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Abstract 
 

Research on the molecular lesions that drive cancers holds the translational 

promise of unmasking distinct disease subtypes in otherwise pathologically 

identical patients. Yet clinical adoption is hindered by the reproducibility crisis for 

cancer biomarkers. 

 In this thesis, a novel metric uncovered transcriptional diversity within 

individual non-small cell lung cancers, driven by chromosomal instability. Existing 

prognostic biomarkers were confounded by tumour sampling bias, arising from this 

diversity, in ~50% of patients assessed. 

An atlas of consistently expressed genes was derived to address this diagnostic 

challenge, yielding a clonal biomarker robust to sampling bias. This diagnostic 

based on cancer evolutionary principles maintained prognostic value in a meta-

analysis of >900 patients, and over known risk factors in stage I disease, motivating 

further development as a clinical assay. 

Next, in situ RNA profiles of immune, fibroblast and endothelial cell subsets 

were generated from cancerous and adjacent non-malignant lung tissue. The 

phenotypic adaptation of stromal cells in the tumour microenvironment undermined 

the performance of existing molecular signatures for cell-type enumeration. 

Transcriptome-wide analysis delineated ~10% of genes displaying cell-type-specific 

expression, paving the way for high-fidelity signatures for the accurate digital 

dissection of tumour ecology. 

Lastly, the impact of branching, Darwinian evolution on the detection of epistatic 

interactions was evaluated in a pan-cancer analysis. The clonal status of driver 

genes was associated with the proportion of significant epistatic findings in 44-78% 

of the cancer-types assessed. Integrating the clonal architecture of tumours in 

future analyses could help decipher evolutionary dependencies. 

This work provides pragmatic solutions for refining molecular portraits of 

cancer in the light of their evolutionary and ecological features, moving the needle 

for precision cancer diagnostics. 
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Impact Statement 
 

Lung cancer is the leading cause of global cancer mortality. Surgical resection 

alone in non-small cell lung cancer is considered curative for the majority of 

patients with stage I disease. However, around a third of stage I cancers return 

after surgery. A genomic test to distinguish between high- and low-risk lung 

tumours could help identify patients that might receive benefit from adjuvant 

therapy. This has proved difficult, in part because cancer is an evolving disease, 

with a patchwork of different cells making up each individual tumour. With existing 

tests, sampling two sites of the same tumour could yield two completely different 

results depending on where the biopsy needle is placed. In this thesis, a novel 

genomic test was developed to solve this problem. Combining an understanding of 

cancer evolution with machine learning approaches, the test identified high-risk 

stage I patients that were missed using known risk factors, warranting further 

development as a clinical assay. 

The licensing of immunotherapy drugs for lung cancer patients has given 

rise to another diagnostic challenge, as durable responses are only seen in ~20% 

of patients with advanced lung cancer. A molecular measure of immune infiltration 

within tumours could predict patient responses. Yet existing biomarkers fall short of 

clinical-grade accuracy. In this work, detailed molecular profiles of immune cells 

were generated from lung cancer patients. These profiles varied between 

cancerous and adjacent non-malignant lung tissue, which impacted the 

performance of some existing immune infiltration metrics. Moreover, discriminating 

molecular signals unique to each individual cell-type could be identified, paving the 

way for robust ecological biomarkers. 

Computational approaches can illuminate core evolutionary dependencies 

between alterations in cancers. However, these methods may be biased to focus 

on ancestral events, occurring early in the life history of a tumour. This thesis 

confirmed that existing methods tended to overlook branching signals of on-going 

evolution. Addressing this bias could help define evolutionary bottlenecks that 

might be therapeutically targetable. 

Overall, the results of this thesis demonstrate how an understanding of the 

evolutionary and ecological behaviours of lung tumours can be taken to the clinic.  
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Chapter 1. Introduction 

1.1 Introduction 

The transformation of normal healthy cells into malignant cancers involves the 

acquisition of somatic alterations, re-wiring the signalling pathways that govern 

cellular proliferation and homeostasis (Hahn and Weinberg, 2002). In the words of 

Peyton Rous, “tumours destroy man in a unique and appalling way, as flesh of his 

own flesh which has somehow been rendered proliferative, rampant, predatory and 

ungovernable” (Rous, 1967). 

 

Over the past two decades, research on the molecular lesions that drive cancers 

has begun to translate into improved patient outcomes (Collins and Varmus, 2015). 

Yet there is a substantial disparity between the research and labour investment in 

molecular oncology over the last two decades and clinically validated molecular 

markers (Kumar-Sinha and Chinnaiyan, 2018). In the context of diagnostics, this 

mismatch has been referred to as the “cancer biomarker problem” (Sawyers, 

2008). 

 

In this chapter I give an overview of the current landscape for molecular biomarkers 

in oncology, and explore in detail the emerging evidence on the potential roles of 

two frontiers in the future development of molecular biomarkers: cancer evolution 

and ecology (Maley et al., 2017; Zahir et al., 2020). 
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1.2 Molecular portraits of cancer 

Over the past two decades, oncological diagnosis in solid cancers has moved from 

a taxonomy based on tissue-type (lung cancer, breast cancer, etc) to a more 

precise approach integrating indicators of patient or tumour biology (biomarkers) 

(Sawyers, 2008). Prognostic biomarkers predict survival time from diagnosis to 

death, helping to stratify patients for surgical resection and (neo)adjuvant 

treatment. Alternatively, predictive biomarkers estimate the benefit for a specific 

therapy, helping choose between treatment options (Ballman, 2015). 

 

In this section, I first outline the utility and limitations of tumour staging as a widely 

adopted prognostic biomarker. A brief history of molecular oncology is then 

provided, illustrating how technological advancements have led to an explosion in 

understanding of cancer as a genetic disease. Lastly, I give an overview of the 

promise and pitfalls of the emerging landscape of molecular biomarkers in the 

delivery of precision oncology. 

 

1.2.1 Tumour stage is an imperfect predictor of survival risk 

Tumour staging criteria capture the anatomic extent of disease at diagnosis. 

Classification is typically made according to the tumour-node-metastasis (“TNM”) 

scheme: T- primary tumour invasiveness and size, N – involvement of regional 

lymph nodes, M – presence of distant metastasis. TNM staging is prognostic, and 

is widely used as a biomarker to plan cancer treatment; to illustrate the scheme for 

non-small-cell lung cancer (NSCLC) is shown (Figure 1-1). Early-stage patients are 

considered low-risk, and surgical resection of the primary tumour is often curative. 

By contrast, late-stage patients are typically stratified for surgery and (neo)adjuvant 

chemotherapy, or palliative care in the presence of metastases in organs distant 

from the primary tumour (with the exception of a few cancer-types, such as 

advanced melanoma, where cures are now possible in stage IV disease). 
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Figure 1-1 Tumour stage as an anatomical biomarker  
The Tumour-Node-Metastasis (TNM) system for staging classifies cancer 
patients according to the anatomical extent of disease. A, The assessment of 
TNM stage is illustrated for four NSCLC patients, brief descriptions (with TNM 
breakdown) from left-right: stage I (T1N0M0) patient with small (<3cm) primary 
tumour; stage II (T2N0M0) patient with a larger (3-5cm) primary tumour; stage III 
(T2N2M0) patient with two ipsilateral lymph node metastases; stage IV 
(T2N0M1b) patient with a single extrathoracic metastasis to the brain. Colour 
scheme highlights primary tumour (red), lymph node metastasis (green), and 
distant metastasis (blue). B, Relationship between TNM stage and overall 
survival in NSCLC. Kaplan-Meier curve adapted from (Goldstraw et al., 2016). 
 

While Denoix first proposed the TNM scheme in 1946 (Denoix, 1946), widespread 

adoption was not immediate. In lung cancer a practical TNM scheme was not 

available until 1974, when Mountain and colleagues assessed the “force of 

mortality” for TNM combinations using data from more than 2,000 lung cancer 

patients (Mountain et al., 1974). Moreover, TNM staging schemes are continually 

revised to provide greater specificity in classification. In Mountain’s original TNM 

scheme for lung cancer, the “T” descriptor classified patients as “T1” if the primary 
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tumour diameter was <3cm (Mountain et al., 1974). This was later updated and 

split into “T1a” (<2cm) and “T1b” (2-3cm) (Goldstraw et al., 2007), and recently 

further sub-divided into “T1a” (<1cm), “T1b” (1-2cm) and “T1c” (2-3cm) categories 

(Goldstraw et al., 2016). In melanoma, the anatomical metric itself was revised. 

Initially, the diameter of the melanoma was used to estimate prognosis (Lehman et 

al., 1966), but this measure was later found to be an unreliable predictor and 

replaced by “Breslow’s depth”, measured from the surface of the skin to the 

deepest component of the melanoma (Breslow, 1970). 

 

In spite of these revisions, tumour stage is an imperfect predictor of survival risk, as 

patients with the same TNM class can have markedly different clinical outcomes. 

The heterogeneity of end results within stage groupings can confound patient 

stratification, resulting in under- or over-treatment. In lung cancer, surgical 

resection alone was considered curative for stage I patients (using TNM version 7 

criteria), but approximately 30% of stage I patients died within 5 years of diagnosis 

(Goldstraw et al., 2007), indicating this patient sub-group may be under-treated. 

Indeed, a meta-analysis of 5 trials of adjuvant chemotherapy by the Lung Adjuvant 

Cisplatin Evaluation group suggested a lack of treatment benefit in stage IA lung 

cancer (Pignon et al., 2008). A sub-group analysis of an adjuvant chemotherapy 

trial found a marginal benefit from chemotherapy in stage IB lung tumours >4cm in 

diameter (Strauss et al., 2008). The TNM classification for lung cancer was revised 

accordingly for the 8th version (Goldstraw et al., 2016), yet under-treatment remains 

a substantial problem (Sangha et al., 2010; Vargas and Harris, 2016). Early-stage 

breast cancer patients face the opposite problem of over-treatment, as the marginal 

survival benefit afforded by chemotherapy is outweighed by substantial treatment 

morbidity (van’t Veer and Bernards, 2008). In a meta-analysis by the Early Breast 

Cancer Trialists’ Collaborative Group, the majority of patients with small (<2cm) 

node-negative estrogen receptor positive (ER+) breast tumours <2cm received 

adjuvant chemotherapy, despite a survival benefit of less than 4% over 10 years 

follow-up (Early Breast Cancer Trialists’ Collaborative Group, 2005). 

 

Overall, there is a clinical need for novel biomarkers where current 

clinicopathological diagnoses fail to stratify patients with sufficient precision. Well-
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developed and validated molecular assays could support personalized therapy 

decisions. 

 

1.2.2 A brief history of molecular oncology 

“The revolution in cancer research can be summed up in a single sentence: 
cancer is, in essence, a genetic disease.” 

Bert Vogelstein & Kenneth W Kinzler (Vogelstein and Kinzler, 2004) 

Somatic mutations in cancer genes contribute to tumourigenesis (Vogelstein and 

Kinzler, 2004). Oncogenes are typically involved in processing extracellular growth-

stimulatory signals, and are activated in tumours by gain-of-function mutations, 

yielding a constitutive proliferation signal. On the other hand, tumour suppressor 

genes constrain deleterious cell proliferation. Loss-of-function mutations in tumour 

suppressor genes liberate cancers from growth suppression; canonically, “two-hits” 

are required to inactivate a tumour suppressor gene (Knudson, 1971). Major 

categories of somatic mutations include point mutations, involving subtle intragenic 

changes affecting crucial amino acid residues that regulate the activity of the gene 

product, and somatic copy number aberrations (SCNAs), involving chromosomal 

gain or loss events. 

 

As early as 1890, Boveri and von Hansemann described chromosomal 

abnormalities in their studies of dividing cancer cells, leading them to suggest that 

malignant behaviour may be driven by altered hereditary material (Boveri, 1914; 

von Hansemann, 1890). The first description of a genetic change leading to 

malignant transformation was provided almost a century later, with careful sleuthing 

identifying a HRASG12V point mutation as the oncogene activation event in human 

bladder cancer cells (Reddy et al., 1982; Tabin et al., 1982). This ushered in a new 

era of research aimed at uncovering the molecular determinants of cancer. 

 
The discovery of cancer genes was a focus of early molecular studies (Futreal et 

al., 2004). Techniques used in the search for cancer genes included mutational 

screens that could either explore small sections of the genome at high-resolution, 

enabling the discovery of BRAF and PIK3CA as oncogenes in human cancer for 
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example (Davies et al., 2002; Samuels et al., 2004), or the entire genome at low-

resolution, permitting the quantification of mutation rate (on average 90 out of 

>13000 protein-coding genes in a cohort of breast and colorectal tumours (Sjöblom 

et al., 2006; Wood et al., 2007)). By the mid-2000s, a draft census of the genes and 

pathways commonly altered in cancer had been assembled (Vogelstein and 

Kinzler, 2004). 

 

The initial sequencing of the human genome in 2001 (Lander et al., 2001; Venter et 

al., 2001) was seen as another turning point for cancer research (Dulbecco, 1986). 

The advent of massively parallel “next-generation” sequencing (NGS) technologies 

for DNA and RNA sequencing provided high-throughput methods to survey entire 

cancer genomes and transcriptomes at single-base resolution (Bentley et al., 2008; 

Z. Wang et al., 2009). Indeed, by the end of the decade several proof-of-concept 

studies demonstrated the potential for NGS analyses in cancer research: 

identifying novel mutations and rearrangements at base-pair resolution (Campbell 

et al., 2008b; Ley et al., 2008); delineating mutational profiles of tobacco 

carcinogens and transcription-coupled DNA repair (Pleasance et al., 2010); 

establishing how the aberrant transcription of cancer driver pathways can be linked 

to the underlying somatic alterations (Jones et al., 2008). 

 
Over the last decade, the coordinated sequencing of thousands of cancer genomes 

has led to an explosion in molecular knowledge about human cancers (Garraway 

and Lander, 2013). Much of this work has been undertaken by multi-centre 

consortium studies, including The Cancer Genome Atlas (TCGA) (Blum et al., 

2018), the International Cancer Genome Consortium (ICGC) (The International 

Cancer Genome Consortium, 2010), and the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) consortium (The ICGC/TCGA Pan-Cancer Analysis of Whole 

Genomes Consortium, 2020) (Figure 1-2). The availability of data from large-scale 

cancer genome projects was accompanied by the development of a slew of 

software tools, providing algorithms to detect somatic alterations in DNA and RNA 

sequences (Cieślik and Chinnaiyan, 2018; Ding et al., 2014). Making these 

datasets available to scientific community as rapidly as possible was a core 

principle of several consortia, accelerating the pace of cancer genomics research. 
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Importantly, these cancer NGS studies provided a wealth of data to develop 

molecular biomarkers. 

 

 
Figure 1-2 Charting the molecular landscape of cancer 
A, Potential molecular markers of cancer highlighted on the central dogma of 
molecular biology. B, Timeline of large-scale cancer next-generation sequencing 
projects: The Cancer Genome Atlas (TCGA); the International Cancer Genome 
Consortium (ICGC) “25K initative” and Pan-Cancer Analysis of Whole Genomes 
(PCAWG) consortium; Genomics England 100,000 (100K) genomes project; 
Genomics Evidence Neoplasia Information Exchange (GENIE) project by the 
American Association for Cancer Research.  
 
Major findings from cancer NGS studies include defining the frequency of somatic 

alterations. Contrary to the prior assumption that cancer genomes would harbor a 

uniform mutation rate, analysis of exome-sequencing data from TCGA revealed 

point mutation frequencies vary more than 1000x between cancer types, with the 
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average number of mutations per exome as low as one in pediatric cancers 

(rhabdoid tumour, median=0.1/Mb; medulloblastoma, median=0.3/Mb) to hundreds 

in melanoma and lung tumours (median=12.9/Mb) (Lawrence et al., 2014). A 

similar variation was found for SCNA burden between cancer types, with the 

average number of SCNA ranging from <10 in myeloproliferative disorders to >120 

in dedifferentiated liopsarcoma (Beroukhim et al., 2010). 

 

Defining a comprehensive catalogue of cancer genes is another key question for 

cancer genomics, particularly the distinction between “driver” mutations, that are 

causally implicated in oncogenesis and confer a growth advantage on the cancer 

cell, from “passenger” mutations, that do not contribute to cancer development and 

simply accumulate over the life history of a tumour (Stratton et al., 2009). Defining 

drivers as genes recurrently altered at a higher mutation frequency than 

background, Kandoth and colleagues detected 127 significantly mutated genes in a 

study of >3000 cancer exomes from TCGA (Kandoth et al., 2013). Subsequently, 

the PCAWG consortium has discovered driver events in the non-coding parts of the 

genome (Rheinbay et al., 2020). Amongst other applications, studying patterns of 

driver mutations can provide molecular evidence to underpin clinical understanding 

of disease. For example, TCGA studies have supported the distinction of 

oesophageal cancer as two disease subtypes (The Cancer Genome Atlas 

Research Network, 2017), shown colon and rectal tumours constitute a single type 

of cancer (The Cancer Genome Atlas Network, 2012), and found molecular 

similarities between breast and ovarian tumours (Cancer Genome Atlas Network, 

2012; The Cancer Genome Atlas Research Network, 2011). 

 

The genome-wide characterization of mutational processes can lead to the 

discovery of novel causative forces in cancer. Analysing >7000 tumours from 

TCGA, Alexandrov and colleagues deciphered 20 mutational signatures, many of 

which could be linked to established endogenous (e.g. DNA damage repair) or 

exogenous (e.g. smoking, ultraviolet light exposure) mutagens, while several had 

an unknown aetiology (Alexandrov et al., 2020). A recent in vitro study reported 

that exposing a cell line to aristolochic acid gave rise to the same mutational 

signature seen in renal and hepatic cancers in parts of the world where the 
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aristolochia plant grows (Kucab et al., 2019). This provides a framework for 

“molecular epidemiology”, wherein linking mutational signatures to causal agents 

can inform public health initiatives (Nangalia and Campbell, 2019). 

 

Analyses of cancer transcriptomes have revealed the prevalence of somatic 

alterations at the RNA level, such as TCGA analyses of alternative splicing (Kahles 

et al., 2018) or driver fusion events (Gao et al., 2018). A PCAWG study deciphered 

the genetic underpinning of RNA alterations in tumours, demonstrating SCNA as 

the main driving force (Calabrese et al., 2020). 

 

1.2.3 The cancer biomarker problem  

“The major cancer discovery in my lifetime is that cancer isn’t one thing, but 
rather it’s many things. … What we thought were maybe 10 or 15 unique 
diseases were really hundreds of diseases, and they each had their own 
epidemiology and risk factors, and would respond differently to therapies.” 

Ned Sharpless, Director of the US National Cancer Institute (Zaromytidou, 
2020) 

Molecular biomarkers are the foundation of improving diagnostic precision in 

cancer (Vargas and Harris, 2016). Proof-of-concept studies have shown molecular 

profiling can complement current histology-based classification, delineating cancers 

into prognostic risk groups (van ’t Veer et al., 2002), or sensitivity to genome or 

immune targeted therapies (Paez et al., 2004; Taube et al., 2012). Yet, for 

successful translation to clinical practice, a biomarker must make a clinically 

informative distinction between patients, and perform reliably across independent 

patient cohorts. The slow progress towards developing prognostic or predictive 

indicators that fulfil these criteria has been referred to as the “cancer biomarker 

problem” (Sawyers, 2008). 

 

1.2.3.1 Molecularly defined risk groups 

Early genome-wide studies of cancer transcriptomes leveraged DNA microarray 

technology to uncover molecular heterogeneity in otherwise pathologically identical 



Chapter 1 Introduction 

26 

 

 

patients. This transcriptional diversity could be used to recover established clinical 

classes, for example Golub and colleagues demonstrated that unsupervised 

clustering separated transcriptional profiles from acute leukemia patients into the 

known acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) 

subtypes of disease (Golub et al., 1999). A landmark analysis by Perou and 

colleagues revealed that breast cancer encompassed four transcriptional subtypes 

with distinct biological features (ER+; ER- basal-like; ER- Erb-B2+; ER- normal 

breast) (Perou et al., 2000), demonstrating the potential to discover novel 

molecular subtypes of disease. Similarly, Alizadeh and colleagues discovered two 

molecularly distinct forms of diffuse large B-cell lymphoma (DLBLC), corresponding 

to distinct stages of B-cell differentiation (Alizadeh et al., 2000). Importantly, the 

molecular classification of DLBLC patients associated with significantly different 

survival outcomes, independent of an established clinical risk factor (international 

prognostic indicator score), indicating the discovery of transcriptional subtypes with 

distinct clinical phenotypes could be applied to construct prognostic tests. 

 
The clinical adoption of RNA-based prognostic tests (prognostic signatures) in 

breast cancer provides a model for the use of molecular diagnostics to improve 

patient outcomes. For example, the OncotypeDx test is a 21-gene RT-PCR assay 

developed to estimate recurrence-risk in ER+ breast cancer patients (Paik et al., 

2004), that has been validated in prospective trials of >10,000 patients (Sparano et 

al., 2018). Other clinically approved prognostic signatures for breast cancer include 

the 70-gene MammaPrint test (van ’t Veer et al., 2002) and the 50-gene PAM50 

assay (Parker et al., 2009). The uptake of these prognostic signatures by 

oncologists over the last decade has been associated with a steep and persistent 

decline in the use of systemic chemotherapy (Kurian et al., 2017), helping to 

reduce over-treatment in early-stage breast cancer (Katz et al., 2018). 

 

However, there remains a general apprehension in the field about the utility of 

expression signatures as biomarkers. Meta-analyses of prognostic signatures have 

found their prognostic capacity can be explained by confounding due to a tumour’s 

subtype or clinicopathological profile (Tofigh et al., 2014), or have shown that 

carefully crafted signatures can be out-performed by randomly generated 
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signatures (Tang et al., 2017; Venet et al., 2011). These studies serve as examples 

of the prevailing sentiment of disappointment in current RNA-based biomarkers, 

and the need for stable and reproducible prognostic signatures to encourage 

clinical uptake. 

 

1.2.3.2 Drugging molecular targets in the cancer genome 

Genome-driven oncology holds the promise of leveraging the molecular 

characterization of cancers to establish targets that serve as predictive biomarkers 

for therapeutic intervention (Hyman et al., 2017). First-generation inhibitors of the 

EGFR gene (gefitinib and erlotinib) initially received clinical approval for use in 

NSCLC without restrictions. However, only a subset of NSCLC patients responded 

to these EGFR-inhibitors (EGFRi). A series of sequencing studies established that 

activating mutations (exon 19 deletion or L858R point mutation) in the EGFR gene 

predicted sensitivity to EGFR inhibition (Lynch et al., 2004; Paez et al., 2004; Pao 

et al., 2004). The approval of EGFR inhibitor usage was revised with EGFR-mutant 

as a predictive biomarker. Other early successes of drugs targeted to the cancer 

genome include trastuzumab for HER2-amplified breast tumours (Slamon et al., 

2009), and imatinib for chronic myeloid leukemia patients with a BCR-ABL fusion 

(Druker et al., 2001). 

 

A further accomplishment of the genome-driven oncology era is the rational design 

of strategies to overcome resistance to targeted drugs. On-target mutation is a 

common resistance mechanism in EGFR-mutant NSCLC patients receiving 

erlotinib or gefitinib therapy, with a substitution of threonine at the “gatekeeper” 

amino acid 790 to methionine (T790M) observed in >50% of patients after disease 

progression (Kobayashi, 2005). A third-generation EGFR inhibitor (osimertinib) was 

manufactured to selectively inhibit both sensitizing and resistance (T790M) 

mutations in EGFR. Compared to standard-of-care platinum therapy, osimertinib 

improved overall survival by 6 months in EGFR-mutant NSCLC patients that had 

progressed on erlotinib/gefitinib therapy (Mok et al., 2017). Osimertinib was also 

recently reported to out-perform erlotinib/gefitinib as first-line therapy for EGFR-

mutant NSCLC patients (Ramalingam et al., 2020). An understanding of cancer 
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pathways provided a strategy to overcome signalling bypass resistance through 

combination therapy. For example, in BRAF-mutant colorectal cancers, inhibition of 

the MAPK pathway through doublet (BRAFi + MEKi) or triplet (BRAFi + MEKi + 

EGFRi) therapy lead to significantly more durable responses than mono-therapy 

(BRAFi only) (Kopetz et al., 2019). 

 
Yet there is a general sentiment that, despite substantial research investments, 

molecular targeted agents have not yet realised the full promise of genome-driven 

oncology (Tannock and Hickman, 2016). This can be partly explained by the fact 

that most cancers lack mutations in readily “druggable” genes, such as kinase 

oncogene alterations, indicating that the early successes of single kinase inhibitor 

therapy may only benefit a small proportion of all cancer patients (Greenman et al., 

2007). A retrospective cross-sectional study of US patients with cancer evaluated 

patient eligibility for 31 targeted drugs, estimating that in 2018 only 8.3% of 

metastatic cancer patients would have been eligible for genome-targeted therapy 

(Marquart et al., 2018). It is possible that innovative trial design may increase this 

proportion in the near future. The recently reported National Lung Matrix Trial 

screened >5000 patients with advanced NSCLC using NGS, finding that 36.7% of 

patients were molecularly eligible for entry into the umbrella trial testing 8 different 

targeted drugs (Middleton et al., 2020). However, a substantial increase in the 

number of cancer patients eligible for targeted drug therapies will likely require 

novel approaches to widen the druggable repertoire. 

 

Synthetic lethality, in which the inhibition of one of a pair of genes is compatible 

with cell viability but the loss-of-function of both genes leads to cell death, may 

provide an alternative means to develop cancer-specific cytotoxic agents (Kaelin, 

2005). For example, cancer cells harbouring mutations in BRCA1/2 genes are 

defective in the homologous recombination pathway of DNA repair. Such BRCA-

mutant cancer cells were found to be exquisitely sensitive to poly(adenosine 

diphosphate-ribose) polymerase inhibitors (PARPi) (Farmer et al., 2005). A number 

of clinical trials followed, demonstrating the clinical benefit of PARPi therapy in 

BRCA-mutant tumours of ovarian, breast, pancreatic, and prostate histologies 

(Audeh et al., 2010; Fong et al., 2009; Kaufman et al., 2015; Tutt et al., 2010). 
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Overall, the recent clinical approval of PARPi for BRCA-mutant cancers provides a 

proof-of-concept that synthetic lethal interactions can be translated into cancer 

therapies (Lord and Ashworth, 2017). This underscores the need to better 

understand epistatic interactions between cancer genes. 

 

1.2.3.3 Sensitivity to immune checkpoint blockade 

The normal function of immune checkpoint molecules involves regulating the 

amplitude of the immune response, to maintain peripheral self-tolerance and shield 

against tissue damage (Quezada and Peggs, 2013). For example, T-cells requires 

both antigen binding to the T-cell receptor (McIntyre and Allison, 1983) (signal 1) 

and CD28 co-stimulation (Harding et al., 1992) (signal 2) for licensing to specifically 

kill target cells. Some checkpoints operate centrally in lymphoid organs, such as 

the cytotoxic T lymphocyte antigen 4 (CTLA4) molecule that is involved in the co-

stimulatory activation of naïve and memory T-cells. Others operate in peripheral 

tissues, including the programmed cell death 1 (PD1) molecule that limits T-cell 

activity, conferring an exhaustion phenotype in antigen-specific T-cells. Cancers 

leverage these checkpoints to co-opt immune inhibitory pathways. For example, 

temporary blockade of CTLA4 reduced tumour growth in murine models of cancer, 

suggesting a mechanism to “release the brakes” of the immune system to fight 

cancer (Leach et al., 1996). 

 

Over the last decade, a molecular understanding of these immune evasion 

mechanisms has led to the development of checkpoint inhibitor (CPI) therapy. 

Phase III trials of a CTLA4-inhibitor (ipilimumab) reported it was the first ever drug 

to improve overall survival in patients with metastatic melanoma, with complete or 

partial responses recorded in 6-11% of patients (Hodi et al., 2010). Similarly, early 

phase I trials of drugs blocking the PD1/PDL1-axis showed responses in ~20% of 

patients with advanced NSCLC, melanoma, or renal cancer (Brahmer et al., 2012; 

Topalian et al., 2012). While a minority of patients exhibited remarkably durable 

responses to CPI, the large number of non-responders indicated a need for 

predictive biomarkers of CPI sensitivity (Nishino et al., 2017). 
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The inflamed tumour hypothesis suggests that checkpoint expression reflects the 

presence of anti-tumour immunity (exhausted tumour-specific T-cells), so should 

positively correlate with CPI response (Taube et al., 2012). In a multi-cancer phase 

I study of PDL1 inhibitor, immunohistochemical (IHC) staining for PDL1 in baseline 

samples revealed significantly higher expression levels in responders (Herbst et al., 

2014), supporting the inflamed tumour hypothesis. Subsequently, a consistent 

positive association between PDL1 expression and objective response rate has 

been confirmed by a number of trials (Sacher and Gandhi, 2016). In particular, on 

the basis of the KEYNOTE trials (Garon et al., 2015; Herbst et al., 2016), a clinical 

assay of PDL1 expression received clinical approval for use in stratifying NSCLC 

patients for pembrolizumab therapy (a monoclonal anti-PD1 antibody).  

 

Tumour mutation burden (TMB) is another biologically-motivated predictor of CPI 

sensitivity. The underlying hypothesis is that TMB generates somatic neo-epitopes, 

inducing a natural anti-tumour immune response that might be augmented by 

checkpoint blockade (Schumacher and Hacohen, 2016). Analyses of whole-exome 

sequencing (WES) data revealed that high mutational load correlated with 

sustained clinical benefit in two melanoma cohorts treated with a CTLA4-inhibitor 

(Snyder et al., 2014), and a NSCLC cohort treated with a PD1-inhibitor (Rizvi et al., 

2015), providing proof-of-concept. An affordable clinical assay for TMB has been 

developed, estimating the genome-wide measure from targeted sequencing of ~3% 

of the coding genome (Frampton et al., 2016). 

 

Remarkably, a trial of PD1-inhibitor therapy in Mismatch Repair (MMR) deficient 

tumours across 12 cancer types reported radiographic responses in 53% of 

patients (Le et al., 2017). This led to the clinical approval of PD1-inhibitor therapy 

as a “tissue agnostic” drug in all MMR deficient cancers, regardless of histology, 

exemplifying the potential utility of molecular markers to select cancer treatment. 

 

Yet both checkpoint expression and TMB are imperfect biomarkers of CPI 

sensitivity, with clinical responses observed in biomarker-negative patients (PDL1 

expression <1%, TMB) (Garon et al., 2015; Samstein et al., 2019). Additional 
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mechanism-driven biomarkers are required to advance the field of precision 

immune-oncology (Havel et al., 2019; Topalian et al., 2016). 

 

1.2.3.4 Summary 

Molecular biomarkers have substantial translational promise, with some startling 

clinical applications. However, these pale in comparison to the research and labour 

investment in molecular oncology over the last two decades (Kumar-Sinha and 

Chinnaiyan, 2018). Several limitations of existing molecular biomarkers have been 

described in this section. 

 

In the remainder of this chapter, I will explore two frontiers for refining molecular 

biomarkers: evolutionary and ecological features of cancer (Maley et al., 2017). 
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1.3 Darwinian evolution in cancer 

1.3.1 Intra-tumour heterogeneity as a substrate for evolution 

Darwin’s famous “I think” phylogenetic tree depicted the origin of many species 

from a single common ancestor. In 1976, Peter Nowell first proposed that the 

same, branching pattern of evolution might be observed in the genetic material of 

cancer cells (Nowell, 1976). He suggested “acquired genetic lability permits 

stepwise selection of variant sublines and underlies tumour progression”. Within a 

decade, Gloria Heppner defined intra-tumour heterogeneity (ITH) as “tumour cell 

differences [that] are believed to be due to differences in cell lineage (ie due to 

presence of distinctly different subpopulations capable of breeding true)” (Heppner, 

1984). 

 
In the 1970s, several murine studies described extensive intra-tumoural phenotypic 

variation, and hinted at a genetic origin. Sectioning mouse sarcomas into four equal 

regions, Håkansson et al discovered the regions from some tumours differed 

significantly in sensitivity to cytostatic drugs (Håkansson and Tropé, 1974). Fidler et 

al observed large variation in metastatic potential between cell lines derived from a 

single murine melanoma, with the average number of pulmonary tumour 

metastases generated by intravenous injection ranging from 3.5 to more than 500 

(Fidler and Kripke, 1977). In a similar experiment, Dexter et al found in vitro 

differences in morphology and growth patterns between cell lines isolated from a 

single murine mammary tumour (Dexter et al., 1978). Importantly, karyotypic 

analysis revealed very significant differences in the modal chromosome numbers of 

each cell line (range=39-130), and that the parental tumour contained the full 

spectrum of karyotypes observed, suggesting the inheritance of genotypic 

heterogeneity. Overall these murine studies helped provide evidence for intra-

tumoural variation in genetic and phenotypic properties. 

 
In a small cohort of chronic lymphocytic leukemia (CLL) patients (n=22), Campbell 

et al performed massively parallel pyro-sequencing of the IGH locus to delineate 

cancer phylogenies (Campbell et al., 2008a). This study demonstrated that NGS 

studies of single tumour biopsies represent a snapshot of cancer evolution, 
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permitting the timing of specific genomic aberrations (Figure 1-3). “Clonal” 

mutations are present in every cancer cell, so are thought to occur early in the life 

history of a tumour, forming the trunk of evolutionary tree. By contrast, “subclonal” 

mutations are present in a fraction of cancer cells, so form the branches of the tree. 

 

The presence of Nowell’s “variant sublines” (Nowell, 1976), or malignant 

subclones, has since been demonstrated in multiple cancer-types. In a pan-cancer 

analysis of WES data from ~2,700 tumours across 9 TCGA cancer-types, 

McGranahan and colleagues discovered that cancer driver genes tended to be 

clonally mutated relative to other genes, for example VHL in kidney cancer, 

CDKN2A in lung cancer, and TP53 across cancer-types (McGranahan et al., 2015). 

Recently, Dentro and colleagues found evidence of distinct subclonal expansions in 

95% of samples from a pan-cancer whole-genome sequencing (WGS) dataset of 

>2,600 tumours from the PCAWG study (Dentro et al., 2020). 

 
Yet single-region sampling is vulnerable to the “illusion of clonality”, wherein a 

somatic alteration appears to be present in every cell from one tumour biopsy, but 

may actually be absent in other regions of the same tumour (Figure 1-3). This can 

be overcome by multi-region sampling strategies. Bhandari and colleagues 

estimated that single-region sampling typically detected <50% of the cancer cell 

populations identified by multi-region sequencing in a prostate cancer dataset 

(Bhandari et al., 2018). In a cohort of patients with lung cancer, 76% of mutations 

classified as subclonal using multi-region WES could have appeared to be clonal if 

single-region sampling had been used (Jamal-Hanjani et al., 2017). 

 
Both single- and multi-region sequencing approaches share the restrictions of 

single time-point analyses, such as limited resolution of early clonal events at 

tumour initiation (Greaves, 2015). To some extent, this can be addressed by 

innovative approaches to analysis. For example, the REVOLVER tool applied 

transfer learning to multi-region WES data from a cohort of lung cancer patients, 

inferring that clonal CDKN2A mutations tend to precede clonal alterations in TP53 

(Caravagna et al., 2018). NGS profiling of pre-invasive lesions provides a definitive 
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molecular archaeology, revealing that 51% of mutations in lung adenocarcinoma 

(LUAD) precursor lesions were subclonal (X. Hu et al., 2019). 

 
Figure 1-3 Sampling and reconstructing the life history of a tumour 
A, Graphical representation of clonal evolution in the life history of a tumour. The 
founding clone (blue) gives rise to subclones (brown and purple). One subclone 
(purple) gives rise to disseminated disease (“metastasis”), prior to clinical 
detection and surgical resection of the primary tumour. The other subclone 
acquires a resistance mutation on-therapy, engendering a drug-resistant 
subclone (green). B, The impact of tissue sampling strategy on reconstruction of 
tumour phylogenies. The primary tumour from A is shown at the point of 
diagnosis and surgical resection (left); the tumour contains multiple spatially 
separated subclones, and three potential biopsy sites are indicated (white 
circles). Single-region sampling, and inferences about mutation clonality, allows 
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partial reconstruction of the tumour’s phylogenetic tree (middle). However, 
single-region sampling under-samples the heterogeneity present in non-sampled 
parts of the tumour, and is also vulnerable to the “illusion of clonality”. Multi-
region sampling gives a broader view of heterogeneity across the entire tumour 
and, in this simplified example, permits reconstruction of the tumour’s full 
phylogenetic tree. 
 

1.3.2 Clonal diversity as a prognostic biomarker  

Rare subclones, present at diagnosis, have been shown to harbour mechanisms of 

therapy resistance, and seed relapse in leukemias (Ding et al., 2012; Roche-

Lestienne et al., 2003), colorectal cancer (Diaz Jr et al., 2012; Misale et al., 2012) 

and medulloblastoma (Morrissy et al., 2016). Evidence for a “lethal” subclone with 

metastatic potential has also been observed in multiple cancer-types (Kim et al., 

2015; Yachida et al., 2010; Yates et al., 2015). Yet branching, Darwinian selection 

is not the only possible explanation for the co-existence of multiple subclones 

(Greaves, 2015). Williams and colleagues defined a “null model” of ITH, finding a 

power law for neutral evolution fitted 36% of ~900 cancers across 14 cancer-types 

(Williams et al., 2016). The authors suggested this might indicated a “big bang” 

architecture of neutral tumour evolution, with clonal selection complete in the first 

cancer cell, and the subsequent accumulation of passenger mutations engendering 

non-functional ITH.  

 

Clonal diversity has also been linked with clinical outcomes. In CLL, Landau and 

colleagues linked the presence of subclonal driver events with poor survival 

outcome in a discovery cohort of 18 longitudinal samples, then validated this 

association in an validation cohort (n=149 samples), showing this evolutionary 

metric remained significant in multivariate analysis with established risk factors 

(Landau et al., 2013). Three separate pan-cancer analyses of 1,100-4,700 tumours 

from the TCGA study quantified ITH, using either PyClone (Andor et al., 2016; 

Morris et al., 2016) or mutant-allele tumour heterogeneity (MATH) scores 

(Noorbakhsh et al., 2018), and described significant survival associations in a 

subset of cancer-types. However, Reiter and colleagues conducted a meta-
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analysis of several multi-region cancer datasets, concluding that subclonal driver 

mutations were non-functional and not prognostic (Reiter et al., 2019). Moreover, 

clinical development of ITH as a prognostic biomarker is complicated by the need 

for multi-region sequencing for accurate estimation (Abécassis et al., 2019), and 

the algorithmic challenges of subclonal reconstruction (Salcedo et al., 2020). In 

summary, multiple challenges must still be overcome for the direct usage of ITH as 

a prognostic biomarker 

 

1.3.3 Mechanisms of cancer genome evolution 

As part of his proposal that cancer is an evolutionary disease, Nowell speculated 

that “acquired genetic lability permit[ted] stepwise selection of variant sublines and 

underlies tumour progression” (Nowell, 1976). This “genetic lability” has been 

observed in across cancer-types, fuelling mutational diversification and ITH. 

 

Genetic instability operating at the level of single nucleotide variations (SNVs) can 

drive subclonal diversification, shaping clinical outcomes. In gliomas, large 

increases in the number of somatic mutations was discovered after treatment with 

alkylating agents (temozolomide), and associated with the inactivation of a 

mismatch repair gene (MSH6) (Hunter et al., 2006). A similar branching pattern of 

evolution post- temozolomide treatment in glioblastomas was enriched in 

responders to PD1-inhibitor therapy (Zhao et al., 2019). The APOBEC 

(apolipoprotein B mRNA editing enzyme catalytic polypeptide-like) mutational 

signature was over-represented in subclonal mutations in treatment-naïve NSCLC 

tumours (de Bruin et al., 2014; Jamal-Hanjani et al., 2017), and was enriched in a 

treatment-resistant clone from a patient who died of metastatic disease. Thus the 

accelerated accumulation of SNV can underpin “micro-evolutionary” events in 

cancer genomes (McGranahan and Swanton, 2017). 

 
Large-scale chromosomal alterations underlie “macro-evolution” in cancer 

(McGranahan and Swanton, 2017). Chromosomal instability (CIN), a dynamic state 

involving SCNAs in whole or parts of chromosomes, leads to inter-cellular 

variability in chromosomal number and structure (McGranahan et al., 2012). CIN is 
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caused by mechanisms including defective mitotic checkpoints, impaired non-

homologous end joining, and telomere dysfunction (Maser and DePinho, 2002). 

Karyotypic diversity provides a substrate for Darwinian tumour evolution, allowing 

the emergence of rare cells with increased fitness (for example, amplifications in 

core proliferation genes (Endesfelder et al., 2014)), and convergence on favourable 

karyotypes (Laughney et al., 2015). In NGS studies, CIN has consistently 

associated with poor prognosis (McGranahan et al., 2012). Carter and colleagues 

developed an RNA-measure of CIN, identifying 70 genes with expression 

associated with aneuploidy (Carter et al., 2006). This “CIN70” signature included 

regulators of replication and chromosome segregation (AURKA, AURKB, NEK2, 

H2AFX, CDC20, ZWINT, CCNB1, CCNB2), and correlated with survival in several 

datasets. Recently, a WES-based measure of CIN was developed using a multi-

region dataset of patients with NSCLC, quantifying the extent of spatially separated 

SCNA changes, and associated with worse disease-free survival (Jamal-Hanjani et 

al., 2017). In bacteria, high levels of genetic instability can lead to “mutational 

meltdown” (Lynch et al., 1993). Along the same lines, applying the CIN70 signature 

to >2000 tumours, Birkbak and colleagues observed that the quartile of tumours 

with highest CIN paradoxically had improved survival outcomes compared to the 

second-highest quartile (Birkbak et al., 2011). 

 

Overall, micro- and macro-evolutionary mechanisms have been observed to foster 

ITH and increase proliferation advantage across several cancer-types. CIN also 

holds promise as a prognostic biomarker, if a robust metric can be derived and 

clinically validated (McGranahan and Swanton, 2017). Bakhoum and colleagues 

have also suggested CIN as a predictive marker for therapy response, stratifying 

low-CIN tumours with low adaptability for genome-targeted drugs, and applying 

cytotoxic therapies to high-CIN tumours that tend towards genomic catastrophe 

(Bakhoum and Landau, 2017). 

 

1.3.4 Evolutionary constraints 

“Throw up a handful of feathers, and all must fall to the ground according to 
definite laws. But how simple is this problem compared to the action and 
reaction of the innumerable plants and animals which have determined, in 
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the course of centuries, the proportional numbers and kinds of trees now 
growing on the old Indian ruins.” 

Charles Darwin (Darwin, 1859) 

In the belief that sequential selection “is not completely random”, Nowell proposed 

that “certain similarities are acquired by different tumours as they progress” 

(Nowell, 1976). Yet mutations accumulate randomly, and can have variable fitness 

effects in different contexts (Sidow and Spies, 2015). Resolving evolutionary 

dependencies in cancer is an important frontier for precision oncology (Lipinski et 

al., 2016). 

 
In cancer, parallel evolution is defined as recurrent alterations in the same driver 

gene in spatially separated regions of an individual tumour. Observations of parallel 

evolution suggest the existence of evolutionary constraints (McGranahan and 

Swanton, 2017). In a landmark multi-region study, Gerlinger and colleagues 

assessed genetic ITH in four renal tumours (Gerlinger et al., 2012). Multiple distinct 

and spatially separated mutations were observed in driver genes (SETD2, PTEN, 

and KDM5C) within a single tumour, suggesting convergent phenotypic evolution. 

Subsequently, in a larger cohort of patients with ccRCC (n=101), parallel evolution 

at the SNV-level was detected in 13% of tumours, typically involving SETD2, BAP1, 

and PTEN driver genes (Turajlic et al., 2018). Parallel evolution can also occur at 

the SCNA level. This phenomenon was observed in >60% of NSCLC tumours, 

including amplifications in CDK4, FOXA1, and BCL11A (Jamal-Hanjani et al., 

2017). Parallel evolution has been reported in multiple other cancer-types, 

including glioma (Francis et al., 2014; Johnson et al., 2014), oesophageal 

adenocarcinoma (Murugaesu et al., 2015), and CLL (Yeh et al., 2017). Overall, this 

suggests a finite set of genetic routes for evolving tumours. 

 
The evolutionary fitness of a new mutation may be influenced by the net effect of 

preceding mutations. In a study of patients with myeloproliferative neoplasms, 

Ortmann and colleagues established that the mutational order of TET2 and JAK2 

mutations was associated with expansion of different cell-types, different 

expression profiles, and distinct clinical outcomes (Ortmann et al., 2015). A recent 

multi-region study of renal cancers discovered PBRM1 mutations tended to 
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precede SETD2 alterations (Mitchell et al., 2018). Such tendencies for driver 

mutations to be acquired in a particular order has also been identified in colorectal 

cancer (Cross et al., 2018; Sottoriva et al., 2015), and prostate cancer (Gerhauser 

et al., 2018). 

 

The finding of parallel and ordered mutational events within cancer NGS datasets 

supports the existence of constraints to cancer evolution. In future, it is possible 

that this knowledge could be therapeutically exploited. Predicting the resistance 

genotype and the probability of disease progression (Lipinski et al., 2016), or 

targeting evolutionary constraints in a “checkmate” therapeutic strategy wherein an 

evolving tumour has no avenue of escape (McGranahan and Swanton, 2017). 
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1.4 Tumour sampling bias of molecular biomarkers 

“… the most remarkable feature in the natural history of [the Galapagos] 
archipelago; it is that the different islands to a considerable extent are 
inhabited by a different set of beings … I never dreamed that islands, about 
fifty or sixty miles apart, and most of them in sight of each other, formed of 
precisely the same rocks, placed under a quite similar climate, rising to a 
nearly equal height, would have been differently tenanted; but we shall soon 
see that this is the case.” 

Charles Darwin (Darwin, 1845) 

Studies of ITH reveal a similar pattern in cancer to Darwin’s observations of 

species diversity in the Galapagos archipelago. This gives rise to the problem of 

tumour sampling bias. Single-site needle biopsy sampling is currently used as the 

standard protocol for diagnostic testing, regardless of the biomarker modality 

(genetic, transcriptomic, epigenetic or proteomic), typically sampling less than 1% 

of the primary tumour mass (Litchfield et al., 2020). Diagnostic biopsies can 

therefore be confounded by spatio-genomic heterogeneity within individual 

tumours, as molecular testing might yield completely different results depending on 

where the biopsy needle is placed (Boutros, 2015; Swanton, 2012; Yap et al., 

2012). Moreover, the move to minimally invasive sampling techniques, which yield 

less biopsy tissue for diagnosis (McCall and Dry, 2019), indicates sampling bias will 

only become a larger problem in the future. 

 

In this section I review the confounding effect of tumour sampling bias on the 

performance of molecular biomarkers. I will also highlight emerging solutions that 

could help clinicians better place – or go beyond – the biopsy needle. 

 

1.4.1 Tumour sampling bias confounds molecular diagnostics 

1.4.1.1 Prognostic biomarkers 

Flow cytometry studies of intra-tumour variability provided early evidence that 

sampling bias could confound DNA-based prognostic biomarkers. Assessing DNA 

ploidy status as a potential prognostic factor, Petersen and colleagues obtained 6-

10 spatially separated biopsies from each of a small series of colorectal tumours 
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(n=6 patients), discovering mixed populations of near-diploid and hyperploid cancer 

cells in 83% (5/6) of tumours (Petersen et al., 1979). This was the first report 

showing that such “mosaic” cellular composition may be a common phenomenon in 

cancers, leading the authors to suggest that a single biopsy may not be 

representative of the whole tumour. In a larger series of breast tumours (214 

samples from n=44 patients), Beerman and colleagues estimated that only taking 

one sample would have wrongly classified a tumour as diploid in 30% of cases, 

writing that the underestimation of ITH may account for disagreement in the 

literature about the prognostic value of DNA ploidy (Beerman et al., 1991). A multi-

cancer analysis (>1,400 samples from 140 tumours of breast, gastrointestinal and 

melanoma histologies) of several potential prognostic biomarkers measured by flow 

cytometry concluded that the intra-tumour variability observed was so high that all 

single-site testing should be abandoned, and that the use of molecular biomarkers 

would not be possible until the way the tumour is sampled or prepared for 

laboratory testing was changed (Barranco et al., 1994). The unexpected degree of 

intra-tumoural RNA variation, revealed by early multi-region transcriptomic profiling 

studies, suggested that ITH might also bias RNA-based prognostic biomarkers 

(Blackhall et al., 2004). 

 

In recent years, multi-region studies have quantified tumour sampling bias for a 

number of state-of-the-art prognostic biomarkers. Boutros and colleagues 

examined the ITH of candidate DNA-based prognostic biomarkers in 5 prostate 

cancer patients, finding all yielded different predictions depending on which tumour 

region was analysed (Boutros et al., 2015); for example, NKX3-1 was deleted in 

two of five regions from one tumour. In a small cohort of clear-cell renal carcinoma 

tumours (n=10 patients), Gerlinger and colleagues reported that 9p SCNA loss and 

BAP1 mutations were heterogeneous in all cases identified (Gerlinger et al., 2014). 

In the same cohort, Gulati and colleagues reported a similar result for an RNA-

based prognostic measure, finding the “ccA” risk signature was heterogeneously 

expressed in 80% (8/10) of tumours (Gulati et al., 2014). Applying the OncotypeDx 

test to a large multi-region cohort of ER+ breast tumours (181 samples from 71 

patients), Gyanchandani and colleagues found risk classification varied depending 

on biopsy site in 25% (18/71) of tumours (Gyanchandani et al., 2016). This 



Chapter 1 Introduction 

42 

 

 

indicated that even clinically approved assays might be vulnerable to tumour 

sampling bias. 
 

1.4.1.2 Predictive biomarkers for genome-targeted therapy 

In describing cancer as a disease of clonal evolution, Nowell proposed “one could 

hope to eradicate the clone and effect a cure” by targeting a mutation arising 

occurring “at the time of the initial neoplastic change” (Nowell, 1976). Diagnostic 

samples can be used to identify mutations occurring early (clonal) or late 

(subclonal) in tumour evolution through analyses of mutation clonality. Clonal 

somatic alterations, which are present in every cancer cell, can then be prioritised 

for therapeutic targeting (Yap et al., 2012). However, this scheme could be 

undermined by genetic ITH, giving rise to sampling bias in predictive biomarkers for 

genome-targeted therapy. 

 

Sampling bias could arise if the drug target itself is heterogeneously distributed 

through the primary tumour. An analysis of WES data from 9 TCGA cancer-types 

discovered that almost every gene linked with a targeted therapy approach was  

subclonally mutated in at least one tumour (McGranahan et al., 2015). Taking 

EGFRi in LUAD as a canonical example, 14% (3/21) of druggable mutations were 

subclonal in this analysis, in line with an earlier study describing ITH of EGFR 

exon-19 deletion in a multi-region set of clinical samples (Sakurada et al., 2008). 

Genetic ITH of the target may also be a concern for emerging “tissue-agnostic” 

drugs. For example, 5% (4/74) of patients recruited in the SUMMIT basket trial 

harboured subclonal HER2 mutations, and none of these patients were responders 

to HER kinase inhibitor therapy (Hyman et al., 2018). 

 

Pre-treatment samples could also contain a drug resistance mechanism as a minor 

subclone, evading detection in single-sample diagnostic testing, yet rapidly giving 

rise to primary resistance. Prior to first-generation EGFRi therapy 

(gefitinib/erlotinib), a subset of lung adenocarcinoma patients harboured on-target 

(EGFR T790M) or signalling bypass (MET amplifications) resistance mutations, 
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and this group of patients was significantly enriched in non-responders to therapy 

(Inukai et al., 2006; Turke et al., 2010). 
 

1.4.1.3 Patient stratification for immunotherapy 

ITH has also been reported in clinically-approved markers of CPI response. 

Topalian and colleagues quantified PDL1 expression (percentage positive tumour 

cells) by immunohistochemical analysis in pre-treatment samples (61 samples from 

42 patients) as part of a multi-cancer phase I trial of PD1-inhibitor therapy. 

(Topalian et al., 2012). 75% (9/12) of patients with data available for multiple 

malignant samples exhibited variable PDL1 expression between biopsy sites. 

Heterogeneous expression of PDL1 might naturally be expected, as this checkpoint 

is reactively induced in cells neighbouring the site of a CD8+ T cell infiltrate, so 

would display lower expression in T-cell sparse tumour regions (Ribas and Hu-

Lieskovan, 2016). McGranahan and colleagues have shown ITH of neoantigens is 

pervasive in NSCLC, and that response to CPI is better modelled by a combination 

of neoantigen burden and clonality than by either predictor alone (McGranahan et 

al., 2016). In a CTLA4-inhibitor trial in patients with melanoma, Riaz and colleagues 

corroborated the finding that an ITH-cutoff improved upon TMB-based prediction of 

response (Riaz et al., 2017). Lastly, RNA-based predictive biomarkers for CPI also 

exhibit substantial sampling bias. In a multi-region RNA-Seq dataset of NSCLC 

tumours, discordant rates were 33% and 44% for the IPRES and TIDE signatures 

respectively (Hugo et al., 2016; Jiang et al., 2018; Rosenthal et al., 2019). 

 

1.4.2 Emerging tissue-based solutions 

Overcoming ITH as a confounding factor for biomarker applications may improve 

the estimation of survival risk and CPI response. Sampling is effectively bypassed 

in melanoma, as the whole tumour is taken for clinical assessment (Breslow, 1970; 

Lehman et al., 1966). However, this is impractical for routine clinical use in most 

solid cancer-types. Here I discuss emerging approaches to address the sampling 

bias problem (Figure 1-4). 
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Pooling multiple biopsies for each tumour is a way to minimize artefacts from 

tumour heterogeneity. If multi-biopsy sampling is required, how many regions of an 

individual tumour should be sampled? Conducting bootstrap resampling in a multi-

biopsy dataset of a DNA-based prognostic metric, Barranco and colleagues 

estimated that at least 3 sites should be biopsied per tumour to achieve a 90% 

probability for a stable prognostic read-out (Barranco et al., 1994). Similarly, 

Blackhall and colleagues ran a confidence interval analysis on a multi-region RNA 

dataset of NSCLC tumours, recommending that biopsies should be pooled from at 

least four biopsies per tumour (Blackhall et al., 2004). In a more recent empirical 

analysis, Turajlic and colleagues calculated ITH saturation gradients in a multi-

region cohort of renal tumours, discovering that 2 biopsies would detect 50% of 

driver mutations, and 7 biopsies would recover 75% of drivers (Turajlic et al., 

2018). Formal analyses, based on a mathematical model of tumour heterogeneity, 

might provide an alterative means to estimate the number of biopsies required for 

pooling (Opasic et al., 2019). 
 

The entire tumour can be blended, then a single molecular test applied to a single 

aliquot of the homogenize mixture. Joung and colleagues provided proof-of-

concept for this approach in a multi-cancer analysis of a small number of tumours 

(Joung et al., 2016). More recently, Litchfield and colleagues quantified the 

accuracy of the method on a larger scale (Litchfield et al., 2020). This elegant 

solution is caveated by the need for access to the bulk tumour, requiring 

modification of current pathology workflows, and the homegenization of tumour 

samples runs the risk of dilution of the individual test results (Fuhr et al., 1991). 
 

An alternative method is to filter for genes that are stably expressed across all 

tumour regions, therefore allowing estimation of a whole tumour expression value 

from a single biopsy in routine clinical use. Obtaining RNA data for 33 biopsies 

from 11 patients with cervival cancer, Bachtiary and colleagues found that the 7.6% 

(1,536/20,000) of expressed genes with lowest transcriptomic ITH allowed 

estimation of a representative whole tumour expression value from a single biopsy 

(Bachtiary et al., 2006). The authors concluded that a useful prognostic marker 

should both correlate with patient outcome and be homogenously expressed, to 
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eliminate tumour sampling bias as a confounding variable. However, prior to this 

thesis, a practical implementation of this “clonal biomarker” solution was not 

available. 

 

Figure 1-4 Emerging tissue-based solutions to the sampling bias problem 
A, The sampling bias problem is illustrated for a lung tumour. Here, a prognostic 
biomarker classifiers tumour regions (R1-6) as high- (red) or low-risk (blue). It 
can be seen that the diagnostic biopsy (labelled triangle) samples from only one 
tumour region. Therefore the read-out of molecular risk for this patient will 
depend entirely on where the biopsy needle is placed. B, Four strategies to 
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mitigate sampling bias are tabulated, comparing their tissue and cost 
requirements. C, Sampling and testing “all” (n) tumour regions bypasses the 
sampling problem, however is the most expensive in terms of tissue and 
technology costs. D, A multi-biopsy strategy, sampling “some” regions (four 
regions have been suggested for lung cancer), brings down the cost while 
tending to capture intra-tumour variability. E, “Blend” the entire tumour, and 
apply one test to an aliquot from the homogenized mixture. This strategy has the 
same cost as testing a diagnostic biopsy, however requires pathology access to 
the full tumour. F, In theory, the “clonal” strategy is the most economical, 
providing a stable molecular read-out from a single diagnostic biopsy. 
  



Chapter 1 Introduction 

47 

 

 

1.5 Cancer ecology 

“Tumors: wounds that do not heal” 

Harold Dvorak (Dvorak, 1986) 

 

In the late 1950s, Burnet and Thomas proposed the cancer immunosurveillance 

hypothesis, suggesting that adaptive immunity inhibits cancer development 

(Burnet, 1957; Thomas, 1982). Confirming this hypothesis required the generation 

of immune-compromised in vivo models. In 2001, two studies demonstrated that 

interferon (IFN)-γ receptor-deficient or RAG2-deficient mice developed tumours 

more rapidly and with greater frequency than immunocompetent mice (Kaplan et 

al., 1998; Shankaran et al., 2001). Evidence that the tumour genome is antigenic 

was first provided by Boon and Schreiber in the 1980s, identifying neo-epitopes 

and suggesting that this could drive cancer immunity (Boon, 1983; Torre-Amione et 

al., 1990). Through the 1990s, the molecular identification of tumour neoantigens 

was performed by several groups (Monach et al., 1995; Topalian et al., 1992; van 

der Bruggen et al., 1991). The phases by which the tumour genome can elicit T-cell 

mediated clearance has been described as the “cancer immunity cycle” (Chen and 

Mellman, 2017). Within this scheme, tumours can be classified into one of three 

immune profiles: “immune desert”, lacking T-cells in both parenchyma and stroma 

due to deficits in cancer antigen presentation or T-cell activation; “immune 

excluded”, with stromal cells forming nests around cancer cells, preventing T-cell 

trafficking and infiltration; “immune inflamed”, with T-cells in close proximity to 

tumour cells, capable of cancer cell recognition and killing. Immune evasion is now 

an established hallmark of cancer (Hanahan and Weinberg, 2011). 

 

Stromal cells in the tumour microenvironment (TME) also have a role in sustaining 

and enabling the acquisition of cancer hallmarks (Hanahan and Coussens, 2012). 

In 1986, Dvorak summarised the generation of an activated TME, describing 

tumours as “wounds that do not heal” (Dvorak, 1986). The co-conspiratorial 

behaviour of stromal cells can shield cancer cells from cytotoxic and genome-

targeted therapies. 
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In this section, I discuss the influence of the cellular components of the TME on 

clinical outcomes. 

 

1.5.1 Immune contexture as a diagnostic scheme 

To link the lymphoid and myeloid immune components of solid tumours with clinical 

outcomes, Fridman and colleagues provided the “immune contexture” framework 

(Fridman et al., 2017). This classifies tumours according to the density, 

composition, functional state and organization of immune infiltration. Here I give an 

overview of literature supporting the relevance of the immune contexture to cancer 

prognosis and sensitivity to immunotherapy. 

1.5.1.1 Density 

Extensive evidence links the density of tumour infiltrating lymphocytes (TILs) with 

patient survival (Figure 1-5). Classification of the presence of TILs in primary 

melanomas as “brisk”, “nonbrisk” or “absent” through histopathology review 

revealed the presence of TILs to be a significant prognostic factor independent of 

established risk factors (thickness and mitotic rate) (Clemente et al., 1996). Using 

IHC to stain and quantify subsets of TILs at higher granularity, Pagès et al reported 

high levels of effector memory (CD8+CD45R0+) T-cells was an independent 

predictor of overall survival in a large cohort of colorectal tumours (n=956) (Pagès 

et al., 2005). Further spatial classification of TILs revealed intra-epithelial, but not 

stromal, TIL density was associated with improved overall survival for CD8+ T-cells 

in oesophageal cancer (Schumacher et al., 2001) and for CD3+ T-cells in ovarian 

cancer (Zhang et al., 2003). Sato et al built on the latter result, noting that intra-

epithelial CD8+ T-cells correlated with improved survival in ovarian cancer, but 

neither intra-epithelial nor stromal CD4+ TILs were prognostic (Sato et al., 2005). 

Examining cell-type ratios, they unearthed that intra-epithelial CD8+/CD4+ ratio 

had a significant association with improved prognosis, suggesting that the immune-

suppressive effects of CD4+ TILs can limit the beneficial anti-tumour impact of 

CD8+ TILs, underlining the need for a nuanced understanding of the relationship 

between TIL density and prognosis. In addition, several authors have suggested 
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schemes to integrate TIL density with PDL1 expression to refine prediction of CPI 

sensitivity (Teng et al., 2015; Zhang and Chen, 2016). 

 

1.5.1.2 Organisation 

In a seminal paper, Galon and colleagues performed immunostaining of colorectal 

tumours (n=415), classifying the T-cells as located in the centre of tumours (CT) or 

at the invasive margin (IM) (Galon et al., 2006). Their analysis demonstrated that 

the density and location of immune cells in colorectal tumours associated with 

survival outcomes more strongly than TNM staging (Figure 1-5). Subsequent work 

developed the “immunoscore” as a diagnostic scheme incorporating the type, 

density, and location of immune cells (Galon et al., 2013). An international 

consortium is currently validating the IHC-based clinical assay (Galon et al., 2014). 

The binary CT/IM classification may be further refined in future. For example, a 

recent immunofluorescence analysis of kidney tumours, linked the organisation of 

stem-like CD8+ T-cells in intra-tumoural “antigen-presenting niches” to improved 

progression-free survival (Jansen et al., 2019). 
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Figure 1-5 Immune contexture 
The immune contexture provides a scheme to classify tumours according to the 
density, organisation, functional state, and composition of the TME. Here four 
tumours are shown to illustrate how this multi-dimensional scheme can provide 
a nuanced portrait of cancer ecology. Using density as a metric of CD8+ T-cell 
infiltration, the two central tumours appear identical. However, the integration of 
spatial information in the form of T-cell organisation reveals the left-middle 
tumour is immune excluded, with stromal nests shielding the cancer cells from 
T-cells, and might require the inhibition of fibroblast-secreted factors for 
effective immune clearance. By contrast, the right-middle tumour is immune 
inflamed, with T-cells in close proximity with cancer cells. Further classifying 
CD8+ T-cells as T-effector (PD1-low) or T-exhausted (PD1-high) shows that the 
middle-right tumour is infiltrated by checkpoint-expressing T-cells that might 
respond well to checkpoint blockade immunotherapy. Lastly, profiling the 
composition of other cells present in the TME, identifies that the left two tumours 
do not contain dendritic cells, and might require treatment using immune 
adjuvants to enhance the function of antigen-presenting cells. 
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1.5.1.3 Functional state 

The characterization of T-cell “quality” reveals that only a subset of TILs is typically 

responsible for tumour recognition potential. RNA-Seq analysis of TILs sourced 

from NSCLC tumours (n=11) discovered that the subset of PD1-high TILs had 

higher T-cell receptor (TCR) clonality, and upregulated cell cycle and division 

pathways, suggesting antigenic stimulation (Thommen et al., 2018). The presence 

of the subset of PD1-high cells was strongly predictive for CPI response and 

survival in a small anti-PD1 treated cohort (n=21 stage IV NSCLC patients). 

Similarly, the presence of a subset of CD8+ T-cells, with a clonally expanded TCR 

repertoire and displaying an exhausted tissue-resident memory phenotype, was 

associated with overall survival in head and neck cancer (Duhen et al., 2018). A 

single-cell RNA-Seq (scRNAseq) study of >6,000 T-cells isolated from breast 

tumours verified significant heterogeneity in TIL population (Savas et al., 2018). 

Features of tissue-resident memory differentiation correlated better with improved 

survival than CD8 expression alone. Moreover, this signature was enriched in 

responders to PD1-inhibitor therapy in an external dataset of melanoma patients. 

Overall, these analyses highlight the importance of qualitative differences in CD8+ 

T-cell subsets for predicting clinical outcomes (Figure 1-5). 
 

1.5.1.4 Composition 

The cellular composition of the TME, beyond T-cells, influences the immune 

response and can shape clinical outcomes. For example, in NSCLC CD8+ T-cells, 

M1 macrophages and tertiary lymphoid structures, have been associated with good 

prognosis (Dieu-Nosjean et al., 2008; Goc et al., 2014; Ohri et al., 2009), whereas 

T-regs and M2 macrophages have been associated with poor survival outcomes 

(Hirayama et al., 2012; O’Callaghan et al., 2015). Moreover, a study of syngeneic 

hypermutated gliomas indicated resistance to CTLA4-inhibitor therapy was driven 

by macrophages (Aslan et al., 2020). In a PDL1-inhibitor trial of patients with 

metastatic urothelial cancer, non-responders were enriched for fibroblast-secreted 

TGF-β signalling, contributing to immune exclusion (Mariathasan et al., 2018). The 
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cellular composition of the TME can potentially be leveraged for the rational design 

of combination immunotherapies (Figure 1-5) (Smyth et al., 2016). 
 

1.5.2 Environment-mediated drug resistance 

The TME can play an active role in determining responses to genome-targeted 

therapies. Abnormal adhesion to the extracellular matrix (ECM) can re-wire 

signalling pathways within cancer cells, including response to drug therapy. In a 

cohort of patients with small-cell lung cancer (n=16), tumours with an extensive 

fibronectin matrix had significantly shorter overall survival, and adherence to the 

integrin ECM protein inhibited the apoptotic response of cancer cells to 

chemotherapy (Sethi et al., 1999). Similarly, ECM reorganisation and collagen VI 

over-expression was observed in cisplatin-resistant ovarian tumours (Sherman-

Baust et al., 2003). An in vitro experiment of a breast cancer cell line co-cultured 

with fibroblasts demonstrated exceptional protection to dual targeted therapy 

(EGFRi + HERi), which was abrogated by the removal of the ECM component 

hyaluronic acid (Marusyk et al., 2016). 

 
Factors secreted by stromal cells can underlie drug resistance. Screening 35 anti-

cancer drugs against in vitro co-cultures, formed of 45 cancer cell lines with 23 

stromal cell-types, revealed that 65% (15/23) of stromal cell-types were associated 

with environment-mediated drug resistance (EMDR) (Straussman et al., 2012). 

Focussing on resistance to BRAFi in a melanoma cancer cell line, Straussman and 

colleagues identified stromal HGF expression conferred resistance. In a similar 

screen of 41 kinase-addicted cancer cell lines, treated with targeted therapies, 

receptor tyrosine kinase (RTK) ligands (HGF, FGF, NRG1 and EGF) broadly 

rescued cell viability (Wilson et al., 2012). Drug-induced damage in stromal cells 

can trigger re-wiring of cancer cells. Treating primary prostate fibroblasts with 

genotoxic drugs, Sun and colleagues observed that WNT16B secretion was 

induced in response to DNA damage (Sun et al., 2012). Similarly in colorectal 

cancer, chemotherapy-treated fibroblasts secreted IL-17A, increasing the renewal 

and invasion of colorectal cancer stem cells (Lotti et al., 2013). 
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EMDR can also be driven by immune cell subsets. In a mouse model of 

gastrointestinal stromal tumours, a KIT inhibitor reduced tumour cell expression of 

Ido, inducing the activation of CD8+ T-cells and apoptosis of T-regs (Balachandran 

et al., 2011). In a cohort of patients with gastrointestinal stromal tumours (n=36), 

sensitive tumours had a greater ratio of intra-tumoural CD8+ T-cells to T-reg cells, 

and this correlated with IDO protein expression. In BRAF-mutant melanoma, 

treatment with BRAFi/MEKi induced macrophage proliferation and secretion of TNF 

(tumour necrosis factor)-α, fostering drug resistance (Smith et al., 2014).  

 

Overall, multiple components of the TME can support the evolution of resistance 

mutations in drug-sensitive cancer cells, by providing a safe haven for the 

emergence of minimal residual disease during therapy (Meads et al., 2009). 

 
1.5.3 Immunoediting  

An evolving tumour has multiple roads to immune freedom. A previous section has 

mentioned microenvironmental mechanisms, including the induction of an 

exhausted T-cell phenotype, and the recruitment of stromal cells to exclude 

cytotoxic immune cells from the TME (1.5.1). Here, I discuss cell-intrinsic 

mechanisms of escape from immune-surveillance.  

 

Robert Schreiber proposed the cancer immunoediting hypothesis to explain the 

dual role of the immune system, initially acting as an external tumour suppressor 

then actively sculpting the tumour to facilitate acquisition of the immune evasion 

hallmark (Schreiber et al., 2011). First the elimination phase, in which lymphocytes 

and IFN- γ collaborate to selectively destroy cancer cells, as an extrinsic 

mechanism of tumour suppression. Then the equilibrium phase, wherein cancer 

cells can survive under immune surveillance, but in a restricted capacity. And lastly 

the escape phase, involving the immune-mediated selection and outgrowth of 

tumour subclones with decreased immunogenicity, and an abrogation of the 

immune response. 

 

Cancer NGS datasets have revealed signals of immunoediting in human tumours. 
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Rooney and colleagues developed a novel metric to quantify the depletion of 

neoantigens in a pan-cancer analysis of data from TCGA (Rooney et al., 2015). 

First they estimated the observed ratio (“O”) of neoantigens, by dividing the number 

of predicted MHC (major histocompatibility complex)-binding point mutations from 

the total number of non-synonymous point mutations. Then this was compared with 

an expected ratio (“E”), using a null model calculated from the rate of synonymous 

point mutations. Using this “O:E” metric, Rooney and colleagues detected 

neoantigen depletion in 35% (7/20) of the datasets assessed, with the most 

substantial depletion observed in colorectal cancer and clear-cell kidney cancer. In 

a separate analysis of TCGA data, Davoli and colleagues reported that high SCNA 

tumours had less neoantigen editing (increased O:E ratio), suggesting aneuploidy 

decreases immune selective pressure, possibly by decreasing the relative 

concentration of neoantigens and altering flux through the proteasome (Davoli et 

al., 2017). Applying the O:E metric to paired primary-metastasis samples from two 

patients with colorectal cancer, Angelova and colleagues observed that highly 

immune infiltrated metastatic samples tended to undergo neoantigen depletion 

(Angelova et al., 2018). Moreover, longitudinal sampling pre- and post-treatment 

has shown neoantigen loss under the selective pressure of immunotherapies, 

including adoptive T-cell treatment (Verdegaal et al., 2016) or CPI drugs 

(Anagnostou et al., 2017). 
 

In future, classifying tumours according to the quality of individual neoantigens, or 

by immunoediting phase, might help reduce the risk of tumour escape by editing of 

vital immunogenic signals (McGranahan and Swanton, 2019; Schumacher and 

Schreiber, 2015). 
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1.6 Outline of the thesis 

1.6.1 Summary of background information 

Molecular biomarkers hold the translational promise of unmasking distinct disease 

subtypes beyond clinical descriptors such as tumour TNM staging. Recent 

examples include a TNM-“Biology” scheme for prognostication in lung cancer 

(Kratz et al., 2019), or a TNM-“Immune” classification incorporating the 

immunoscore into colorectal cancer diagnosis (Galon et al., 2014). Yet clinical 

adoption is hindered by the reproducibility crisis for cancer biomarkers (Sawyers, 

2008).  

 

Refining molecular biomarkers in the light of the evolutionary and ecological 

features of cancer (Maley et al., 2017) may help overcome these challenges 

(Figure 1-6). Specific knowledge gaps in the literature, which preclude this goal, 

include: 

1) An understanding of the mechanisms underlying non-genetic ITH, 

specifically the link between genetic and transcriptional diversity within 

individual tumours; 

2) A solution to the diagnostic challenge of tumour sampling bias that is 

compatible with existing pathology workflows; 

3) A strategy to characterize the immune contexture of tumours with clinical-

grade accuracy; 

4) Approaches for the systematic discovery of evolutionary constraints, 

specifically whether mutational timing is considered in analyses of epistatic 

interactions between genes. 
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Figure 1-6 Cancer biomarkers: past, present and future 
A, Traditional indicators of clinical outcomes include tumour staging, which 
was widely adopted in the 1940s, and still universal today despite being an 
imperfect predictor of survival risk (see 1.2.1). B, The advent of molecular 
oncology has moved the needle for cancer diagnostics, identifying novel 
markers of clinical outcomes encoded in the cancer genome or the tumour 
microenvironment. However, exciting research biomarkers typically fail to be 
clinically adopted (see 1.2.3). In this thesis, cancer evolutionary (C) and 
ecological (D) principles will be incorporated into existing approaches to 
molecular biomarker design. 

  



Chapter 1 Introduction 

57 

 

 

 

1.6.2 Thesis aims 

To pursue the hypothesis that integrating evolutionary and ecological features 

could improve the performance of molecular cancer diagnostics, four studies were 

conducted in this thesis: 

1) The level of transcriptional diversity within individual NSCLC tumours was 

quantified, using a novel metric. This measure was related to mechanisms of 

cancer genome evolution, and sampling bias for existing prognostic biomarkers.  

2) To address the sampling bias problem, a homogeneous expression biomarker 

was derived and validated. 

3) Molecular profiles of stromal cell subsets were generated from patients with 

NSCLC. This dataset revealed phenotypic adaptation in the TME and paved the 

way for high-fidelity cell-type-specific signatures. 

4) The impact of branching clonal architecture on the detection of epistatic 

interactions was assessed in a pan-cancer analysis 

This work aims to provide pragmatic ways to refine molecular portraits of cancer, 

towards realising their full translational potential. 
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Chapter 2. Data & Methods 

2.1 Introduction 

Deciphering cancer genomes through an evolutionary or ecological lens may move 

the needle for molecular diagnostics, as discussed in the previous chapter. In this 

chapter I describe the bioinformatics and experimental methods used in this thesis. 

First, an overview is provided of the pre-processed DNA and RNA datasets 

accessed. Second, the bioinformatics methods used for analysis are outlined. 

Lastly, the experimental methods used to isolate and RNA profile 

microenvironmental cell-types from lung tissue are described. 

2.2 Data 

2.2.1 TRACERx multi-region NSCLC cohort 

Tumour samples and clinical data were collected from 100 patients with NSCLC 

enrolled in the TRACERx Lung study and subjected to complete surgical resection 

with curative intent (Jamal-Hanjani et al., 2017). The TRACERx study (accession 

code: NCT01888601) is sponsored by University College London (UCL/12/0279) 

and has been approved by an independent research ethics committee 

(13/LO/1546).  

2.2.1.1 Whole exome sequencing 

Processing of WES was performed by Gareth A Wilson, Nicholas McGranahan, 

Nicolai J Birkbak, and Thomas BK Watkins. Exome capture was performed on 1-

2μg of DNA isolated from genomic libraries with median insert size of 190bp for 

each tumour and matched germline sample. A customized Agilent Human All 

Exome V5 kit was used according to the manufacturer’s protocol. Samples were 

100bp paired-end multiplex sequenced on the Illumina HiSeq 2500 and HiSeq 

4000 at the Advanced Sequencing Facility at The Francis Crick Institute. The 

median sequencing depth was 431 (range 83-986) for tumour regions and 415 

(range 107-765) for matched germline. 
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Raw paired-end sequencing reads were aligned to hg19, including all contigs, 

obtained from the GATK bundle (v2.8) using bwa mem (bwa-0.7.8). Files from the 

same patient region were cleaned, sorted, merged, and duplicate reads removed 

using Picard tools (v1.107). SAMtools mpileup (0.1.19) was used to find non-

reference positions in tumour and germline samples. Bases with low phred score 

(<20) or reads with low mapping quality scores (<20) were removed. Somatic 

variants were identified using VarScan2 somatic (v2.3.6) and extracted using 

VarScan2 processSomatic (Koboldt et al., 2012). All SNV calls were filtered for 

false positives using VarScan2’s fpfilter.pl script. All indel (small insertion/deletion) 

calls in reads classified by VarScan2 as “high confidence” were kept for 

downstream filtering. Additionally, MuTect (v1.1.4) was used to identify SNVs 

(Cibulskis et al., 2013). These variants were filtered according to the filter 

parameter “PASS”. To avoid false positive variant calls, additional filter steps were 

taken. Variants called by both VarScan2 and MutTect were considered true 

positives if the variant allele frequency (VAF) was >2%. If the variant was only 

identified by VarScan2, a VAF of >5% was required. Furthermore, the sequencing 

depth in each region was required to be >=30 and >=5 sequence reads had to 

support the call. To ensure the variant was not a germline event, the number of 

reads containing the variant in the germline data had to be <5 and VAF <=1%. To 

utilize the multi-region sequencing aspect of the cohort, individual mutations called 

across each region from the same tumour were compared. The threshold for 

detection of a somatic variant in one tumour region was reduced to VAF >=1% if 

the same variant had been detected at the VAF>=5% in another tumour region 

from the same tumour. Indels were filtered using the same parameters as SNVs, 

except >=10 reads had to support the variant call and the region had to have a 

sequencing depth >=50. All variants were annotated using Annovar (Wang et al., 

2010) and COSMIC (v75).  

 

Varscan2 copynumber was run to generate copy number data from paired tumour- 

normal samples, which produced per-region log-ratio (logR) values, that were 

subsequently GC corrected (Koboldt et al., 2012). Homozygous and heterozygous 

single nucleotide polymorphisms (SNPs) were identified from the germline sample 

using Platypus (v0.8.1) (Rimmer et al., 2014). The B-allele frequency (BAF) of each 
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SNP was calculated as the proportion of the reads at that position that contained 

the variant base. The logR and BAF values were used with ASCAT (v2.3) (Loo et 

al., 2010) in order to generate segmented allele-specific copy number data, purity, 

and ploidy estimates. Gene-level amplifications were called if the log2(mean gene 

copy number/ploidy) was >1. Gene-level deletions were called if the log2(mean 

gene copy number/ploidy) was <-1. To determine genome-wide copy-number gain 

and loss, copy-number data for each sample were divided by the sample mean 

ploidy, then log2 transformed. Gain and loss were defined as log2[2.5/2] and 

log2[1.5/2], respectively. Gene-level clonal copy-number gain and loss were 

defined as all regions from an individual tumour showing either gain or loss, in the 

same direction. Gene-level subclonal copy-number gain and loss were defined as 

at least one region (but not all regions) from an individual tumour showing copy-

number gain or loss. Only subclonally gained or lost copy-number segments were 

used to analyze the effect of copy-number alterations on gene expression. To 

ensure proper copy-number variation, only samples with an absolute copy-number 

difference of 0.5 on a log2 scale were included. Tumour purity was also quantified 

using ASCAT (Loo et al., 2010).  

 

To estimate whether mutations were clonal or subclonal, a modified version of 

PyClone was used (Roth et al., 2014). For each mutation, an observed cancer cell 

fraction (CCF, obsCCF) and a phylogenetic CCF (phyloCCF), which took into 

consideration any subclonal copy number events potentially altering the CCF, was 

calculated. Mutations were clustered using PyClone Dirichlet process clustering  

 

2.2.1.2 RNA sequencing 

RNA-Seq processing was performed by Nicolai J Birkbak and Rachel Rosenthal. 

RNA was extracted from the TRACERx 100 cohort using a modification of the 

AllPrep kit (Qiagen), as previously described (Jamal-Hanjani et al., 2017), and RNA 

integrity was assessed by TapeStation (Agilent Technologies). Of the cohort of 100 

TRACERx tumours, RNA samples of sufficient quality (RNA integrity score ≥ 5) 

were obtained for 174 regions from 68 tumours, and were sent to the Oxford 

Genomics Centre for whole-RNA (RiboZero- depleted) paired-end sequencing. Of 
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these, at least two regions were available from 48 tumours, yielding the TRACERx 

RNA M-Seq cohort.  

 

Alignment was performed using the STAR package (Dobin et al., 2013) (version 

2.5.2b), to map reads to the human genome (GRCh37/hg19). Transcript 

expression was quantified using the RSEM package (Li and Dewey, 2011) (version 

1.3.0) to generate count and transcript per million (TPM) expression values. An 

expression filter was applied, keeping genes with an expression value of at least 1 

TPM in at least 20% (30/156) of tumour samples in the TRACERx multi-region 

RNA-Seq dataset. In total, 16,286 genes were filtered out of the 25,343 unique 

genes outputted by RSEM. Lastly, a variance stabilizing transformation was applied 

to counts from filtered genes using the DESeq2 package (Love et al., 2014) 

(version 1.14.1), assuming a negative binomial distribution for count values, to 

output homoscedastic and library size-normalized count values.  

2.2.2 TCGA  

2.2.2.1 RNA-Seq data for NSCLC patients 

Pre-processed RNA-Seq and clinical data were downloaded for 959 patients with 

NSCLC (469 lung adenocarcinoma, LUAD; plus 490 lung squamous cell 

carcinoma, LUSC) enrolled in the TCGA research network lung trials (The Cancer 

Genome Atlas Research Network, 2014, 2012) using the TCGA2STAT package 

(Wan et al., 2016) (version 1.2). An expression filter was applied, keeping genes 

with at least 0.5 counts per million in at least two tumour samples, before 

normalized count values were obtained for filtered genes using a variance-

stabilizing transformation from the DESeq2 package (Love et al., 2014) (version 

1.14.1).  

2.2.2.2 Whole exome sequencing data for nine cancer-types 

Processing of WES was performed by Saioa López. Whole exome-sequencing 

data was accessed from the TCGA data portal for 3,545 patients from nine major 

cancer-types. From the TCGA repository, raw.bam files were downloaded and 

processed through the TRACERx pipeline (Jamal-Hanjani et al., 2017). BWA-MEM 
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was used to align the reads to the reference genome (hg19). Platypus (Rimmer et 

al., 2014) was used for SNP calling on the germline, and Varscan2 (Koboldt et al., 

2012) and MuTect (Cibulskis et al., 2013) for somatic mutation calling. Functional 

annotation of genomic variants was performed using ANNOVAR (Wang et al., 

2010). Purity, ploidy and copy number profiles of tumour cells were obtained with 

ASCAT (Loo et al., 2010), using the matching germline data. Mutations in regions 

of loss-of-heterozygosity (LOH) were timed as early or late based on the mutation 

and major allele copy number. Following a conservative approach, early mutations 

were considered as those with a mutation copy number ≥1.75 and a major allele 

copy number ≥1.75. Mutations were classified as late if they had a mutation copy 

number of ≤1.25 and major allele copy number of ≥1.75. Clonal mutations that 

could not be timed were classified as unknown. Mutations were defined as 

mutations in LOH if the minor allele copy number was <0.25.  

2.2.3 Uppsala II NSCLC cohort 

Pre-processed Uppsala RNA-Seq and clinical data were downloaded for 170 

patients with NSCLC (103 LUAD plus 67 LUSC) enrolled in the Uppsala NSCLC II 

cohort (Djureinovic et al., 2016) from the Gene Expression Omnibus (accession 

code: GSE81089). ENSEMBL gene IDs were converted to HUGO Gene 

Nomenclature Committee IDs using the biomaRt package (Durinck et al., 2009) 

(version 2.30.0), and maximum values were selected for multi-mapping probes. 

Genes identified as lowly expressed in the TRACERx RNA-Seq dataset were 

filtered, then a variance-stabilizing transform was applied using the DESeq2 

package (Love et al., 2014) (version 1.14.1) to output normalized count values. 

Additional clinical information was provided in private communication with the 

authors; this included adjuvant treatment status, patient age, World Health 

Organization (WHO) performance status, smoking status, patient gender and Ki67 

staining. 

2.2.4 Microarray NSCLC cohorts 

Microarray data (.RMA files) and clinical data were downloaded from the Gene 

Expression Omnibus for four patient cohorts: 442 patients with LUAD enrolled by 

Shedden et al. (Shedden et al., 2008) (GSE68465); 85 patients with LUAD enrolled 
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by Rousseaux et al. (Rousseaux et al., 2013) (GSE30219); 147 patients with LUAD 

enrolled by Okayama et al. (Okayama et al., 2012) (GSE31210); and 127 patients 

with LUAD enrolled by Der et al. (Der et al., 2014) (GSE50081). Affy IDs were 

mapped to HUGO Gene Nomenclature Committee IDs, and the ‘best’ probe was 

selected using the Jetset package (Li and Dewey, 2011) (version 3.4.0).  

2.2.5 MET500 

Stefan Boeing performed alignment and transcript counting for the MET500 RNA-

Seq data. Gene expression data were downloaded via dbGaP (accession number: 

phs000673.v2.p1.) for metastatic samples from patients in the MET500 cohort 

(Robinson et al., 2017) with LUAD primary tumours and RNA-Seq data available (n 

= 8). Alignment was performed using the STAR package (Dobin et al., 2013) 

(version 2.5.2) to map reads to the human genome (Ensembl GRCh38-release-89). 

Transcript expression was quantified using the RSEM package (Li and Dewey, 

2011) (version 1.3.0) to generate count expression values. Normalized count 

values were obtained using a variance-stabilizing transformation from the DESeq2 

package (Love et al., 2014) (version 1.14.1).  

2.2.6 Pan-cancer prognostic score datasets 

2.2.6.1 PRECOG 

Pan-cancer gene-wise prognostic values were downloaded from the PRECOG 

resource (http://precog.stanford.edu). Gentles et al. (Gentles et al., 2015) had 

applied univariate Cox regression to microarray data from ~18,000 tumours across 

39 cancer types, quantifying gene-wise survival associations as z scores (a |z| 

score > 1.96 is equivalent to a two-sided P < 0.05).  

2.2.6.2 Human Pathology Atlas.  

As part of the Human Protein Atlas effort (www. proteinatlas.org/pathology), Uhlen 

et al. (Uhlen et al., 2017) had calculated gene-wise survival associations as log-

rank P values for RNA-Seq datasets from 17 different cancer types. The pan-

cancer gene-wise prognostic values were downloaded as supplementary table 6 

from the original publication. 



Chapter 2 Materials and Methods 

 

64 

 

 

2.2.7 Single-cell RNA-Seq datasets 

2.2.7.1 Lambrechts et al 

Lambrechts et al. (Lambrechts et al., 2018) performed single-cell RNA-Seq on 

52,698 cells sourced from five patients with NSCLC, then defined seven clusters of 

stromal cell genes and provided a per-cluster expression measure for every gene. 

Gene-wise relative expression levels were downloaded as supplementary 

information from the original publication.  

2.3 Bioinformatics analyses 

2.3.1 Statistical analysis 

All statistical tests were performed in R (version 3.3.1). No statistical methods were 

used to predetermine sample size. All statistical tests were two-sided, unless 

otherwise stated. 

2.3.1.1 Correlation analysis 

Tests involving correlations were performed using cor.test with either Spearman’s 

method or Pearson’s method, as specified. Tests involving comparisons of 

distributions were performed using wilcox.test or t.test, as stated.  

2.3.1.2 Survival analysis 

Hazard ratios and P values were calculated using the survival package 

(https://CRAN.R- project.org/package=survival; version 2.41.3), through univariate 

or multivariate Cox regression analyses, as stated. Kaplan–Meier plots were 

generated using the survminer package (https://CRAN.R-

project.org/package=survminer; version 0.4.2). Meta-analysis was performed using 

the rmeta package (https://CRAN.R-project.org/package=rmeta; version 3.0). 
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2.3.2 Gene expression analysis 

2.3.2.1 Clustering 

Hierarchical clustering was performed using complete linkage and Euclidean 

distance, with the ward.D2 setting in the “hclust” function in the R package stats. 

Principal component analysis (PCA) was performed using the “prcomp” function 

from the stats R package. Uniform Manifold Approximation and Projection (UMAP) 

was performed using the umap R package (McInnes et al., 2018).  

 

For pairwise correlation analysis, using the Spearman correlation coefficient, first a 

correlation matrix of Spearman’s rho was calculated between all samples. Then 

correlations were converted to a distance metric (1 – ρ). Lastly hierarchical 

clustering was performed (Lance–Williams dissimilarity update formula, average 

linkage). The resulting dendrogram tree of clustering similarities was constructed 

using the neighbor-joining approach in the ape package in R (Paradis et al., 2004), 

based on pairwise Spearman correlational distances between samples. 

2.3.2.2 Differential expression analysis 

Differential expression analysis was performed on raw counts from RSEM using 

the DESeq2 package (Love et al., 2014) (version 1.14.1). Genes were considered 

to be expressed differentially by any comparison when the DESeq2 analysis 

resulted in an adjusted P value (Benjamini–Hochberg method) less than 0.05 and 

an absolute fold change larger than 2. 

2.3.2.3 Pathway analysis 

Pathway enrichment analysis was performed using the ReactomePA package (Yu 

and He, 2016) (version 1.24.0). Significance was evaluated based on a Bonferroni-

adjusted P value < 0.01.  

2.3.2.4 Gene set variation analysis 

Pathway analyses were performed on the 50 hallmark pathways described in the 

Broad molecular signature database (Subramanian et al., 2005). To assign 
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pathway activity estimates to cell-types, I applied the gene set variation analysis 

(GSVA) package (Hänzelmann et al., 2013) using standard settings. 

2.3.2.5 TME cell-type enumeration 

The gene-lists for four marker-gene-based TME scoring methods were accessed 

from the original publications as follows:  

• From Rooney et al, Supplementary Table 1c signature genes (Rooney et al., 

2015); 

• From Davoli et al, Supplementary Table 4d (Davoli et al., 2017); 

• From Danaher et al, Supplementary Table 4 selected markers (Danaher et 

al., 2017); 

• From Bindea et al, Supplementary Table 3 qPCR geners (Bindea et al., 

2013). 

2.3.3 Mutual exclusivity analysis 

2.3.3.1 TCGA mutation filtering 

From TCGA WES data (see 2.2.2.2), nonsense and missense mutations were 

selected for use in downstream analysis. Specifically, all mutations with 

‘Variant_Classification’ of 3Flank, 3UTR, 5Flank, 5UTR, Frame_Shift_Del, 

Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Intron, Nonstop_Mutation, RNA, 

Silent, Splice_Site, and Translation_Start_Site were removed. Mutations were 

further subsetted to candidate driver genes. For this purpose, a pan-cancer driver 

list issued by Bailey and colleagues was used (Bailey et al., 2018). From 

Supplementary Table 1 of the original publication, genes annotated as “PANCAN” 

were selected, yielding a list of 200 oncogenes and tumour suppressor genes.  

2.3.3.2 TiMEx and DISCOVER 

Point mutation data were arranged in a binary patient-by-gene format for input to 

mutual exclusivity detection tools. Pairwise gene-gene mutual exclusivities were 

tested using DISCOVER (Canisius et al., 2016) and TiMEx (Constantinescu et al., 

2016); significance was defined as a P-value < 0.05.  
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2.4 Experimental methods 

2.4.1 Ex vivo purification of lung stromal cell-types 

A cohort of patients with treatment-naïve lung cancer underwent surgical resection 

with curative intent in the TRACERx study and at the University of Edinburgh. 

Following surgical resection, tumour and paired non-malignant tissue materials 

excess to clinical diagnosis requirements were processed in the research lab to 

yield single-cell suspensions of stromal cells. TRACERx donors (n=23 NSCLC 

patients) were 17 LUAD cases, 5 LUSC cases and 1 other histology. University of 

Edinburgh donors (n=5 NSCLC patients) were 4 LUAD cases, and 1 LUSC case. 

2.4.2 Stromal cell isolation 

Stromal cells were isolated from lung tissue samples using a standard tissue 

processing assay, as follows. The sample was placed in a 60mm petri dish, and 

Collagenase (Gibco cat No. 17018029) and DNAse (Roche/Sigma cat No. 

10104159001) were added in plain RPMI. The sample was cut into the smallest 

possible pieces (2-3 mm) using sterile scalpels. Tissue chunks and remaining 

media were transferred into a GentleMACS tube (Milteni cat No. 130-096-334), 

which was loaded onto a GentleMACS cell dissociator machine with heated cuffs. 

The GentleMACS machine incubated and mixed the sample: rapid mixing for 30 

secs, then heating at 37 C for 1 hour with constant slow mixing. Next, the sample 

was transferred to another tube via a 70um cell strainer, and washed with 5mL 

complete cRPMI (only 2% FBS) to make a single cell suspension. The single-cell 

suspension was transferred to a 15ml centrifuge tube, under laid with 3ml Ficoll 

(Human Ficoll-Paque Plus (GE)/ VWR cat No. 17-1440-03) and centrifuged (at 750 

g for 10 minutes, no brake). The buffy coat was collected and transferred to a new 

15ml tube, then washed by topping up to 10-15mls with cRPMI. Isolated cells were 

centrifuged at 400g for 5 minutes, and resuspended in 3 mls cRPMI. The aliquot 

was transferred into a cryotube with freezing media (90% FBS and 10% DMSO; 

Sigma, HybriMax cat No D2650-100ML), then frozen at -80 C. 
 



Chapter 2 Materials and Methods 

 

68 

 

 

2.4.3 Cell sorting and RNA extraction 

Cells were thawed and washed twice in PBS before staining with the Zombie NIR 

live-dead exclusion kit on ice as per manufacturer instructions 

(https://www.biolegend.com/en-us/products/zombie-nir-fixable-viability-kit-8657).  

FACS (fluorescence-activated cell sorting) panel master-mixes were then added 

directly and cells stained for 20 minutes on ice before 2 washes with ice-cold FACS 

buffer (PBS + 2% FBS + 2mM EDTA) and sorting directly into cell lysis buffer (0.8% 

v/v Triton-X/H2O) in the presence of 2U/ul RNase inhibitor. 

 

Three multiparameter panels were used for FACS. The antibodies used in each 

panel are listed below. 

 

Panel 1: PD1 [BV421], (Biolegend); CD45RA [BV510], (Biolegend); CD45 [BV605], 

(Biolegend); CD25 [BV650], (Biolegend); CD27 [BV785], (Biolegend); Vδ1 [FITC], 

(Thermo); CD3 [PerCP-Cy5.5], (Biolegend); Vδ2 [PE], (Biolegend); CD4 [PE-

Dazzle-594], (Biolegend);TCRgd [PE-Cy7], (Biolegend);CD103 [APC], 

(Biolegend);CD8 [AF700], (Biolegend);Zombie NIR Live-Dead [APC-Cy7], 

(Biolegend). 

 

Panel 2: CD11c [BV421], (Biolegend);CD16 [BV510], (Biolegend);CD45 [BV605], 

(Biolegend);CD11b [BV650], (Biolegend);CD15 [FITC], (Biolegend);CD3 [PerCP-

Cy5.5], (Biolegend);HLA-DR [PE], (Biolegend);CD14 [PE-Cy7], (Biolegend);CD56 

[APC], (Biolegend);CD19 [AF700], (Biolegend);Zombie NIR Live-Dead [APC-Cy7], 

(Biolegend). 

 

Panel 3: CD31 [BV421], (Biolegend);CD33 [BV510], (Biolegend);CD45 [BV605], 

(Biolegend);CD90 [BV650], (Biolegend);CD15 [FITC], (Biolegend);EpCAM [PerCP-

Cy5.5], (Biolegend);PDGFRb [PE], (Thermo);E-Cadherin [PE-Cy7], 

(Biolegend);FAP [APC], (R&D);CD3 [AF700], (Biolegend);Zombie NIR Live-Dead 

[APC-Cy7], (Biolegend). 
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Following FACS, RNA was extracted from the sorted cell-types using RNeasy Plus 

Micro Kit (Qiagen). 

2.4.4 RNA-Sequencing 

RNA samples were sent to the Oxford Genomics Centre for Smart-Seq2 library 

preparation (Picelli et al., 2014) and whole-RNA (RiboZero depleted) paired-end 

sequencing. Stefan Boeing performed alignment and transcript counting. Alignment 

was performed using the STAR package (Dobin et al., 2013) version 2.5.2b to map 

reads to the human genome (GRCh37/hg19). Transcript expression was quantified 

using the RSEM package (Li and Dewey, 2011) version 1.3.0 to generate TPM 

expression values. 
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Chapter 3. RNA intra-tumour heterogeneity: 
mechanisms and clinical impact 

3.1 Introduction 

The phenotype of a cancer cell is defined through its transcriptome, which is 

sculpted by genetic and epigenetic events. Multi-region RNA profiling studies have 

described widespread transcriptomic intra-tumour heterogeneity (RNA-ITH) across 

cancer types (Bachtiary et al., 2006; Barranco et al., 1994; Blackhall et al., 2004; 

Gyanchandani et al., 2016; Lee et al., 2018; Morrissy et al., 2017; Suda et al., 

2018). How the cancer transcriptome is shaped by genetic ITH, and the broader 

implications of RNA-ITH for biomarker discovery, has received little attention to 

date. 

 

Early microarray studies demonstrated a mechanistic link between aneuploidy and 

gene expression changes in human cancers (Pollack et al., 2002; Tonon et al., 

2005), with karyotype abnormalities giving rise to corresponding alterations in gene 

dosage. This correspondence has been further substantiated by recent 

proteogenomic characterization (Sinha et al., 2019; Vasaikar et al., 2019), and a 

recent pan-cancer analysis of paired RNAseq and WGS data from 1,000 tumours 

confirmed SCNAs to be the predominant genetic event, driving 17% of RNA 

variation (Calabrese et al., 2020). While the mechanisms of cancer genome 

evolution are broadly characterized (see 1.3.3), its relation to transcriptional 

diversity within individual tumours is less well-studied. Exploring the genomic 

determinants of RNA-ITH may shed light on “functional heterogeneity” – what 

proportion of the cancer genome is ancestral, versus encoding transcriptionally 

active events. In 1984, Heppner speculated that this might be a complex 

relationship, with a “gulf between genotype and phenotype of a cell”, the latter 

being an “emergent property” of the direct and pleiotropic actions of many genes 

(Heppner, 1984). This could also aid prioritization of events “hard-wired” in tumour 

evolution for therapeutic targeting (Morrissy et al., 2017; Rosenthal et al., 2019). 
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The transcriptional read-out of a tumour can also serve as a clinically informative 

molecular portrait (see 1.2.3.1). In breast cancer, for example, prognostic gene 

expression signatures have received clinical approval for use discriminating ER+ 

node-negative patients at high versus low-risk of recurrence (Paik et al., 2004; 

Parker et al., 2009; van ’t Veer et al., 2002). Unfortunately, the success of breast 

cancer biomarkers is not the general pattern. For example in lung cancer, several 

published prognostic gene expression signatures have failed to validate when 

tested in independent patient cohorts, and have been criticized for limited clinical 

utility beyond current practice standards (Subramanian and Simon, 2010a; Vargas 

and Harris, 2016). 

 

A spatially heterogeneous transcriptome can give rise to the diagnostic challenge 

of tumour sampling bias, wherein a molecular biomarker yields different predictions 

of clinical outcome for the same tumour depending on where the biopsy needle is 

placed (see 1.4.1). Given that genetic ITH is pervasive in NSCLC, with a third of 

mutations and up to half of chromosomal copy-number changes occurring 

subclonally (Jamal-Hanjani et al., 2017), RNA-ITH may be a substantial 

confounding factor for the discovery of robust molecular biomarkers in lung cancer. 

 

In this chapter I leveraged the largest cohort of lung cancer patients with paired 

multi-region exome- and RNA-seq data explored to date to investigate the causes, 

consequences and clinical implications of RNA-ITH. I defined a measure for RNA-

ITH, perform a detailed dissection of its genomic determinants, and assessed its 

clinical impact by quantifying the prevalence of tumour sampling bias in lung 

cancer. 

 

The results presented in this chapter forms sections of a first-author paper 

published during this thesis (Biswas et al., 2019). 
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3.2 A measure of RNA intra-tumour heterogeneity  

3.2.1 Multi-region RNA-Sequencing 

Tracking Non-Small-Cell Lung Cancer Evolution through Therapy (TRACERx) is a 

prospective cohort study (ClinicalTrials.gov number, NCT01888601) targeting 

enrollment of 842 patients with primary NSCLC. Multi-region and longitudinal 

tumour sampling is performed on treatment-naïve NSCLC tumours, recruited from 

one of thirteen sites in the UK. A primary study aim is to define the relationship 

between intra-tumour heterogeneity and clinical outcomes in early-stage NSCLC 

(Jamal-Hanjani et al., 2014). 

 

Previously, the results from analysis of WES data from the first 100 NSCLC 

patients enrolled in the TRACERx study had been published (Jamal-Hanjani et al., 

2017). From this 100-patient cohort, paired RNA-Seq data was generated where 

sample quality allowed. After excluding tumour regions with insufficient RNA quality 

(RNA Integrity Number < 5), and including tumours with at least two regions to 

analyse, there were 156 tumour regions from 48 TRACERx patients (Figure 3-1). 

This multi-region RNA-sequencing cohort (median: 3 regions per tumour; range: 2-

7) was comprised of a mixture of NSCLC histologies: 28 LUAD patients (stage I = 

15, stage II = 6, stage III = 7); 14 LUSC patients (stage I = 7, stage II = 6, stage III 

= 1); 6 other histology patients (stage I = 2, stage II = 2, stage III = 2). 
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Figure 3-1 TRACERx lung RNA-Seq cohort 
Bar plot showing the patient composition of the TRACERx RNA-Seq dataset 
(n=48 NSCLC patients). TNM tumour stage and adjuvant treatment status 
(colour) is indicated for LUAD (left panel), LUSC (middle) and other (right) 
histologies. 
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3.2.2 Defining RNA-ITH 

In order to characterize the mechanisms driving RNA heterogeneity within 

individual tumours, I developed gene-level and patient-level metrics for RNA-ITH. 

 

RNA-ITH was quantified using the multi-region RNA-Seq dataset from TRACERx 

(156 regions, 48 NSCLC patients). I defined RNA-ITH as follows (Figure 3-2). For a 

particular gene (e.g. EDC4) the standard deviation in expression values (count 

data, normalised using a variance stabilizing transform) between tumour regions is 

calculated for each individual tumour (e.g. patient CRUK003 has 7 regions with 

RNA-Seq data available). This yielded values of RNA-ITH that were specific to 

individual patients and genes (e.g. ECD4 in CRUK003 has σg,p = 0.075). These 

values can then be summarised by taking the median value, either for each gene to 

calculate a gene-level RNA-ITH score (e.g. ECD4 has σg = 0.096), or for each 

patient giving a patient-level RNA-ITH score (e.g. CRUK004 has σp = 0.483). 

Gene-level RNA-ITH scores can then be compared, for example ECD4 (σg = 0.096) 

has a lower value than PROM1 (σg = 1.38), indicating ECD4 tends to have a more 

uniform expression profile between regions sampled from individual TRACERx 

tumours. This suggests ECD4 may be less subject to sampling bias than PROM1, 

with potential implications for the design of robust molecular biomarkers. Similarly, 

patient-level RNA-ITH scores can also be compared, for example CRUK004 (σp = 

0.483) has a higher value than CRUK001 (σp = 0.135). It may be of interest to rank 

tumours according to RNA-ITH status. The clinicopathological or genomic forces 

driving differing levels of RNA heterogeneity between patients may then be 

explored. 
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Figure 3-2 Strategy to calculate intra-tumour RNA heterogeneity scores at the 
patient- and gene-level 
Gene- and patient-specific scores of RNA-ITH (middle, table) were calculated 
using multi-region RNA-Seq data from the TRACERx cohort (left, bar plots). 
These scores could then be summarised by gene (right, frequency distribution 
plots) or by patient (bottom, frequency distribution plots). 
 

While standard deviation has been used previously to quantify RNA-ITH (Morrissy 

et al., 2017), other methods have also been applied (Bachtiary et al., 2006; 

Blackhall et al., 2004). I considered alternative measures to capture RNA variability 

within tumours (Figure 3-3) in the cohort of TRACERx LUAD patients (n=28 LUAD 

patients, 89 tumour regions, stage I-III). I found strong correlation between gene-

level RNA-ITH values calculated using standard deviation and either median 

absolute deviation (Rs=0.965, P<0.001) or the coefficient of variation (Rs=0.956, 

P<0.001). 
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Figure 3-3 Alternative metrics for RNA-ITH 
Gene-level RNA-ITH scores, calculated using the standard deviation per tumour 
then summarised across the cohort, were correlated with alternative RNA-ITH 
measures: mediation absolute deviation (A) or coefficient of variation (B). 
Spearman correlation was performed in LUAD patients from the TRACERx 
cohort (n=28). 
 

I also considered an alternative approach for quantifying RNA-ITH based on 

unsupervised hierarchical clustering. Using multi-region RNA-Seq data from 

TRACERx tumours (89 regions, 28 LUAD patients, stage I-III), a clustering method 

developed by Gyanchandani and colleagues (Gyanchandani et al., 2016) was 

applied to calculate gene-level metrics for RNA-ITH (Figure 3-4A). For each 

expressed gene (14,009 genes) hierarchical clustering (Manhattan distance, Ward 

method) of all tumour regions across the TRACERx cohort was performed. The 

proportion of patients with tumour regions assigned to the same cluster was 

extracted and plotted for increasing numbers of clusters, from 2 (the minimum 

dendrogram cut-point) to 28 (the total number of patients in the cohort). The plotted 

curves for each gene varied markedly, taking CKMT2 for example, there was a 

sharp decrease to zero in the proportion of patients with all regions clustering 

together. By contrast, for HOXC11 the decline in clustering concordance was less 

steep, and plateaued at half the patients with all tumour regions in the same 

cluster. To capture this variability, gene-level clustering concordance was scored 

as the integral of the curve, yielding clustering concordance scores for all 

expressed genes (Figure 3-4B). 
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Figure 3-4 RNA clustering concordance scores 
Clustering concordance scores calculated in TRACERx. A, For each gene a 
curve is calculated for the number of patients with all regions in the same cluster 
against the number of clusters (2-28 clusters). Curves for five genes 
(minimum=CKMT2, lower quartile=CYSLTR2, median=MCM2, upper 
quartile=MFSD1, maximum=HOXC11) are shown. B, The summarised clustering 
concordance scores for all genes, with the five genes from (a) highlighted in red.  
 

Overall, the RNA-ITH metric calculated using standard deviation correlated well 

with scores generated using either median absolute deviation or coefficient of 

variation. Therefore standard-deviation-based scores were used as the primary 

metric for RNA-ITH in subsequent analyses. The clustering concordance score 

offered an alternative approach to quantifying RNA-ITH, and was used as a 

secondary metric on rare occasions as stated. 
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3.2.3 Dependence on multi-region sampling, clinicopathological and 
immune correlates 

Previous studies of genetic ITH have described a positive association between 

number of regions sampled for an individual tumour and the level of measured ITH 

(Gerlinger et al., 2014; Turajlic et al., 2018). This can give rise to the “illusion of 

clonality”, wherein mutations may falsely appear ubiquitous due to under-sampling. 

Conversely, it is unclear whether measured ITH saturates at a certain number of 

sampled regions. The TRACERx cohort of NSCLC patients (156 regions, 48 

patients, stage I-III) provided a rich multi-region dataset (median: 3 regions per 

patient, range: 2-7 regions) to explore how RNA-ITH estimates for an individual 

tumour tracks with the number of regions sequenced. 

 

Simply plotting measures of RNA-ITH against the number of regions sequenced 

suggested that the patient-level estimates of RNA-ITH scaled with the number of 

regions sequenced (Figure 3-5). 
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Figure 3-5 Dependence of patient-level RNA-ITH scores on multi-region sampling 
Correspondence between the number of tumour regions sequenced per tumour 
and RNA-ITH. 
 

To see how the RNA-ITH estimate for a particular tumour would have impacted by 

sampling fewer regions, and evaluate whether this leveling-off point held true for 

individual tumours, I performed a down-sampling analysis (Figure 3-6). For a given 

tumour (e.g. CRUK0029), one to N biopsies was sampled (N is the total number of 

biopsies available for that tumour, e.g. N for CRUK0029 = 7 regions). RNA-ITH 

scores were then calculated for all possible combinations of tumour regions (e.g. 

for CRUK0029, an RNA-ITH score was calculated for every 2-region combination, 

every 3-region combination, and so forth, until a single score was calculated using 

all 7 regions available). This analysis indicated that estimates of RNA-ITH tend to 

increase with multi-region sampling, plateauing at around four regions sampled per 

tumour. 
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Figure 3-6 Down-sampling analysis of patient-level RNA-ITH scores 
Scatter-plots showing for a individual tumours (each panel), the down-sampled 
RNA-ITH scores (y-axis) plotted against the number of regions sampled (x-axis). 
The lines depict the mean (red line) and standard deviation (blue lines) values. 
The analysis was conducted for each patient in the TRACERx cohort (n=48 
NSCLC patients): one to N regions was sampled and this subset of regions was 
used to calculate RNA-ITH; this procedure was repeated for all possible 
subgroups. 
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Analyses linking RNA-ITH to genetic drivers in the TRACERx cohort (156 regions, 

48 NSCLC patients, stage I-III) may be biased if interacting terms, such as tumour 

stage or purity, go unaccounted. To identify potential confounding factors, I 

assessed the dependence of patient-level RNA-ITH scores on clinicopathological 

and immune features. RNA-ITH did not significantly associate with tumour stage or 

histology (Figure 3-7). 

 

 
Figure 3-7 RNA-ITH by tumour stage and histology 
Examining the dependence of RNA-ITH by tumour stage (A) or histology (V). All 
group-wise comparisons were did not attain significance (P<0.05). Statistical 
significance was tested with a two-sided Wilcoxon signed-rank test.  
 

Tumour immune infiltration was scored using an RNA-Seq-based method, 

described by Danaher and colleagues (Danaher et al., 2017). RNA-ITH did not 

significantly associate with the level of immune infiltration measured for any of the 

22 defined subsets (Figure 3-8A). Tumour purity was also quantified using WES 

data from TRACERx tumours, using the ASCAT method (Loo et al., 2010), and did 

not significantly associate with RNA-ITH (Figure 3-8B). Taken together, these data 

imply clinical features and tumour cellular composition were not substantive 

confounding factors in my estimation of patient-level RNA-ITH scores. An 

alternative approach, taking a random-effect model per sample, could have been 

used to incorporate sample-specific purity effects. 
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Overall, these results highlight the benefit of multi-region sequencing for 

uncovering spatial heterogeneity in gene expression, and indicate the estimates of 

RNA-ITH were not biased by clinical or immune parameters. 
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Figure 3-8 RNA-ITH by immune infiltration and tumour purity 
RNA-ITH scores correlated with immune infiltration scores for 16 cell-types 
generated from RNA-Seq data using a method developed by Danaher and 
colleagues (A), and tumour purity inferred from WES data using ASCAT (B). 
Spearman correlation was performed in the TRACERx cohort (n=48 NSCLC 
patients). 
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3.3 RNA heterogeneity reflects chromosomal instability 

3.3.1 Genetic correlates of RNA-ITH 

I examined the genetic determinants of RNA-ITH by accessing the published 

results from WES analyses of the first 100 NSCLC patients enrolled in the 

TRACERx study (327 regions, 100 NSCLC patients) (Jamal-Hanjani et al., 2017), 

then exploring dependencies in the subset of TRACERx tumours with multi-region 

RNA-Seq data available (156 regions, 48 NSCLC patients, stage I-III).  

 

Briefly, SNVs were detected using a consensus of VarScan2 and MuTect calls. The 

burden of point mutations was calculated per patient as the total number of non-

synonymous SNVs across all tumour regions. SNVs were also classified as clonal 

or subclonal through PyClone clustering, and patient-level summaries of SNV-ITH 

were calculated (fraction of subclonal SNVs). RNA-ITH was not associated with 

either point mutation burden (Figure 3-9A, Rs=0.23, P=0.12) or mutational 

heterogeneity (Figure 3-9B, Rs=0.27, P=0.068). 

 

Segmented allele-specific copy-number states were called using VarScan2 and 

ASCAT tools. The overall burden of copy number aberrations was defined as the 

proportion of the genome deviating from the tumour ploidy status, calculated as the 

average across tumour regions (weighted genome integrity index, wGII). SCNAs 

were classified as clonal if present across all regions from each tumour, or 

subclonal if absent in at least one region, permitting generation of patient-level 

estimates of SCNA-ITH (fraction of subclonal SCNAs). Intriguingly, copy-number 

ITH, a proxy measure for chromosome instability, was correlated with RNA-ITH 

(Figure 3-9C, Rs=0.54, P=0.00014). By contrast, a static measure of the copy 

number aberration burden was not associated with RNA-ITH (Figure 3-9D, 

Rs=0.26, P=0.077). 

 

Overall, this suggests “functional” ITH of lung cancer transcriptomes positively 

correlates with dynamic and ongoing chromosomal instability, rather than karyotype 

complexity per se. 
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Figure 3-9 Genetic correlates of RNA-ITH 
The association of RNA-ITH with genetic measures was investigated: non-
synonymous mutation burden (A), mutational ITH (B), whole genome integrity 
index (C), copy-number ITH (D). Spearman correlation was performed in the 
TRACERx cohort (n=48 NSCLC patients). 
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3.3.2 Linking chromosomal instability, gene dosage, and prognosis 

To dissect the relationship between copy-number ITH and RNA-ITH in greater 

detail, I tested whether gene expression tracks subclonal copy-number state at the 

level of individual SCNAs. 

 

Mining the WES data, genes with a heterogenous SCNA profile between regions of 

an individual tumour were classified as subclonal copy-number gains or losses. 

Expression levels for subclonal SCNAs were then compared between copy-number 

aberrant and non-aberrant tumour regions. Overall 118,943 paired SCNA and RNA 

values were identified in TRACERx (143 regions from 44 NSCLC tumours with 

ASCAT data). This analysis revealed SCNA gains or losses distinct to tumour 

regions were linked with corresponding alterations in gene expression (Figure 

3-10A, P < 2.2 × 10−16). 

 

Analyses of WES data from 100 TRACERx patients reported elevated SCNA-ITH 

associates with increased risk of recurrence or death in NSCLC (Jamal-Hanjani et 

al., 2017). To explore whether RNA-ITH could mirror and provide a functional read-

out for SCNA-ITH, I investigated its prognostic association in the reduced cohort of 

48 TRACERx patients with multi-region RNA-Seq data. However, while patients 

with elevated RNA-ITH tended to have poorer disease-free survival outcomes – 

with visible splitting of Kaplan-Meier survival curves – this relationship was non-

significant (Figure 3-10B, P=0.094). 

 

Altogether, these data support the hypothesis that RNA-ITH may reflect dynamic 

chromosomal instability, the transcribing of heterogeneous aneuploidy karyotypes 

into functional ITH, and the selection of subclonal DNA copy-number events. 
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Figure 3-10 RNA-ITH associations with subclonal chromosomal copy-number 
changes and prognosis 
A, Subclonal SCNAs were identified in the TRACERx cohort (n=44 NSCLC 
tumours with ASCAT calls available) and compared with gene expression. B, 
Percentages of TRACERx patients who were disease-free according to whether 
the patients had a high RNA-ITH (above the median) or a low RNA-ITH (below the 
median) score.  
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3.4 Tumour sampling bias confounds molecular biomarkers  

3.4.1 Literature search for LUAD prognostic signatures 

To explore patterns of gene expression associated with patient survival in the light 

of inter- and intra-tumour RNA heterogeneity, I performed a literature search to 

identify published lung cancer prognostic signatures. Early attempts to derive a 

prognostic signature for lung cancer patients treated NSCLC as a homogenous 

group (Boutros et al., 2009; Chen et al., 2007; Lau et al., 2007; Wigle et al., 2002; 

Zhu et al., 2010). However, most modern approaches, recognising histology is a 

potential confounding factor, have focussed on LUAD as the most common NSCLC 

subtype. Accordingly I restricted the scope of the study to LUAD prognostic 

signatures. 

 

I searched the PubMed database to find literature reporting LUAD prognostic 

signatures (Bunn et al., 2014; Subramanian and Simon, 2010a; Zhu et al., 2009). 

The text and supplementary tables for each article were manually reviewed. 

Signatures developed from genome-wide RNA profiling studies and correlated with 

patient survival were considered for inclusion. Critically, if the full gene-list was not 

completely specified, then it could not be taken forward for subsequent analysis, 

and many signatures were excluded on this basis. As gene names change over 

time, several were updated to match the latest HUGO nomenclature to ensure fair 

comparison and integration with the TRACERx RNA-Seq dataset. 

 

The literature search identified nine signatures from studies published between 

2001 and 2017 (Figure 3-11). Each signature was comprised of 31 genes on 

average, though this varied greatly from a four-gene signature (Shukla et al., 2017) 

to a 97-gene signature (Beer et al., 2002). A range of RNA technologies had been 

used for signature derivation, including six microarray signatures (Beer et al., 2002; 

Bianchi et al., 2007; Garber et al., 2001; Krzystanek et al., 2016; Raz et al., 2008; 

Wistuba et al., 2013), two RNA-Seq signatures (Bailiang Li et al., 2017; Shukla et 

al., 2017), and one qPCR signature (Kratz et al., 2012) identified. Two of these 

signatures are available as commercial assays (Zheng and Bueno, 2015), namely 
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the “Pervenio Lung RS” (Kratz et al., 2012) and “Myriad MyPlan” signatures 

(Wistuba et al., 2013). 

 

 
Figure 3-11 Published LUAD prognostic signatures 
Bar plot showing the number of genes for each of nine published signatures, 
plotted in order of publication year. Bars are coloured by the technology used for 
gene expression profiling in the respective study. 
 

3.4.2 Quantifying the sampling bias of RNA-Seq-based prognostic 
signatures  

I determined the prevalence of sampling bias for RNA-Seq based prognostic 

signatures using RNA-Seq data from the cohort of TRACERx LUAD patients (89 

tumour regions, 28 LUAD patients, stage I-III). 

 

For the four-gene signature described by Shukla et al (Shukla et al., 2017), model 

coefficients from the original publication were applied to TPM data from the multi-

region TRACERx study. A risk-score was calculated for every tumour region, then 

the risk thresholds defined in the original publication were used to stratify tumour 

regions as either high- or low-risk. Lastly, stratification of patients into more precise 

disease subtypes was attempted. If all regions from an individual tumour exhibited 

concordant risk classification, patients were labelled as concordant low- or high-
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risk; alternatively, patients were labelled as “discordant” if different regions from the 

same tumour were classified as harbouring distinct profiles of molecular risk. 

 

Discordant risk classification was observed in 43% of the TRACERx cohort (12/28 

LUAD patients), indicating sampling bias was a substantial unaddressed 

confounding factor for this signature, potentially limiting its clinical application 

(Figure 3-12). 

 

 
Figure 3-12 Tumour sampling bias for prognostic signature from Shukla et al 
Molecular risk-scores were calculated in multi-region tumours from the 
TRACERx cohort (n=28 LUAD patients), using the RNA-Seq signature described 
by Shukla et al. Risk-scores for all tumour regions is shown for each individual 
patient (A), and summarised as percentages of patients across the cohort (B). 
Tumours are classified as concordant low (blue), discordant (gray), or 
concordant high (red).  
 

Indeed, the high- and low-risk patient stratifications outputted by the signature from 

Shukla et al were not informative for prognostication in the TRACERx cohort 

(Figure 3-13), though the small number of patients tempers this result. This result 

was independent of whether discordant risk tumours were classified based on the 

minimum, maximum, or median scoring tumour region, or excluded completely. 
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Figure 3-13 Prognostic information for prognostic signature from Shukla et al 
Using the RNA-Seq signature described by Shukla and colleagues, TRACERx 
tumours (n=28 LUAD patients) were classified as concordant low risk (n=11), 
discordant (n=12), and concordant high risk (n=5). Prognostic ability was 
assessed for concordant high- and low-risk tumours, with the discordant 
tumours classified according to their minimum risk score (A), maximum risk 
score (B), median risk score (C), or excluded (D). Kaplan-Meier survival curves, 
statistical significance was tested with a two-sided log-rank test. 
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The same analysis was conducted for the signature described by Li and colleagues 

(Bailiang Li et al., 2017), an RNA-Seq signature that estimates survival risk based 

on “immune-related gene pairs”. The 40-gene signature was applied to TRACERx 

TPM data, using the median risk-score as the threshold to classify tumour regions. 

This revealed discordant classification in 29% of the TRACERx cohort (8/28 LUAD 

patients), providing further evidence for the limited clinical utility of existing 

signatures (Figure 3-14). 

 

 
Figure 3-14 Tumour sampling bias for prognostic signature from Li et al 
Molecular risk-scores were calculated in multi-region tumours from the 
TRACERx cohort (n=28 LUAD patients), using the RNA-Seq signature described 
by Li et al. Risk-scores for all tumour regions is shown for each individual 
patient (a), and summarised as percentages of patients across the cohort (b). 
Tumours are classified as concordant low (blue), discordant (gray), or 
concordant high (red).  
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3.4.3 Quantifying sampling bias of prognostic signatures invariant of RNA 
profiling technology 

To date, the majority of gene expression based prognostic signatures in LUAD 

have been defined through expression profiling on microarray technology, rather 

than RNA-Seq. Therefore, to assess the pervasiveness of tumour sampling bias 

among LUAD prognostic signatures in RNA-Seq data from the cohort of TRACERx 

LUAD patients (89 tumour regions, 28 LUAD patients, stage I-III), I performed 

clustering to quantify the similarity between tumour regions from the same patient. 

This enabled the evaluation of discordance in a manner invariant of the technology 

used to derive the signature.  

 

I adopted a method developed by Gyanchandani et al (Gyanchandani et al., 2016) 

to examine sampling bias in a multi-region breast cancer cohort. This involves 

hierarchical clustering (Manhattan distance, Ward method) of all tumour regions by 

the genes comprising each signature. Clustering discordance rate is then defined 

as the proportion of patients with tumour regions assigned to separate groups. 

 

The clustering approach is shown for the Pervenio Lung RS signature (Kratz et al., 

2012) to illustrate how discordance rates are calculated (Figure 3-15A). The 

clustering discordance metric is influenced by the number of clusters considered 

(dendrogram height), therefore I performed the analysis iteratively from 2 clusters 

(splitting the dataset into two groups) to 28 (splitting the dataset into the total 

number of patients – here, perfect concordance means all tumour regions from 

each patient cluster together). At 2 clusters, the Pervenio Lung RS signature has a 

clustering discordance rate of 11% (3/28 patients) at 2 clusters (Figure 3-15B). This 

metric increases with the number of clusters considered, from 18% (5/28 patients) 

at 3 clusters, 29% at 14 clusters (8/28 patients), and 50% (14/28 patients) at 28 

clusters (Figure 3-15B). 
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Figure 3-15 Tumour sampling bias for prognostic signature from Kratz et al 
Discordance rate measured in TRACERx (n=28 LUAD patients) using the qPCR 
signature described by Kratz et al. A, The dendrogram and heatmap (top) use the 
expression profiles of the genes-list forming the prognostic signature (middle) to 
cluster tumour regions (bottom). Patients with tumour regions assigned to 
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discordant clusters are highlighted (right, bar plots) and calculated as a 
percentage of all patients from the cohort (middle, pie charts), for a range of 
clusters (2, 3, 14, 28). B, The fraction of patients with all tumour regions assigned 
to the same cluster is taken to indicate discordance, and iteratively calculated 
from 2 to 28 clusters. Dashed vertical lines mark the discordance scores for a 
range of clusters (2, 3, 14, 28). 
 

I extended the clustering approach to the 9 published LUAD prognostic signatures 

identified by the literature search. Discordance rates were calculated for each 

signature from 2 to 28 clusters. At 28 clusters the median clustering discordance 

rate was 50% (15.5/28 LUAD tumours, range = 18-82%), indicating that half the 

tumour regions would be vulnerable of incorrect risk stratification due to sampling 

bias (Figure 3-16). 

 

 
Figure 3-16 Tumour sampling bias for prognostic signatures from nine studies 
Discordance scores were calculated for nine prognostic signatures in TRACERx 
(n=28 LUAD patients) using the hierarchical clustering approach. Dashed vertical 
lines mark the discordance scores for a range of clusters (2, 3, 14, 28).  
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Taken together, these data suggest sampling bias is a prevalent problem amongst 

published prognostic signatures, which may contribute to the low validation rate of 

gene expression signatures.  
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3.5 Conclusions 

3.5.1 Summary of findings 

The studies of NSCLC patients from the TRACERx study in this chapter have 

demonstrated the utility of multi-region sequencing to measure RNA-ITH, 

uncovered chromosomal instability as a major underlying mechanism, and 

identified tumour sampling bias as a substantial unaddressed challenge for 

biomarker discovery in lung cancer (Figure 3-17). 

 

I explored the relationship between aneuploidy and gene dosage heterogeneity at 

the level of individual chromosomes, observing gene expression has a 50% 

correlation with copy number at the gene level, consistent with previous 

observations in human cancer (Pollack et al., 2002; Tonon et al., 2005). 

Importantly, this relationship held for cases where SCNA is altered subclonally in 

the multi-region dataset. To the best of my knowledge, the transcription of 

heterogeneous chromosomal states into functional ITH has not previously been 

described in the literature. 

 

The in-depth evaluation of nine published LUAD prognostic signatures revealed 

these are subject to significant sampling bias, exhibiting a 50% discordance rate on 

average, whereby different regions from the same tumour may be classified as 

harbouring distinct profiles of molecular risk. This result greatly expands on a 

recent multi-region microarray study of 10 NSCLC patients, reporting discordance 

rates of 10-70% for two published NSCLC prognostic signatures (Lee et al., 2018). 

 

In summary, the evidence presented here suggests RNA-ITH correlates with 

chromosomal instability and may confound single-biopsy driven biomarker 

approaches if unaddressed. Having established that existing signatures may be 

limited by sampling bias, I proceed to study the impact of controlling RNA-ITH on 

biomarker performance in the next chapter. 
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Figure 3-17 Chromosomal instability associates with RNA-ITH, giving rise to 
tumour sampling bias 
A, In TRACERx, multiple regions are sampled from each individual tumour 
(marked as R1-R4). The genomic profile of the tumour is shown for a single high-
risk prognostic gene (gray). The chromosomal state (“DNA”, gray star), and the 
corresponding transcriptional read-out (“RNA”, gray transcripts) are indicated. 
Gene expression signatures score the RNA profile of a tumour biopsy as high-
risk (three red regions) or low-risk (one blue region). Only one biopsy is taken for 
diagnosis in the routine clinical setting (indicated by dashed triangle). This 
tumour is vulnerable to sampling bias, as the diagnostic biopsy (circle) is taken 
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from the sole low-risk region. B, A diagnostic tumour biopsy is taken and tested 
using a prognostic gene expression signature (1), which classifies patients into 
more precise disease subtypes based on estimated survival risk (2), and helps to 
inform clinical decision-making (3). While useful in distinguishing high-risk (red) 
from low-risk (blue) patients, prognostic signatures are confounded by tumour 
sampling bias (gray), leading to a sub-optimal treatment and follow-up strategy. 
 

3.5.2 Future work 

The novel metric developed for RNA-ITH in this chapter was based on the standard 

deviation in expression values between multiple regions sampled from an individual 

tumour. Future analyses may further hone this RNA-ITH metric, possibly through 

explicitly modeling expression levels as a function of spatial coordinates as 

described by the SpatialDE tool (Svensson et al., 2018). In addition, my analyses of 

RNA-ITH did not incorporate cis-effects (gene expression scales proportional to 

copy-number) or trans-effects (gene expression scales disproportionately with 

copy-number, typically due to targeting by transcription factors). The inclusion of 

this information may further refine the mechanistic linkage between CIN and RNA-

ITH. 

 

While mutation clonality can be inferred from single-sample WES data, using 

PyClone for example (Roth et al., 2014), it has been speculated that it would be 

difficult to infer RNA-ITH without multi-region RNA-Seq data (Alizadeh et al., 2015). 

Yet the extraction of allele-specific expression, using tools such as phASER (Castel 

et al., 2016) or Texomer (Wang et al., 2019), may provide a means to quantify 

RNA-ITH using single-samples. 

 

The extent to which tumour stromal and immune components influences the 

measurement of RNA-ITH from bulk sequencing data is unclear. Accounting for 

sample-specific purity could partially address this problem (see 3.2.3). In future, a 

definitive solution may be provided by deconvolving cancer from stromal gene 

expression in bulk samples (discussed further in section 5.2 of this thesis). 
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Chapter 4. Designing molecular biomarkers in the 
light of cancer evolution 

4.1 Introduction 

Lung cancer is the leading cause of global cancer mortality (Siegel et al., 2019) and 

represents a high impact area for precision medicine strategies to improve patient 

outcomes (Vargas and Harris, 2016). For the majority of NSCLC patients, adjuvant 

chemotherapy remains the first-line therapy of choice (Pignon et al., 2008). As 

such, decision-making over adjuvant therapy is informed by prognostic biomarkers. 

NSCLC patients are currently stratified for chemotherapy on the basis of TNM 

staging (Goldstraw et al., 2016). However, TNM stage is an imperfect predictor, as 

patients diagnosed with the same disease stage can have markedly different 

clinical outcomes (see 1.2.1). Integrating diagnostic criteria with molecular 

correlates of tumour aggressiveness, such as gene expression signatures, may 

improve risk prediction in NSCLC, meeting an urgent clinical need (Subramanian 

and Simon, 2010a; Vargas and Harris, 2016).  

 

Studies across cancer types have revealed that ITH, which gives rise to the 

diagnostic challenge of tumour sampling bias, may preclude the development of 

robust prognostic assays from single tumour biopsies (Gerlinger et al., 2012; Gulati 

et al., 2015, 2014; Gyanchandani et al., 2016; Lee et al., 2018; Tofigh et al., 2014). 

Indeed, in the previous chapter, two RNA-Seq-based prognostic signatures for 

LUAD displayed a discordant molecular read-out in 29% and 43% of tumours 

(Figure 3-12, Figure 3-14). 

 

In this chapter I set out to address the confounding effects of RNA-ITH in biomarker 

derivation, with the aim of providing a pragmatic solution to tumour sampling bias, 

and stratifying tumours into groups with distinct evolutionary fates and clinical 

outcomes. 

 

The results presented in this chapter forms sections of a first-author paper 

published during this thesis (Biswas et al., 2019).  
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4.2 The status quo for molecular prognostication in lung 
cancer 

4.2.1 The curse of dimensionality for RNA biomarkers 

A fundamental challenge for the derivation of prognostic signatures is feature 

selection: subsetting from ~20,000 expressed genes to a small number of genes 

(<100 genes) that is compatible with use on a clinical platform (Figure 4-1). Feature 

selection is fundamentally difficult in such high dimensional space, as noise 

predictors reduce ability to recover signal predictors (Altman and Krzywinski, 2018). 

In cancer RNA datasets, over-fitting is easy and it is possible to identify numerous 

equally significant signatures (Boutros et al., 2009). In NSCLC, previous supervised 

solutions to this challenge have included data-driven approaches – such as simply 

correlating with survival (Shukla et al., 2017) – and knowledge-based approaches, 

selecting immune (Bailiang Li et al., 2017) or cell cycle progression genes (Wistuba 

et al., 2013) (Figure 4-1). 
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Figure 4-1 Approaches to designing gene-expression biomarkers for lung cancer 
The design of an expression-based signature typically begins with a genome-
wide RNA dataset of thousands of genes (the result of an expensive microarray 
or RNA-seq experiment). Feature selection (“filtering steps”) is then performed 
to develop a prognostic or predictive biomarker, typically 5 to 100 genes in 
length. These signatures are compatible with technologies such as qPCR or 
Nanostring that are cheaper and have a faster turnaround time, so are much 
better suited for routine clinical use. Previous solution to the challenge of feature 
selection include  data-driven approaches (e.g. simple Cox regression against 
survival) or knowledge-based approaches (e.g. using cell cycle genes as a 
surrogate measure for tumour aggressiveness). Superscript numbers indicate 
published approaches: 1) (Beer et al., 2002; Bianchi et al., 2007; Krzystanek et 
al., 2016; Shukla et al., 2017). 2) (Hugo et al., 2016). 3) (Chen et al., 2016; Gubin et 
al., 2014). 4) (Garber et al., 2001). 5) (Kratz et al., 2012; Raz et al., 2008). 6) 
(Bailiang Li et al., 2017). 7) (Wistuba et al., 2013). 8) (Rooney et al., 2015). 9) 
(Johnson et al., 2016). 10) (Ayers et al., 2017). 11) (Jiang et al., 2018).  
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4.2.2 Factors limiting the clinical adoption of prognostic signatures in lung 
cancer 

A number of factors have been suggested for consideration when developing a 

prognostic signature for patients with LUAD. A primary factor is reproducibility: for 

clinical use, a biomarker must validation upon testing in independent patient 

cohorts (Shedden et al., 2008; Sun et al., 2008). Medical utility is another key 

factor, specifically further classifying LUAD patients with stage I disease into risk-

groups has been identified as a high impact area for precision medicine 

(Subramanian and Simon, 2010b; Vargas and Harris, 2016). Lastly, demonstrating 

utility on routinely collected clinical samples (typically diagnostic samples are 

FFPE, rather than fresh-frozen as required by NGS studies) to fast track a 

molecular diagnostic test for clinical use (Zhu and Tsao, 2014). 

 

At present, the major contender for clinical adoption in LUAD is the ‘Razor 

Genomics’ signature. Over the last decade, this signature has been developed 

from research study (Raz et al., 2008), through assay development (Kratz et al., 

2013), to retrospective (Kratz et al., 2012) and prospective (Woodard et al., 2018) 

validation studies. A recent study suggested a “TNM-B” (B for biology) diagnostic 

scheme, demonstrating how a molecular risk-score might be usefully integrated 

with tumour staging in LUAD (Kratz et al., 2019). 

 

There is a prevailing sentiment of disappointment about expression signatures as 

biomarkers in LUAD. In 2010, Subramanian and colleagues reviewed 16 prognostic 

signatures for NSCLC (Subramanian and Simon, 2010a). Three criteria were 

assessed: appropriateness of the study protocol, whether the signature was 

validated in an independent dataset, and if the signature was clinically useful 

beyond current practice standards (showing risk separation in stage I, improved 

predictive value above known risk factors). The authors concluded “none of the 

studies succeeded in showing improvement in predictive power for gene 

expression signature over and above known risk factors”. In addition, external 

testing of two signatures (Chen et al., 2007; Lau et al., 2007) revealed both failed to 

maintain a survival association in the sub-group of stage I patients. In a separate 
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meta-analysis of 42 published NSCLC prognostic signatures, Tang and colleagues 

showed that less than half (18/42 signatures) performed significantly better than 

randomly generated signatures (Tang et al., 2017). 

 

Tumour sampling bias of LUAD signatures is an unaddressed confounding factor. 

A multi-region microarray study of 35 tumour regions from 10 NSCLC patients, 

found a previously published 6-gene prognostic signature (Boutros et al., 2009) 

was discordant in 1/10 tumours, and another tested signature (Zhu et al., 2010) 

was discordant in 7/10. In the previous chapter of this thesis, the sampling bias of 

nine prognostic signatures for LUAD was assessed. The average discordance rate 

was 50% (see 3.4); the ‘Razor Genomics’ signature (Kratz et al., 2012) was 

discordant in 50% of tumours (14/28 patients). Conceivably, refining feature 

selection to mitigate sampling bias might improve signature performance, and 

could represent a major technical advance for the design of molecular biomarkers. 
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4.3 Defining clonal transcriptomic signals in lung cancer 

4.3.1 Global analysis of RNA heterogeneity 

A method to stratify patients by prognosis based on gene expression must exhibit 

three key criteria:  

1) it must exhibit sufficient diversity between patients’ tumours (high inter-

tumour heterogeneity), enabling clear stratification into distinct informative 

subgroups;  

2) it must be robust to sampling bias, whereby it is not heavily influenced by 

diversity within tumours (low intra-tumour heterogeneity);  

3) it must be reliably prognostic, demonstrated through validation in 

independent cohorts.  

While both the first and third criteria have previously been considered when 

defining prognostic biomarkers, ensuring the stability of a transcriptomic signature 

to sampling bias has not been previously been addressed in a systematic fashion, 

and this may be a root cause of the low validation rate of lung cancer biomarkers 

(Vargas and Harris, 2016). 

 

To explore intra- and inter-tumour RNA heterogeneity (criteria one and two above), 

I performed a global unsupervised clustering analysis in the TRACERx dataset 

(156 tumour regions, 48 NSCLC patients, stage I-III). After subsetting for the 500 

genes with highest variance across all patients and tumour regions, hierarchical 

clustering (Euclidean distance, complete linkage) was performed.  

 

In every case, the regions from each individual tumour clustered together, 

indicating that the variation of gene expression between regions from the same 

tumour was less than the variation between tumours from different patients (Figure 

4-2A). A variably selected subset of genes can therefore represent each tumour 

with a unique and identifiable expression profile.  
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Figure 4-2 Analysis of the most variably expressed genes in TRACERx 
A, Hierarchical clustering was performed on samples from the TRACERx multi-
region RNA-Seq cohort, using the top 500 variably expressed genes. The upper 
panel is an expression heatmap, with genes as rows, and columns as tumour 
samples. The lower panel highlights how tumour regions cluster, with each row 
as a patient, and histologies coloured differently. B, The dendrogram from (A) 
was cut into two clusters. Survival analysis of was performed, comparing 
patients from these two subgroups, shown as a Kaplan-Meier survival curve. 
Statistical significance was tested with a two-sided log-rank test. 
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However, while the subset of top variant genes may be robust to sampling bias, 

they were not prognostic (criteria three above) in the TRACERx dataset. When 

tumours were stratified into two groups based on the global clustering analysis, 

there was not a significant difference in survival times between the two patient 

subgroups (log-rank P = 0.686, Figure 4-2B). 

 

Of interest, the tumour regions from the different NSCLC histologies (LUAD, LUSC, 

other) largely clustered separately (Figure 4-2A). This is consistent with the distinct 

clustering patterns reported by early single-sample RNA profiling studies examining 

the transcriptional differences between LUAD and LUSC histologies (Bhattacharjee 

et al., 2001; Takeuchi et al., 2006). 

 

4.3.2 Defining RNA heterogeneity quadrants 

In the previous chapter, RNA-ITH scores were derived based on the variance in 

gene expression within individual TRACERx tumours (see 3.2.2). Here, I generated 

RNA inter-tumour heterogeneity scores to identify variable molecular signals 

between TRACERx patients. These two axes of RNA heterogeneity were then 

paired to derive a quadrant-based scheme, with the aim of identifying robust 

molecular biomarkers. 

 

Estimates of inter-tumour RNA heterogeneity were calculated in the cohort of 

LUAD patients from TRACERx (89 regions, 28 LUAD patients, stage I-III). One 

region was randomly sampled per patient from the multi-region dataset, to 

overcome the confounding effect of considering all regions from a tumour. This 

yielded a sham single-region cohort (Figure 4-3A). From the resulting sample set, 

inter-tumour heterogeneity scores were calculated per gene as the standard 

deviation in expression values between patients. The process of random sampling 

was repeated ten times, generating stable estimates of RNA inter-tumour 

heterogeneity scores. The TCGA cohort was leveraged to confirm that repeated 

random sampling of the TRACERx cohort was representative of a true single-

region cohort. A highly significant positive association (Pearson r = 0.947, P<0.001) 
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was observed between scores generated in each cohort (Figure 4-3B), indicating 

the reproducibility of the approach taken for TRACERx. 

 
Figure 4-3 Inter-tumour RNA heterogeneity scores 
A, Schematic showing how gene-wise inter-tumour RNA heterogeneity scores 
were generated via the random sampling of tumour regions from the multi-region 
TRACERx cohort (89 regions, 28 LUAD patients, stage I-III). B, Association 
between inter-tumour RNA heterogeneity scores calculated in TRACERx (a sham 
single-biopsy cohort) and TCGA (a true single-biopsy cohort). 
 

The distributions of gene-level RNA inter- and intra-tumour heterogeneity scores 

were compared (Figure 4-4A). Overall, RNA inter-tumour heterogeneity exceeds 

intra-tumour heterogeneity in primary NSCLC tumours (Wilcoxon signed P < 2.2e-

16). This is in line with the global analysis of RNA heterogeneity in the previous 

section (Figure 4-2A). Next, a scheme was developed to control for levels of inter- 

and intra-tumour RNA heterogeneity in biomarker derivation. For each RNA 

heterogeneity metric, the distribution was plotted as a density curve and bisected 

by the mean, resulting in four RNA heterogeneity quadrants (Figure 4-4B): 

1) low inter- and high intra-tumour heterogeneity (Q1 = 798 genes); 

2) low inter- and low intra-tumour heterogeneity (Q2 = 9,642 genes); 

3) high inter- and high intra-tumour heterogeneity (Q3 = 4,766 genes); 

4) high inter- and low intra-tumour heterogeneity (Q4 = 1,080 genes).  



Chapter 4 Results 

 

109 

 

 

Putatively, the 1,080 genes in Q4 harboured the properties of an ideal biomarker, 

possessing both low RNA-ITH while remaining informative of differences between 

patients. 

 
Figure 4-4 RNA heterogeneity quadrants 
A, Density curves for RNA inter- and intra-tumour heterogeneity scores are 
shown on a log-scale. B, RNA inter-tumour (x-axis) and intra-tumour (y-axis) 
heterogeneity quadrants, calculated in TRACERx, plotted on the axes as density 
curves. The plot is divided into quadrants by the mean intra-tumour (dashed 
horizontal line) and mean inter-tumour (dashed vertical line) heterogeneity 
scores. The quadrants are numbered and coloured (Q1=red, Q2=purple, 
Q3=yellow, Q4=blue), with the number of genes per quadrant indicated. The RNA 
heterogeneity scores displayed were calculated from TRACERx LUAD patients 
(89 regions, 28 LUAD patients, stage I-III). RNA heterogeneity quadrants are 
indicated by colour: Q1 = red; Q2 = purple; Q3 = yellow; Q4 = blue. 
 

Please note: the procedures described here were applied to TRACERx LUAD 

patients (89 regions, 28 LUAD patients, stage I-III), enabling a focus on LUAD 

biomarker discovery; separately all TRACERx NSCLC patients (156 regions, 48 

NSCLC patients, stage I-III) were also used to generate RNA heterogeneity 

quadrants, permitting genomic and biological characterization without biasing to 

LUAD-specific genes.  
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4.3.3 An RNA heterogeneity quadrant driven by clonal chromosomal gains 
early in tumour evolution 

Previous work has demonstrated the correspondence between gene expression 

and aberrations in chromosome copy-number in human tumours (Calabrese et al., 

2020; Pollack et al., 2002; Tonon et al., 2005). In the previous chapter I showed 

this correspondence held true for subclonal SCNA events in NSCLC (see 3.3.2). To 

define the genetic source for RNA inter- and intra-tumour variability, here I 

examined differences in copy-number states between RNA heterogeneity 

quadrants derived in the TRACERx cohort (156 regions, 48 NSCLC patients, stage 

I-III). 

 

Within each individual tumour, all genes were categorized according to copy-

number state as compared to the paired germline sample (gain, loss, or no 

change). If applicable, the timing of the copy-number aberration (clonal or 

subclonal) was also taken into consideration. For each gene, the proportion of 

tumours within the TRACERx cohort subjected to each category of copy-number 

change was quantified. Lastly, each category of copy-number change was 

evaluated for relative enrichment or depletion in the genes from each RNA 

heterogeneity quadrant. A number of significant (Fisher’s exact P < 0.05) 

associations were found between RNA heterogeneity quadrants and copy-number 

status (Figure 4-5). Notably, Q4 was enriched for clonal SCNA gains (OR=1.64; 

P=1.18×10−5). 
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Figure 4-5 Genomic underpinning of RNA heterogeneity quadrants 
Enrichment or depletion of specific copy-number states by RNA heterogeneity 
quadrant. All genes were assigned a copy-number state across all samples 
(clonal/subclonal gain or loss, or no change). Genes were then tested for 
enrichment or depletion of a specific category by RNA heterogeneity quadrant. 
Odds ratios are plotted on a natural log scale. Statistical significance was tested 
with a Fisher’s exact test. RNA heterogeneity quadrants are indicated by colour: 
Q1 = red; Q2 = purple; Q3 = yellow; Q4 = blue. 
 

These data suggest Q4 genes were related to clonal SCNAs, with expression 

attributable to chromosomal gains occurring early in tumour evolution. This subset 

of genes, enriched for ancestrally selected copy number changes, is henceforth 

referred to as either “Q4” or “homogeneously expressed” genes. 
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4.4 Characterizing the biological and prognostic properties of 
clonal transcriptomic signals in lung cancer 

4.4.1 Homogeneously expressed genes are enriched for cell proliferation 
pathways 

Assigning biological function to the different RNA heterogeneity quadrants may 

help shed light on their relevance for an evolving tumour. I performed a pathway 

analysis on the genes from each quadrant, using the gene-sets from the Reactome 

database. The top 10 significantly (Bonferroni-adjusted P-value < 0.01) enriched 

pathways for each quadrant were plotted (Figure 4-6A). 

 

Q1 displayed no significant pathway enrichment. This may reflect the small number 

of genes in this quadrant (<5% of all expressed genes, 798/16,286), limiting 

statistical power to detect significantly enriched gene-sets. 

 

Q2 was involved in mRNA splicing, transcription, and rRNA processing. As this 

quadrant consists of genes with both low intra- and inter-tumour heterogeneity, a 

plausible biological interpretation is that this represents a core module of “house-

keeping” genes required by every tumour and within every cancer cell. 

 

Q3 was enriched for extracellular matrix signaling and G protein-coupled receptor 

signaling pathways. This subset of genes harbour high intra- and inter-tumour 

heterogeneity scores. It is possible that genes involved in extracellular matrix 

signaling are up-regulated at the invasive front of particularly invasive tumours. 

However, this would require separate validation incorporating spatial information. 

 

Q4 encoded gene-sets involved in cancer cell proliferation (Figure 4-6B). Integrated 

with the results from the copy-number analysis, this suggested that 

“homogeneously expressed” Q4 genes reflect the selection of high-risk SCNA 

gains in proliferation genes early in tumour evolution. 
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Figure 4-6 Pathway analysis of RNA heterogeneity quadrants 
A, Pathway analysis on Q4 genes using Reactome, showing the top five 
pathways most significantly enriched in Q4 genes (low intra-tumour 
heterogeneity and high inter-tumour heterogeneity). B, The top ten Reactome 
pathways for each RNA heterogeneity quadrant. RNA heterogeneity quadrants 
are indicated by colour: Q1 = red; Q2 = purple; Q3 = yellow; Q4 = blue. 
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4.4.2 Individual homogeneously expressed genes are enriched for robust 
survival associations 

I reasoned that homogeneously expressed genes from RNA heterogeneity Q4 (low 

intra- and high inter-tumour heterogeneity) might be more robust to sampling bias, 

and yield biomarkers with superior reproducibility between patient cohorts. 

Following this logic, previous biomarker studies may naturally enrich for Q4 genes 

even without explicitly selecting for homogeneously expressed genes in their 

derivation. Here, enrichment would be measured relative to the 7% of all expressed 

genes (1,080/16,286) comprised by Q4 (Figure 4-4B). 

 

To test this hypothesis, I individually evaluated published prognostic signatures by 

RNA heterogeneity quadrant. In the previous chapter I had collated the gene-lists 

of 9 published prognostic biomarkers for LUAD (275 genes in total, including 33 

overlapping between multiple signatures,,see 3.4.1). Here, I observed that several 

signatures appeared to be comprised of a relatively high proportion of Q4 genes 

(Figure 4-7A). In particular, both signatures approved for commercially approved 

prognostic assays (labelled as ‘Kratz Lancet 2012’ and ‘Wistuba CCR 2013’) were 

composed of at least 25% Q4 genes. To formally test this observation, I compared 

the expected distribution from all expressed genes, with the observed distribution 

from the collated gene-list from the 9 signatures (Figure 4-7A). Overall, 20% of 

genes from existing biomarkers fell in Q4 (54/275), a three-fold enrichment 

(P=1.39e-12, Figure 4-7B). 
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Figure 4-7 Analysis of published prognostic signatures by RNA heterogeneity 
quadrant 
A, Bar plots showing the composition of published prognostic signatures by 
RNA heterogeneity quadrant, plotted in order of increasing percentage of Q4 
genes (low intra- and high inter-tumour heterogeneity). B, Bar plots showing the 
percentage of genes expected per RNA heterogeneity quadrant (total no. genes, 
as indicated in Figure 1-3) versus observed (in 9 published prognostic 
signatures) per RNA heterogeneity quadrant. Statistical significance was tested 
with a two-sided Fisher’s exact test. RNA heterogeneity quadrants are indicated 
by colour: Q1 = red; Q2 = purple; Q3 = yellow; Q4 = blue. 
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To further examine the tendency of Q4 genes to provide biomarkers with superior 

reproducibility, I accessed publicly available data from independent cohorts of lung 

cancer patients, and analysed the prognostic performance of genes by RNA 

heterogeneity quadrant. Expression and clinical information was downloaded from 

five cohorts of LUAD patients with stage I-III disease (see Methods for description 

of datasets): (1) TCGA (n = 469); (2) Shedden et al (n = 469); (3) Okayama et al (n 

= 147); (4) Der et al (n = 127); (5) Rousseaux et al (n = 83). The expression 

profiling technology for cohort 1 was RNA-Seq, and microarray was used for 

cohorts 2-5. 

 

The prognostic value of a pooled gene-list from nine published prognostic 

signatures for LUAD (242 unique genes) was evaluated in the RNA-Seq dataset 

from TCGA. Using Cox univariate analysis, genes from Q4 correlated with survival 

significantly better than genes from other quadrants (Q2 versus Q4: P=6.5×10−8; 

Q3 versus Q4: P=4.0×10−4; there were insufficient genes in Q1 for Q1 versus Q4 

comparison; Figure 4-8). 

 

Probes for the full set of 242 genes, previously defined as prognostic, could not be 

recovered in every microarray dataset, hence varying numbers of genes tested in 

each cohort: 85% (205/242) Shedden et al; 99% (239/242) Okayama et al; 99% 

(239/242); Der et al; 99% (239/242) Rousseaux et al. In spite of the technology 

differences with RNA-Seq data, the four cohorts with microarray data yielded 

similarly robust associations for Q4 genes (Figure 4-8).  

 

Overall, these analyses of the composition and reproducibility of published 

signatures, in the context of RNA heterogeneity quadrants, supported the 

hypothesis that Q4 genes may be enriched for robust survival associations, 

providing a basis for building robust biomarkers.  
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Figure 4-8 Reproducible survival association of published prognostic genes by 
RNA heterogeneity quadrant 
The ability of the genes pooled from 9 published prognostic signatures to 
maintain prognostic value in independent cohorts of LUAD patients, assessed as 
the gene-wise Cox univariate P value (y-axis) stratified by RNA heterogeneity 
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quadrant (x-axis). A, Analysis in one RNA-Seq dataset from TCGA (n=469 LUAD 
patients). B, Analysis of four microarray datasets, Shedden et al, Okayama et al, 
Der et al, Rousseaux et al. Statistical significance was tested with a two-sided 
Wilcoxon signed rank sum test. * indicates a P value < 0.05, ** indicates a P value 
< 0.01, *** indicates a P value < 0.001. RNA heterogeneity quadrants are indicated 
by colour: Q1 = red; Q2 = purple; Q3 = yellow; Q4 = blue. 
 

4.4.3 The selection of clonal genes in biomarker design improves 
performance 

The design of prognostic biomarkers in transcriptomic datasets conventionally 

involves selecting a subset of genes associated with survival, and then using a 

machine learning algorithm to generate a prognostic model, outputting a gene 

expression signature. Here I performed a head-to-head test, comparing published 

methods against clonal gene selection, to evaluate any added benefit on biomarker 

performance 

 

A range of methods has been employed in the literature to derive prognostic 

signatures in LUAD. In order to faithfully replicate published methods, a literature 

search was performed for LUAD prognostic signatures in the previous chapter (see 

3.4.1). Here I identified published studies with sufficient information in the Methods 

of to replicate the approach taken. I opted to focus on 5 methods for conventional 

biomarker design (Figure 4-9A). These were centred around the following machine 

learning algorithms (Chen et al., 2007; Kratz et al., 2012; Reka et al., 2014; Shukla 

et al., 2017): stepwise AIC (akaike information criterion) regression; stepwise BIC 

(bayesian information criterion) regression; tree classification; random forest 

regression; elastic-net (lasso) regression. In parallel, I implemented a clonal 

version of each signature. The published pipeline steps were replicated, with one 

alteration: selecting only Q4 genes in the prognostic model (Figure 4-9A). Each 

conventional and clonal biomarker design process is described in detail below. 

 

The TCGA RNA-Seq cohort (n = 469 patients with stage I–III LUAD) was used as 

the training cohort for signature development. To evaluate the prognostic value of 
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each signature in an independent patient cohort for validation, the Uppsala RNA-

Seq dataset was used (n = 103 patients with stage I–III LUAD). 

 
Figure 4-9 Conventional and clonal prognostic signature design and 
performance 
A, Biomarkers are designed using state-of-the-art signature construction 
methods (marked in orange), replicated from Shukla et al (signature A and B), 

Chen et al (signature C), Reka et al (Signature D) and Kratz et al (signature E). In 
parallel, the “prognostic significance” filters present in each signature 
construction method were substituted with “homogeneous expression” filters, 
generating corresponding clonal signatures (signatures A-clonal, B-clonal, C-
clonal, D-clonal, and E-clonal; marked in blue). Published signature construction 
methods are indicated in orange; novel methods integrating clonal biomarker 
design are indicated in blue. All signatures are developed in TCGA LUAD 
patients (n=469, stage I-III) as the training dataset. B, The prognostic 
performance of the resulting signatures was assessed in the Uppsala RNA-Seq 
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dataset (n=103 patients with stage I-III) as the Cox univariate P value (y-axis), 
correlating the risk-score for each signature (x-axis) against overall survival. 
 

Stepwise regression. A published method to derive a prognostic signature, based 

around stepwise regression (Shukla et al., 2017), was replicated. Univariate Cox 

regression analysis was conducted using all expressed genes in the training 

cohort, to apply a primary filter based on the survival association of individual 

genes (univariate Cox analysis P < 0.00025), identifying 108 genes. This long-list of 

108 genes was used to derive a signature purely based on prognostic information, 

by further subsetting for the genes with the most significant survival association 

(univariate Cox analysis false discovery rate < 0.02), generating a short-list of 15 

genes that were used for forward conditional stepwise (Akaike information criterion) 

regression, outputting a six-gene prognostic signature (signature A); alternatively, 

stepwise (Bayesian information criterion) regression outputted a three-gene 

signature (signature B). In parallel, the long-list of 108 genes was also subsetted 

using a ‘homogeneous expression’ filter (selecting Q4 genes using heterogeneity 

scores calculated in TRACERx; n = 28 patients with stage I–III LUAD), generating 

a short-list of 15 genes, then outputting a seven-gene signature using stepwise 

(Akaike information criterion) regression (signature A—clonal). In addition, stepwise 

(Bayesian information criterion) regression generated a six-gene signature 

(signature B—clonal).  

 

Tree classification. In two separate studies, Chen et al identified a set of 672 genes 

associated with invasive activity (Chen et al., 2001), then used tree classification to 

derive a prognostic signature (Chen et al., 2007). From the first study, 656 of 672 

genes could be found using HUGO gene symbols. Then, replicating the method 

taken in the second study, a prognostic filter was applied, short-listing 8 genes 

significantly associated with survival (univariate Cox analysis P < 0.00005). 

Inputted to tree classification, this generated an eight-gene prognostic signature 

(signature C). In parallel, a ‘homogeneous expression’ selection step (subsetting to 

Q4 genes using heterogeneity scores calculated in TRACERx; n = 28 patients with 

stage I–III LUAD) was applied to the list of 656 genes associated with invasive 
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activity, outputting a nine-gene signature by tree classification (signature C—

clonal).  

 

Random forest regression. Reka et al (Reka et al., 2014) used a gene-set of an 

epithelial-mesenchymal transition secretory phenotype to fit a prognostic model 

using random forest regression. A purely prognostic model was made by first using 

the full list of 97 genes to fit a random forest model, then using the variable 

importance scores to re-fit the model using the top ten highest-scoring genes, 

outputting a ten-gene prognostic signature (signature D). In parallel, a 

‘homogeneous expression’ selection step (subsetting to Q4 genes using 

heterogeneity scores calculated in TRACERx; n = 28 patients with stage I–III 

LUAD) identified nine genes, generating a nine-gene signature by random forest 

regression regression (signature D—clonal).  

 

Elastic-net (lasso) regression. In two separate studies, Kratz et al derived a 

prognostic signature by pooling lists of prognostic genes and manually curating this 

list to generate a shortlist of 65 cancer-related genes (Raz et al., 2008), then 

applying elastic-net (lasso) regression (Kratz et al., 2012). To replicate this, a gene-

list was assembled from published LUAD prognostic signatures (249 genes) (Beer 

et al., 2002; Bianchi et al., 2007; Garber et al., 2001; Kratz et al., 2012; Krzystanek 

et al., 2016; Bailiang Li et al., 2017; Raz et al., 2008; Shukla et al., 2017; Wistuba 

et al., 2013). Next, 56 of the 65 cancer-related genes could be recovered from the 

first study (Raz et al., 2008) and was used to select genes for lasso regression, 

outputting a 24-gene prognostic signature (signature E). In parallel, a 

‘homogeneous expression’ selection step (subsetting to Q4 genes using 

heterogeneity scores calculated in TRACERx; n = 28 patients with stage I–III 

LUAD) was applied to the list of 249 genes, identifying 44 genes, and outputting a 

14-gene signature by lasso regression (signature E—clonal).  

 

For each prognostic signature, risk-scores were calculated in the validation cohort, 

and correlated with overall survival. The linear models – derived using stepwise 

AIC regression, stepwise BIC regression and elastic-net (lasso) regression – were 

used to calculate a risk score for each patient as a linear combination of gene 
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expression values, weighted by regression coefficients. Similarly, a risk score for 

each patient in the validation cohort for the tree models derived using tree 

classification and random forest regression. Signature E-clonal (the clonal 

signature derived using elastic-net regression) was the only biomarker significantly 

associated with overall survival in the validation dataset (Cox univariate analysis P 

< 0.05, Figure 4-9B). This underscores the limited reproducibility of conventional 

prognostic biomarker design. 

 

4.4.4 Random signatures built from homogeneously expressed genes 
harbour cross-cohort prognostic significance 

Recent studies in breast and lung cancer have showed that a surprisingly high 

percentage of randomly generated signatures maintain prognostic significance 

upon testing and can even out-perform conventionally crafted biomarker design 

(Tang et al., 2017; Venet et al., 2011). I examined the cross-cohort performance of 

randomly derived signatures to further assess the ability of Q4 genes to 

reproducibly associate with survival. 

 

For each RNA heterogeneity quadrant, 1,000 random signatures were generated. 

First 20 genes were randomly sampled from a particular RNA heterogeneity 

quadrant, and then the TCGA RNA-Seq cohort (n = 469 patients with stage I–III 

LUAD) was used as the training cohort for model fitting by elastic-net (lasso) 

regression. The prognostic values of the randomly generated signatures were then 

assessed in four microarray-based cohorts (combined: n = 801 patients with stage 

I–III LUAD). Patients were classified as high- or low-risk using the median value of 

the first principle component, as in the method described by Venet and colleagues 

(Venet et al., 2011). The random signatures from Q4 genes maintained cross-

cohort prognostic significance better than signatures derived from other quadrants 

(Figure 4-10): 56% of Q4 signatures were significant across four cohorts compared 

to 0%, 0.7% and 7.3% for Q1, Q2 and Q3 genes, respectively.  
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Figure 4-10 Cross-cohort performance of random signatures 
A total of 1,000 random signatures were developed in the TCGA RNA-Seq cohort 
(n = 469 patients with stage I–III LUAD), derived using 20 genes randomly 
sampled from each RNA heterogeneity quadrant, then tested for prognostic 
ability across four microarray cohorts comprising patients with stage I–III LUAD 
(Shedden et al.: n = 442; Okayama et al.: n = 147; Der et al.: n = 127; Rousseaux 
et al.: n = 85). 
 

This result further indicated that Q4 is highly enriched for genes with robust 

prognostic value and may provide a superior basis for building molecular 

biomarkers. 
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4.5 A biomarker based on cancer evolutionary principles 
associates with lung cancer mortality 

4.5.1 Development of a clonal, prognostic, expression biomarker 

Integrating clonal biomarker design with a published signature construction pipeline 

based on elastic-net regression yielded a prognostic signature that out-performed 

conventional methods. Moreover, even randomly selected subsets of 

homogeneously expressed genes displayed a tendency to yield biomarkers with 

cross-cohort prognostic associations. Based on these observations, here I inputted 

homogeneously expressed genes to the elastic-net regression algorithm, to explore 

the potential for novel biomarker discovery. This yielded a novel prognostic 

biomarker, termed an Outcome Risk Associated Clonal Lung Expression 

(ORACLE) signature. RNA-Seq data from the TCGA cohort (n = 469 patients with 

stage I–III LUAD) was used as the training cohort for signature development. 

 

Starting with all expressed genes (19,024 genes) in the TCGA cohort, four criteria 

were sequentially applied to identify genes that were expressed, prognostic and 

clonal (Figure 4-11A): 

1) An expression cut-off was applied, filtering out genes with below-median 

expression (9,512/19,024 genes), restricting noise due to the detection limits 

as a standard pre-processing step (Campbell et al., 2016); 

2) Genes associated with survival (Cox univariate P < 0.05) were selected 

(2,023/9,512 genes), an established method in prognostic signature design 

(Chen et al., 2007; Shukla et al., 2017); 

3) RNA heterogeneity scores were used as a primary method of identifying 

homogeneously expressed genes, selecting Q4 genes (176/2,023 genes); 

4) Clustering concordance scores were used as a secondary method of 

identifying homogeneously expressed genes, determining the optimum 

number (90/176 genes) using ten-fold cross-validation in the training cohort 

(Figure 4-11B). 
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Figure 4-11 ORACLE signature design: gene selection and parameter tuning 
A, Flow diagram illustrating the gene selection steps for ORACLE. Criteria to 
identify prognostic and homogeneously expressed genes, and the number of 

genes selected at each step are indicated. B, Optimization of the number of 
genes to select at the clustering concordance step through 10-fold cross- 
validation in the training cohort (TCGA, n=469 LUAD patients, stage I-III). The 
optimal number of genes, with the lowest cross-validation error, is shown by the 
vertical red line. C, The cut-off to dichotomize the ORACLE risk-score into ‘high’ 
and ‘low’ risk groups is optimized in the training cohort (TCGA, n=469 LUAD 
patients, stage I-III). The horizontal blue line indicates a log-rank P-value = 0.01 
and the optimal cut-off is shown by the vertical red line. Statistical significance 
was tested with a two-sided log-rank test. 
 

The 90 genes outputted by the four criteria were used to fit a prognostic model 

against overall survival in the training cohort using elastic-net (lasso) regression 

(Figure 4-11A). As part of the model fitting step, lasso regression performs further 

feature selection, yielding a 23-gene signature with a model coefficient for each 

gene. This signature was termed ORACLE (Table 1). 
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Gene 
Symbol 

Model 
Coefficient Gene Name Description of Gene Function Published 

Signature 
ANLN 0.058692239 Anillin Actin Binding 

Protein 
Required for cytokinesis (cleavage 

furrow) - 

ASPM 0.003462241 Abnormal Spindle 
Microtubule Assembly Mitotic spindle regulation 

Krzystanek 
Biomarker Res 

2016, Wistuba CCR 
2013 

CDCA4 0.041940166 Cell Division Cycle 
Associated 4 

Regulates cell proliferation via 
E2F/RB pathway - 

ERRFI1 0.013237564 ERBB Receptor 
Feedback Inhibitor 1 

Up-regulated with cell growth, 
negatively regulates EGFR signaling - 

FURIN 0.208437458 
Furin, Paired Basic 

Amino Acid Cleaving 
Enzyme 

Pro-protein convertase binding TGFβ 
NGF, and MMP1 amonst others. Beer Nat Med 2002 

GOLGA8A -0.028493707 Golgin A8 Family 
Member A Maintains structure of golgi apparatus - 

ITGA6 0.058464556 Integrin Subunit Alpha 6 Essential for IGF1 and IGF2 signaling - 

JAG1 0.012599497 Jagged 1 Ligand for Notch signalling - 

LRP12 0.038410107 LDL Receptor Related 
Protein 12 

involved in the internalization of 
lipophilic molecules and/or signal 
transduction, may act as a tumour 

suppressor 

- 

MAFF 0.075070616 MAF BZIP Transcription 
Factor F 

Involved in transcriptional activation 
and repression - 

MRPS17 0.146466169 Mitochondrial Ribosomal 
Protein S17 Mitochondrial protein synthesis - 

PLK1 0.029842311 Polo Like Kinase 1 
Ser/Thr kinase involved in cell 

proliferation and cell survival; M-phase 
of cell cycle 

Wistuba CCR 2013 

PNP 0.01177481 Purine Nucleoside 
Phosphorylase 

Involved in (de novo) nucleotide 
salvage pathway, which is often 

interrupted by chemotherapy drugs 
Beer Nat Med 2002 

PPP1R13L 0.062382956 
Protein Phosphatase 1 
Regulatory Subunit 13 

Like 
Inhibitor of p53 - 

PRKCA 0.038900124 Protein Kinase C Alpha Ser/Thr kinase involved in cell 
proliferation (via cell cycle) Raz CCR 2008 

PTTG1 0.082889189 Pituitary Tumour-
Transforming 1 

Regulatory protein involved in 
chromosome stability, p53 pathway, 

and DNA repair 
Wistuba CCR 2013 

PYGB 0.143943497 Glycogen Phosphorylase 
B Regulates glycogen mobilization - 

RPP25 0.019158495 Ribonuclease P And 
MRP Subunit P25 

Component of ribonuclease P, a 
protein complex that generates 

mature tRNA molecules by cleaving 
their 5-ends 

- 

SCPEP1 -0.00145441 Serine Carboxypeptidase 
1 

May be involved in vascular wall (and 
kidney) homeostasis - 

SLC46A3 -0.031597666 Solute Carrier Family 46 
Member 3 

Lysosomal transmembrane protein; 
effective transporter of the cancer 

cytotoxic drug maytansine. 
- 

SNX7 0.133634555 Sorting Nexin 7 involved in intracellular trafficking - 

TPBG 0.012242067 Trophoblast Glycoprotein 

oncofetal antigen that is specific to 
trophoblast cells, in adults this protein 
is highly expressed in many tumour 

cells and is associated with poor 
clinical outcome in numerous cancers. 

Beer Nat Med 2002 

XBP1 -0.121354561 X-Box Binding Protein 1 
Transcription factor regulating 1) 

MHCII genes and 2) ER stress during 
Unfolded Protein Response 

- 

 
Table 1 ORACLE signature 
Gene list and model coefficients for the Outcome Risk Associated Clonal Lung 
Expression signature. Descriptions of gene function, and references to usage in 
published prognostic signatures are also provided. 
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As a prognostic signature with an underlying linear model, ORACLE risk-scores are 

calculated as a linear combination of the expression values of the 23 genes 

comprising the signature, weighted by the model coefficients. To transform this 

continuous risk-score into binary classifications, in order to stratify patients as high- 

or low-risk, a risk-score cut-off is required. This was calculated as the median risk-

score in the training cohort among significant (log-rank P < 0.01) cut-off values 

(Figure 4-11C). 

 

Thus, a novel homogeneous expression biomarker for lung adenocarcinoma was 

derived. Many of the genes are involved in cellular division and proliferation (Table 

1). To the best of my knowledge, only 30% of the list of genes comprising ORACLE 

(7/23 genes) has previously been used in LUAD prognostic signatures (ASPM, 

FURIN, PLK1, PNP, PRKCA, PTTG1 and TPBG). 
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4.5.2 Validation as a clinically informative biomarker 

The validation of a prognostic biomarker should ideally include demonstrating 

reproducible survival associations in at least one external dataset (preferably 

several) and demonstration of clinical utility, indicating prognostic value 

independent of existing clinicopathological risk factors and in patient subgroups 

where there is an urgent clinical need for improved stratification (Subramanian and 

Simon, 2010a; Vargas and Harris, 2016). 

 

The reproducibility and clinical utility of ORACLE was assessed. Five independent 

cohorts of LUAD patients with stage I-III disease were used for signature validation: 

one RNA-Seq dataset from the Uppsala cohort (n = 103); four microarray datasets 

from Shedden et al (n = 469), Okayama et al (n = 147), Der et al (n = 127), and 

Rousseaux et al (n = 83). 

 

Applying the ORACLE biomarker to the RNA-Seq-based validation cohort, the 

continuous risk-score displayed a highly significant survival association (Cox UVA 

P=0.00474, Figure 4-12B) that out-performed the signatures derived in the previous 

section (Figure 4-9B). Using the risk-score cut-off to dichotomize the cohort, the 

hazard ratio between risk-groups was 3.16 (1.4–7.0, log-rank P = 0.006, Figure 

4-12A), and three-year overall survival was 80% (68–94%) in the low-risk group 

and 57% (46–71%) in the high-risk group. 

 



Chapter 4 Results 

 

129 

 

 

 
Figure 4-12 Reproducible survival association of ORACLE 
A, Kaplan-Meier plot of ORACLE in the RNAseq-based validation cohort 
(Uppsala, n=103 LUAD patients, stage I-III). Statistical significance was tested 
with a two-sided log-rank test. B, Prognostic value of ORACLE assessed in a 
meta-analysis across five validation cohorts of patients with LUAD (n = 904 
patients with stage I–III LUAD). Univariate Cox analysis was performed in one 
RNA-Seq dataset (Uppsala) and four microarray datasets (Shedden et 
al., Okayama et al., Der et al. and Rousseaux et al.). Hazard ratios with a 95% 

confidence interval are shown for each cohort and are plotted on a natural log 
scale. The diamond indicates the hazard ratio for the meta-analysis of the five 
validation cohorts.  
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To investigate concordance across multiple cohorts, I conducted a meta-analysis of 

the prognostic value of ORACLE in the RNA-Seq-based validation cohort and four 

further microarray datasets. Only 19/23 genes in the ORACLE signature could be 

recovered from microarray probe sets (ASPM, CDCA4, FURIN, GOLGA8A, ITGA6, 

JAG1, LRP12, MAFF, MRPS17, PLK1, PNP, PPP1R13L, PRKCA, PYGB, 

SCPEP1, SLC46A3, SNX7, TPBG and XBP1). This was expected to impair 

signature performance in the microarray cohorts, yet ORACLE maintained 

prognostic value in three out of the four microarray datasets (univariate Cox 

regression: P=0.002; HR=5.4 (Okayama et al. cohort); P=0.003; HR=2.9 

(Rousseaux et al. cohort); P=2.3×10−8; HR=3.6 (Shedden et al. cohort); and 

P=0.3, HR=1.6 (Der et al. cohort). In the meta-analysis pooling all validation 

cohorts (combined: n=904 patients with stage I–III LUAD), ORACLE correlated with 

mortality with a hazard ratio of 3.57 (2.94–3.54, P < 0.0001, Figure 4-12B), 

indicating a survival association across multiple external datasets, and robust to 

differences in expression profiling technology. 

  

As the fully specified 23-gene prognostic model for ORACLE could be applied to 

the RNA-Seq-based validation cohort, I focused on this dataset to examine the 

clinical utility. Partnering with the curators of this cohort to access detailed 

clinicopathological annotations, an array of prognostic risk factors were assessed: 

TNM stage, adjuvant treatment status, age, WHO performance status, smoking 

history, gender and Ki67 staining percentage. ORACLE maintained prognostic 

significance in a multivariate analysis adjusted for these risk factors, with an 

adjusted hazard ratio of 2.64 (1.15–6.05, P = 0.0216, Figure 4-13). This result 

indicated ORACLE might provide additional predictive utility independent of existing 

clinicopathological risk factors 
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Figure 4-13 Prognostic value of ORACLE beyond existing clinicopathological 
risk factors 
Prognostic value of ORACLE over known risk factors. Multivariate Cox analysis 
was performed in the Uppsala RNA-Seq dataset (n = 103 patients with stage I–III 
LUAD), incorporating the ORACLE risk score, tumour stage, adjuvant treatment 
status, patient age, WHO performance status, smoking status, patient gender 
and Ki67 staining percentage. Hazard ratios with a 95% confidence interval are 
shown for each predictor and are plotted on a natural log scale. 
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Risk stratification of stage I LUAD patients has been highlighted as an urgent 

clinical need, with implications for therapeutic decision-making (Subramanian and 

Simon, 2010a; Vargas and Harris, 2016). To evaluate the prognostic ability of 

ORACLE in this patient subgroup, I selected stage I patients from the RNA-Seq-

based validation cohort (n = 60 patients with stage I LUAD). Sub-staging criteria, 

the existing clinical marker for stage I patients (Goldstraw et al., 2016), stratified 

patients into stage IA (n=42 patients) and IB groups (n=18 patients) but was not 

associated with survival in this small cohort of patients (Figure 4-14). By contrast, 

ORACLE high-risk (n=32 patients) and low-risk (n=28 patients) classifications did 

separate stage I patients into groups with significantly different mortality outcomes 

(log-rank P = 0.02, Figure 4-14). Both analyses were repeated using the recently 

updated TNM version 8 staging criteria (Goldstraw et al., 2016), giving the same 

result (log-rank P: sub-staging = not significant, ORACLE = 0.018; Figure 4-14). 

These data suggest that ORACLE is associated with survival outcomes in patients 

with stage I LUAD.  

 

Taken together, the ORACLE biomarker showed reproducible survival associations 

in a meta-analysis of more than 900 patients with microarray or RNA-Seq data 

available, and provided molecular information beyond existing clinicopathological 

risk factors, specifically in the subgroup of stage I LUAD patients. 
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Figure 4-14 Prognostic value of ORACLE in LUAD patients with stage I disease 
A, The ability of substaging criteria (left) versus ORACLE (right) to split patients 
into prognostically informative groups was tested in patients with stage I 
disease. Kaplan–Meier plots with log-rank P values, calculated using data from 
the Uppsala RNA-Seq dataset (n = 60 patients with stage I LUAD) are shown. B, 
The ability of substaging criteria (left) and ORACLE (right) to split patients into 
prognostically informative groups is tested in stage I patients using the updated 
TNM version 8 criteria, shown as Kaplan-Meier plots for the Uppsala RNAseq 
dataset (n=53 LUAD patients, stage I, TNMv8). Statistical significance was tested 
with a two-sided log-rank test. 
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4.5.3 Benchmark performance against published signatures 

The ORACLE signature was checked against a published biomarker – a four-gene 

RNA-Seq signature (Shukla et al., 2017) mentioned in the previous chapter (see 

3.4.1) – to test whether it has better prognostic power. For this analysis the RNA-

Seq dataset from the Uppsala cohort (n = 103, stage I-III) was used as an external 

validation cohort, as described in previous sections (4.4.3 and 4.5.2). Model 

signature coefficients from the original publication (Shukla et al., 2017) were 

applied to the validation dataset, calculating a risk-score for each tumour (Figure 

15A). Correlating the risk estimates against survival, the continuous risk-score did 

not exhibit a significant survival association (Cox UVA P=0.156). Moreover, using 

the median risk-score as a cut-off to dichotomize the cohort, the survival times 

between risk-groups were not significantly different (log-rank P = 0.1, Figure 15B). 

In this cohort ORACLE risk estimates were significantly associated with overall 

survival in both univariate (Figure 4-12A) and multivariate (Figure 4-13) analyses, 

suggesting it may have greater prognostic power than the published signature in 

this validation cohort. 

 
Figure 15 Testing performance of a published RNA-Seq signature 
A published RNA-Seq signature (Shukla et al., 2017) was applied to the RNA-
Seq validation dataset from Uppsala University (n=103, stage I-III). A, 
Expression matrix for the four genes comprising the signature (bottom) and 
risk-score distribution (top). B, Kaplan-Meier plot of the four-gene signature. 
Statistical significance was tested with a two-sided log-rank test. 
  



Chapter 4 Results 

 

135 

 

 

4.5.4 Biological underpinning 

Gene expression signatures can serve as prognostic biomarkers irrespective of 

their biological meaning, though the limited interpretability of such “black box” 

classifiers may discourage clinical adoption. By contrast, correlating a prognostic 

signature with specific biological processes can suggest the underlying 

mechanism, and help indicate the biomarker may be robustly informative (Topalian 

et al., 2016). Here, I further developed the biological grounding of ORACLE, 

querying whether the proposed signature is predominantly expressed on cancer 

cells or stromal cells, and exploring the axes of correlation between the molecular 

risk-score and clinicopathological features. 

 

To clarify that the signature is predominantly expressed on cancer cells, correlative 

analyses was performed in tumour samples from the TRACERx cohort (89 tumour 

regions from 28 patients with stage I–III LUAD). Firstly, the expression of individual 

ORACLE genes tracked the copy-number state at the corresponding gene locus, 

with 91% (21/23) of genes exhibiting a significant (P<0.05) positive correlation 

(Figure 4-16A). Next, I investigated the correlation between ORACLE risk-scores 

and metrics of immune infiltration derived from bulk sequencing data in TRACERx. 

There was a significant negative correlation between ORACLE risk scores and 

most (11/16) immune cell subsets defined using an RNA-Seq- based metric of 

immune infiltration (Danaher et al., 2017) (Figure 4-16B). A non-significant but 

trending negative correlation was observed with a WES-based measure of tumour 

purity (Loo et al., 2010) (Figure 4-16C). Lastly, I accessed a published single-cell 

RNA-Seq dataset comprised of 52,698 stromal cells sourced from 5 NSCLC 

patients (Lambrechts et al., 2018). In this scRNAseq study, Lambrechts et al had 

defined clusters for seven stromal cell-types (alveolar, B cell, epithelial, fibroblast, 

myeloid, T cell, and vascular). Examining the ORACLE signature in the context of 

these stromal clusters, most (20/23) of the individual genes in ORACLE displayed 

negligible expression levels relative to marker genes for stromal cell-types (Figure 

4-16D). 
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Figure 4-16 ORACLE as a cancer cell expression signature 
A, Pearson correlations between the expression of individual ORACLE genes 
and copy-number state at the corresponding gene locus in the TRACERx cohort 
(n=28 LUAD patients, 89 tumour regions, stage I-III). Significant correlations 
(P<0.05, without a multiple-testing correction) are marked in red, non-significant 
correlations are marked in blue. B, Spearman correlations between the 
infiltration of immune cell subsets, calculated from RNAseq data using the 
method described by Danaher et al, and ORACLE risk-scores in the TCGA 
dataset (n=469 patients, stage I-III). C, The scatter plot shows the Spearman 
correlation between ORACLE risk score and tumour purity assessed from whole-
exome sequencing data using ASCAT, as described by Van Loo et al, in 
TRACERx (n=28 LUAD patients, 84 tumour regions, stage I-III). D, Lambrechts et 
al performed single-cell RNAseq on 52,698 cells sourced from 5 NSCLC patients, 
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then defined 7 clusters of stromal cell genes and provided a per-cluster 
expression measure for every gene. The relative expression levels (y-axis) for 
each stromal cluster (coloured by cell-type, see figure legend) is plotted for all 23 
genes comprising the ORACLE signature (bottom 3 rows). To aid interpretation, 
a marker gene for each of the 7 stromal cell clusters is also plotted (top row) for 
comparison: alveolar (AGER), B cell (MS4A1), epithelial (EPCAM), fibroblast 
(COL6A2), myeloid (CD68), T cell (CD3D), and vascular (FLT1) cell-types. 
 

 

The correlation between ORACLE risk and established features of tumour 

aggressiveness was assessed. In the RNA-Seq-based validation cohort, the 

ORACLE risk scores tracked TNM tumour stage (Figure 4-17A). In addition, I 

accessed RNA-Seq data for a set of metastatic samples seeded by primary LUAD 

tumours (n=8 metastatic samples from the MET500 cohort (Robinson et al., 2017)), 

finding ORACLE expression to be significantly higher relative to primary tumour 

samples (Figure 4-17A). Immunohistochemical staining for Ki67, a histological 

marker for cancer cell proliferation, had previously been performed in the 

TRACERx cohort (Jamal-Hanjani et al., 2017), and was found to be positively 

correlated with ORACLE risk-scores (Spearman’s rho = 0.44; P = 0.0000205, 

Figure 4-17B). 

 

Taken together, these data suggest that the genes comprising ORACLE are 

expressed in cancer cells, may serve as a molecular read-out for tumour 

aggressiveness and metastatic potential, and is more robust to the challenge of 

tumour sampling bias than existing prognostic signatures. 
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Figure 4-17 ORACLE as a molecular correlate for tumour aggressiveness 
A, Boxplots showing the distribution of ORACLE risk scores by disease stage, 
for the Uppsala cohort (n=103 LUAD patients, stage I-III) and the MET500 cohort 
(n=8 metastatic samples from patients with LUAD primary tumours). Statistical 
significance was tested with a Wilcoxon signed rank sum test. No corrections 
were made for multiple comparisons. B, The scatter plot shows the Spearman 
correlation between Ki67 staining % and ORACLE risk-scores in the TRACERx 
cohort (n=28 LUAD patients, 89 tumour regions, stage I-III). 
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4.5.5 Tumour sampling bias 

In the previous chapter, the sampling bias of published prognostic signatures for 

LUAD was assessed in the multi-region RNA-Seq dataset of TRACERx LUAD 

patients. The discordance rates of two RNA-Seq-based prognostic signatures was 

directly quantified as 29% and 43%. Separately, a clustering metric was used to 

assess the discordance of 9 published signatures (including microarray and qPCR 

signatures) invariant of the expression profiling technology, revealing an average 

discordance rate was 50%. 

 

The sampling bias of ORACLE was assessed in the multi-region RNA-Seq dataset 

of TRACERx LUAD patients. Only 11% of the cohort (3/28 patients) exhibited 

discordant classification (Figure 4-18). This indicates ORACLE may be more robust 

to the problem of sampling bias then previous approaches agnostic to RNA-ITH, 

though would need to be confirmed in an external multi-region RNA-Seq validation 

dataset. 

 

It is worth considering why the clonal approach taken here did not completely 

eliminate the problem of sampling bias in lung cancer. In their analysis of 

expression data from >5000 breast tumours, Tofigh and colleagues suggested that 

a subset of patients were “inherently difficult” due to high levels of ITH, and should 

be separately classified (Tofigh et al., 2014). Along these lines, it is notable that the 

three patients displaying discordant risk classification for ORACLE did not consist 

of border-line samples on either side of the risk-score cut-off (Figure 4-18). Rather, 

these three tumours were amongst the highest for variance in risk-score between 

tumour regions, possibly indicating a higher global state of RNA-ITH. 
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Figure 4-18 Tumour sampling bias of ORACLE 
Tumour sampling bias of the ORACLE signature assessed using multi-region 
RNAseq data from TRACERx (n=28 LUAD patients, 89 tumour regions, stage I-III). 
Each point represents a single tumour region, vertical lines display the range for 
each patient, and patients are ordered by predicted survival risk score. Points 
are coloured according to the risk classification of tumour regions within a 
patient: concordant low-risk (blue), concordant high-risk (red), or discordant 
(gray).  
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4.6 Prognostic relevance of homogeneously expressed genes 
across cancer types 

4.6.1 Pan-cancer analysis 

The sampling bias problem for molecular biomarkers has been described in 

histologies other than lung cancer, including renal, breast and prostate cancer 

(Boutros et al., 2015; Gerlinger et al., 2012; Gyanchandani et al., 2016). 

 

To explore whether clonal biomarker design may hold prognostic relevance across 

other cancer types, I downloaded gene-wise prognostic values from two pan-

cancer resources:  

1) Prediction of Clinical Outcomes from Genomic Profiles (PRECOG) dataset, 

survival associations (z scores) calculated from 166 microarray datasets 

covering 39 cancer types (Gentles et al., 2015); 

2) Human Pathology Atlas, survival associations (log-rank P values) calculated 

from RNA-Seq data of 17 cancer types (Uhlen et al., 2017). 

RNA heterogeneity quadrants were calculated using the full TRACERx cohort with 

multi-region RNA-Seq data available (156 regions, 48 NSCLC patients, stage I-III). 

The proportion of genes within each quadrant that were found to give a significant 

prognostic value was assessed, both pan-cancer and for individual histologies. 

 

Assessing pan-cancer survival associations in the PRECOG dataset, Q4 genes 

were significantly enriched in prognostic genes compared with all other quadrants 

(Q1 versus Q4: P = 8.9 × 10−27; Q2 versus Q4: P = 9.3 × 10−8; Q3 versus Q4: P = 

1.9 × 10−18, Figure 4-19). In a finer-grained analysis, assessing each of the 39 

histologies individually, 49% (19/39) of cancer types were significantly enriched for 

prognostic genes in Q4; only one cancer type, head and neck cancer, was 

significantly depleted (3% of cancer types (1/39)). Conversely, Q1 (high intra-

tumour variability and low inter-tumour variability) was significantly depleted in 56% 

(22/39) of cancer types, and enriched in 0% (0/39). Both Q2 (low intra- and inter-

tumour variability) and Q3 (high intra- and inter- tumour variability) showed similar 

numbers of depleted and enriched cancer types. The subset of genes in Q4 was 

also prognostically relevant across several cancer-types from the Human 
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Pathology Atlas dataset: 35% of cancer-types (6/17) were significantly enriched for 

prognostic genes, and none (0/17) were depleted. 

 

 
Figure 4-19 Survival association of RNA heterogeneity quadrants across cancer 
types 
Pan-cancer prognostic scores sourced from the PRECOG database (n = 17,808 
tumours from 39 malignant histologies) and evaluated in the context of RNA 
heterogeneity quadrants. A, Box plots showing gene-wise pan-cancer survival 
associations are evaluated by NSCLC RNA heterogeneity quadrant. Z scores 
were sourced from the PRECOG database (n = 17,808 tumours from 39 malignant 
histologies). A |z| score > 1.96 is equivalent to a two-sided P < 0.05. Statistical 
significance was tested with a two-sided t-test. B, Survival association of RNA 

heterogeneity quadrants for individual cancer types. Each point corresponds to 
1 out of 33 cancer types. The number of prognostically significant genes (|z| 
score > 1.96, equivalent to a P value < 0.05) per NSCLC RNA heterogeneity 
quadrant is indicated for each cancer type as non-significant (gray), significantly 
enriched (red; odds ratio > 1) or significantly depleted (blue; odd ratio < 1). Odds 

ratios are plotted on a natural log scale. Statistical significance was tested with a 
two-sided Fisher’s exact test. No corrections were made for multiple 
comparisons. 
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These analyses indicated that homogeneously expressed biomarkers, derived as 

such in a multi-region lung cancer dataset, displayed a significant enrichment for 

prognostic genes in 35-49% of cancer types from two pan-cancer datasets  
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4.7 Conclusions 

4.7.1 Summary of findings 

The results of this chapter provide a means to address the diagnostic challenge of 

tumour sampling bias in lung cancer, and possibly other histologies. 

 

The global analysis of RNA heterogeneity revealed greater inter- than intra-tumour 

RNA heterogeneity. This result is in line with results from other multi-region studies 

of cancer transcriptomes. Gyanchandani et al profiled 181 samples from 71 ER+ 

breast tumours, finding samples clustered by patient in 86% of cases 

(Gyanchandani et al., 2016). Similarly, in a small cohort of medulloblastoma 

patients, Morrissy et al described that multi-region samples from 8 patients tightly 

clustered together (Morrissy et al., 2017). Extending to metastatic disease, Suda et 

al performed RNA profiling of 30 samples from five NSCLC patients (Suda et al., 

2018) – including primary tumours, and intra/extra-thoracic metastatic lesions – 

finding all primary and metastatic samples clustered by NSCLC patient. Overall, 

these analyses suggest that the subset of most variably expressed genes could 

represent a molecular fingerprint unique to individual NSCLC tumours. However, 

these global analyses do not incorporate prognostic information, so may not 

provide a clinically informative signature. 

 

To perform feature selection in a manner that overcame sampling bias, a core set 

of genes were defined with low intra- yet high inter-tumour RNA heterogeneity that 

were expressed uniformly within individual tumours, so robust to sampling bias, but 

are also highly variable between tumours, so they remained informative for patient 

stratification. These genes were enriched for chromosome copy-number gains 

early in tumour evolution, hence were termed “homogeneously expressed”, and 

was significantly enriched for genes that reproducibly maintained prognostic value 

in validation datasets of lung cancer patients (five separate cohorts) and in a pan-

cancer analysis (39 cancer-types). Taken together, these data strongly suggest 

that homogeneously expressed genes may be optimal candidates for the 

development of biomarker assays, both in lung cancer and possibly as a general 

strategy for refining biomarkers across cancer types. 
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In addition to defining homogeneously expressed genes, further selection of genes 

associated with survival yielded a novel Outcome Risk Associated Clonal Lung 

Expression (ORACLE) signature. ORACLE was discordant in 11% of LUAD 

patients from the multi-region RNA-Seq cohort, which compares favorably with the 

discordance rates of two RNA-Seq-based prognostic signatures of 29% and 43%. 

In addition, 100% (23/23) of the ORACLE genes are homogeneously expressed, 

compared with 36% (11/14) of genes from the clinically approved Razor Genomics 

signature (Kratz et al., 2019). This indicates ORACLE may be more robust to the 

problem of sampling bias then previous approaches agnostic to RNA-ITH. 

 

Failure to validate in independent patient cohorts, possibly due to differences in 

patient factors such as ethnicity or diet, has been highlighted as a major weakness 

of previous prognostic signatures in lung cancer (Subramanian and Simon, 2010a). 

ORACLE associated with survival in a meta-analysis involving 904 patients from 

five independent cohorts, indicating the signature may be driven robust tumour 

intrinsic features. Biomarker based classification of patients with stage I disease 

has been identified as a high impact area for thoracic oncology (Subramanian and 

Simon, 2010a; Vargas and Harris, 2016). ORACLE stratified stage I patients into 

high- and low-risk subgroups with significantly different survival times, providing 

prognostic value that substaging criteria (IA/IB) (Goldstraw et al., 2016) could not 

achieve in the small cohort of patients available for this analysis (n=60).  

 

Overall, these results describe a technical advance in the field of expression-based 

prognostic prediction and provide a promising molecular biomarker with the 

potential to improve diagnostic precision in lung cancer beyond the TNM staging 

system if further validated as a clinical assay. 
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4.7.2 Future work 

Whether ORACLE is exclusively expressed by cancer cells remains an outstanding 

question (see section 4.5.4). Spatially resolved RNA analysis of the genes 

comprising ORACLE from intact tissue – leveraging emerging technologies such as 

spatial transcriptomics (Ståhl et al., 2016), STARmap (Wang et al., 2018), or Digital 

Spatial Profiling (Merritt et al., 2020) – could provide an answer. 

 

Given the rapid developments in targeted therapy and immunotherapy, in both the 

metastatic disease setting and the surgical adjuvant setting, the prediction of 

response to adjuvant therapy is a key question. Two expression-based predictive 

biomarkers for CPI, the IPRES (Hugo et al., 2016) and TIDE (Jiang et al., 2018) 

signatures, were evaluated in the TRACERx cohort revealing discordance rates of 

33% and 44% respectively (Rosenthal et al., 2019). This indicates the design of 

homogeneously expressed biomarkers may have wider applications outside of 

global prognostication. Indeed, the published results of this chapter have been 

independently cited to support the need for a clonal biomarker of CPI sensitivity 

(Suda and Mitsudomi, 2020). 
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Chapter 5. In silico dissection of the tumour 
microenvironment 

5.1 Introduction 

The tumour microenvironment consists of the non-malignant cells present in the 

tumour bulk (including fibroblasts, endothelial, and immune cells), as well as 

extracellular matrix and signaling molecules. In treatment-naive lung cancer, the 

cellular components of the TME have been shown to influence cancer initiation 

(Mascaux et al., 2019; Pennycuick et al., 2020) and the outgrowth of immune-

evasive clones (AbdulJabbar et al., 2020; Rosenthal et al., 2019). Moreover, 

signals from the lung stromal niche govern the propensity of primary tumours in 

other organs to initiate pulmonary metastases (Malanchi et al., 2012). Immune 

infiltration has a prognostic impact in both early- and late-stage NSCLC (Dieu-

Nosjean et al., 2008; Goc et al., 2014; Hirayama et al., 2012; O’Callaghan et al., 

2015; Ohri et al., 2009). The clinical relevance of the lung TME is further 

highlighted under treatment, providing a safe haven from genome-targeted 

therapies (Katayama et al., 2012; W. Wang et al., 2009), and playing a role in 

determining responses to checkpoint blockade immunotherapy (Ganesan et al., 

2017; Thommen et al., 2018). 

 

In silico dissection of the TME from bulk expression data provides an attractive 

approach for quantifying the cellular composition of the stromal components of 

tumours. A highly accurate computational tool could help expedite the delivery of 

genomics-driven precision oncology (Dijkstra et al., 2016). In this chapter, I first 

provide an overview of existing RNA-based methods for TME cell-type 

enumeration. Next, I describe how global transcriptional profiles were generated for 

stromal cell-types that were purified ex vivo from lung tissue. Lastly, I present 

interim results from two sets of analyses. The first aims to demonstrate how 

purified stromal transcriptomes might yield biological insights into phenotype 

molding within the lung TME. The second suggests this dataset could provide a 

foundation for deriving higher-fidelity stromal signatures, addressing some of the 

shortcomings of existing computational methods.  
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5.2 RNA deconvolution of the tumour microenvironment 

5.2.1 Anatomy of an RNA-based TME enumeration tool 

There is a growing ambition to incorporate quantitative measures of TME 

composition into clinical practice, using more fine-tuned descriptions than “immune-

hot” or “immune-cold”, as prognostic or predictive biomarkers (Chen and Mellman, 

2017; Hirata and Sahai, 2017; Sharma et al., 2017). A major obstacle is the 

difficulty in applying traditional immunophenotyping techniques like flow cytometry, 

CyTOF or multiplexed IHC to clinical samples. These techniques are limited by 

sample throughput, complex tissue preparation requirements and cell extraction 

bias (Newman and Alizadeh, 2016). The computational deconvolution of RNA data 

from bulk tumours offers a means to overcome these limitations (Newman and 

Alizadeh, 2016). 

 

Gene expression data from bulk tumours contains multiple levels of biological 

heterogeneity, including variation in cell-type proportions and the differing activation 

states of individual cell-types, both of which can be markedly influenced by tissue 

pathology (Shen-Orr and Gaujoux, 2013). The anatomy of a typical RNA-based 

cell-type enumeration tool is illustrated (Figure 5-1A). A bulk RNA admixture 

(Figure 5-1B) and a reference matrix of cell-type signatures (Figure 5-1C) are both 

taken as input. There are two major classes of enumeration method: enrichment 

and deconvolution (Figure 5-1D). Both classes select genes from the signature 

matrix to calculate cell-type-specific enumeration scores. Some tools also output 

additional information, such as cell-type-specific activation states (Newman et al., 

2019) or a measure of confidence in the estimation (Newman et al., 2015). 
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Figure 5-1 Anatomy of an RNA-based TME enumeration tool. 
(A) Schematic diagram to display the computational pipeline for a typical RNA 
deconvolution tool: bulk tumour transcriptomes and a reference matrix of cell-
type signatures are inputted to an enumeration method, outputting scores 
estimating the abundance of TME-cell-types. (B) Illustration of three tumours, 
showing how variation in stromal cellular compositions drives the transcriptional 
patterns observed in bulk RNA data. (C) Cartoon illustration of the gene 
expression heatmap for a set of TME signatures. The heatmap rows correspond 
to genes from cell-type signatures, and the heatmap columns are expression 
experiments from purified cells for each cell-type. (D) The differing outputs for 
two types of TME cell-type enumeration methods: “low-resolution” rankings for 
enrichment methods (left); “high-resolution” proportions for deconvolution 
methods (right).  
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Here I highlight a few published tools to discuss the benefits and limitations of 

existing methods. 

 

ESTIMATE. The ESTIMATE method, developed by Yoshihara and colleagues 

(Yoshihara et al., 2013), uses “stromal” and “immune” gene-sets (each containing 

141 genes) to quantify the abundance of broad TME cell classes. An enrichment 

type method is used for enumeration, specifically single-sample GSEA. The 

method works with both RNA-Seq and microarray data,  

 

Cytolytic activity score. The cytolytic score method, developed by Rooney and 

colleagues (Rooney et al., 2015), aims to capture the cytolytic activity of tumour 

infiltrating immune cells from tumour RNAseq data by taking the geometric mean of 

two cytolytic effectors, granzyme A (GZMA) and perforin 1 (PRF1). This is another 

enrichment type method that can be applied to tumour RNA-Seq data. 

 

CIBERSORT. The CIBERSORT tool was an early adopter of the deconvolution 

class of enumeration method (Newman et al., 2015). This provided a blueprint to 

translate ideas about RNA-based deconvolution from immunology into the cancer 

field in 2015, and the CIBERSORT tool has since been widely used for research 

applications. The cell-type reference matrix contains signatures for 22 immune cell 

subsets, and was derived from public datasets of cell-types extracted from healthy 

human blood. Deconvolution is performed using linear support vector regression. 

The signature coefficients were derived using microarray data, which may limit 

applicability to RNA-Seq datasets. 

 

TIMER. Li and colleagues designed an alternative enumeration method relying on 

deconvolution (Li et al., 2016). Here, gene-sets were derived for 6 immune subsets, 

based on negative correlations with tumour purity. Constrained least-squares fitting 

was the approach used for deconvolution. 
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5.2.2 Limitations of existing tools 

Accuracy is the major limitation of existing RNA-based TME enumeration tools. 

Current tools exhibit systematic error compared to “ground-truth” assays like flow 

cytometry and IHC, even under ideal conditions. In an analysis of peripheral blood 

mononuclear cells, comparison of CIBERSORT estimated cell-type fractions to 

FACS-purified cell populations revealed poor accuracy in the identification of key 

subsets such as activated memory CD4 T cells (~70%), plasma cells (~60%), and 

γδ T cells (~40% accuracy) (Gentles et al., 2015; Newman et al., 2015). Error 

introduced by the systematic over- or under-estimation of the infiltration of certain 

cell-types might contribute to the limited clinical translation of existing tools. A 

recent PD1-inhibitor trial in patients with metastatic melanoma found that 

CIBERSORT did not predict CPI response (Liu et al., 2019), despite previous 

studies demonstrating a clear association of intra-tumoural CD8+ T-cells with 

response to CPI therapy (Edwards et al., 2018). 

 
A minor criticism is a failure to include key cell-types or quantify cell-types at fine 

granularity. For the majority of TME enumeration tools, the cell-type reference 

matrix is comprised solely of immune cell-type signatures, neglecting the fibroblast 

compartment for example. The fitting of an incomplete reference matrix to a bulk 

RNA admixture, that contains additional cell-types, both introduces noise (Racle et 

al., 2017) and restricts biological interpretation (Becht et al., 2016). 

 

In the past, tools have also been limited by platform restrictions. For example, the 

original CIBERSORT tool was developed for use with microarray data (Newman et 

al., 2015), so cannot easily be applied to RNA-Seq data due to probe bias and 

differences in dynamic range (Ali et al., 2016; Charoentong et al., 2017). However, 

this critique has become out-dated as most recent tools are platform agnostic 

(Newman et al., 2019). 
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5.2.3 Cell-type reference profiles 

The set of cell-type reference profiles inputted to a TME enumeration tool (Figure 

5-1C) is typically a matrix of genes and cell-types, which should reflect cell-type-

specific expression in the human tumour microenvironment. However, the majority 

of reference profiles for existing tools were not derived using data from human 

cancers. For example, CIBERSORT was developed using RNA data from immune 

cells isolated from the peripheral blood and bone marrow of healthy volunteers 

(Newman et al., 2015). Another method, derived by Davoli et al, trained a reference 

matrix using murine immune subsets (Davoli et al., 2017). The EPIC tool is a 

notable exception, which has reference profiles derived using published scRNAseq 

data from human cancers (Racle et al., 2017). The CIBERSORT authors 

suggested that “the most significant current limitation of CIBERSORT is the fidelity 

of reference profiles ... sampling a larger expression space, for example tumour-

infiltrating immune cells, may mitigate this issue” (Newman et al., 2015). 

 

Indeed, there is growing evidence that the molecular profile of stromal cells in 

primary tumours differs from healthy tissue. Through in-depth profiling of CD8+ T-

cells from a cohort of NSCLC patients, Ganesan and colleagues established that 

TILs displayed signals of increased cycling and TCR-activation relative to cells 

isolated from adjacent non-malignant lung tissue, concluding that transcriptional 

profiling of purified TILs might help inform clinical decision-making over the use of 

CPI therapy (Ganesan et al., 2017). Similarly, Thommen and colleagues found that 

TIL populations from lung tumours harboured a distinct transcriptional profile from 

cells isolated from healthy blood, exhibiting up-regulated cell cycle and cell division 

modules (Thommen et al., 2018). 

 

In a meta-analysis of existing tools, Sturm and colleagues tested analytical 

sensitivity to determine the limits of detection (Sturm et al., 2019). Using “pseudo-

bulk” tumours, generated by mixing known cellular proportions from single-cell 

datasets, the ability of each tool to reliably detect the abundance of a particular 

TME cell subset as significantly different from the background was assessed. The 

best performing tool in this benchmark analysis, Xcell (Aran et al., 2017), could 
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detect most cell-types at >5% infiltration. This performance was attributed to the 

fidelity of the Xcell reference matrix (Sturm et al., 2019). 

 

Overall, this highlights the need to understand the difference between blood-, 

healthy tissue- and TME-derived signatures. Functional changes for each cell-type 

between environmental contexts may undermine the performance of existing cell-

type signatures. Moreover, multiple lines of evidence suggest that the derivation of 

tumour-specific cell-type signatures will improve the fidelity of reference profiles, 

potentially increasing prediction accuracy. 

 

5.2.4 Enumeration methods 

Approaches for quantifying the presence of cell subsets in heterogeneous samples 

fall into two categories (Figure 5-1D): enrichment methods and deconvolution 

methods (Newman and Alizadeh, 2016; Shen-Orr and Gaujoux, 2013).  

 

Enrichment methods define marker genes, as clusters of genes enriched in specific 

TME cell-types, and output low-resolution estimates of cell presence that can be 

ranked. Rooney and colleagues justified the use of GZMA and PRF1 expression 

levels as marker genes for immune cytotoxic activity as these genes were tightly 

co-expressed in patient samples and exclusively expressed by NK (natural killer) 

and T-cell subsets (Rooney et al., 2015). Davoli and colleagues developed a set of 

signatures through pairwise differential expression of RNA data from the from the 

ImmGen database, selecting the top 20 over-expressed genes per cell-type, then 

further manually subsetting to genes specific to individual immune cell-types 

(Davoli et al., 2017). Instead of geometric mean, this method is applied using 

Gene-Set Enrichment Analysis (GSEA). Enrichment methods are robust to 

platform-specific noise. For example, an IFN-γ signature predicting response to 

PD1 blockade was originally derived using RNA-Seq data (Ayers et al., 2017), and 

recently successfully validated on the NanoString nCounter platform (Cristescu et 

al., 2018). However, the low-resolution enumeration outputs of marker gene 

methods are of limited clinical utility. Furthermore, if marker gene expression is not 
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cell-type-specific, these methods can be confounded by collinear expression 

between closely related cell-types. 

 

Deconvolution methods yield high-resolution numeric estimates of cell-type 

proportions. This is akin to performing in silico flow cytometry on admixed RNA 

data from bulk tumours. The CIBERSORT method performs deconvolution of RNA 

admixtures using support vector regression, a non-linear machine learning 

algorithm that fits a regression hyperplane to as many data points as possible, with 

hyperplane orientations outputted as equal to estimated cell-type proportions 

(Newman et al., 2015). Machine learning algorithms could unpick subtle 

transcriptomic differences, overcoming the need for exclusive cell-type-specific 

expression for all genes in the reference matrix. Moreover, the CIBERSORT 

deconvolution approach was able to accurately enumerate artificially generated 

RNA admixtures of increasingly correlated cell-types. However, there is an ongoing 

debate over the choice of deconvolution method. Li and colleagues developed 

TIMER, which used linear regression-based deconvolution (Li et al., 2016), and 

have argued strongly that linear methods are sufficient for the problem of TME 

deconvolution (Bo Li et al., 2017; Newman et al., 2017).  

 

Both enrichment and deconvolution approaches have been widely used in the 

literature for discovery reasons, but a consensus approach and reproducibility 

would be necessary for the next step towards clinical translation. 
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5.3 RNA profiling of stromal cells from lung cancer patients 

5.3.1 Ex vivo purification of 15 TME cell subsets 

A cohort of patients with treatment-naïve lung cancer underwent surgical resection 

with curative intent in the TRACERx study and also at the University of Edinburgh. 

Following surgical resection, tumour and paired non-malignant tissue materials 

excess to clinical diagnosis requirements were processed in the research lab to 

yield single-cell suspensions of stroma cells. Briefly, tumour and tissue chunks 

were finely minced with sterile scalpels before digestion with DNase and 

collagenase, followed by removal of dead cells by Ficoll gradient isolation. Single 

cell suspensions were isolated from the Ficoll interface and frozen.  

 

Three multiparameter panels were used for FACS to isolate 15 stromal cell-types. 

The recovered cell-types can be broadly grouped into three categories, comprised 

of lymphoid immune cells, myeloid immune cells, and non-immune stromal cells. 

Lymphoid immune cell-types included CD8+ T-cells, CD8+PD1-high T-exhausted 

cells, CD8+PD1-low T-effector cells, CD4+ T-cells, CD4+CD25+ T-regulatory cells, 

two γδ T-cell subsets, B-cells and NK cells. Myeloid immune cell-types included 

neutrophils, dendritic cells (DC), monocytes, and macrophages. Lastly, non-

immune stromal cells were fibroblasts, and endothelial cells.  

 

Two multiparameter panels were used to isolate T-cell subsets and other leucocyte 

subsets from TRACERx samples (Figure 5-2, Figure 5-3). The third multiparameter 

panel was used to isolate fibroblasts and endothelial cells from University of 

Edinburgh samples (Figure 5-4). Overall, 194 samples of stromal cell subsets were 

isolated from 28 patients with NSCLC. 
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Figure 5-2 FACS gating strategy for T-cell subsets 
Representative samples demonstrating gating strategies of T-cell subsets. 
Purified cell-types included CD8+ T-cells, CD4+ T-cells, two γδ T-cell subsets, 
CD8+PD1-high T-exhausted cells, CD8+PD1-low T-effector cells, and CD4+CD25+ 
T-regulatory cells. 
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Figure 5-3 FACS gating strategy for other leucocyte subsets 
Representative samples demonstrating gating strategies of other leucocyte 
subsets. Purified cell-types included B-cells, monocytes, NK cells and DCs. 
 

 
 
 

 
Figure 5-4 FACS gating strategy for non-immune stromal cell subsets 
Representative samples demonstrating gating strategies of non-immune stromal 
cell subsets. The purified cell-types were fibroblasts, and endothelial cells. 
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5.3.2 Genome-wide RNA profiling of isolated cell-types 

Following FACS, the sorted cell-types were processed using RNA extraction and a 

protocol for low input amounts of RNA (Smart-Seq2 (Picelli et al., 2014)) was used 

for library preparation. Genome-wide RNA expression levels were quantified 

through RNA-Seq, to a depth of ~20 million reads per sample, across the 15 

stromal cell subsets. For quality control prior to downstream analysis, samples 

were filtered according to two quality metrics: flow cytometry (antibody staining) 

and RNA-Seq (number of genes uniquely aligned). In the flow cytometry quality 

control step, 16 samples were excluded (15 γδ T-cell samples, and 1 T-reg sample) 

due to poor CD8+ staining. The cutoff for the number of genes uniquely aligned 

was set to >3,500. In this quality control step 19 additional samples were excluded. 

After quality filtering, genome-wide expression values were obtained for 159 

samples from 24 patients. Of these, 87 samples originated from lung tumours and 

72 from matched non-malignant lung tissue. 

 

The expression profiles of canonical cell-type marker genes were examined to 

assess the purity of cell populations isolated by FACS, and also RNA-Seq efficacy 

(Figure 5-5). This was broadly reassuring, for example the cell surface glycoprotein 

CD8B was exclusively expressed by the three subsets of CD8+ T-cells as would be 

expected. Similarly, the genes coding for the B-cell lineage marker (CD19), and 

endothelial cell lineage marker (CD31) were exclusively expressed by their 

respective cell-types. The expression profiles also verified subtler FACS gating. For 

example the PD1 gene (PDCD1) was expressed by both T-effector and T-

exhausted cell subsets, but at different levels reflecting the use of FACS gating 

threshold. Of note, PD1 expression was also observed in neutrophils and 

macrophages. A biological role for PD1 expression in tumour-associated 

macrophages is becoming established, increasing with disease stage in human 

cancers and impairing phagocytosis of cancer cells in a mouse model (Gordon et 

al., 2017). However, while characterized in other disease settings such as infection 

with tuberculosis bacteria or human immunodeficiency virus), the role of PD1-high 

neutrophils in cancer is less clear. This simple analysis also revealed the potential 



Chapter 5. Results 

 

159 

 

 

of unbiased transcriptomic characterization to uncover novel biology around the in 

situ phenotype of stromal subsets. 

 

 
Figure 5-5 Expression of cell surface marker genes used for FACS 
The expression of individual marker genes are plotted for lymphoid immune 
(purple), myeloid immune (red), and non-immune (yellow) stromal populations. 
Lymphoid immune subsets: CD8 T-cells (CD8B), Tex (PD1-high), Teff (PD1-low), 
CD4 T-cells (CD4), Treg (CD25), B cells (CD19), and natural killer cells (CD16). 
Myeloid immune subsets: neutrophils (CD15), dendritic cells (CD11c), monocytes 
and macrophages (both CD14-high). Non-immune stromal subsets: fibroblasts 
(CD90), endothelial cells (CD31). 
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5.3.3 Global expression profiles reflect cell-type of origin 

To decipher transcriptional patterns between all the stromal lung samples, 

unsupervised clustering algorithms were applied to their global expression profiles 

(Figure 5-6). The UMAP analysis revealed cell-type of origin was a major 

discriminating factor between samples, with samples from several cell-types 

clustering together. This included αβ T-cells, NK cells, B-cells, neutrophils, 

endothelial cells, and fibroblasts as indicated on the UMAP (Figure 5-6A-B). 

Lineage restrictions for individual cell-types might be expected to have a large 

bearing on global expression profiles. For example, transcriptional diversity 

(measured as the total number of genes expressed by a cell) has recently been 

shown to decrease during normal differentiation (Gulati et al., 2020).  

 

By contrast, the tissue of origin had a varying influence between cell-types, as can 

be seen from the PCA. Examining the means of PC1 and PC2, for each individual 

cell-type, the γδ T-cell samples exhibited the clearest distinction between normal 

and cancerous lung tissue (Figure 5-6C-D). To decipher subtler effects of cell-

extrinsic factors, such as hypoxia in the TME, in the next section I moved to 

exploring the pathways and genes involved in tissue-specific expression profiles. 
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Figure 5-6 Global transcriptomic analysis 
Unsupervised clustering analyses of the relationship between global expression 
profiles for all the lung stromal cell-types assessed. UMAP shown with the 
colour scheme highlighting cell-type (A) or tissue (B) of origin. PCA (C) and bar 
plots for the means of the PC1 and PC2 values per cell-type(D). 
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5.4 Tissue-specific signals of stromal cells in the lung tumour 
microenvironment 

5.4.1 Global tissue differences 

To identify cell-type-specific molecular signals related to tumour infiltration, here I 

analysed the transcriptomes from the 15 stromal cell-types purified from tumour 

tissue and – the best control tissue available – adjacent non-cancerous lung.  

 

For a broad insight into normal-tumour transcriptomic differences within individual 

stromal cell-types, I performed a pathway analysis of the 50 hallmark gene-sets 

from the Broad Molecular Signatures database (Subramanian et al., 2005). This 

analysis revealed most (12/15) cell-types displayed differences in hallmark pathway 

activities (Figure 5-7); no pathways were significantly altered in Vδ2 cells, 

fibroblasts or endothelial cells. Interestingly, the Vδ1 subset was the cell-type with 

differential activation in the greatest number of hallmark pathways, which may 

reflect mounting evidence that these cells may be tissue-resident immunological 

rheostats for epithelial transformation. Indeed, they are present and enriched in the 

epithelium of myriad organs and can mount rapid and potent responses to 

conserved molecular signals of malignant transformation (Cruz et al., 2018; Mikulak 

et al., 2019; Wu et al., 2019). 
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Figure 5-7 Pathway differences between normal and cancerous lung 
Differences in pathway activities between normal or cancerous lung tissue for 
each stromal cell subset. The 50 hallmark gene-sets from the Broad Molecular 
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Signatures database were used. Significant t-values indicated for gene-sets 
enriched in tumour (red) or normal (blue) lung tissue.  
 

5.4.2 Tissue differences specific to individual T-cell subsets 

For an unbiased exploration of tumour-normal differences, differential expression 

analysis was performed for cell-types of the T-cell compartment (Figure 5-8). This 

analysis identified a number of differentially expressed genes (DEGs) by tumour 

infiltrating T-cells relative to expression in normal lung: 89 DEGs in CD8+ T-cells, 

116 DEGs in T-exhausted cells, 270 DEGs in T-effector cells, 87 DEGs in CD4+ T-

cells, 501 DEGs in T-regulatory cells, 208 DEGs in γδ Vδ1 T-cells, and 84 DEGs in 

γδ Vδ2 T-cells. 

 

The expression of some immune checkpoint molecules were up-regulated in the 

TME, including the ligand for CTLA4 (CD80) in CD8+ T-cells, and the gene 

encoding the TIM3 inhibitory receptor (HAVCR2) in T-exhausted cells (Figure 

5-8A). Ganesan and colleagues have recently shown that CD8+ TILs expressed 

higher levels the T-cell co-stimulatory molecule 41BB (TNFSF9), reflecting TCR-

engagement (Ganesan et al., 2017). In my analysis, I observed a similar signal 

restricted to the T-effector subset of CD8+ T-cells. Tumour infiltrating T-cells also 

displayed enhanced cytotoxic potential, with the upregulation of granzyme 

molecules in T-exhausted (GZMM) and γδ Vδ1 (GZMA, GZMB) T-cell subsets 

(Figure 5-8A & D). The over-expression of genes involved in DNA synthesis 

(CDC45 in CD8+ T-cells), DNA repair (POLE2 and RAD51 in CD8+ T-cells; POLA2 

in CD4+ T-cells and T-regs), and cell cycle progression (CDK1 in T-effector cells; 

CDK3 in T-exhausted cells and T-regs) suggested the increased division and 

activation of T-cells in the TME (Figure 5-8A-B). This unbiased analysis indicated 

major changes in the gene expression landscape of CD8+ T-cells in lung tumour 

tissue, broadly in line with previous findings. 
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Figure 5-8 Transcriptomic profiles of tumour infiltrating T-cells 
Volcano plots of differentially expressed genes in T-cells sourced from tumour 
versus normal lung tissue. Subsets of CD8+ T-cells (A), CD4+ T-cells (B), and γδ 
T-cells (C) are shown. Significantly differentially expressed genes are highlighted 
(gray): Log2 Fold Change >2, BH adjusted P-value < 0.01. T = tumour over-
expression, N = normal over-expression. 
 

T-exhausted cells are known to show impaired anti-tumour function, with cell-

intrinsic restrictions to cancer cell killing (Philip et al., 2017; Thommen et al., 2018). 

Intriguingly, in my dataset, a number of neutrophil chemoattractant genes were up-

regulated in T-exhausted cells within the TME (Figure 5-8A right panel), including 

members of the CXC (CXCL2, CXCL8, CXCL1, CXCL3) and interleukin (IL17C) 
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families of pro-inflammatory chemokines. In a previous analysis of TME cellular 

composition, neutrophils were found to be the immune cell-type most adversely 

associated with survival outcomes across >18,000 tumours (Gentles et al., 2015). 

Therefore, this preliminary finding could indicate that “bad” T-exhausted cells might 

serve a pro-tumour function in recruiting neutrophils to the TME.  

 

An important caveat to the differential expression results presented here are the 

extremely large fold-change values (Figure 5-8), particularly as a pronounced 

signal differentiating normal from tumour samples was not observed in 

unsupervised clustering analysis (see 5.4.1). Similar fold-change values have been 

reported for sorted cell-types (Uhlen et al., 2019). However, technical artifacts 

could be present. For example, there are a substantial number of zero-expressed 

genes in RNA-Seq data generated from low-input RNA samples, which may 

exaggerate fold-change values. 

 

5.4.3 Tissue context may influence the expression of canonical cell-type 
markers 

The phenotype of stromal cells might be substantially altered by cell-extrinsic 

stresses operating in the TME, such as tissue hypoxia (Lambrechts et al., 2018), 

increased glycolysis (Bohn et al., 2018; Rice et al., 2018), or altered ionic gradients 

(Eil et al., 2016). Recent work has shown “drifts” in gene expression between 

stromal cells in non-malignant and cancerous lung (Ganesan et al., 2017; 

Lambrechts et al., 2018). The impact of such “drifts” on the performance of RNA-

based TME enumeration methods is currently unknown (Newman and Alizadeh, 

2016). 

 

Here I assessed four marker-gene-based TME scoring methods, developed by 

Rooney et al, Davoli et al, Danaher et al, and Bindea et al (Bindea et al., 2013; 

Danaher et al., 2017; Davoli et al., 2017; Rooney et al., 2015). The expression 

levels of these published signatures were evaluated in my RNA-Seq dataset of ex 

vivo purified lung stromal cell-types. This analysis focussed on cell-types with at 

least 5 samples for both normal and tumour tissue available, to enable 
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comparisons. A summary metric was generated for the expression levels of each 

signature, taking the geometric mean across genes specified in the gene-list. The 

sample-specific scores were calculated for each cell-type, and were plotted 

separately for normal and tumour samples (Figure 5-9). 

 

In the analysis of six CD8+ T-cell signatures, scores resulting from the method 

developed by Bindea et al (Bindea et al., 2013) differed significantly between 

stromal cells isolated from normal versus tumour (Figure 5-9A). The Bindea CD8+ 

T-cell signature was based on the expression of CD8A and PRF1 genes. CD8A 

might be expected to be core transcriptional features of this cell-type, whereas 

PRF1 might be more subject to phenotype molding by tissue environment. The 

examination of two CD4+ T-cell signatures and four NK cell signatures did not 

indicate strong tissue-specificity (Figure 5-9B-C). However, evaluating six 

macrophage signatures revealed the gene-list determined by Danaher et al 

(Danaher et al., 2017) was relatively over-expressed in macrophages isolated from 

non-malignant lung tissue relative to macrophages purified from tumour samples 

(Figure 5-9D). The Danaher macrophage signature also relied on genes generally 

regarded as canonical marker-genes (CD163, CD68, CD84, MS4A4A). Overall, this 

analysis suggested that, in some cases, it might be useful to discriminate molecular 

features invariantly linked to cell-type, regardless of tissue environment. 
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Figure 5-9 Impact of tissue source on performance of TME marker genes 
Box plots of the scores (y-axis) of published TME signatures (x-axis) in isolated 
TME cell-type populations, stratified by whether the cells were sourced from 
normal (blue) or cancerous lung tissue (red). The performance of signatures for 
CD8+ T-cells (A), CD4+ T-cells (B), Natural Killer cells (C), and macrophages (D) 
are shown. Statistical significance was tested with a two-sided Wilcoxon signed 
rank sum test. “*” indicates a P-value < 0.05, “**” indicates a P-value < 0.01, “ns” 
indicates a non-significant P-value.   
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5.5 Cell-type-specific expression profiles for lung stroma 

5.5.1 Genome-wide similarity analysis of cell-type expression profiles 

To further decipher the phenotypic relationships between purified lung stromal cell-

types, I calculated pairwise correlations of the transcriptomic landscape for the 15 

TME cell-types, and then performed unsupervised hierarchical clustering on the 

similarity measures (Figure 5-10). The correlation coefficients indicated that most of 

the lymphoid immune cell-types formed a cluster of highly correlated (Rs > 0.75) 

cell-types. The γδ Vδ1 and Vδ2 T-cells subsets formed the exception, clustering 

instead with non-immune stromal cells (endothelial cells, fibroblasts) and 

monocytes. Neutrophils and macrophages formed a separate cluster. 

 

 
Figure 5-10 Pairwise correlation analysis of the transcriptomic landscape for 
stromal cell-types 
A, Heatmap showing the pairwise Spearman correlation between the 
transcriptomic landscape for the 15 analysed lung stromal cell subsets. B, 
Dendrogram showing the clustering similarities in transcriptomic landscapes 
between different stromal cell subsets. 
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5.5.2 Derivation of marker genes specific to individual stromal cell-types  

To investigate the potential to derive cell-type-specific marker genes from my 

dataset, the cell-type expression specificity was evaluated for each individual gene. 

I adopted the method described by Uhlen et al (Uhlen et al., 2019) in their recent 

Human Blood Atlas paper, which was used to derive cell-type specificity categories 

for gene expression in cell-types isolated from human blood.  

 

All genes were classified into five expression specificity categories according to the 

following criteria: 

1) Cell-type enriched: expression level (TPM) in a cell-type at least four times 

any other cell-type 

2) Group enriched: expression level (TPM) in a group of cell-types (2-10) at 

least four times any other cell-type 

3) Cell-type enhanced: expression level (TPM) in a group of cell-types (2-10) at 

least four times the average (mean) of other cell-types 

4) Low cell-type specificity: detectable expression level (TPM ≥1) in at least 

one cell-type, but not elevated in any cell-type 

5) Not detected: low expression level TPM (< 1) in all cell-types 

 

The proportion of genes in each of the five specificity categories was calculated 

(Figure 5-11A-B). Of all 24,372 aligned genes, more than half (59.6%, 

14,535/24,372) displayed detectable but non-specific expression across the 15 

stromal cell-types (group enriched). Only 10.1% (2,452/24,372) of genes were 

classified as showing enriched expression unique to one of the cell-types (cell-type 

enriched). Neutrophils (700), Vδ1 subset (485), and macrophages (446) had the 

largest number of cell-type enriched genes. Whereas most lymphoid immune cell 

subsets harboured substantially fewer cell-type enriched genes: CD8+ T-cells (3), 

T-exhausted cells (20), T-effector cells (5), CD4+ T-cells (24), T-regulatory cells 

(66), B-cells (38) and NK cells (9). These data were consistent with the similarity 

analysis from the previous section (Figure 5-10), and highlight the challenge of 

identifying robust marker genes in cell-types with a largely shared differentiation 

hierarchy and close phenotypic alignment. 
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Figure 5-11 Candidate cell-type-specific marker genes 
The number of genes categorized by specificity of expression, shown as 
summary percentages across all 15 TME cell-types (A), and the breakdown for 
individual cell-types (B). Heatmaps plotting gene expression for genes (x-axis) 
across by cell-type (y-axis) the 15 stromal subsets (C), separated by specificity 
category: cell-type enriched (top left), cell enhanced (top right), group enriched 
(bottom left), and low cell-type specific (bottom right) genes. 
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Lastly, I examined whether cell-type specific genes could discriminate between 

stromal subsets. Hierarchical clustering was performed on genes from four of the 

expression specificity categories (Figure 5-11C). The genes from the cell-type 

enriched specificity category (10.1%, 2,452/24,372) clustered together within –and 

were mostly expressed uniquely by – individual stromal cell-types. This pattern of 

tightly clustered modules was recapitulated, to some extent, by genes from the 

group-enriched specificity category (59.6%, 14,535/24,372), with more 

promiscuous expression across stromal cell subsets. By contrast, genes from the 

cell-type enhanced (15.3%, 3,722/24,372) and low cell-type specificity categories 

(15.0%, 3,650/24,372) were both homogeneously expressed between cell-types, 

with little apparent clustering of genes. This analysis indicated that the subset of 

cell-enriched genes (and possibly also the group-enriched specificity categories) 

might represent core transcriptional features of individual cell-types. Such genes 

could provide a foundation for the derivation of robust marker genes. 
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5.6 Conclusions 

5.6.1 Summary of findings 

In this chapter I have developed an atlas of genome-wide expression profiles for 

lung stromal cell-types (Figure 5-12). The 15 cell-types profiled comprised seven 

subsets of T-cells, B-cells, five subsets of the innate immune system, as well as 

fibroblast and vascular cells. Overall, bulk RNA-Seq data was generated for 159 

samples from 24 patients; 87 samples from lung tumours and 72 from adjacent 

non-malignant lung tissue). 

 

Preliminary analyses of tissue differences revealed the phenotypic adaptation of 

stromal cells to the lung TME. For example, tumour infiltrating T-cell subsets 

displayed signals of increased cell cycling and TCR-activation, consistent with 

recent analyses (Ganesan et al., 2017; Lambrechts et al., 2018). In addition, the 

subset of CD8+PD1-high T-exhausted cells was observed to over-express 

neutrophil chemoattractants in the tumour milieu. If further validated, this could 

suggest a novel pro-tumour function of the CD8+PD1-high T-exhausted cell subset, 

beyond the well-characterized cell-intrinsic restrictions to cancer cell killing (Philip 

et al., 2017; Thommen et al., 2018). I also assessed whether published marker 

genes methods displayed “drifts” in gene expression according to tissue 

environment. A CD8+ T-cell and a macrophage signature significantly differed 

between stromal cells in non-malignant and cancerous lung tissue in my dataset. 

This indicates, in some cases, paired tumour-normal analyses of purified stromal 

cell subsets might be useful to further discriminate molecular features invariantly 

linked to cell-type. 

 

Analyses of cell-type similarities revealed the global expression profiles of several 

lymphoid immune cell-types were highly correlated, underlining the challenge of 

deriving marker genes robust to confounding by collinear expression between 

closely related cell-types. Overall, 10% of genes were classified as showing cell-

type-specific expression unique to an individual cell-type, which could provide a 

foundation for the derivation of robust marker genes. 
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Figure 5-12 Outline of the analysis of stromal cell-types from lung tissue 
A diagram illustrating the experimental and informatics workflow to analyse RNA 
profiles in lung stromal cell-types, sourced from tumour and adjacent non-
malignant lung tissue, and to derive marker genes. The 15 cell-types listed 
include seven subsets of T-cells, B-cells, five subsets of the innate immune 
system, as well as fibroblast and vascular cells. 
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5.6.2 Future work 

In future work, I will aim to develop a computational tool to accurately deconvolute 

immune and stromal TME cell-types from bulk tumour RNAseq data. As described 

in the background, a litany of tools for RNA-based TME enumeration is currently 

available. The approach taken in this chapter has two major novelties over existing 

methods. Firstly, the ex vivo purification of TME cell subsets in a granular and 

comprehensive manner. The 15 stromal cell-types profiled here encompass major 

adaptive and innate immune classes, and also rarer subsets of emerging clinical 

interest such as CD8+PD1-high T-exhausted cells (Thommen et al., 2018). 

Moreover, the inclusion of primary fibroblasts (both normal and cancer-associated 

fibroblasts) and endothelial cells contribute towards a comprehensive molecular 

map of the cells constituting the lung TME (Becht et al., 2016). Secondly, the 

purification of stromal populations present in both tumour samples and adjacent 

non-malignant lung tissue (the best available control) enables the discrimination of 

features linked to lung-tissue residence from those related to tumour infiltration 

(Ganesan et al., 2017; Lambrechts et al., 2018). The purification of cell-types 

directly post digest will also help characterize the in situ phenotype of stromal cells. 

 

To identify the optimal algorithm for TME deconvolution in the setting of high-fidelity 

reference profiles, I will perform a head-to-head comparison of a number of 

supervised machine learning methods, including linear least- squares regression 

(Li et al., 2016), quadratic programming (Gong and Szustakowski, 2013) and 

support vector regression (Newman et al., 2015). The algorithms will be trained on 

pseudo-bulk tumour generated from publically available scRNAseq datasets (Sturm 

et al., 2019). Orthogonal validation will be conducted leveraging a large cohort of 

patients (n≥200) with tumour RNAseq data from TRACERx, and using paired H&E 

counting TIL estimates and flow phenotyping to provide a ground-truth measure of 

TME cell-types. 

 

The availability of high-fidelity cell-reference profiles and an optimised enumeration 

method could pave the way for accurate digital dissection of the TME, helping to 

expedite the delivery of precision immune-oncology (Dijkstra et al., 2016). As 
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discussed in section 1.5 of this thesis, potential clinical applications include 

evaluating immune contexture as a diagnostic framework and resolving the milieu 

for environment-mediated drug resistance. 

 

A particularly exciting avenue of future work would be to test the contribution of the 

TME signatures to RNA-ITH, linking the results of this chapter to Chapter 3 and 

Chapter 4. Recent work suggests it is likely that intra-tumoural immune variation 

may influence the patient-level estimates of RNA-ITH derived in this thesis (section 

3.2). Analysing multi-region RNA-Seq data from a cohort of patients with NSCLC, 

Rosenthal et al discovered that 28% of patients exhibited immunologic 

heterogeneity, and that these tumours tended to exhibit higher levels of genetic ITH 

than tumours with uniformly low levels of immune infiltration (Rosenthal et al., 

2019). Immune ITH has also been observed within individual ovarian tumours 

(Zhang et al., 2018) and between metastatic sites in patients with colorectal cancer 

(Mlecnik et al., 2018, p. 201). 

 

In addition, ascribing the contribution of different tumoural cell populations to the 

expression levels of individual genes could enable further dissection of gene-level 

RNA-ITH (see section 4.3). Potentially the bulk TME cell populations identified in 

this chapter would be sufficient for a low-resolution analysis, for example Puchalski 

et al examined “anatomic” ITH of glioblastomas by defining gene-sets 

corresponding to immune-infiltrated, cellular or microvascular tumour regions 

(Puchalski et al., 2018). Distinct RNA profiles for immune, stromal and cancerous 

cells can also be discovered from unsupervised analysis of bulk spatial 

transcriptomics data, as demonstrated in prostate tumours (Berglund et al., 2018). 

Tracking gene expression down to the level of individual cancer clones is likely to 

be a nuanced challenge however, which may require single-cell resolution 

(discussed further in section 7.2.1). Moreover, inter-cellular RNA heterogeneity has 

been reported even within TME cell populations: in breast cancer, Costa et al 

identified four fibroblast subtypes, which could be distinguished based on surface 

marker expression, and exhibited distinct phenotypic properties (Costa et al., 

2018). 
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Chapter 6. Evolutionary dependencies 

6.1 Introduction 

In most cancer types it is not currently possible to chart and forecast the 

progression of an evolving tumour in a predictable manner. Yet several lines of 

evidence hint at the existence of evolutionary constraints, including reports of 

parallel evolution or conserved mutational orderings (Greaves, 2015; McGranahan 

and Swanton, 2017), as discussed in the overview of literature (1.3.4).  

 

Several computational tools have been developed to systematically detect 

combinatorial patterns of mutations in cancer NGS datasets (Deng et al., 2019). 

However, the design of these tools overlooks the branching clonal architecture that 

characterizes most cancer genomes. This might restrict the tools’ ability to detect 

epistatic interactions involving subclonal mutations, and partially explain their 

limited utility in discovering core evolutionary dependencies across cancer-types 

(Vandin et al., 2012). 

 

In this chapter an overview of existing computational tools to detect epistatic 

interactions in cancer genomes is provided. Their limitations are also mentioned, 

including evidence from the literature that mutation clonality might represent an 

unaddressed confounding factor for their use. Lastly, I analysed mutation clonality 

and mutual exclusivity in driver genes across nine cancer-types, to examine 

whether the clonal status of driver genes influenced the detection of epistatic 

interactions. 
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6.2 Deciphering epistatic interactions in cancer genomes 

6.2.1 Combinatorial patterns of mutations in cancer 

Large-scale cancer genomics projects have helped to define a set of driver 

mutations, which are causally implicated in tumourigenesis (Bailey et al., 2018; 

Kandoth et al., 2013) and, in some cases, can serve as predictive biomarkers for 

genome-targeted therapies (Hyman et al., 2017). Studying the combinatorial 

patterns of gene mutations in cancer might further reveal functional relationships 

between driver genes, and ultimately help inform clinical decision-making over 

treatment (Yeang et al., 2008). 

 

Mutations in cancer driver pathways tend to exhibit one of two mutually exclusive 

(ME) patterns. “Soft” mutual exclusivity patterns, with partially overlapping 

mutational events, are consistent with Darwinian evolution as cancer cells with 

multiple mutations in the same cellular pathway are rarely conferred with an added 

selective advantage (Yeang et al., 2008). For example, Sparks and colleagues 

conducted targeted sequencing for mutations in the B-catenin pathway in a cohort 

of APC-wildtype colorectal tumours, discovering that 48% of patients harboured 

mutations in CTNNB1 (Sparks et al., 1998). This mutually exclusive relationship 

indicated CTNNB1 mutations might have a similar phenotypic effect to APC 

inactivation, and that B-catenin signalling is a core pathway in colorectal 

tumourigenesis.  

 

Alternatively, “hard” patterns of ME display little to no overlap between mutational 

events, occurring when alterations to a second pathway member decreases cellular 

fitness (Babur et al., 2015; Ciriello et al., 2012). Such synthetic lethal relationships 

can occur within a core linear signal transduction pathway or between subunits of 

an essential protein complex (Kaelin, 2005). For example, A ME interaction 

between CCNE1 gene amplification and BRCA1/2 mutation was observed in the 

TCGA dataset of high-grade serous ovarian cancers (Ciriello et al., 2012), and later 

verified as a synthetic lethal relationship through an in vitro short-hairpin RNA 

screen (Etemadmoghadam et al., 2013). 
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By contrast, mutations of genes from different pathways might yield additive or 

even synergistic effects, so might be expected to co-occur (CO) (Yeang et al., 

2008). For example, loss of Pbrm1 cooperated with Kras in driving tumour 

development in a mouse model of pancreatic cancer (Varela et al., 2011). Co-

occurring mutational patterns are also relevant for predicting response to treatment. 

Pre-treatment profiling of patients with EGFR-mutant lung cancer receiving EGFRi 

revealed limited responses in tumours with co-occurring alterations in cell cycle 

genes (median PFS = 0.7 months in CDK4/6-altered versus 11.2 months in 

CDK4/6-wildtype) (Blakely et al., 2017), and co-occurring alterations in TP53 or 

RB1 was associated with acquired resistance through transformation to small-cell 

carcinoma (Lee et al., 2017). 

 

6.2.2 Computational tools for the systematic identification of epistatic 
interactions in cancer NGS datasets 

Over the last decade the availability of large NGS datasets has allowed 

development of several tools to systematically detect combinatorial patterns of 

mutations. These tools can identify driver mutations, including novel genes 

overlooked by frequency-based methods (Babur et al., 2015), and assign the 

identified drivers to biological pathways, permitting discovery of novel tumourigenic 

roles (Ciriello et al., 2012; Hua et al., 2016; Miller et al., 2011). 

 

The MEMo (Mutual Exclusivity Modules in cancer) tool, developed by Ciriello and 

colleagues, was an early success of such approaches (Ciriello et al., 2012). In 

glioblastoma (GBM) samples from the TCGA pilot project, MEMo identified ME 

interactions between the Rb, TP53, and RTK pathways, suggesting the 

deregulation of one component in each of these core pathways relieved the 

selective pressure for additional alterations. This relationship had a high “coverage” 

(the number of patient samples in which at least one alteration occurred), with 74% 

of the GBM patient cohort harbouring aberrations in all three pathways (Cancer 

Genome Atlas Research Network, 2008). This suggested that aberrant signalling of 

all three pathways might represent a core evolutionary dependency for GBM 

pathogenesis 



Chapter 6 Results 

 

180 

 

 

 

 
Figure 6-1 The detection of combinatorial patterns in cancer genomics datasets 
A, ME/CO detection tools take as input a binary mutation matrix, classifying 
mutations in genes (columns) as present (blue) or absent (white) for each patient 
(rows). B, The identification of ME/CO interactions involves the assessment of 
whether the overlap between genes is greater than expected by chance 
(indicating CO), or less (ME). 
 

Existing tools for ME/CO detection take binary mutation matrices as input (Figure 

6-1A). Using the mutation matrix, genes with more or less overlap than would be 

expected by chance are detected as significant CO or ME respectively (Figure 

6-1B). Tools can be classified as de novo, or requiring prior pathway information, 

such as protein-protein interaction networks (Ciriello et al., 2012), pathways from 

the KEGG database (Hua et al., 2016), or the results of synthetic lethal screens 

(Jerby-Arnon et al., 2014). Discovering ME/CO interactions at the pathway or gene-

set level is an NP-hard problem. For example, in cancer datasets there are 108-1011 

possible combinations of four genes (Vandin et al., 2012). The search methods 

used to circumvent this problem, and discover significant ME/CO interactions, differ 

between tools. Some tools use heuristic algorithms, such as the Markov Chain 

Monte Carlo method (Leiserson et al., 2015; Vandin et al., 2012), others use a 

generative probabilistic model (Constantinescu et al., 2016; Szczurek and 

Beerenwinkel, 2014). Initially limited to point mutation data, recent ME/CO 

detection tools can take a range of inputs, including SCNA (Mina et al., 2017) and 

expression changes (Zhao et al., 2012).  
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Here, I used two approaches to assess ME relationships. 

 

TiMEx. A generative probabilistic model that detects pairwise or gene-set level ME 

relationships (Constantinescu et al., 2016). Viewing tumourigenesis as a dynamic 

process, TiMEx models the alteration process for each gene as a Poisson process. 

This enables functional relations to be inferred based on a temporal representation 

of underlying mutational processes. 

 

DISCOVER. The assumption that gene alterations across tumours are independent 

and identically distributed (i.i.d) is commonly made by tests for ME/CO, including 

TiMEx. Yet this assumption may be unrealistic for cancer genomics data, and might 

invalidate estimates of significance. The DISCOVER (Discrete Independent 

Statistic Controlling for Observation with Varying Event Rates) tool aims to address 

this (Canisius et al., 2016). A Poisson-binomial model is used to estimate gene 

alteration probabilities for each tumour individually, permitting different tumours to 

have different mutation rates for the same gene. The DISCOVER authors 

concluded that statistical tests assuming i.i.d. might over-detect CO relationships, 

and under-detect ME relationships.  
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6.2.3 Hypothesis: mutation clonality may be an unaddressed confounding 
factor for ME detection 

The utility of existing tools for ME detection is limited by a number of challenges, 

including the low coverage of detected ME interactions. Most reported ME gene-

sets typically have far less than 100% coverage, casting doubt on their importance 

for oncogenic progression. In the latest lung cancer paper from the TCGA 

consortium, the RTK–Ras–Raf pathway was not altered in 15–25% of LUAD 

tumours (Campbell et al., 2016). Most authors suggest technical challenges, 

including measurement noise or false mutation calls, are to blame (Szczurek and 

Beerenwinkel, 2014). However, Vandin and colleagues have previously speculated 

that ITH between subpopulations of tumour cells could be an important source of 

“false negatives” (Vandin et al., 2012). Enabling detection of subclonal ME 

interactions may help increase driver pathway coverage. Indeed, existing ME 

detection tools take tumour-level information (a binary mutation matrix of patients 

by genes) as input, ignoring the clonal architecture of individual tumours.  

 

I hypothesised that mutation clonality may be an unrecognised confounding factor 

for ME detection (Figure 6-2). This hypothesis suggests that the presence of 

subclonal mutations in separate lineages of a tumour’s phylogenetic tree, that are 

mutually exclusive within the individual tumour, would wrongly be classified as co-

occurring. 

 

There is direct evidence for such an effect. In a cohort of melanoma patients, 

mutations in NRAS and BRAF exhibited a co-occurring relationship. However, 

when examined at the single-cell level, the two mutated oncogenes were never 

present within the same cancer cell, indicating a “hard” mutual exclusivity (Sensi et 

al., 2006). Similarly, in a multi-region cohort of renal tumours BAP1 and 

SETD2/PBRM1 mutations were found to co-occur at the tumour-level, yet a clone-

level analysis revealed a true ME relationship, with events in the same tumour 

often occurring in spatially separated subclones (Turajlic et al., 2018). 
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Figure 6-2 Hypothesis: existing ME detection tools may be biased to detect 
interactions between clonally mutated genes 
Schematic diagram showing how tools for ME detection may fail to detect ME 
interactions between subclonal mutations. Under “biological truth” (left) the 
phylogenetic trees are shown for three patients (1,2,3). In the first row, each 
patient harbours a clonal mutation in one of three different genes (A, B, C) that, 
hypothetically, could be involved in the same signalling pathway. In the second 
row, each patient harbours subclonal mutations with the same gene altered in 
every branch of the tumour’s phylogenetic tree; this phenomenon is referred to 
as parallel evolution. Lastly, in the third row, all three genes are subclonally 
mutated in the branches of each individual tumour. The “binary mutation matrix” 
plots (middle) show how the tumour’s evolutionary history would be simplified 
for input to a ME detection tool, with mutations in each gene (columns) classified 
as present or absent at the patient-level (rows). The “detected ME gene-set” 
(right) reveals the impact of this simplification: true ME interactions between 
clonally mutated genes can be detected (top); similarly, in the rare case of 
parallel evolution within the same gene, ME interactions between subclonally 
mutated genes can also be recovered; however, if distinct genes from the same 
pathway are subclonally mutated within individual tumours, the ME interaction 
will not be detected, even though mutations may never co-occur in the same 
cancer cell. 
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My hypothesis also suggests that existing ME/CO detection tools are biased to 

detect clonal mutations in driver pathways. The Dendrix algorithm has previously 

identified two mutually exclusive gene sets in LUAD tumours from TCGA (Vandin et 

al., 2012): the first ME gene-set consisted of EGFR, KRAS, and STK11; the second 

contained TP53 and ATM. Indeed, these five genes were all classified as “early” 

clonal drivers (pre-genome doubling initiating mutations or post-genome doubling 

clonal mutations) in an analysis of multi-region WES data the first 100 patients from 

the TRACERx lung study (Jamal-Hanjani et al., 2017). 

 

Therefore, in this chapter I examine the influence of mutation clonality on ME 

detection in a pan-cancer analysis.  
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6.3 The clonal status of driver genes associates with the 
proportion of significant findings in mutual exclusivity 
analyses 

6.3.1 Classifying mutation clonality and mutual exclusivity in driver genes 

To explore whether mutation clonality confounds ME detection, I analysed somatic 

mutation data from the pan-cancer TCGA study. A focussed analysis was 

performed on the nine cancer-types recently examined by Haar and colleagues in 

their analysis of the mutation load artifact on the performance of ME detection tools 

(Haar et al., 2019). 

 

Saioa López ran data pre-processing steps, including variant calling and estimation 

of mutation clonality. This was fully described in her recent publication (López et 

al., 2020), and briefly summarised here. Whole exome-sequencing data was 

accessed from the TCGA data portal for 3,545 patients from nine major cancer-

types (Figure 6-3A): bladder urothelial carcinoma (BLCA, n=384 patients), breast 

invasive carcinoma (BRCA, n=643), colon adenocarcinoma (COAD, n=276), LUAD 

(n=463), LUSC (n=447), rectal adenocarcinoma (READ, n=85), skin cutaneous 

melanoma (SKCM, n=443), stomach adenocarcinoma (STAD, n=380), uterine 

corpus endometrial carcinoma (UCEC, n=424). This data was processed through 

the TRACERx bioinformatics pipeline, to which several members of the Swanton 

and McGranahan labs have contributed (Jamal-Hanjani et al., 2017); see Methods 

for more detail. 

 

To test my hypothesis, I performed further filtering of somatic mutation calls. 

Nonsense and missense mutations were selected for use in downstream analysis. 

Mutations were further subsetted to candidate driver genes, using a pan-cancer 

gene-list published by Bailey and colleagues, which consists of 200 oncogenes and 

tumour suppressor genes (Bailey et al., 2018). Across the nine cancer-types, 

filtering for driver genes yielded a workable number of genes for use with ME 

detection tools (median=182 genes, range=139-187 genes, Figure 6-3A). 

 



Chapter 6 Results 

 

186 

 

 

 
Figure 6-3 Classifying mutation clonality and mutual exclusivity in driver genes 
A, Overview of mutation data from nine TCGA cancer-types. The number of 
patients (left) and the total number of driver genes mutated (right) for each 
cancer-type are shown. B, The distribution of cancer cell fractions scores for 
commonly-mutated driver mutations in LUAD is shown for individual samples 
(gray points) and summarised per gene (black line). Driver genes are selected 
from the pan-cancer gene-list provided by Bailey et al (Bailey et al., 2018). Only 
commonly mutated genes (mutation present in >5% of patients) are shown here. 
C, Using the DISCOVER tool, the top-scoring results of pairwise mutual 



Chapter 6 Results 

 

187 

 

 

exclusivity analysis in LUAD are shown (threshold for significance = qvalue < 
0.05). 
 

I first analyzed results for the LUAD cohort. Examining the CCF distributions per 

gene, the median value across the cohort provided a summary metric of mutation 

clonality (Figure 6-3B). The majority (58%, 106/182 genes) of the driver genes 

assessed in LUAD tended to be clonally mutated, with an average CCF = 1. This 

included several canonical LUAD driver genes, such as TP53, KRAS, EGFR and 

STK11. Of the genes previously reported as LUAD-specific drivers in a histology-

specific analysis of the TCGA study (The Cancer Genome Atlas Research 

Network, 2014), only one gene (SETD2) had a median CCF < 1. 

 

Next a binary mutation matrix was created, classifying mutations in the set of driver 

genes as present (1) or absent (0) in each LUAD patient, and inputted to the 

DISCOVER tool for ME detection. Twelve gene-pairs were discovered with highly 

significant ME interactions (Figure 6-3C, adjusted P-value < 0.05). The gene-set 

with the highest coverage (TP53, KRAS) was present in 67.6% of patients; overall, 

the median coverage across the nine ME gene-pairs was 39.5% (range=17.3-

67.6%). Of the 182 genes inputted for ME analysis, ME relationships were detected 

between 13 unique genes (ASXL1, BRAF, EGFR, FAT1, GATA3, KEAP1, KMT2C, 

KRAS, NF1, NIPBL, PIK3CA, STK11, TP53). Notably, KRAS was involved as one 

of the partners in nine of the detected ME pairs, and three genes (EGFR, STK11, 

TP53) were involved in two ME pairs. Next I adopted the method described by 

Haar and colleagues (Haar et al., 2019), to calculate the percentage of the full set 

of pairwise interactions of a gene that had a significant (P<0.05) ME relationship. 

The KRAS gene had the highest percentage of significant findings, with a 

significant ME relationship detected in 14.9% (27/181) of the potential pairwise 

comparisons of driver genes. High proportions of statistically significant ME 

interactions were also observed for the canonical LUAD driver genes EGFR (3.3%, 

6/181) and STK11 (6.1%, 11/181). Overall, these data highlight how a handful of 

driver genes can account for the majority of the ME relationships detected within a 

particular histology. 
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6.3.2  The tendency of a gene to be clonally mutated correlates with the 
proportion of significant findings in mutual exclusivity analyses 

The relationship between mutation clonality and the number of statistically 

significant ME interactions was assessed for each gene. There was a highly 

significant positive correlation between the clonality of mutations in a gene and the 

proportion of significant ME interactions in LUAD (Rs=0.2, P=0.00685, Figure 6-4A 

top panel). Applying the DISCOVER tool to other cancer-types, significant positive 

associations were also observed in BLCA (Rs=0.224, P=0.0024, Figure 6-4A 

middle panel) and UCEC (Rs=0.187, P=0.0107, Figure 6-4A bottom panel). This 

correlation suggests that genes which tend to be clonally mutated are more likely to 

be detected as exhibiting a ME relationship with other genes. 

 

To test the generalizability of this finding, the same analysis was conducted using 

the TiMEx tool, which uses a different underlying model and set of assumptions to 

detect pairwise ME interactions (Constantinescu et al., 2016). TiMEx also identified 

significant positive associations in LUAD (Rs=0.166, P=0.0251, Figure 6-4B top 

panel) and BLCA (Rs=0.196, P=0.00814, Figure 6-4B middle panel), but not in 

UCEC (Rs=0.0361, P=0.624, Figure 6-4B bottom panel). This demonstrates that 

the influence of mutation clonality on ME detection is not specific to a particular 

tool. 
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Figure 6-4 Correlating the tendency of a gene to be clonally mutated with the 
proportion of significant findings in mutual exclusivity analyses 
A, The proportion of statistically significant ME interactions correlated with 
mutation clonality. The DISCOVER tool was used to determine significant 
(P<0.05) ME interactions in LUAD (left), BLCA (middle) and UCEC (right), plotted 
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against the gene’s tendency to be clonally mutated. B, The same layout as A for 
the TiMEx tool.  
 

Somatic mutation data from nine TCGA cancer-types was analysed to determine 

the extent of the mutation clonality artifact. Significant positive correlations between 

mutation clonality and the number of statistically significant ME interactions were 

found for 78% (7/9) of cancer-types using DISCOVER, and 44% (4/9) using TiMEx 

(Figure 6-5A). Overall, both ME detection tools exhibited a tendency for positive 

correlations overall (DISCOVER median Rs = 0.174, range = 0.097-0.224; TiMEx 

median Rs = 0.058, range = -0.123-0.200; Figure 6-5B). Taken together, this result 

suggests mutation clonality might represent an unaddressed confounding factor for 

the detection of significant ME interactions across cancer-types. 

 

 

 
Figure 6-5 Analysis of nine cancer-types indicates the significant findings of ME 
detection tools tend to clonally mutated drivers 
Association between mutation clonality and the number of statistically 
significant ME interactions across nine TCGA cancer-types using DISCOVER and 
TiMEx tools for ME detection. A bar-plot highlighting individual cancer-types (A), 
and a box-plot showing the distribution per tool (B) show the Spearman 
correlation coefficient (y-axis). The colour-scheme indicates a significant (red) or 
non-significant (gray) correlation. 
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6.3.3 The effect of recurrent mutation 

Mutational frequency may bias the detection of ME interactions, as recurrently 

mutated genes have more power to detect mutual exclusivity (Deng et al., 2019; 

Yeang et al., 2008). Subclonal mutations typically occur at much lower frequencies 

than clonal mutations (Dentro et al., 2020; McGranahan et al., 2015). Here, I 

conduct a simple analysis to examine whether recurrent mutation influences the 

relationship between mutation clonality and ME interactions. 

 

The distribution of mutation frequencies in driver genes were evaluated by cancer-

type (Figure 6A). As previously reported (Lawrence et al., 2013), there was wide 

heterogeneity in overall mutation rates between cancer-types, and the mutation 

frequency for individual driver genes varied by cancer-type as well. Therefore, to 

stratify driver genes by recurrence in a histology-specific manner, mutation 

frequencies were split into quartiles by cancer-type (Figure 6A). In LUAD, for 

example, the top quartile (“Q4”) comprised canonical driver genes including TP53, 

KRAS, STK11, and EGFR.  

 

Next, the correlation coefficients between clonality and ME detection were re-

calculated piecewise for each mutation frequency quartile (Figure 6B). Dissecting 

significant positive correlations by mutation frequency did not reveal a clear pattern 

for TiMEx (BLCA Q4 significant, LUAD all quartiles non-significant, LUSC Q2 

significant, READ all quartiles non-significant; Figure 6B, top row). Indeed, none of 

the mutation frequency quartiles were significantly enriched for significant 

correlations across all 9 cancer-types (Figure 6C, left). By contrast, using 

DISCOVER, there was a trend for recurrently mutated (“Q4”) driver genes to 

harbour more positive correlations between clonality and ME interactions (Q4 

significant for LUAD, COAD and UCEC; all quartiles non-significant for BLCA, 

LUSC, READ and STAD; Figure 6B, bottom row), and this was reflected across all 

cancer-types (Q3 versus Q4: P= 0.0464; Figure 6C, right). Overall, mutation 

frequency did not account for the positive correlations observed between mutation 

clonality and the number of statistically significant ME interactions.  
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Figure 6 The effect of recurrent mutation 
Distribution of mutation frequencies in driver genes by cancer-type (A). 
Spearman correlation coefficients between mutation clonality and the 
number of statistically significant ME interactions, calculated piecewise for 
each mutation frequency quartile, are shown by cancer-type (B) and by tool 
(C). Statistical significance was tested with a two-sided Wilcoxon signed-rank 
test.  
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6.4 Conclusions 

6.4.1 Summary of findings 

In this chapter, a pan-cancer analysis was conducted to assess whether existing 

ME detection tools are biased to detect interactions between clonally mutated 

genes (Figure 6-7). Specifically, I evaluated the relationship between the clonal 

status of driver genes and the proportion of significant ME interactions detected 

using existing DISCOVER and TiMEx across nine cancer-types. Overall a tendency 

for positive correlations was observed (DISCOVER median Rs = 0.174, TiMEx 

median Rs = 0.058). In 44-78% of the cancer-types assessed, driver genes that 

tend to be clonally mutated were more likely to be detected as exhibiting a ME 

relationship with other genes. 

 

 
Figure 6-7 Schematic overview of the processes used to examine the correlation 
between mutation clonality and ME detection 
Nine cancer-types from the TCGA study were included in this analysis. Mutation 
calls were assessed for their clonality (using cancer cell fraction) and for the 
presence of significant ME interactions (P < 0.05 using DISCOVER or TiMEx 
tools). Both axes of information were then correlated to examine the influence of 
mutation clonality on percentage of significant ME interactions. 
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6.4.2 Future work 

Confounding factors – other than ITH – for the detection of ME interactions, include 

cancer subtypes, gene-set imbalances and mutation frequency (Deng et al., 2019). 

Resolving the effects of each factor, individually and in combination, will be 

essential for robust detection of ME gene-sets. In section 6.3.3, a simple analysis 

separating genes into mutation frequency categories indicated this did not account 

for the positive correlations observed between mutation clonality and the number of 

statistically significant ME interactions. However, the DISCOVER tool seemed 

more dependent on mutation frequency than TiMEx. Broadening the set of tools 

evaluated, in future analyses, could better quantify the effect of recurrent mutation 

and associated power to detect ME interactions. 

 

In my analysis of existing tools for ME detection, I classified individual driver genes 

as tending to be mutated clonally or subclonally within a cancer-type, then 

correlated these data with gene-wise results from ME analysis. Park and 

colleagues used a different approach to investigate whether ITH might bias the 

detection of ME/CO interactions (Park and Lehner, 2015). The authors 

hypothesized that a cancer-type with a high level of ITH might be expected to 

display a higher rate of false-positive CO interactions and false-negative ME 

interactions. However, after classifying cancer-types as heterogeneous or non-

heterogeneous, Park and colleagues found that both classes had similar odd ratios 

between CO and ME. The authors highlighted GBM as an illustrative example of a 

highly heterogeneous cancer-type with both ME and CO interactions that were 

stronger than others. The discrepancy between these results and my findings in 

this thesis can be explained as follows. By performing the analysis at gene-level 

resolution, my approach avoided the simplifying assumption of treating all tumours 

and genes within a particular cancer-type as homogenous or heterogeneous. 

 

Future work could address the mutation clonality artifact by inputting clone-level 

information, rather than tumour-level, to ME/CO detection tools. For example, in an 

analysis of multi-region mutational data from the TRACERx renal trial, Turajlic and 

colleagues divided the phylogenetic trees from individual tumours into a “truncal” 
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lineage (containing all the clonal mutations) or “terminal” lineages (containing clonal 

and subclonal mutations unique to a specific branch) (Turajlic et al., 2018). Directly 

inputting truncal and terminal lineages to an existing ME/CO detection tool yielded 

strikingly different results. For example, BAP1 and SETD2/PBRM1 mutations were 

found to co-occur at the tumour-level, yet were ME in an analysis of terminal 

lineages. An alternative solution is the direct analysis of ME/CO at the clone-level. 

For example, Moore and colleagues recently developed GeneAccord as a tool to 

detect pairs of mutated genes that are mutually exclusive within the clones of 

tumours (Moore et al., 2018). 

 

Assembling a set of epistatic interactions implicated in a high proportion of patients, 

and involving both clonal and subclonal mutations, might help define a core set of 

evolutionary dependencies. Integration of this list with mutational timing information 

may further understanding of the role of driver pathways at different stages of 

tumour evolution, and help identify conserved trajectories of tumour evolution. 
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Chapter 7. Discussion 

7.1 Novel findings in this thesis 

These studies were undertaken to evaluate the hypothesis that refining molecular 

portraits of cancer in the light of their evolutionary and ecological features could 

improve diagnostic prevision. Here, I briefly highlight the major original findings in 

this thesis. 

 

My analyses of multi-region RNA-Seq data from NSCLC patients from the 

TRACERx study have shed light on the mechanisms and clinical impact of RNA-

ITH. A metric for RNA-ITH was proposed and compared with other possible 

approaches. A paired analysis with multi-region WES data revealed the 

transcription of heterogeneous chromosomal states into functional ITH, indicating 

that RNA-ITH is driven by chromosomal instability. The evaluation of published 

prognostic biomarkers revealed these are vulnerable to tumour sampling bias, 

typically displaying a 50% discordance rate, which suggested existing single-biopsy 

driven biomarker approaches may be confounded by RNA-ITH. 

 

To address the diagnostic challenge of tumour sampling bias in lung cancer, I 

explore the potential to design molecular biomarkers in the light of cancer 

evolution. Homogeneously expressed genes were defined as a subset of genes 

with low intra- yet high inter-tumour RNA heterogeneity, which were enriched for 

chromosome copy-number gains early in tumour evolution. These genes were 

enriched for signals maintaining prognostic value between independent cohorts of 

patients. Therefore, a novel Outcome Risk Associated Clonal Lung Expression 

(ORACLE) signature was developed from homogeneously expressed genes, which 

was more robust to the problem of sampling bias than existing approaches. Indeed, 

validation of ORACLE showed a reproducible survival association in a meta-

analysis of >900 patients from five independent cohorts. Moreover, ORACLE could 

identify high-risk stage I patients, that were otherwise missed by known risk factors, 

suggesting its medical utility. This diagnostic based on cancer evolutionary 

principles is now in the next phase of clinical translation. 



Chapter 7. Discussion 

 

197 

 

 

 

Existing methods for the in silico dissection of the tumour microenvironment hold 

the promise of quantifying the immune contexture of tumours to guide clinical 

decision-making, yet fall short of clinical-grade accuracy. To characterize molecular 

profiles of cell-types comprising the tumour microenvironment, I performed ex vivo 

purification and RNA-Seq of 15 stromal cell-types from lung tumours and adjacent 

non-malignant lung tissue. The cell-types included seven subsets of T-cells, B-

cells, five subsets of the innate immune system, fibroblast and endothelial cells, 

providing a holistic view of the cellular components of cancer ecology. Analysis of 

tumour-normal differences revealed the phenotypic adaptation of stromal cells, 

which could undermine the performance of existing computational tools for digital 

tumour dissection. Furthermore, I identified a subset of genes showing cell-type-

specific expression unique to individual stromal subsets. In combination with tissue-

specific analyses, this dataset could be leveraged to identify marker genes robustly 

associated with a specific cell-type, regardless of tissue context. This could pave 

the way for the accurate and granular deconvolution of the cellular composition of 

tumours using clinical samples, helping to expedite the delivery of precision 

immune-oncology. 

 

Using knowledge of evolutionary constraints to predict a tumour’s next evolutionary 

move has implications for pro-active approaches to personalised medicine. 

However, existing computational methods to systematically detect combinatorial 

patterns of mutations in cancer genomics datasets overlooks the branching clonal 

architecture that characterizes most cancer genomes. A pan-cancer analysis 

established that existing detection tools were biased to detect epistatic interactions 

between clonally mutated genes in 44-78% of the cancer-types assessed. 

Overcoming this mutation clonality artifact in future analyses could help reveal 

evolutionary dependencies. 
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7.2 Alternative approaches and future directions 

Throughout this thesis, specific limitations and immediate next steps are discussed 

in the Results on a chapter-by-chapter basis. Here, I provide a synthesis on 

alternative approaches and future research avenues opened up by this thesis. 

 

7.2.1 Is single-cell resolution required? 

The analyses of RNA-Seq data conducted in this thesis were limited to quantifying 

the bulk average of transcripts pooled from millions of cells. By contrast, scRNAseq 

approaches enable the resolution of transcripts specific to individual cancer or 

stromal cells (Kolodziejczyk et al., 2015). 

 

In this thesis, ORACLE has been designed as a pragmatic solution to the sampling 

bias problem (see 4.5.1), which can be applied to single-region biopsies in routine 

pathological evaluation. However, the RNA-ITH of molecular biomarkers has been 

observed at the single-cell level, potentially contributing to tumour sampling bias. 

For example, through scRNAseq in a cohort of metastatic melanoma patients, 

Tirosh and colleagues discovered the presence of a gene expression program 

conferring RAFi/MEKi drug resistance in a minority of cancer cells, which was 

absent in matched bulk RNA-Seq samples (Tirosh et al., 2016). Similarly, Patel and 

colleagues observed that established GBM subtype classifiers were variably 

expressed at the single-cell level across individual tumours, possibly undermining 

their prognostic utility (Patel et al., 2014). It is likely that ORACLE, as a “bulk” 

cancer cell proliferation signature, will be sufficient for application to “bulk” tissue 

samples from diagnostic biopsy in the clinical setting. Yet an examination of inter-

cellular heterogeneity of the homogeneously expressed genes defined in this thesis 

may be of interest. 

 

For digital tumour dissection, some existing tools, such as EPIC (Racle et al., 

2017), have leveraged scRNAseq data for the development of cell-type reference 

profiles. The use of scRNAseq datasets does provide high-resolution of cell-type 

counts, at the cost of low cell-type granularity. In published analyses, marker-gene 
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annotation was used for unsorted scRNAseq datasets, which could identify T-cells 

but not more granular subsets, such as distinguishing betweeen CD4+ and CD8+ 

T-cells (Lambrechts et al., 2018; Lee et al., 2020). By contrast, the FACS and bulk 

RNA-seq strategy taken in this thesis (see 5.3) enabled the identification of 

granular cell-types, such as subsets of T-effector (CD8+PD1-low) and T-exhausted 

(CD8+PD1-high) cells. Moreover, my approach permitted the recovery of rare cell 

populations that may be missed in unsorted scRNAseq studies. For example, the 

CIBERSORT signature for γδ T-cells was the most vulnerable to noise (Newman et 

al., 2015). In future, this could potentially be addressed using the high-fidelity RNA 

profiles I have generated in this thesis. 

 

7.2.2 Overcoming the curse of dimensionality for RNA biomarkers 

The derivation of RNA biomarkers requires feature selection: subsetting from 

~20,000 expressed genes to a small number of genes (<100 genes) that is 

compatible with use on a clinical platform (see 4.2.1). 

 

Prognostic signature derivation typically involves a gene selection step, then a 

model fitting step using a machine learning algorithm. I have taken a simplistic 

approach to both steps in this thesis, focusing instead on dissecting the impact of 

clonal versus conventional gene selection on biomarker performance (see 4.4.3). 

Gene selection may be further refined, for example through further sub-setting for 

specific pathways, such as immune (Bailiang Li et al., 2017) or cell cycle 

progression (Wistuba et al., 2013) genes. Alternatively, the balanced 

representation of several pathways, to reduce information redundancy among 

genes, may be achieved using systems biology (Tang et al., 2013) or blind 

compression (Cleary et al., 2017) approaches. 

 

Similarly, in identifying candidate cell-type-specific marker genes for in silico 

dissection of the TME, I opted to take an approach that classified genes as cell-

type-enriched, cell enhanced, group enriched, or of low cell-type specificity (see 

5.5.2). Alternative approaches adopted in the literature include pairwise differential 

expression analysis, for example Davoli and collagues identified genes over-
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expressed in a particular immune cell-type as marker genes (Davoli et al., 2017), or 

deriving co-expression modules (Jiang et al., 2018). 

 

7.2.3 Reaching the limits of precision oncology: individualised and 
hierarchical risk prediction 

While evidence-based practice aims to improve the health of the average patient 

within a disease population, precision oncology ultimately seeks to provide a 

tailored approach for each individual on the basis of patient-specific biomarkers. In 

deriving a homogeneous expression biomarker, several prognostic classifiers were 

considered in this thesis (see 4.4.3), including linear (Kratz et al., 2012; Shukla et 

al., 2017) and tree-based (Chen et al., 2007; Reka et al., 2014) machine learning 

algorithms. Yet these all output population-level risk estimates and only predict a 

single clinical end-point. Multi-state modeling has recently been proposed as a 

more refined prognostic classification scheme to bridge the gap to individualised 

risk predictions. Recent work has shown multi-state modelling can be used to 

predict personalised outcomes for individual AML patients (Gerstung et al., 2017), 

at the limit of precision oncology. This approach has also been used for the 

discrete prediction of multiple clinical end-points in early-stage breast cancer 

patients, including the risk of locoregional versus distant relapse (Rueda et al., 

2019). 

 

Since 2002, most prognostic gene expression signatures developed for NSCLC 

patients are histology-specific, in recognition of the biological differences between 

LUAD and LUSC histologies. In accordance with this, ORACLE has been 

developed as a LUAD-specific prognostic biomarker (see 4.5). Yet there is growing 

evidence that further subtypes within LUAD may impact the significance of 

candidate prognostic markers. For example, Suda and colleagues recently 

described that a marker of poor prognosis in EGFR-mutant NSCLC tumours might 

not be informative in NSCLC tumours with ALK fusion (Suda, 2020). The impact of 

ignoring masked patient sub-groups was well described in breast cancer by Tofigh 

and colleagues, who demonstrated that ER+ status confounded the prognostic 

ability of published RNA markers (Tofigh et al., 2014). To overcome this, the 
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authors suggested the use of a “hybrid subtyping” scheme, which would 

sequentially classify breast cancer patients based on ER mutational status, then 

intrinsic subtype, and lastly a prognostic gene expression signature would be 

applied. A similar scheme may be of utility to combine histological subtyping with 

molecular prognostication in lung cancer. 

 

7.2.4 Multi-omic classifiers 

Commercially available prognostic biomarkers for breast (Paik et al., 2004; Parker 

et al., 2009; van ’t Veer et al., 2002) or lung cancer (Zheng and Bueno, 2015) are 

currently based on expression alone. However there is growing evidence 

supporting the use of multi-omic biomarker schemes for prognostication. For 

example, Neou and colleagues recently proposed a “pan-genomic” scheme for the 

risk stratification of pituitary neuroendocrine tumours, integrating somatic 

mutations, chromosomal alterations, DNA methylation, and gene expression 

changes (Neou et al., 2020). Such multi-omic classifiers have also been found to 

improve biomarker performance in other cancer-types, including protaste (Sinha et 

al., 2019) and bladder (Lindskrog et al., 2020) cancer. Multi-omic biomarkers may 

also be useful in predicting sensitivity to CPI. For example, predictive power may 

be improved by combining a mutation-panel-based measure of TMB with an 

expression-based measure of tumour inflammation (Cristescu et al., 2018) or TGFβ 

pathway activity (Mariathasan et al., 2018). 

 

It is possible that future analyses may identify clonal multi-omic features that could 

be usefully integrated with the clonal RNA biomarkers derived in this thesis (see 

4.3.2). In breast cancer, a paired analysis of genetic and transcriptomic data 

revealed that certain clonal genetic events were associated with extreme changes 

in transcription of interacting genes (Shah et al., 2012). Recent single-cell 

epigenetic and transcriptomic studies revealed evolutionary trajectories in a mouse 

model of LUAD, identifying core regulatory programs that may serve as useful 

biomarkers (LaFave et al., 2020; Marjanovic et al., 2020). Therefore, it is 

conceivable that future multi-omics analysis of clonal features could further improve 

biomarker performance. 
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7.2.5 Pan-cancer applicability 

The majority of the work in this thesis was conducted in lung cancer, which is a 

high-impact area for precision medicine strategies to improve patient outcomes 

(Vargas and Harris, 2016). Though it worth considering whether the results of these 

analyses could be translated to other cancer-types in future work. 

 

In this thesis, homogeneous expression biomarkers were derived in a multi-region 

lung cancer cohort (see 4.3.2). A pan-cancer analysis indicated that these lung-

derived biomarkers might have prognostic value in other cancer-types (see 4.6.1). 

The pan-cancer applicability of homogeneous expression biomarkers might be 

biologically plausible. In my analysis, homogeneously expressed genes in lung 

cancer were driven by clonal SCNA gains (see 4.3.3), and encoded modules of 

cancer cell proliferation (see 4.4.1). Similarly, the early selection of modules of 

cancer cell proliferation was previously established in ER+ breast cancer 

(Endesfelder et al., 2014). Moreover, in an analysis of 12 TCGA cancer-types, focal 

SCNAs were positively correlated with the expression of cell proliferation modules 

(Davoli et al., 2017). Aneuploidy is tissue-specific and drives tissue-specific 

expression (Hoadley et al., 2018; Sack et al., 2018), so it may be unlikely that the 

exact 23 genes of the LUAD-specific ORACLE signature will validate across 

cancer-types. However, the wider pool of 1080 homogeneously expressed genes 

could drive a new wave of gene expression signatures that offer superior 

reproducibility and clinical utility if validated in other cancer types.  

 

Using stromal cells isolated from patients with NSCLC, a set of transcriptomic 

profiles were derived for 15 cell subsets from the TME (see 5.3). Any cell-type 

marker genes developed using this dataset might be expected to perform better in 

other cancer-types than existing cell-type reference profiles derived using mouse or 

human blood (Davoli et al., 2017; Newman et al., 2015). In future work, the series 

of TME gene signatures would ideally be refined for individual tumour types.  
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7.2.6 Charting lethal, metastatic trajectories 

NGS analyses of metastatic samples have broadened the genomic understanding 

of cancer outside of the primary tumour setting (Priestley et al., 2019; Robinson et 

al., 2017). 

 

The timing of metastatic seeding adds an extra dimension to the sampling bias 

problem. Recent work by Hu and colleagues in colorectal cancer has shown that 

metastases can be seeded early in tumour evolution, indicating that only a subset 

of the apparently “clonal” alterations in the primary tumour are shared with 

metastatic sites (Z. Hu et al., 2019). In this thesis, an unpaired analysis of primary 

and metastatic samples from separate cohorts suggested that ORACLE might act 

as a molecular signature of metastatic potential (see 4.5.3). In future, analysis of 

paired primary-metastasis samples, obtained from the same patient, could validate 

this hypothesis. In addition, the definition of clonal alterations could be further 

developed as occurring uniformly between primary tumour regions, and timed prior 

to metastatic seeding. 

 

Improved understanding of clonal exclusivity (see 6.2.3) could also help decipher 

the trajectories of lethal, metastatic disease. In a paired analysis of primary and 

metastatic tumour samples from a small cohort of colorectal cancer patients, Hu 

and colleagues used CO analysis to define a module of canonical driver genes in 

the primary tumour, and a novel set of gatekeeping mutations for metastatic 

dissemination (Z. Hu et al., 2019). While the genomic alterations involved in the 

development of primary colorectal cancers are well-defined (Vogelstein et al., 

1988), the integration of clonality information into ME/CO analyses of paired 

primary-metastasis samples may be meaningful in other cancer-types. 

 

7.2.7 Moving from diagnostics to therapeutics 

Analyses of RNA-ITH in this thesis were focussed around the implications for 

prognostic biomarker development. Yet RNA-ITH may be equally relevant for the 

development of novel therapies. For example, in a multi-region RNA-Seq dataset of 
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brain tumours, Morrissy and colleagues established that the cell-surface targets of 

immunotherapies (such as CD276, L1CAM, CD74) were heterogeneously 

expressed within individual cancers (Morrissy et al., 2017). Similarly, Schafer and 

colleagues used immunofluorescence staining to show that MYCN displayed RNA-

ITH in more than 40% of triple-negative breast cancers, contributing to the failure of 

effective therapy for these patients (Schafer et al., 2020). 

 

In future work, it may be worth assessing if there are any actionable targets among 

the homogeneously expressed genes, specifically the SCNA alterations in 

ORACLE genes (see 4.5.3). A similar analysis was recently performed by Rueda 

and colleagues for the IntClust subtypes of breast cancer, finding that four tumour 

subgroups were enriched for SCNA driver alterations that could be therapeutically 

targeted (Rueda et al., 2019). 

 

7.3 Conclusion 

The development of robust molecular biomarkers has the potential to improve 

diagnostic precision in cancer. The limited clinical translation of previous 

biomarkers has been linked to their poor reproducibility and restricted medical 

utility. This research has highlighted a number of ways to refine molecular portraits 

of cancer in the light of their evolutionary and ecological features. These include a 

novel diagnostic for lung cancer, based on cancer evolutionary principles, which 

meets the criteria for further clinical development. Such an approach could harness 

technologies for tumour biology-based stratification towards the delivery of 

precision oncology. 
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