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Abstract

This thesis explores metabolic and phenotypic diversity in the two model yeasts Schizosac-

charomyces pombe and Saccharomyces cerevisiae. Colony screens are a classical and pow-

erful technique for investigating these topics, but there is a lack of modern, scalable bioinfor-

matics tools. To address this need, I have developed pyphe which greatly facilitates colony

screen data acquisition and statistical analysis. I explore optimal experimental designs,

especially regarding the usefulness of timecourse imaging and colony viability analysis.

Pyphe is used in a functional genomics screen, aiming to find functions for a set of largely

uncharacterised lincRNAs. We identify hundreds of new lincRNA-associated phenotypes

across numerous conditions and compare lincRNA phenotype profiles to those of coding-

gene mutants. Next, I have used pyphe to investigate the respiration/fermentation balance

of wild S. pombe isolates. Contrary to the expectation that glucose completely represses

respiration in this Crabtree-positive species, I find that strains generally strike a balance

and that individual strains differ significantly in their residual respiration activity. This is

associated with an unusual miss-sense variant in S. pombe’s sole pyruvate kinase gene. Its

impact is dissected in detail, revealing a change in flux through pyruvate kinase and as-

sociated changes in gene expression, metabolism, growth and stress resistance. Finally, I

explore how extracellular amino acids interact with cellular metabolism, with the aim of

answering the important question whether or not clonal yeast cultures segregate into het-

erogeneous producer/consumer populations that exchange amino acids. I develop a novel

proteomics-based method that characterises amino acid labelling patterns in peptides. I

find that the supplementation of some, but not all amino acids completely suppresses self-

synthesis. However, I find no evidence for heterogeneous responses of our laboratory S.

cerevisiae strain, but the functionality of the method is demonstrated clearly. Overall, this

work represents several advancements to our understanding of yeast metabolism and phys-

iology, as well as new experimental and computational methods.



Impact Statement

This thesis explores fundamental biological questions and its findings will impact basic and

applied research in these areas. Primarily, it contains new data, conclusions and concepts

relating to yeast physiology, metabolism and systems biology, which will have an impact

through their publication in academic journals. Specifically, I have characterised how yeast

cells respond to the availability of extracellular amino acids which shines new light on

the role and behaviour of cells in nutrient-rich environments (Chapter 3, manuscript under

preparation). Additionally, we have uncovered numerous novel lincRNA-associated pheno-

types and produced a large-scale systematic dataset which will provide a valuable resource

for future targeted investigations of lincRNA function (Chapter 1, manuscript under prepa-

ration). Furthermore, I have shown that a mutation in the glycolytic enzyme pyk1, which

is at first sight deleterious and lowers flux, can have a protective effect against oxidative

stress in S. pombe wild strains (Kamrad et al., 2020a). This adds to a body of work link-

ing metabolism to stress resistance and might stimulate further work considering this as an

important evolutionary mechanism. I have also shown that specific amino acids accumu-

late to very high intracellular levels when supplemented in the media (Olin-Sandoval et al.,

2019) and in the case of lysine, this ‘harvesting’ is a novel stress resistance mechanism

against oxidants. This raises questions about the physiological impact of harvesting other

amino acids, which could be a promising starting point of future studies. Measurements

performed by me have also revealed amino acid imbalances in S. pombe cells upon inhi-

bition of respiration, proving a novel a link between these two key metabolic pathways in

this species (Malecki et al., 2020). This publication and Kamrad et al. (2020a) together are

two puzzle pieces exploring why S. pombe appears to be more reliant on respiration than S.

cerevisiae, an important difference in the physiology of these two key model species. Fi-

nally, I have contributed to a review article discussing strategies for multi-omic experiments

and data analysis (Haas et al., 2017).
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Independent of the biological conclusions, my work provides two key methodologi-

cal advancements. I have published pyphe, a fully documented, open-source collection of

command line tools for building data analysis pipelines for colony fitness screens. Besides

being widely used in the Bähler and Ralser groups, I have already heard from outside users,

and I hope that pyphe will be adopted widely. I have shown that colony viability stain-

ing with phloxine B can provide an orthogonal and independent readout in colony fitness

screens (Kamrad et al., 2020b). This raises important follow-up questions of how social mi-

crobes like yeast grow in colonies and how the colony growth phenotype is determined by

the ensemble of individual level. I have also developed a conceptually new method for de-

tecting the heterogeneous utilisation of amino acids (Chapter 3). This method will be used

by us and, once published, by others to deepen our understanding of metabolic single-cell

heterogeneity.

The concepts, results and methods describing metabolic single cell heterogeneity could

have important clinical implications if they are transferable to pathogenic microbes such

as the yeast Candida albicans. It has been speculated that metabolic heterogeneity could

influence antibiotic resistance and persistence, and this could be further explored using my

methods. Eventually, drug or drug combinations could suppress metabolic heterogeneity

thereby increasing the effectiveness of antibiotics.
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Preface

As a member of two groups with complementary expertise, I was exposed to a wide range of

current questions and methods. While both groups use high-throughput and systems-scale

approaches, the Bähler laboratory focuses mainly on genetics and transcriptional regulation

while the Ralser laboratory investigates the regulation of metabolism and of the proteome.

The work described in this thesis therefore spans all these omic-domains, aiming for an

integrated understanding of cells as multi-layered, complex biological systems. Chapter

1 investigates the relationship between individual genes (in this case lincRNA genes) and

the phenotype. Knock-out mutants are systematically assayed in a functional genomics

workflow, in the hope of uncovering novel connections that might indicate gene functions.

Inversely, Chapter 2 begins with an interesting phenotype (the respiration/fermentation

balance), the genetic basis of which is interrogated using population genomics. Having

identified a linked mutation, a multi-omics investigation of the transcriptome, proteome,

metabolome and phenome is employed to characterise its physiological impact. Finally,

Chapter 3 focuses on the interplay between the availability of extracellular nutrients and

cellular metabolism, which is crucial in determining how cells interact with their surround-

ing niche.

In order to interrogate these different cellular processes and entities, all three projects

described in this thesis employ interdisciplinary approaches and combine dry and wet work.

I was trained initially in biochemistry and then later also in modelling and machine learn-

ing. In the Ralser group, I also learnt to use different mass spectrometry techniques for pro-

teomics and metabolomics. Chapter 1 describes a novel, accessible and fully documented

computational data analysis pipeline applied to several relevant biological datasets. Chapter

2 starts with a genome-wide association study performed on a collection of S. pombe wild

strains, the results of which are further explored with a range of classical microbiological

and biochemical approaches such as enzyme assays, oxygen consumption measurements
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and growth curves. Finally, Chapter 3 uses a combination of proteomics and modelling,

which only together allow for a quantitative understanding of the observed phenomena.

I massively enjoyed being part of collaborative projects and was fortunate to work

with many fantastic colleagues. The work forming the basis of Chapter 1 was done in

close collaboration with Marı́a Rodrı́guez-López, Cristina Cotobal and Shajahan Anver who

collected key phenotypic data which I then analysed. Chapter 2 describes a project done in

close collaboration with the Andreas Beyer group from the University of Cologne. Jan

Grossbach analysed the two gene expression datasets which form a key part of the study.

For these collaborative projects (which do not include Chapter 3), this thesis focuses on my

contributions. Unless otherwise stated, data were collected, analysed and visualised by me

and the work of others was only included if required for the flow of scientific arguments.

The contributions of other individual researchers are clearly outlined in this thesis in the

appropriate places (usually figure legends).



Chapter 1

High-throughput colony screening with

pyphe identifies novel lincRNA-associated

phenotypes

Eukaryotic genomes are pervasively transcribed and contain numerous long non-coding

RNAs (lncRNAs). To date, the vast majority of intergenic lncRNAs (lincRNAs) in the

model yeast Schizosaccharomyces pombe have no known biological roles. This project

uses a functional genomics approach to generate novel hypotheses about lincRNA function.

A library of lincRNA knock-out mutants is subjected to a wide range of growth conditions

and fitness is assessed based on characteristics of colonies. LincRNA knock-out mutants

show no growth effect in the majority of conditions, and when so only a subtle one, re-

quiring an experimental setup and data analysis approach that simultaneously achieves high

throughput and high precision. To this end, a new data analysis pipeline called pyphe is de-

veloped. Pyphe is made available freely, as a fully documented collection of command line

tools written in python. It builds on current state-of-the-art normalisation techniques and

implements the use of colony redness scores obtained by staining with phloxine B. Colony

redness is shown to be closely related to the fraction of viable cells in the colony and to

provide an orthogonal and independent readout to classical colony size screens. Applied to

the lincRNA knock-out library, pyphe revealed 351 novel lincRNA associated phenotypes,

covering half the deletion collection. Integrating phenotype profiles of lincRNA genes with

that of coding genes reveals co-clustering of members of both gene sets, suggesting novel

functional links.

The method development part of this project has been published in eLife (Kamrad

et al., 2020b) and a manuscript describing the biological results is currently being finalised.
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This chapter follows the arguments laid out in these manuscripts, while often providing

substantial additional information and explanations. The lincRNA knock-out library was

created by Marı́a Rodrı́guez-López, Cristinal Cotobal and others. The laboratory work for

collecting the lincRNA phenome dataset was done by Marı́a Rodrı́guez-López, Cristinal

Cotobal and Mimoza Hoti, the other datasets illustrating the method were collected by me.

Clara Correia-Melo and I performed the described flow cytometry measurements together.

All plots shown in this chapter were results of my own analyses, except in the rare cases

where this is explicitly stated.

1.1 Introduction

1.1.1 The biological function of lincRNAs is poorly understood

Around the turn of the millennium, the publication of the genome sequences of many key

eukaryotic model species, including the yeasts Saccharomyces cerevisiae (Goffeau et al.,

1996) and Schizosaccharomyces pombe (Wood et al., 2002), marked the beginning of a new

era in biological research (Giani et al., 2020). An important, difficult and ongoing chal-

lenge has been the systematic characterisation and annotation of functional units contained

in them. Despite great efforts, a relatively large number of genes, approximately 20% in

both S. cerevisiae and S. pombe (Wood et al., 2019), still have no known biological role

to date. Simultaneously, coding regions make up only a fraction of eukaryotic genomes.

Non-coding elements can be functionally diverse and include telomeric and centromeric

regions serving a structural role, regulatory binding sites for transcriptional control, un-

translated regions of protein-coding genes (UTRs and introns), as well as regions encoding

functional RNA molecules (which are transcribed but not translated). The last include key

components of the translational machinery: transfer RNAs (tRNAs) and ribosomal RNAs

(rRNAs). More recently, deep RNA sequencing has enabled the detecting countless new

ncRNAs virtually all over the genome (Atkinson et al., 2012), making up a substantial frac-

tion of the transcriptome in S. pombe (Marguerat et al., 2012; Atkinson et al., 2018) and

S. cerevisiae (David et al., 2006; Xu et al., 2009). The repertoire of ncRNAs in animals,

and their potential role in cancer, is a vast field outside the scope of this thesis (Slack and

Chinnaiyan, 2019). NcRNAs are categorised based on their function, length, location in

the genome and their breakdown pathway. NcRNAs more than 200 nucleotides in length

are as classified as long non-coding RNAs (lncRNAs). Different groups of lncRNAs are

degraded by different pathways: Cryptic unstable transcripts (CUTs) are degraded by the
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nuclear RNA exosome, Xrn1-sensitive unstable transcripts (XUTs) are degraded by Xrn1 in

the cytoplasm, and Dicer-sensitive unstable transcripts (DUTs) are dependent on the RNAi

machinery (Atkinson et al., 2018). LncRNAs are found in different positions relative to cod-

ing genes. For example anti-sense ncRNAs are located in the same position but are oriented

oppositely to coding genes and have been described to regulate their transcription (Wery

et al., 2018), while bi-directional promoters produce ncRNAs starting at the same promoter

as a coding transcript but proceeding in the opposite direction (Xu et al., 2009). However,

many lncRNAs have their own transcription start sites and can be classed as intergenic or

overlapping depending on their relative position to protein-coding genes. LincRNAs are the

focus of this project as they represent physically distinct, independent units which can be

mutagenised without directly affecting protein-coding genes.

The pervasiveness and low expression of many lncRNAs under standard laboratory

conditions had initially raised doubts over their biological relevance. For example, Mar-

guerat et al. (2012) have found the majority of lncRNAs to be expressed at less than a

single copy per cell in S. pombe. With increasingly deep sequencing, there is a danger

of capturing ‘transcriptional noise’, ie essentially errors of the transcriptional machinery.

However, several lines of evidence now indicate that at least some lncRNAs indeed have

specific cellular roles. Those include primarily their evolutionary conservation (Ponjavic

et al., 2007) and an increasing number of focused studies dissecting the role of individual

lncRNAs. The most highly transcribed lncRNAs show evidence for purifying selection in S.

pombe wild strains (Jeffares et al., 2015) and transposon insertions in many lncRNAs result

in detectable fitness defects (Grech et al., 2019). The function and mechanism of several

individual fungal lncRNAs have been described in detail (reviewed in Till et al. (2018)) and

were found to regulate diverse cellular processes such as meiosis, metabolism and stress

resistance via different mechanisms. However, with at least 7000 lncRNAs described in S.

pombe to date (Atkinson et al., 2018), a systematic, unbiased overview of lncRNA function

is required to determine which lncRNAs are functional and in which context. One approach

has been to deeply sequence the transcriptome in specific conditions or physiological states,

looking for patterns of expression changes of lncRNAs. Besides revealing novel lncRNAs,

this approach can generate hypotheses about the functional roles of lncRNAs, eg based on

the observation that many appear to be strongly upregulated in meiosis (Atkinson et al.,

2018). However, this indirect approach is unable to causally link lncRNAs to phenotypes
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and functional roles. Here, for protein-coding genes, the availability of knock-out libraries

has been the basis for systematic reverse genetics approaches to deciphering gene function,

known as functional genomics (Giaever and Nislow, 2014; Brochado and Typas, 2013).

In S. cerevisiae, a knock-out library comprising tRNAs, small ncRNAs and lncRNAs has

been created (Parker et al., 2017) using the traditional method of homologous recombina-

tion with a resistance cassette. This library has been screened for phenotypes (Parker et al.,

2018; Balarezo-Cisneros et al., 2020) and the transcriptome of a small set of knock-outs has

been analysed (Balarezo-Cisneros et al., 2020), providing valuable clues and starting points

for focused investigations. In particular, these studies have identified new essential ncRNAs

and numerous condition specific fitness effects in heterozygous and haploid mutants. How-

ever, studies investigating lncRNA function using this library are limited by the number of

lncRNA mutants (more than half of the 443 knocked-out genes are tRNAs, another 65 are

small ncRNAs) and the method by which mutants were constructed. The kanMX4 cassette

which is left in the genome in the knocked-out locus contains the strong TEF promoter

which can significantly alter the chromatin state in the region, affecting the transcription of

nearby genes, potentially leading to artefacts.

Addressing these issues, the Bähler group has created a new lncRNA knock-out col-

lection in S. pombe. The RNAi machinery, involved in metabolism of DUTs, is conserved

between humans and S. pombe but not in S. cerevisiae, making this a good model organism

for studying lncRNA biology. Mutants were constructed using seamless genome editing

with CRISPR/Cas9, which leaves no markers or ‘scars’ in the genome but is more time-

consuming and difficult (Rodrı́guez-López et al., 2016). Mutagenesis with CRISPR/Cas9

can result in off-target effects (O’Geen et al., 2015), so every lincRNA gene was knocked

out using at least two different guide RNAs. Several successful transformants for each

guide RNA were included, serving as biological replicates. We set out to screen this library

for phenotypes in a wide range of conditions, hoping to uncover novel context-specific

functions not observed in standard conditions (Hillenmeyer et al., 2008). We expected

many lincRNA mutants to show much subtler growth phenotypes than could be expected

for protein-coding genes. This required an experimental approach with high throughout as

well as high precision.
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1.1.2 Colony screens uncover subtle phenotypes in high throughput

A first key decision when investigating growth phenotypes is whether to use liquid or solid

media, where cells grow in suspension or as colonies respectively. These are two physiolog-

ically distinct states with cells in colonies showing evidence of specialisation and complex

metabolic interactions (Váchová et al., 2009), accompanied with transcriptional changes

(Traven et al., 2012). Zackrisson et al. (2016) have found that for salt stress and standard

media a wider variation of fitness is observed on solid media compared to liquid but it is

unclear to what extent this can be generalised. Whether to use liquid or solid culture for

obtaining growth phenotypes is hence not a trivial matter. Both approaches additionally

come with technical advantages and drawbacks. In brief, liquid cultures in 96 or 384 well

plates tend to sediment, liquid evaporates without counter-measures and optical densities of

cultures saturate standard plate readers (Stevenson et al., 2016). Arrayed colonies on solid

media can be grown in higher densities (up to 1536 per standard plate are common) but the

readout can be confounded by competition and diffusion of small molecules through the

agar.

A key advantage of colony-based assays over liquid culture is that traditionally a

single-timepoint (endpoint) measurement of colony area is used as an intuitive fitness proxy

reflecting how well a colony has performed under the given conditions. While this means

hundreds of plates can be prepared and incubated simultaneously enabling unrivalled cost-

efficiency and throughput, it raises questions about the nature of the information contained

in these measurements. Microbial growth is usually characterised by three key parameters,

all easily obtained from liquid growth curves: length of the lag phase, maximum growth

rate and final population size (also substrate conversion efficiency or yield). A true under-

standing for how endpoint colony sizes relate to these parameters is currently still lacking,

but we have recently seen the emergence of tools that enable the investigation of growth

dynamics on solid media by repeated imaging of plates: First, it has been shown that even

a small number of colony size snapshots can be sufficient to fit growth models (Addinall

et al., 2011; Banks et al., 2012; Shah et al., 2007). The ScanLag system (Levin-Reisman

et al., 2014) then automated image acquisition of agar plates using commercial flatbed scan-

ners, obtaining dense growth curves. The Colony-live set-up (Takeuchi et al., 2014) later

improved on this by using trans-illuminating scanners (from the Epson V series) which can

reveal information about colony thickness as well as footprint area. Zackrisson et al. (2016)
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further improved image acquisition and data analysis with the scan-o-matic platform.

Colony fitness screens have been the method of choice for investigating growth phe-

notypes of large strain libraries in high throughput, and remarkable insights are still be-

ing obtained using this classic technique (eg Nichols et al. (2011); Costanzo et al. (2016);

Brochado et al. (2018); Kuzmin et al. (2018)). In their technical implementation, a key

step is the automated extraction of quantitative properties of colonies from image data.

The growth curve-based approaches mentioned above have integrated this functionality into

their control software but there are also a number of dedicated tools, each with their indi-

vidual strengths and weaknesses. Common to all is a relatively narrow functionality with

regards to the types of images can be analysed (eg acquired with cameras or scanners, in

colour or in grayscale, images of colonies or more diffuse spots). Gitter (Wagih and Parts,

2014) and spotsizer (Bischof et al., 2016) determine colony sizes, while Colonyzer (Law-

less et al., 2010) specialises in images of spots and Iris (Kritikos et al., 2017) quantifies

morphological features relevant to biofilm formation.

Colony size data is known to be highly prone to technical variation, both within and

across plates (Blomberg, 2011). Unevenness of the agar surface as well as temperature

and moisture gradients result in variation within plates, while other factors such as media

composition, plate handling and other experimental procedures affect results across plates.

To correct for these effects, dedicated normalisation procedures have been proposed for

colony fitness data. Row/column median normalisation (Baryshnikova et al., 2010) can

neutralise edge effects and similarly distributed errors but assumes/requires that median

fitness of each row/column is a reliable estimate of the null effect. A much more powerful

normalisation strategy that does not make any assumptions and that can correct in theory

any spatial effects is normalisation with a reference grid (Zackrisson et al., 2016). Here, a

large number of colonies of the same control strain, placed evenly throughout the plate, are

used to interpolate expected fitness for all positions. The observed fitness is then compared

to the expected, resulting in an intuitive, relative fitness estimate. If the same control strain is

used across plates and experiments, data from different plates become directly comparable.

All methods described so far investigate population growth, based on suitable proxy

readouts such as OD or colony geometry. Viability (the fraction of live cells) is another

important property of colonies which is not necessarily linked to biomass. The dead-cell

stain phloxine B has for a long time been used to visualise dead yeast cells by microscopy
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(Tsukada and Ohsumi, 1993) or in colonies (Matynia et al., 1998). Recently, this concept

has been applied in a screening context, where colonies are assigned a ‘redness’ score used

to detect strain-specific responses to specific conditions (Lie et al., 2018). This appears to be

a very promising strategy with the potential to reveal a new dimension of colony-associated

phenotypes, but little is known about the biology underlying these redness scores and very

few tools are currently available to the community.

1.1.3 New tools for microbial phenomics are needed

After reviewing the available laboratory methods and computational tools, we decided that a

colony-based assay of biomass and viability would be best suited to characterise our library

of lincRNAs mutants. However, initially hoping to use or adapt a published pipeline, I

quickly noticed that despite the long-standing popularity of colony screens and the number

of publications on the topic, the tools available to researchers are actually very limited,

both in their number and functionality. For example, gitter (Wagih and Parts, 2014) and

grofit (Kahm et al., 2010), two popular R packages for image quantification and growth

curve analysis are now out-dated and archived and no longer installed by the R package

manager. Other implementations, while highly sophisticated, suffer from poor reliability,

complicated/impossible installation procedures and/or lack of cross-platform compatibility.

Especially the growth curve-based approaches have a very narrow scope and were designed

for a specific scanner which is now out of production. These tools are also usually ‘black

boxes’ which give the user little insight into intermediate steps performed by the software.

Therefore, in our lab and presumably in the wider community, there is an urgent need for

modern, streamlined tools that are easy to install and use, that work ‘out-of-the-box’, and

that integrate into existing workflows and experimental designs. Additionally, a unified

approach to analysing colony size endpoints, colony growth curves and colony redness

scores would be highly desirable and make these data more comparable.

To this end, I developed the pyphe (python tools for phenotype analysis) toolbox which

comprises of 6 command-line programs, each performing a different workflow step. The

following section describes the development of pyphe in detail and illustrates its capabilities

using a range of test datasets. This section also explores ideal strategies for phenotyping and

the nature of the information contained in solid growth curves, colony size endpoints and

colony redness scores. The pyphe pipeline is then applied to the lincRNA knock-out library

in a systematic survey of condition-specific lincRNA-associated phenotypes.
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1.2 Methodology

1.2.1 Pyphe provides tools for fast and precise analysis pipelines

1.2.1.1 Design principles

Based on the goals outlined in the Introduction, I set out to develop our own workflow for the

analysis of colony screen data. Work on this project took place over almost four years, and

initially focused on low level functions contained in a python package. When colleagues

asked to run their own analyses, this approach showed its limitations. The code had to

be re-structured to make it robust to bad data and user input and it required a high-level

interface that could be used without programming skills. The following paragraph outlines

the decisions that guided the development of pyphe, which overall followed modern best

practice recommendations for bioinformatics software (Jiménez et al., 2017; Georgeson

et al., 2019) wherever feasible and applicable.

The first key design decision was to break up the analysis pipeline into distinct steps:

1. Image acquisition

2. Image quantification

3. Analysis

4. Data Interpretation

Each step is performed by a separate computer program, with a limited, intuitively and

clearly defined scope (Fig. 1.1). This limits the complexity of individual procedures and

crucially means that steps of the pipeline are interchangeable with other tools. This will

facilitate the uptake of pyphe, as researcher may decide to use the entire pipeline or incor-

porate selected tools into their existing workflow. Simultaneously, it future-proofs pyphe,

eg by setting it up for compatibility with yet unpublished image analysis tools. Pyphe has a

unique, broad scope, covering all steps of a typical experiment from scanning the plates to

obtaining final summary statistics and p-values. Furthermore, it was designed to be as flex-

ible as possible, working with different fitness proxy inputs: colony areas, redness scores

and maximum slopes of growth curves (Fig. 1.1).

The second key design decision was to provide access to tools via a command line in-

terface (CLI). Pyphe tools use the python argparse module to parse user commands, which

includes powerful tools for checking their validity and for providing inbuilt documentation.

Most parameters come with default values, allowing them to be invisible to non-expert

users. Advanced users may decide to alter default parameters, which allows for flexibil-
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Fig. 1.1: Pyphe enables flexible and powerful data analysis pipelines. Each of the four key
steps (left, vertical text) is performed by a different pyphe tool. Files are represented by boxes
which are linked by workflow tasks (arrows) performed by different pyphe tools (in italics). The
branched structure reflects the three types of input data that can be processed with pyphe. This
modularity also allows for the integration of other tools, such as gitter (Wagih and Parts, 2014)
for colony area measurements. Pyphe has a unique broad scope, supporting all steps of the anal-
ysis, from scanning to the final statistical output. Users have access to all intermediate steps in
accessible, useful formats. Pyphe was designed with high-throughput applications in mind: It
can analyse experiments containing hundreds or thousands of plates and is fully scriptable.
This figure was reproduced from Kamrad et al. (2020b) which is published under a CC-BY
license.
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ity while not sacrificing simplicity. It is my opinion that this approach is in this case more

suitable than a graphical user interface (GUI). GUIs often struggle with cross-platform com-

patibility, especially when they are not browser-based, and are time consuming to build and

maintain. GUIs show their strength only when interactive components are presented to the

user, which is not required for any of the pyphe tools. Despite initially seeming more user-

friendly, over-loaded GUIs with numerous tabs, menus and sub-menus are actually harmful

and confusing. Crucially, the use of CLI means that pyphe analysis pipelines are scriptable,

ie can be reproduced exactly with the same parameters and can be re-run very quickly when

the input data has changed.

The third and final design decision concerns data formats. Many software packages

define their own data formats and use non-human-readable (eg binary) formats to store

intermediate steps. For example, scan-o-matic (Zackrisson et al., 2016) saves image quan-

tification data as .npy files (which is computationally more efficient but requires users to

be competent in python to read the data). Gitter (Wagih and Parts, 2014) produces a varia-

tion of a tab-separated table, a .dat file, which contains additional comment lines making it

harder to parse and process. The full power of collaborative, open source research software

can only be harnessed if a common standard for data formats is established. For example,

in the field of genomics, a huge variety of innovative tools exist, each able to perform a

clearly defined, narrow task, because the field agreed on the data formats they operate on

(ie fastq, bam/sam and vcf files). Pyphe uses human-readable, standard comma-separated

tables (csv) throughout and adheres to data-science best practices. Specifically, it uses tidy

formats (Wickham et al., 2014) wherever possible which makes the data ideally suited for

statistical analysis and plotting with packages such as seaborn and pandas. Giving the user

direct access to all data produced along the pipeline allows users to check how individual

steps and to re-use and further analyse data in other ways. Based on these design principles,

six pyphe tools were developed which together support all major steps of colony screen

analysis workflows. The following sections describe their core concepts and algorithms and

demonstrate their capabilities.

1.2.1.2 Image acquisition with pyphe-scan

In the first step of the pyphe pipeline, images of plates and colonies are acquired. Standard

digital cameras can and have been used for this but the image will depend strongly on

the lighting of the object, which will in turn trigger camera-internal adjustments to focus,
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Fig. 1.2: Transmission scanning produces high quality images. (A) Picture of colonies growing
on agar taken with a phone camera. Reflections off the colony and agar surface results in colour
artefacts. (B) Picture of colonies growing on agar taken by transmission scanning. Colonies
appear dark against a light background. The original plate carried 1536 colonies of S. pombe
wild strains grown for two days on rich YES media. The image was scanned in 8-bit grayscale
and at resolution of 600dpi. (C) Inverted pixel intensity values across the image from (B). Pixel
intensities from transmission scans can be used to estimate colony thickness.

brightness and white balance. It is therefore hard to achieve consistent image properties and

quality, especially for large experiments conducted over extended timespans. The use of

gel-doc systems can alleviate some of these problems, but only to an extent. We, and others

(Takeuchi et al., 2014; Zackrisson et al., 2016), have found that transmission scanning with

commercial flatbed scanners is ideally suited for this task. With transmission scanning, the

light source and camera/sensor are on opposite sides of the object. The lighting from the

scanner lid produces even and consistent light against which colonies appear much darker

than the background. It does not produce shadows, or reflective artefacts on the surface

of colonies (Fig. 1.2). The darkness of a pixel reflects the thickness of the colony at that

position, which has been used to approximate colony mass (Takeuchi et al., 2014) and even

cell number (Zackrisson et al., 2016).

Maintaining a constant relative position of the plate and colonies within the image

frame is a key challenge to solve during image acquisition. Image analysis will typically

fail if plates are rotated relative to the image frame and the presence of plate borders will

impact image analysis with many tools. For experiments containing hundreds or thousands

of plates manual cropping and rotating of images is not an option, so it is crucial to ensure

that the position of plates in the image frame is consistent so that this step can be automated.

I have implemented a similar solution to those used by Zackrisson et al. (2016), where a

custom-made device is laser-cut from acrylic glass and used to hold plates in place. The

design of this ‘fixture’, which accommodates up to 4 standard plates per scan, is published
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on the pyphe GitHub repository.

Pyphe-scan acquires images using the Linux Scanner Access Now Easy (SANE) in-

terface, similarly to Zackrisson et al. (2016). Pyphe in theory works with every scanner

supported by SANE (which are almost all commercially available scanners) but has been

developed an tested with the Epson V800, the newer model in the series used previously by

others (Takeuchi et al., 2014; Zackrisson et al., 2016). Apart from this similarity, pyphe-

scan is a completely new implementation. Pyphe-scan facilitates imaging stack of plates

of arbitrary size, by prompting the user to switch plates between scans, and will produce

pictures of individually plates which are numbered consecutively. A number of parameters,

eg the scanning resolution, image output format and the number of plates to be scanned

are set by the user. Pyphe-scan-timecourse is a small variation of pyphe-scan which sup-

ports timecourse imaging, where images are acquired from the same scanner at a fixed time

interval. Following pyphe’s design principles, users have access to all intermediary data

processing steps. Pyphe-scan crops and rotates individual plate images from the raw scan

(which usually contains four plates). Plates are placed in the scanner with the colonies fac-

ing up but the image is taken from below, so plates need to be flopped (mirrored along the

vertical midline). ‘Under the hood’, these steps are performed by ImageMagick, a powerful

command line tool for image manipulation.

1.2.1.3 Image quantification with pyphe-quantify

In the next step of the pyphe pipeline, quantitative characteristics of individual colonies are

extracted from images. Pyphe contains a versatile and fast tool for image quantification

built on the powerful scikit-image library (van der Walt et al., 2014). Depending on the

choice of fitness proxy, pyphe-quantify extracts colony area, colony redness or the sum of

pixel intensities over each colony. In timecourse mode, the last image/timepoint is used

to reconstruct growth curves from image timeseries. Pyphe-quantify by default analyses

all jpg images in the current directory and can process thousands of images per hour. The

following paragraphs describe the image analysis procedures in detail.

Detection of colonies against background by thresholding. In images acquired with

transmission scanning, colonies appear dark against a light background. They can easily

detected by applying a binary threshold to the image, which is determined dynamically us-

ing the Otsu method (Otsu, 1979), followed by the identification of connected components.

Analysis of images acquired in reflective colour mode for colony redness analysis require a
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Input Image Custom grey-scaled Background estimation

Quantified and grid positions assigned Colonies detected Inverted and background subtracted

Fig. 1.3: Quantification of colony redness requires refined image analysis. Images scanned in
reflective colour mode for colony redness analysis exhibit faint colonies and uneven lighting.
Images first transformed to grayscale by multiplying the red, green and blue channels by 0,
0.5 and 1 respectively and taking the sum. This makes colonies appear stronger against the
background. Next, uneven brightness across the image is corrected by subtracting the image
background, which estimated by strongly blurring the image with a Gaussian filter. Colonies
are detected by local thresholding and the mean pixel intensity within each colony is reported.
Pyphe-quantify produces a QC image in which detected colonies and their score are marked.
This figure was reproduced from Kamrad et al. (2020b) which is published under a CC-BY
license.

refined approach as colonies are much fainter and images contain uneven lighting (Fig. 1.3).

Images are first transformed to grayscale by multiplying the red, green and blue channels

by 0, 0.5 and 1 respectively and taking the sum. Redness images suffer from uneven bright-

ness across the image, which is corrected by background subtraction. For redness images,

pyphe-quantify uses local, adaptive thresholding to increase the sensitivity of colony detec-

tion.

Assignment of colonies to grid positions. Once potential colonies have been identified,

they need to be matched to grid indices (colony row/column indices). Pyphe-quantify can

either use user input to determine the expected position of colonies (the grid positions) or

guess them automatically based on the image data. The manual method is more robust

and is preferred when the image has many missing colonies. The user needs to enter the

number of rows, columns and the coordinates of the top-left and bottom-right colony in the

image. This means that colony positions in the image stack to be analysed need to be more

or less identical and this is the case if pyphe-scan is correctly configured. Alternatively,

grid position can be determined automatically by identifying peaks across pixel rows and



1.2. Methodology 26

columns across the image. Peaks are identified using the find peaks function in scipy (Vir-

tanen et al., 2020) and the inter-peak distance is determined by taking the trimmed mean of

all peak distances. A cosine function with the same periodicity is generated and slided over

all possible positions in the image and the global best fit is used to compute grid positions.

Next, a distance matrix between putative colonies identified in the image and the grid posi-

tions is computed, and each grid position is matched to the closest colony within a distance

threshold around it.

Data collection and output. Multiple parameters are then extracted for each colony. De-

pending on the running mode, this includes the main output -colony area, mean colony red-

ness or sum of pixel intensities over time- as well as additional readouts such as the assigned

grid position, colony position in the image, colony circularity, colony mean pixel intensity

and others. All data is written to a standard csv file. In the batch modes, a single file per

plate is created which allows the user to easily check and re-use data from individual files.

Pyphe-quantify also produces QC images, marking the position, size and grid assignment

of any identified colonies. In redness mode, the assigned redness score is reported.

Pyphe obtains similar colony areas as gitter. In order to benchmark the performance of

pyphe-quantify against an established image analysis tool (Wagih and Parts, 2014), a set

of test images was obtained by scanning a single plate in grayscale transmission scanning

mode in 20 minute intervals for 48hrs. The plate carried 57 diverse S. pombe wild strains

growing in 1536 format (approximately 16 replicates per strain). All images were analysed

with gitter and with pyphe-quantify in batch mode. The results obtained (across all 144

images) are very tightly correlated and can be considered identical (r=0.9991, Fig. 1.4A).

However, it is important to note that absolute values are not identical as pyphe is in general

a bit more conservative during thresholding which results in the outermost, faintest edges of

colonies not counted towards the colony area. In practice, this is of no relevance in almost

all application, as the dependence is linear which results in similar relative fitness estimates

after normalisation.

Redness scores reflect the fraction of viable cells in colonies. The ability to extract colony

redness scores from scan images is a distinguishing feature of pyphe-quantify. Phloxine B

is known to stain dead cells (Matynia et al., 1998), but how are redness scores and colony

viabilities quantitatively related? To investigate this, the composition of 23 colonies of

varying redness was analysed by imaging flow cytometry. Colonies were picked from a
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Fig. 1.4: Pyphe-quantify produces colony area measurements similar to gitter. Pyphe colony
area measurements are tightly correlated with those obtained with gitter (r=0.9991, Pearson)
across 144 images with approximately 1536 colonies each, demonstrating the robustness and
reliability of colony area measurements obtained with pyphe-quantify. While the two readouts
are linearly correlated, colony areas with pyphe are smaller than those reported by gitter (due to
stricter thresholding). This makes no difference in practice once normalisation has been applied.
This figure was reproduced from Kamrad et al. (2020b) which is published under a CC-BY
license.

plate containing 238 S. pombe knock-out mutants grown for two days on rich media with

5mg/L phloxine B. The analysis distinguished three populations based on their phloxine

B staining intensity (Fig. 1.5A+B). The population of cells with the lowest level of stain-

ing could be identified (based on the simultaneously acquired brightfield image) as visibly

damaged, lysed cells or cell debris. Viable cells, the largest population, showed a medium,

background level of staining while dead cells stained strongly. The fraction of live cells in a

colony was found to anti-correlate well with colony redness scores (r=-0.88, Fig. 1.5C). For

this analysis, redness scores were normalised using the approach outlined in the following

section. In some colonies, specifically those with a lower fraction of live cells overall, lysed

cells make up the majority of non-viable cells. The tight anti-correlation between the frac-

tion of live cells and colony redness score suggest that lysed cells, while unstained in the

flow cytometer, do contribute to colony redness. This is most likely due to the washing step

applied before flow cytometry analysis, which washes out any dye, which does not happen

in the colony. This is supported by the observation that the fraction of live and lysed cells

together correlates less strongly with colony redness (r=-0.78, Fig. 1.5D). The dynamics and

physiological state allowing phloxine B to enter the cell are not entirely understood. There-

fore, cell populations from colonies based on phloxine B staining were compared to those
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Fig. 1.5: Redness scores accurately reflect colony viability. (A) Exemplary data from imaging
flow cytometry of resuspended colonies illustrating the three distinct cell populations: alive,
dead and lysed. (B) These three populations are clearly distinguishable from phloxine B stain-
ing. Counts summarise 541,432 individual cells from 23 colonies. (C) The fraction of live cells
per colony is strongly anti-correlated with normalised colony redness score for 23 colonies of
different S. pombe knock-out mutants. Some grouping of colonies (dashed line) is apparent,
with a lower correlation in each subgroup than overall (r=-0.41 and r=-0.33 for left and right
group respectively, Pearson correlation). (D) While lysed cells are unstained in the flow cytome-
ter, due to the preceding washing step, they do contribute to colony redness. Accordingly, the
correlation of live and lysed cells with colony redness score is lower than that for live cells only
(C). The correlation specifically is worse for colonies with a high redness score, which contain
larger fractions of lysed cells. (E) Phloxine B is in close agreement (accuracy=99.3%) with the
chemically distinct commercial LIVE/DEAD stain. Data is based on 9582 cells from a single
wild type colony.
Panels of this figure were reproduced from Kamrad et al. (2020b) which is published under a
CC-BY license.

obtained with a chemical distinct, established commercial dead cell stain (LIVE/DEAD,

Thermo Fisher Scientific). For colonies of the standard lab strain and disregarding lysed

cells, both dyes were in near-perfect agreement (accuracy=99.3% using LIVE/DEAD clas-

sification as ground truth, Fig. 1.5E). Overall, colony redness scores provide an accurate

readout reflecting the number of live cells in a colony.

Images can be compressed without affecting results. Pyphe supports multiple image for-

mats. In particular, users have the choice between the lossless image format tiff, which

preserved the original scanner data exactly, or the ‘lossy’ jpg format, conversion to which

can result in data loss due to compression. Using the standard conversion parameters of



1.2. Methodology 29

20 40 60 80 100 120 140

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

Pe
ar

so
n 

co
rre

la
tio

n

correlation: tiff and jpg

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Es
tim

at
io

n 
of

 v
ar

ia
nc

e

error due to jpg conversion
biological signal

image number

Fig. 1.6: Image compression does not affect fitness readouts. 144 original images of 1536
colonies in lossless tiff format were compressed to jpg format, resulting in a significant 20-
fold reduction in disk space requirements. Colony areas in both image sets were analysed with
pyphe-quantify and compared. Results are in very close agreement (blue line, global Pearson
correlation of 0.999964) and any errors introduced by conversion (orange) are negligible com-
pared to the biological variation of colony areas (green).
This figure was reproduced from a rebuttal letter for Kamrad et al. (2020b) which is published
under a CC-BY license.

ImageMagick, the size of a single image of a plate shrinks from approximately 4MB down

to 180-580KB during conversion. This approximately 20-fold reduction is storage space re-

quirements is significant, especially for larger experiments containing thousands of plates.

The set of test images was analysed in jpg and tiff format and the obtained colony sizes

were compared. Across all images, the Pearson correlation was 0.999964 and the median

relative error

re =
abs(size(jpg)− size(tiff))

size(tiff)

was 0.00333. The results were consistent across the timeseries (Fig. 1.6), even for early im-

ages which are harder to analyse due to smaller, fainter colonies. These detected deviations

need to be seen in relation, and turns out to be negligible compared to the biological signal,

estimated by the median absolute deviation of all colonies in each plate.

1.2.1.4 Growthcurve analysis with pyphe-growthcurves

For the downstream analysis of growth curves extracted from image timeseries with pyphe-

quantify, a simple quantitative fitness readout needs to be extracted. For this, pyphe contains

a simple tool for extracting maximum slopes and lag phases: pyphe-growthcurves. Growth

curves consist of the sum of background-subtracted pixel intensities within the colony for

each timepoint. This is closely linked to colony biomass but not directly linearly related
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to cell number. For this reason, pyphe-quantify does not fit parametric model of microbial

growth to the observed data. The maximum slope is extracted using a simple sliding window

approach, whose width can be set by the user. For each window, a line is fitted to the growth

data and the overall highest scoring window is reported. A simple threshold-based method

for determining lag phases is implemented, reporting the timepoint at which each colony

crosses an absolute or a relative value (relative to the initial biomass). Pyphe-growthcurves

produces a csv table listing extracted growth curve parameters for each colony which can

be directly used for further analysis in pyphe. Pyphe-growthcurves uses a simple input

format and has also been successfully used on growth curves obtained from plate reader

measurements of liquid cultures in multi-well plates.

1.2.1.5 Data analysis with pyphe-analyse

The next step in the pyphe pipeline performs two key functions. It normalises data within

and across plates to make them directly comparable and it aggregates data and meta-data

across all plates of an experiment, producing a comprehensive data report. Pyphe-analyse

contains parsers for different fitness inputs (colony area endpoints obtained by gitter, colony

areas and redness scores obtained by pyphe-quantify and maximum slopes of growth curves

obtained with pyphe-growthcurves), making it a powerful and versatile tools for different

fitness screen scenarios.

Control grids enable efficient normalisation with minimal underlying assumptions.

The most common type of technical within-plate variation are edge effects. Here, colonies

on the outer edge of the grid grow better as they experience decreased competition over

nutrients from neighbouring colonies (Fig. 1.7A). This error follows a clear row/column

pattern and can be corrected by dividing each colony fitness readout by the median of its

row and column (Baryshnikova et al., 2010). This normalisation requires that the null-

effect of each row/column can be estimated reliably, which requires a sufficient number of

colonies (the 96 format is unsuitable in our hands) and requires that most colonies in every

row and column show no growth effect. This is usually the case for work with knock-out

libraries, where the vast majority of mutants behaves like wild type in a given condition,

as long as strains with abnormal growth are randomly distributed in the assay plate and not

concentrated in any row/column. Besides these limitations regarding the strain library and

its arrangement, row/column-wise correction cannot correct for more complex patterns of

technical noise. Colonies will usually show substantial variation in fitness proxies across
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a plate, due to technical factors such as temperature and moisture gradients or uneven-

ness of the agar surface (Zackrisson et al., 2016; Kamrad et al., 2020b). The fact that an

evenly spaced grid of control strains can approximate the null effect in different positions

of the plates is the basis for the spatial grid normalisation first proposed by Zackrisson et al.

(2016). Based on the control grid, the expected colony size of a control strain in each con-

dition is interpolated using a curvature-minimising cubic spline fit (Fig. 1.7B). The value

of this reference surface in each position is then compared to the actually observed colony

size. This results in a relative fitness readout, where 1.0 signifies a similar fitness as the

control strain (Fig. 1.7C). This strategy is highly effective in reducing noise and is suitable

to diverse strain layouts (Fig. 1.7D, Zackrisson et al. (2016); Kamrad et al. (2020b)).

Pyphe improves data completeness during grid correction. While the core functional-

ity of the grid correction implemented in pyphe is identical to that of scan-o-matic, pyphe

implements a key improvement that prevents ‘blind spots’ during normalisation. Working

in 1536 format, the scan-o-matic workflow uses a grid of 384 control colonies. This nec-

essarily leaves two edges of the plates which are not covered by control strains. In these

positions, the value of the reference surface is undetermined, unless it is guessed, eg by ex-

trapolating the nearest value (which cannot account for the edge effect). Pyphe recommends

instead to place two 96 grids with opposite offsets (Fig. 1.8A). This decreases the amount

of colony positions required for normalisation by half and already greatly increases the area

covered by the normalisation surface. For the two remaining corners still not covered by the

grid (Fig. 1.7B), I have devised a precise extrapolation method based on statistical learning.

Across all plates of the experiment, a linear model is trained where the dependent variable

(the label) is the observed raw size of the control strain in the corners which are covered

by the reference grid and the features/predictors are the sizes of the next horizontal and

vertical control strain. These models typically predict corner colony sizes with >90% ac-

curacy for the training set and can be applied to the other two corners to predict expected

control strain colony sizes there (Fig. 1.8B). These improvements significantly improve the

data completeness after normalisation and mean that libraries can be used without the need

for re-arrangement. Furthermore, it increases the throughput of the workflow by leaving

more space for assay colonies. We usually spare an additional 96 colonies for an additional

internal control to monitor technical noise levels and normalisation efficiency across plates.
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Fig. 1.7: Grid correction effectively reduces technical noise. (A) Maximum slopes recorded from
a single plate containing 1536 colonies of S. pombe wild strains. The standard lab strain 972
was used as control and placed in 192 positions, evenly dispersed across the plate. (B) An inter-
polated reference surface computed based on the control strains only. The surface estimates the
null effect, ie the expected maximum slope of a control strain, for every position. (C) Corrected,
relative fitness estimates are computed by dividing the real observed maximum slope by the ref-
erence surface. (D) This correction procedure is very effective in reducing technical noise in the
data. The coefficient of variation (CV) of 96 additional control strains, not used to construct the
reference, decreased by approximately four-fold. The fraction of unexplained variance (FUV),
the ratio of the variance of the control strains divided by the variance of all colonies, decreased
more than six-fold.

Grid correction results in over-correction. Globally, grid correction typically reduces the

noise by 4-fold (Fig. 1.7D), but it can introduce normalisation artefacts. In particular, I have

observed a secondary edge effect (Fig. 1.9). Its origin lies in the fact that colonies in the

second row/column are compared to a predicted value heavily influenced by colonies on

the outer-most edge. If the plate layout is suitable, this can be corrected with an additional

row/column normalisation, otherwise this artefact has to be tolerated as the ‘lesser of two

evils’. Pyphe is designed as a toolbox and requires the user to carefully consider plate

layouts and normalisation strategies. It offers the choice of applying one or the other, or

both, or neither of the normalisations.

The secondary edge effect is one example of a more fundamental risk associated with
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Fig. 1.8: Optimal grid placement and extrapolation. (A) Pyphe recommends placing two 96 grids
of control strains with opposite offsets onto 1536 plates. This results in almost the entire plate
being covered by the grid and leaves more positions for colonies to be assayed, compared to the
approach taken by Zackrisson et al. (2016). An additional control grid can be placed in the plate
for general quality control and noise monitoring. (B) The two remaining corners not covered
by the grid (cf Fig. 1.7B) can be extrapolated with high accuracy based on the horizontal and
vertical control neighbours. Across all plates of an experiment, pyphe trains a linear regression
model on the other two corners, typically achieving >90% accuracy. In this case, which is based
on an unpublished experiment containing hundreds of plates, the exact model was y = 1.24 *
horizontal neighbour + 0.16 * vertical neighbour - 34, and the R2 was 0.96. The symmetry of
the plate allows this model to be applied to the corners without control colonies, which are then
used to extrapolate and complete the reference surface.
Panel A and part of panel B are reproduced from Kamrad et al. (2020b) which is published under
a CC-BY license.
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Fig. 1.9: A secondary edge effect is an artefact of grid normalisation. Before correction, plates
show a strong edge effect (left). Grid normalisation removes this edge effect but introduces
a weaker, secondary edge. This artefact of the correction results in lower fitness estimates of
colonies in the second row/column. Plots are based on median values for each position across
hundreds of plates containing S. pombe knock-out mutants. A single 96 control grid was placed
in the top-left offset of a 384 plate, leaving the left and bottom edge not covered by the grid. The
secondary edge is therefore only visible on the top and on the left.
This figure was reproduced with minor changes from Kamrad et al. (2020b) which is published
under a CC-BY license.

grid correction. Because colonies grow close together on the agar surface, competition for

nutrients is a large factor determining colony size. Presumably, a control grid colony grow-

ing next to a fast-growing colony will have decreased access to nutrients. When the fast-

growing colony’s relative fitness is then determined by comparing it to the control colony,

the resulting fitness proxy will be inflated. The inverse argument is equally plausible of

course. To check whether this is a problem in practice, we compared corrected colony sizes

with those of its neighbours. After normalisation (grid with subsequent row/column median

normalisation), no correlation between the corrected colony size and the mean if a colony’s

neighbours is visible (Fig. 1.10). In conclusion, pyphe supports various normalisation strate-

gies, which have been shown by us and others to effectively neutralise experimental noise

within plates.

Pyphe performs QC and exports data in a useful format. Both correction strategies can

lead to spurious data, especially if the input data is of low quality or incomplete. Grid

correction can occasionally result in corrected fitness estimates which are negative. This is

because the interpolated reference surface dips below zero between very small grid colonies,

due to its curvature-minimising properties. Row/column median normalisation can result in

infinite values of the majority of colonies in a given row/column have size 0. Pyphe-analyse

checks for such cases and throws warnings, prompting users to check the data input before
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Fig. 1.10: No evidence for over-correction during normalisation. Grid normalisation compares
the observed fitness of a colony to that of neighbouring controls. This comes with a risk of over-
correction as colonies compete over resources. Before correction colony fitness is positively
correlated to the sum of its neighbours (left). This clearly indicates that regional technical
biases dominate over the competition effect (and this is one of the underlying assumptions of
the grid correction). This correlation is stronger for endpoints than for maximum slopes. After
correction this correlation is neutralised and crucially no negative correlation is observed. Over-
correction therefore appears not to pose a significant problem in practice. Data is based on 1536
S. pombe wild strains grown on rich YES media for 48hrs.
This figure was reproduced with minor changes from Kamrad et al. (2020b) which is published
under a CC-BY license.

setting spurious values to not applicable (NA).

Besides correcting within-plate variation, the use of relative fitness measures makes

results directly comparable between plates and batches, given that the same control strain

has been used. Pyphe-analyse was written to process groups of plates (which can easily

be hundreds or thousands in size) simultaneously and can automatically incorporate layout

information and meta-data into the analysis. Users provide a table listing each plate and

associated information which is combined with the processed data to form a comprehen-

sive output data report in tidy format, containing for each colony on a single line raw and

normalised values, details of the normalisation and any data provided by the user in the

input table. Pyphe-analyse assists user with quality control (QC) by producing a pdf with



1.2. Methodology 36

heatmaps of all numeric data associated with each plate, which can be used to understand

unusual or unexpected results.

1.2.1.6 Data interpretation with pyphe-interpret

Data reports generate by pyphe-analyse can easily contain millions of data points of numer-

ous strains in numerous conditions. The next challenge was therefore to design an inter-

pretation tool which is computationally efficient and sufficiently versatile to interrogate the

data in the different ways, yet is reasonably straight-forward to use. Pyphe-interpret walks

this line and produces comprehensive summary statistics and differential fitness analyses. It

implements t-tests, including multiple testing correction, for differential fitness assessment

and this is implemented in a fast, vectorised form. It was written to directly operate on data

reports written with pyphe-analyse but can in theory be used with any table in tidy format.

The user chooses the grouping variable, the axis variable along which to apply the test and

the name of the control to test against. This allows pyphe-interpret to be used for answering

two distinct questions: ‘Which strains grow differently from the control strain (tested for

all conditions individually and in parallel)?’ and ‘Which strains grow differently in a given

condition compared to the same strain in a control condition (tested for all strain individu-

ally and in parallel)?’. The latter way of assessing differential fitness is usually preferred as

it tests for condition-specific growth effects, effectively normalising out basal growth differ-

ences between strains which are already apparent in the control condition. Pyphe-interpret

produces a comprehensive output report listing summary statistics (median and mean fit-

ness, observation count, standard deviation) as well as p-values and effect sizes associated

with t-tests.

Pyphe supports data analysis workflows from start to end, ie from scanning to differ-

ential fitness statistics. It is up to users to assemble pipelines from the tools available within

(and potentially outside of) pyphe, which provides flexibility while simultaneously limiting

the complexity of each individual tool. Pyphe was written specifically with very large ex-

periments in mind, it is computationally efficient and fully scriptable/reproducible. Pyphe

supports growth curves, as well as endpoint colony sizes and colony redness scores as input.

It is the first and only solution with such a broad scope and range of functionalities.
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1.2.2 Endpoints and maximal slopes of growth curves provide similar infor-

mation

Pyphe was designed to be used in a wide range of phenotyping scenarios, using different

fitness proxies as input. Specifically, it supports the assessment of biomass formation by

either maximum slopes of growth curves or by endpoint colony areas. Previous, solely

growth curve-based methods (Takeuchi et al., 2014; Zackrisson et al., 2016) have claimed

the superiority of this approach, primarily based on the observation that maximum slopes

contain lower levels of technical variation. However, obtaining growth curves is in many

aspects more costly and time-consuming. A large number of scanners is required to conduct

even medium sized screens in a reasonable time and these needs to be placed in temperature-

controlled environments. Most larger experiments will have to be divided up into many

batches, with substantial work involved in preparing fresh library plates for each batch and

increasing the likelihood of batch effects. Growth curves produce large number of images

and have a data footprint that is approximately 200 times larger (assuming imaging every

20 minutes for three days). For endpoint measurements supported by pyphe, hundreds of

plates can be scanned and processed on a single day with a single scanner. This allows for

many more replicates to be included in the analysis, thereby potentially compensating for

the increased noise associated with endpoints.

In order to investigate and compare the accuracy of pyphe-enabled growth curves and

endpoint measurements, 57 genotypically and phenotypically diverse S. pombe wild strains

(Jeffares et al., 2015) were grown in approximately 16 biological replicates in 1536 format

in 8 different conditions. These were 4 different carbon source mixes and 4 different nitro-

gen sources, chosen specifically, like the strains, to produce as diverse growth dynamics as

possible. Each timepoint was analysed as an individual ‘endpoint’ and the maximum slope

of the growth curve was extracted using pyphe-growthcurves. Noise indicators (CV and

FUV) of uncorrected endpoints depend strongly on the timepoint and are lowest towards the

end of the rapid growth phase, as illustrated by data from standard YES media (Fig. 1.11A).

As growth progresses slowly, competition effects and edge effects increase the level of tech-

nical noise. Grid normalisation efficiently corrects the effects, largely maintaining low noise

levels until the end of the experiment. Noise levels of grid corrected maximum slopes were

lower than those of endpoints throughout (Fig. 1.11A). This trend held true considering all

8 conditions, which puts pyphe in agreement with previous methods (Fig. 1.11B) (Takeuchi



1.2. Methodology 38

A

0 20 40 60 80

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
V 

or
 F

U
V

CV raw size
CV corr. size

FUV corr. size

100

200

300

400

500

600

700

800

900

ra
w

 m
ea

n 
co

lo
ny

 s
iz

e 
(g

re
en

)

mean raw size

slopes endpoints

0.02

0.04

0.06

0.08

0.10

max slopes endpoints

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

C
V

FU
V

B

Fig. 1.11: Comparison of noise levels in endpoints and growth curves. (A) Technical CVs and
FUVs of each individual timepoint, before and after grid correction (solid lines). The CV and
FUV of grid-corrected maximum slopes are shown as dashed lines. Grid correction strongly
reduces noise in the data and maintains noise near its global minimum for later timepoints. (B)
Boxplots comparing CVs and FUVs of maximum slopes and endpoints across eight conditions.
Dashed lines indicate points belonging to the same condition. These plots indicate that maxi-
mum slopes of growth curves usually have lower technical nose than endpoints. All boxplots
in this thesis show the median as the central line, the quartile range as the box and the rest of
the distribution as whiskers. Points more than 1.5 times the inter-quartile away from the high
and low quartiles are considered outliers and are shown individually.
Both panels were reproduced from Kamrad et al. (2020b) which is published under a CC-BY
license.

et al., 2014; Zackrisson et al., 2016).

The second argument put forward in favour of growth curves is based on based on

the theoretical consideration that endpoint results could depend on the incubation time for

strains showing different growth dynamics (Fig. 1.11A). The 57 wild strains are genetically

diverse and have been isolated from various niches (Jeffares et al., 2015) and therefore ide-

ally suited to evaluate the if this poses a problem in practice. Real growth curves on standard

YES media showed little evidence of growth curves ‘crossing over’ after approximately 20h

when rapid growth had stopped (Fig. 1.12B). A correlation analysis of all timepoints on

YES media revealed strong correlation (>0.9) of timepoints >20h with the final timepoint

(Fig. 1.12C). This is important result means that all timepoints following the rapid growth

phase return similar results and there is no ‘catching up’ of slow growers. This makes pre-

cisely defining incubation times unnecessary. Important to note is the (weak) correlation

of later timepoints with the initial timepoint, indicating a bias introduced by the amount of

inoculation biomass. This has been noted before (Zackrisson et al., 2016) and is due to cell

adhesion properties (‘stickiness’) varying between strains. In practice, this is usually not a

problem if the fitness of a strain in a certain condition is compared to the fitness in a control

condition, which corrects for this bias. Crucially, later timepoints also correlate extremely
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Fig. 1.12: Maximum slopes and endpoints are tightly correlated. (A) Hypothetical growth
curves, in the form of Gompertz models (Zwietering et al., 1990), illustrating the danger of
using arbitrary snap-shots for fitness analysis. Depending on the chosen timepoint, vastly dif-
ferent results can be obtained. (B) Real growth curves before (top) and after correction (bot-
tom) of 57 S. pombe wild strains (average of approximately 16 biological replicates per strain).
Strains were grown on standard, rich YES media and imaged every 20 minutes over a course of
48h. (C) Comparison of 144 individual timepoints (grid-corrected and averaged by strain) with
each other and with the maximum slope of the growth curve. Individual timepoints are tightly
correlated as long as they are taken after the rapid growth phase ends, here at approximately
16h (i and iii). These later timepoints are also tightly correlated with corrected maximum
slopes (ii). (D) Table of Pearson correlation coefficients of corrected endpoints with corrected
maximum slopes across eight different nutrient regimes. Both readouts are consistently and
tightly correlated, with a median value of approximately 0.95.
Panels B-D were reproduced from Kamrad et al. (2020b) which is published under a CC-BY
license.

well with maximum slopes (r=0.96, Pearson correlation, Fig. 1.11C). Similar values were

obtained for the other seven conditions with a median correlation of 0.95 (Fig. 1.12D). This

result was somewhat surprising and means that endpoints and maximum slopes essentially

contain the same information.

This result is is not trivial and has important theoretical and practical implications. A
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growth curve in liquid media is usually used to extract three key parameters: lag phase,

maximum growth rate and final biomass. In that case, a single timepoint is influenced

by these parameters to varying degrees, depending on when the timepoint is taken. Late

timepoints exclusively reflect the nutrient to biomass conversion efficiency, not the growth

rate which is usually the main interest. It may seem easy to apply the same concept to

growth curves on solid. The key difference between the two however is that colonies grow

in close proximity and competition on a common medium. While in liquid cultures each

strain has a defined amount of nutrients available to them, colonies on agar keep growing

until the medium is (locally) depleted. My interpretation of this data is that instead of each

strain having the same amount on nutrients, each strain has roughly the same amount of time

available to grow, until the media is exhausted by the ensemble of colonies. This means that

colony sizes towards the end of growth specifically reflect growth rates, as the data show.

The focus of a previous study (Zackrisson et al., 2016) using growth curves was on

achieving the lowest technical variation possible. This was done by remarkable technologi-

cal advancements including a calibration of pixel intensities to ‘absolute’ cell numbers and

extractions of population doubling times. Scan-o-matic and pyphe both achieve very low

noise and a power analysis can reveal the number of replicates required to achieve similar

statistical power for pyphe and scan-o-matic (Fig. 1.13B). Indeed, it is in a range where

the biological relevance of detectable differences (few percent) can be questioned. Cer-

tainly, the biological variance greatly exceeds the technical variance (Fig. 1.13A), which

decreases the importance of minimising the latter. More important than the noise is there-

fore if different readouts contain genuinely unique or more specific information. The in-

creased throughput and lower cost more than offset the higher noise levels in my opinion.

We therefore generally tend to use endpoints rather than growth curves and include many

replicates.

1.2.3 Colony size and redness are orthogonal and independent readouts

Supported by the pyphe pipeline, redness scores are a cost- and time-efficient add-on to tra-

ditional colony screens. Phloxine B is simply added to the assay plates and these are scanned

once in transmission mode for colony area quantification and once in colour mode for red-

ness analysis. With this ‘2-for-1’ approach, one can obtain two quantitative values from the

same colony. But what is the relationship between information contained in colony sizes

versus redness scores? To answer this question, 238 S. pombe knock-out strains were pheno-



1.2. Methodology 41

0.0 0.2 0.4 0.6 0.8 1.0
CV

0

2

4

6

8

10

oc
cu

rre
nc

es
technical CV
biological CVs 
of 57 strains

0.00 0.25 0.50 0.75 1.00
difference in relative/corrected growth

0.2

0.4

0.6

0.8

1.0

st
at

is
tic

al
 p

ow
er

pyphe endpoints - 5 replicates
scan-o-matics - 2 replicates

0.00 0.25 0.50 0.75 1.00
difference in relative/corrected growth

pyphe endpoints - 9 replicates
scan-o-matics - 3 replicates

A B

Fig. 1.13: Pyphe is precise enough for the detection of subtle phenotypes. (A) Histogram of bi-
ological CVs of grid-corrected maximum slopes of 57 wild strains on standard YES media,
measured in approximately 16 replicates each. Biological CVs often greatly exceed the techni-
cal CV, which was 0.049 (black line). The technical CV was estimated from an additional grid
of 96 replicates of the control strain. The key difference between a technical and biological
replicate is that technical replicates originated from the same liquid culture which was pinned
onto solid agar in 96 format. Biological replicates were kept in separate cryostocks (some also
in different multi-well plates), woken up in 384 format and combined with the control strains
into 1536 format. (B) Comparison of statistical power (chance of false non-rejection of the
null hypothesis) between scan-o-matic and pyphe, assuming a CV of 2% for scan-o-matic as
published (Zackrisson et al., 2016) and a generous CV of 6% as typically seen for pyphe end-
point measurements. More replicates are required with pyphe than with scan-o-matic in order
to achieve a similar power, but this is offset in practice by the increased throughput and lower
cost of endpoint measurements.
Panels B was reproduced from Kamrad et al. (2020b) which is published under a CC-BY
license.

typed in 70 conditions in triplicates. These genes had been selected (by other lab members)

to broadly cover GO-slim categories and also included genes of unknown function. Raw

colony sizes and redness scores are weakly anti-correlated (r=-0.19, Fig. 1.14A). This gives

some indication that more stressful conditions, which more strongly inhibit growth, also

lead to more dead cells within colonies. However this correlation is only weak, suggesting

that many conditions inhibit/slow growth without leading to cell death. Technical noise of

redness scores within plates followed a strong row-wise pattern (Fig. 1.14B) which was cor-

rected effectively by row/column median normalisation as implemented in pyphe-analyse,

resulting in a technical CV of only around 1% (Fig. 1.14C). Crucially, after corrections,

relative colony sizes and redness score are essentially not correlated (r=-0.088, Fig. 1.14C),

indicating that both readouts contain distinct, ‘orthogonal’ information.

But is there a danger a danger that addition of phloxine B changes the results obtained

for colony areas? Colony sizes in seven condition pairs with and without phloxine B were

measured and corrected using the pyphe pipeline. Unsupervised clustering of the 14 re-
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Fig. 1.14: Redness and colony size contain orthogonal information. (A) Average redness scores
of the standard lab strain 972 in 110 unique batch-condition pairs. Some conditions, such as
the standard control conditions, were included in many batches. Each value is the mean of
approximately 30 biological replicates. Uncorrected redness scores and uncorrected colony
areas are weakly anti-correlated (r=-0.19) (B) Median raw redness scores for each physical
colony position across 308 plates covering 78 different conditions. There is strong technical
variation which follows a row-wise pattern and is an artefact of the imaging method. (C)
Corrected colony sizes and redness scores of 238 S. pombe knock-out mutants relative to the
standard lab strain 972 across 110 unique batch-condition pairs. The global CV for redness
scores was 1.04% with a FUV of 7.83% (histogram on right). CV and FUV for colony sizes
were 6.1% and 31.5% (histogram on top). Both readouts show only very weak anti-correlation
(r=-0.088) and therefore provide orthogonal information.
Panels B+C were reproduced from Kamrad et al. (2020b) which is published under a CC-BY
license.

sulting conditions showed the condition pairs consistently clustering together (Fig. 1.15A),

indicating that the condition is the main driver of the signal and not whether or not phloxine

B was included. Condition pairs were measured in different batches which were prepared

independently in different weeks. The median correlation of condition pairs was 0.92, a

very good value when compared to the median correlation between repeats of the control

condition (rich YES media) across different batches (Fig. 1.15B). Differential fitness of in-

dividual gene knock-outs with versus without phloxine was assessed by t-tests implemented

in pyphe-interpret. A single gene, encoding the trehalose-6-phosphate phosphatase Tpp1,

showed a significantly decreased colony size (padj < 0.05 and effect size >±log2(1.05)) in

rich and minimal media (Fig. 1.15C). There is no obvious explanation why particularly this

gene should be affected by the addition of phloxine B. More generally, a constant genotype-

dependent impact of phloxine B is conceptually not a problem. If phloxine is included in the
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assay condition and the control condition to which it is compared, any genotype-specific ef-

fects of phloxine B will be corrected for. Conceptually, this is equivalent to adding/changing

any other component in the media. This can (and often will) affect growth, which is fine if

the media is used throughout an experiment. Overall, phloxine B has no drastic impact on

growth of S. pombe knock-out mutants and can safely be included in phenotyping experi-

ments.

1.2.4 Conclusions: pyphe enables high-throughput, high-precision phenotyp-

ing

This section has demonstrated the power and versatility of the pyphe pipeline. It is set up for

high-precision, high-throughput colony screens which can detect subtle fitness differences

in large libraries of strains in parallel. Pyphe has supported numerous colony screens in

both the Ralser and Bähler laboratories and will hopefully be a useful tool for the field. It

is freely available under a permissive licence from either GitHub or the Python Package in-

dex. Besides the tools itself, the comprehensive and complementary test data sets presented

have uncovered some general characteristics of colony-based screens which will guide the

design of future experiments. First, I have shown that, for arrayed colonies on agar plates,

endpoint sizes contain similar information as maximum slopes of growth curves. This re-

sult was obtained under conditions designed to break this hypothesis by producing growth

dynamics as diverse as possible, namely genetically and phenotypically diverse strains on

vastly different nutrient sources. This result is not obvious, assuming a similarity of liquid

and solid growth curves, and severely weakens the arguments in favour of using costly, elab-

orate growth curve experiments. Still, growth curves can provide lower levels of technical

noise and pyphe cannot quite reach noise levels as low as those published by scan-o-matic

(Zackrisson et al., 2016). However, compared specifically to scan-o-matic, pyphe offers

a significantly streamlined implementation, eg it does not require a hardware modification

of the scanners (incompatible with fire safety regulations), a dedicated local area network

(LAN) or image colour calibration strips. The marginally increased level of technical noise

obtained with pyphe is outweighed by its throughput (which allows more replicates to be

measured) and is small compared to the biological noise typically observed in such screens.

Secondly, it has been shown that colony redness scores provide a ‘second dimension’

to colony screens. They accurately reflect the fraction of dead cells in a colony and con-

tain orthogonal, novel information after correction. Given the ease and throughput with
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Fig. 1.15: Phloxine B generally does not influence growth. (A) Correlation matrix of seven condi-
tions with and without phloxine B. For each condition, 238 S. pombe knock-out mutants were
measured in 3 technical replicates. Conditions with and without phloxine B were measured
in separate batches in different weeks (with independent plate preparation and revivals of the
cryostocks) to avoid batch effects making correlations appear artificially close. Conditions with
and without phloxine B consistently cluster together, indicating that the main factor underlying
these the obtained scores was the condition, and not whether or not phloxine B was included.
Euclidean distance was used as the distance metric and the average method was used for hierar-
chical clustering. (B) Correlation analysis of individual of phenotype scores for 238 S. pombe
mutants in 110 unique batch-condition pairs, mean of 3 technical replicates each. The control
condition YES with phloxine B was included in most batches and the median correlation across
batches was 0.77. This is substantially higher than the median correlation of all technical repli-
cate pairs across all conditions (0.51). The median correlation for seven conditions with and
without phloxine B (which were also measured in separate batches) was 0.92. It is perhaps
surprising that this is even higher than for repeats of the control condition but this is explained
of stronger, diverse phenotypic responses triggered by these more stressful conditions. (C)
Differential fitness analysis of individual genes across the seven conditions with and without
phloxine B, performed with pyphe-interpret. The effect size is the ratio of the medians of the
corrected colony size in media with versus without dye. P-values were computed by Welch’s t-
test and adjusted with the Benjamini-Hochberg method for controlling the false discovery rate.
The chosen effect size cut-off of ±log2(1.05) and significance cut-off of padj < 0.05 are illus-
trated with red lines. A single gene, encoding the trehalose-6-phosphate phosphatase Tpp1,
was found to show a significant growth defect in both rich YES and minimal EMM media.
These were also the conditions with the most replicates as these were repeated across several
batches.
All panels were reproduced from Kamrad et al. (2020b) which is published under a CC-BY
license.
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which redness scores can be obtained, this method is a potential game changer, as tradi-

tional methods would necessarily require picking and resuspension of colonies followed

by flow cytometry, microscopy or CFU counting. Still, much future work is to be done to

understand the biological mechanisms behind redness scores and their temporal dynamics.

For colony sizes, the data show that the readout remains largely constant if plates are in-

cubated for a few days after rapid growth has ended. This is useful in practice and means

incubation times do not need to be precisely defined, certainly there is no ‘sweet spot’ that

one needs to hit. For redness scores the same cannot be expected, as colonies which are

left for a long time will show distinct physiological changes including cell differentiations

and eventually cell death (Váchová and Palková, 2018). In fact, the observation that relative

(corrected) redness scores and colony sizes of S. pombe knock-out mutants are uncorrelated

is unexpected as colonies with a large fraction fo dead cells should also grow slower. Sev-

eral explanations for this are plausible, and pyphe is ideally set up for future investigations

into this matter. One possibility is that cell death is temporally decoupled from growth (ie

rapid ageing), another is that cells sacrifice viability for increased growth rate (ie a trade-off

where cells effectively go into overdrive, Nakaoka and Wakamoto (2017)) and finally that

colonies can tolerate a certain fraction of dead cells as anyway not all cells in a colony are

actively dividing (Meunier and Choder, 1999). Resolving these questions may open up new

applications for pyphe in chronological ageing studies.

Having thoroughly tested and benchmarked the capabilities on test datasets, we set out

to analyse the lincRNA knock-out library. Work laid out in this section gave some clear

indications of how to do this most effectively and we used endpoints of colony areas (rather

than growth curves) and redness scores in a 2D phenotyping approach. The library was

screened in 140 conditions, 67 of which also included phloxine B. The experimental part of

this project, including image acquisition, was done by Marı́a Rodrı́guez-López and Mimoza

Hoti. My analyses, based on the pyphe pipeline, revealed 351 condition-specific growth

effects in total. Multivariate analysis was performed on the datasets revealing clusters and

RNAs and coding genes showing similar responses. Overall, this project revealed numerous

new lincRNA-associated phenotypes, providing novel evidence of their function and a rich

resource to the community to inform focused studies in the future.
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Fig. 1.16: A robust functional genomics workflow to elucidate lincRNA function (A) Overview
of functional genomics workflow for characterisation of lincRNA function. A lincRNA knock-
out library was constructed using seamless CRISPR/Cas9 genome editing. Multiple guide
RNAs were used and several independent successful mutants were kept for each lincRNA gene
and the strain library was screened for growth and viability phenotypes in a large number
of conditions. The data was analysed to reveal individual, high-confidence hits and global
phenotype profile patterns. (B) A median of 9 replicates was available for each lincRNA after
quality control (and many more for the control conditions), giving our screen the power to
detect even subtle phenotypes. Shown is the statistical power (1 - chance of non-rejection of a
wrong null-hypothesis) depending on the standardised effect size (difference in means divided
by the standard deviation), using a standard variation of 5% as a value typically observed in
our data. (C) Across 31 experimental batches spread out over several months, repeats of the
control conditions correlate only marginally better within batches than across and much worse
than random condition pairs, indicating that the dataset is not dominated by batch effects.

1.3 Results

For 141 selected lincRNA genes, multiple independent knock-outs were created in the het-

erothallic and homothallic versions of the standard lab strain (972 h- and 968 h90). To

minimise the risk of off-target effects, almost all lincRNAs were knocked out with more

than one guide RNA and usually two or three successful transformants were picked per

guide RNA (Fig. 1.16A). The strain library was then arranged in 384 format around a grid

of 96 972 h- control colonies, compatible with the pyphe workflow. Colony growth and

viability was assessed in 140 and 67 conditions respectively using three replicate pins per

plate. Overall, this resulted in an average of 9 replicates for each lincRNA and each condi-
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tion and many more for the control condition. This gave our screen decent power to detect

even subtle phenotypes (approximately 5% difference in growth) (Fig. 1.16C).

Standard QC implemented in pyphe-analyse was applied to the data, which includes

the removal of colonies with circularities above 0.85, data from colonies next to missing

grid colonies and the removal of negative and infinite values. Additionally, colony sizes of

0 were set to NA (as these likely originate from pinning errors). Entire plates were discarded

if the CV of the internal wild type control was >20% for growth data and >5% for viabil-

ity data. The experiment was done in 31 batches, spanning several months. This carries a

risk of batch effects. For normalisation purposes and to gauge the extent of batch-to-batch

variation, two standard conditions (rich YES media and minimal EMM media) were used

as control conditions and at least one of each was included in all batches. Although repli-

cates of control conditions within batches correlate more strongly than between batches,

the between-batch correlation is still much stronger than the correlation between different

conditions, ie the latter dominate the data (Fig. 1.16C).

1.3.1 Novel high-confidence phenotypes for 63 out of 141 lncRNA knock-outs

Using pyphe-interpret, I first looked for differences in growth between each lincRNA and

the wild type background in the two control conditions (Fig. 1.17A). Hits were called based

on a significance threshold of 0.05 after Benjamini-Hochberg correction (across all strains,

treating each condition separately) and an effect size threshold of abs(log2(mutant/wild

type)) > log2(0.05). This effect size threshold corresponds to the median CV of the dataset

and what we consider a biologically noticeable and relevant difference in growth (approxi-

mately 5%). In minimal media, 10 lincRNAs were associated with slower growth and one

with faster growth. In rich media, 5 lincRNAs were associated with slower growth and none

with faster growth. Colony redness analysis in the control conditions identified fewer hits

which form a subset of the growth hits (Fig. 1.17B). As effect sizes are generally smaller for

redness data, a threshold of abs(log2(mutant/wild type)) > log2(0.015) was used here. Two

lincRNAs showed higher redness scores, ie lower viability, on rich media and these had

been previously identified as being also slow growers (Fig. 1.17A). A single lincRNA has

a lower viability on minimal media. These results confirm our initial working assumptions

that lincRNA knock-outs have fewer and weaker phenotypes than coding genes. Indeed

many, if not all of these hits, would not have been picked with more traditional methods and

would be at most considered a weak phenotype. Furthermore, we could not identify any
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Fig. 1.17: Extensive screening reveals phenotypes for many lincRNAs. (A) Volcano plot illus-
trating differences in growth (approximated by colony area) of lincRNA knock-outs in the two
control conditions, rich YES media with phloxine B and minimal EMM media with phloxine B.
Thresholds used for hit calling are shown in red (padj < 0.05 and abs(log2(ratio))>log2(0.05)).
(B) Volcano plot illustrating differences in viability (approximated by colony redness) of lin-
cRNA knock-outs in the two control conditions, rich YES media with phloxine B and minimal
EMM media with phloxine B. Thresholds used for hit calling are shown in red (padj < 0.05
and abs(log2(ratio))>log2(0.015)). (C) Histogram showing the number of hits per lincRNA
across 140 conditions (not including the control conditions). Hits were called by comparing
the growth and viability of each lincRNA knock-out to that observed in the corresponding con-
trol condition, using the same thresholds as in A/B. (D) Histogram showing the number of hits
per condition across 67 conditions (not including the control conditions). (E) Analysis of con-
sistency of phenotypes obtained with different guide RNAs. For the vast majority of lincRNAs
considered a hit globally (grouping all data points from different knock-out strains), individ-
ual, distinct guide RNAs (usually two or three per lincRNA gene) show good agreement. Guide
RNAs are considered to be in agreement if all guide RNAs show a median effect size of >2%
(in the direction of the hit). Only in the minority of cases (24) does one or more of the guide
RNAs show no effect (≤ 2%) or an effect in the opposite direction. (F) Venn diagram showing
overlaps of hits between growth and redness data.
Panel F was prepared by Marı́a Rodrı́guez-López.
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essential lincRNAs (which would have resulted in failure to construct the mutant strain by

our method).

We next explored condition-specific growth effects using a total of 140 conditions com-

prising 55 distinct environmental factors (ie many drugs and toxins were applied at different

concentrations or media backgrounds). Effect sizes were calculated by taking the ratio of the

corrected colony size in the assay condition to the corresponding control condition, thereby

focusing on condition-specific effects and correcting for any baseline differences in growth.

Using identical thresholds and FDR correction as above, I identified 234 growth phenotypes

across all conditions, with 165 resistant and 69 sensitive phenotypes. 63 mutants (44.7%)

of lincRNAs has at least one hit (Fig. 1.17D). Most of these had exactly one hit while there

were only seven lincRNA genes which significantly altered growth in 5 or more conditions.

Just over half (75/145) conditions produced at least one hit (Fig. 1.17E), again with only a

small number of conditions producing 5 hits or more.

Hit calling was performed per lincRNA gene (not per individual knock-out mutant

strain). I analysed how well data from different guide RNAs agree for those considered a

hit globally (Fig. 1.17C). In the vast majority of cases (123 out of 180 hits associated with

lincRNA genes represented by at least two independent mutants), all individual guide RNAs

agreed and showed an effect size of 5% or more. In 33, all guide RNAs showed at least a

similar trend (>2% median effect size). Only in 18 cases one or more of the guide RNAs

showed no effect (<2%) and only in 6 cases was there one or more guide with an effect in

the opposite direction of the overall hit.

For approximately half of the conditions (67 out of 140), phloxine B was included in

the media and plates were also scanned in colour mode. Early batches did not include phlox-

ine B as these were done before this was fully established in the lab. Using the same thresh-

olds as in the control conditions, 25 (17.7%) lincRNAs showed significantly altered viabil-

ity in at least one condition, relative to the corresponding control condition (Fig. 1.17D).

A higher fraction of conditions than in the growth dataset produced at least one hit (46 out

of 67) (Fig. 1.17E). Overall, 98 condition-lincRNA pairs showed significantly altered vi-

ability. The majority of hits (84) in the redness dataset were resistant phenotypes (higher

viability) and 17 out of those were also fast growers (but none slow growers) (Fig. 1.17F).

Five condition-lincRNA pairs were also identified as low viability and slow growers. None

were fast growers with low viability, compatible with the expectation that colonies with
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Fig. 1.18: Clustering analysis integrates lincRNA and coding gene phenotypes. (A) Absolute
effect sizes for redness and size data of (non-essential) coding and lincRNA gene knock-outs.
Both libraries were phenotypes in parallel in the same format and conditions, so these data
are directly comparable. Coding gene knock-outs show stronger phenotypes compared to lin-
cRNA knock-outs. (B) Histograms illustrating median-centred, aggregated growth and via-
bility scores across all conditions and both gene types (lincRNAs and coding). The data was
discretised into three groups using the thresholds illustrated in red. Thresholds were chosen
symmetrically around 0 so that approximately 33% of datapoints in each dataset were classed
as non-zero. (C) Clustered heatmap of discretised phenotype profiles of lincRNA and cod-
ing gene knock-outs. Shown is data for 37 aggregated core conditions retaining the strongest
response across different stressor doses and 249 knock-out lines which showed at least 8 re-
sponses across all conditions. Hierarchical clustering was performed using the average method
and the Euclidean distance metric was used to quantify profile similarity. Genes were also
clustered by 4-means clustering which agreed very well with hierarchical clustering (first row
below top dendrogram). All except one k-means cluster contained both coding and non-coding
genes (second row from top). The data type (growth or viability) is shown in the first column
from the right.

many dead cells should grow slower and only two were slow growers with higher viabil-

ity. But the majority of hits was only found in either the redness or growth dataset, again

highlighting the complementary nature of these two approaches.

1.3.2 Analysis of patterns in knock-out phenotype profiles

In classic functional genomics approaches (eg Mülleder et al. (2016)) genes are grouped

into clusters and the function of unknown genes is extrapolated from that of known genes in

the same cluster. Since only very little is already known about lincRNA function, clustering

only lincRNA profiles will not result in novel functional insights (beyond the observation
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that specific sets of lincRNAs might have related functions). We therefore phenotyped 238

non-essential knock-out strains broadly covering different biological processes in parallel

with the lincRNA library. I analysed the phenotype profiles of these two groups of strains

together, with the goal of associating unknown lincRNAs with known protein-coding gene

functions. This multivariate approach relies on the global similarity of profiles and does not

require certainty about individual hits, so I only used effect sizes but not statistical signif-

icance for this analysis. For many environmental factors, the dataset contained repeats at

multiple doses and these were aggregated to a single value, retaining for each gene only the

strongest response across all dosages. The resulting value however was still computed as

the median across the approximately 9 measured repeats so the risk of accidentally ampli-

fying noise in the data is low. I furthermore filtered out conditions in which only a subset

of the mutants was phenotyped (for historical reasons, the strain library expanded while

phenotyping was already underway), resulting in 37 core conditions. As expected, coding

gene knock-out strains showed on average stronger phenotypes than lincRNA knock-outs

(Fig. 1.18A), so I discretised the data to make phenotype vectors of these two gene types

more comparable. For both the size and growth data, log2-transformed scores across the

entire dataset were median centred and discretised into three groups (low fitness, no re-

sponse, high fitness) using a threshold that results in approximately a third of the data being

non-zero (Fig. 1.18B). These thresholds were±log2(1.04) for size and±log2(1.02) for red-

ness. Genes with fewer than 8 non-zero responses across the 37 conditions were excluded

from further analysis, which left 249 mutants, 28 of which lincRNAs. A few (28) remain-

ing missing values in this dataset were 0-imputed and the dataset was clustered using two

different methods, hierarchical clustering using the average method and Euclidean distance

and k-means clustering with 4 groups. K-means clustering was performed in scipy (Virta-

nen et al., 2020) using the k-means++ initialisation method and 10 iterations with different

centroid seeds out of which the best is chosen. This remediates a key weakness of k-means

clustering where the final result depends strongly on the initial centroid position guesses.

Both clustering methods agreed very well (Fig. 1.18C), suggesting this is a real signal.

The k-means clusters were used for downstream analysis, because this resulted in

groups matching the visual expectation and cutting the dendrogram did not result in suitable

clusters. Three of the four clusters contained both lincRNA and coding genes. Cluster 1,

contained 32 coding and 6 non-coding genes, including many genes showing increased via-
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bility in stationary phase (31.3% of mutants in the cluster), increased resistance to chemical

(46.9%), and decreased cell population growth (63.5%). Cluster 2, containing 41 coding

and 7 non-coding genes, included long-lived mutants showing increased viability in nitro-

gen starvation (17.1%) and increased viability in stationary phase (ie glucose starvation,

17.1%). Cluster 3, containing 107 coding and 22 non-coding genes contained a set of lin-

cRNAs situated in the same genomics region. This raises the possibility that the observed

phenotypes are driven by cis effects. While this clustering is not fine-grained enough to

associate lincRNAs with specific molecular functions or biological processes, it shows that

at least a subset of lincRNAs is important for cellular physiology, potentially with regards

to stress resistance and longevity.

1.4 Discussion

Pyphe, a novel toolbox for data analysis pipelines for colony fitness screens, has enabled

the precise phenotyping of a new library of lincRNA knock-out strains. This was achieved

mainly through the implementation of current state-of-the-art normalisation procedures and

the use of complimentary colony viability phenotypes. The experimental design, together

with the low technical noise of our phenotyping pipeline allowed the detection of differ-

ences in growth as low as 5% with reasonable statistical power. Overall, we detect 351

unique hits, covering approximately half of the lincRNAs in the library. I believe this

represents a significant achievement, showing that these genes do generally indeed serve

biological roles. However, given the lack of (condition-specific) essentiality or even very

strong growth defects, these data indicate that lincRNA fine tune cellular phenotypes and

that cells on average depend on them less than on protein-coding genes. The performed

clustering analysis provided interesting insights and showed that a subset of lincRNA genes

shows similar phenotype patterns to coding genes. These lincRNAs, with the most and the

strongest phenotypes should naturally be prioritised for further studies. Unfortunately, the

clustering analysis did not provide clusters specific enough to annotate lincRNAs to par-

ticular cellular functions or GO terms. One reason for that is that only a small subset of

non-essential coding genes was included in the dataset, many of them with unknown func-

tion. If phenotype data for all coding genes were available, the specificity and power of

clustering would improve. The other problem lies in the nature of the data itself. Phenotype

profiles are overall very sparse and effect sizes small. This is consistent with the notion

that cellular growth is buffered and insensitive to many molecular perturbations (Poyatos,
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2020). The use of molecular phenotypes, such as gene expression or amino acid profiles

might therefore be a more suitable approach to generate data for these types of clustering

analyses (Uygun et al., 2016; Mülleder et al., 2016).

Nonetheless, I believe this dataset will be a valuable resource to the S. pombe com-

munity, serving as a starting point for other large-scale projects using the novel lincRNA

library as well as for more focused projects. It is well suited to derive hypotheses about the

function of specific lincRNAs or which lincRNAs might be important for a specific func-

tion (related to one of the conditions in the dataset). A key challenge for future studies will

be to decipher the molecular mechanism by which these lincRNAs exert their effect on the

phenotype. Cis-effects, where lincRNAs change the transcription of neighbouring genes,

are a likely contributor but the relative importance of cis and trans effects remains unclear

(Balarezo-Cisneros et al., 2020).



Chapter 2

A natural pyruvate kinase variant affects

growth and stress resistance in S. pombe

A well-established paradigm is that Crabtree-positive yeasts like S. pombe suppresses res-

piration in the presence of glucose and convert sugar to ethanol by fermentation. How-

ever, recent studies have highlighted the importance of respiration, even during growth on

glucose, and paint a more nuanced picture where cells balance the activity of both path-

ways according to their metabolic needs. I set out to investigate the genetic basis of this

respiration-fermentation balance, using a panel of S. pombe wild isolates. Treating it as a

complex, quantitative phenotype, genome-wide association linked the residual dependence

on respiration to a single nucleotide polymorphism in pyk1, S. pombe’s only gene encoding

a pyruvate kinase. The mutation was found to alter glycolytic flux, with the high-activity

isoform leading to more fermentation and faster growth. This was associated with wide-

ranging changes in the transcriptome and proteome, as well as other phenotypes such as

chronological lifespan and altered resistance to a range of chemical compounds. Most

notably, the high-activity isoform drastically lowers the resistance to oxidative stress and

might therefore represent an ecological trade-off between growth and stress resistance. Im-

portantly, the S. pombe standard lab strain was found to carry the low-activity isoform,

which is the minor allele among wild strains and not found in other known eukaryotes. This

metabolic particularity of the reference strain, and the associated phenotypes, could have

important implications for future research using this key model organism.

2.1 Introduction

Glycolysis is an ancient metabolic pathway (Ralser, 2018) and the backbone of carbon

metabolism in most organisms and cell types. While the involved metabolic intermediates,
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the sequencing of reactions and the catalysing enzymes are the topic of much of the classical

biochemical literature (Barnett, 2003), the regulation of glycolysis and its integration into

the systems context remain active areas of investigation (eg Hackett et al. (2016); Zelezniak

et al. (2018)). Glycolysis provides energy in the form two net ADP → ATP conversions

and glycolytic intermediates feed into several other key pathways. One of these, the pen-

tose phosphate pathway (PPP), generates pentoses for nucleotide biosynthesis and reducing

equivalents in the form of NADPH. Simultaneously, many amino acids are produced from

glycolytic intermediates (Ljungdahl and Daignan-Fornier, 2012). The end-product of gly-

colysis is pyruvate which in yeast is further metabolised by two pathways, the mitochondrial

TCA cycle which provides reducing equivalents for energy production by oxidative phos-

phorylation (‘respiration’) or alternatively fermentation to form ethanol. Ethanol is secreted

from cells as a waste product, referred to as overflow metabolism (Paczia et al., 2012). This

makes glucose utilisation by fermentation appear inefficient, as more than ten times as many

ATP molecules can be generated by full oxidation of glucose through the TCA cycle and

the electron transport chain (Rich, 2003).

Respiration and fermentation therefore represent two distinct modes of carbon

metabolism and the two are often antagonistically regulated (Molenaar et al., 2009; Takeda

et al., 2015). Some cells prefer fermentation over respiration in glucose-replete conditions,

even if oxygen is available. This is (somewhat confusingly) called aerobic glycolysis (Crab-

tree, 1929) and is observed in microbial species which are classified as Crabtree-positive.

Analogously, mammalian cancer cells generally exhibit aerobic glycolysis, which is known

as the Warburg effect (Warburg, 1927). In microbes, aerobic glycolysis is generally asso-

ciated with fast growth and it is thought to have been selected for based on its ability to

provide high ATP production rates (Pfeiffer and Morley, 2014). However, the mechanistic

explanation for how aerobic glycolysis can support faster growth compared to respiration

remains an active area of investigation. Most likely, the key lies in the observation that

the molecular machinery required to catalyse both pathways are vastly different and under

heavy cellular constraints. Respiration requires many more individual proteins and protein

complexes. These in themselves are costly to produce, making energy production by fer-

mentation the overall more efficient allocation of resources (Basan et al., 2015; Mori et al.,

2019). Alternatively, or simultaneously, respiration requires large complexes integrated

into the mitochondrial membranes. Membrane space restrictions will therefore represent an
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upper limit to cellular respiration flux (Andersen and von Meyenburg, 1980; Zhuang et al.,

2011; Vazquez and Oltvai, 2016; Szenk et al., 2017). However, S. cerevisiae and S. pombe

cells actively repress respiration genes (and many other genes) in glucose-rich conditions,

known as glucose repression or carbon catabolite repression (Ronne, 1995; Vassiliadis

et al., 2019), which is somewhat inconsistent with this ‘membrane real-estate hypothesis’.

The classical dogma in which Crabtree-positive species, such as the model yeasts S.

pombe and S. cerevisiae, solely rely on fermentation is recently replaced by a more nuanced

understanding which considers the simultaneous roles of central carbon metabolism in en-

ergy (ATP) generation and provision of biosynthetic intermediates. A key observation in

this direction is that Crabtree-positive yeast species still require some respiration activity

for optimal growth on glucose. S. cerevisiae can grow without mitochondrial genome (and

thus respiration) but this results in a growth defect, known as petite phenotype (Ephrussi,

B. and Hottinguer, H. and Tavlitzki, J., 1949). S. pombe cannot normally grow without its

mitochondrial genome (Haffter and Fox, 1992; Heslot et al., 1970; Chiron et al., 2007). But

also in this species, blocking the electron transport chain (with the antimycin A) has been

shown to lead to a moderate growth defect on rich media and a strong growth defect on min-

imal media with ammonium as the sole nitrogen source (Malecki et al., 2016). We recently

traced down this growth defect to cells becoming unable to produce amino acids derived

from alpha-ketoglutarate (Malecki et al., 2020) and a similar link has been observed in S.

cerevisiae (Druseikis et al., 2019). A more nuanced picture therefore emerges in which cells

finely balance respiration and fermentation in consideration of efficient energy production

and required metabolic building blocks.

I set out to investigate the genetic basis of this respiration-fermentation balance by

treating it as a complex, quantitative phenotype, approximated as the amount of residual res-

piration under glucose-rich conditions. Based on our collection of wild S. pombe isolates

(Jeffares et al., 2015), a genome-wide association study (GWAS) identified a miss-sense

variant in the pyk1 gene, encoding S. pombe’s sole pyruvate kinase (PYK). PYK catalyses

the conversion of phosphoenolpyruvate (PEP) to pyruvate, the final step of glycolysis. It

has been previously described that PYK flux is linked to respiration/fermentation balance

(Yu et al., 2018; Grüning et al., 2011), but the ecological relevance and downstream impact

of this relationship has not been described. Using CRISPR/Cas9-engineered allele replace-

ment strains, the impact of this variant on metabolome, transcriptome, proteome, physiol-
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ogy and fitness is dissected in detail. The allele found in the minority of strains, including

the standard laboratory strains used by all researchers, is found to lower PYK activity and

thereby glycolytic flux. This leads to a wide-ranging reconfiguration of gene expression and

results in slower growth but increased resistance to several stresses. This work uncovers a

metabolic peculiarity of the sole set of reference strains used throughout the S. pombe com-

munity. Furthermore, it suggests an adaptive role of the pyk1 mutation in regulating stress

resistance and highlights the general importance of central carbon metabolism for intially

seemingly unrelated phenotypes such as stress resistance.

2.2 Results

2.2.1 GWAS implicates pyk1 in regulation of ‘Crabtreeness’

As outlined above, the Crabtree effect is usually regarded as being of qualitative nature, with

species either classified as Crabtree-positive or -negative. S. pombe is classed as Crabtree-

positive but depends on respiration to some degree, which challenges this binary classifi-

cation principle. I wondered whether there could be intra-specific differences in the ‘Crab-

treeness’ within wild S. pombe isolates and if the Crabtree effect could thereby instead be

viewed as a quantitative, complex phenotype. This can be quantified practically by mea-

suring the extent to which strains still respire even though they are growing on glucose-rich

media (residual respiration). Respiration rates of yeast cultures have been measured in vari-

ous ways in the laboratory, usually in the form of oxygen consumption rates. Our collection

of wild strains (Jeffares et al., 2015) comprises over 100 strains which required a technique

that can be applied in reasonably high throughput. I therefore decided to use a proxy read-

out: A strain grown on glucose media containing an inhibitor of the respiratory chain will

grow slower than the same strain on media without the inhibitor, and crucially, the magni-

tude of that growth difference reflects the dependence on residual respiration. Antimycin

A is a suitable inhibitor which blocks ubiquinol-cytochrome c oxidoreductase (Kim et al.,

1999). We have previously used antimycin in this species and showed that the standard

laboratory strain 972 h- has a moderately reduced growth rate and biomass yield upon treat-

ment (Malecki and Bähler, 2016; Malecki et al., 2016). This proxy readout can be obtained

from a colony size assay, which I implemented using the pyphe toolbox (Kamrad et al.,

2020b).

The fitness of 154 strains was determined on rich glucose (YES) media with and with-

out antiymycin (Fig. 2.1A). The wild strain library was re-arranged to conform to the recom-
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Fig. 2.1: Quantification of antimycin resistance of S. pombe wild strains. (A) Schematics of
phenotyping experiment. 2 plates were prepared by randomly arranging the 159 wild strains
in triplicates around a grid 96 colonies of the control strain 972. These plates were copied
onto media with and without 500µg/L antimycin A and scanned after rapid growth had ended.
Colony sizes were quantified and corrected for spatial effects using the reference grid. After
quality control (see Materials and Methods), resistance scores for each strain were calculated
by averaging corrected colony sizes in each condition and taking the ratio of media with versus
without antimycin A. (B) Scatter plot showing average corrected colony sizes for each strain
on media with versus without antimycin A. Both variables are strongly correlated (R2 = 0.83),
indicating that the strongest factor explaining the observed fitness on media with antimycin is
not antimycin resistance but rather basal growth levels in the given setting. The equation of the
fitted line is y = 1.27x - 0.02. Due to the nature of the normalisation procedure, the standard lab
strain has a fitness of 1 in both conditions. The slope of the fitted line is not equal to 1 (black y=x
line) due to the control strain falling into different areas of the distribution in the two conditions.
(C) The basal growth difference can be accounted for by taking the ratio of both variables, which
yields the antimycin resistance score. After forming the ratio, strains show a range of resistance
scores which are not correlated with basal growth. (D) Histogram of resistance scores which
are relative to the resistance of the standard lab strain 972 marked with a red line. The mean
resistance across all strains is 1.25±0.15.
Panel B and D are reproduced with minor changes from Kamrad et al. (2020a) which is published
under a CC-BY license.
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mended pyphe format with 384 colonies per plate. Individual strains were arranged in tripli-

cates around a grid of 96 control strain (972) colonies with additional interspersed controls.

Colony sizes on media with and without antimycin were corrected for within- and between-

plate variation using the reference grid correction and averaged for each strain. Additional

quality control filters were applied to filter out spurious data (see Materials and Methods).

Fitness on media with and without antimycin was correlated (R2 = 0.83, Fig. 2.1B). This

indicates that a large (in this case uninteresting) component of the colony size is explained

by a general growth effect, reflecting how well strains perform in the given (laboratory) set-

ting. Antimycin resistance was determined as the ratio of the mean corrected colony size in

medium with versus without antimycin, which is not correlated with basal fitness on YES

(Fig. 2.1C). By the nature of the normalisation procedure, where fitness is reported relative

to the control strain, the standard lab strain 972 had a resistance score of 1. But perhaps

somewhat surprisingly, it ranked among the most susceptible strains (rank 10 of 154). The

mean resistance score across all strains was 1.25, but with a substantial range of values

(standard deviation = 0.15) (Fig. 2.1D).

Next, I investigated if the observed range of antimycin resistance scores across differ-

ent wild isolates could be due to the genetic differences between the strains. The collec-

tion of strains contains considerable genetic diversity, with some lineages having diverged

approximately 2000 years ago and a total of approximately 180,000 called genomic vari-

ants (Jeffares et al., 2015). Narrow-sense heritability (h) is a popular measure that can be

computed from a matrix of genomic variants and the phenotype values and that reflects

the proportion of the phenotypic variance explained by additive genetic effects (Zuk et al.,

2012). The estimated h for antimycin resistance was 0.54. This is substantially higher than

for most of the 223 phenotypes previously reported, where the median was 0.29 (Jeffares

et al., 2015). I next identified individual variants statistically linked to the phenotype using

a genome-wide association study (GWAS) (Fig. 2.2A). Variants were called from published

whole-genome shotgun sequencing data (Jeffares et al., 2015) using freebayes and only

high-quality, suitable variants (118,527 in total) were used for GWAS (Materials and Meth-

ods).

GWAS was performed by mixed-model regression, using a linkage-disequilibrium ad-

justed kinship matrix to correct for population structure. P-values for each variant are shown

in Fig. 2.2B. The small size of our strain collection limited the statistical power of associ-
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Fig. 2.2: GWAS identifies potentially causal variants. (A) Small genomic variants were called
using freebayes and filtered for high-quality variants with a minor allele frequency above 5%.
These were used to construct a kinship matrix in LDAK5 and a linear mixed model regression
was performed on normalised phenotypes (transformed to normal shape, centred around 0 and
scaled to variance 1) using LDAK5. (B) Statistical significance of each variant plotted against
genomic position. (C) Additionally to the effect size, the p-value depends on other factors, such
as the minor allele frequency. Therefore, besides statistical significance (y-axis), the size of
the model coefficient (x-axis) was also considered during interpretation of GWAS results. To
further narrow down on promising hits, only variants with predicted moderate or severe impact
(obtained with SnpEFF) were considered. One of the highest scoring variants is a miss-sense
mutation in pyk1.
Panel C is reproduced with minor changes from Kamrad et al. (2020a) which is published under
a CC-BY license.

ations. The predicted variant impact, obtained with SnpEff (Cingolani et al., 2012), was

therefore used to to prioritise hits for follow-ups based on other criteria (Fig. 2.2C). Among

the top-100 most strongly associated variants, were only 8 with moderate or high predicted

impact. 2 of those were located in genes with no functional annotation in PomBase (Wood

et al., 2012) at the time, and another 2 were located in S. pombe specific genes, wtf16 and

wtf8 (Hu et al., 2017). The remaining 4 variants were located in in pfl5, encoding a cell-

surface glycoprotein, jac1, encoding a mitochondrial 2Fe-2S cluster assembly co-chaperone

and ubp9, encoding a ubiquitin C-terminal hydrolase. Particularly striking was an associ-

ated SNP (p=0.00076) in a gene encoding the key glycolytic enzyme Pyk1. The T→C

variant at the genomic locus I:3845516 that leads to a T→A amino acid substitution at

residue 343 of the protein sequence.

Strains with the non-reference allele (‘A-allele’) showed a 15% higher median resis-
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Fig. 2.3: An unusual and rare miss-sense variant in pyk1. (A) Antimycin resistance of 154 strains
grouped by pyk1 allele. Strains with a cytosine at this locus (which results in an alanine residue in
the protein sequence) tend to have a higher resistance score than strains with a thymine (which
results in a threonine residue in the protein). (B) Protein sequence alignment of the region
surrounding the mutation of interest. Darkness of shading reflects degree of conservation at the
position. The S. pombe reference sequence is the only protein with a T in position 343, out of
25 homologues from distant eukaryotes and 3 close homologues from the Schizosaccharomyces
genus. (C) Phylogenetic analysis of the pyk1 gene and immediately neighbouring regions with
strains carrying the T- and A-allele in blue and orange respectively. Strain identifiers are the
same as in Jeffares et al. (2015). The heterothallic (JB22) and homothallic (JB50) varieties of
the standard lab strain are underlined and bold. (D) Allele frequency at the locus across all wild
strains.
All panels are reproduced with minor changes from Kamrad et al. (2020a) which is published
under a CC-BY license.
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tance compared to strains carrying the reference allele (‘T-allele’) (median resistance scores

of 1.28 versus 1.07, Fig. 2.3A). The S. pombe reference genome, unlike other eukaryotes,

only contains a single gene encoding a PYK enzyme. I also found no evidence for additional

PYK enzymes while searching published de novo assemblies (Jeffares et al., 2015) for Pyk1

homologues using tblastn (Camacho et al., 2009). We (Jan Grossbach and I) investigated the

evolutionary conservation of the region surrounding the mutation of interest and collected

homologous protein sequences from three other members of the same genus and a range of

other eukaryotes. Aligned sequences were strongly conserved (45-93% agreement with the

consensus sequence called from the alignment). The 6 residues preceding and 2 residues

following the position of interest were especially strong conserved, with only Arabidopsis

thaliana deviating from the consensus (Fig. 2.3B). This region is described as part of the

binding pocket for one of the substrates, ADP (Schormann et al., 2019). Crucially, the S.

pombe Pyk1 sequence, which is based on the reference genome carrying the T-allele, is the

only one with a threonine in position 343. Together, these observations led us to hypothe-

sise that the mutation affects the protein function which result in a lower ‘Crabtreeness’ of

the standard lab strain and other strains carrying the unusual T-allele.

Next, I investigated the distribution of A- and T-alleles within the S. pombe wild strain

collection. The reference T-allele was the minor allele found in 18 of 161 strains (Fig. 2.3D).

I constructed a phylogenetic tree from bi-allelic SNPs in the genomic region containing the

pyk1 gene (± 500bp up- and down-stream) using the neighbour joining method (Fig. 2.3C).

For several sets of strains, members were indistinguishable based on bi-allelic SNPs from

that region and therefore grouped in the same leaf. Overall, four unique sequences carried

the T-allele and these were found in two highly distant lineages. The T-allele is also found in

distantly related lineages considering a whole-genome consensus tree, which can be found

in Jeffares et al. (2015). A simple and reasonable explanation is that the T-allele arose twice

independently in these lineages from an ancestral A-allele.

The strain collection contains some meta-data describing when and where strains were

isolated (Jeffares et al., 2015). I wondered whether the ecological niches from which strains

carrying the T-allele (‘T-strains’) were isolated could give any indication regarding its func-

tion. Out of the 18 strains, six were isolated from Europe, one from Asia and one from

Australia. For the remaining 10, the geographical origin is unknown. S. pombe is usu-

ally isolated from human-created but non-industrialised sugar-rich, spontaneous fermenta-
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tions (Jeffares, 2018). Accordingly, the predominate substrate of T-strains were fermenting

grapes. A single strain was isolated from lychee fruits and another from glace syrup. Nei-

ther the geographical origin nor the niches from which they were isolated suggest clear

hypotheses for why these strains should have different respiration dependence or glycolytic

metabolism. However, these niches and locations do not necessarily reflect past selection

regimes, as the global dispersal of S. pombe is relatively recent (Jeffares et al., 2015) and

the natural origin of strains found in these fermentations is unclear.

2.2.2 Metabolomic analysis of allele swap strain reveals lower PYK activity

in T-strain

Next, we (Marı́a Rodrı́gues-López, Jan Grossbach, Michael Muelleder, Valentina Capalletti

and I) characterised the impact of the mutation on metabolism and gene expression. Wild

strains are of limited use for studying the impact of this mutation. Every strain contains

thousands of mutations and displays different growth behaviours (eg flocculation) and mor-

phology, making it impossible to isolate the effect of the pyk1 allele from effects of and

interactions with the genetic background. Using CRISPR/Cas9 gene editing (Rodrı́guez-

López et al., 2016), allele replacement strains were constructed in the standard laboratory

strain h- and h90 backgrounds. The standard laboratory strains 972 h- and 968 h90 are

from here also referred to as T-strain and the allele replacement strains with the Pyk1T 343A

mutation as A-strains. Three successful transformants were kept and used as biological

replicates. This method allowed us to manipulate a single base pair ‘seamlessly’ in the

genome without introducing additional genetic perturbations, such as resistance cassettes,

which could confound results.

A targeted metabolomics workflow based on liquid chromatography and tandem mass

spectrometry (LC-MS/MS) was used to quantify key central carbon metabolism intermedi-

ates covering glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle,

redox co-factors and adenine nucleotides. Metabolites were quantified using external cali-

bration for 9 replicates of the T-strain and 8 replicates of the A strains. I corrected metabolite

concentrations in each sample for the OD of the culture at the time of sampling. 9 cul-

tures were sampled twice and processed as technical duplicates. Across all metabolites and

technical replicate pairs, OD-corrected concentrations correlated extremely well (r=0.93,

Pearson correlation, Fig. 2.4A). The median CVs across all metabolites were 0.15 and 0.18

in the T- and A-strain respectively (Fig. 2.4B). indicating that the sample preparation and
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Fig. 2.4: Metabolomic profiling of allele swap strain by LC-MS/MS. (A) From 9 cultures, 2
aliquots were harvested and prepared in parallel as technical replicates. Shown are all individ-
ual OD-corrected metabolite measurement pairs across the 9 cultures. The overall correlation
is 0.93, indicating that our sample preparation and quantification workflow is robust and re-
producible. (B) Distribution of CVs obtained from biological replicates for individual metabo-
lites. The median CV was slightly higher for the A-strain compared to the T-strain (0.18 versus
0.15). (C) Heatmap and hierarchical clustering of metabolome data of T-and A-strains. For each
metabolite, OD-corrected concentrations were divided by the median of the T-strain and log2
transformed. This corrects for general abundance differences between metabolites but preserves
the relative variation for each metabolite. To aid visualisation, the colour bar was clipped at -2.
Euclidean distance and the average method were used for clustering which clearly distinguishes
strains based on their pyk1 allele (shown in first row, orange and blue denote A- and T-strain
respectively).
Panel C is reproduced with minor changes from Kamrad et al. (2020a) which is published under
a CC-BY license.
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quantification methodology performed well. Unsupervised clustering of the dataset clearly

distinguished strains based on their pyk1 allele (Fig. 2.4B), indicating that the allele-swap

has a marked impact on the overall metabolic profile. Importantly, the three independent A-

strain transformants (denoted A,B and C) did not cluster together, which would have been

indicative of inconsistencies during mutagenesis (such as off-target effects).

The two most striking difference in the metabolic profile of the A-strain com-

pared to the T-strain is the strong depletion of glycolytic intermediates upstream of PYK

(Fig. 2.4C). Phosphoenolpyruvate levels were only 25.9% of the T-strain level, for 2- and

3-phosphoglyceric acid (which were indistinguishable by our analytical method) the same

value was even lower at 12.7% (Fig. 2.5A, pad j=8.7x10−8 and 3.7x10−6, Welch’s t-test,

corrected for multiple testing across the entire metabolomics dataset with the Benjamini-

Hochberg method, t-tests are unpaired and two-sided throughout this chapter). This deple-

tion could be explained by an increased activity of Pyk1, which would be consistent with

the earlier observations regarding the location of the mutation in the protein structure. It has

long been known that S. pombe has lower PYK activity than S. cerevisiae (Nairn et al., 1995,

1998), but this of course refers to the standard lab strain which carries the T-allele. I tested

directly whether the A-allele enabled higher PYK activity using an enzyme activity assay.

In this assay, previously used by others (Gehrig et al., 2017), the PYK reaction (for which

the substrates are supplied in the buffer) is coupled to the reduction of pyruvate to lactate (by

purified lactate dehydrogenase, which is supplied in excess). For every molecule of pyruvate

produced, a molecule of NADH (also contained in the buffer) is consumed and this decrease

in concentration can be followed colourimetrically by absorption measurements at 340nm

(Fig. 2.5B). NADH concentration timecourses were recorded for 3 biological replicates of

both strains, each measured in technical duplicate assays (Fig. 2.5C). After determination of

slopes of each trace, blank subtraction and averaging of the technical repeats, a 87% higher

mean activity was obtained for the A-strain (Fig. 2.5D, p=0.0072, Welch’s t-test). The quan-

titative absolute values should not be over-interpreted as activity will depend in the details

of the buffer composition and activity in the assay does not necessarily equal activity in vivo.

For example, the enzyme might become activated or inactivated during lysate preparation.

To specifically prevent the inactivation of Pyk1 by oxidation, DTT was included in the lysis

buffer. Furthermore, this single result is not a thorough enzymological characterisation of

the A- and T-proteins, which would have required purified proteins. But together with the
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Fig. 2.5: The A-strain features higher PYK activity. (A) Metabolomic analysis shows a strong de-
pletion of glycolytic intermediates just upstream of Pyk1. Phosphoenolpyruvate levels and 2-/3-
phosphoglyceric acid levels were 25.9% and 12.7% of the levels of the A-strain. (pad j=8.7x10−8

and 3.7x10−6, Welch’s t-test). (B) PYK activity in strains was measured using a lactate dehy-
drogenase (LDH) coupled photometric assay. Cell lysate is added to a pH-buffered reaction mix
which contained metabolites and purified LDH (green) as well as potassium and magnesium
ions. The produced pyruvate is then reduced to lactate by LDH which is present in excess which
results in equimolar consumption of NADH (the concentration of which is observable through
absorbance measurements at 340nm). (C) NADH concentration traces obtained for 3 biological
replicates of both strains, each measured in technical duplicate assays. (D) Lines were fitted
to each trace, blank-subtracted and the two technical repeats were averaged. Activities corre-
spond to the average slope divided by the OD of the culture at the time of sampling. Shown
are mean OD-corrected PYK activities in lysate of both strains (± standard deviation), based on
data shown in (C).
Significance keys: *p < 0.05, **p < 0.005, ***p < 0.0005 (Welch’s t-test). Panel A and D were
reproduced with minor changes from Kamrad et al. (2020a) which is published under a CC-BY
license.
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Fig. 2.6: Evidence for redox status differences in allele swap strain. (A) Energy charge of T-
and A-strains calculated from concentrations of adenine nucleotides. (B) Ratio of reduced to
oxidised redox co-factors, grouped by pyk1 allele. (C) Abundance of reduced glutathione.
Significance keys: *p < 0.05, **p < 0.005, ***p < 0.0005 (Welch’s t-test). All panels were
reproduced with minor changes from Kamrad et al. (2020a) which is published under a CC-BY
license.

metabolomics data, it is strong evidence that flux through Pyk1 is considerably lower in the

T-strain compared to the A-strain.

The metabolomic data also enabled an assessment of cellular energy and redox status.

Cellular energy charge, defined as

EC =
[ATP]+ 1

2 [ADP]
[ATP]+ [ADP]+ [AMP]

by Atkinson and Walton (1967), was 4.7% higher in the A-strain (Fig. 2.6A, p=0.002,

Welch’s t-test). Overall similar ranges have been reported for other organisms (De la

Fuente et al., 2014). Reduced and oxidised isoforms were measured for NAD(H), NADP(H)

and L-glutathione and we generally observed a higher ratio of reduced to oxidised forms

(Fig. 2.6B). For NAD(H) and NADP(H) this difference was significant (p=0.0001 and

p=0.024 respectively, Welch’s t-test), but it was not for glutathione (p=0.289, Welch’s t-

test). Additionally, a significant increase in the concentration of reduced glutathione was

detected in the A-strain (Fig. 2.6A, padj=0.015, Welch’s t-test). These ranges of observed

values agree with the paradigm that NAD(H) exists primarily in the oxidised form in order

to provide electron acceptors to metabolic reactions, while the NADP(H) is predominantly

reduced to serve as electron donor for anabolic reactions and the anti-oxidant response

(Blacker and Duchen, 2016). The latter has been shown to be limiting when cells are subject
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to oxidative stress as it provides reducing equivalents for the glutathione-, peroxiredoxin-

and thioredoxin-dependent reduction systems (Vivancos et al., 2006; Drakulic et al., 2005;

Veal et al., 2014; Carmel-Harel and Storz, 2000). Limitations of this experiment include

the inability to distinguish between different sub-populations of the co-factors (Sun et al.,

2012), eg located in different cellular compartments, and the danger of samples oxidising

during sample preparation (Lu et al., 2018). So while the absolute quantification of redox

states is possibly not exact, the relative differences are most likely real, as we made every

effort to avoid systematic biases by randomising and blinding sample preparation and acqui-

sition. Overall, this analysis suggests that the T-strain could be subject to more (presumably

endogenous) oxidative stress than the A-strain.

2.2.3 Gene expression analysis reveals system-wide reconfiguration of growth

programmes

In order to further characterise the cellular response to changed glycolytic flux, transcrip-

tomes of both strains were characterised by RNA-seq. This analysis was done by Jan Gross-

bach, documented in detail in Kamrad et al. (2020a), and is only briefly summarised here.

A total of 7750 transcripts, which included non-coding RNAs, were quantified for five bio-

logical repeats per strain. While pyk1 expression levels were unaltered, a total of 960 tran-

scripts were found to be differentially expressed at a false discovery rate (FDR) of <10%

(Fig. 2.7A). Gene ontology (GO) terms significantly over-represented in the set of differ-

entially expressed transcripts included mitochondrial respiration (down in the A-strain) and

ribosome biogenesis (up in the A-strain) (Fig. 2.7B). The transcriptome response showed

significant overlaps (in terms of sets of significantly affected genes) with that obtained dur-

ing TORC1 inhibition (data from Rallis et al. (2013), p=6.1x10−12, Fisher’s exact test) and

oxidative stress (data from Chen et al. (2003), p=2.8x10−68, Fisher’s exact test, Fig. 2.7C).

The increased oxidative stress likely originates from higher respiration activity in the T-

strain, a major source of endogenous reactive oxygen species, and which is coupled to an

upregulation of cellular anti-oxidant systems (Grüning et al., 2011). Overall, these data in-

dicate that the A-strain with the ‘fixed’ Pyk1 respires less and executes a cellular programme

geared towards proliferation.
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Fig. 2.8: Higher glycolytic flux results in faster growth and less respiration. (A) The A-strain
has higher levels of fructose 1,6-bisphosphate, the levels of which are positively correlated with
glycolytic flux. This data is part of the metabolomic dataset (Fig. 2.4; n=8 for A-strain, n=9 for
T-strain). (B) Growth curve on linear (left) and logarithmic scale (right) based on OD measure-
ments at 600nm. Three biological repeats of each strain where inoculated at the same OD and
grown for eight hours. (C) Glucose uptake over 8 hours of growth (same cultures as in B) is sig-
nificantly higher in the A-strain, even when corrected to final biomass. Glucose concentrations
in the media at the beginning and end of the experiment were determined using a colourimetric
assay kit. (D) Respiration rate is lower in the A-strain. The rate of decrease in oxygen saturation
in exponentially growing cultures in rich YES media was measured with an amperometric probe.
Shown are OD-corrected rates for 3 biological replicates of each strain, measured in technical
duplicates. (E) Biomass yield (final dry biomass divided by the mass of glucose per volume of
media) is significantly higher in the T-strain (3 biological replicates each).
Significance keys: *p < 0.05, **p < 0.005, ***p < 0.0005 (Welch’s t-test). All panels were
reproduced with minor changes from Kamrad et al. (2020a) which is published under a CC-BY
license.
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2.2.4 Higher glycolytic flux in the A-strain enables faster growth with less

respiration

Another key finding from the metabolomic data included increased levels of fructose 1,6-

bisphosphate (F16BP) in the A-strain (fold change=1.35, pad j=0.015, Fig. 2.8A). F16BP

is an example of a flux-signalling metabolite (Litsios et al., 2018) and its concentration is

known to reflect glycolytic flux in several yeast species (Christen and Sauer, 2011; Hu-

berts et al., 2012). Together with the gene expression data, specifically the upregulation of

ribosome biogenesis, this strongly suggests that the A-strain grows faster, ie has a lower

population doubling time. This was confirmed by measuring biomass (by OD600) every

two hours over six hours of exponential growth for three biological replicates of each strain

(Fig. 2.8B). This data was well described by an exponential doubling pattern (linear on a

log2-scale) and doubling times were determined by fitting lines and taking the inverse of

the slope. The A-strain showed a 4.7% decrease in doubling time: 1.85h down from 1.94h.

The value for the standard lab strain (T-strain) was already somewhat lower than what has

been previously reported by Petersen and Russell (2016) in the same conditions (2h 10min),

but this is in the expected range of variation among laboratories. I furthermore confirmed

the higher glycolytic flux in the A-strain with colourimetric glucose concentration assays on

media at the beginning and after eight hours of growth. The A-strain showed significantly

higher depletion of the media, ie higher glucose uptake, even when normalised to the final

OD (Fig. 2.8C).

The gene expression data indicates reduced mitochondrial respiration activity in the A-

strain and I confirmed this with oxygen uptake rate measurements using an amperometric

probe (see Materials and Methods). The A-strain showed indeed a 35% lower rate in the

OD-corrected decrease in oxygen saturation of the media over time (Fig. 2.8D, ratio of

means = 0.65, p = 0.0002, Welch’s t-test, three biological replicates, each measured in

technical duplicates). Energy production by mitochondrial respiration is far more carbon

efficient then energy production by fermentation and it is therefore probable that the T-

strain will show a higher growth yield when the media is exhausted of glucose. This was

tested by determining dry biomass of cultures after 24h of growth which confirmed a higher

final biomass of the T-strain. The biomass conversion yield (final dry biomass divided by

the mass of glucose per volume of media) was 10.38%±0.14% for the A-strain and with

10.88%±0.19% for the T-strain (p=0.02, Welch’s t-test, three biological replicates each,
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Fig. 2.8E). Overall, these data establish that the unusual T-allele found in the standard lab

strain has a strong inhibitory effect on glycolytic flux and growth in rich YES media at 32°C,

the condition used most widely by S. pombe researchers. Cells respond to this flux limitation

by upregulating mitochondrial respiration which slightly increases carbon efficiency and

final biomass.

So why is the T-allele found and maintained in a significant fraction of wild strains?

Could there be an adaptive role that is not captured by growth in optimal, nutrient-rich lab-

oratory conditions? A possibility is that the T-allele provides a growth advantage on some

other carbon and nitrogen sources. I first estimated growth rates on 12 different carbon

sources in 4 different backgrounds: with ammonium or yeast extract as nitrogen source,

and with or without an additional 0.1% glucose. Such a small amount of ‘priming’ glucose

is usually included for S. pombe when working with non-preferred carbon sources in order

to buffer the transition shock between the glucose pre-culture and the main culture. This

resulted in 48 unique carbon source regimes, in which each strain was tested in quadrupli-

cates. The heterothallic strains with h- mating type were used for these experiments which

cannot mate as they normally would in some of the nutrient poor conditions. Growth curves

were recorded in a plate reader and maximum slopes extracted with pyphe-growthcurves

(Kamrad et al., 2020b) (Fig. 2.9A). Glucose, S. pombe’s preferred carbon source, supported

the fastest growth for both strains and, as seen before in the precise, low-throughput growth

experiments (Fig. 2.8B), the A-strain was found to grow faster. When ammonium is pro-

vided as nitrogen source instead of rich yeast extract, both strains grew slower (as expected)

and the growth difference decreased. In minimal media, cells have increased biosynthetic

requirements. Specifically, the synthesis of several amino acids requires TCA cycle inter-

mediates and thereby active respiration (Malecki et al., 2020). So presumably, the slower

growth makes the upper limit to glycolytic flux imposed by the T-mutation less relevant and

both strains respire to some degree. On non-preferred carbon sources both strains had much

lower growth rates and there was no observable difference between the strains.

Using a similar approach, I tested for growth differences on a wide range of nitrogen

sources, this time relying on commercial assay plates with pre-loaded compounds (Biolog

PhenotypeArrays) (Fig. 2.9C). The 95 nitrogen sources tested included amino acids, sugar-

amines, di-peptides and various other small organic compounds. Strains were measured

in a single replicate, making the data somewhat less reliable than for the carbon source
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screen. Two conditions showed a large difference between the two strains, with the A-strain

growing better on L-phenylalanine as sole nitrogen source and the T-strain growing better

on L-cysteine. Both hits were followed up with spot assays which confirmed the growth

difference on phenylalanine (Fig. 2.9D). The hit on cysteine could not be validated and

therefore is almost certainly a false positive. The scope of these two datasets was as wide

as feasible, even though of course not all possible nutrients and combinations thereof could

be tested. While containing largely negative results, these data importantly suggest that the

T-allele does not provide an adaptive advantage for growth on specific nutrient sources, as

would be plausible for a mutation in a key glycolytic enzyme. This raises the question if

the pyk1 locus affects other cellular traits, not in the closest sense related to metabolism.

2.2.5 The pyk1 locus affects resistance to various stresses

Using spot assays, I first confirmed the initial GWAS hit and showed that the A-strain is

more resistant to antimycin A (Fig. 2.10). In a complementary system in budding yeast,

it has shown that reduced PYK activity and increased respiration triggers an upregulation

of the anti-oxidant response via the PPP (Grüning et al., 2011). In line with this -and the

Fig. 2.9 (preceding page): Growth of T- and A-strains on different carbon and nitrogen
sources. (A) Overview of experimental workflow. Liquid cultures of both
strains were grown in flasks to mid-exponential phase and then diluted into
multi-well plates containing different carbon sources, with either ammonium
or yeast extract as nitrogen source, and with and without 0.1% priming glu-
cose. Growth was monitored by OD600 measurements in a plate reader and
the obtained growth curves were analysed with pyphe. (B) Maximum slopes
of growth curves of the T- and A-strain on 12 different carbon sources (colours
of markers), each in 4 different media backgrounds (marker shape and fill). 4
biological replicates were measured in each condition and the mean is shown.
No strong differences between the strains are apparent and in no condition
does the T-strain outperform the A-strain. (C) Maximum slopes of growth
curves of the T- and A-strain on 95 different nitrogen sources, based on a
single biological replicate. Red lines show the chosen cut-off of abs(log2(A-
strain/T-strain)) > 0.75. Conditions with a maximum slope below 0.015 in
both strains were discarded. This indicates that strains differ in their ability to
utlise phenylalanine and cysteine. (D) Spot tests for validation of results from
(C). Three biological replicates of each strain were grown to mid-exponential
phase and diluted to OD 0.4. 3-fold serial dilutions of each strain were pre-
pared across rows of a 96 multi-well plate. Dilutions were then spotted 16
times into 1536 format, on agar EMM agar containing ammonium, pheny-
lalanine or cysteine as sole nitrogen source. These assays could replicate the
growth difference on phenylalanine but not on cysteine, suggesting that the
latter was a false positive in the high-throughput screen.
Panels B+C and parts of panel D were reproduced with minor changes from
Kamrad et al. (2020a) which is published under a CC-BY license.
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Fig. 2.10: The A-strain has decreased resistance to oxidative stress. Spot assays of serial dilu-
tions of three biological replicates of each strain on media with antimycin A and two agents
causing oxidative stress. A representative image is shown as control.
This figure was reproduced with minor changes from Kamrad et al. (2020a) which is published
under a CC-BY license.

transcriptome data- the T-strain exhibited increased resistance to oxidative stress agents

(hydrogen peroxide and diamide) in the media (Fig. 2.10). Such trade-offs between growth

and stress resistance are a key concept in evolutionary adaptation (Ferenci, 2016), and we

wondered if the A-strain might show altered resistance to stresses not previously associated

with PYK activity.

In order to assess the wider impact on stress resistance, we screened 72 drugs and tox-

ins for differential resistance of the T- and A-strain. Biolog PhenotypeArrays, which contain

four different concentrations of each compound pre-loaded in each well, were used to ob-

tain growth curves in high-throughput for a single replicate of both strains (similar set-up

as Fig. 2.9A). Using an arbitrary cut-off of abs(log2(A-strain/T-strain))>0.75, nine com-

pounds resulted in differential growth in total. The A-strain showed increased resistance

to D-L-Alanine hydroxamate, barium chloride, chlorpromazine (which causes membrane

stress, De Filippi et al. (2007)), caffeine (which has pleiotropic effects, including TOR in-

hibition, Rallis et al. (2013)), capreomycin (which binds to ribosomes, Lin et al. (2014)),

phenylarsine oxide (an inhibitor of tyrosine phosphatases, Oustrin et al. (1995)) and thal-

lium (I) acetate (which is highly toxic due to its similarity to potassium ions and binds

to mammalian PYK with a stronger affinity, but weaker activating effect, than potassium

Reuben and Kayne (1971); Kayne (1971)). The T-strain was relatively resistant to two

compounds, EGTA (a chelator of bivalent cations, including Mg2+ which activates S. cere-

visiae PYK, Rhodes et al. (1986)) and acriflavine (an antiseptic). Four of these compounds
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Fig. 2.11: Drug screen reveals wide-spread impact on stress resistance. (A) Maximum growth
rates of T- and A-strain (single replicate per strain) on 72 drugs and toxins. Each compound
was tested at 4 concentrations and all concentrations are plotted individually. For benzamidine,
two doses were a hit and these hits were in opposite directions. (B) Selected dose response
curves of compounds for which differential resistance was detected. The concentration of each
dose is not available from the company. (C) Spot assays of serial dilutions of both strains
(3 biological replicates per strain) confirming hits for all selected compounds. Control plates
without toxins were included in each batch (a representative control is shown in Fig. 2.10).
This figure was reproduced with minor changes from Kamrad et al. (2020a) which is published
under a CC-BY license.
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Fig. 2.12: Pyk1 affects oxidative stress resistance in the wild. (A) Resistance of 156 wild strains
to 3mM hydrogen peroxide, grouped by pyk1 allele. The T-strain features a higher mean re-
sistance than A-strains (means and standard deviation 1.01±0.06 and 0.95±0.11, p=0.0021,
Welch’s t-test). (A) Fitness of 158 wild strains, grouped by pyk1 allele, on standard rich YES
media. No clear trend is apparent in the data and no significant difference was detected (means
and standard deviation 0.88±0.16 and 0.94±0.24, p=0.18, Welch’s t-test).
This figure was reproduced with minor changes from Kamrad et al. (2020a) which is published
under a CC-BY license.

were selected based on their dose-response curves (Fig. 2.11B, all 72 curves can be found

in Kamrad et al. (2020a)) and could be successfully validated with spot tests (Fig. 2.11C).

This set-up might initially appear highly artificial, with few of these compounds likely

to be found in the wild. However, it specifically tests the cellular response to the (partial) in-

hibition of specific processes or cellular components, which may otherwise occur naturally

through other mechanisms. Some of the conditions, specifically EGTA and thallium (I) in

which differential resistance was detected can be directly related to Pyk1 function. But for

the majority of hits, the mechanism is most likely more indirect. This suggests a general,

pleiotropic role of glycolysis in modulating stress resistance, which is compatible with the

wide-ranging impact of this mutation on the cellular gene expression programme (Fig. 2.7).

The impact of the mutation of interest has at this point been dissected in great detail

on the molecular and phenotypic levels. But can findings in the laboratory background

be generalised to wild populations? To address this question, I quantified oxidative stress

resistance for all wild strains, using a colony screen similar to that outlined in Fig. 2.1A. The

group of strains carrying the the T-allele was indeed significantly more resistant to hydrogen



2.3. Discussion 78

peroxide (Fig. 2.12A, p=0.0021, Welch’s t-test). This indicates that the pyk1 locus really

does affect oxidative stress resistance in the wild, giving support to the hypothesis that this is

what selected the mutation. Basal growth on rich YES media on the other hand did not show

a clear growth difference between strain groups (Fig. 2.12B, p=0.18, Welch’s t-test). Two

explanations are plausible here: either growth rate is a more complex phenotype, controlled

by numerous loci which ‘dilutes out’ the effect of pyk1, or T-strains have counter-acting,

compensatory mutations that have been specifically selected for.

2.3 Discussion

Using an allele swap in a tightly controlled genetic background, we have dissected the effect

of a natural SNP in the S. pombe pyk1 gene in detail. The minor T-allele limits glycolytic

flux in standard rich media and this has a wide-ranging impact on gene expression, growth

and stress resistance. This work recapitulates earlier findings which have shown that al-

tered PYK flux changes the fermentation/respiration balance (Grüning et al., 2011; Pearce

et al., 2001), but adds several important novel insights. First, while previous findings were

obtained with S. cerevisiae, this work uses an evolutionarily distant, complementary model

yeast species. This underlines the universality of the regulatory role of PYK. The S. pombe

community only uses a single set of closely related reference strains (differing mainly in

their mating type) and these strains are part of the minority of wild strains carrying the flux-

limiting T-allele. This makes these strains unusual within their own species, but also across

eukaryotes, with respect to PYK activity, which should be considered in future (metabolic)

investigations of this important model organism.

Second, previous studies have used synthetic systems which have shown that PYK flux

can regulate the respiration/fermentation balance and oxidative stress resistance, but these

new data show that it actually does so in the wild. S. pombe is unusual in having only a

single PYK isoform; most eukaryotes alternatively express low- and high-activity isoforms

under specific conditions or cell types (Muñoz and Ponce, 2003; Allert et al., 1991; Israelsen

and Vander Heiden, 2015; Bradley et al., 2019; Bluemlein et al., 2011). This makes S.

pombe an ideal, simple model system for studying the impact of changes of PYK flux, as

wild type strains are permanently locked into either the high- or low-activity state. This,

together with the distribution of the allele in the wild in at least two different lineages and

the associated phenotypes, suggest an adaptive role for the T-allele. Our extensive screens

give no indication that this was an adaptation to growth on different carbon or nitrogen
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sources, as could perhaps be expected for a variant in a glycolytic enzyme. Instead, the

data point towards the known and conserved link to stress resistance, in particular oxidative

stress (Shimizu and Matsuoka, 2019). This is ecologically relevant in niches where yeasts

are known to form microbial communities with hydrogen peroxide-producing lactic acid

bacteria (Ito et al., 2003; Ponomarova et al., 2017). More generally, I believe this is an

example of a poorly explored wider phenomenon in which metabolism governs seemingly

unrelated cellular traits. Uncovering those connections, systematically, not anecdotally as

done here, would be a promising avenue of research. A possible first step would be a

comprehensive characterisation of a segregant library (Liti and Louis, 2012; Cubillos et al.,

2013) with respects to metabolism and stress resistance, looking for genomic variants linked

to both.

Third, the impact of changed PYK flux has been characterised for the first time on the

systems level, revealing a wide-ranging reconfiguration of the cellular metabolic gene ex-

pression programme. We find a distinct signature associated with fast growth (in particular

upregulation of ribosome biogenesis) in the A-strain. It is often unclear and a matter of some

debate if such signatures are the cause or consequence of faster growth, or in other words if

metabolism regulates gene expression or vice versa. By delicately altering PYK flux by al-

lele swapping, our data shows that increased flux of an intracellular metabolic reaction can

be the singular and original cause of such wide-ranging gene expression changes. In partic-

ular as S. pombe misses multiple PYK isoforms and is therefore unlikely to have distinct,

evolved gene expression responses to low and high PYK activity. This is an example of an

emerging principle, which describes cells having distinct modes or programmes triggered

by solely intra-cellular cues. Another example include the Crabtree-negative yeast Koma-

gataella phaffii (Pichia pastoris) which can be made Crabtree-positive by overexpression of

a single transcription factor (Ata et al., 2018). This likewise seems to me like a promising

area of further investigation but for a deeper understanding it is crucial to systematically

investigate what sort of intracellular events can cause such transitions.

So what exactly is the mechanism by which altered PYK flux results in these sweeping

gene expression changes? It has been proposed that cells are able to ‘sense’ metabolic

fluxes using flux-sensing metabolites (Litsios et al., 2018). There has been robust evidence

in multiple species that fructose 1,6-bisphosphate (F16BP) is such a metabolite, responding

specifically to glycolytic flux (Christen and Sauer, 2011; Huberts et al., 2012) and this is in
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agreement with the increased F16BP levels observed in the A-strain. In the past, it has been

proposed that a flux-sensing mechanism could regulate the balance between respiration and

fermentation (Huberts et al., 2012) and this work provides some indirect evidence in support

of this theory. The flux-sensing metabolites could then interact with transcription factors

responsible for orchestrating responses (Wellen et al., 2010). This is a promising area of

future investigation, where powerful concepts are in need of experimental investigation and

validation.

2.4 Materials and Methods
A comprehensive description of the Materials and Methods can be found in Kamrad et al.

(2020a) and the references therein. Selected methods for experiments I performed are elab-

orated on below.

Wild strain phenotyping and GWAS. Phenotyping of wild strains (Fig. 2.1) was done

with the pyphe pipeline (Kamrad et al. (2020b), also described in detail in Chapter 1).

159 strains were used in these experiments, which is two fewer than in the original library

which comprised 161 (Jeffares et al., 2015), due to contamination of the cryostocks. Using

a programmable robotic colony picker (Stinger attachment for the RoToR HDA, Singer In-

struments), strains were arranged in 384 format around a single grid of 96 control colonies

of the standard lab strain 972. Randomly interspersed replicates of the standard lab strain

were used to monitor technical noise. In retrospect, using the 1536 format would have been

the better choice, allowing more replicates and denser placement of controls, but these ex-

periments were done very early on during the development of pyphe and the data were of

sufficient quality for the needs of the project. The arranged plates were passaged once on

rich YES media (incubated for two days at 32°C) and then copied onto fresh YES plates

with and without antimycin A and hydrogen peroxide. After incubation for two days, plates

were scanned by transmission scanning (Epson V800 Photo) using pyphe-scan, colony sizes

were determined with gitter (Wagih and Parts, 2014) and corrected fitness estimates were

obtained by grid correction (Zackrisson et al., 2016) as implemented in pyphe-analyse.

Quality control steps included removing very small colonies (smaller than 10 pixels at

600dpi resolution, which are most likely due to pinning errors), removing colonies with

abnormal circularities reported by gitter (>1.1 or <0.85) and removing strains for which

the phenotypic variance was greater than the variance of the entire data set after correction.

In preparation for GWAS, phenotype values were transformed to have a normal shape



2.4. Materials and Methods 81

(using the Box-Cox method), a mean of zero and unit variance using PowerTransformer

from the scikit-learn package (Pedregosa et al., 2011). Small genomic variants were re-

called from the published sequence data (Jeffares et al., 2015) using freebayes (Garrison and

Marth, 2012). This re-calling of variants, instead of using those published in Jeffares et al.

(2015), was mainly motivated by the fact that the published variants contained separate files

for single nucleotide polymorphisms (SNPs) and insertion/deletions (indels), as they were

being called separately using now out-dated tools. The two variant call sets are not trivial to

merge/combine, whereas the modern haplotype-based caller freebayes detects SNPs, indels

and other types of variants together (Garrison and Marth, 2012). The following options

were passed to freebayes: –ploidy 1 –standard-filters –min-coverage 10 –min-alternate-

count 3. The reference genome used was ASM294v2. Stringent quality control was applied

to variants, including removing SNPs within 3bp of indels (using the –SnpGap option of

bcftools Li et al. (2009)), removing low quality calls with a score below 30, removing

variants not called in more than half the population and removing variants with a minor

allele frequency below 5%. SnpEff (Cingolani et al., 2012) was used to predict variant

impacts.

GWAS and heritability analysis (Fig. 2.2) was performed in LDAK5 (Speed et al., 2012,

2017) using default parameters throughout. Doug Speed kindly advised on these analyses.

For constructing the kinship matrix, predictors were first cut, thinned and weighted and the

matrix was calculated using the direct method. Restricted maximum likelihood (REML)

estimation as implemented in LDAK5 was used for heritability estimation. A linear mixed

model was used for associating individual variants with phenotypes, using the kinship ma-

trix to correct for population structure.

The phylogenetic tree in Fig. 2.3 is based on biallelic SNPs in the region ±500bp

up- and downstream of the pyk1 gene (I:1:3844243-3847145) which were extracted us-

ing bcftools (Li et al., 2009). A pseudo alignment was generated with VCF-kit (Cook and

Andersen, 2017) and a tree was constructed using the neighbour-joining method as imple-

mented in ClustalW2 (Larkin et al., 2007). The tree was drawn in seaview (Gouy et al.,

2010).

Enzyme assays. PYK activity (Fig. 2.5) was assayed as previously described (Gehrig et al.,

2017) with additional advise and reagents provided by Jamie Macpherson from the Anas-

tasiou group at the Francis Crick Institute. Activities were determined for fresh (not previ-



2.4. Materials and Methods 82

ously frozen) lysate, but not purified Pyk1 protein which would have required a substantial

effort. Exponentially growing cells were collected by centrifugation (800g, 3 min, RT) and

broken by mechanical lysis with glass beads in a pH7-buffered solution containing 10 mM

Tris at pH 7, 100 mM KCl, 5 mM MgCl2, 1 mM DTT. DTT was included as a reducing

agent to prevent oxidation of Pyk1 which risks inactivating it (Anastasiou et al., 2011). All

reagents and lysate were kept on ice to prevent degradation. 96 multi-well plates were used

to monitor reactions, where each well contained 200µl of aqueous 10 mM Tris at pH 7, 100

mM KCl, 5 mM MgCl2, 20 µg L-lactate dehydrogenase from rabbit muscle, 5 mM ADP (all

by Sigma-Aldrich), 10 mM PEP (Molekula) and 200µM NADH (Bioworld). The reaction

mix was pre-incubated in the plate for two minutes at 32°C and the reaction was started

by addition of the lysate. The NADH concentration was monitored by absorption mea-

surements at 340nm (Tecan Infinite M200 Pro). The molar extinction coefficient of NADH

(6220 M−1 cm−1) and the path length (calculated from the reaction volume and the well

diameter according to the manufacturer) were used to convert absorbance measurements

to NADH concentrations. Initial values were found to be in very good agreement with

the NADH concentration in the reaction mix. Lines were fitted to background-subtracted

concentration traces using least squares regression. Slopes were corrected by the OD of

the culture at the time of sampling which yielded a value proportional to PYK activity. I

also tried correcting slopes by protein concentrations obtained by a multi-wavelength ab-

sorbance approach (Lunatic, Unchained Labs). This can theoretically correct for variations

in extraction efficiency but was found to perform worse than correction by OD in practice.

Glucose uptake measurements. Direct confirmation of higher glucose uptake in the A-

strain (Fig. 2.8C) required measurements of glucose in the media. A commercial, colouri-

metric kit (Glucose (HK) Assay Kit, Sigma-Aldrich, catalogue number GAHK20) was used

for this purpose which is based on the enzymatic conversion of glucose to 6-phospho-

gluconate. This reaction reduces an equimolar amount of NAD+ to NADH, which can

then be quantified by absorbance at 340nm. I slightly modified the protocol of the manufac-

turer by reducing reaction volumes to 200µl and preparing a simplified standard curve with

a serial 2-fold dilution. Samples were first diluted 1 to 20 in water and 10µl were added to

190µl of reaction mix prepared according to the manufacturer’s instructions. After 30min

incubation at room temperature in the dark, absorbance was measured (Tecan Infinite M200

Pro) and converted to concentrations using the standard curve.
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Oxygen consumption rate measurements. Comparing the oxygen consumption rates of

both strains (Fig. 2.8D) required a method for reliably quantifying dissolved oxygen in

culture media. I initially attempted to do this in multi-well plates equipped with oxygen

optodes (an optical sensor that can be read spectroscopically) using a microfermentor (Bi-

oLector, M2P labs). A plate with exponentially growing cultures was sealed air-tight using

multiple layers of adhesive film and the oxygen concentrations recorded. I was unable to

obtain reliable oxygen traces with this method, eg controls grown on antimycin or on the

non-fermentable carbon source glycerol did not show the expected responses. We next

considered using a Seahorse analyser (Agilent) but decided against this based on previous

negative experiences using this analyser with yeast cells which are small and not attached.

In the end, I used traditional, low throughput measurements with an oxygen meter. Ex-

ponential cultures were transferred into 25ml Erlenmeyer flasks and the probe (Hanna HI

98193) was inserted so that the flasks were completely filled. These were then taped shut

with multiple layers of parafilm, making sure no air bubbles were trapped in the flask. This

set-up ensures no oxygen enters or leaves the culture medium so that the rate of decrease in

the oxygen concentration reflects oxygen consumed by cells alone. The oxygen saturation

was recorded approximately every minute for 7min and lines were fitted to the traces.

Phenotypic screens. Phenotypic screens for growth on different toxins, carbon and nitro-

gen sources were performed in liquid culture in multi-well plates. For nitrogen sources and

toxins, a commercial solution was used (Phenotype MicroArrays PM3, PM22, PM23 and

PM25; Biolog) which provides plates with dry compounds pre-loaded in each well. Cul-

tures were diluted to OD 0.05 in the appropriate media (EMM without ammonium chloride

for nitrogen sources and YES for toxins) and pipetted directly on top of plates. Growth

curves were recorded in a plate reader with stacker module (EnVision 2104, PerkinElmer)

in a room that was not strictly temperature controlled but was stable at at 23.5±1°C over the

course of the experiment. Growth curves displayed a substantial amount of noise and arte-

facts, such as drastic spikes or drops in the signal. This was most likely due to incomplete

mixing of cultures in the well, a common problem with growth curves in 96 well format,

even when mixing functionalities of the plate reader are used. This was compensated, as

much as possible, by smoothing growth curves prior to further analysis using a median filter

(size 5) and then a Gaussian filter (sigma=3). Maximum slopes were extracted with pyphe-

growthcurves (Kamrad et al., 2020b) over a range of 12 timepoints. This wide window size
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for slope extraction further minimises the impact of technical noise.

A carbon source Phenotype MicroArray is available from Biolog, containing 96 car-

bon sources, but this was found to be unsuitable for our needs in this case. S. pombe did not

grow on the vast majority of these carbon sources and I wanted to further characterise the

ones on which it does. I therefore compiled a list of carbon sources based on the literature

and experience from our groups. Carbon sources were used at the same molarity as glucose

in standard EMM media (2% w/w, 111 mM), except for the di- and tri-saccharides su-

crose, maltose and raffinose where the concentration was adjusted to the number of hexose

monomers. Lower concentrations were also used for pectin and glutamine due to low sol-

ubility. Cultures were prepared by combining carbon sources with nitrogen sources (yeast

extract or ammonium chloride) and with/without additional priming glucose (final concen-

tration 0.1%). Growth curves were recorded at 32°C in 384 well plates with a culture vol-

ume of 80µl (Tecan Infinite M200 Pro). This allowed for more replicates to be included but

also slightly exacerbated the mixing problem. Growth were processed as described above.
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land. Gorjan Stojanovski, an MRes student I was supervising at the time, helped with the

experimental part of wild strain phenotyping. Marı́a Rodrı́guez-López designed and pro-

duced the plasmid for construction of allele replacement strains. Marı́a Rodrı́guez-López

and StJohn Townsend constructed the allele replacement strains. Marı́a Rodrı́guez-López

helped with sample collection for multi-omics experiments. Jan Grossbach, Valentina

Capalletti, Maria Rodrigues-Lopez and Michael Mülleder prepared samples and acquired

mutli-omics data. Jan Grossbach analysed gene expression data. Jan Grossbach produced

an initial alignment of pyk1 homologues, which was expanded by me. Profs. Jürg Bähler,

Markus Ralser and Andreas Beyer supervised the study. Additionally, Jamie Macpherson

advised on enzyme activity assays and Doug Speed advised on GWAS.



Chapter 3

Investigating amino acid uptake patterns by

proteomics

It has been hypothesised that yeast grown on minimal media containing only ammonium as

nitrogen source engage in cooperative exchange of amino acids. In this model, overflow re-

sults in the accumulation of amino acids in the extracellular environment which then triggers

a heterogeneous response where some cells switch to being consumers of these compounds.

This work investigates for the first time a key aspect of this model in detail: the response of

S. cerevisiae cells to lowly concentrated extracellular amino acid supplements in the pres-

ence of high concentrations of glucose and ammonium. Using heavy carbon isotope (13C)

labelling, I find that a subset of the proteogenic amino acids are taken up with high affinity

and suppress cell-internal synthesis completely. These amino acids tend to have a higher

molecular weight and are non-preferred nitrogen source compared to the other set of amino

acids which do not suppress their own synthesis. A novel, proteomics-based method is de-

veloped which can detect sub-populations differing in their amino acid uptake behaviour.

Specifically, I hypothesise certain concentrations will result in some cells being consumers

for it while other remain producers, in a binary switch-like manner. When applied to the

standard laboratory strain BY4741, no evidence of such sub-populations is found. Never-

theless, I show that this conceptually novel method works in principle and that it could be

used to deconvolute the proteome profiles of producer/consumer sub-populations. When

applied to different strains and species, and in different growth conditions, this could open

up a new avenue for investigations into single-cell metabolic heterogeneity.
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3.1 Introduction

3.1.1 Overflow metabolism shapes microbial niches

When microbes grow on abundant and preferred nutrient sources, metabolites are ex-

ported and accumulate in the extracellular medium. A classical and well-studied exam-

ple for this is fermentation (also known as aerobic glycolysis), a phenomenon where many

yeasts suppress respiration even in the presence of oxygen when grown on preferred carbon

sources like glucose. These Crabtree-positive species (Crabtree, 1929) export metabolic by-

products (usually ethanol) in large quantities, which is referred to as overflow metabolism.

The reason for this seemingly wasteful behaviour has been the focus of intense study and

debate and has been discussed in more detail in Chapter 2. Suffice it to say that ethanol

production and export has a profound impact on the surrounding environment and other mi-

crobes in it. Once glucose is depleted and cells have undergone the di-auxic shift, ethanol

is used as a carbon source and enables a second growth phase. More recently, evidence has

emerged that demonstrates the export of a much wider range of metabolites from growing

cells, not typically considered waste products. Paczia et al. (2012) quantified metabolites in

the extracellular medium (the exometabolome) and found many central carbon metabolism

intermediates and amino acids in the micro-molar range during exponential growth on min-

imal glucose media containing ammonium as the sole nitrogen source. Campbell et al.

(2015) showed that the extracellular fluid surrounding cells in S. cerevisiae colonies grown

on minimal media contains amino acids, albeit at very low concentrations in the high pico-

molar range. These results are consistent with the more recent observation that yeast can

support the growth of naturally auxotrophic lactic acid bacteria in minimal media, by the

provision of amino acids (Ponomarova et al., 2017).

For metabolic intermediates and amino acids it is not immediately obvious why these

valuable compounds, which have been produced at a cost, should be exported by cells.

Broadly, three explanations have been proposed for this: export due to overflow (ie im-

balances in the metabolic network that require secretions through active or passive mech-

anisms), accidental leakage (through membranes and imperfect transporters/channels) and

cell death followed by lysis (Campbell et al., 2018). Cell death is negligible in typical lab

cultures growing exponentially in standard glucose media and therefore unlikely to be the

driver for the observed accumulation of extracellular metabolites (Paczia et al., 2012). And

while accidental leakage cannot be excluded, there are good arguments for an ‘extended
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overflow’ model. Besides containing high amounts of glucose, standard media contain an

excess of nitrogen, ie maximising fitness does not require an efficient utilisation of either

carbon or nitrogen. Given the complexity and interdependencies of the metabolic network

(>25% of metabolites are involved in >3 reactions), it might well be inevitable to overpro-

duce certain amino acids in order to provide all biosynthetic building blocks at the required

concentration (Campbell et al., 2018). Similarly, one could argue that, given a degree of bi-

ological noise and evolutionary imperfection, it is better to overproduce a metabolite rather

than risking not making enough of it.

Specifically, the export of amino acids has been shown to increase upon TORC1 inhi-

bition by either rapamycin or knocking-out transcription factors acting as TORC1 effectors

(Ponomarova et al., 2017). Furthermore, the authors suggest that nitrogen catabolite repres-

sion (NCR), which inhibits the uptake and utilisation of non-preferred nitrogen sources in

the presence of preferred ones, is involved in regulating amino acid export. The TORC1

effectors which increase lactic acid bacterial growth when knocked-out act as repressors of

Gln3p and Dal81p (key activators of NCR-repressed genes such as permeases and catabolis-

ing enzymes). I find this result is somewhat counter-intuitive as an inactive NCR appears

to promote export and is usually found in nutrient poor environments, when I would expect

export to be higher in preferred nitrogen sources which enables lower doubling times. There

is the possibility of this being a side effect of placing TORC1-inhibited cells in rich media,

reducing growth, decreasing the amount of required amino acids and increasing the amount

that is overflowing. Generally, much work remains to be done elucidating the purpose,

mechanisms and regulation of metabolite export and more generally the numerous ways in

which social microbes actively shape chemical and physical parameters of their niche and

environment.

3.1.2 Yeast sense and respond to nutrient availability

The export of nutrients by S. cerevisiae can have obvious beneficial effects on other mi-

crobes, such as lactic acid bacteria (Ponomarova et al., 2017). But what effect do extracel-

lular amino acids have on the yeast that export them? Yeast, like all free-living organisms,

have evolved intricate mechanisms for sensing and responding to the availability of nutri-

ents. But how exactly our standard lab strain will respond to the presence of lowly concen-

trated amino acids in the presence of the (highly concentrated) preferred nitrogen source

ammonium is not known and will be at the core of this investigation. The following para-
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graphs summarise the current knowledge of yeast nitrogen source sensing and regulation of

their utilisation.

The S. cerevisiae genome encodes a range of amino acid permeases (AAPs). With

few exceptions, the ones targeted to the plasma membrane belong to the APC (amino

acid-polyamine-organocation) superfamily of secondary active transporters which use pro-

ton gradients and have 12 membranes-spanning segments (Bianchi et al., 2019). AAPs

vary in their specificity and affinity. Gap1 and Agp1 are well described transporters with

broad specificity, importing all or most amino acids. Several other AAPs transport mul-

tiple amino acids; eg Tat1 transports valine, leucine, isoleucine, tyrosine, tryptophan and

histidine. Many amino acids have specific transporters, and often isoforms with high and

low affinity (Zhang et al., 2018). The expression level and activity state of these is key

to maintaining amino acid homeostasis in the cell. In nitrogen-poor conditions, cells ex-

press broad-specificity, high-affinity transporters, ie they are poised for amino acid uptake

should they become available (Bianchi et al., 2019). On complex rich media (containing

a wide range of nitrogen sources), cells consume different nitrogen sources at different

rates and sequentially, with preferred nitrogen sources being consumed first (Crépin et al.,

2012). S. cerevisiae cannot use cysteine, histidine or lysine as nitrogen source as it is lacking

catabolic pathways for them (Bianchi et al., 2019). For several other amino acids (valine,

leucine, isoleucine, methionine, and phenylalanine), the nitrogen can be assimilated but the

remaining carbon skeletons (α-keto acids) are converted to ’fusel’ alcohol or acids and se-

creted (Hazelwood et al., 2008) and these tend to be non-preferred and support lower growth

rates. In the scenario of cells growing on nitrogen-poor media with amino acids becoming

suddenly available, the challenge is therefore not primarily the uptake of these new nitro-

gen sources (for which transporters are already available) but rather selecting the desired

nitrogen sources to be uptaken at the right concentration (eg by down-regulating general

transporters and by expressing specific, lower affinity transporters). Accordingly, express-

ing a Gap1 isoform which cannot be ubiquitinated (Risinger et al., 2006) and overexpression

of individual AAPs (Ruiz et al., 2017) results in amino acid supplements becoming toxic.

How amino acids are sensed and their import is regulated is an active area of research

with many open questions. Several pathways that respond to the extracellular and intracel-

lular nitrogen status of the cell have been described and they are briefly summarised here.

Highly conserved are the TOR (target of rapamycin) and GAAC (general amino acid con-
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trol) systems which sense the abundance (or lack) of intracellular amino acids (as well as

other metabolites) and initiate concerted, pleiotropic responses affecting translation, gene

expression, proliferation and autophagy (Efeyan et al., 2015; Conrad et al., 2014; Ljung-

dahl and Daignan-Fornier, 2012; Valvezan and Manning, 2019). Besides these universal

systems, two yeast specific pathways have been studied in great detail. First, the SPS path-

way is a key extracellular amino acid sensor in S. cerevisiae. The sensor protein, Ssy1, spans

the plasma membrane and is homologous to amino acid permeases but has lost its transport

activity. It forms a complex with Ptr3 and Ssy5. In the presence of extracellular amino

acids, especially hydrophobic amino acids, Ssy5 cleaves inhibitory N-terminal domains off

Stp1 and Stp2. Once activated, these become localised in the nucleus where they regulate

the expression amino acid permeases (Ljungdahl, 2009). The SPS system, with its single

sensor, is unlikely to be able to provide information about the exact identity of amino acids

present. The second pathway, nitrogen catabolite repression (NCR) provides some of that

specificity. In brief, it is the pathway with which the utilisation of non-preferred nitrogen

sources is suppressed in the presence of preferred ones (Ljungdahl and Daignan-Fornier,

2012). It is not entirely clear how the NCR system senses specific amino acids, but it ap-

pears to be under TOR control and is unlikely to have external sensors (Zhang et al., 2018).

Simultaneously, the strength of activation of NCR defines an amino acid as preferred on

non-preferred, together with the growth rate it supports (Godard et al., 2007). One of the ef-

fects of NCR is the downregulation of the general permease Gap1, as well as other proteins

facilitating the uptake and breakdown of non-preferred amino acids. Crucially, standard lab

strains derived from S288c (such as the BY-series strains used in our laboratory) display a

less strong NCR response in ammonium compared to strains derived from Σ1278b although

it supports fast growth in both strains.

Only three individual AAP genes (Bap2, Uga4, and Ypq3) have been shown to be

regulated by specific pathways (Bianchi et al., 2019), so a fine-grained, amino acid specific

sensing system with compound-specific transcriptional responses appears to be largely lack-

ing. A key question is how these signalling systems act together, specifically the relative

importance/prevalence of measuring the extra- and intracellular nitrogen status. Experi-

ments that I performed have recently shown that amino acids can accumulate intracellularly

to many-fold higher levels compared to growth on minimal media containing only ammo-

nium (Olin-Sandoval et al., 2019). This could initially proceed without a specific active
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response of the cell and amino acids, once inside the cell, could act on intracellular sensors

which appear to be more specific and intricate. Furthermore, the focus of most previous

investigations has been the elucidation of ‘classical’ pathways ultimately regulating tran-

scription. However, metabolism is to large parts regulated post-translationally, eg through

allostery (Sauro, 2017). Increased concentrations of amino acids could directly act on the

pathways that make it, eg through feedback inhibition (where a pathway end-product in-

hibits its own synthesis). Several recent studies have described how nitrogen signalling can

regulate AAPs post-translationally. Particularly ubiquitin-dependent endocytosis, requiring

the E3 ubiquitin ligase Rsp5, has been shown to likely be a key factor regulating AAPs, in

turn regulated by TORC2 (Bianchi et al., 2019). Additionally, AAPs have been shown to be

part of eiosomes (protein cluster domains on the plasma membrane), especially the MCC

(microcompartment of Can1) domain. This has been suggested to reduce the likelihood of

endocytosis but it is otherwise unclear if and how this affect transport function (Bianchi

et al., 2019).

In summary, given the scenario of growth in minimal media with slowly accumulat-

ing amino acids, it is hard to predict how cells will respond, based on currently available

knowledge. With an active NCR pathway, cells will be unlikely to start using these amino

acids as nitrogen sources, but it is likely that they will be imported into cells, eliciting a

metabolic response and being incorporated into proteins. Besides the mechanistic expla-

nations discussed above, this would make sense evolutionarily, as importing and utilising

available resources would reduce the burden on biosynthetic metabolism (Björkeroth et al.,

2020). Many studies have indeed shown that prototrophic yeast do take up amino acid sup-

plements in minimal (ammonium-rich) media: For histidine, uracil, leucine and methionine,

our lab has shown that the prototroph wild type strain consumes these supplements at the

same rate as derived strains auxotrophic for these compounds, giving some indication that

the prototroph solely uses uptake to meet its biosynthetic requirements (Campbell et al.,

2015). Fröhlich et al. (2013) have shown that supplemented lysine and arginine is incorpo-

rated into proteins while also repressing cell-endogenous synthesis. From these experiments

and others, the paradigm emerged that yeast prefer to uptake an available metabolite from

the environment rather than making it by itself (Campbell et al., 2018).
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3.1.3 Clonal populations display single-cell heterogeneity

The two well-known phenomena described in the first two sections of this introduction, ie

the observed accumulation of amino acids in the extracellular medium during growth and

the ability and preference for uptake over synthesis, leads to an obvious paradox. If cells

prefer uptake over synthesis, why are amino acids present in the media of yeast cultures?

A proposed explanation is that cells in the culture respond heterogeneously to the presence

of amino acids, resulting in the emergence of sub-populations. One population continues to

produce amino acids while the other switches to consuming them (Campbell et al., 2018).

Our lab has previously shown that yeast possesses the capacity for metabolite exchange

at growth-relevant quantities using a segregating plasmid system which slowly introduces

auxotrophic members into the population (Campbell et al., 2015). The resulting community

is heterogeneous but grows only marginally slower than wild type cultures. However, if wild

type prototrophic cells also differentiate into producer and consumer populations is entirely

unclear and the focus of this chapter. The following section reviews existing evidence for

heterogeneity in clonal S. cerevisiae populations, its triggers and downstream consequences.

One omnipresent source of heterogeneity is the fact that cells of proliferating cultures

in nutrient-replete conditions are in different stages of the cell cycle, with distinct tran-

scriptional programmes (Spellman et al., 1998; Saint et al., 2019). As mother cells repeat

mitosis and budding, they grow in size and undergo replicative ageing, fundamentally alter-

ing physiology and metabolism (Leupold et al., 2019). Furthermore, nutrient depletion has

been shown to illicit heterogeneous responses in multiple studies. First, entry into station-

ary phase has been shown to coincide with highly variable gene expression by single-cell

RNAseq (Saint et al., 2019). Second, growth on media containing yeast extract and peptone

at standard concentrations but low glucose (0.1%) has been shown to result in the emer-

gence of two metabolically distinct populations. One is gluconeogenic and provides the

disaccharide trehalose (made predominantly from aspartate) to the other population which

is glycolytic and more proliferative (Varahan et al., 2019, 2020). Furthermore, when yeast

colonies grown on solid agar media persist in a glucose-starved state, chronological age-

ing of the colonies results in populations of cells with distinct metabolic roles. Driven by

ammonium export, colonies differentiate into an upper and lower layer of cells, with the

upper layer retaining some degree of metabolic and proliferative activity while lower cells

are starving, non-dividing and gluconeogenic (Palková and Váchová, 2006; Váchová and
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Palková, 2018; Váchová et al., 2013).

In well mixed, nutrient-replete liquid cultures all cells experience the same environ-

ment and one would not expect the population to be heterogeneous due to extracellular

factors. But still, individual cells differ from each other as recent studies have shown.

Genome-wide libraries of GFP fusion proteins have been used in flow cytometry or mi-

croscopy screens to identify proteins whose expression is highly variable (Chong et al.,

2015; Keren et al., 2015). On a smaller scale, the abundance of specific transcripts can be

measured by fluorescent in situ hybridisation (Trcek et al., 2012). Only recently, single-cell

RNA sequencing (scRNAseq) has been successfully applied to yeast cultures, capturing ex-

pression levels of a few hundred genes per cell (Saint et al., 2019; Nadal-Ribelles et al.,

2019; Jariani et al., 2020). Each of these methods has advantages and drawbacks (eg the

low genome coverage achieved with scRNAseq) which are beyond the scope of this intro-

duction. But generally, a key finding is that metabolic genes can be highly variable between

members of a population. For example, Nadal-Ribelles et al. (2019) identified several genes

with highly variable expression annotated to sugar and amino acid metabolism, using strain

BY4741 grown in rich complex YPD medium.

While most studies have focused on heterogeneity in the context of gene expression,

a smaller number has explored metabolic heterogeneity. This is particularly challenging

because the standard analytical methods in the field of metabolomics, namely chromatog-

raphy coupled to mass spectrometry and nuclear magnetic resonance (NMR), are typically

not sensitive enough for the investigation of single cells. Recently, some ultra-sensitive

mass spectrometry imaging workflows are beginning to emerge, again with limits in either

resolution, the type of observed compounds and the ability to investigate live cells (Kumar

et al., 2020). Most single-cell metabolism studies to date have employed fluorescent sen-

sors, usually limited to indicating a single metabolic parameter of the cell. Monteiro et al.

(2019) have recently developed a biosensor able to quantify glycolytic flux in single cells.

By the same group, the autofluorescent properties of NADH and a FRET-based ATP sensor

have been used to investigate metabolic oscillations at the single-cell level and propose a

link to the cell division cycle (Papagiannakis et al., 2017).

In summary, it is well established that cells in well-mixed clonal cultures differ

from each other in terms of their life history, morphology, gene expression profile and

metabolism. It has not been shown, but hypothesised, that clonal prototrophic cultures
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differentiate into metabolically specialised sub-populations which exchange amino acids

(Campbell et al., 2018). Besides the mechanistic considerations discussed in the previ-

ous sections, there are evolutionary arguments supporting this hypothesis. The metabolic

network is inherently self-inhibitory (Alam et al., 2017). Division of labour could make

metabolism more efficient for individual cells and the population and is widespread in mi-

crobial metabolism (Thommes et al., 2019; Zelezniak et al., 2015; de Lorenzo et al., 2015;

Morris et al., 2012). This chapter presents a novel approach for detecting and character-

ising sub-populations which differ in their amino acid uptake behaviour. It is based on

proteomics and 13C labelling and identifies signatures of producer/consumer populations

by investigating peptide labelling patterns. Results show that amino acids can be broadly

classified into two groups: one which is taken up with high affinities and eventually replaces

internal synthesis completely, and one which is only taken up at higher concentrations with-

out ever completely suppressing self-synthesis. However, no evidence for co-existing con-

sumer/producer populations is found. Rather, it is observed that supplemented amino acids

are consumed until they are exhausted. This work provides new tools for investigating het-

erogeneity and suggests avenues for future applications.

3.2 Results

3.2.1 A peptide-based method for investigating sub-populations

The key requirement for metabolite exchange is the differentiation of clonemates into dis-

tinct sub-populations (producers and consumers), and for this, cells need to respond het-

erogeneously to the presence of extracellular metabolites. Presumably, this response is

concentration dependent, ie the more of an amino acid is available, the more it will be

taken up and utilised. This is easily rationalised for the border cases: without amino acid

present, all cells have to be producers; with a large excess of an amino acid available, cells

would be expected to switch from production to uptake of that amino acid for the reasons

outlined in the introduction. However, the response between these two states, which oc-

curs at intermediate concentrations of amino acid, is entirely uncharacterised. One would

expect a gradual response of some kind, given the inherent complexity and noise of the un-

derlying biological systems. A hypothetical dose-response curve illustrating this behaviour

is shown in Fig. 3.1A. Following on from this, a key question is whether the response is

binary (a switch) or gradual at the single-cell level, ie whether cells simultaneously im-

port and produce amino acids. Both models, a gradual transition from synthesis to uptake
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Fig. 3.1: 13C-labelling patters in peptides can reveal sub-populations. (A) Left: Hypothetical
dose-response curve for an amino acid supplied in the media. Without supplementation, the
entire biosynthetic requirement is produced by cells. As the supplement concentration rises,
it enters cells and a rising fraction of the required amount is imported rather than synthesised.
Middle: Two competing models could explain the population phenotype observed on the left.
Either cells respond homogeneously and switch gradually, or individual cells switch at differ-
ent concentrations in a binary manner, resulting in producer/consumer sub-populations. Right:
Shown are predicted peptide labelling patterns of a peptide containing two residues of the sup-
plemented amino acid for both models. A binary switch results in the mixed labelling state
(one of the two residues labelled) being absent (or rare). (B) Data analysis workflow for tar-
geted peptide quantification by reverse-phase micro-flow liquid chromatography and tandem
mass spectrometry. Cultures are grown in minimal media with 13C glucose, ammonium and
varying concentrations of a 12C amino acid supplement. Produced and consumed amino acids
therefore have different molecular masses and can be distinguished by mass spectrometry. From
left to right: Suitable peptide fragment peaks are identified and integrated in Skyline (MacLean
et al., 2010). Within each sample, the ratio of fragment abundances of the four different labelling
states (two pure and two mixed states) is computed. Data for different fragments, peptides and
biological replicates (usually n=2) are summarised. The relative abundance of peptides with one
imported amino acid allow determining the switching mode. The global probability of incorpo-
rating 12C (imported) amino acids is determined for each supplement concentration, resulting in
a dose-response ‘switching’ curve.



3.2. Results 95

homogeneously executed by the cells of the population or a heterogeneous binary switch,

could explain the postulated population-level phenotype. I devised an experimental strat-

egy to simultaneously characterise the overall fraction of produced/consumed molecules

as well as the mode of switching at the single-cell level. Cells are grown in minimal me-

dia with ammonium as the sole nitrogen source and uniformly labelled 13C glucose as the

sole carbon source. Cultures are then supplemented with varying concentrations of unla-

belled (12C) amino acids (one at a time), which are distinguishable by mass from amino

acid molecules synthesised by the cells. Cells are then harvested and proteins are extracted

and digested with trypsin (Methods), resulting in ten-thousands of short peptides. Those

peptides which contain the amino acid that was supplemented, have characteristic masses

depending on the origin of the amino acid and can be quantified by liquid chromatography

coupled to tandem mass spectrometry (LC-MS/MS, Methods). Besides estimating the over-

all producer/consumer ratios, this method is informative about the mode of switching when

peptides with two or more of the supplemented amino acid are considered. If cells react

in a binary manner, ie are either full producers or full consumers, one would expect only

fully labelled or unlabelled peptides. If the switch is gradual, one would expect the total

number of labels in the protein to follow a binomial distribution (Fig. 3.1A). This ‘pseudo

single-cell’ method therefore could enable the characterisation of sub-populations from an

experiment that would typically only result in population-level averages.

Experimentally, this method built on existing internal expertise in proteomics work-

flows, especially that of Dr Christoph Messner. I was able to use his sample preparation

protocol, liquid chromatography gradient and some mass spectrometry methods, all opti-

mised for high-throughput yeast proteomics (Vowinckel et al. (2018); Messner et al. (2020),

Messner et al. in preparation). Initially, a survey for suitable peptides (containing exactly

two of each amino acid) was conducted by measuring the proteome of 96 cultures grown

in minimal media supplemented with individual amino acids and supplement mixes, each

in 4 biological replicates. Proteome profiles were acquired by sliding window acquisition

(SWATH), a data independent acquisition strategy that simultaneously isolates and frag-

ments groups of precursors falling in sequential mass windows. Peptides were identified

and quantified from the fragment spectra using a spectral library (prepared by Christoph

Messner) and our in-house analysis software DIA-NN (Demichev et al., 2020). Only pep-

tides which were consistently identified across all runs, high in abundance and low in inter-
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fering fragments were considered. After obtaining this list of suitable peptides, I developed

targeted mass spectrometry methods to quantify the four different labelling states (none

labelled, the first residue labelled only, the second residue labelled only, both residues la-

belled). Method development was done in Skyline (MacLean et al., 2010), creating a paral-

lel reaction monitoring (PRM) method for each supplemented amino acid condition. In this

acquisition mode, our Sciex QTOF mass spectrometer cycles through all precursor masses

every couple of seconds, isolating the precursor using the first quadrupole, fragmenting it

in a collision cell and recording the masses of the resulting fragments using time-of-flight

(TOF). Mass spectrometry data is then inspected and different precursors and their labelling

states are quantified in Skyline. Data for different fragments belonging to the same peptide,

different peptides (8 were initially selected from the survey) and the biological replicates are

then aggregated. The overall ratio of produced to consumed amino acid is determined from

the overall proportion of sites occupied by labelled versus unlabelled amino acids, resulting

in the final dose-response ‘switching’ curve (Fig. 3.1B).

3.2.2 Amino acids have widely differing uptake patterns

Using this method on batch cultures grown to OD 1.6, I recorded dose-response curves for

15 amino acids, at 7 concentrations and in biological duplicates each. A prototrophic deriva-

tive of strain BY4741, a very popular laboratory strain, was used throughout this project.

Perhaps somewhat contrary to the paradigm ‘Yeast prefer uptake over self-synthesis’, in-

corporation patters differed a lot between individual amino acids (Fig. 3.2). Amino acids

roughly fell into two groups which differed in two key characteristics. One group, which

I call ‘switcher’ amino acids, are taken up with high affinities (defined by the critical sup-

plement concentration required to achieve 50% labelling) and fully replace self-synthesis

at higher concentrations. The other group, the ‘non-switchers’ (or strictly speaking ‘late-

switchers’), only showed significant incorporation at higher supplement concentrations and

the supplement never fully substitutes for self-synthesis.

The partitioning of amino acids into switchers and non-switchers does not appear to be

random. Non-switchers include key metabolites such as glutamate, glutamine and aspartate,

which feed into numerous other pathways and act as nitrogen donors during the synthesis of

other amino acids. Switchers on the other hand predominantly contain non-preferred amino

acids and those degraded in the Ehrlich pathway. In order to quantitatively describe the

response to supplementation, summarised switching curves were generated from the rela-
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Fig. 3.2: Uptake patterns differ between amino acids. Dose-response curves showing the relative
abundance of the three peptide labelling states (none, one or two imported 12C amino acids) for
cells grown with different individual amino acid supplements. Amino acids are denoted by the
single letter code. 8 peptides were measured for each amino acid and measured in biological
duplicates. Lines show the mean and shaded areas the standard deviation. Some peptides had to
be excluded due to analytical problems (all but one in the case of tyrosine). Panels with a grey
background switch at low concentrations and solely rely on uptake for higher supplement con-
centrations (‘switcher’ amino acids). The concentration levels (in increasing order are) 0, 0.05,
0.1, 0.2, 0.4, 1.2, 3.6, 10.8 mM, except in the case of tryptophan where they are 0, 0.003125,
0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2 mM.
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Fig. 3.3: Switching amino acids have low critical concentrations and fully replace self-synthesis
at higher doses. (A) Summary of switching curves from Fig. 3.2, showing the overall average
proportion of labelled to unlabelled residues dependent on supplement concentration. Amino
acids roughly fall into groups: switchers (orange) show a 50% incorporation rate at high µM
concentrations (the critical concentration) and eventually reach almost 100% incorporation at
higher concentrations, ie cells switch completely from self-synthesis to uptake. Non-switchers
(blue) have higher critical concentrations and do not fully suppress self-synthesis. (B) Table
listing critical concentrations for all amino acids tested, obtained by fitting cubic splines to the
observed data.

tive abundance of different peptide labelling states (Fig. 3.2), describing the overall ratio of

uptake to synthesis across all residues (Fig. 3.3A). Critical concentrations (at which 50%

labelling is observed) were interpolated by cubic spline fits (Fig. 3.3B). I systematically

explored between the physio(bio)chemical properties of the amino acids and their criti-

cal concentration (Fig. 3.4). Hydrophobic amino acids, which include the aromatic amino

acids, tend to have lower critical concentrations, but switchers also notably include the posi-

tively charged amino acids arginine and lysine. In particular, the three aromatic amino acids

(phenylalanine, tyrosine and tryptophan) had very low critical concentrations. This partly

also drives the observed correlation with molecular weight and the number of carbons. In a

first instance unrelated to these physical properties is the observed anti-correlation of crit-

ical concentrations with the abundance of amino acids in the proteome, with rare amino

acids more likely to be switchers. Overall, these findings indicate a differentiate response

which results in switching for less required and larger (and thus potentially more valuable)

amino acids while maintaining the synthesis of crucial metabolic intermediates.

But how could the suppression of cell-internal synthesis be explained mechanistically?

Using mass-spectrometry based metabolomics, I recently found out that many amino acids

accumulate intracellularly to very high levels when present in the media, compared to un-
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Fig. 3.5: Amino acid harvesting could suppress synthesis. (A) Wild type cultures were grown in
minimal media with and without individual amino acids (0.334mM) and yeast extract (2%).
Each condition was measured in biological quadruplicates. At mid-log phase, intracellular
amino acid abundances were determined by LC-MS/MS as described by (Mülleder et al., 2016)
and in Methods. Harvesting factors were determined as the ratio of abundance in supplemented
versus unsupplemented media. Many amino acids, especially lysine accumulate to much higher
levels when present in the media. The data underlying this panel was published in Olin-Sandoval
et al. (2019). (B) This plot shows the critical concentration of amino acids from Fig. 3.3B on
the y-axis and the harvesting factor for individual supplements from A on the x-axis. The r-
value shown is the Spearman rank correlation between the two variables. This could mean that
switcher amino acids inhibit cell-internal synthesis by accumulation and substrate inhibition.

supplemented minimal media. This phenomenon was termed harvesting and can be quan-

titatively described by the ratio of intracellular concentrations with versus without supple-

ment (Olin-Sandoval et al., 2019) (Fig. 3.5A) . Interestingly, switcher amino acids tend to

have higher harvesting factors (Fig. 3.5B). This could represent a simple, post-translational

mechanism for suppressing synthesis by substrate inhibition. Enzymology and metabolic

modelling could substantiate this hypothesis in future work.

3.2.3 Evidence for binary switching

Measuring peptides instead of free intracellular amino acid pools has the crucial advantage

of potentially revealing the mode of switching at the single-cell level. If individual cells

only ever exclusively produce or consume, one would expect peptides where one of the two

residues is labelled to be rare. From the abundance of the three labelling states, the overall

probability of incorporation p can be calculated:

p = 0a0 +1(a1
1 +a2

1)+2a2

where ai are peptide abundances for peptides with i imported residues, and a1
1 and a2

1 are the

two unique peptides with one labelled and one unlabelled reside. From this, the expected

relative abundance b of labelling states, if p were constant and equal for all cells, can be
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Fig. 3.6: Depletion of mixed labelling states suggests binary switch. (A) Average abundance of
peptide labelling states for cells supplemented with 0.05mM phenylalanine (same data as shown
in Fig. 3.2 for concentration level 1). The overall incorporation probability p was estimated as
the average proportion of unlabelled (imported) residues and was 0.56 in this case. From this
probability, the expected relative abundances of each labelling state were calculated based on
the binomial probability distribution (see text). (B) Subtracting the expected frequencies from
the observed ones, one notices that the mixed labelling state is less abundant than expected.
This is evidence for a binary metabolic state, where cells either consumer or produce, but not
both. (C) Observed and expected frequencies of the mixed labelling state for all amino acids
for supplement concentrations which result in the p closest to 0.5. The depletion of the mixed
labelling state varies between amino acids and tends to be generally lower for the mixed state.
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calculated as a binomial distribution with two independent trials:

bk =

(
2
k

)
pk(1− p)2−k

In the case of being near the critical concentration, where p≈ 0.5, the mixed labelling states

(one of the two residues labelled) would be expected to make up half of the abundance, ie

to be together twice as abundant as each of the pure labelling states (Fig. 3.6A, see also

Fig. 3.1A). A depletion of this mixed labelling state is clear evidence that cells were relying

solely on uptake or synthesis at the time when the protein was made (Fig. 3.6B). Across the

15 amino acids, many show a strong depletion of the mixed labelling state (Fig. 3.6C) and

notably, this effect is stronger for the switching amino acids.

3.2.4 Temporal dynamics of uptake patters

The data presented above investigates the total label incorporation into the proteome during

growth and implicitly assumed a steady state producer/consumer ratio. However, if the sup-

plement concentration changes significantly during the incubation time, the observed pro-

ducer/consumer populations could be an artefact of the depletion of the supplement. Rather

than coexisting in parallel, producer/consumer sub-populations could exist temporally sep-

arated, ie the consumer peptides could have been synthesised early while the consumer

peptides were synthesised late. The measurements presented above were done in batch cul-

ture and cells were harvested at an OD of 1.6. This is far below the final optical density in

this media (which is above 4), so the major nutritional components (glucose, ammonium,

phosphate, sulphate etc) are not exhausted. However, the observed critical concentrations

of switcher amino acids are very low, typically in the low micromolar range. It is therefore

possible and likely that the extracellular concentration changed during growth. In order to

estimate the expected concentration change, I calculated the concentration of each amino

acid per OD of biomass (CM) as

CM = fM ∗d ∗ p∗ 1
w

where fM is the molar fraction of each amino acid M in the proteome (Lange and Heij-

nen, 2001), d ≈ 0.667 is the dry weight per OD unit (approximately 0.67 (mg/mL)/OD),p

is the proportion of proteins in the dry biomass (40%w/w) (Yamada and Sgarbieri, 2005)

and w is the average amino acid molar mass across the proteome (average of molecular
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weights weighted by molar fraction in the proteome). The estimated required amount (ig-

noring intracellular pools, stores and metabolic pathways consuming amino acids other than

translation) varies substantially between amino acids (Fig. 3.7A).

From CM, it is possible to calculate the supplement concentration required to achieve

50% labelling of the biomass (CM ∗ 1.6/2, with 1.6 being the OD at the time of sam-

pling). This prediction correlates strikingly well with the critical concentrations obtained

for switcher amino acids (Fig. 3.7B). This observation is compatible with a model where

all cells are consumers until the supplement runs out and then switch to consumers. At

the critical concentration, this switch would occur exactly one doubling before sampling,

resulting in half the biomass being labelled. Assuming this is the case, one would expect no

producer cells if the supplement concentration was doubled, because there would be enough

of it to label the entire biomass. Indeed there is usually a substantial increase in the fraction

of consumer peptides when the supplement concentration is doubled, although consumer

peptides are always still present (Fig. 3.7C).

In order to investigate the temporal dynamics of supplement consumption, I grew big-

ger cultures supplemented with the critical concentrations of phenylalanine and proline.

Samples were taken at OD 0.8, 1.6 and 3.2, ie one doubling before and after the usual sam-

pling time. Relative peptide abundances were quantified as previously. At 1x phenylala-

Fig. 3.7 (preceding page): Uptake patterns change as the supplement is consumed. (A) Amino
acid concentrations per OD of biomass, estimated from literature values (see
main text). (B) Critical concentrations of switching amino acids (Fig. 3.3B)
versus the concentration required to label half the biomass. Critical concen-
trations are in the range of what would be expected to be consumed to reach
the observed level of labelling, ie supplement concentrations can be expected
to change very significantly during growth. Both parameters correlate well
which raises the possibility of critical concentrations being driven by exhaus-
tion of the media. The blue line shows y=x. (C) In a model were all cells are
consumers until the supplement is exhausted and then switch to being con-
sumers, doubling the supplement concentration would be expected to abol-
ish producer populations. Shown are the fractions of consumers for 1x and
2x of the supplement concentration closest to the estimated critical concen-
tration. Doubling the supplement concentration generally increases the con-
sumer fraction but does not abolish it. (D) Timecourse experiment for F and
P supplemented at the critical concentration. Bars were scaled to the optical
density at the time of harvesting, making abundances of labelling states di-
rectly comparable across timepoints. (D) Timecourse experiment for F and
M supplemented at the critical concentration. Cultures were sampled at very
low ODs to minimise depletion of the supplement. The presence of essen-
tially exclusively consumer peptides at these early timepoints indicate a later
switch due to supplement exhaustion.
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nine supplementation, at timepoint 1, a significant producer population (27%) was already

present. However, the frequency of consumer peptides decreased substantially during the

next doubling (from 65% to 38%), and again with the next doubling (to 23%). Peptide ratios

were then scaled to the OD at the time of harvesting (Fig. 3.7D). This way, relative abun-

dances become directly comparable, assuming protein turnover is negligible compared to

growth and de novo synthesis. The scaled consumer population only increased very slightly

from T1 ro T2 (from 0.51 to 0.63), indicating that the vast majority of consumer peptides

usually found at OD 1.6 were not synthesised during the last doubling. Results for proline

supplementation were similar in principle. The producer ratio increased from 23% to 34%

between timepoint 1 and 2 and the scaled consumer abundance increased from 0.17 to 0.51.

These results indicate clearly that producer/consumer ratios were not in steady state in the

cultures between the chosen timepoints. To further investigate, I harvested cultures at even

lower ODs (0.2 and 0.4) to minimise the relative concentration change of the supplement.

Cultures were started with the critical concentration of phenylalanine and methionine. Me-

thionine was chosen for this experiment because its switching curve displayed an unusual

plateau (Fig. 3.2). At these low ODs, both cultures essentially exclusively contained con-

sumer peptides (Fig. 3.7E).

These observations are crucial for interpreting switching curves. Unlike initially in-

tended, switching curves do not reflect distinct, co-existing producer and consumer popula-

tions. Instead, at least for the switcher amino acids, they reflect primarily the rate at which

the supplement is consumed and thereby at what time it runs out. Producer/consumer pop-

ulations hence exist, but only temporally separated. This also explains the de-enrichment

of the mixed labelling state. The observation that supplementation at twice the critical con-

centration does not abolish producer populations entirely (Fig. 3.7C) and the existence of

some mixed labelling states (Fig. 3.6C) is most likely explained by storage effects. As the

internal free amino acid pool turns over at a certain rate, there is a gradual switch when the

supplement runs out.

3.2.5 Deconvoluting the proteome of sub-populations

Even though no heterogeneity in amino acid uptake could be detected in the biological con-

text investigated, I believe the developed method and concept still represent meaningful

advances for the field. Going one step beyond the previous investigations of a handful of

peptides, SWATH proteomics could enable quantification of the labelling state of thousands
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Fig. 3.8: Deconvoluting producer/consumer proteome signatures. Proteome-wide profiles of 8
biological replicates grown with the critical concentration of phenylalanine were measured by
DIA-SWATH-MS. (A) Volcano plot illustrating differential labelling in peptides containing at
least one phenylalanine (1970 peptides in total). 259 peptides were found to be differentially
labelled, using a significance threshold of 0.05 after Benjamini-Hochberg correction (1-sample,
two-sided t-test) and an effect size cut-off of ±0.75. (B) Labelling ratios of peptide pairs from
the same protein correlate albeit not very strongly (Pearson r=0.62). (C) Differential labelling
analysis at the protein level, considering only the 436 proteins with at least two detected peptides.
A protein was considered a hit if the absolute median log2-transformed labelling ratio exceeded
0.5 and if at least 60% of the individual peptides were hits according to the criteria from (A),
yielding 31 hits in total. (D) Gene enrichment analysis of hits (versus 436 background proteins)
performed with gProfiler (Reimand et al., 2007) using default settings. Genes annotated to
central carbon and energy metabolism are strongly enriched in the hits. (E) Analysis of labelling
patterns in proteins expressed in specific stages of the cell cycle. All proteins with at least one
peptide containing at least one phenylalanine were used for this analysis. No clear difference
between cell cycle stages is apparent, suggesting that producer/consumer status does not depend
on cell cycle stage. Protein annotations were retrieved from Spellman et al. (1998). The y-axis
was cut to exclude one low outlier in the None category for visualisation purposes.
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of peptides in parallel. This would allow for a much deeper, investigation of sub-populations

as long as these can be differentially labelled. By looking for differences in labelling pat-

terns between peptides, and ultimately proteins, their abundance in the producer and con-

sumer sub-populations could be determined, thereby deconvoluting the proteome profiles

of the two sub-populations using a simple, intrinsically controlled measurement. This is

potentially challenging as the complexity of the peptide mass space increases dramatically

when 13C labels are introduced, eg a peptide with 100 carbon atoms has possible 2100 iso-

topomers. Analyses were therefore restricted to only fully labelled and unlabelled amino

acids and all but the supplemented amino acid were assumed to be fully labelled.

As a pilot experiment, I grew 8 biological replicates with the critical concentration of

phenylalanine and sampled at the usual OD of 1.6. Each sample was injected three times,

each time analysing a different mass range of precursors (gas phase fractionation) with a

very small (2Da) SWATH precursor isolation window. Data were analysed in DIA-NN,

which searches for peptide signatures based on a fasta proteome digested in silico and the

user-defined fixed and variable modifications. This resulted in 1970 peptides with at least

one phenylalanine consistently detected across the replicates (in 6 or more out of the 8 sam-

ples). For each sample, the labelling ratio of each peptide was determined, median-centred

and log2 transformed. Median labelling ratios ranged between 1.009 and 1.148, close to

1, the expected value at the critical concentration. For each peptide it was then tested if

the replicates deviated significantly from 0 (one-sample, two sided t-test) and proteome-

wide p-values were corrected for multiple testing using the Benjamini-Hochberg method

(Benjamini and Hochberg, 1995). From 1970 peptides overall, 259 were found to be sig-

nificantly (padj < 0.05) and substantially (±0.75) different from 0, ie more abundant in the

producer or consumer (Fig. 3.8A). For 436 proteins, at least two peptides with at least one

phenylalanine each were detected. Labelling ratios of peptide pairs from the same protein

correlated reasonably well (Pearson r=0.62), indicating a true biological signal in the data

despite some analytical inaccuracies (Fig. 3.8B). Due to this inconsistency, I chose a con-

servative approach for aggregating the peptide data at the protein level. Only proteins for

which at least two peptides with more than one phenylalanine each were measured were

considered. A protein was determined to be differentially expressed in producers and con-

sumers if at least 60% of the individual peptides were considered a hit according to the

criteria outlined above and if the absolute median of the peptide ratios was greater than
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0.5. Out of the 436 proteins, 31 were found to be hits, with 3 being more abundant in the

producer and 28 more abundant in the consumer (Fig. 3.8C). The three gene groups upreg-

ulated in the producer were all associated with metabolism, namely Arg1, Lys9;Lys13 and

Ald6;Aldh1. Strikingly, the general amino acid permease Gap1 was found to be downreg-

ulated in the producer (log2-ratio=-1.72, two peptides identified, both hits). Three proteins

(Pdc1, His5,Aro8) annotated to phenylalanine biosynthesis or degradation (from SGD path-

ways) were detected but not found to be differentially labelled. Differentially labelled pro-

teins were significantly enriched in functions in central carbon metabolism and specifically

the KEGG pathway ‘Starch and Sucrose Metabolism’ (Fig. 3.8E). These results show that

the deconvolution of subpopulation proteome profiles from SWATH data is possible using

this 13C labelling approach. While this represents a significant technological advancement,

the biological findings need to be interpreted in combination with the considerations laid

out in the previous section. On average, producer peptides have been synthesised later

in the growth curve, so that these changes could reflect population-level changes in gene

expression in response to glucose depletion, rather than direct effects of phenylalanine pro-

duction/consumption. This is consistent with the observation that several stress and respira-

tion proteins are upregulated in the producers (namely Ssa1, Gre3, Hsp104 and Cor1, Prx1,

Atp3, Cox13), which is consistent with cells entering di-auxic shift.

Nevertheless, I believe these results represent an important proof-of-concept and lay

the foundation for exciting future work. By being able to link quantitative proteome pro-

files with metabolic characteristics could potentially lead to an advanced understanding of

what is driving and what are the consequences of metabolic differentiation. This represents

a significant advantage compared to other methods such as single-cell sequencing (which

can detect sub-populations but not directly link them to a metabolic phenotype) or single-

cell metabolomics methods (which fail to characterise the broader physiological state of

the cell beyond a few metabolic parameters). To illustrate, I systematically checked the

producer/consumer ratio in proteins encoded by genes known to be expressed in specific

stages of the cell cycle (Spellman et al., 1998). No difference in labelling pattern is observ-

able, suggesting the phenylalanine uptake behaviour does not depend on cell cycle stage

(Fig. 3.8D). If a biological system with true co-existing producer/consumer sub-populations

could be constructed, investigations like this could be performed for protein markers charac-

teristic of cell age, activation of the cellular stress response or activity of specific metabolic
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pathways such as respiration, conclusively linking a metabolic phenotype with the wider

physiological state of the cell.

3.3 Discussion

Amino acid exchange interactions in clonal, exponentially growing and well-mixed cultures

-the standard growth condition in the lab- have so far proven elusive. This work represents a

novel approach, building on concepts previously developed in the Ralser laboratory (Camp-

bell et al., 2018). Using 13C labelling, the peptides of specific sub-populations are marked

when they are synthesised, allowing for the quantification and proteome-wide deconvolu-

tion of sub-population proteomes. The central result is the in-depth characterisation of the

concentration-dependent uptake behaviour of individual amino acids. Here, the key find-

ing is that the supplementation of some, but not all amino acids completely suppresses

self-synthesis, even at very low micro-molar concentrations. These switcher amino acids

are generally larger molecules, not preferred nitrogen sources and are lowly abundant in

the proteome. However, how self-synthesis is repressed mechanistically is at this moment

unclear. Preliminary data (not shown) indicates that the regulation of gene expression is

very unlikely to be the reason, as the supplementation of most amino acids causes no or

only a mild downregulation of its synthesising enzymes. The observed correlation with

the harvesting factor (Fig. 3.4) gives a clue to a potential mechanism where the intracellu-

lar accumulation of the supplemented amino acid suppresses its synthesis. This would be

an attractive, very dynamic mechanism allowing rapid de-repression when the supplement

runs out. I believe this represents a promising avenue for future research, highlighting the

dynamic nature of metabolism.

No heterogeneous amino acid utilisation could be detected in the chosen biological

context. This could mean that BY4741 yeast cells in minimal media generally do not be-

have heterogeneously in their amino acid uptake behaviour. Instead, through the expression

of high affinity transporters such as Gap1, any lowly concentrated amino acids in the media

are scavenged and taken up until exhausted. In other words, there is no active switch from

synthesis to uptake. It is well possible that other yeast strains and species differ in this re-

spect. Members of the S. cerevisiae species display evidence of high variation and recent

selection for nitrogen source utilisation (Ibstedt et al., 2015). The reported concentrations

and even the classification of amino acids into switchers/non-switchers might therefore dif-

fer, even between different laboratory strains. For example, it has been described that the
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laboratory strain Σ1278b suppresses the use of non-preferred nitrogen sources more strongly

than the S288c-derived BY-strains when grown on ammonium (Godard et al., 2007). With

important groundwork completed, it would be very exciting to apply this method to a range

of other yeast and bacterial strains to check if they differ in their behaviour and display

heterogeneity.

Another possibility is that BY4741 does respond heterogeneously to amino acids after

all, but this was not detected using the chosen method. A key weakness of it is that the

initial supplement concentration cannot be lower than the biosynthetic requirement of the

culture, otherwise the supplement will run out, leading to an artificial temporal switch from

uptake to synthesis. Proteomics analysis requires a substantial amount of biomass, so ini-

tial supplement concentrations have to be in the range of tens of micro-molar. This means

that heterogeneity could still be induced by concentrations below this limit, inaccessible

by batch culture techniques. Using lower sampling ODs (which require bigger culture vol-

umes) can ameliorate this problem, but only to an extent. An alternative possible solution

would be continuous culturing devices such as turbidostats and chemostats, but these usu-

ally require large amounts of media making them unsuitable for 13C labelling experiments.

My experiments have conclusively shown that amino acids are taken up even when present

at miniscule concentrations. This opens up the possibility that cooperative metabolite ex-

change could occur at very low extracellular concentrations, requiring new experimental

approaches.

Finally, the reductionist approach taken with this project might be unsuitable for reca-

pitulating metabolic heterogeneity in more natural settings. In this setup, amino acids have

to be supplemented one at a time, otherwise peptide masses become impossible to interpret.

However, it could be that a combination of amino acids and other factors are required to

induce producer/consumer sub-populations. In particular, one would expect that high cell

densities favour metabolite exchange, where the dilution effect on exported amino acids is

less strong. It could therefore be that amino acid export and uptake heterogeneity is trig-

gered by density-dependent factors such as quorum sensing molecules or the presence of

other overflow metabolites such as ethanol, acetate or glycerol. While this project could not

find evidence for heterogeneous amino acid metabolism, it has established a novel method

for its investigation. Furthermore, the negative result obtained with the BY4741 strain will

inform future experiments looking for heterogeneity. In particular, future studies should
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investigate the possibility of metabolite exchange at very low extracellular levels and screen

for other strains and species displaying heterogeneity.

3.4 Materials and Methods

3.4.1 Strains and reagents

The ‘wild type’ strain used for this project was based on strain BY4741 (a close relative

of the strain S228c used for the Saccharomyces genome project). BY4741 is haploid, of

mating type MATa and had four key metabolic genes (His3, Leu2, Met15, Ura3) disrupted,

making it auxotrophic for histidine, leucine, methionine and uracil (Baker Brachmann et al.,

1998). The BY4741 strain was used for generating the first and most popular yeast knock-

out collection (Giaever et al., 2002) so a wealth of functional genomics data is available

from our lab and others. To construct the strain used in this study, the four auxotrophic

markers of strain BY4147 were re-replaced by the endogenous gene in their native loci

which generated a prototroph also referred to as BY4147 HLUM knock-in (Alam et al.,

2016).

Minimal (SM) media was prepared from yeast nitrogen base without amino acids

(YNB, Sigma Y0626) at the concentration recommended by the manufacturer (6.7g/L).

All media was filter-sterilised, not autoclaved, prior to use and stored in the dark (because

of light-sensitive vitamins contained in YNB). Amino acids were obtained from Sigma and

stocks were prepared in water and stored at 4°C up to several weeks. Fully labelled 13C

glucose was obtained from Sigma (389374), prepared as a 10% (10x) stock and stored at

4°C. Yeast were grown in 96 polypropylene (PP) deep well plates (Eppendorf), covered by a

gas-permeable seal (Breathe-Easy sealing membrane, Sigma Z380059) and grown at 30°C

and 1050 rpm shaking (Heidolph Titramax 1000).

3.4.2 Proteomics

Proteomics sample preparation. This protocol for sample preparation from exponentially

growing yeasts was originally developed by Christoph Messner. I made a few, small changes

to adapt it to reduced input biomass. The protocol is based on a standard reduction alky-

lation of cysteine residues (Müller and Winter, 2017) followed by tryptic digestion and

purification of peptides by solid phase extraction (SPE). Proteomic samples were prepared

by adding a small amount of glass beads and 200µl lysis buffer (7M urea, 0.1M ammonium

bicarbonate) to frozen pellets followed by mechanical lysis for 5 minutes at 1500rpm (SPEX
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MiniG 1600). 20µl of a solution of 55mM dithiothreitol (DTT) was added to each well, the

plate shaken for 2 minutes (1000rpm, Eppendorf Thermomix), centrifuged for 4 minutes

at 3220g to remove foam and then incubated at 30°C for 60 minutes. The plate was then

cooled on ice for 5 minutes, 20µl of 120mM 2-iodoacetamide (IAA) was added and mixed

by shaking for 2 minutes, centrifuged for 4 minutes at 3220g to remove foam, followed

by 30 minutes at room temperature in the dark. 1ml of 0.1M ammonium bicarbonate was

added, the plate was mixed for 1.5 minutes and centrifuged for 3 minutes at 3220g. 920µl

of lysate were transferred to a fresh plate and 2µg of modified sequencing grade trypsin

(Promega, prepared according to manufacturer’s instructions) was added, shaken for 5 min-

utes and incubated over night at 37°C. 96µl of 10% formic acid were added, followed by

shaking for 10 seconds at 1200rpm. Peptides were purified by solid phase extraction using

a C18 column (BioPure Macro 96, PROTO 300 C18. Part HNS S18V-L, The Nest Group),

which was first conditioned with 200µl of Methanol, followed by twice 200µl of buffer

A (50% acetonitrile) and finally three times 200µl of buffer B (3% acetonitrile and 0.1%

formic acid). 1000µl of digest were loaded (in two steps of 500µl each), washed three times

with buffer B and eluted with twice 120µl buffer A followed by 130µl buffer A. The sam-

ple was evaporated (30°C, V-AQ setting, Eppendorf Concentrator plus) and reconstituted

in 50µl of buffer B. Sample were centrifuged (5 minutes, 3,200g) and transferred to a fresh

plate compatible with our LC autosampler. If required, samples were stored at -80°C until

further analysis.

Proteomics data acquisition. Samples were analysed on an ABSciex QTOF 6600 (with

Analyst TF v1.7.1) coupled to a Waters Acquity UPLC operating at 5µl per minute. 2µg

of sample were injected and separated on a C18 reverse phase column (Waters Acquity

UPLC HSS T3, 1.8µm) using a 20 minute chromatographic gradient. This method differs

significantly from more traditional proteomics methods which use nano-flow chromatogra-

phy and much longer gradients (typically 1-2 hours). Longer gradients result in better peak

separation and wider peaks, allowing longer cycle times, but our micro-flow setup clearly

outperforms non-flow methods in terms of throughput and stability (Vowinckel et al., 2018).

Electrospray ionisation (ESI) was used to charge and transfer peptides into the gas phase.

Source parameters were as follows: ion source gas 1: 15; ion source gas 2: 15; curtain gas

20; temperature: 0; ionspray voltage floating: 5500; declustering potential: 80. Peptides

were measured in positive mode and high sensitivity mode throughout all experiments.
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Targeted methods were designed using Skyline v 20.1 (MacLean et al., 2010) and in-

cluded in every cycle the acquisition of an MS1 spectrum followed by up to 32 product

ion spectra (parallel reaction monitoring). The accumulation time for MS1 measurements

was 250ms. The accumulation time for MS2 measurements was 40ms, resulting in a to-

tal cycle time remained below 3 seconds. This results in typically at least 10 datapoints

per peak allowing precise quantification of peak areas. Collision energies and declustering

potentials were predicted using the SCIEX setting in Skyline. Proteome-wide labelling pat-

terns were analysed using SWATH acquisition. Each sample was injected three times and a

different precursor mass range was analysed each time (gas phase fractionation). Each in-

jection covered a 200 m/z window, from 400-600, 600-800 and 800-1000. Each cycle lasted

2.1 seconds and comprised MS1 scan with 50ms accumulation time and 100 SWATH win-

dows with width 2. Fragmentation parameters were predicted automatically using default

settings.

Data analysis. Data acquired by parallel reaction monitoring were analysed in Skyline.

Only confidently identified peptides with typically at least 3 high quality fragments with

a suitably high signal-to-noise ratio were used for further analysis. Fragments were addi-

tionally selected to allow for the quantification of all precursor labelling states. To illustrate,

precursors with two residues of a single supplemented amino acid can have four different

labelling states, two pure states and two mixed states. However, the mixed states have the

same precursor mass, so cannot be distinguished at the MS1-level. Accordingly, only frag-

ments unique to one of the mixed labelling states can be used for quantification and these

are fragments which have one and only one of the supplemented amino acid. Peaks were

usually integrated using fixed retention time windows. These were manually curated and

then applied to all precursors belonging to the same peptide group across all samples. While

this method does not always give perfectly integrated peaks when retention times shift dur-

ing sample batches, it strictly compares signal intensities across identical time windows,

which is crucial when computing the ratio between labelling states. Peptide quantification

reports were generated in Skyline and analysed further in Python.

DIA data was analysed using DIA-NN v1.7.12 (Demichev et al., 2020) with the fol-

lowing settings different to defaults: MS2 resolution:20,000; MS1 resolution:12,000; scan

window:8. Variable and fixed modifications of type ‘label’ were used as appropriate ac-

cording to the expected labelling state of the analysed peptides.
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3.4.3 Metabolomics

Four colonies of the wild type strain were picked and grown in 10-ml SM pre-cultures

overnight. Cultures were diluted to OD0.2 and grown for 6 hours in fresh SM media in

the presence of single amino acids (0.334mM) or yeast extract (2%). Amino acids were

extracted and quantified as previously established by Mülleder et al. (2016). In brief, pellets

were washed twice to remove extracellular amino acids from the pellet. 100µl hot ethanol

(80% w/w, 80°C) was added and incubated at 80°C for 2 minutes, followed by vigorous

mixing and another 2 minutes at 80°C. Soluble extracts were separated by centrifugation

(3,200g, 5min). 1µl of each sample was analysed by LC-MS/MS. Compounds were sepa-

rated by hydrophilic interaction chromatography (HILIC) using a Waters ACQUITY UPLC

BEH amide 1.7 mm 2.1 × 100 mm column at 25°C. The buffers used were: Buffer A 50:50

acetonitrile/water, 10 mM ammonium formate, 0.176% formic acid, and Buffer B 95:5:5

acetonitrile/methanol/water, 10 mM ammonium formate and 0.176% formic acid. Flow

was maintained at 0.9 ml per minute starting with 0.7 min at 85% buffer B, followed by a

1.85-min ramp leading to 5% B which was kept constant for 0.05 min before returning to

the starting conditions. Multiple reaction monitoring (MRM) on a triple quadrupole mass

spectrometer (Agilent 6460) was used for quantification. Transition settings were imported

from (Mülleder et al., 2017). A standard curve was prepared by serial dilution of pure amino

acids and used to convert peak areas to absolute concentrations.



Conclusions

This thesis has covered three projects investigating yeast metabolism and physiology. Each

used yeast as a model for eukaryotic metabolism and employed high-throughput or genome-

wide approaches, as well as a combination of wet and dry techniques. By working on such

a multi-faceted set of projects over the last four years, I have become proficient in liq-

uid chromatography - mass spectrometry, laboratory automatisation, statistical analysis and

software development in python, as well as many standard microbiological and biochem-

ical techniques. While this was an immensely stimulating and educational experience in

itself, I hope that each of my published findings has advanced the field’s understanding and

methods. In particular, the key take-home messages that have emerged from this work are:

• Pyphe is a new, all-in-one solution for colony fitness screening

• Colony redness analysis by phloxine B staining provides an orthogonal and indepen-

dent readout to colony size

• Little is gained from recording colony growth curves compared to classical endpoint

measurements

• A SNP in pyk1 affects growth, chronological lifespan and stress resistance in S. pombe

wild strains

• The S. pombe standard lab strain carries the unusual low activity Pyk1 isoform

• A subset of amino acids is taken up at high affinity and completely suppress cell-

internal synthesis in S. cerevisiae

• Heterogeneous amino acid metabolism could be detected by analysing 13C labelling

patterns in peptides
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The long-term success of pyphe will depend on the formation of a critical mass of

users and the continuous support and development of its interface and algorithms. Hope-

fully, it will contribute towards unifying and standardising data analysis workflows across

laboratories, even if researchers end up using pyphe only for parts of their analysis pipeline.

With this in mind, I believe the modular design of pyphe is its biggest strength which makes

it preferable to large, complicated GUI-driven solutions. Using pyphe, I have investigated

optimal phenotyping strategies and come to the conclusion that probably little is gained

from timecourse imaging of colonies. This is perhaps somewhat surprising, given that re-

cently published methods on this topic all appear to favour recording colony growth curves

(Zackrisson et al., 2016; Banks et al., 2012; Levin-Reisman et al., 2014). But contrary to

Zackrisson et al. (2016), my work focuses not solely on the level of technical noise in the

readout but on the nature of the information contained in endpoint and timecourse measure-

ments. The surprising finding is that maximum slopes correlate very tightly with endpoints,

not something that would be expected from analogous growth in liquid cultures. There, the

substrate conversion efficiency determines the final biomass. On agar however, colonies

have a limited time window for growth that is determined by the ensemble of colonies ex-

hausting the growth media and colony size is thereby determined primarily by the growth

rate during that time.

Pyphe was then employed in a large-scale functional genomics screen of lincRNA

function, with mixed success. We were able to uncover phenotypes for approximately half

of the lincRNAs tested, which is a significant achievement given the sparseness and subtlety

of their phenotypes. This will provide a valuable resource for further, focused investigation

of individual lincRNAs, especially once this dataset is integrated into PomBase, S. pombe’s

model organism databank (Wood et al., 2012). However, the data was in the end not suf-

ficient to perform conclusive clustering analyses. This was partly due to the fact that only

a small subset of protein-coding genes was contained in the dataset, not enough to observe

fine-grained, statistically significant enrichments and clustering of related functional cate-

gories in the obtained clusters. A new, unpublished dataset by Marı́a Rodrı́gues-López is

going to address this shortcoming by measuring the entire non-essential deletion collection

in a large number of conditions.

I believe my work on amino acid uptake and heterogeneity (Chapter 3) represents a po-

tentially very useful and novel approach to a key knowledge gap in the field. While we are
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beginning to understand the species composition, pan-genomes and pan-transcriptomes of

microbial communities through ever deeper sequencing, the exact interplay and function of

individual community members is often not understood. One popular approach has been to

reconstruct communal genome-scale metabolic networks from sequencing data, which are

then amenable to constraint-based modelling (Sen and Orešič, 2019). However, these mod-

els describe what individual members can do (based on genomically-encoded enzymes), but

not what they actually do in practice (which is almost certainly subset of the former). My

work on amino acid uptake patterns shows very clearly that lowly concentrated extracel-

lular amino acids are not only taken up in ammonium-replete conditions, but that a subset

of them completely suppresses cell-internal biosynthesis in these prototrophic cells. Here,

a key objective of future investigations will be to elucidate the mechanism by which cells

switch off endogenous synthesis.

Analogously, in natural settings, we would expect yeast (and potentially other mi-

crobes) to suppress the synthesis of certain compounds available to them in their surround-

ing. This has profound implications beyond the immediate metabolic response. We have

previously shown that the inactivation of specific biosynthetic pathways (by plasmid loss)

can have strong effects on cellular stress resistance in S. cerevisiae (Campbell et al., 2016).

More recent, our unpublished results show a wide-spread modulation of antifungal drug tol-

erance and resistance by amino acid supplementation. Understanding the effect that specific

supplements and the metabolic environment of the niche in general have on intracellular

metabolism will therefore contribute to the development of new anti-microbial therapeu-

tics. Approaches like mine, combined with a broad investigation of intracellular changes,

will help understand how these potential new treatments exert their effect. This is particu-

larly important in the light of the worrying spread of antimicrobial resistance and multi-drug

resistant strains (Zaman et al., 2017).

Based on these observations, it is reasonable to expect that if infectious microbes

were metabolically heterogeneous, they would show an associated heterogeneity in drug

resistance and/or tolerance. Such heterogeneous resistance effects are well described and

manifest themselves in drug-resistance subpopulations which evade treatment (Rosenberg

et al., 2018). If a causative relationship with metabolic heterogeneity could be established,

this would represent a significant achievement that could result in treatments that suppress

metabolic heterogeneity, and in turn render the entire population sensitive to the drug. To
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this end, my method could be used to probe for heterogeneous amino acid metabolism in

other microbial species, especially clinically relevant ones such as Candida albicans, and

to eventually link this heterogeneity to other phenotypes.
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drejev, S., Kafkia, E., Typas, A., Sauer, U. et al. (2017). Yeast creates a niche for symbi-
otic lactic acid bacteria through nitrogen overflow. Cell Syst 5: 345–357.e6.

Poyatos, J. F. (2020). Genetic buffering and potentiation in metabolism. PLOS Computa-
tional Biology 16: e1008185.

Rallis, C., Codlin, S. and Bähler, J. (2013). TORC1 signaling inhibition by rapamycin and
caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.
Aging Cell 12: 563–573.

Rallis, C., Mulleder, M., Smith, G., Au, Y. Z., Ralser, M. and Bahler, J. (2020). Amino
acids whose intracellular levels change most during aging alter chronological lifespan of
fission yeast. BioRxiv .

Ralser, M. (2018). An appeal to magic? the discovery of a non-enzymatic metabolism and
its role in the origins of life. Biochemical Journal 475: 2577–2592.

Reimand, J., Kull, M., Peterson, H., Hansen, J. and Vilo, J. (2007). g: Profiler—a web-
based toolset for functional profiling of gene lists from large-scale experiments. Nucleic
acids research 35: W193–W200.

Reuben, J. and Kayne, F. J. (1971). Thallium-205 nuclear magnetic resonance study of pyru-
vate kinase and its substrates. evidence for a substrate-induced conformational change. J.
Biol. Chem. 246: 6227–6234.

Rhodes, N., Morris, C. N., Ainsworth, S. and Kinderlerer, J. (1986). The regulatory prop-
erties of yeast pyruvate kinase. effects of NH4+ and k+ concentrations. Biochem. J 234:
705–715.

Rich, P. (2003). The molecular machinery of keilin’s respiratory chain. Biochemical Society
transactions 31: 1095–105.

Risinger, A. L., Cain, N. E., Chen, E. J. and Kaiser, C. A. (2006). Activity-dependent
reversible inactivation of the general amino acid permease. Molecular biology of the cell
17: 4411–4419.

Rodrı́guez-López, M., Cotobal, C., Fernández-Sánchez, O., Borbarán Bravo, N., Oktri-
ani, R., Abendroth, H., Uka, D., Hoti, M., Wang, J., Zaratiegui, M. et al. (2016). A
CRISPR/Cas9-based method and primer design tool for seamless genome editing in fis-
sion yeast. Wellcome Open Res 1: 19.

Ronne, H. (1995). Glucose repression in fungi. Trends in Genetics 11: 12–17.

Rosenberg, A., Ene, I. V., Bibi, M., Zakin, S., Segal, E. S., Ziv, N., Dahan, A. M., Colombo,
A. L., Bennett, R. J. and Berman, J. (2018). Antifungal tolerance is a subpopulation
effect distinct from resistance and is associated with persistent candidemia. Nature com-
munications 9: 1–14.

Ruiz, S. J., van’t Klooster, J. S., Bianchi, F. and Poolman, B. (2017). Growth inhibition by
amino acids in saccharomyces cerevisiae. bioRxiv p. 222224.



REFERENCES 130

Saint, M., Bertaux, F., Tang, W., Sun, X.-M., Game, L., Köferle, A., Bähler, J., Shahrezaei,
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diversification of cells during the development of yeast colonies. Environmental micro-
biology 11: 494–504.
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