences were captured from the same viewing angle and said the same 

non-rigid information. His experiment in mapping between face spaces gave good results and was 

successful in transferring facial mimics between individuals (see Figure 40). 
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Figure 40 shows the results of transferring non-rigid facial information between individuals. a) frames from a source 

sequence. b) frames from a destination sequence that were warped with source frames and then projected into the space 
of individual in destination sequence (image reproduced from Cowe (2003)). 

This method of mapping between spaces derived from different individuals will be generalised to map 

between models defined by pose, lighting or unfamiliar faces and will be shown in subsequent chapters. 
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3.4. Chapter 3 summary  

 Chapter 3 provided a detailed explanation of the hardware and software together with 

fundamental methods that were used to build the face system for this thesis. This system consists of 

appropriately configured hardware to capture facial movement and software that accurately calibrates 

data and performs PCA data analysis.         The 

hardware consisted of a capture rig with six moveable cameras mounted on a rigid arc that produced 

high-quality images of non-rigid facial movements concurrently from multiple perspectives. These 

high-quality images were analysed with software that fixed image distortions arising from the cameras 

by finding the camera’s relation with real-world units. Next, the alignment problem that arises across 

images captured from different perspectives was solved. Then, a model for automatically creating 

computer-generated avatars was integrated into the system. Such a model uses the face information 

of participants directly captured by cameras. In addition, we performed a face alignment procedure by 

aligning images by the nose bridge. Finally, aligned vectorised face sequences of a source were 

projected onto the destination face space. Results of creating computer-generated avatars with 

mapping non-rigid motions between two different faces were realistic and quite precise in facial 

motion reconstruction. However, the approach required to accomplish complex calculations consisting 

of several steps such as an image vectorisation, warping and blending. Keeping in mind a working 

process of this method, all the pros and cons, this model has been chosen and will be re-purposed to 

address the invariance over pose, lighting problem and unfamiliar face reconstructions. In the next 

chapters, empirical approaches to solving the problem of face recognition under various pose, 

illuminance conditions and face reconstructions for unfamiliar faces will be described. 
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4. Object constancy over multiple views from a PCA-based facial 

mimicry model 

 The way humans analyse object and face perceptions attracts a great deal of interest, mainly 

because of its many applications in a variety of fields such as psychology, security, computer 

technology, medicine and computer graphics. One of the major challenges that confront face 

reconstruction systems is how they should handle variations of the arbitrary poses. While different 

approaches have been developed for face discrimination across pose variations, many of these 

methods required manual landmark annotations (Beier & Neely, 1992; Kanade & Yamada, 2003; Lucey 

& Chen, 2008) or assumed the facial pose to be known (Blanz & Vetter, 2003; Fischer et al., 2012). Such 

constraints prevent many of the face perception systems from working automatically. In this chapter, 

a new approach is proposed, which is a partially automated method for obtaining face constancy over 

multiple views using only one example view. Face constancy over multiple views is an implicit shape 

recovery task. Although it is tied to the 3D shape of the face, it does not require an explicit computation 

of the 3D structure. The problem arises in the reconstruction tasks where a face, for which only one 

example image is available, needs to be reconstructed in a novel view. The few papers that have tried 

to solve object/face constancy problem investigated this problem within common face processing 

tasks like face recognition and tracking. As already described in Chapter 2, the majority of scientific 

research in face recognition obtained results by testing on facial data collected in controlled conditions, 

like with a small angle between viewpoints, or with a limited set of expressions (Beymer & Poggio, 

1995; Blanz & Vetter, 2003; Fischer et al., 2012). Some of these research used PCA technique as a 

content addressable memory to recover information that was lost due to face occlusions (Jackson et 

al., 2017; Ding et al., 2016). This thesis will take it a step further and propose an alternative 

appearance-based approach for solving object constancy over multiple views, which builds on the 

existing PCA-based model developed by Cowe (Cowe 2003). 

4.1. Multiple views representation on the Cowe PCA – based model 

 The primary goal of this thesis chapter is to use the existing system described in chapter 3 as a 

model of how people might recognise faces from different viewpoints, which may help to guide efforts 

to develop practical automatic face recognition systems.  

In this empirical study, the system mentioned in chapter 3 uses PCA to generate example-based 

models of the face. The computational experiments are designed to explore a continuing research 

problem in computer vision – the problem of reconstructing faces from different perspectives. 

Specifically, all three experiments tested whether a Principal Components Analysis of the multiple 

views delivered simultaneously by six fixed cameras can by encoding global, correlated changes:  
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1) Distinguish rigid head movements of the head and non-rigid facial movements, 

2) Reconstruct facial information seen from one perspective into another, and 

3) Reproduce the facial information in multiple views from a single view. 

The quality of the results of the animated experiment was examined by visually comparing it to the 

ground-truth representation in an attempt to reveal the quality of the reproduction. For experiment 

3, the correlation coefficient was found to quantify the degree to which ground-truth and 

reconstructed results relate to each other. The reconstruction results of the PCA-based model will be 

compared with results of other work and presented at the end of this chapter.  

4.1.1. Test stimuli: the database of multiple face sequences 

 A set of facial motion sequences were created to test a model. The mostly non-rigid facial 

behaviour was captured from different viewpoints at the same time and in the same lighting conditions 

as described in 3.1. Sequences were captured using six Grasshopper GRAS-03K2C (FireWire) digital 

cameras, at a rate of 60 frames per second, at 640x480 image resolution with an RGB 24 bit pixel 

format. The sequences were of an expressive talking face, and they lasted around 30 seconds. The 

capture conditions differed slightly in the different experiments. The experiment’s sequences included: 

• 1st Experiment: An aligned, as described in 3.1.1., and calibrated, as described in 3.1.2., dynamic 

face sequence (non-rigid motion of the face from different perspectives) (see Figure 41, 1st row). 

• 2nd Experiment: An aligned and calibrated dynamic face sequence (non-rigid motion of facial 

behaviour from camera 1, camera 2 and camera 6) (see Figure 41, 2nd to 4th  row). 

• 3rd Experiment: An aligned and calibrated dynamic face sequences (one serving as ground-truth, 

represents a multiple view capture of the face in non-rigid motion, while the other is missing all 

but one viewpoint in multiple views) (see Figure 41, 5th  row). 
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      Camera 1          Camera 2            Camera 3                Camera 4                    Camera 5           Camera 6  

Camera 1      

Camera 2      

Camera 6      

 
Camera 1         Camera 2            Camera 3            Camera 4    Camera 5        Camera 6 

Figure 41 Examples of captured sequences from the database. 1st row is from the 1st Experiment motion sequence (in total 260 frames per camera). 

2 nd to 4th row is from the 2nd Experiment motion sequence. The 5th row is from the 3rd Experiment’s motion sequence (concatenated multiple views 
with all but one viewpoint missing). 

4.1.2. The Experimental results 

The sequences were vectorised as described in 3.3.1. The sequences for each face were 

processed using PCA, and the basis vectors were extracted, forming a model of the target face based 

on principal components.  

4.1.3. Experiment 1 

The results of the first experiment reveal the principal components that define the rigid motion 

of the head and non-rigid movements in the face region over the multiple-view sequence.  
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1 PC  

2 PC  

5 PC  

10 PC  

18 PC  
Figure 42 The figures show reconstructed images for various values of the loadings on the components arrayed in a row. The first 

component (‘1PC’) reflects the rigid movement of the head. It contains most of the variance in the sequence because it captures the pose 
of the head. The second component reflects a rigid motion of the head, in which a squeezing movement can be seen over the face region, 
while the face expression stays the same. 5PC, 10PC and 18PC reflect non-rigid facial movements over the face, resulting from a change in 
expression (see Movie 1.avi).  

From the multiple-view sequence, 18 principal components were obtained that characterised 

both rigid movement of the head and non-rigid movements over the face region. Images in the rows 

represent reconstructions of the face for various coordinate values of the principal component. From 

visual inspection, it would appear that the first four principal components correspond to the rigid 

motion of the head, while the rest correspond to non-rigid facial movements. The sequence of frames 

shown in Figure 42 depicts the principal components that show the most information. Since the 1st PC 

contains most of the variance, and the variance decreases as we approach the 18th PC, the standard 

deviations of the principal components in Figure 42 were increased to allow image variations to be 

seen clearly. The row labelled ‘1PC’ contains images with most of the variance, which corresponds to 

the pose, and this is why we see an apparent rotation of the head. The second component contains 

information regarding head compression, while facial expression stays unchanged. The fifth 
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component best describes the non-rigid movements of the face. In Figure 42, the row labelled ‘5PC’ 

shows that the movement of the whole face is captured. It is unlike the other principal components 

that define the non-rigid facial movement, each of which contains only information regarding the 

movement of the specific parts of the face.  

4.1.4. Experiment 2  

 The results of the second experiment show the mapping of the face from one perspective to 

another. See, for instance, how in Figure 43 and Figure 44, a PCA space was computed for each of 

three camera views separately, specifically for camera 1, camera 2 and camera 6. The reference frame 

was taken from the same time point for all three sequences. To reconstruct the face from one 

viewpoint in another viewpoint, a difference vector was taken (frame was subtracted from the mean) 

in the face-space of the first camera viewpoint and projected it into the face-space of the second 

camera viewpoint and then reconstructed the image from the PCA space of the second camera (Figure 

43). The frames shown in Figure 43 are the results of this face reconstruction process for three principal 

components. From visual inspection, it can be seen that the reconstructed face is very accurate and 

close to the avatar frame obtained from the 2nd camera viewpoint, i.e. close to the ground-truth. This 

degree of accuracy might be expected because the 1st camera viewpoint differs by only 5 degrees from 

the 2nd camera viewpoint. 
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1st camera view 

 

 

Frame 1 

Reconstructed 2nd 
camera 
viewpoint from 
the 1st viewpoint. 

2nd camera view 

 

 
The ground-truth 
2nd camera 
viewpoint. 

1st camera view 

 

 

Frame 2  

Reconstructed 2nd 
camera 
viewpoint from 
the 1st viewpoint. 

2nd camera view 

 

 
The ground-truth 
2nd camera 
viewpoint 

1st camera view 

 

 

Frame 3  

Reconstructed 2nd 
camera 
viewpoint from 
the 1st viewpoint 

2nd camera view 

 

 
The ground-truth 
2nd camera 
viewpoint 

Figure 43 Frame 1, Frame 2 and Frame 3 show the reconstruction of different facial expressions in the 2nd camera viewpoint from face 

information obtained from the 1st camera viewpoint. 1PC, 2PC and 3PC are the first three independent principal components from a 
sequence of facial motion vectorised as morphs. 
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1st camera view 

 

 

Frame 1 

Reconstructed 6th 
viewpoint from the 
1st camera 
viewpoint 

6th camera view 

 

 
The ground-truth 
6th camera 
viewpoint 

1st camera view 

 

 

Frame 2 

Reconstructed 6th 
viewpoint from 
the 1st camera 
viewpoint 

6th camera view 

 

 
The ground-truth 
6th camera 
viewpoint 

 

1st camera view 

 

 

Frame 3  

Reconstructed 6th 
viewpoint from the 
1st camera 
viewpoint 

6th camera view 

 

The ground-truth 
6th camera 
viewpoint. 

Figure 44 Frame 1, Frame 2 and Frame 3 show the reconstruction of different facial expressions in the 6th camera viewpoint from face 

information obtained from the 1st camera viewpoint. 1PC, 2PC and 3PC are the first three independent principal components from a 
sequence of facial motion vectorised as morphs. 

For a more stringent test, the process was repeated with a much larger angular difference in the 

viewpoints (25 degrees). This mapping was performed as explained above, between the 1st and 6th 

camera viewpoints and is shown in Figure 44. From visual inspection, the facial reconstructions shown 

in Figure 44 appear identical to the ground-truth. However, if we take a closer look at ‘Frame 2’, we 

can see that the mouth of the subject is opened slightly wider than on the ground-truth frame for that 
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expression. Nevertheless, except for this small reconstruction error, reconstruction is detailed and 

precise.   

4.1.5. Experiment 3 

 Berisha, Johnston, & McOwa (2010) reconstructed a full face from an occluded version of the 

face using the Cowe technique (Cowe, 2003). In this case, a partial vector constructed from the test 

face is projected into a PCA space derived from a facial action sequence for that face. They showed 

that the facial expression could be recovered from unoccluded regions and that the mouth and 

eyebrows regions contained most information about the global structure of the face. They only used 

frontal views of the face.            

 Can this methodology be used to understand how people might build multiple view-based 

representations that could be used to support generalisation over pose?     

 High quality, high frame rate videos were recorded of the moving face from six cameras 

simultaneously, with relatively large camera separations (18 degrees) in a horizontal arc around the 

face. The synchronised videos sequences from each perspective were converted into separate .png 

image files and concatenated to form a panoramic multi-view representation of the face for a 

particular point in time. In this experiment, only one PCA face-space containing all the information 

presented was created. PCA will be used as a content addressable memory (Cowe, 2003; Kohonen, 

1986). Projected part of the content addressable memory can recover information stored in the PCA 

space. This property will be used to recover all views from a limited set of views.    

 First, a multi-view vector is constructed for each time step. By multi-view, it means that multiple 

view images with the same expression were concatenated into one image, and, after that, these multi-

views were treated as a single unit. The content addressable memory is loaded with 446 multi-views 

to include a wide range of non-rigid facial expressions. Then this PCA space is used to recover the 

ground-truth (multi-view Figure 45) information by projecting the full vector into space and the missing 

viewpoints by projecting a partial vector containing just some of the views (multi-view Figure 46). The 

first step of face reconstruction was removing the information about all but one view from the multi-

view vector and setting the vector information derived from the other views to zero (Figure 46).  

 
Figure 45 presents one of 466 concatenated multiple views, which are stored in the content addressable memory. 
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Figure 46 a concatenated multiple view vector schematically with the information from all but one viewpoint removed. 

The second step was projecting this partial representation back into the principal component 

model to regenerate the other views (Figure 47). 

 

 

Figure 47 presents a schematic view of the formula, which is required to reconstruct the ground-truth image from only one perspective. 

A partial vector in which the zero elements represent the views we wish to recover is projected onto the principal components, both of 
which have the structure as shown on the left of the figure. The inner product of the partial vector and the principal component is the 
scalar weight, which determines the proportion of that component to be added into the reconstructed vector. The reconstructed image is 
then computed from the reconstructed vector. 

The views of the face reconstructed from only one view reproduced the pose of the subject’s head; 

however, it was not able to reproduce the facial expression in the ground-truth as seen in Figure 48. 

 

PC1 PC2 Recon 
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Figure 48 presents the ground-truth image and the reconstructed views using only information from one perspective. The red bounding box 

depicts which view of the image was used to reconstruct the face in other views. The reconstruction in all views (v1,v2,v3,v4, v5,v6) looks very 
different from GT image representation (see Movie 2.avi).   

With the naked eye, it is tough to determine precisely how different the reconstructed views are from the 

ground-truth representation. Hence, we have plotted the weights multiplying the 1st principal component 

for both the reconstructed and ground-truth data in the face space (Figure 49). 
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Figure 49 depicts 1st PC weights for the ground-truth image (blue graph) and weights for the reconstructions from 

the 1st, 2nd, 3rd, 4th, 5th, 6th views (red graph). The “reconstructed” (red graph) values are very small (notice the images 
in Figure 48). Hence a gain factor will be calculated to make both graphs more similar. 

It is clear from the representation of the 1st principal component that the values of the 

reconstructed image from all views (red graph) are much smaller than ground-truth values (blue graph). 

Therefore, we have chosen to enhance the reconstructed values to match the ground-truth 

representation. By enhancing reconstructed values, we will have a better view to observe consistent 

facial movements and delicate non-rigid changes of a face that were barely noticeable in the 

reconstructed sequence. A linear least-squares method was used to find a scale factor that brings the 

two curves into correspondence. To omit data overfitting, only 20 per cent of all trials of the database 

was used to find a scale factor. For the current case, when the database consists of 446 data inputs, 

only the first 90 data inputs were taken to obtain a scaling factor. The scaling factor was calculated for 

every principal component (ten principal components) and views, and the results are shown in Figure 

50.  
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Figure 50 shows the scale factor values obtained via a least square method for finding the best match between 

the GT and reconstructed images principal component values for all frames in the sequence. 

 Figure 50, the graph shows the data for the reconstructions derived from the labelled view. Here 

we may see that the range of the scale factor derived for the 3rd view is much narrower than the scaling 

factor derived for the 6th view. That is presumably due to the 6th perspective being a profile face, 

holding less dynamic facial information that is present in the 3/4 facial representation captured from 

the 3rd viewpoint. Obtained scaling coefficient from the reserved part of dataset was applied onto the 

whole dataset, that is composed of 446 reconstructed values, to test how reconstructed values match 

the ground-truth. 

 
Figure 51 represents the 1st PC weights for the ground-truth image (blue graph) and the values of the reconstruction 

from 1st, 2nd, 3rd, 4th, 5th, 6th views (red graph) after applying the computed scaling factor. The “reconstructed” (red graph) 
values became very close to the GT curves, which indicates that scaled reconstructed images should be very similar to GT 
image representation (blue graph). 
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Figure 51 shows the 1st principal component weights for the ground-truth image (blue graph) and the 

equivalent values for the reconstructed images from the 1st, 2nd, 3rd, 4th, 5th and 6th views (red graph) after 

applying a scaling factor, respectively. The scaled principal component weights for the reconstructed images 

resemble the ground-truth representation. The reconstructed images after applying the scaling factor are 

shown in Figure 52. 

GT 

 

v1 

v2 

v3 

v4 

 

v5 

 

v6 

Figure 52 depicts a ground-truth multi-view image and reconstructed multi-views after applying a scaling factor. Red bounding box depicts which 

view of the image loadings was used to reconstruct the face in other views. From visual inspection, the facial reconstruction in all views 
(v1,v2,v3,v4,v5,v6) appear identical to GT image representation (Movie 3.avi).   

From visual inspection, it can be seen that the facial reconstruction for all views after applying a scaling 

factor looks very accurate and close to the ground-truth representation stored in the content 

addressable memory. The accuracy was to be expected since the scaling factors have been obtained 

explicitly for each principal component and view independently. To measure how well reconstructed 

and scaled multi-view images match the ground-truth image mimicry, a standard Matlab Pearson 



 75 

product-moment correlation coefficient approach was employed. It will be used to measure the value 

of similarity between the two multi-views. The values will be presented in the range from +1 and -1 

inclusively, where 1 indicates that two multi-views are the same, 0 is no similarity, and -1 indicates a 

perfect negative similarity. At first, we used this approach in comparing RGB colour values of every 

pixel in every image, between scaled reconstructed and ground-truth, multi-view facial expressions. 

However, such comparison could not pick up on small image changes (place around the mouth), and 

high correlations did not correspond well to similarity as judged by inspection. A consequence of this, 

Pearson correlation was tested between loadings of principal components extracted from the 446 

reconstructed multi-views for every of six views sequence vectors and those from the ground-truth. 

Correlation results corresponded well with results from visual inspection. Thus, correlation results are 

trustworthy and can be used in evaluating reconstruction performance. The results of measuring the 

dependence between scaled multi-views loadings and ground-truth are represented in Figure 53. 
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Figure 53 Correlation results between reconstructed multi-view images and ground-truth representation.  In the graphs of the left 
column, we analysed loadings sequentially and separately for every view with loadings of ground-truth. For example, we have chosen 
a random multi-view face expression at position 231 and compared the correlation coefficients of each reconstructed view. We can 
obtain the highest reconstruction from only one view value, 98.92%, in case of using 3rd face posture information (Reconstructed 
from 3rd view; the third row from the top) and less information using profile face posture (Reconstructed from 6th view; bottom 
row). The histogram in graphs of the right column show correlation distribution for each reconstructed perspective. 
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The graphs of the left column in Figure 53 show the correlation between the loadings of the 

reconstructed and scaled images with loadings of the ground-truth. A correlation value was obtained 

for every view of multi-view by taking loadings of multi-view from a single view of the reconstructed 

image and loadings of multi-view of the ground-truth, respectively. This process was repeated for every 

viewpoint. Also, we have randomly chosen a multi-view face expression from the sequence positioned 

at 231 to compare correlation coeffects of reconstructed multi-views. It can be noticed that the overall 

perspectives of the reconstructed images gave a very high correlation value of over 0.98. The highest 

face reconstruction with a 98.92 per cent value has been obtained using 3rd face view information. 

The smallest face reconstruction value was 88.24, and it was obtained using profile face information. 

Histogram graphs of the right column represent how correlation data is distributed for all 

reconstructed six multi-views. We may observe that correlation values for the first five reconstructed 

multi-views are all above 0.8 when correlation values for the profile view started from 0.5. However, 

we checked how many data from the profile view had a correlation value above 0.8. Calculations 

showed that 72,42 per cent of reconstructed data from the profile view had a correlation value above 

0.8. 

4.1.6. Method comparison 

To have a better understanding of how good this method’s results are, let us compare the PCA 

method with a well-known image morphing method based on “Feature-Based Image Metamorphosis” 

by Thaddeus Beier and Shawn Neely (Beier & Neely, 1992).  

For fair results, both methods (i.e. morphing method and methods in 4.1.4.) will be tested on 

the same dataset. The testing performance of the morphing method is shown in Figure 54. In Frame 1 

and Frame 2, from 1st camera view into 2nd camera view, destination (interpolated image) face image 

is reconstructed with good precision, including a non-rigid motion of the face. However, we may 

observe some ghosting effect outside the face area (ears, hair, and neck). It appears to be due to the 

different shape of the faces. A face has a different shape in various viewpoints. In this case distance 

between camera views reached only 5 degrees. 
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Next, the morphing method has been tested with an enlarged angle between the cameras up 

to 25 degrees (see Figure 55).  

Frame 1  

1st camera view Interpolated image 6th   camera view 

   
Source image Destination image Source image 

Frame 2  

1st camera view Interpolated image 6th   camera view 

   
Source image Destination image Source image 

Figure 55 Frame 1 and Frame 2 shows the reconstruction results of different facial expressions using the morphing method, from the 

1st camera viewpoint into the 2nd camera viewpoint. Destination image shows artefacts around the face area. It is due to the difference 
in the shape of the face. 

Frame 1  

1st camera view Interpolated image 2nd  camera view 

   
Source image Destination image Source image 

Frame 2  

1st camera view Interpolated image 2nd  camera view 

   
Source image Destination image Source image 

Figure 54 Frame 1 and Frame 2 shows the reconstruction results of different facial expressions using the morphing method, from the 

1st camera viewpoint into the 2nd camera viewpoint. Destination image shows artefacts around the face area. It is due to the difference 
in the shape of the face. 
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The reconstruction results represented in the destination image appeared to be very poor. The 

ghosting effect around the face area became more significant and surpassed the face area. On the 

other hand multi-view method in 4.1.5 can map faces that that has a 90-degree angle between poses. 

As it was mentioned before, a wider angle between cameras results in a poorer destination image. 

Hence, a morphing technique will not give us a sharp and clear reconstruction of the face. With a wider 

angle between cameras views, the ghosting effect around the face increases. 

To conclude methods comparison, we may say that it is evident that the warping method will work as 

Beymer and Poggio has shown in their study. However, it performs best within a few degrees of 

rotation, and it will fail badly with a vast difference in face pose (Beymer & Poggio, 1995). 

Unfortunately, with the morphing method, it is impossible to warp from the full-face view to the profile 

view. 
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4.2. Chapter 4 summary 

 The three experiments described in this chapter demonstrated that the PCA approach for 

generating and driving photo-realistic faces is a powerful tool for reconstructing and reproducing non-

rigid facial information over multiple views. When pose and expression are incorporated in the same 

PCA space, the principal components can distinguish between rigid and non-rigid movements of the 

face, with the pose of the face accounting for the highest variance in this case (see 4.1.3.). The second 

experiment showed how the human visual system might deal with recognising faces in different poses 

(see 4.1.4.). It appears that we do not need to learn and store multiple face images from all different 

perspectives in our head to perform accurate recognition of the face as we can map between separate 

representations for different views of the face. In the third experiment, it has been shown that it is 

possible to reconstruct missing viewpoints from a multi-view representation with high precision (see 

4.1.5.). This method of recognising/reconstructing faces from different perspectives with all but one 

viewpoint missing makes use of a simple statistical model that could potentially be used in the human 

visual system. These three experiments demonstrated the feasibility of object representation in a 

human visual system based on a translation between view-based models rather than a full 3D 

representation (Marr & Nishihara, 1978) or simple view association (Miyashita, 1993). To see how well 

the PCA method performs, it has been compared with the results from the morphing method. Both 

techniques (i.e. morphing method and method in experiment 2) had proven to bring good results when 

the angle between views was small (5 degrees). However, morphing results failed severely when the 

angle between views increased up to 25 degrees, and only the PCA approach was able to obtain high 

reconstruction results with minor defects. A multi-view face reconstruction approach can map frontal 

view to profile view, which makes 90 degrees angle between poses (experiment 3). Keeping in mind 

that morph method performance was abysmal when the angle between face poses reached 25 degrees, 

we can state that morph results will not handle face reconstruction in such large poses. Therefore the 

PCA method in both experiments performed better than morphing technique. 
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5. Object constancy under various illuminations facial mimicry 

model. 

 In the previous chapter, the problem of face constancy in multiple poses was introduced. This 

problem is caused by the fact that changes in the orientation of the head generate huge differences in 

the image. Another well-known variable in face perception that has a strong influence on facial images 

is the direction of the lighting. Images of the same person appear to be dramatically different under 

various light conditions. The direction of the light has a more significant effect on the facial image than 

changes in personal identity. Braje et al. confirmed such a statement in their research study where 

participants had to match a laser-scanned unfamiliar face with direct light applied only on one side of 

the face, with an unfamiliar face with direct light applied only on the other side of the face and decided 

if these scans represented the same face (Braje et al., 1998) (see Figure 56).  

 

Figure 56 presents illuminated faces with direct light applied only to one side of the face. After showing the image on the 
left, participants were very accurate in judging if the face images on the right and left define the same person (Image 
reproduced from Braje et al. 1998). 

The participants were very good at judging if two images representing the same face. Research results 

showed that direct light applied to face representations helped participants effectively matching faces 

even in the new unseen lighting conditions. However, when two faces were presented in diverse 

lighting conditions, it was much harder for the participants to decide whether these faces belong to 

one person than if the two faces were presented in the same lighting conditions. It shows that various 

lighting conditions have a different impact on face generalisation processes and indicates that 

matching faces in the novel lighting conditions is not so easy even for the human vision. Also, a 

combination of changing pose, the direction of a light source together with a complex structure of a 

human face can create a different shading and shadows on the face that will make a face hard to 

recognise. Figure 57 shows examples of faces that were captured under varying illumination conditions 

and are hard to identify as belonging to the same person. Adini, Moses and Ullman (1997) proved that 

such variations in facial appearance could be a lot bigger than variations caused by changes in personal 

identity. 



 82 

 

Figure 57 Yale Face Database B: examples of faces that are hard to recognise photographed under various lighting 

conditions. (taken from Yale database http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html) 

From Chapter 1, we know that human vision is lighting dependent, on the other hand, humans evolved 

very effective and efficient mechanisms for the perception of faces in changing lighting conditions. One 

of the most important mechanisms that the human brain uses to recover the shape of the face is shape-

from-shading. Shading is an essential component for humans to perceive the shape of the face. Images 

often illustrate subtle luminance variations (shading) as a function of spatial position. Hill and Bruce 

(1996) showed that the direction of light disrupts face matching performance. They showed that 

participants could not decide whether two face images represent the same person when a face in one 

frame was illuminated from above and another from below. Johnston et al. (1992) also found that even 

familiar faces were hard to recognise when they were illuminated from below rather than from above 

(see Figure 58).  

 

Figure 58 The images of the face photographed under different lighting conditions were used in Johnston et al.’s (1992) 
experiment to investigate if the images illustrate the same face. The image on the right represents a “ghost-like” face 
appearance which is harder to recognise compared to the rest of the image in the same row but results in a reduced 
inversion effect (image reproduced from Johnston et al., 1992). 

 In computer vision, shape-from-shading techniques are also candidate methods used for 

reconstructing a shape from shading in facial images, but shape-from-shading is a difficult challenge. 
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To construct an illuminant invariant descriptor, several steps have to be accomplished. First, in 

computer vision, the extraction of scale-invariant interest regions from colour images frequently 

begins with the conversion of the image to a grayscale image. Identification of interest points is then 

completely determined by luminance, and the use of colour is deferred to the stage of descriptor 

formation. Next, after obtaining an invariant image, shadows need to be removed. Removing shadows 

is usually done by finding edges of the objects in the images (Canny 1986; Lowe 2004). The shadowless 

image would be an image where large patches of shadow are removed, effectively taking out the 

direction of the illumination and leaving only the reflectance and the locally shaded texture.  

Would this computer vision approach work with an extreme example, for instance, with Mooney face 

images? Mooney face images look like if they were illuminated with direct light from one side, giving 

a strong lightening effect on one side of the face and shadow on the other. The edges of the contours 

of these binary images are not directly related to the actual face contours. (Figure 59). 

 
Figure 59 This figure illustrates Mooney faces used by Craig Mooney (Mooney, 1957) to test the ability of children to 

perform perceptual closure. Notice the variety of shapes and contours that emerge (image reproduced 
diplopi.wordpress.com. Reprinted 17 February 2020, from 
https://diplopi.files.wordpress.com/2013/09/mooney_01.jpg).  

The standard computer vision strategy to overcome the lighting problem is to try to eliminate it by 

working with the shape of edges recovered by standard edge detection techniques, and thereby to 

remove shading from the face will not work on all cases, and Mooney's faces are a prime example of 

such a case. Therefore, a computer vision strategy would not work. 

Thus this chapter proposes an alternative approach that will include all the shading information of the 

face to achieve face constancy under various lighting conditions, the same as the human vision system. 

We will explore whether the methods we used to generate invariance over the pose can also work for 

lighting. 
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5.1. Test stimuli: the database of multiple face sequences in different 

lighting. 

To test this approach, four sets of facial motion sequences were created. The sequences were 

captured using a purpose-built illumination rig as described in 3.1 and 3.1.5. Each sequence is 

representing a non-rigid capture of facial behaviour in different illuminant conditions for one head 

pose. Sequences were captured using six Grasshopper GRAS-03K2C (FireWire) digital cameras, at a rate 

of 60 frames per second, at 640x480 image resolution with an RGB 24-bit pixel format. The sequences 

were of an expressive talking face, and they lasted around 30 seconds. However, we have chosen to 

analyse captured video sequence from only one Grasshopper camera, focusing on the illumination 

problem. We wanted to record dynamic facial sequences that were identical apart from differences in 

the direction of the illumination.  To achieve this, the faces were illuminated simultaneously using red, 

green and blue lights projected from three projectors located in different positions. We then extracted 

the individual red, green and blue channels from the RGB image sequences and converted them into 

greyscale image sequences. This process gave us a synchronised data for multiple lighting directions. 

Also, there were four conditions of diffuse white lighting, which filled in areas without direct lighting. 

These lights were:   

1. A diffuse light from the left, covering the left side of the participant’s face. 

2. A diffuse light from the right, covering the right side of the participant’s face.  

3. A diffuse light from the bottom, covering the bottom of the participant’s face. 

4. A diffuse light from the front, distributed symmetrically upon the participant’s face. 

Four different experiments were created, one for each of the diffuse lighting conditions. The motion 

sequences were slightly different in each experiment.  

5.2. Experiment 1  

 The sequences were vectorised as described in 3.3.1. The sequences for each face were 

processed using PCA, and the basis vectors were extracted as described to form a PCA-based model of 

the target face. 

5.2.1. First illuminance condition 

In the first experiment, we used faces that were diffusely illuminated from the left and directly 

illuminated by three coloured lights from different directions to test whether we could recover an 

estimate of how the face would look if illuminated from one of the other directions. The results of the 

first experiment show that the missing illuminated faces can be correctly reconstructed using partial 

PCA in which the probe data is drawn from just one illuminated face, as can be seen in Figure 60. First, 
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we constructed a multi-vector PCA space where each input vector to the PCA contained data from all 

three illuminants (plus the ambient lighting) captured at each time point. This PCA face-space was 

created to hold the images generated by the three main illuminants within a content addressable 

memory (Kohonen, 1986). To reconstruct the missing illuminated faces from just one illuminated face, 

we mapped an image vector derived from that illuminated face into our multi-illuminant content 

addressable memory.  
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Ambient light source covering the left side of the participant’s face 

1st Illuminant  

  

The 1st illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only 1st illuminant 
image information.  

The ground-truth multi-illuminant 
image representation. 

2nd Illuminant  

 

The 2nd directional illuminant data in 
the multi-illuminant image is present. 
The rest of the information is taken 
away (blacked out). 

The multi-illuminant image 
reconstructed using only the 2nd 
directional illuminant data image 
information.  

The ground-truth multi-illuminant 
image representation. 

3rd Illuminant  

 

The 3rd directional illuminant data in 
the multi-illuminant image is present. 
The rest of the information is taken 
away (blacked out). 

The multi-illuminant image 
reconstructed using only the 3rd 
directional illuminant data image 
information. 

The ground-truth multi-illuminant 
image representation. 

Figure 60 The 1st Illuminant, 2nd Illuminant and 3rd Illuminant images show the reconstruction of different facial 

expressions from the information of the face derived solely from the 1st Illuminant, 2nd Illuminant and 3rd Illuminant (see 
Movie 4.avi). 
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The multi-illuminant images represented in Figure 60 are results of the facial reconstruction 

from single illuminant images. From visual inspection reconstructions shown in Figure 60, they appear 

identical to the ground-truth. However, if we take a closer look at the reconstructed results of all 

illuminants, we may notice that the mouth of the reconstructed image is slightly closed compared to 

the same ground-truth expression. However, the reconstructed mouth in the 3rd illuminant condition 

provided a better match to the ground-truth than the rest. Our observations are confirmed in Figure 

61. There is a better match between the ground-truth data and the reconstructed data from 3rd 

illuminant; attempts to recover the other two illuminant images were less effective. However, we are 

looking to find the best match with ground-truth data representation, hence we will find a scaling 

factor.  

 
Figure 61 All three graphs represent loadings comparisons for reconstructed multi-illuminant images compared to the 

ground-truth loadings. The graph on the left shows loadings from the 1st illuminant (red colour) are close to the ground-
truth (blue colour) multi-illuminant images, but the values of the loadings are smaller overall. The middle graph shows a 
loadings time series for the reconstructed multi-illuminant data seeded using the 2nd illuminant (red colour) compared to 
the ground-truth (blue colour). The right graph presents the loadings time series for the reconstructed multi-illuminant 
images derived from the 3rd illuminant (red colour) compared to ground-truth multi-illuminant data (blue colour). We can 
see from the graphs that the loadings of the reconstructed multi-illuminant images from the 3rd illuminant are very close 
to the ground-truth multi-illuminant representation. That means that the images should be very similar to each other. The 
loadings of the other two graphs are less close to the ground-truth; hence the reconstructed images should contain less 
similarities with the ground-truth images.  

We used a linear least-squares method to find a scale factor that generated the best 

correspondences between a particular illuminant and the ground-truth loadings time series. A scaling 

factor will improve a data representation which will give more coherent facial movements with 

presented delicate non-rigid changes of a face that were barely noticeable in reconstructed sequences 



 88 

before applying the scaling coefficient. The scaling factor for every principal component (ten principal 

components) over three illuminants are shown in Figure 62. 

 
Figure 62 The figure presents a scaling factor data distribution for the 1st, 2nd and 3rd illuminant. As we may see, the 
largest data range is for 1st illuminant. The 2nd illuminant scaling factor data range is smaller than the 1st illuminant’s. 
The 3rd illuminant has the smallest scaling factor.    

 

 From Figure 62, we may see that for the 3rd illuminant reconstruction, the scaling factor is much 

smaller than the scaling factor for the 1st and 2nd illuminant. That is because the 1st and 2nd 

illuminants are darker (contain less information) than the brighter 3rd illuminant. Hence their scaling 

factor will require a larger value to be able to match ground-truth.  

 
Figure 63 Loadings after scaling for the 1st, 2nd and 3rd illuminant (red colour) compared to ground-truth loadings (blue 
colour). The scaled loadings provide a better match to the ground-truth.  

In Figure 63, we can see a better match between the scaled reconstructed results and the 

ground-truth image representation. The results of reconstructing images after applying the scaling 

factor are presented in Figure 64. 
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1st Illuminant  

  

The 1st illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only 1st 
illuminant data after applying a scaling 
factor to match a ground-truth 
representation. 

Ground-truth multi-illuminant image 
representation. 

2nd Illuminant  

 

The 2nd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only the 2nd 
illuminant data after applying a scaling 
factor to match a ground-truth 
representation.  

Ground-truth multi-illuminant image 
representation. 

 

3rd Illuminant  

 

The 3rd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only 3rd 
illuminant data, then applying a 
scaling factor to match a ground-truth 
representation.  

Ground-truth multi-illuminant image 
representation. 

Figure 64 1st Illuminant, 2nd Illuminant and 3rd Illuminant show reconstructions of facial expressions having only 
information of the face from the 1st Illuminant, 2nd Illuminant and 3rd Illuminant, respectively (see Movie 5.avi). 
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From a visual inspection of Figure 64, it can be seen that the reconstructions for all illuminants 

after applying a scaling factor to our content addressable memory technique look very accurate and 

close to the ground-truth representation. This improvement in accuracy is to be expected because we 

obtained the scaling factor explicitly for each principal component and illuminant. 

 To measure how close our scaled reconstructed multi-illuminant images are to the ground-truth 

images, we employed a standard Pearson product-moment correlation coefficient approach (PPMCC) 

(Stigler 1989). The PPMCC finds a linear dependence between two variables by giving a value between 

+1 and -1 inclusively, where 1 indicates a perfect positive linear correlation, 0 is no linear correlation, 

-1 indicates a perfect negative correlation. This approach was used to define the degree to which the 

scaled reconstructed illuminated image is close to the original illuminated image representation. 

Figure 65 shows the image correlation between principal component weightings extracted from the 

600 black out at a specific part of multi-view driver sequence vectors and of those from the ground-

truth. We may observe in the three histograms of the right column how correlation values are 

distributed for every illuminant. We may notice that a range of correlation values differs for every 

illuminant. Values for the 1st illuminant are ranging from 0.4159 to 0.9408, for the 2nd illuminant from 

0.498 to 0.9956, and for the 3rd illuminant from 0.7541 to 0.9984. Also, we may observe that the 

number of facial expressions with the correlation coefficient for all three illuminants in the histogram 

graphs mainly exceeds 0.8. For this reason, we have found the percentage value that shows how much 

data possesses a correlation coefficient above 0.8. 1st illuminant had 91,5 per cent, 2nd illuminant had 

93,83 per cent, and 3rd illuminant had 99.66 per cent from of all data. In the graphs of the left columns, 

we have investigated correlation coefficients between the reconstructed multi-illuminant image from 

1st, 2nd, and 3rd illuminants and ground-truth accordingly of a randomly chosen image from the 

sequence. The correlation values were ranging from 0.9908 and 0.9888. The highest correlation was 

obtained from 3rd illuminant with a value of 0.9888. Then 2nd illuminant with value 0.9833, and 3rd 

illuminant with value 0.9408. It means that reconstructed weights of images are highly correlated, i.e. 

the reconstructed multi-illuminant images are very close to the ground-truth. The high correlations are 

not surprising given these are image correlations between very similar images, so in order to provide 

a relative test of the quality of reconstruction, we used the same analysis method described in Chapter 

4 for testing the quality of pose reconstruction. 
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5.2.2. Second illuminance condition 

 For the second experiment, we used the data from the faces illuminated from the right as input 

into the reconstruction process and repeated the steps used in the first experiment. The results of the 

second experiment showed that the missing illuminated faces could be correctly reconstructed by the 

system from only one illuminated face, as it can be observed in Figure 66.  

 

1
 il

lu
m

in
an

ce
 

  

2
 il

lu
m

in
an

ce
 

  

3
 il

lu
m

in
an

ce
  

  
Figure 65 shows the correlation results. The points in three graphs of the left column show PC scores relation that defines 
how close the scaled/reconstructed 1st illuminant, 2nd illuminant, and 3rd illuminant are to the ground-truth. Also, a point 
in these graphs, at position 243 shows the correlation between the scaled/reconstructed 1st, 2nd and 3rd illuminants and 
the ground-truth accordingly. The blue bars in three graphs of the right column show the distribution of correlation 
between pairs of image weights of reconstructed illuminants and the ground-truth data. 



 92 

Light source covering the right side of participant’s face 

1st Illuminant 

  

The 1st illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only 1st 
illuminant data image information.  

Ground-truth multi-illuminant image 
representation. 

2nd Illuminant  

 

The 2nd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only the 2nd 
illuminant data image information.  

Ground-truth multi-illuminant image 
representation. 

3rd Illuminant  

 

The 3rd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only 3rd 
illuminant data image information.  

Ground-truth multi-illuminant image 
representation. 

Figure 66 1st Illuminant, 2nd Illuminant and 3rd Illuminant show reconstruction of different facial expressions having 
only information of the face from 1st Illuminant, 2nd Illuminant and 3rd Illuminant (see Movie 6.avi). 
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The multi-illuminant images shown in Figure 66 are the results of the facial reconstruction using 

different illuminants while the diffuse light was covering the left side of the face. From visual inspection 

of the reconstructions shown in Figure 66, they appear very similar to the ground-truth. Let us take a 

closer look at the reconstructed multi-illuminant frame of 1st and 2nd illuminant; we can see that the 

mouth of the participant is slightly open compared to the ground-truth participant with the same 

expression. However, the reconstructed mouth of a participant in the 3rd illuminant gave a better 

match with ground-truth than the rest.  These results are very similar to the results from the first 

illuminance condition. 

From Figure 67, we may see our observations clearly. The ground-truth data have a better 

match with reconstructed data from the 3rd illuminant; the other two remain similar with a small 

match with ground-truth. However, we are looking to find the best match with ground-truth data 

representation; hence again, we will find a scaling factor. 

 
Figure 67 all three graphs present loadings comparison of reconstructed multi-illuminant images with ground-truth 

representation. The graph on the left shows how loadings of reconstructed multi-illuminant images from 1st illuminant 
(red colour) are close to the ground-truth (blue colour) multi-illuminant images. The middle graph shows a loadings 
distribution for reconstructed multi-illuminant from 2nd illuminant (red colour) and ground-truth (blue colour). The 
right graph presents loadings distribution of reconstructed multi-illuminant images from the 3rd illuminant (red colour) 
with ground-truth multi-illuminant images (blue colour). As we may notice from the graphs, the loadings of 
reconstructed multi-illuminant images from the 3rd illuminant are very close to the ground-truth multi-illuminant 
representation; it means that images should be very similar to each other. The loadings of the other two graphs are less 
close to the ground-truth, hence reconstructed images should contain fewer similarities with ground-truth images. 

 Next, we found a scaling factor as before. From Figure 68, we can see that, as already observed, 

the scale factor range is much smaller for the 1st and 2nd illuminant for the same reason that the 3rd 

illuminant is brighter.  
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Figure 68 The figure presents a scaling factor data distribution for the 1st, 2nd and 3rd illuminant. As we may see, the 

largest data range is for 1st illuminant. The 2nd illuminant scaling factor data range is smaller than the 1st illuminant. The 
3rd illuminant has the smallest scaling factor. 

Figure 68 shows that the scaling factor for the 3rd illuminant reconstructed view is much smaller than 

the scaling factor for the 1st and 2nd illuminant. It is due to 1st, and 2nd illuminant being darker 

(contain less information) than (bright) the 3rd illuminant. Hence scaling factor of 1st and 2nd 

illuminants will have to be bigger to be able to match ground-truth. 

 

Figure 69 The graph presents loadings matching of scaled loadings from 1st, 2nd and 3rd illuminant (red colour) with 

ground-truth loadings (blue colour). As we may notice from the graphs, scaled loadings gave a better match to ground-
truth. 

In Figure 69, we can observe a better match of scaled reconstructed results with ground-truth image 

representation. The results of reconstructed images after applying a scaling factor are presented in 

Figure 70. 
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1st Illuminant  

  

 
The 1st illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only 1st illuminant 
data then applying a scaling factor to 
match a ground-truth representation.  
 

 
Ground-truth multi-illuminant image 
representation. 

 

2nd Illuminant  

 

The 2nd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only the 2nd 
illuminant data after applying a scaling 
factor to match a ground-truth 
representation.  

Ground-truth multi-illuminant image 
representation. 

 

3rd Illuminant  

 

The 3rd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked 
out). 

The multi-illuminant image 
reconstructed using only 3rd 
illuminant data after applying a scaling 
factor to match a ground-truth 
representation.  

Ground-truth multi-illuminant image 
representation. 

 

Figure 70 1st Illuminant, 2nd Illuminant and 3rd Illuminant show reconstruction of different facial expressions having 
only information of the face from 1st Illuminant, 2nd Illuminant and 3rd Illuminant (see Movie 7.avi). 
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From visual inspection in Figure 70, it can be seen that the scaled reconstructed image for all 

illuminants looks very accurate and close to the ground-truth representation in our content 

addressable memory. The accuracy was to be expected because the scaling factor has been obtained 

explicitly for each principal component and illuminant.  

Comparing the correlation coefficients of facial expression at position 281 in graphs of the left 

column in Figure 71, we see a very high correlation value between the weight of scaled/reconstructed 

data and ground-truth. As in the first experiment, the correlations are close to 1. That means that the 

scaled reconstructed images from multiple illuminants are a close match to original data 

representation. In addition, we may observe in the histogram graphs of the right column how 

correlation data is distributed for all illuminants.  
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5.2.3. Third illuminance condition 

 For third illuminance condition, controlled lights have been used with diffuse white light 

highlighting the bottom part of the face and applied the same analysis introduced in first illuminance 

condition to a third data set. The results of the third illuminance condition showed that the missing 

illuminated faces could be correctly reconstructed from only one illuminated face, see in Figure 72. 
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Figure 71 shows the correlation results. The points in three graphs of the left column show PC scores relation that defines 
how close the scaled/reconstructed 1st illuminant, 2nd illuminant, and 3rd illuminant are to the ground-truth. Also, a point 
in these graphs, at position 281 shows the correlation between the scaled/reconstructed 1st, 2nd and 3rd illuminants and 
the ground-truth accordingly. The blue bars in three graphs of the right column show the distribution of correlation 
between pairs of image weights of reconstructed illuminants and the ground-truth data. 
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Light source covering the bottom side of participant’s face 

1st Illuminant  

  

The 1st illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image 
reconstructed using only 1st illuminant 
data image information.  

Ground-truth multi-illuminant image 
representation. 

 

2nd Illuminant  

 

The 2nd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image 
reconstructed using only the 2nd 
illuminant data image information.  

Ground-truth multi-illuminant image 
representation. 

 

3rd Illuminant  

 

The 3rd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image 
reconstructed using only 3rd illuminant 
data image information.  

Ground-truth multi-illuminant image 
representation. 

 

Figure 72 1st Illuminant, 2nd Illuminant and 3rd Illuminant show reconstruction of different facial expressions having only 

information of the face from 1st Illuminant, 2nd Illuminant and 3rd Illuminant (see Movie 8.avi). 
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The multi-illuminant images represented in Figure 72 are the results of the facial reconstruction from 

a different illuminant. From visual inspection in Figure 72, reconstructions from the 3rd illuminant 

appear almost identical to ground-truth. However, reconstructions from the 1st and 2nd illuminant 

have very noticeable face defects around the mouth area. We did not see such obvious image 

differences in our previous experiments between the reconstructed and original data representation. 

Figure 73 confirms the results we see with the naked eye. In Figure 73, the ground-truth data have a 

better match with the reconstructed data from the 3rd illuminant; the other two provide a very weak 

match with ground-truth. However, we are looking to find the best match with ground-truth data 

representation; hence again, we will find a scaling factor.  

 
Figure 73 all three graphs represent loadings comparison of reconstructed multi-illuminant images with ground-truth 
representation. The graph on the left shows how loadings of reconstructed multi-illuminant images from 1st illuminant 
(red colour) are close to the ground-truth (blue colour) multi-illuminant images. The middle graph shows a loadings 
distribution for reconstructed multi-illuminant from 2nd illuminant (red colour) and ground-truth (blue colour). The right 
graph present loadings distribution of reconstructed multi-illuminant images from 3rd illuminant (red colour) with ground-
truth multi-illuminant images (blue colour). As we may notice from the graphs, the loadings of reconstructed multi-
illuminant images from the 3rd illuminant are very close to the ground-truth multi-illuminant representation; it means 
that images should be very similar to each other. The loadings of the other two graphs are less close to the ground-truth, 
hence reconstructed images should contain fewer similarities with ground-truth images. 

From Figure 74, we may see that the scaling factor range for the reconstructed view of the 3rd 

illuminant is much smaller than the scaling factor range for the 1st and 2nd illuminant. It is due to the 

1st and 2nd illuminant being darker than the 3rd illuminant image. Hence their scaling factor will need 

to have a bigger value to be able to match the ground-truth. We can see the same pattern in the scaling 

factor data as in the earlier experiments. 
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Figure 74 The figure presents a scaling factor data distribution for the 1st, 2nd and 3rd illuminant. As we may see, the 
largest data range is for 1st illuminant. The 2nd illuminant scaling factor data range is smaller than the 1st illuminant. The 
3rd illuminant has the smallest scaling factor.    

Figure 74 shows that the scaling factor of the 3rd illuminant reconstructed view is much smaller than 

the scaling factor for the 1st and 2nd illuminant. That is due to the 1st and 2nd illuminant being darker 

than the (bright) 3rd illuminant image. Hence the scaling factors will need to be bigger to be able to 

match a ground-truth. 

 
Figure 75 The graph presents loadings matching of scaled loadings from 1st 2nd and 3rd illuminant (red colour) with 
ground-truth loadings (blue colour). As we may notice from the graphs, scaled loadings gave a better matched to ground-
truth. 

In Figure 75, we may observe a better match of scaled reconstructed results with the ground-truth 

image representation. The results of reconstructed images after applying a scaling factor are presented 

in Figure 76. 
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Uniform lighting 

1st Illuminant  

  

The 1st illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 1st illuminant data then 
applying a scaling factor to match a 
ground-truth representation.  

Ground-truth multi-illuminant image 
representation. 

 

  

2nd Illuminant  

 

The 2nd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 2nd illuminant data after 
applying a scaling factor to match a 
ground-truth representation.  

Ground-truth multi-illuminant image 
representation. 

 

 

3rd Illuminant  

 

The 3rd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 3rd illuminant data after 
applying a scaling factor to match a 
ground-truth representation. 

Ground-truth multi-illuminant image 
representation. 

 

Figure 76 1st Illuminant, 2nd Illuminant and 3rd Illuminant show reconstruction of different facial expressions having 
only information of the face from 1st Illuminant, 2nd Illuminant and 3rd Illuminant (see Movie 9.avi). 
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 From visual inspection in Figure 76, we can see that the reconstructed image for all illuminants 

after applying a scaling factor looks very close to the ground-truth representation derived from our 

content addressable memory. The accuracy was to be expected because the scaling factors have been 

obtained individually for each principal component and illuminant. However, the system found it 

challenging to reconstruct the other illuminant conditions when the probe face was illuminated from 

below.     

The correlation coefficients of randomly chosen facial expression at position 279 in graphs of the left 

side column in Figure 77 shows a very high correlation value between the weights of 

scaled/reconstructed data and ground-truth. As in the first and second experiments, the correlation 

exceeds 0.8. That means that the reconstructed and the later scaled images derived from multiple 

illuminants are a close match to the original data representation. The histogram graphs of the right 

column show correlation distribution for every illuminant. As we may notice, a range of correlation 

values for 1st illuminant is between 0.2015 and 0.9791 when 2nd illuminant is in 0.1582 to 0.9885, and 

3rd illuminant is in 0.6924 to 0.9982. Despite such a wide range of correlation values, we established 

the percentage of data that have a correlation coefficient above 0.8. 1st illuminant had 52.2 per cent 

of all data, 2nd illuminant had 67.2 per cent, and 3rd illuminant had 94.3 per cent.  
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5.2.4. Fourth illuminance condition 

 For the fourth experiment, we applied a controlled uniform light and repeated the steps from 

the first experiment. The results of the second experiment showed that the missing illuminated faces 

could be correctly reconstructed, by the system, from only one illuminated face, as can be observed in 

Figure 78.  
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Figure 77  shows the correlation results. The points in three graphs of the left column show PC scores relation that defines 

how close the scaled/reconstructed 1st illuminant, 2nd illuminant, and 3rd illuminant are to the ground-truth. Also, a point 
in these graphs, at position 279 shows the correlation between the scaled/reconstructed 1st, 2nd and 3rd illuminants and 
the ground-truth accordingly. The blue bars in three graphs of the right column show the distribution of correlation 
between pairs of image weights of reconstructed illuminants and the ground-truth data. 
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Uniform lighting 

1st Illuminant  

 

 
The 1st illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 1st illuminant data image 
information. 

Ground-truth multi-illuminant image 
representation. 

 

  

2nd Illuminant  

 

The 2nd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 2nd illuminant data image 
information. 

Ground-truth multi-illuminant image 
representation. 

 

 

3rd Illuminant  

 

The 3rd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 3rd illuminant data image 
information. 

Ground-truth multi-illuminant image 
representation. 

 

Figure 78 1st Illuminant, 2nd Illuminant and 3rd Illuminant show reconstruction of different facial expressions having only 

information of the face from 1st Illuminant, 2nd Illuminant and 3rd Illuminant (see Movie 10.avi). 
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The multi-illuminant images in Figure 78 are the results of the face reconstruction from a single 

illuminant. From visual inspection of Figure 78, reconstructions from all illuminants appear identical to 

the ground-truth. In Figure 79, we may observe on the graph that our images are similar to the ground-

truth data. The reconstructed data from the 3rd illuminant is quite close to the ground-truth. 

Meanwhile, the reconstructed data from the 1st and 2nd illuminant are slightly muted but show a 

better match than in previous experiments, and the other two provide a very weak match with ground-

truth. However, we will repeat the procedure to find a scaling factor that will give the best match with 

ground-truth images.  

 
Figure 79 all three graphs represent loadings comparison of reconstructed multi-illuminant images with ground-truth 

representation. The graph on the left shows how loadings of reconstructed multi-illuminant images from 1st illuminant 
(red colour) are close to the ground-truth (blue colour) multi-illuminant images. The middle graph shows a loadings 
distribution for reconstructed multi-illuminant from 2nd illuminant (red colour) and ground-truth (blue colour). The right 
graph present loadings distribution of reconstructed multi-illuminant images from 3rd illuminant (red colour) with ground-
truth multi-illuminant images (blue colour). As we may notice from the graphs, the loadings of reconstructed multi-
illuminant images from the 3rd illuminant are very close to the ground-truth multi-illuminant representation; it means 
that images should be very similar to each other. The loadings of the other two graphs are less close to the ground-truth, 
hence reconstructed images should contain fewer similarities with ground-truth images. 

From Figure 80, we may see that a scaling factor for the 3rd illuminant reconstructed view range is 

smaller than a scaling factor range for the 1st and 2nd illuminant. That is because the 1st and 2nd 

illuminant are a bit darker than the 3rd illuminant image. Hence their scaling factor will have to be 

bigger to match ground-truth.  
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Figure 80 The figure presents a scaling factor data distribution for the 1st, 2nd and 3rd illuminant. As we may see, the 

largest data range is for 1st illuminant. The 2nd illuminant scaling factor data range is smaller than the 1st illuminant. The 
3rd illuminant has the smallest scaling factor.    

Figure 80 shows that the scaling factor for the 3rd illuminant reconstructed view is much smaller than 

the scaling factor for the 1st and 2nd illuminant. That is because the 1st and 2nd illuminant are slightly 

darker than the (bright) 3rd illuminant, hence their scaling factor will need to be bigger to match 

ground-truth. 

 
Figure 81 The graph presents loadings matching of scaled loadings from 1st, 2nd and 3rd illuminant (red colour) with 
ground-truth loadings (blue colour). As we may notice from the graphs, scaled loadings gave a better match to ground-
truth. 

In Figure 81, we may observe scaled loadings that are similar to the ground-truth. The results of 

reconstructed images after applying the scaling factors are presented in Figure 82. 
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Uniform lighting 

1st Illuminant  

 

 
The 1st illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 1st illuminant data then 
applying a scaling factor to match a 
ground-truth representation. 
 

Ground-truth multi-illuminant image 
representation. 

 

  

2nd Illuminant  

 

The 2nd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 2nd illuminant data then 
applying a scaling factor to match a 
ground-truth representation. 

 

Ground-truth multi-illuminant image 
representation. 

 

 

3rd Illuminant  

 

The 3rd illuminant data in the multi-
illuminant image is present. The rest 
information is taken away (blacked out). 

The multi-illuminant image reconstructed 
using only 3rd illuminant data then 
applying a scaling factor to match a 
ground-truth representation. 

 

Ground-truth multi-illuminant image 
representation. 

 

Figure 82 1st Illuminant, 2nd Illuminant and 3rd Illuminant show reconstruction of different facial expressions having 
only information of the face from 1st Illuminant, 2nd Illuminant and 3rd Illuminant (see Movie 11.avi).  
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 From visual inspection in Figure 82, it can be noticed that the reconstructed image for all 

illuminants after applying a scaling factor looks very close to the ground-truth representation from our 

content addressable memory. However, to the naked eye, the reconstructed images looked the same 

as the ground-truth after applying a scaling factor. The only way we could see the difference between 

the images was by checking the data from the graphs. The accuracy was to be expected because the 

scaling factors have been obtained individually for each principal component and illuminant.  

 By examining the correlation coefficients of facial expression at position 281 in graphs of the left 

column in Figure 83, we may see a very high correlation value between scaled/reconstructed data and 

ground-truth. As in the first, second and third experiments, the correlation exceeds 0.8. This means 

that the reconstructed and later scaled images derived from multiple illuminants are a close match to 

the original data representation. In the histogram graphs of the right column, we may observe how 

correlation data is distributed for every illuminant. 
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Our experiment in four illuminance conditions demonstrates that we can extend the set of 

existing techniques for generating a representation that allows for the encoding of multiple views in a 

single representation to the problem of lighting invariance. We know that changes in illumination can 

cause a dramatic variation in the appearance of the facial image and seriously affect the performance 

of face recognition systems. The standard way to achieve illumination invariance in computer vision is 

to eliminate the influence of the illumination by operating on edges, thereby removing any shading of 

the face. Acknowledging the fact that humans can recognise faces in various illuminants when only a 
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Figure 83  shows correlation results. The points in three graphs of the left column show PC scores relation that defines 
how close the scaled/reconstructed 1st illuminant, 2nd illuminant, and 3rd illuminant are to the ground-truth. Also, a point 
in these graphs, at position 233 shows the correlation between the scaled/reconstructed 1st, 2nd and 3rd illuminants and 
the ground-truth accordingly. The blue bars in three graphs of the right column show the distribution of correlation 
between pairs of image weights of reconstructed illuminants and the ground-truth data. 
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part of the face is present or when the face has been binarized, e.g. Mooney faces, we have addressed 

the problem of illuminant invariance for grey-scale facial images. In this work, we have included all the 

shading information in the face and analysed the face holistically. We found that this general approach 

could relate faces captured under different illumination conditions.  To test the model, we created four 

non-rigid facial sequences with different types of diffuse lighting positions. Every facial motion 

sequence was captured as a multi-illuminant image, consisting of three different illuminants. The 

diffuse lights from the left and right had some effect on the reconstruction of the data. However, the 

reconstructions still have better correlations than one would get by looking at random pairings of the 

ground-truth data. The reconstructions had defects that were visible to the naked eye. From visual 

inspection, the reconstructed multi-illuminant images from the uniform lighting condition before 

applying a scaling factor looked identical to the original data representation. 

Results showed that the best match between reconstructed and ground-truth data was obtained 

from the 3rd illuminant. When the illuminant was weak, the reconstruction results were weaker, e.g. data 

derived from the 1st and 2nd illuminants. Nevertheless, when we amplified the muted reconstruction of 

facial behaviour for different illuminants by scaling against ground-truth, the reconstructions were 

successful. We found correlation coefficients that define how well the reconstructed results are in relation 

to the original data. The correlation coefficients of four controlled lighting situations for all illuminants of 

randomly chosen face expression from the sequence ranged between 0.8 and 0.9. It means that the 

reconstructed images are almost identical to the original data. This method helped to obtain an answer 

to the problem of recognising/reconstructing face over different lighting conditions.  

5.3. Chapter 5 summary 

In chapter 4, a face recognition problem of multiple poses has been introduced, which was solved using 

a view-based approach built on the existing Cowe PCA-based model (Cowe 2003). In chapter 5, we 

wanted to go further and apply a view-based approach to address the illuminance problem. Here 

hardware has been modified (see in 3.1.3) so that we would achieve the illusion of different lights in 

different locations in the face. The main reason why we have chosen to create and implement this 

method to solve the lighting invariance problem is that we can build a set up for every single frame 

and receive three different illuminances per every single frame. There is no switching between 

illuminances on a frame by frame basis, which would be very complicated to do.  
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6. Object constancy over asynchronous view-based data using PCA-

based facial mimicry.  

Humans have an excellent capability to distinguish between faces. However, they are good at 

recognising or matching faces that are familiar to them, even if they are presented in very low-quality 

images (Burton et al., 1999; Natu & O’Toole, 2011), but are much worse at recognising, or merely 

matching unfamiliar faces (Bruce et al., 2001; Burton et al., 1999; Megreya & Burton, 2006). The 

process of learning a new face requires perceptive flexibility of forming that person’s face in different 

representations. In previous chapters (chapter 4 and chapter 5), we have investigated face recognition 

in multiple pose and lighting conditions and were able to reference multiple appearances of the same 

face to a single general cause using a multi-vector with the use of the PCA-based approach. However, 

humans cannot see all the different face views at the same time, and neither can they observe the 

variety of lighting conditions at the same time. Therefore, the principal aim of this chapter is to explore 

whether it is possible to build a multi-view model vector from asynchronous data to handle unfamiliar 

face reconstruction at wide angular differences between viewpoints. This would help us to achieve 

object constancy for unfamiliar faces across multiple views. 

Multiple research showed that change in viewpoint has a significant influence on the 

recognition of unfamiliar faces (e.g., Bruce, 1982; O’Toole et al., 1998). Bruce, in his research, 

discovered that when the views of faces between study and test phases were different, recognition 

time and accuracy for unfamiliar faces was lower than for familiar faces (Bruce, 1982). He noted that 

recognition decreased from 90 per cent when views of the faces in both phases were the same to 76 

per cent and when they were different. In addition, participants in this study had a better recognition 

memory for unfamiliar faces when they had prior knowledge of face pose while performing face 

matching tasks other studies showed that familiar faces could be recognised even under significant 

changes in pose (Bruce & Young, 1986; Eger et al., 2005; Hill et al., 1997).  These findings suggest that 

perception and recognition of unfamiliar faces are viewpoint dependent when familiar faces appear to 

be represented in a viewpoint-invariant manner. Several studies confirmed that by revealing that 

familiar and, unfamiliar faces have different neural mechanisms regarding the viewpoint information 

(Pourtois et al., 2005; Ryu & Chaudhuri, 2006). Pourtois et al. (2005), in their study, observed a 

repetition-related activation decrease on the right side of the fusiform cortex for unfamiliar faces. For 

familiar faces, the same specific region was found in the left medial of the fusiform gyrus. This leads to 

a conclusion that although recognition of familiar faces is viewpoint-invariant, the processing of 

familiar faces still depends on viewpoint information.  
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Other studies claim that changes in facial expressions could have a significantly higher impact 

on the recognition of unfamiliar faces than of familiar faces. Bruce (1982) used different viewpoints 

and expressions for the study and test phases and found that the resulting performance in recognition 

of unfamiliar faces reached only 61 per cent (Bruce, 1982). The reaction times in matching faces with 

different facial expressions, on the other hand, were the same for familiar and unfamiliar faces. 

Nevertheless, if one eliminates the information of facial expressions from the face-matching process, 

the effect of familiarity can still be observed. Although the facial expressions did not affect the reaction 

time of the participants while matching unfamiliar faces, the reaction time for matching familiar faces 

was much faster with faces that represented happy expressions than with faces that represented angry 

expressions (Kaufmann & Schweinberger, 2004). It shows that even recognition of familiar faces 

depends on some expression information to aid the recognition process. 

Surrounding information (in rigid changes in viewing angle) also impacts face perception. 

However, it has a larger effect on the perception of an unfamiliar face than a familiar one (Memon & 

Bruce, 1985). The recognition-memory task showed that by changing both face pose and surrounding 

information, one could significantly impair perception of unfamiliar faces, while the perception of 

familiar faces will stay unaffected (Davies & Milne, 1982). Other studies also observed the negative 

influence of surrounding information on the recognition of unfamiliar faces (Dalton, 1993; Russo et al., 

1999). 

As we see, image changes such as variation in the angle of viewing, facial expressions, or external 

information are very harmful to unfamiliar face matching and recognition performance tasks. On the 

other hand, recognition performance stays very high for familiar faces regardless of such changes. 

Seeing faces in various viewing angles or facial expressions is essential in building a representation of 

familiar faces. Familiar faces are represented by internal features of a face, which also helps effective 

face perception. Unfortunately, unfamiliar faces are viewpoint dependent and cannot rely on internal 

features information in a way as familiar faces can. It seems that variations in the images extremely 

influence the recognition of unfamiliar faces. Thus, it is very important to have extreme caution and 

clarity while choosing information that will be used in the images in the comparison task of unfamiliar 

faces. Several studies confirmed such sensitivity to the changes in the images. For example, Burton et 

al. showed that participants could easily recognise and match familiar faces even in low-quality 

commercial CCTV images and failed with matching unfamiliar familiar faces (Bruce et al., 2001; Burton 

et al., 1999). Bruce et al. showed that participants performed poorly in the face determination task 

even when they had prior knowledge of an unfamiliar face and were hesitant to answer whether the 

face they have seen before could be present in one of the ten images that were laid in front of them. 

The recognition accuracy for this task reached only 70 per cent. Even when participants were told that 
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a person they have previously seen was present on the sample images, the accuracy was still only 79 

per cent. 

In this chapter, we examine whether it is possible to build and use a multi-view model vector from 

asynchronous data to handle unfamiliar face reconstruction at vast angular differences between 

viewpoints and include all of the above-mentioned variations that disturb the matching performance 

of unfamiliar faces. In order to address this issue, PCA spaces will be constructed separately for a 

frontal face, three quarter, two third and profile views. We will then take a face in a frontal view with 

a particular facial expression and generate this face in the other PCA spaces. Next, we will group the 

data together to make a surrogate multi-vector, which would be almost equivalent to recording the 

different face views at the same time. Last, we will compare the data with the ground-truth to see how 

well this strategy worked. 

6.1. Test stimuli: the database of asynchronous face sequences.  

A set of non-rigid facial motion sequences was created to test the model. The sequences 

represent a non-rigid capture of facial behaviour from four different viewpoints filmed under the same 

lighting conditions at the same times. Sequences were captured using four Grasshopper GRAS-03K2C 

(FireWire) digital cameras, at a rate of 60 frames per second, at 640x480 image resolution with RGB 

24-bit pixel format. The sequences were of an expressive talking face, and they lasted around 30 

seconds. For this experiment, the asynchronous data sequence was constructed from synchronised 

data sequences. The motion sequences were aligned, as described in 3.1., and calibrated, as described 

in 3.1.1., and 3.1.2.  The sequences were vectorised as described in 3.3.1. The sequences for each face 

pose were processed with PCA, and the basis vectors were extracted to form a PCA-based model. The 

computational strategy that was used to create the asynchronous data is introduced below. 

6.2. Results of the experiment  

The results of the first experiment show the reconstruction of four perspective views of a face 

from a single perspective. For this experiment, four separate PCA spaces were created, one for each 

unique viewpoint of the face (e.g. frontal view, 3/4 view, 2/3 view and profile view). A frontal view of 

the face was taken as an example and was mapped into these different PCA spaces separately to find 

an image that would best represent the data in the different poses from the input face. 
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          Frontal view face example 

 

Image from the frontal view PCA 
space, to be mapped into 3/4, 2/3 
and profile PCA spaces 

 

        frontal view                        3/4 view                             2/3 view                       profile view 

Figure 84 Face expression of frontal view reconstructed in other perspectives. Reconstructed looks were concatenated 
together to build one multi-view surrogate image. A surrogate multi-view image was obtained from separate mapping 
frontal view space image into 3/4 view, 2/3 view, and profile view PCA spaces.  

Figure 84 demonstrates an asynchronous surrogate multi-view image created from the 

mapping of a frontal view PCA space image into 3/4, 2/3, and profile PCA spaces. As mentioned earlier, 

synchronised data was used to create asynchronous surrogate multi-view representation; however, a 

PCA space for every viewpoint was created from synchronised data sequences collected at different 

time points. Hence, views in the multi-view image are not related. The frontal view is 18 degrees away 

from 3/4 view, 36 degrees away from 2/3 view and 54 degrees away from a profile view. Here, the 

asynchronous multi-view images can only be judged by eye because there is no ground-truth 

representation of the faces with the mapped expressions. From visual inspection, the frontal face 

expression of eyes wide open and mouth shut appear to be in all the mapped views. However, if we 

take a closer look at the facial expression of the profile view, the mouth is more open, but the eyes are 

almost closed. It was an unexpected mapping behaviour. The 3/4 face multi-view appear to be similar 

to the frontal face multi-view, with a small error in the frontal face, where eyes appear to be slightly 

closed. The 2/3 view gave slightly worse results than the 3/4 view in the reconstruction of facial 

expression. The eyes and the mouth in the 2/3 view were more closed than on the face in the 3/4 view. 

How would surrogate multi-view face image look like if mapping would be made from 3/4, 2/3, and 

profile views? (see Figure 85) 
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Figure 85 presents the surrogate multi-view face images made from mapping 3/4, 2/3 and profile view 

spaces into the other view spaces. From visual inspection, the 3/4 face multi-view appears to be similar 

to the frontal face multi-view, with a small error in the frontal face, where eyes appear to be slightly 

3/4 view face example 

 

Image from the 3/4 view PCA 
space, to be mapped into frontal, 
2/3 and profile PCA spaces. 

 
        frontal view                        3/4 view                             2/3 view                       profile view      
Surrogate multi-view image, obtained from mapping a 3/4 view space image into other spaces.   
2/3 view face example 

 

Image from the 2/3 view PCA 
space, to be mapped into frontal, 
3/4 and profile PCA spaces. 

 
        frontal view                        3/4 view                             2/3 view                       profile view 
Surrogate multi-view image, obtained from mapping a 2/3 view space image into other spaces.   
profile view face example 

 

Image from the profile view PCA 
space, to be mapped into frontal, 
3/4 and 2/3 PCA spaces 

 
        frontal view                        3/4 view                             2/3 view                       profile view      
Surrogate multi-view image, obtained from mapping a profile view space image into other spaces. 
Figure 85 Face expression of one view reconstructed in other views. 
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closed. The 2/3 face multi-view gave slightly better results in the reconstruction of the facial expression 

than the profile view. The mouth is slightly opened, and the eyes are somewhat shut in all of the 

reconstructions from 2/3 face multi-view image. The profile view had little information about how the 

facial expression should look like from other perspectives; hence, nearly closed eyes and open mouth 

can be observed in mapped facial expressions of all views. 

Having built separate PCA spaces, we wanted to go further and test the multi-view model with 

asynchronous data providing object constancy over multiple views in a more natural setting. Hence, 

the surrogate multi-view asynchronous image sequence was vectorised as described in 3.3.1. The 

sequence was processed using PCA, and the basis vectors were extracted to form a PCA-based model. 

Next, a reconstruction method was used, which was introduced to investigate object constancy over 

multiple poses and in different illuminance conditions (Experiment 3 in chapter 4 and Experiment 1 in 

chapter 5). The content addressable memory was loaded with 446 asynchronous multi-views, which 

included a wide range of views and non-rigid facial expressions. The content addressable memory (PCA 

space with all views) was used to reconstruct missing viewpoints in a multi-view image (see Figure 86). 

After creating a PCA space from the asynchronous sequence, the nose area became blurred in the 

frontal face representation. To reconstruct missing asynchronous face views from only one face view, 

we mapped an image vector derived from that face into a multi-view content addressable memory. 

The reconstruction of missing faces was performed from frontal, 3/4, 2/3 and profile views. The 

process of reconstructing missing asynchronous face views was repeated as introduced in subsection 

4.1.5 and chapter 5. The reconstruction results are presented in Figure 87. 

 

 

 

 

 

             
            frontal view                                         3/4 view                                            2/3 view                                    profile view 

Figure 86 One of 466 concatenated multiple views, which are stored in the content addressable memory. 
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Frontal view  

 

Concatenated multiple views with removed 
all but frontal view. 

 

The multi-view image reconstructed using 
only frontal view information. 

         
 frontal view           3/4 view              2/3 view         profile view 

Ground-truth multi-view image 
representation. 

3/4 view  

 

Concatenated multiple views with removed 
all but 3/4 view. 

 

The multi-view image reconstructed using 
only 3/4 view information. 

         
 frontal view           3/4 view              2/3 view         profile view 

Ground-truth multi-view image 
representation 

2/3 view  

 

Concatenated multiple views with removed 
all but 2/3 view. 

 

The multi-view image reconstructed using 
only 2/3 view information 

           
 frontal view          3/4 view               2/3 view        profile view 

Ground-truth multi-view image 
representation 

Profile view  

 

Concatenated multiple views with removed 
all but profile view. 

 

The multi-view image reconstructed using 
only profile view information 

            
    frontal view          3/4 view       2/3 view                    profile view 

Ground-truth multi-view image 
representation 

Figure 87 Face reconstruction over multiple views using only certain viewpoint information (see Movie 12.avi). 
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Rigid changes in the face were better reconstructed from all views than non-rigid facial 

information. Reconstructed views in multi-view image from the frontal view looks very similar to an 

example perspective (see Figure 87). The blur in the nose area disappeared for the frontal view. The 

open eyes and a shut mouth appear to be almost in all reconstructed views, except profile view, where 

the mouth is slightly open. From a closer look, starting from the frontal view and moving to the profile 

view, the eyes of the person are gradually beginning to close. Similar results are noted for 

reconstructed multi-view image from 3/4, 2/3 and profile perspectives. A similar tendency was noted 

in data reconstruction in Experiment 3 of chapter 4 and Experiment 1,2,3 of chapter 5. To summarise, 

the results of the visual inspection show that the best match with ground-truth was obtained from the 

frontal view. However, it is hard to identify which viewpoint gave the closest match to the ground-

truth with visual inspection only. Hence, we have plotted the 1st principal component values for both 

the reconstructed and the ground-truth face representations. It was done to have a better observation 

of how close reconstructed images are to the ground-truth (see Figure 88). 

 
Figure 88 Reconstructed and ground-truth of the 1st principal component values.  

From Figure 88, we may see that the best face reconstruction with ground-truth was made from the 

frontal view (left graph). The worst match with the ground-truth was made from the profile view. We 

have chosen to enhance the reconstructed values to match our ground-truth representation. A linear 

least-squares method was used to find the scale factor that generates the best correspondence with 

the ground-truth loadings. The obtained scaling factor for every principal component (ten principal 

components) and viewpoint is presented in Figure 89. 
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Figure 89 The scaling factor for four views to match the original data representation. 

 From Figure 89, we observe that for the frontal view (number 1) the scaling factor is much 

smaller than for the rest of the views. The scaling factors for the profile (number 4) and 2/3 view 

(number 3) are scattered the most because these two views contain less dynamic facial information 

than the frontal (number 1) and 3/4 (number 2) views. Next, the obtained scaling factor was applied 

to the reconstructed data. 

 
Figure 90 Reconstructed and ground-truth of the 1st (plot on the left) and 5th (plot on the right)principal component values are after 

applying a scaling factor.  

In Figure 90, we can compare the reconstructed and ground-truth values of the 1st PC 

component after applying a scaling factor. We can see that all reconstructed multi-views (red line) over 

all graphs after scaling had a better match with the ground-truth representation (blue line). However, 

we can also observe that in Figure 90, the profile and 2/3 views provided less than a perfect match to 

the ground-truth after the scaling factor was applied. In the profile view graph (Scaled perspective 4), 

the reconstructed data do not reach the ground-truth representation. For the 2/3 view (Scaled 

perspective 3), we may see some data exaggeration. For the rest of the graphs, the scaled data has a 

better match with the ground-truth. We can also evaluate these results at the image level (Figure 91). 
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Frontal view  

 

Concatenated multiple views with 
removed all but frontal view. 

 

The multi-view image reconstructed 
using only frontal view information. 

           
 frontal view           3/4 view              2/3 view         profile view 

Ground-truth multi-view image 
representation 

3/4 view  

 

Concatenated multiple views with 
removed all but 3/4 view. 

 

The multi-view image reconstructed 
using only 3/4 view information. 

            
 frontal view           3/4 view              2/3 view         profile view 

Ground-truth multi-view image 
representation 

2/3 view  

 

Concatenated multiple views with 
removed all but 2/3 view. 

 

The multi-view image reconstructed 
using only 2/3 view information 

           
 frontal view          3/4 view               2/3 view        profile view 

Ground-truth multi-view image 
representation 

Profile view  

 

Concatenated multiple views with 
removed all but profile view. 

 

The multi-view image reconstructed 
using only profile view information 

            
    frontal view          3/4 view       2/3 view                    profile view 

Ground-truth multi-view image 
representation 

Figure 91 Face reconstruction over multiple views using only one specified viewpoint after applying a scaling factor 

to match original data. (see Movie 13.avi). 
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From visual inspection, it can be noticed that the facial reconstruction for the frontal view after 

applying a scaling factor looks accurate and is very close to the ground-truth representation stored in 

the PCA content addressable memory. However, it can also be noticed that the face reconstructions 

of the other views look poor compared to the ground-truth. In the 3/4 view multi-view results, we can 

see an exaggeration of the opening of the eyes on the frontal face. In the 2/3 view reconstruction, we 

can observe some image disturbance for all the views. The profile view appears to be muted and 

imprecise in comparison to the ground-truth representation. However, from visual inspection, it 

appears that the reconstruction results obtained from the profile view were better than those from 

the 2/3 view, which was unexpected. Therefore, to better evaluate obtained results, we measured 

how all reconstructed and scaled multi-view images related to the ground-truth using the standard 

Pearson product-moment correlation coefficient approach. The mimicry generation and the degree of 

correlation between the reconstructed face pose and the ground-truth representation are presented 

in Figure 92. We found a correlation between principal component loadings extracted from the 433 

images that were black out at a specific part of multi-view driver sequence vectors and those from the 

ground-truth. The correlation values for frontal view were ranging between 0.927 to 0.9965, for the 

3/4 view – 0.6599 to 0.9894, for the 2/3 view – 0.2 to 0.97 and for the profile view – 0.2 to 0.9756. We 

have measured the percentage of data that had correlation values above 0.8. The data from frontal 

view had 100 per cent, 3/4 view had 99,7 per cent, 2/3 view had 9 per cent, and profile view had 14 

per cent of data with correlation coefficients above 0.8. These results suggest that the frontal face view 

have the most facial information to achieve the face reconstruction closest to the ground-truth, 

whereas the 3/4 view is next best.  

Interestingly, the profile view performed better in the face reconstruction task than the 2/3 

view. This is an anomaly that was unexpected, and it will be discussed later in this chapter. Next, we 

have randomly chosen an image from the sequence at position 199 to evaluate correlation coefficients 

between the reconstructed multi-view image from frontal, 3/4, 2/3, profile views and ground-truth 

accordingly (see Figure 92, graphs on the left column). The correlation values were ranging from 

0.6648 to 0.9848. From graphs on the left column in Figure 92, we can see that the highest 

reconstruction value was obtained from the frontal view with the value of 0.9848, the second largest 

value was obtained from the 3/4 view -  0.9167. The profile view gave the third most value, 0.6866, 

and the least value was obtained from the 2/3 perspective – 0.6648 

 

 

 



 122 

 

fr
o

n
ta

l v
ie

w
 

  

3
/4

 v
ie

w
 

 
 

2
/3

 v
ie

w
 

 
 

p
ro

fi
le

 v
ie

w
 

  
Figure 92 Correlation results for the multi-view face reconstruction using only frontal, 3/4, 2/3 and profile views 

information accordingly. The points in plots on the left column denotes loadings that show how close the reconstruction 
results are to the original data.  Also, a point in the plots, at position 199, presents the correlation between the 
reconstructed multi-view image from frontal, 3/4, 2/3, profile views accordingly and ground-truth. The blue bars in plots 
in the right column depicts the correlation distribution of correlation results. 
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Visual inspection showed that reconstruction results from the profile view were better than 

results from the 2/3 view, which was unexpected. This anomaly in results was also confirmed by the 

correlation values. There are several possible explanations to why this anomalous error appeared. 

First, this anomaly in face reconstruction can be a result of weak face registration. The blurring 

in the frontal view of the surrogate multi-view image is evidence of poor registration of the different 

frames. From subchapter 3.3. we know that face registration is achieved by warping each remaining 

multi-view image from the chosen multi-view reference image. Hence, if a reference image will not be 

present in a neutral expression, with widely open eyes and the slightly open mouth, showing the teeth 

with a small black gap between them (so that the McGM can find a way to warp the reference image 

to reconstruct any dental or buccal features in the remaining images) (see chapter 3), then the face 

illustrations will not look nice and sharp. Thus, if face registration is weak and looks different after the 

warping process, the face alignment will also be affected, which may cause wrong reconstruction 

results.  

Second, this anomaly could be caused by the poorer alignment of all views along the horizontal 

axis. The model developed in this thesis performs poorly if the dataset is misaligned. Even if data is 

perfectly aligned along the horizontal axis but is shifted up or down along the vertical axis, it will 

negatively affect mapping results. 

Third, the presence of anomaly could be due to the face being in different shapes. A frontal 

view contains maximum information of the face, however, mapping a full face to profile did not have 

significant results, and reconstructed faces looked very poor. One way to explain it, that these 

differences may occur when both the driver and the target faces have different shapes, hence 

projecting the driver morph vector into the target PCA face space will create weird expressions on the 

target face. This mismatch may be improved or even avoided if we change the driver's morph vector 

components (e.g. warp and texture) before projecting it into the target face space. If the face features 

(eyes and philtrum) of a driver's face are not aligned sufficiently with features of the target face, an 

affine transformation should be applied. Next, they should be added to the target's morph mean vector 

because it will make a better alignment with the features of the target face.   

Fourth, this anomaly could be more of a specific effect caused by something that occurred in 

the process for this particular set of data. It may be a generic process. Therefore, one may be required 

to go back to the beginning of the experiment and see if it is possible to improve the data set and then 

repeat the process with a corrected data set. Since this experiment was performed only once, it is 

difficult to know how the process would look like with a corrected or another dataset. 
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In the first part of this chapter's experiment, a unique PCA space was computed for each of 

the four asynchronous views of an individual’s face. The face was mapped from one view to another 

by taking components in the face-space of one perspective and mapping them into the face-space of 

another perspective. For this experiment, only four views of the face were used, e.g. frontal, 3/4, 2/3 

and profile.  In some cases, this strategy worked well. However, it appeared that better mapping 

between spaces could be obtained for views that were close to each other (e.g. frontal to 3/4 view, 18 

degrees). When the views were too far apart, the process broke down to some degree (e.g. frontal to 

profile view, 54 degrees). It can be observed in the multi-view representation that was obtained from 

mapping using only frontal view face information. When the frontal face was mapped into 3/4 view, 

and the angle between perspectives was 18 degrees, the reconstructed face started to have small 

differences. The mouth area remained similar to the frontal face, while the eyes became slightly closed. 

A more prominent change in the reconstruction of the facial expressions was noticed after mapping to 

2/3 or profile views. The eyes were nearly closed eyes, and the mouth became open. Thus, the face 

views that were placed quite close to each other brought better quality mapping results between PCA 

spaces than those who had wider angular differences. Similar results were obtained in Experiment 2 

of chapter 4. 

In the second part of the experiment, as it was mentioned earlier, a multi-view representation 

was chosen, obtained by mapping a series of frontal view representations into other views. It appeared 

to be the best multi-view representation among all the views. For this multi-view sequence, a PCA 

space was computed, and the object constancy technique for multi-views was applied (the technique 

is introduced in chapter 4). 

6.3. Chapter 6 summary 

The question addressed in this chapter is, for the most part, a cognitive science issue. Human 

observers do not have the opportunity of seeing multiple views at the same time. For that matter, we 

do not have the possibility of seeing a face in various illuminances or views at the same time. Therefore, 

the previous experiment didn’t appropriately reflect the way in which the human brain achieves object 

constancy for unfamiliar faces. Thus, multi-view representations were modified to explain how 

humans match unfamiliar faces. Here a multi-view representation was used, which was built from the 

experience of seeing asynchronous faces. The aim was to conduct a computational experiment to see 

if a multi-view vector can be created from asynchronous data and whether it could handle unfamiliar 

face reconstruction at vast angular differences between the viewpoints. The experiment strategy was 

to make separate PCA spaces for all four views and then map difference vectors from one perspective 

into these separate PCA spaces to find an image that would best represent the data in the different 
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pose from the input face. Next, this strategy was evaluated by analysing the system (Experiment 3 of 

chapter 4). The results showed that when the face views were placed quite close to each other, good 

mapping quality could be achieved between PCA spaces (Experiment 2 of chapter 4). When the angle 

between the cameras increased to some degree, the mapping process started to break down. Hence, 

the mapping between PCA spaces is less productive when the angle between views is big. 
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7. Conclusions  

In this thesis, we developed a set of new computational approaches for face reconstruction over 

multiple views, various illuminance conditions and asynchronous data sets. These approaches aimed 

to explain object constancy for faces and exploited a photo-realistic PCA-based facial model, which 

allowed to generate human facial actions from video footage of a moving face. This chapter will 

present a summary and discussion of the thesis and reveal the essential advantages and disadvantages 

of these new approaches. It will address the contribution this work made to the current state of the 

art and introduce future research directions for extending and improving current work.  

7.1. Summary and discussion of the thesis 

Object constancy for faces in the human visual system draws a great deal of interest, mainly 

because of its many applications in the various fields, including psychology, security, computer 

technology, medicine, computer graphics. Over the last decades, these fields have implemented 

multiple research studies and introduced various theories and approaches that tried to explain how to 

achieve object constancy for faces. Still, despite significant interest in this topic, they could not come 

to one successful and definite answer. For this reason, the current thesis aimed to develop a new PCA-

based model approach of multiple appearances to explain object constancy for faces in human vision. 

This aim was achieved by creating three empirical pieces of research (chapter 4, 5, and 6), where a 

PCA-based multi-view mapping approach addressed the problem of reconstructing face under various 

pose, illuminance conditions and for unfamiliar faces. These pieces of research answered whether this 

approach is capable of replicating the built-in processes of the human visual system and can be used 

as a model of how humans achieve object constancy for faces.  

First, to replicate integrated processes of the human brain, this thesis obtained its knowledge 

from the studies in psychology and cognitive science that focus on the human visual system. Chapter 

1 provided a brief description of the face processing pathway and the vital part of the brain that is 

responsible for face perception, which is called a Fusiform Face Area (FFA). Also, it showed that the 

human visual system is viewpoint and lighting dependant, thus face constancy in the human brain is 

achieved in other ways. For instance, the systematic learning experience of changes in viewpoint 

directions or seeing faces in non-rigid facial motion can have a high impact on the process of face 

recognition and will help to achieve viewpoint invariance. To achieve lighting invariance, a face needs 

to be lit only by one light source positioned approximately over the head to recover simple shape from 

shading patterns. Familiarity with the 3-D depth structure of a face is equally important to obtain face 

constancy under various lighting conditions because face constancy is achieved by human vision 

processing faces holistically rather than based on the single features on the face. Most importantly, 
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why this thesis started to favour and chosen a view-based approach to build a PCA-based model of 

multiple appearances is that the brain is storing face frames in the two-dimensional face space. Hence 

a 2D image-based approach was used to encode facial movements.  

This thesis was setting up a computational model of a face to explain object constancy for faces, 

therefore, chapter 2  introduced the main strategies for encoding and animating faces in computer 

graphics together with the methods integrated into a new approach of this thesis and investigated 

how these methods relate to psychological theory on encoding the dynamic change in faces in the 

brain. In order to address the weaknesses of computer graphics algorithms, this study incorporated 

methods based on natural processes that are happening in the human brain. One of the methods is 

Principal Component Analysis (PCA). It is a well-known statistical technique that, while working on 

holistic information of faces, retains face information in 2D. This method was working as a content 

addressable memory used to recover information that is stored in the PCA space. This technique in 

more details was discussed in Chapter 3. Another method utilised in this thesis is Multi-channel 

Gradient Model (McGM), which is biologically motivated and introduced how motion perception is 

processed in human vision. It is an optic flow algorithm that was used to track relatively small facial 

motion in the video sequences. 

Chapter 3 gave a detailed explanation of the hardware and software together with fundamental 

methods that were used to build a face system for this thesis.  

Chapter 4 introduced empirical research to solve object consistency over multiple views, which 

was built on the existing PCA-based model introduced in chapter 3. The first experiment of this 

research showed that the developed technique not only succeeds in the performance-driven 

generation and animation of convincing photorealistic avatars, it also can distinguish between the rigid 

motion of the head and non-rigid movements in the face region over multiple-view sequence 

(Experiment 1, chapter 4). It showed that human vision could separate rigid motion of the head and 

non-rigid facial behaviour (expressions), which is very important for accurate facial recognition on the 

basis of dynamic image statistics. The second experiment showed that this technique is capable of 

reconstructing the face in one perspective from another perspective with high accuracy. This 

experiment allowed some insight into how the human visual system might deal with recognising faces 

in different independent perspectives, and the results suggest that people do not need to learn and 

store multiple face images from all the different perspectives in their head to accurately relate 

different views of the face (Experiment 2, chapter 4). Finally, the third experiment, the reproduction 

of missing viewpoints in a multi-view setup, produced an image of equivalent precision to the ground-

truth (Experiment 3, chapter 4). In this experiment, a PCA space worked as a content addressable 
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memory where all views were present. Having information only of one perspective, we reconstructed 

the missing viewpoints in a multi-view image. Initially, the reconstructed changes were muted. The 

quality of reconstruction has been improved by finding a scale factor, which defined the degree to 

which it needed to increase the weights of the reconstructed data to match the weights of the ground-

truth data. After applying the scaling factor, the reconstructed data started to have a better match to 

rigid and non-rigid facial data. This method of recognising/reconstructing faces from different 

perspectives with all but one missing viewpoints makes use of a simple statistical model that could be 

used in the human visual system. These three experiments showed that the set of re-purposed existing 

techniques for generating and driving photo-realistic generated faces is a very powerful method for 

reconstructing and reproducing non-rigid facial information over multiple views. 

In chapter 5, empirical research explored whether the method that was used to generate 

invariance over the pose in chapter 4 could work to explain lighting invariance. The experiment was 

performed over four different illuminance conditions, where existing techniques for generating and 

driving photo-realistic faces were re-purposed for reconstructing and reproducing non-rigid facial 

information over multiple lighting conditions.  Every facial motion sequence was captured as a multi-

illuminant image, consisting of three different illuminants. The multi-view reconstruction strategy has 

been applied to analyse multi-illuminant images. From a visual inspection, the reconstructed multi-

illuminant images from the uniform lighting condition looked very similar to the original data 

representation before the scaling factor was applied. Results showed that the best match between the 

reconstructed and ground-truth data was obtained from data that was strongest illuminated in four 

different illuminance conditions. When the illuminant was weak, the reconstruction results were 

poorer. The initial results showed that rigid facial data provided a good match from all the illuminants, 

but non-rigid facial data only from the data with intense illuminant. Nevertheless, when the muted 

reconstruction of the facial behaviour has been amplified for different illuminants by scaling against 

ground-truth for all the reconstructions, overall illuminance conditions became successful. It has been 

identified that this general approach can relate faces captured under different illumination conditions. 

This method gave us an opportunity to answer how human vision is able to 

recognise/match/reconstruct faces over different lighting conditions. 

Empirical research in chapter 6 created a computational experiment to show if a multi-view vector can 

be built from asynchronous data to explain face constancy for unfamiliar faces. A multi-view vector 

from asynchronous data was built in the laboratory settings. This experiment was divided into two 

computational parts, where in the first part, unique PCA spaces were computed for each of the four 

perspectives of an individual’s face. These perspectives were unrelated to other different views. A face 

was mapped from one view to another by taking a difference vector (frame subtracted from the mean) 
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in the face-space of one perspective and projecting them into the face-space of another perspective. 

Here, the computational method introduced in chapter 4 in experiment 2 has been replicated. In the 

second part of the experiment, the surrogate multi-view was composed of an image obtained from a 

frontal view from the first part of the computational experiment. For this multi-view sequence, a PCA 

space has been created, and the object constancy technique for multi-views been applied that as 

introduced in Experiment 3 of chapter 4. Here similar results were expected as in previous experiments 

using synchronous data. However, it appeared that even after finding and applying a scaling factor to 

match the original data, the best match was made from the frontal view representation. The images 

reconstructed from 3/4, 2/3 and profile views gave much poorer face reconstruction results. It would 

appear that the full face contains limited information about the profile view, hence face reconstruction 

in such views is low. The 3/4 view has information about the 2/3 view and frontal view, however, it did 

not give a good match to the ground-truth. Also, face reconstruction results obtained from the profile 

view were better than the 2/3 view. These results were unexpected. The possible reasons that could 

have caused this anomaly in results were also presented in chapter 6. Nevertheless, this work offered 

a proof of concept that the construction of a multi-view vector from asynchronous data is feasible. 

Therefore, a proposed approach may stand as a putative and alternative model of view invariance and 

lighting invariance in the human visual system. 

7.2. Discussion of contributions 

There have been many computational methods developed that tried to solve object/face 

reconstruction in various poses and lighting using different computer graphics strategies. For instance, 

the polygons approach. This approach could realistically replicate the anatomical structure of a face 

and facial dynamics, which made it a primary method for face reconstruction in the movie industry. Or 

view-based approaches that used only two-dimensional image information as a keyframe to construct 

a three dimensional morphable model of a face. But all of them had some disadvantages and could not 

address face reconstruction fully and invariant to wide poses and lighting changes. The approach 

developed in this thesis is capable to replace these complex face models. The model we developed 

does not use large databases or any landmark annotations to realistically reconstruct even small details 

on the face in the vast-angle between the viewpoints, while it replicates all the mechanisms that are 

built-in in the human visual system. Also, this model processes faces holistically and includes all the 

shading information of the face to achieve face constancy under various lighting conditions, the same 

as the human vision system does.  

The evaluation of the performance of the PCA methods has been accomplished by comparing it 

with another image-based method, called morphing. Results showed that both techniques had proven 
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to bring good results when the angle between views was small (around 5 degrees). However, the 

results of the morphing method failed badly when the angle between views increased up to 25 degrees, 

and only the PCA mapping approach with minor defects were able to obtain high reconstruction results. 

A multi-view method introduced in 4.1.5, on the other hand, can handle realistic faces reconstructions 

even when the angle between poses reaches 90-degrees. Comparison of the results showed that the 

morphing method would be working within a few degrees of rotation, but it will fail badly with a vast 

difference in face pose when the PCA multi-view approach is able to bring high face reconstruction 

despite a big change in perspective. Overall, the combination of performance-driven PCA-based 

mimicry and multi-view approach produced good results in the retrieval of missing viewpoints, 

illuminated faces and asynchronous faces from a multi-view facial representation.  

7.3. Future directions 

This thesis developed an image-based method for vectorising faces to explain object constancy 

for faces in three uncontrolled conditions. Experiments showed that this methodology was successful 

in face reconstruction over multiple poses and illuminations conditions, and to some degree, over 

asynchronous view-based data. Thus, future research on this topic should investigate what can be 

changed to improve the multi-view approach performance. One way to approach this would be to 

improve the computational aspect of this work. As mentioned in chapter 6, in the process of building 

a multi-view vector, there were some issues with particular views like a profile or 2/3 views. This 

process could be improved in several ways: by correcting alignment in the images, improving image 

registration, more data collection and testing on different datasets, adjusting pairs of views or perhaps 

a finer sampling of the views. For instance, a finer sampling of the profile view would make sense 

because if the change is made from the full-face to the face rotated by 30 degrees in the horizontal 

plane, it will not lead to a significant change in the face representation. However, if the degree of 

viewing angle will change from a 70-degree to a 90-degree angle, it will lead to a big difference in facial 

appearance.  

Another aspect that should be explored in future research is empirical evidence, whether a better 

module of a face can influence an easier transfer from one view to another. As we know from 

experimental work in humans that it is quite hard to make an adjustment if the face is the same or not 

over different viewpoints. People do not recognise a face so easily from a different perspective. If they 

learn faces, they learn the face in one view and test in another. As we know from a study of Tamara 

Watson, view invariance is much better with dynamic information than with static information 

(Watson et al., 2005). Probably people can see the pattern of the continuous motion, and that carries 

over to profile better than just a shape of the face (an anomaly in results introduced in chapter 6). 
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When we are building these PCA spaces, it is basically an expression space, so we are using many videos 

of dynamic changes in the face. We are creating separate modules based on those dynamic changes 

and are looking at how the face changes for the viewpoints. Although people have shown (Hill & 

Johnston, 2001) that it is hard to recognise the face in different views, however maybe with a better 

module of the face, it would be easier to do?  Finally, future research should investigate whether there 

are any more powerful and multipurpose vectorisation methods than those proposed in this thesis 

that could be used to optimise mathematical computations to speed up the whole face reconstruction 

process or transform this method into a fully automatic approach. 
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