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Abstract
We provide approximation guarantees for a linear-time inferential frame-
work for Gaussian processes, using two low-rank kernel approximations
based on random Fourier features and truncation of Mercer expansions.
In particular, we bound the Kullback–Leibler divergence between the
idealized Gaussian process and the one resulting from a low-rank approxi-
mation to its kernel. Additionally, we present strong evidence that these
two approximations, enhanced by an initial automatic feature extraction
through deep neural networks, outperform a broad range of state-of-the-art
methods in terms of time efficiency, negative log-predictive density, and
root mean squared error.

1 Introduction
Gaussian Processes (GPs) have long been studied in probability and statistics;
e.g. [36]. In Bayesian inference, they provide a canonical way to define a
probability distribution over functions, which can be used as a prior to build
probabilistic frameworks for quantifying uncertainty in prediction. Among many
applications, they have been a method of choice for hyperparameter tuning in
deep learning.

In the simplest setting, a zero-mean probability distribution over functions
f : x 7→ y is defined as follows. For any collectionX = (x1, . . . ,xN ) of feature vec-
tors, it is assumed that their corresponding responses y = (y1, . . . , yN ) are jointly
Gaussian, with zero mean and covariance matrix K(kθ, X) := (kθ(xi,xj))ij ,
where kθ(·, ·) is a positive semidefinite kernel indexed by a parameter vector θ.
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The usual inferential practice is to assume that we do not observe the Gaussian
sample directly but additional noise drawn from a zero-mean isotropic Gaussian
distribution is added to it prior to our observation. Bayesian inference then
proceeds by focusing on estimation of θ and the noise variance distribution as well
as to compute predictive distributions of unobserved responses y∗ corresponding
to a collection of new feature vectors X∗ of interest. These inference tasks require
computing the inverse and determinant of the covariance matrix K(kθ, X), which
naively costs O(N3) operations (or more precisely matrix multiplication time),
making the inferential framework hard to scale computationally beyond a few
thousand observations.

The challenge of scaling up GPs is a well-recognized and well-explored challenge
in the GP literature. We provide theoretical grounding for the use of low-rank
approximations to the covariance matrix K(kθ, X), a widely used framework
that improves the running time of GP regression from cubic to linear at a cost
of performing approximate rather than exact inference. In particular, we pro-
vide bounds for the Kullback–Leibler divergence between the idealized K(kθ, X)
and low-rank approximations based on random Fourier features and Mercer
expansions that can become smaller than a desired εN for moderate values of
the rank of K(kθ, X). These results immediately provide bounds for the corre-
sponding Kullback–Leibler divergence between the idealized and approximate
low rank predictive densities of unobserved responses. Guided by this theoretical
understanding, we further propose how to build an implementation architecture
to obtain quite substantial improvement in terms of both precision and speed
against state-of-the-art methods. To achieve this, we adopt tools such as feature
discovery through Deep Neural Networks (DNN), a semi-stochastic asynchronous
gradient descent optimisation and an appropriate standardisation of the DNN
output in the case of Mercer expansion-based low-rank approximations which
enables nice analytical expressions for the eigenfunctions and eigenvalues.

At a high level, we propose to maximize the likelihood of our data y conditioning
onX, under the assumption that y = (yi)Ni=1 is sampled from a Gaussian distribu-
tion with covariance matrix that can be written as Σ +σ2IN , with Σ being a low-
rank matrix that ε-approximates an ideal kernel matrix K(kθ, Z) = (kθ(zi, zj))ij ,
computed on embedded feature vectors Z = (zi = gw(xi))i obtained by passing
the original feature vectors xi through a DNN gw. A key ingredient in our
inference framework is that we estimate jointly the parameters w and θ.

Our main implementation insights are (i) that inference in GPs whose kernel
matrix has constant rank can be performed in linear time, avoiding the need
for N × N matrix inversions/determinant computations for the purposes of
maximum likelihood estimation/prediction; and (ii) while (i) can be used on
its own, whenever the kernel is low-rank, we can also combine (i) with feature
extraction using DNNs and low-rank kernel approximation methods into an end-
to-end differentiable framework, which similarly does not require N ×N matrix
inversion/determinant computation in every step of the back-propagation, or to
perform a prediction once the model is trained. The end-to-end differentiability
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and the light-weight computation required in each back-propagation step, allows
for fast training of GP-based models that perform really well compared to state-
of-the-art baselines in both prediction power and training/prediction time, as
we show in Section 4. In particular, we have provided results for datasets up to
1.8 million points.

The rest of the paper proceeds as follows. Section 2 provides our theoretical
grounding for the low-rank approximations together with an implementation
architecture based on DNNs. In particular, in Sections 2.1.2 and 2.1.3 we
detail two instantiations of our framework resulting from two different low-rank
kernel approximations based on random Fourier features (Section 2.1.2) and
truncating the Mercer expansion of the kernel (Section 2.1.3). In both cases, we
provide bounds in the KL divergence between the idealized and the approximate
data generation process resulting from kernel approximation. In Section 3 we
provide a literature review and in Section 4 we test extensively our proposed
methodology against many state-of-the-art methods, in a broad collection of
real-world datasets.

2 Methodology
2.1 Linear-time inference in Gaussian processes with low-

rank kernels
In GP regression, we are given a response vector y = (yi)Ni=1 ∈ RN whose
entries are noisy evaluations of some random function f(·) on a collection of
D-dimensional feature vectors X = (xi)Ni=1 ∈ RN×D, i.e. yi is a noisy observation
of f(xi).1 We take the noise, yi − f(xi), for each data entry i to be independent
Gaussian with mean 0 and variance σ2. Moreover, we place a GP prior over f(·),
with zero mean and kernel kθ(·, ·), so that the collection of function values f(X) :=
(f(xi))Ni=1 has a joint Gaussian distribution with zero mean and covariance matrix
K(kθ, X). Setting A = K(kθ, X) +σ2IN , the log-marginal likelihood of the data
becomes log p(y|X) = − 1

2y>A−1y− 1
2 log |A| − N

2 log(2π). Future observations
y∗ ∈ RN∗ corresponding to feature vectors X∗ = (x∗i )N

∗

i=1 have a conditional nor-
mal distribution with mean and variance given by E(y∗|y) = K(kθ, X∗, X)A−1y
and Var(y∗|y) = K(kθ, X∗) + σ2IN∗ −K(kθ, X∗, X)A−1K(kθ, X∗, X)> respec-
tively, where K(kθ, X∗, X) := (kθ(x∗i ,xj))ij .

Now, suppose that the kernel function kθ(·, ·) is low-rank in the sense that there
exists a feature map φ : RD → Rr such that for all x,x′ ∈ RD: kθ(x,x′) =
〈φ(x), φ(x′)〉, where 〈·, ·〉 is the Euclidean inner product. It follows that the
kernel matrix K(kθ, X) computed on a collection of feature vectors X = (xi)Ni=1
can be written as K(kθ, X) = ΞΞ>, where Ξ is an N × r matrix whose rows are
the vectors φ(xi), for i = 1, . . . N . As such, we get that the covariance matrix of
the data y is A = ΞΞ>+σ2IN . We can then use the Woodbury matrix inversion

1We commonly view a collection X = (xi)N
i=1 of vectors as a matrix whose rows are the

xi’s. Similarly a collection y = (yi)N
i=1 of scalars is viewed as a column vector.
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lemma and the Sylvester determinant theorem to obtain explicit forms for the
inverse of A and its determinant: A−1 = σ−2IN − σ−2Ξ(σ2Ir + Ξ>Ξ)−1Ξ>,
and |A| = σ2(N−r)|σ2Ir + Ξ>Ξ|. Since these identities involve inversion or
determinant calculations of r× r matrices, by plugging them into the expressions
for the log-marginal likelihood of observations y and the mean and variance of
the predictive density of future observations y∗, we can, with the right ordering of
operations, compute the log-likelihood and the predictive density in O(r3 + r2N)
time, i.e. linear in N , when r is a constant.

2.1.1 Approximation guarantees

We define a distribution over functions mapping feature vectors x ∈ RD to
responses y through a random function h : x 7→ y which is sampled from a
GP with noisy observations, as described in Section 2.1. In particular, f(·) is
sampled from a GP with mean zero and kernel function kθ : RD ×RD → R, and
then y ∼ N (f(x), σ2). Thus, a collection X = (xi)Ni=1 of feature vectors maps
to a collection of responses y = (yi)Ni=1 sampled as

y ∼ N (0,K(kθ, X) + σ2IN ). (1)

A well-studied topic in mathematics, statistics, and machine learning is approxi-
mating kernels with low-rank kernels. Given a kernel function kθ, the goal is to
identify a feature map φθ,ε : RD → Rr, providing a guarantee of the following
form for a collection X = (xi)Ni=1 of features vectors in RD:

K(kθ, X) ≈ε Σ(φθ,ε, X), (2)

where Σ(φθ,ε, X) = (φθ,ε(xi)>φθ,ε(xj))ij . Equivalently Σ(φθ,ε, X) can be written
as Σ = ΞΞ>, where Ξ is a N × r matrix whose rows are φθ,ε(xi) for i = 1, . . . , N .
In particular, Σ is a rank r matrix. Coming back to the setting of Eq. (1),
a collection X = (xi)Ni=1 of feature vectors maps to a collection of responses
y = (yi)Ni=1, which are approximately sampled as follows:

y ∼ N (0,Σ + σ2IN ), (3)

We now show that (3) can be made to approximate (1) in a precise sense. First,
we provide the following general result which will allow us to bound the KL
divergence between (1) and (3), whenever we instantiate the latter with some
low-rank kernel Σ:

Theorem 1 (Proof in the supplementary material). Suppose that Σ1 and Σ2
are N ×N positive definite (symmetric) matrices, such that (1 + γ)Σ1 − Σ2 is
positive semi-definite for some γ ≥ 0. Then

KL [N (0,Σ1) || N (0,Σ2)] ≤
1
2Tr(Σ−1/2

2 (Σ1 − (1− γ)Σ2)Σ−1/2
2 ). (4)

4



If additionally Σ2 � (1 + γ)−1Σ1, then we obtain

KL [N (0,Σ1) || N (0,Σ2)] ≤ γN. (5)

If Σ1 = σ2IN + K1 and Σ2 = σ2IN + K2, where K1 and K2 are positive
semi-definite, σ2 > 0, and (1 + γ)Σ1 − Σ2 is positive semi-definite, then

KL [N (0,Σ1) || N (0,Σ2)] ≤
1

2σ2 Tr(K1 − (1− γ)K2 + γσ2IN ). (6)

Let us instantiate Theorem 1 by taking K1 = K(kθ, X) and K2 = Σ(φθ,ε, X)
(which has rank r). K1 determines the idealized data generation process of (1),
while K2 determines the approximate one of (3). Our theorem states that the KL
divergence between these two processes is controlled by (4)–(6), which as we will
see in the next sections can become smaller than any desired εN for relatively
modest values of the rank r, namely poly-logarithmic in N (Theorem 3), or even
an absolute constant (Theorem 5), whenever the dimension D is an absolute
constant.

2.1.2 Instantiation No. 1: Random Fourier Gaussian Processes

A well-studied method for obtaining low-rank kernel approximations is by defining
a parametrized family of functions eη : RD → R as well as a distribution p(η)
over η, defining the feature map φ(x) = (eη1(x), . . . , eηr (x)) by sampling random
η1, . . . ,ηr ∼ p(η). For example, in a celebrated paper [34], Bochner’s theorem
for shift invariant kernels kθ is used to define a kernel-specific density pθ(η) such
that eη(·) is a cosine function with frequency and phase determined by η ∼ pθ(η)
(derived from a random Fourier feature with spectral frequency η; see also [7]).
The guarantees obtained by [34] for random Fourier features bound the point-
wise distance between kθ(xi,xj) and φ(xi)>φ(xj), for arbitrary xi,xj . To be
able to bound the KL divergence between (1) and (3) we need a spectral, rather
than an entry-wise, approximation of σ2I +K(kθ, X) by σ2I + Σ(φ,X). These
types of results can be obtained as well, as exemplified by the following:

Theorem 2 (Theorem 12 of [2]). Consider the D-dimensional Gaussian ker-
nel k(x,x′) = exp(−2π2||x − x′||22), and the kernel matrix K = K(k,X) =
(k(xi,xj))ij, where X = (x1, . . . ,xN ) is a collection of points in RD such that,
for some R > 0, ||xi − xj ||∞ ≤ R,∀i, j. Suppose D ≤ 5 log(N/σ2) + 1 and
ε ∈ (0, 1). There exists (a samplable in O(D) time) distribution p(η) and
a parametrized family eη(·) of modified Fourier Features such that, if r ≥
Ω(R

D

ε2 (log N
σ2 )2D log( sσ2 (K)

δ )), where sσ2(K) = Tr((σ2I+K)−1K) and δ ∈ (0, 1),
then the feature map φ(x) = (eη1(x), . . . , eηr (x)) where η1, . . . ,ηr ∼ p(η) satis-
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Figure 1: Negative log-predictive density (left) and training times (right) as a
function of the number of training points for the Electric dataset. Dashed
lines correspond to baseline models trained on the full dataset and their values
can be also found in Table 2.

fies the following with probability at least 1− δ:

(1− ε)(σ2IN +K) �
(σ2IN + Σ) �
(1 + ε)(σ2IN +K), (7)

where Σ = (φ(xi)>φ(xj))ij, and � denotes semi-definite domination.

Using Theorems 1 and 2 we get the following theorem. We state it for the
Gaussian kernel with the same fixed scaling in every direction for notational
simplicity. It extends to the general Gaussian kernel with different scaling per
direction in an obvious way (rescaling coordinates).

Theorem 3 (Proof in the supplementary material). Consider the setting of
Theorem 2, with the same kernel k(·, ·), matrix K, dataset X, radius R, constraint
D ≤ 5 log(N/σ2) + 1, and the same distribution p(η) and parametric family eη(·)
of modified Fourier Features used in that theorem. Take ε ∈ (0, 1

2 ]. If we take
r ≥ Ω(R

D

ε2 (log N
σ2 )2D log(Nδ )) random η1, . . . ,ηr ∼ p(η) and define the rank r

matrix Σ as in Theorem 2, then with probability at least 1− δ, the KL divergence
from distribution (3) to distribution (1) is at most εN .

2.1.3 Instantiation No. 2: Mercer Gaussian Processes

In this section we present an alternative approach for obtaining low-rank ap-
proximations to the kernel K(kθ, X), namely truncating the Mercer expansion
of the kernel [32]. Suppose that kθ is a Mercer kernel on some probability space
X ⊆ RD with probability measure µ, which means that kθ(·, ·) can be written
as:

kθ(x,x′) =
∞∑
t=1

λtet(x)et(x′), (8)
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where (λt)t∈N is a sequence of summable non-negative, non-increasing num-
bers, i.e. eigenvalues, and (et)t∈N is a family of mutually orthogonal unit-norm
functions with respect to the inner product 〈f, g〉 =

∫
X f(x)g(x)dµ(x), defined

by µ, i.e. eigenfunctions. Now suppose that X = (xi)Ni=1 is a collection of
vectors xi ∈ X . It follows from Eq. (8) that the kernel matrix K(kθ, X) can be
written:

K(kθ, X) ≡
∞∑
t=1

λtωtω
>
t , (9)

where ωt = (et(x1), et(x2), . . . , et(xN )), for all t ∈ N. Recall that the sequence
(λt)t is summable so λt → 0 as t→∞. The rate of convergence is very fast for
many kernels. For example, we illustrate below the Mercer expansion of the
multi-dimensional Gaussian kernel

kσ2
f
,∆(zi, zj) = σ2

f exp(−1
2(zi − zj)T∆(zi − zj)), (10)

where ∆ = diag(ε21, . . . , ε2D) contains the length scales along the D dimensions
of the covariates, and σ2

f is the variance. The parameters of the kernel are
θ = (σ2

f ,∆).

We view kσ2
f
,∆(zi, zj) as a kernel over RD equipped with an axis aligned Gaussian

measure ρ(z) = ρ(z1, . . . , zD), whose density in dimension j is given by

ρj(zj) = αjπ
−1/2exp(−α2

j (zj)2), ∀j = 1, . . . , D. (11)

Mercer’s expansion theorem [32] allows us to write

kσ2
f
,∆(zi, zj) =

∑
n∈ND

λnen(zi)en(zj), (12)

where (en)n∈Nd is an orthonormal basis of L2(RD, ρ), wherein inner products are
computed using ρ(z). It is well-known [11, 12, 36, 49] that such an orthonormal
basis (en)n∈ND can be constructed as a tensor product of the orthonormal
bases of L2(RD, ρj) for all j, as follows. Setting βj =

(
1 + (2εj/αj)2)1/4 , γnj =

β
1/2
j 2(1−nj)/2Γ(nj)−1/2 and δ2

j = α2
j (β2

j − 1)/2 the orthonormal eigenvectors are
defined as

en(z) =
D∏
j=1

enj (zj) =

D∏
j=1

{
γnj exp(−δ2

j (zj)2)Hnj−1(αjβjzj)
}
, (13)

where Hn are the Hermite polynomials of degree n and the corresponding eigen-
values are
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λn = σ2
f

D∏
j=1

λnj =

σ2
f

D∏
j=1


(

α2
j

α2
j + δ2

j + ε2j

)1/2(
ε2j

α2
j + δ2

j + ε2j

)nj−1
 . (14)

Note that λnj → 0 as nj → ∞. Indeed, as long as α2
j/ε

2
j is bounded away

from 0, this decay is exponentially fast. This motivates approximating K(kθ, X)
by keeping the first few terms of (9), as motivated by the following theorem
of [4].

Theorem 4 (Proof of Theorem 4 in [4]). Let k(·, ·) be a Mercer kernel on
probability space (X , µ) with k(x,x) ≤ B, for all x ∈ X . Let X = (x1, . . . ,xN )
comprise samples from µ, let K = K(k,X) (which satisfies (9)), and let Σ =∑r

t=1 λtωtω
>
t , for some r ∈ N (which has rank r). With probability at least

1− δ over the samples X:

Tr(K − Σ) ≤ N ·
(

Λ>r +
√
BΛ>r
Nδ

)
, (15)

where Λ>r =
∑
t>r λt.

Using Theorems 1 and 4 we get the following theorem.

Theorem 5 (Proof in the supplementary material). Consider the setting of
Theorem 4. Under event (15) which occurs with probability at least 1 − δ, the
KL divergence from distribution (3) to distribution (1) is at most

N

2σ2 ·

(
Λ>r +

√
BΛ>r
Nδ

)
. (16)

For example, suppose k(x,x′) = exp(−2π2||x− x′||22) is the multi-variate Gaus-
sian kernel over RD, endowed with a Gaussian density µ(x) = (2π)D2 exp(−2π2||x||22).
Then choosing r = (D logD + log 1

εσδ )Ω(D) makes (16) at most εN .

2.2 Predictive densities
It is straightforward to establish bounds on the Kullback–Leibler divergence
between idealized, based on K(kθ, X), and approximating via a low-rank ap-
proximation, based on Σ, predictive densities of unobserved observations y∗
given new features X∗. Suppose that these Gaussian densities are denoted by
P (y; y∗) and Q(y; y∗) respectively. Our Theorems 3 and 5 establish bounds on
KL[P || Q]. By the chain rule of KL divergence we obtain that

KL[P || Q] = KL [P (y) || Q(y)] +
KL [P (y∗|y) || Q(y∗|y)]

8



Because of the non-negativity of Kullback–Leibler divergence, a bound on
KL[P || Q] implies a bound on KL [P (y∗|y) || Q(y∗|y)], so in expectation, with
respect to y ∼ P , the predictive densities of the true and the approximating
distributions on the test data are close.

2.3 DNNs for feature extraction
We describe here an implementation architecture that exploits our theoretical
guarantees with the enhancement of feature extraction through a DNN. Instead
of defining a direct mapping from x ∈ RD to y through a GP, we define a
composition of a random function with a deterministic function as follows. First,
a deterministic function gw : x 7→ z embeds a feature vector x to a feature vector
z ∈ Rd; we assume that gw is parametric, e.g. expressible by a DNN. Next, a
random function h : z 7→ y is sampled from a GP with noisy observations exactly
as described in Section 2.1.1, so f(·) is sampled from a GP with mean zero and
kernel function kθ : Rd × Rd → R, and then y ∼ N (f(z), σ2), so

y ∼ N (0,K(kθ, Z) + σ2IN ), (17)

where Z = (gw(xi) ≡ zi)Ni=1. Clearly, by taking the neural network to be trivial
(i.e. the identity function) we obtain the setting of the Section 2.1.1. The goal
now is to identify a feature map φθ,ε : Rd → Rr, providing a guarantee of the
form

K(kθ, Z) ≈ε Σ(φθ,ε, Z), (18)

where Σ(φθ,ε, Z) = (φθ,ε(zi)>φθ,ε(zj))ij . With this DNN enhancement, using
Random Fourier Features [34], Modified Random Fourier Features [2], or other
random feature-based methods to obtain a low-rank approximation to the kernel
K(kθ, Z) gives rise to our family of Deep Fourier Gaussian Processes (DFGP).
Using Mercer approximations gives rise to our family of Deep Mercer Gaussian
Processes (DMGP).

3 Related work
The computational burden of cubic (or more accurately matrix multiplication)
time complexity of GP inference has motivated a voluminous literature on faster
approximate methods over the last decades; see [30] for a recent survey. Most of
these methods rely on the notion of inducing inputs either on the actual Gaussian
process domain [18, 33, 38, 39], or the spectral domain [14, 17, 27]. There is also
a plethora of works pursuing kernel matrix approximations, either by using the
Nyström method [13, 15, 21, 26, 29, 37, 41, 42, 47, 48], or by approximating the
kernel function [3, 16, 23, 28, 34, 35]. More flexible GPs that mimic Bayesian
hierarchical formulations have been introduced by [8] and further combined with
random Fourier features in [7] to obtain a scalable inferential framework.
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A similar theoretical investigation to ours has been given by [5] for the sparse
variational GP regression framework [19, 39]. They have showed that under
certain conditions, such as normality of the input vectors x and use of a squared
exponential kernel, the total number of inducing points needed to approach
the posterior distribution arbitrarily close with respect to KL divergence is
O(logDN). The number of inducing points can be seen as the equivalent of
the rank r of our kernel approximation since sparse variational GP regression
makes use of the Nyström approximation to achieve inference in linear time over
N .

There have also been attempts of combining kernels and neural networks, see
[46], where activation functions and weight connections of a Bayesian neural
network (BNN) are replaced by GPs, and [8], where multiple layers of stacked
GPs are jointly used. Nonetheless, both of those methods suffer from scalability
issues, too. A more recent method, proposed in [7], combines the Deep GP
framework of [8] with random Fourier features [34], to obtain a highly-scalable
model based on Cholesky-free optimization which leads to improved performance
over standard approximation GP methods.

The idea of combining neural networks with GPs to extract more meaningful
representations from high-dimensional data has been used by [6, 20, 22] but
all approaches cannot scale to more than a few thousand training points. A
more recent work [40] exploits convolutional architectures and GPs based on
random Fourier features to tackle image classification problems. The work
that is closest to ours is [45] in which scalability issues have been dealt with
by exploiting Kronecker/Toeplitz algebra combined with the inducing inputs
framework and simultaneous estimation of all parameters. While we propose a
low-rank kernel approximation, [45] make use of the KISS-GP framework [43].
We perform extensive evaluations of our method against this and several other
state-of-the-art scalable GP methods in the next section.

4 Experiments
4.1 Curve learning via low-rank kernel approximations
Supplement B.2 describes an illustrative small data example in which random
Fourier features GP (FGP) and Mercer GP (MGP), which can be seen as DFGP
of Section 2.1.2 and DMGP of Section 2.1.3 equipped with a trivial neural
network gw(x) = x, are compared against exact Gaussian process regression.
Mercer GP achieves identical results; random Fourier features GP tends to
provide better point estimates with tighter posterior regions. Robustness to the
number of eigenfunctions/spectral frequencies is also illustrated.

10



Table 1: Comparative negative log-predictive density performance and training
time in seconds for different values of rank r and embedding dimension d;
standard deviations in parentheses. No results are reported for DMGP for
d = 3, 3

√
r = 32 since computational tractability breaks for these values.

Protein Sarcos

Negative log-predictive density-DMGP

d√r d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

2 0.883(0.014) 0.872(0.012) 0.872(0.015) −0.778(0.012) −0.762(0.019) −0.754(0.029)
4 0.856(0.015) 0.863(0.014) 0.867(0.025) −0.777(0.015) −0.775(0.019) −0.780(0.016)
8 0.857(0.015) 0.855(0.013) 0.848(0.014) −0.778(0.015) −0.773(0.021) −0.780(0.019)
10 0.857(0.015) 0.855(0.013) 0.848(0.014) −0.777(0.015) −0.772(0.021) −0.780(0.020)
16 0.857(0.015) 0.855(0.013) 0.848(0.015) −0.778(0.015) −0.772(0.021) −0.770(0.020)
32 0.857(0.015) 0.855(0.013) – −0.777(0.015) −0.772(0.021) –

r
2 Negative log-predictive density-DFGP

2 0.871(0.013) 0.873(0.014) 0.862(0.013) −0.608(0.130) −0.697(0.069) −0.771(0.019)
4 0.856(0.013) 0.851(0.012) 0.847(0.014) −0.784(0.014) −0.778(0.021) −0.783(0.019)
8 0.856(0.014) 0.854(0.012) 0.846(0.013) −0.784(0.014) −0.779(0.021) −0.784(0.020)
10 0.856(0.014) 0.855(0.013) 0.846(0.014) −0.784(0.014) −0.779(0.020) −0.786(0.020)
16 0.856(0.014) 0.854(0.012) 0.846(0.015) −0.784(0.014) −0.779(0.021) −0.784(0.022)
32 0.856(0.014) 0.853(0.012) 0.847(0.015) −0.785(0.014) −0.781(0.021) −0.785(0.019)

d√r Training Time-DMGP

2 115(4) 132(2) 154(2) 127(3) 144(3) 174(3)
4 112(1) 170(3) 374(12) 127(6) 187(2) 417(21)
8 114(1) 308(9) 874(26) 124(6) 325(11) 980(18)
10 116(5) 369(11) 2147(63) 128(5) 401(15) 2325(84)
16 117(1) 404(12) 88649(163) 130(4) 456(16) 94965(293)
32 122(1) 1864(21) – 135(6) 2071(72) –

r
2 Training Time-DFGP

2 108(1) 108(1) 108(1) 124(3) 121(3) 124(3)
4 109(1) 111(2) 110(2) 123(7) 130(2) 126(4)
8 112(1) 112(1) 113(2) 125(2) 132(1) 133(2)
10 115(4) 113(6) 126(3) 127(4) 134(5) 136(3)
16 118(1) 118(2) 156(17) 129(8) 136(4) 188(9)
32 126(1) 126(2) 176(20) 141(5) 145(4) 199(5)

4.2 Implementation details for DMGP and DFGP
We provide implementation details on how we implement DMGP and DFGP
using a Gaussian kernel. In both cases, the crux is to compute the low-rank
matrix Σ for a fixed rank r. For DMGP, we compute Σ by using d

√
r ∈ N

eigenfunctions/eigenvalues per dimension for the Mercer expansion in (12):

Σ =
∑

n∈Nd,n≤( d
√
r,..., d

√
r)

λnξnξ
>
n ,

where ξn = [en(z1), . . . , en(zN )]> ∈ RN . Note that the parameter aj in (11)
has to be pre-fixed or learnt from the data. We choose to keep it fixed with its
value being set 1/

√
2 which corresponds to a standard d-dimensional Gaussian

measure and we standardize the outputs of DNN, Z, before we feed it as an
input to the GP.

Regarding DFGP, we follow the implementation based in algorithm 1 of [34],
where we first sample, for even number r, r2 spectral frequencies η1, . . . ,η r2 from
the spectral density p(η) of the stationary kernel kθ(·, ·) and then create the

11



feature map φ(z) : Rd → Rr, defined by the vector√
2
r

[cos(η>1 z), . . . , cos(η>r
2
z), sin(η>1 z), . . . , sin(η>r

2
z)]>.

Hence, the rank of Σ is always an even number. The spectral frequencies are only
sampled once before training and are then kept fixed throughout optimization of
the log-marginal likelihood. Finally, the spectral density in the case of Gaussian
kernel in (10) is given by p(η) =

√
|2π∆−1|σ−2

f exp(−2π2η>∆−1η).

4.3 Real data experiments
We compare the following methods: (i) DMGP of Section 2.1.3 with d = 1 and
r = 15; (ii) DFGP of Section 2.1.2 with d = 4, r = 40, and random Fourier
features; (iii) Stochastic Variational Inference GP with 250 (SVIGP) and 500
(SVIGP+) inducing points [18] (code used from GPflow [31]); (iv) Sparse GP
Regression [39] with 250 (SGPR) and 500 (SGPR+) inducing points (code
used from GPflow); (v) Deep Kernel Learning with 5000 (DKL) and 10000
(DKL+) inducing points and d = 1 since we found that larger values of d did not
improve performance (code used from https://gpytorch.ai) [45]; (vi) Deep
GPs with random Fourier features (RFEDGP), see [7], with two hidden layers,
three GPs per layer, and spectral frequencies being optimized variationally
with fixed randomness—we used 20 Monte Carlo samples throughout training
since we found it is much faster and as accurate as the training procedure
followed by [7] and 100 Monte Carlo samples for prediction as in [7] (code used
from https://github.com/mauriziofilippone/deep_gp_random_features).
All data have been retrieved from UCI repository [9] or the official site of
[36].

DMGP and DFGP require joint estimation of the parameters w and θ through
maximization of the log marginal likelihood which is a non-decomposable loss
function, see [24], so we used the semi-stochastic asynchronous gradient descent
suggested in [1]. More details about the practical implementation of DMGP
and DFGP are discussed in Supplement 4.2. We emphasise that for maintaining
fairness among comparisons, we kept hyperparameter tuning to the minimum
for the DNN-based methods, by using, across all datasets, the same [D – 512
– 256 – 64 – d ] architecture with hyperbolic tangent activation functions, while
the DNN weights of these methods were initialized by pre-training the DNN as
suggested by [44, 45]. We ran all methods for 100 epochs using Adam optimizer
[25] and mini-batch optimization with mini-batches of size 1000. All GPs used
Gaussian kernels with separate length-scale per dimension. All results have been
averaged over five random splits (90% train, 10% test).

Table 2 presents comparisons of all methods in terms of NLPD and training time,
whereas Supplement B.1 presents comparisons in terms of RMSE, which carry
the same message. Both DFGP and DMGP clearly outperform all other methods
in speed and NLPD performance. The last three rows of the two sub-tables of
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Table 2: Negative log-predictive density and training time comparison (standard
deviations reported in parentheses) on seven standard benchmark real-world
datasets; N,N∗ and D represent training data size, test data size, and feature
dimension, respectively.

Negative Log-Predictive Density

Elevators Protein Sarcos 3DRoad Song Buzz Electric
N 14939 41157 44039 391386 463810 524925 1844352
N∗ 1660 4573 4894 43488 51535 58325 204928
D 18 9 21 3 90 77 19

SVIGP 0.444(0.021) 1.041(0.007) −0.422(0.006) 0.652(0.008) 1.208(0.005) 0.087(0.006) 0.804(0.003)
SVIGP+ 0.435(0.018) 0.991(0.006) −0.479(0.004) 0.541(0.008) 1.205(0.005) 0.078(0.005) 0.769(0.002)
SGPR 0.433(0.017) 0.997(0.007) −0.370(0.007) 0.799(0.007) 1.202(0.006) 0.216(0.005) 0.871(0.002)
SGPR+ 0.420(0.017) 0.944(0.005) −0.468(0.009) 0.737(0.011) 1.198(0.006) 0.186(0.004) 0.810(0.001)
DKL 0.527(0.011) 0.958(0.020) 0.395(0.040) 0.744(0.129) 1.261(0.057) 0.460(0.003) 0.447(0.013)
DKL+ 0.536(0.011) 0.961(0.037) 0.430(0.034) 0.687(0.047) 1.315(0.158) 0.438(0.017) 0.448(0.012)
RFEDGP 0.434(0.021) 1.028(0.006) −0.303(0.061) 0.583(0.009) 1.207(0.006) 0.238(0.032) 0.616(0.004)
DMGP 0.371(0.036) 0.857(0.015) −0.777(0.015) 0.140(0.010) 1.185(0.004) −0.008(0.022) 0.078(0.002)
DFGP 0.350(0.029) 0.853(0.018) −0.777(0.020) 0.139(0.012) 1.189(0.005) −0.016(0.002) 0.067(0.004)

DNN+S 0.402(0.030) 0.904(0.013) −0.559(0.021) 0.239(0.020) 1.211(0.001) 0.019(0.003) 0.165(0.001)
DNN+M 0.401(0.030) 0.893(0.016) −0.585(0.029) 0.233(0.020) 1.208(0.001) 0.025(0.016) 0.164(0.001)
DNN+F 0.380(0.022) 0.895(0.022) −0.628(0.044) 0.237(0.008) 1.210(0.002) 0.012(0.001) 0.155(0.001)

Training Time (seconds)

SVIGP 59(2) 182(24) 269(19) 2096(297) 2527(19) 2615(165) 8231(302)
SVIGP+ 150(5) 425(3) 455(2) 3895(92) 4845(132) 5715(102) 18878(1513)
SGPR 49(1) 156(15) 227(11) 1697(53) 2012(13) 2114(109) 11190(68)
SGPR+ 144(3) 381(11) 419(7) 3661(124) 4676(118) 5208(336) 30357(573)
DKL 285(27) 435(4) 455(5) 2531(31) 2916(180) 2854(408) 14455(596)
DKL+ 774(80) 1317(227) 740(402) 2377(194) 2885(161) 3182(245) 14833(1608)
RFEDGP 184(9) 559(43) 629(49) 2862(296) 4627(66) 4276(232) 26256(1647)
DMGP 121(26) 375(23) 448(26) 3602(238) 3598(95) 3963(63) 14311(134)
DFGP 51(2) 137(13) 146(1) 1363(8) 1898(15) 2092(26) 6785(323)

DNN+S 28(2) 80(7) 78(4) 752(57) 224(8) 513(7) 2211(614)
DNN+M 41(4) 113(10) 113(7) 1061(79) 331(13) 711(12) 3069(841)
DNN+F 53(3) 150(17) 171(13) 1326(93) 245(13) 1890(133) 6504(294)

Table 2 describe results of extra experiments in which a DNN regression model
with RMSE as loss function was first trained on the data, then its fitted outputs
Z were independently used as input to fit a Mercer GP (DNN+M ), random
Fourier features GP (DNN+F),2 or simply an isotropic model y ∼ N (Z, σ2IN )
(DNN+S). These methods do not perform as well in terms of NLPD, emphasizing
the necessity of our suggested joint parameter optimization. However, notice
the improvement of the non-parametric DNN+M and DNN+F over the naive
DNN+S. We also applied an exact GP regression model (using GPflow) to the
smallest dataset Elevators. The average NLPD (± one st.d.) was 0.377±0.024
with total average running time 53550 ± 2099 seconds. Comparing with the
results of Table 2 we see that both DFGP and NLPD exhibited superior NLPD
performance confirming the effectiveness of DNN feature engineering.

Figure 1 depicts how NLPD and training time over 100 epochs depend on the
number of training points in the Electric dataset, illustrating that our methods
can achieve equally good precision with less training points and less time. In
particular, notice that DFGP scales better than DMGP. Table 1 presents the
performance of DMGP and DFGP for a series of values of d and r, for the smaller
size datasets Protein and Sarcos. Similar results for Elevators dataset

2As discussed in Section 4, Mercer GP and random Fourier features GP are respectively
DMGP and DFGP without the neural net.
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can be found in Supplement B. There is evidence that large values of d and
r offer only marginally better performance for both DMGP and DFGP, while
severely affecting the training time for DMGP. This suggests using relatively
small d and r for DMGP and slightly increase these values for DFGP. For all
our data experiments we used d = 1, r = 15 for DMGP and d = 4, r = 40 for
DFGP.

4.4 Summary of results
The extensive experiments of this section were designed to answer specific
performance questions, the answers to which are summarized here. There is
strong evidence that both instantiations of our framework, DFGP and DMGP
described in Sections 2.1.2 and 2.1.3 respectively, (i) outperform all state-of-
the-art baselines in both time efficiency and prediction accuracy measured in
NLPD and RMSE (ii) outperform simple DNN regression without the use of
a GP verifying the need for incorporating both our proposed ingredients (iii)
achieve competitive performance and are much faster against the competitors
with quite fewer training points (iv) outperform exact GP regression inference
confirming the importance of the DNN feature extraction (v) illustrate the
importance of our proposed joint parameter estimation framework since they
clearly outperform consecutive estimation of the DNN first and the kernel
parameters after. We also illustrate robustness with respect to r and d and
provide practical guidelines.
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Appendix

A Omitted proofs
Proof of Theorem 1: We first show (4). Recall that the KL divergence between
two Gaussians with non-singular covariances has a closed form expression:

KL [N (0,Σ1) || N (0,Σ2)] = 1
2

(
Tr(Σ−1

2 Σ1)−N + ln |Σ2|
|Σ1|

)
. (19)

Because Σ2 is positive definite, Σ−1
2 is too and it has a square root. Thus, by

using properties of the trace we can write:

Tr(Σ−1
2 Σ1) = Tr(Σ−1/2

2 Σ1Σ−1/2
2 )

= Tr(Σ−1/2
2 (Σ1 − (1− γ)Σ2 + (1− γ)Σ2)Σ−1/2

2 )

= Tr(Σ−1/2
2 (Σ1 − (1− γ)Σ2)Σ−1/2

2 ) + Tr(Σ−1/2
2 ((1− γ)Σ2)Σ−1/2

2 )

= Tr(Σ−1/2
2 (Σ1 − (1− γ)Σ2)Σ−1/2

2 ) + (1− γ)Tr(IN )

= Tr(Σ−1/2
2 (Σ1 − (1− γ)Σ2)Σ−1/2

2 ) + (1− γ)N

Plugging this into (19) yields:

KL [N (0,Σ1) || N (0,Σ2)]

= 1
2

(
Tr(Σ−1/2

2 (Σ1 − (1− γ)Σ2)Σ−1/2
2 )− γN + ln |Σ2|

|Σ1|

)
. (20)

Next we argue the following:

Lemma 6. If A,B are positive definite, and B−A is positive semidefinite, then
ln
(
|A|
|B|

)
≤ 0.

Proof of Lemma 6: Let `1 ≥ `2 ≥ . . . ≥ `N > 0 be the eigenvalues of A, and
`′1 ≥ `′2 ≥ . . . ≥ `′N > 0 be the eigenvalues of B, in non-increasing order. Because
B � A, by the min-max theorem [10] we have `i ≤ `′i, ∀i. Thus,

|A|
|B|

=
N∏
i=1

`i
`′i
≤ 1⇒ ln

(
|A|
|B|

)
≤ 0.

�

Because (1 + γ)Σ1 � Σ2, it follows from Lemma 6 that

0 ≥ ln
(

|Σ2|
|(1 + γ)Σ1|

)
= ln

(
|Σ2|

(1 + γ)N |Σ1|

)
= ln

(
|Σ2|
|Σ1|

)
−N ln(1 + γ) ≥ ln

(
|Σ2|
|Σ1|

)
−Nγ.
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Combining the last inequality with (20) yields Bound (4).

To prove (5), we note that if additionally (1 + γ)Σ2 � Σ1 then:

1
2Tr(Σ−1/2

2 ((1 + γ)Σ2 − Σ1)Σ−1/2
2 ) ≥ 0. (21)

This follows by noticing that matrix Σ−1/2
2 ((1 + γ)Σ2 − Σ1)Σ−1/2

2 � 0. Indeed,
for all x ∈ RN and using that (Σ−1/2

2 )T = Σ−1/2
2 :

xTΣ−1/2
2 ((1 + γ)Σ2 − Σ1)Σ−1/2

2 x = (Σ−1/2
2 x)T((1 + γ)Σ2 − Σ1)(Σ−1/2

2 x) ≥ 0,

where the last inequality follows from the positive semidefiniteness of (1+γ)Σ2−
Σ1.

Now combining (21) with (4) and using properties of the trace we get:

KL [N (0,Σ1) || N (0,Σ2)]

≤ 1
2

(
Tr(Σ−1/2

2 (Σ1 − (1− γ)Σ2)Σ−1/2
2 ) + Tr(Σ−1/2

2 ((1 + γ)Σ2 − Σ1)Σ−1/2
2 )

)
≤ 1

2

(
Tr(Σ−1/2

2 (2γΣ2)Σ−1/2
2 )

)
≤ γTr(IN ) = γN.

Let us now move to the proof of (6). We plug Σ1 = σ2IN + K1 and Σ2 =
σ2IN +K2 into (6) to get:

KL [N (0,Σ1) || N (0,Σ2)] ≤ 1
2Tr(Σ−1/2

2 (K1 − (1− γ)K2 + γσ2IN )Σ−1/2
2 )

≤ 1
2Tr(Σ−1

2 (K1 − (1− γ)K2 + γσ2IN )) (22)

where we used properties of the trace. Because K2 is positive semidefinite, it
has eigenvalues `1 ≥ `2 ≥ . . . ≥ `N ≥ 0, which implies that Σ2 = σ2I +K2 has
eigenvalues σ2 + `1 ≥ σ2 + `2 ≥ . . . ≥ σ2 + `N > 0, which in turn implies that
Σ−1

2 has eigenvalues (σ2 + `N )−1 ≥ (σ2 + `N−1)−1 ≥ . . . ≥ (σ2 + `1)−1 > 0. Now
using (22) and properties of the trace we have that:

KL [N (0,Σ1) || N (0,Σ2)] ≤ 1
2Tr(Σ−1

2 (K1 − (1− γ)K2 + γσ2IN ))

≤ 1
2λmax(Σ−1

2 )Tr(K1 − (1− γ)K2 + γσ2IN )

= 1
2 ·

1
σ2 + `N

· Tr(K1 − (1− γ)K2 + γσ2IN )

≤ 1
2σ2 Tr(K1 − (1− γ)K2 + γσ2IN ),
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where in the above derivation λmax(Σ−1
2 ) is the maximum eigenvalue of matrix

Σ−1
2 . �

Proof of Theorem 3: Set Σ1 = σ2IN + K and Σ2 = σ2IN + Σ. Notice that
sσ2(K) = Tr((σ2I + K)−1K) ≤ Tr(IN ) ≤ N . Thus, given our choice of r,
Theorem 2 implies that, with probability at least 1− δ, Σ1 and Σ2 satisfy:

(1− ε)Σ1 � Σ2 � (1 + ε)Σ1.

Given that for ε ∈ (0, 1
2 ], we get that 1−ε ≥ 1

1+2ε , the above implies that:

(1 + 2ε)−1Σ1 � Σ2 � (1 + 2ε)Σ1.

Now we use (5) of Theorem 1, to get that the KL divergence from distribution (3)
to distribution (1) is bounded by 2εN . �

Proof of Theorem 5: First, notice that, because Σ is a truncation of K, K −Σ is
positive semidefinite. To prove (16), we set K1 = K, K2 = Σ, and use (6) from
Theorem 1 with γ = 0 to get that the KL divergence from distribution (3) to
distribution (1) is bounded by:

1
2σ2 Tr(K − Σ)

(15)
≤ N

2σ2 ·

(
Λ>r +

√
BΛ>r
Nδ

)
.

To prove the second part of the theorem, we use properties of the spectrum of
Gaussian kernels, as discussed in Section 2.1.3. As per Equations (12), (13),
(14), the eigenfunctions and eigenvalues of the Gaussian kernel can be indexed by
vectors n ∈ Nd. Moreover, the eigenvalues take the form λn = cDλ1

Tn, for some
absolute constants c > 0 and λ ∈ (0, 1), with 1 being a vector of all ones. In
particular, the eigenvalues are ordered in terms of the “level sets” of 1Tn; namely
the larger 1Tn is, the smaller the eigenvalue is, while every n with the same value
of 1Tn has the same eigenvalue, λn ≡ cDλ1

Tn. For m = Ω(D logD + log 1
εσδ ),
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let us take r = |{n ∈ ND | 1Tn < m}|. We have that

Λ>r =
∑

n:1Tn≥m

λn

=
∑

n:1Tn≥m

cDλ1
Tn

≤
∞∑
`=m

`DcDλ`

= cD
∞∑
`=m

(`Dλ`/2)λ`/2

≤ cD
∞∑
`=m

λ`/2

≤ cDλm/2 · 1
1− λ, (23)

where the second to last inequality follows from the fact that `Dλ`/2 ≤ 1
for m = Ω(D logD). To conclude the proof notice that the Gaussian kernel
k(z, z′) = exp(−2π2||z− z′||22) satisfies k(z, z) = 1, hence we can use (16) with
B = 1 to bound the KL divergence from distribution (3) to distribution (1)
by

N

2σ2 ·

(
Λ>r +

√
Λ>r
Nδ

)
≤ εN, (24)

where the last inequality uses (23) and that m = Ω(D logD + log 1
εσδ ). Given

that r = |{n ∈ ND | 1Tn < m}|, we get that to attain (24) it suffices to choose
the rank to be r = (D logD + log 1

εσδ )Ω(D). �

B Additional experimental results
B.1 Extra results on real data
Table 3 demonstrates the RMSE values of all methods. As in Table 1 of the main
paper, RMSE values follow similar trends as the corresponding NLPD values,
with DMGP and DFGP outperforming all the baselines across all datasets.

Table 4 presents how rank r affects performance and training time over the
Elevators dataset where results show similar patterns as in Table 1 of the main
paper. Increasing embedding’s dimension d does not reduce any further NLPD
for both DMGP and DFGP while computational time for DMGP increases fast
with d. Similarly, d

√
r and d does not seem to provide any performance boost for

values larger than 4 and 2, respectively.
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Table 3: RMSE comparison between state-of-the-art baselines and our methods
DMGP and DFGP. The experimental set-ups are the same as in Table 2 of the
main paper.

RMSE

Elevators Protein Sarcos 3DRoad Song Buzz Electric
N 14939 41157 44039 391386 463810 524925 1844352
N∗ 1660 4573 4894 43488 51535 58325 204928
D 18 9 21 3 90 77 19

SVIGP 0.379(0.009) 0.683(0.005) 0.160(0.001) 0.462(0.004) 0.810(0.005) 0.271(0.003) 0.540(0.002)
SVIGP+ 0.375(0.007) 0.649(0.005) 0.151(0.001) 0.413(0.004) 0.807(0.004) 0.270(0.003) 0.521(0.001)
SGPR 0.375(0.007) 0.653(0.005) 0.168(0.002) 0.537(0.004) 0.806(0.005) 0.315(0.003) 0.577(0.001)
SGPR+ 0.370(0.007) 0.620(0.004) 0.153(0.002) 0.506(0.006) 0.802(0.005) 0.308(0.003) 0.542(0.001)
DKL 0.352(0.010) 0.630(0.012) 0.230(0.047) 0.499(0.074) 0.815(0.006) 0.274(0.014) 0.285(0.008)
DKL+ 0.361(0.009) 0.632(0.022) 0.276(0.035) 0.474(0.024) 0.813(0.004) 0.268(0.014) 0.296(0.015)
RFEDGP 0.355(0.013) 0.678(0.004) 0.179(0.012) 0.434(0.004) 0.809(0.005) 0.307(0.009) 0.448(0.002)
DMGP 0.346(0.010) 0.564(0.007) 0.111(0.002) 0.277(0.003) 0.791(0.003) 0.237(0.000) 0.261(0.001)
DFGP 0.341(0.008) 0.562(0.008) 0.111(0.002) 0.278(0.003) 0.795(0.004) 0.238(0.000) 0.259(0.001)

DNN+S 0.359(0.007) 0.588(0.006) 0.144(0.001) 0.311(0.005) 0.806(0.001) 0.251(0.000) 0.288(0.001)
DNN+M 0.359(0.007) 0.581(0.006) 0.140(0.003) 0.310(0.005) 0.804(0.001) 0.250(0.001) 0.287(0.001)
DNN+F 0.354(0.005) 0.582(0.009) 0.135(0.004) 0.311(0.001) 0.805(0.002) 0.250(0.001) 0.285(0.001)

Table 4: Comparative NLPD performance and training time (in seconds) of
DMGP andDFGP on Elevators dataset for several values of rank r. No results
are reported for DMGP for d = 3, 3

√
r = 32 since computational tractability

breaks for these values. Experimental set-ups are the same as in Table 1 of the
main paper.

Elevators

DMGP DFGP

d√r d = 1 d = 2 d = 3 r
2 d = 1 d = 2 d = 3

NLPD

2 0.381(0.037) 0.361(0.032) 0.377(0.044) 2 0.411(0.037) 0.381(0.040) 0.367(0.029)
4 0.371(0.036) 0.351(0.032) 0.353(0.028) 4 0.380(0.037) 0.357(0.032) 0.357(0.030)
8 0.371(0.036) 0.351(0.032) 0.352(0.029) 8 0.379(0.036) 0.356(0.032) 0.356(0.030)
10 0.371(0.037) 0.351(0.032) 0.352(0.029) 10 0.379(0.036) 0.357(0.031) 0.357(0.029)
16 0.371(0.036) 0.351(0.032) 0.352(0.029) 16 0.379(0.037) 0.357(0.032) 0.357(0.030)
32 0.371(0.036) 0.351(0.032) – 32 0.379(0.036) 0.356(0.032) 0.357(0.030)

Training Time

2 40(1) 49(1) 59(1) 2 39(1) 38(1) 40(0)
4 41(1) 58(1) 135(2) 4 39(1) 38(0) 40(0)
8 41(2) 100(1) 303(5) 8 40(1) 39(1) 41(0)
10 41(2) 117(2) 710(19) 10 41(2) 40(1) 42(1)
16 42(1) 140(3) 31593(151) 16 42(2) 41(0) 51(3)
32 44(2) 620(10) – 32 46(2) 44(1) 55(3)
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B.2 Curve learning via low-rank kernel approximations
We examine the flexibility of our models by comparing them to exact Gaussian
process regression models via the following simple example. We generate an
artificial dataset based on the function f(x) = 1

2
(
3 sin(2x) + cos(10x) + x

4
)
;

exact Gaussian process models can easily recover such a smooth function and,
therefore, they provide a sound baseline for comparison with our methods.
Our simulated dataset has one-dimensional training points {xi, f(xi)}25

i=1 where
xi ∼ N (0, 1). We omit to include any DNN for our two methods, i.e. no
embedding is being learnt, facilitating thus comparisons with exact Gaussian
processes. We call those methods MGP and FGP since they only depend on
Mercer (see Sections 4.2 from supplement and 2.1.3 from main paper) and
random Fourier features frameworks (see 2.1.2 from main paper), respectively.
For all three methods, a Gaussian kernel is used. The exact Gaussian process
model has been trained using GPflow.

Figure 2 illustrates how MGP and FGP compare to exact Gaussian process.
MGP presents identical behavior, leading to same posterior mean and predictive
intervals. The posterior mean of FGP approximates better the underlying curve
with more ‘confidence’ to unseen function values. We use r = 34 and r = 68 for
MGP and FGP respectively.

Figure 3 depicts how MGP and FGP inference is affected by considering different
values for r (i.e. eigenfunctions or spectral frequencies) for approximating Σ
on the simulated dataset. For MGP, as r increases, the uncertainty decreases
and posterior mean estimates tend to approximate very well those of the exact
GP model. FGP performs well with high confidence even with r = 4 and after
r = 24 learns the true function impressively well.

C Code
All experiments were carried out on a Linux machine with 32 2.20GHz CPU
cores and 64GB RAM. The implementation of our code is provided at https:
//github.com/aresPanos/dmgp_dfgp_regression.
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Figure 2: Recovering the function f(x) = 1
2
(
3 sin(2x) + cos(10x) + x

4
)
. From

top to bottom: Predictive mean and 95% of the predictive probability mass
of exact Gaussian process, MGP and FGP, respectively. We make use of 34
eigenfunctions for MGP and 34 spectral frequencies for FGP, i.e. r = 34 and
r = 68, respectively. Black crosses depict the training data, solid red line shows
f(x), and the dashed yellow line shows the approximate methods MGP and
FGP.

25



2 1 0 1 2

Input x
3

2

1

0

1

2

3

Ou
tp

ut
 y

MGP - r=2

2 1 0 1 2

Input x

FGP - r=4

2 1 0 1 2

Input x
3

2

1

0

1

2

3

Ou
tp

ut
 y

MGP - r=4

2 1 0 1 2

Input x

FGP - r=8

2 1 0 1 2

Input x
3

2

1

0

1

2

3

Ou
tp

ut
 y

MGP - r=8

2 1 0 1 2

Input x

FGP - r=16

2 1 0 1 2

Input x
3

2

1

0

1

2

3

Ou
tp

ut
 y

MGP - r=24

2 1 0 1 2

Input x

FGP - r=48

2 1 0 1 2

Input x
3

2

1

0

1

2

3

Ou
tp

ut
 y

MGP - r=30

2 1 0 1 2

Input x

FGP - r=60

Figure 3: Recovering the function f(x) = 1
2
(
3 sin(2x) + cos(10x) + x

4
)
by using

different ranks r for Σ to approximate the true kernel K. Training points are
denoted by black crosses, f(x) by solid red line, MGP and FGP with dashed
yellow lines.
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