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We study multiple parallel contests where contest organizers elicit solutions to innovation-related problems

from a set of solvers. Each solver may participate in multiple contests and exert effort to improve her

solution for each contest she enters, but the quality of her solution in each contest also depends on an output

uncertainty. We first analyze whether an organizer’s profit can be improved by discouraging solvers from

participating in multiple contests. We show, interestingly, that organizers benefit from solvers participating

in multiple contests when the solver’s output uncertainty in these contests is sufficiently large. A managerial

insight from this result is that when all organizers are eliciting innovative solutions rather than low-novelty

solutions, they may benefit from solvers participating in multiple contests. We also show that organizers’

average profit increases when solvers participate in multiple contests even when some contests seek low-

novelty solutions, as long as other contests seek cutting-edge innovation. We further show that an organizer’s

profit is unimodal in the number of contests, and the optimal number of contests increases with the solver’s

output uncertainty. This finding may explain why many organizations run multiple contests in practice,

and it suggests running a larger number of contests when the majority of these organizations are seeking

innovative solutions rather than low-novelty solutions.
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1. Introduction

With the advancements in information technology and the Internet, organizations have started to

look beyond their boundaries in their search for innovation (Chesbrough 2003). For example, 85%

of top global brands have used crowdsourcing in the last ten years (Chen et al. 2020). A popular

and cost-effective method used for crowdsourcing is an innovation contest. In an innovation contest,

an organizer elicits innovative solutions to a challenging problem from a group of solvers and gives

an award to the solver who submits the best solution.

Contests are becoming increasingly popular; crowdsourcing platforms such as InnoCentive and

Topcoder now organize numerous contests each year and generate $1 billion in revenue with an

annual growth rate of 37.1% (Chen et al. 2020). InnoCentive, for example, organizes around 200
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contests annually for its customers, and these contests are often run in parallel. InnoCentive mem-

bers often participate in multiple contests and may win cash awards ranging from $5,000 to $1

million.1 Similarly, Topcoder organizes around 6,000 software contests annually, and Topcoder

members compete for awards of around $10,000. Interviews we conducted with practitioners at

InnoCentive and Topcoder as part of our research revealed that a crowdsourcing platform either

determines the rules for the contests (such as the awards given to winners) on behalf of its cus-

tomers, or instructs its customers in how to set these rules.2 These interviews also revealed that

a contest platform may encourage or discourage solvers from participating in multiple contests by

setting its terms and conditions accordingly.3

Besides contest platforms, many other organizations also run multiple contests in parallel. For

instance, Elanco, an animal healthcare company, has organized five contests in 2016, eliciting

innovative solutions to animal healthcare problems (Elanco 2017). Similarly, the Bill and Melinda

Gates Foundation (hereafter, the Gates Foundation) has organized 14 contests in 2016 within the

Grand Challenges Explorations initiative, where solvers develop innovative solutions to challenging

healthcare problems. Most of these contests are run in parallel, providing solvers with several

problems to work on, yet, some of the organizations running them discourage solvers from entering

multiple contests. For instance, the Gates Foundation allows submission only to a single contest

(GrandChallenges 2017).

Practitioners who run multiple contests need to make several important decisions, and one of

these decisions is whether to discourage solvers from participating in multiple contests. If solvers

are entering only one contest at a time, their effort will not be divided between multiple contests,

so they will be able to devote more effort and attention to the particular contest they are entering.

Indeed, most of the scant literature on multiple contests assumes that each solver enters only

one contest (e.g., Azmat and Möller 2009). In practice, however, platforms such as InnoCentive

allow solvers to enter multiple contests. Another important decision for practitioners is how many

contests to run in parallel, because this affects solvers’ incentive to exert effort and the quality of

1 Statistical analysis at InnoCentive reveals that in theoretical challenges where solvers develop solutions with no
requirement for implementation, they often work on multiple contests in parallel. Specifically, on four random days
within the past twelve months, 57.4% of solvers opened more than one project room to work on multiple contests in
live theoretical challenges in a day. Note that this number is likely to be a significant underestimation of the actual
percentage of solvers working on multiple contests because this analysis does not take into account solvers who work
on some contests offline and those who allocate one day to one contest and the next day to another contest. We thank
Graham Buchanan, director of marketing at InnoCentive, for sharing this statistic.

2 We thank John Elliott, former business development manager at InnoCentive, Greg Bell, former head of marketing
and community at Topcoder, and Clinton Bonner, director of marketing and crowdsourcing strategy at Topcoder for
providing insights into their operations.

3 During our interviews with managers at Topcoder, we learned that development challenges that seek low-novelty
solutions are designed to focus solvers’ efforts on a single contest. In algorithm challenges that seek innovative
solutions, solvers quite often work on multiple contests in parallel.
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their solutions in each contest. In this paper, we provide insights into these decisions by answering

the following research questions. (Q1) When should solvers be discouraged from participating in

multiple contests? (Q2) How does the number of contests affect an organizer’s profit?

To answer these questions, we build a game-theoretic model of innovation contests where multiple

contest organizers elicit solutions from a set of solvers. After all the awards are announced, each

solver exerts effort to improve her solution in each contest she enters, where the quality of her

solution also depends on her output uncertainty. Our model offers a number of new features that

contribute to the theory on innovation contests. First, while previous studies have focused only on

a single contest, we analyze multiple parallel contests. This analysis requires us to characterize a

multidimensional optimization problem for each solver who decides how much effort to invest in

each contest by assessing the total cost of the effort required. This technical contribution is even

more pronounced when considering heterogeneous contests with different characteristics. Second,

while previous studies assume that a solver can exert unbounded effort and incur an unbounded

cost, we consider the solver’s budget constraint, as this is more consistent with what happens in

practice. Third, building on the economics and operations literature, we factor in two effects that

determine the shape of a solver’s cost function: (i) each contest exhibits diseconomies of scale, as it

may be increasingly difficult for a solver to improve the quality of her solution for a certain contest

(e.g., Mihm and Schlapp 2019), and (ii) there are potential economies of scope across contests, as

exerting effort in one contest may reduce the cost of effort in another (e.g., Willig 1979, Panzar

and Willig 1981).4 While these novelties increase the complexity of our analysis and require special

technical attention, they allow us to capture important aspects of innovation contests in practice.

We answer our first research question by comparing an “exclusive” case where each solver can

participate in only one contest with a “non-exclusive” case where each solver can participate in

multiple contests. We show that when solvers face sufficiently large output uncertainty, an orga-

nizer’s profit in the non-exclusive case is larger than in the exclusive case. The intuition is as follows.

While an exclusive contest incentivizes solvers to exert more effort, a non-exclusive contest attracts

a larger number of solvers and hence a more diverse set of solutions. The diversity effect outweighs

the incentive effect when solvers face sufficiently large output uncertainty. This result suggests that

practitioners should run non-exclusive contests when seeking innovative solutions and exclusive

contests when seeking low-novelty solutions. For example, InnoCentive can achieve the best out-

come from theoretical challenges that seek innovative solutions (e.g., finding solutions to increase

4 Several factors can contribute to economies of scope. For instance, Sutton (2001) mentions the following factors that
lead to economies of scope in R&D: “There may be some common elements in the technologies employed along two
different [research] trajectories, and know-how accumulated along one trajectory may benefit the firm in its advance
along some other trajectory” (page 24). For example, a solver at Topcoder can use the same programming language
or the same code fragment in different contests.
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the literacy rate of deaf children in developing countries) by encouraging solvers to participate in

multiple contests. In contrast, Topcoder can achieve the best outcome from development challenges

that seek low-novelty solutions (e.g., finding bugs in a software) by discouraging solvers from par-

ticipating in multiple contests (e.g., by restricting the number of contests a solver can submit a

solution to). We also show that when multiple contests have different characteristics – for example,

some seeking low-novelty solutions, whereas others innovative solutions – the non-exclusive case

yields a larger average or total profit, although organizers that seek low-novelty solutions may be

worse off. Thus, in this case, practitioners should weigh in the overall benefit against the individual

loss for some organizers to determine whether to run exclusive or non-exclusive contests.

We next analyze how the number of contests affects an organizer’s profit and show that an

organizer’s profit can increase up to an optimal number of contests. This result holds regardless of

whether contests have similar or different characteristics. The intuition of this result depends on

the solver’s output uncertainty. When the solver’s output uncertainty is large, as discussed above,

running non-exclusive contests maximizes each organizer’s profit, and there is an optimal number

of non-exclusive contests. This is because running a greater number of non-exclusive contests

may benefit organizers due to the economies-of-scope effect, but it may also be detrimental to

them, because solvers may split their efforts among more contests or they may even refrain from

participating in some of these contests. We also show, interestingly, that the optimal number

of contests increases with the solver’s output uncertainty. This finding (along with its intuition)

suggests that practitioners who seek innovative solutions may benefit from organizing multiple

contests that exhibit economies of scope. When the solver’s output uncertainty is small, running

exclusive contests maximizes each organizer’s profit. In the exclusive case, because each solver enters

only one contest, the economies-of-scope effect disappears, but a different trade-off arises. As the

number of contests increases, the number of solvers in each contest decreases, thereby incentivizing

each solver to exert more effort, but reducing the diversity of solutions. Thus, when the solver’s

output uncertainty is small (e.g., when organizers seek low-novelty solutions), the incentive effect

outweighs the diversity effect, so running multiple contests improves the profit for each organizer.

We extend our main insights to several interesting cases. First, although it is common in the

innovation contest literature to assume that solvers are identical, we consider heterogeneity among

solvers. Second, while it is also standard to assume that the quality of a solution is an additive

function of a solver’s effort and output uncertainty, we show that our results still hold when

the solution quality is a multiplicative function of effort and output uncertainty. Although these

extensions yield the same insights as our main analysis, they contribute to the contest theory

because they require both a novel analysis and special technical attention. We hope our analysis

can guide future work that aims to incorporate these model components.
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Related Literature. Our paper contributes to the literature on innovation contests and in par-

ticular helps to extend the scant literature on multiple contests.

Research on innovation contests was pioneered by Taylor (1995) and Fullerton and McAfee

(1999), who show that it is optimal to restrict entry to a contest. Terwiesch and Xu (2008) also

did pioneering work by proposing a modeling framework and in showing that a free-entry open-

innovation contest is optimal. By generalizing the findings of Terwiesch and Xu (2008), Boudreau

et al. (2011) show empirically and Ales et al. (2020) show analytically that free entry is optimal

only when the solver’s output uncertainty is sufficiently large.5 Various other authors also build on

the modeling framework of Terwiesch and Xu (2008). For example, Nittala and Krishnan (2016)

examine the design of innovation contests within firms, Ales et al. (2017) study the optimal set

of awards in a contest, Mihm and Schlapp (2019) analyze whether and how to give feedback to

solvers, Hu and Wang (2021) examine whether to run a single-stage or a sequential contest when

solvers’ solutions depend on multiple attributes, and Korpeoğlu et al. (2018) look at the optimal

duration and award scheme of a contest.6 Building on the modeling framework of these studies, we

contribute to this literature in two ways. First, while these studies look only at a single contest,

we consider multiple contests. This multiple-contest environment helps us bridge the gap between

theory and practice and contribute to the theory on innovation contests by capturing novel features

such as a solver’s capacity constraint and economies of scope across contests. Second, we analyze

novel research questions relating to when an organizer should discourage solvers from participating

in multiple contests and how the number of contests affects an organizer’s profit.

Of the relatively few studies that have examined multiple contests, DiPalantino and Vojnović

(2009) study multiple all-pay contests with exogenously given awards and characterize equilibria

for solvers, yet they do not analyze the optimal decisions for organizers. Azmat and Möller (2009)

consider two identical Tullock contests and analyze the optimal award structure for organizers who

5 Our paper has some similarities to studies that have examined when a free-entry open-innovation contest is optimal.
This is because discouraging solvers from participating in multiple contests leads to fewer solvers in each contest,
and this then leads to a tradeoff between eliciting greater effort from solvers (by reducing the number of solvers)
and obtaining a more diverse set of solutions. Our paper, however, significantly differs from this literature. First, our
paper also looks at questions that were outside the scope of previous studies, such as the impact of the number of
contests on an organizer’s profit. Second, we show our results by considering several aspects that these papers do not,
such as a multiplicative output function, heterogeneous solvers, and multiple (possibly asymmetric) contests. Finally,
our paper considers other drivers that affect solvers’ incentive to exert effort such as economies of scope and splitting
effort across multiple contests. Thus, our paper also finds directionally different results from these studies.

6 For a detailed review of this literature and other types of contests, we refer the reader to Ales et al. (2019). Our
paper is broadly related to studies that consider heterogeneous solvers by ignoring uncertainty (e.g., Moldovanu and
Sela 2001, Körpeoğlu and Cho 2018, Stouras et al. 2017), to studies that analyze other types of contests (e.g., dynamic
contests by Bimpikis et al. 2019), to empirical studies on crowdsourcing (e.g., Jiang et al. 2016, Hwang et al. 2019,
Aggarwal et al. 2020), and to theoretical studies on new product development (e.g., Mihm 2010, Lobel et al. 2016).
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are competing to attract a set of identical solvers.7 Büyükboyacı (2016) considers two solvers where

each solver exerts a large or small amount of effort and compares running two parallel contests

(potentially one solver in each contest) with running a single contest. Hafalır et al. (2018) compare

running two all-pay contests with running a single all-pay contest and focus on the equilibrium

among solvers without analyzing the optimal decisions for organizers.

It is noteworthy that the scant literature on multiple contests has provided only preliminary

answers to some aspects of multiple contests. First, the papers referred to above pay attention

only to exclusive contests and overlook non-exclusive contests, and hence they cannot compare the

two. Our results, however, confirm the benefits of non-exclusive contests for innovative settings.

Second, while these papers assume that an organizer is interested in all solutions, we assume that

the organizer is interested in the best solution—an objective more typical of innovation settings

(cf. Terwiesch and Xu 2008). Third, while the papers above consider the impact of the solver’s

effort, we consider how the solver’s effort and output uncertainty affect the quality of the solution

submitted and thus the organizer’s profit. It is well established in the literature that uncertainty

plays a prominent role in real-world innovation contests (cf. Boudreau et al. 2011). Finally, our

paper considers model components that those papers do not, such as asymmetry across contests

and heterogeneous solvers. These aspects of our paper contribute to the theory on innovation

contests and help us to generate managerial insights.

Our paper is also related to the economics literature on games with multiple battlefields (i.e.,

Colonel Blotto games). The seminal paper in this literature is that of Roberson (2006), who char-

acterizes the equilibrium in a game where two colonels simultaneously distribute forces across n

battlefields, and within each battlefield the colonel that allocates more forces wins. Kovenock and

Roberson (2010) consider more general success functions (where a colonel with more forces does

not necessarily win on a battlefield), cost functions, and utility functions for colonels. Hortala-

Vallve and Llorente-Saguer (2012) consider opposing parties with different relative intensities and

characterize the colonels’ payoffs that sustain a pure-strategy Nash equilibrium. Roberson and

Kvasov (2012) consider the case where the budget (in terms of total forces) do not have the “use

it or lose it” feature. Konrad and Kovenock (2012) characterize equilibria in a model where solvers

7 Our paper is broadly related to the literature on multiple auctions. The pioneering paper by McAfee (1993) shows
that, in equilibrium, sellers hold identical auctions and buyers randomize the sellers they visit. Peters and Severinov
(1997) extend the McAfee (1993) model and analyze how reserve prices are determined. In the operations literature,
Beil and Wein (2009) consider two competing auctioneers and settings where bidders can participate in both auctions
or only a single auction. They show that for multi-item auctions, only the auctioneer with the smaller ratio of bidders
per item benefits from the existence of bidders that participate in both auctions. Not only do these papers address
different research questions than ours, but there are also three fundamental differences between auctions and contests.
First, while auction settings typically involve private information, in contest settings there is moral hazard, because
the solver’s efforts cannot be observed. Second, an auctioneer maximizes the total bid from bidders, whereas a contest
organizer maximizes the quality of the best solution less of the total award. Finally, while the bids in an auction are
deterministic, the quality of a solver’s solution in a contest depends on the level of output uncertainty.
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first choose contests (lifeboats) and then compete in all-pay contests with multiple identical prizes.

The main difference between our paper and the aforementioned work is that these papers do not

consider organizers; and they just characterize the equilibrium among solvers (colonels), whereas

our work analyzes the impact of the solvers’ competition on organizers who benefit from solvers’

efforts and output uncertainty.

2. The Model

Consider M innovation contests where M contest organizers elicit solutions to innovation-related

problems from a set of N solvers (“she”). Below, we describe our model of solvers and organizers

and then present the equilibrium.

Solvers. Each solver i ∈ {1,2, ...,N} develops a solution for each contest m ∈ {1,2, ...,M} she

participates in and generates an output yim ⊆R∪{−∞,∞}. The output yim represents the quality

of solver i’s solution in contest m or its monetary value to organizer m. The output yim is determined

by solver i’s effort eim in contest m and solver i’s output shock ξ̃im in contest m, and it takes the

following additive form: yim = y(eim, ξ̃im) = r(eim)+ ξ̃im. We next elaborate on these two terms.

First, each solver i can improve her output by exerting effort eim ⊆R+ in contest m. A solver’s

effort may represent the set of actions she takes to improve her output, such as “conducting a

thorough patent search and literature review, or implementing rigorous quality control systems with

high standards” (Terwiesch and Xu 2008, page 1532). For example, a logo designer may exert effort

by drawing multiple sketches before choosing the best one to submit (Ales et al. 2017). The effort

eim leads to a deterministic improvement r(eim) of the output, where r is an increasing and concave

function of eim, and r′ is homogenous of degree −k, where k ≥ 0. This mild assumption is satisfied

by functional forms that are commonly used in the literature, such as linear and logarithmic forms.

We assume that all functions in the paper are thrice continuously differentiable.

Second, each solver faces uncertainty while developing her solution, and we capture this uncer-

tainty with an output shock ξ̃im, which is independent for each solver i and for each contest m.8

We allow for asymmetry across contests. Specifically, the output shock ξ̃im in contest m follows a

cumulative distribution function Hm and a density function hm with E[ξ̃im] = 0 over support Ξm =

[sm, sm], where sm < sm, sm ∈ R∪ {−∞}, and sm ∈ R∪ {∞}. We assume that hm is log-concave,

i.e., log(hm) is concave for all m∈ {1,2, ...,M}. This property is satisfied by most commonly-used

distributions such as the Gumbel distribution used by Terwiesch and Xu (2008), the uniform dis-

tribution used by Mihm and Schlapp (2019), and normal, exponential, and logistic distributions.

8 In practice, there may be some contest-specific dependence due to the uncertainty of the evaluation process. In
this case, each solver i’s output shock in contest m can be modeled as ξ̃im + ε̃m where ε̃m is a shock that is specific
to contest m. Because ε̃m terms would appear in all solvers’ outputs, they would not affect solvers’ rankings or our
analysis, and hence we omit them.
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Throughout the paper, we analyze the impact of the solver’s output uncertainty by changing the

spread of the density hm. For that purpose, we use the notion of a scale transformation (e.g.,

Rothschild and Stiglitz 1978). When the output shock ξ̃im is transformed by a scale transforma-

tion with parameter αm, the transformed random variable ξ̂im = αmξ̃im has mean 0, and variance

α2
mV ar(ξ̃im). Thus, when αm > 1, the transformed density is more spread out. Let ξ̃N

m be a random

variable that represents the largest output shock among {ξ̃1m, ξ̃2m, ..., ξ̃Nm}, and let μN,m = E[ξ̃N
m ].

Solver i’s utility Ui = U(ei, xi) :R2M
+ →R is defined over the vector of efforts ei ≡ (ei1, ei2, ..., eiM )

she exerts and the vector of awards xi ≡ (xi1, xi2, ..., xiM ) she receives. Solver i’s utility takes the

form Ui =
∑M

m=1 xim −ψ(ei1, ei2, ..., eiM), and ψ represents the solver’s disutility or cost associated

with her effort. We assume that each solver has limited resources with a monetary budget B that

she can use to cover her total cost. We also assume that ψ has the following properties that seem

consistent with contest practice. First, each contest exhibits diseconomies of scale because a solver

may have to allocate more time, effort, or money to improve her output at a certain contest.

Thus, ψ is increasing in eim with positive second partial derivatives; i.e., ∂ψ
∂eim

> 0 and ∂2ψ

∂e2
im

≥ 0.

This property is in line with studies that assume a convex cost of effort in a single contest (e.g.,

Mihm and Schlapp 2019). Second, as discussed in §1, there are potential economies of scope across

contests because when a solver exerts more effort in one contest, the cost of her effort in another

contest may decrease due to factors such as common investments (e.g., Willig 1979, Panzar and

Willig 1981). For example, a solver who conducts a literature review for a contest at InnoCentive

or Topcoder may find it easier to conduct literature reviews for other contests in the same subject

category. Thus, ψ has negative cross-partial derivatives; i.e., ∂2ψ
∂eil∂eim

< 0 for all l 6= m.

As the tractability of the general cost function ψ is limited, we assume the following form:

ψ(ei1, ei2, ..., eiM) = η

(
M∑

m=1

φ(eim)

)

, (1)

where η is an increasing and homogenous “scope” function of degree b (< 1) and φ is an increasing

and homogenous “scarcity” function of degree p (> 1). We further assume that bp ≥ 1 to ensure

that η ◦φ is convex, and that either bp > 1 or k > 0 (where the derivative of the effort function r′

is homogenous of degree −k). Lemma EC.4 of Online Appendix shows that the cost function ψ

in (1) exhibits both diseconomies of scale and economies of scope as discussed above. Note that

when there is a single contest (i.e., M = 1), ψ in (1) boils down to a convex cost function that

subsumes the cost functions used in the literature, such as ψ(e) = ce used by Terwiesch and Xu

(2008), ψ(e) = cebp, where bp ≥ 1 used by Ales et al. (2020, 2017), and ψ(e) = ce2 used by Mihm

and Schlapp (2019). We summarize all of our assumptions below.
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Assumption 1. The cost function ψ(ei1, ei2, ..., eiM) = η
(∑M

m=1 φ(eim)
)
, where the scope function

η is increasing and homogenous of degree b(< 1), the scarcity function φ is increasing and homoge-

nous of degree p(> 1), and bp≥ 1. The derivative of the effort function r′ is homogenous of degree

−k (k ≥ 0), and either bp > 1 or k > 0. Density hm is log-concave for all m∈ {1,2, ...,M}.

Organizers. As is common in practice and in the literature discussed in §1, we assume a winner-

take-all award scheme. Specifically, each organizer m gives an award Am to the solver with the

largest output, i.e., the winner of contest m. The winner-take-all award scheme is proven to be

optimal in a single contest where the output shock density hm is log-concave as in our setting (see

Proposition 3 of Ales et al. 2017). Under this award scheme, if solver i wins contest m, her award

is xim = Am; otherwise, xim = 0. Consistent with the innovation contest literature (Terwiesch and

Xu 2008, Mihm and Schlapp 2019), we assume that organizers are interested in the largest output

in their contests. For example, in a contest for a logo design, an organizer is interested in finding

the best logo, which will eventually be implemented. Thus, organizer m’s profit Πm consists of the

largest output minus the award given in contest m, i.e., Πm = maxi yim −Am.

The sequence of events is as follows. First, the awards (A1,A2, ...,AM ) for all contests are

announced, then each solver i determines her effort eim in each contest m she participates in, while

considering her total cost of effort ψ. Afterwards, each solver i observes her output shock ξ̃im, and

generates an output yim in each contest m. Finally, each organizer m collects solutions from solvers

participating in contest m, and gives the award Am to the winner with the largest output.

Equilibrium among solvers. We next define and characterize a Nash equilibrium of the subgame

among solvers. As is common in the innovation contest literature, we focus on a symmetric pure-

strategy Nash equilibrium (hereafter, symmetric equilibrium), and denote each solver’s equilibrium

effort in contest m by e∗m. To solve for the equilibrium, we first derive solver i’s probability of

winning contest m by exerting effort eim, given that all other solvers exert effort e∗m in contest m:

Pm(eim, e∗m) =
∫

s∈Ξm

Hm(s + r(eim)− r(e∗m))N−1hm(s)ds. (2)

Solver i chooses her effort eim in each contest m to maximize her expected utility subject to a

budget constraint by solving the following problem:

max
(ei1,ei2,...,eiM )

M∑

m=1

AmPm(eim, e∗m)−ψ (ei1, ei2, ..., eiM) s.t. ψ (ei1, ei2, ..., eiM )≤B. (3)

In a symmetric equilibrium, each solver exerts the equilibrium effort e∗m in contest m that solves

(3). We solve for the symmetric equilibrium by solving the Kuhn–Tucker conditions of (3). In §EC.1

of the Online Appendix, we investigate when a symmetric equilibrium exists. Because our model is

quite general, it is not analytically tractable to characterize precise conditions on our model prim-

itives to ensure the existence of a symmetric equilibrium. However, in Lemma EC.1 and Corollary
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Table 1 Summary of key notation in the main body.

M Number of contests and organizers N Number of solvers

eim Effort of solver i in contest m r Effort function; r′ is homogenous of degree −k

yim Output of solver i in contest m φ Scarcity function, homogenous of degree p

ψ Cost function; = η
(∑M

m=1 φ(eim)
)

η Scope function, homogenous of degree b

ξ̃im Shock of solver i in contest m hm,Hm Density and distribution functions of ξ̃im

ξ̃N
m = max{ξ̃1m, ξ̃2m, ..., ξ̃Nm} μN,m = E[ξ̃N

m ]

g = ((η ◦φ)′/r′)−1 B Solver’s budget

Am Award in contest m Πm, Π Profit of organizer m and the average profit

EC.1, we provide a limiting sufficient condition for the existence of a symmetric equilibrium that

requires the output uncertainty to be sufficiently large and the cost parameter b to be above a cer-

tain threshold. Furthermore, in Lemma EC.2, we present precise sufficient conditions on our model

primitives by considering the specific settings that are used in the innovation contest literature.

Lastly, we numerically show that a symmetric equilibrium exists for a very broad class of distribu-

tions and parameter settings. Throughout the paper, we limit our attention to parameter settings

that allow a symmetric equilibrium to exist. It is common in the innovation contest literature to

assume such parameter settings (e.g., Terwiesch and Xu 2008, Mihm and Schlapp 2019) or to offer

limiting sufficient conditions for the existence of equilibrium (e.g., Ales et al. 2017, Hu and Wang

2021). It is worth noting that all our insights are generated from situations where a symmetric

equilibrium exists under a nonempty set of parameters and that all our figures illustrate settings

in which there is a symmetric equilibrium.

We next characterize the symmetric equilibrium among solvers. In preparation, we let g(x) =

((η◦φ)′/r′)−1(x). All proofs are provided in the Appendix and Table 1 summarizes our key notation.

Proposition 1. Let IN,m ≡
∫

s∈Ξm
(N − 1)Hm(s)N−2hm(s)2ds, em ≡ φ−1

(
(AmIN,m)

p
k+p−1 η−1(B)

∑M
l=1(AlIN,l)

p
k+p−1

)

,

and êm ≡ g

(

(AmIN,m)
k+bp−1
k+p−1

(∑M

l=1 (AlIN,l)
p

k+p−1

)1−b
)

. Suppose Assumption 1 holds. Then, either

êm ≤ em for all m ∈ {1,2, ...,M} or êm > em for all m ∈ {1,2, ...,M}. Furthermore, the unique

symmetric equilibrium satisfies the following properties:

(a) When êm ≤ em for all m∈ {1,2, ...,M}, the equilibrium effort e∗m = êm for all m∈ {1,2, ...,M}.

(b) When êm > em for all m∈ {1,2, ...,M}, the equilibrium effort e∗m = em for all m∈ {1,2, ...,M}.

Proposition 1 has some interesting implications. First, note that a solver’s equilibrium effort levels

in all contests are interlinked via the common cost function ψ (embedded in the function g) or

via the solver’s budget B. Specifically, when the solver’s budget constraint does not bind, she

determines her effort by balancing “the marginal benefit of additional effort,” which is the increase
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in her expected award, with “the marginal cost of additional effort.” In this case, interestingly,

a solver’s effort in contest m increases with the awards offered in other contests, because larger

awards in other contests lead the solver to exert more effort in those contests. Through economies

of scope, this reduces the solver’s marginal cost of effort, and hence increases her equilibrium effort

in contest m. On the other hand, when the solver’s budget constraint binds, the solver starts to

split her budget across multiple contests, and her effort in contest m decreases as the awards offered

in other contests increase because she shifts her budget to those contests that offer larger awards.

While our main model considers no fixed cost of participation and assumes that each solver

participates in M contests, in §3.3, we incorporate a fixed cost of participation and also consider

the case where each solver participates in a limited number of contests.

Coordinator. In our main analysis, we assume that a coordinator determines the awards in all

contests. This assumption is consistent with practice for two reasons. First, as discussed in §1,

many organizations such as Elanco and the Gates Foundation run multiple contests in parallel,

and such organizations will determine the awards for all of their contests. Second, as we discuss

in §1, our interviews with practitioners at InnoCentive and Topcoder reveal that a platform of

this kind acts as a coordinator either by determining all awards on behalf of its customers or

by instructing its customers how to set awards. We assume that the coordinator aims to maxi-

mize the expected average profit for organizers (hereafter, average profit), which is given by Π ≡

(1/M)(E[
∑M

m=1 maxi yim] −
∑M

m=1 Am). Given the equilibrium effort e∗m, we write maxi yim =

maxi {r(e∗m)+ ξ̃im}= r(e∗m)+maxi ξ̃im = r(e∗m)+ ξ̃N
m . Thus, the coordinator’s objective is to max-

imize the average profit, which can be written as:

Π =

∑M

m=1 r(e∗m)
M

+
E
[∑M

m=1 ξ̃N
m

]

M
−

∑M

m=1 Am

M
. (4)

The objective function in (4) may be suitable for a platform because a platform aims to increase

the value created for each customer; and in our model, this value is captured by an organizer’s

profit. The objective function in (4) also seems suitable for an organization such as Elanco or the

Gates Foundation while deciding whether to run contests in parallel.9 On the other hand, when

such an organization is determining whether to run a new contest in parallel with others or not

to run it at all (and hence to forgo the potential profit), a more suitable objective could be to

maximize the total profit ΠΣ =
∑M

m=1 Πm from contests. We analyze this alternative objective in

§EC.2.1 of the Online Appendix. We also show that our main results hold in a decentralized case

where organizers determine their own awards; see §EC.2.2 of the Online Appendix.

9 In practice, another plausible case is that such an organization will determine whether to run contests in parallel
or sequentially. As long as parallel contests create larger economies of scope than sequential contests, the results
obtained when using a sequential model would be qualitatively similar to our results.
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Contest asymmetry. We capture the asymmetry across contests as follows. We suppose that

there are J (∈ {1,2, ...,M}) contest types and we use the subscript in parentheses to denote type-

specific parameters. Specifically, each contest of the same type j (∈ {1,2, ..., J}) gives the same

award A(j), and has the same output shock distribution H(j) and density h(j) over the same support

Ξ(j), and hence the same IN,(j) =
∫

s∈Ξ(j)
(N −1)H(j)(s)N−2h(j)(s)2ds and the same equilibrium effort

e∗(j). We let M(j) be the number of contests of type j, where
∑J

j=1 M(j) = M .

We conduct our analysis in three stages. In §3, we analyze symmetric contests (i.e., J = 1) to

generate clean insights relating to our research questions. In this case, for notational convenience,

we drop type-specific notation (i.e., subscript in parentheses). In §4, we show our main results and

generate new insights when contests are asymmetric. In §5 and §EC.2 of the Online Appendix, we

consider various extensions to show the robustness of our main insights.

3. Analysis of Symmetric Contests

In this section, we focus on symmetric contests (i.e., J = 1). We start our analysis by characterizing

the optimal set of awards. To do so, we make two assumptions (similar assumptions are common

in the literature reviewed in §1). First, we assume that r′(g(x))g′(x) is decreasing in x, which holds

if and only if 2− 2k− bp < 0, noting that the derivative of the effort function r′ is homogenous of

degree −k, the scope function η is homogenous of degree b, scarcity function φ is homogenous of

degree p, and g = ((η ◦φ)′/r′)−1. This assumption is so that organizer m’s profit Πm is concave in

award Am. This concavity, along with the solvers’ budget constraint, ensures that the coordinator

always sets finite awards. Second, we assume that the effort function r is sufficiently concave or

the cost function ψ is sufficiently convex (e.g., b > 0 and k ≥ 1, or k > 0 and b is close to 1) so

that solvers face sufficiently diminishing marginal returns compared to the cost they incur. Note

that all assumptions we make regarding r and ψ are satisfied by effort and cost functions that are

commonly used in studies focusing on a single contest. For example, our assumptions hold under

the Terwiesch and Xu (2008) model, where r(e) = θ log(e), ψ(e) = ce, and θ, c > 0; under the Ales

et al. (2020, 2017) model, where r(e) = θ(e1−k −1)/(1−k), ψ(e) = cepb, k ≥ 1, pb≥ 1, and b∈ (0,1);

and under the Mihm and Schlapp (2019) model, where r(e) = θe, ψ(e) = cepb, θ, c > 0, pb = 2, and

b is sufficiently close to 1. We summarize these assumptions below.

Assumption 2. 2−2k−bp < 0 and the effort function r is sufficiently concave or the cost function

ψ is sufficiently convex (e.g., b > 0 and k ≥ 1, or k > 0 and b is close to 1).

The following lemma characterizes the optimal set of awards.

Lemma 1. Suppose Assumptions 1 and 2 hold. Let Φ(A) = r′(e∗)g′(AINM1−b)INM 1−b − 1 and

A = M b−1g−1
(
φ−1

(
η−1(BM−b)

))
/IN .
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(a) If Φ(A) ≥ 0, then the average profit Π is maximized at the optimal award A∗
m = A∗ = A and

equilibrium effort e∗m = e∗ = φ−1
(
η−1(BM−b)

)
. If Φ(A) < 0, then there exists a unique Â such that

Φ(Â) = 0, and Π is maximized at A∗
m = A∗ = Â and e∗m = e∗ = g(A∗INM 1−b).

(b) A is decreasing in the number of contests M , and Â is increasing, constant, or decreasing in

M when the degree of the derivative of the effort function r′, k < 1, k = 1, or k > 1, respectively.

Lemma 1(a) shows that the average profit Π is maximized when the award in each contest is A∗.

This is because solvers face diminishing marginal returns in their efforts, so balancing solvers’ efforts

using identical awards improve the average of best outputs across all contests
(
i.e., 1

M

∑M

m=1(r(e
∗
m)+

μN)
)
, and in turn improves Π. Let Π∗ be an organizer’s profit when the award in each contest is

A∗. Under the optimal award A∗ in Lemma 1, the average profit can be written as:

Π = Π∗ = r(e∗)+ μN −A∗. (5)

Lemma 1(a) also shows that the optimal award A∗ depends on whether or not the solver’s budget

constraint is binding. When it is not binding, it is optimal for the coordinator to set the awards

to balance the marginal benefit and the marginal cost of an award on the average profit. However,

when the solver’s budget constraint is binding, it is optimal for the coordinator to set the awards

at A, which is just enough to induce each solver to incur a cost of B, because a larger award cannot

improve a solver’s effort due to the budget constraint.

Lemma 1(b) shows that when the budget constraint binds, increasing the number of contests

M reduces the optimal award A∗ = A. This is intuitive because increasing M leads solvers to split

their efforts more, so the equilibrium effort e∗ decreases, and hence the incentive effect of the

award in terms of eliciting effort decreases with M . Lemma 1(b) also shows that when the budget

constraint does not bind, the optimal award A∗ = Â can be increasing, constant, or decreasing in M

depending on the parameter k. We explain the intuition for the case where k < 1 (i.e., A∗ increases

with M) but the same idea applies to k = 1 and k > 1. When the marginal contribution of award A

to the average profit increases, the optimal award A∗ increases. By Lemma 1(a), A∗ increases when

increasing M raises r′(e∗)∂e∗

∂A
= r′(e∗)g′(AINM 1−b)INM 1−b. Because the equilibrium effort increases

with M , and the effort function r is concave, increasing M decreases the marginal contribution of

effort to output r (i.e., r′(e∗)), but increases the marginal contribution of the award on eliciting

effort (i.e., ∂e∗

∂A
). When the marginal contribution of effort on increasing output is inelastic to a

change in effort (i.e.,
∣
∣
∣d log(r′(e))

d log(e)

∣
∣
∣=− r′′(e)e

r′(e)
= k < 1), the latter positive effect of larger M dominates

the former negative effect (so increasing M reduces r′(e∗)∂e∗

∂A
). Thus, A∗ increases with M .

The rest of this section proceeds as follows. In §3.1, we compare exclusive and non-exclusive

contests. In §3.2, we analyze how an organizer’s profit changes with the number of contests. In

§3.3, we enrich our analysis by first incorporating a fixed cost of participation and then considering

each solver’s participation in a limited number of contests. In §3.4, we discuss managerial insights.



Körpeoğlu, Korpeoglu, and Hafalır: Parallel Innovation Contests
14 Article forthcoming at Operations Research

3.1. Exclusive versus Non-Exclusive Contests

In this section, we analyze when solvers should be discouraged from participating in multiple

contests. In practice, an organization such as the Gates Foundation or a platform such as Topcoder

can discourage solvers from participating in multiple contests, for example, by allowing submission

only to a single contest. We refer to the case where each solver can participate in only one contest

as the exclusive case, and the case where each solver can participate in multiple contests as the non-

exclusive case. Note that in our model and in Lemmas 1 and 2, M ≥ 1 characterizes equilibrium and

optimal awards under M non-exclusive contests, and M = 1 characterizes equilibrium and optimal

awards under a single exclusive contest. We next compare exclusive and non-exclusive cases.10

Theorem 1. Suppose Assumption 1 holds. Let Π
X

be the average profit when the coordinator

allocates solvers and awards optimally in the exclusive case. Suppose the output shock ξ̃im is trans-

formed to ξ̂im = αξ̃im with a scale parameter α > 0. Then, there exists α0 such that the average

profit in the non-exclusive case Π is greater than that in the exclusive case Π
X

for any α > α0.

Theorem 1 shows that when the solver’s output uncertainty is sufficiently large, the non-exclusive

case yields a larger average profit than the exclusive case; see Figure 1. To generate further insights,

we use the following effort and cost functions that subsume the effort and cost functions that are

commonly used in the literature (e.g., Terwiesch and Xu 2008, Körpeoğlu and Cho 2018).

Assumption 3. r(e) = θ log(e), η(e) = ceb, and φ(e) = ep, where θ, c > 0, b∈ (0,1), and p≥ 1/b.

The following corollary shows that Theorem 1 is not an asymptotic result, and it characterizes α0.

Corollary 1. Consider two exclusive contests with N1 and N2 solvers, and let Π
X

be the average

profit in this case. Suppose Assumptions 1 and 3 hold, and that the output shock ξ̃im is transformed

to ξ̂im = αξ̃im with α > 0. Let α1 ≡
θ2 max{IN1

,IN2
,2IN1+N2

}

p2b2B
, α2 ≡ θ

bp

log(IN1
IN2)−2 log(21−bIN1+N2)

2μN1+N2
−μN1

−μN2
, α3 ≡

θ2 min{IN1
,IN2

,2IN1+N2
}

p2b2B
, and α4 ≡ θ

p

log(2)

μN1+N2
−

μN1
+μN2
2 + bpB

2θ

[
1

IN1
+ 1

IN2
− 1

IN1+N2

] .

(i) When B is sufficiently large, Π is greater than Π
X

if and only if α≥ α0 = α2.

(ii) Π is greater than Π
X

if α≥ α0 ≡max{α1, α2}.

(iii) Π is less than Π
X

if α≤min{α3, α4}.

We next discuss the intuition of Theorem 1 and Corollary 1 using Figure 1. The average profit

Π depends on the effort term r(e∗), the shock term μ̂N (= E[ξ̂N
m ] = E[αξ̃N

(1)m]), and the award term

A∗. Figure 1 compares these three terms and the average profit in exclusive and non-exclusive cases

as a function of the scale parameter α under Assumption 3 and under the assumption that the

10 In the exclusive case, we assume that the coordinator determines awards and allocates solvers to contests optimally.
Note that the average profit in this case is an upper bound for the average profit when each solver endogenously
selects which contest to enter. Thus, our result applies directly to the case with endogenous entry as well.
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Figure 1 The average profit Π and the effort, shock, and award terms, respectively, in exclusive and non-exclusive

cases as a function of the scale parameter α. Setting: ξ̃im ∼ Gumbel with mean 0 and scale parameter

1, M = 5, N = 100, B = 5, r(e) = 2 log(e), η(e) = 0.1e0.9, and φ(e) = e2.5.

solver’s budget B is sufficiently large (as in Corollary 1(i)). Because the award term in this figure

is the same in both cases, whether the average profit is larger in the exclusive or the non-exclusive

case depends only on effort and shock terms. On one hand, the shock term μ̂N is greater in the

non-exclusive case than in the exclusive case, because a non-exclusive contest attracts a larger

number of solvers and a more diverse set of solutions can thus be obtained. On the other hand,

the effort term r(e∗) is larger in the exclusive case than in the non-exclusive case, because in an

exclusive contest, a smaller number of solvers are competing, so each solver will exert more effort.

In Figure 1, as the solver’s output uncertainty (measured by α) increases, the difference between

shock terms in non-exclusive and exclusive cases increases, whereas the difference between effort

terms stays the same. Thus, when α is above a threshold α0, the difference between shock terms

outweighs the difference between effort terms, so the average profit is larger in the non-exclusive

case than in the exclusive case. Note that, in the general setting of Theorem 1, the difference

between effort terms and award terms in exclusive and non-exclusive cases can also increase with

the scale parameter α, yet we show that when α is sufficiently large, the difference between shock

terms outweighs the difference between effort terms and between award terms.

Corollary 1 shows that when the solver’s budget constraint binds in both the exclusive and the

non-exclusive cases (i.e., when α < α3), the exclusive case benefits from solvers’ focused efforts.

Specifically, in the non-exclusive case, each solver splits her budget among multiple contests,

whereas in the exclusive case she can allocate all her budget to a single contest. Thus, the exclu-

sive case elicits greater effort. When the output uncertainty is small (when α < max{α3, α4}), the

diversity effect is also small, so the exclusive case yields a larger average profit than the non-

exclusive case. However, when the output uncertainty is sufficiently large (i.e., α > α2), the total

effort is small, so the budget constraint no longer binds, and a non-exclusive contest will gener-

ate a more diverse set of solutions. Thus, when the output uncertainty is sufficiently large (when

α > min{α1, α2}), the non-exclusive case yields a larger average profit than the exclusive case.
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Figure 2 The average profit Π and effort, shock, and award terms, respectively, in exclusive and non-exclusive

cases as a function of the scale parameter α. The setting is the same as Figure 1 except that B = 0.6.

Theorem 1 and Corollary 1 have important implications for the contest theory and practice.

First, these results suggest that in practice, organizers may benefit from running non-exclusive con-

tests when they are seeking innovative solutions rather than low-novelty solutions.11 For example,

InnoCentive could maximize the outcome of theoretical challenges that seek innovative solutions

by encouraging solvers to participate in multiple contests. In contrast, Topcoder could maximize

the outcome of development challenges that seek low-novelty solutions by discouraging solvers from

participating in more than one of these contests (e.g., by restricting the number of contests a solver

can submit solutions to at any given time frame). Second, although many studies assume contests

to be exclusive, solvers participating in multiple contests is not only common in practice (see §1)

but is also often beneficial to organizers, as Theorem 1 and Corollary 1 show. Thus, although

assuming exclusive contests may be reasonable for the specific examples considered in previous

studies, relaxing this assumption is essential for studying multiple innovation contests. Therefore,

in the following section we analyze non-exclusive contests, and address exclusive contests in §3.3.

3.2. Optimal Number of Contests

In this section, we assume contests to be non-exclusive and analyze how the average profit Π, as

well as each organizer’s profit Π∗, changes with the number of contests M .

Theorem 2. Suppose Assumption 1 holds. The average profit Π and an organizer’s profit Π∗ are

unimodal in the number of contests M , i.e., there exists M∗ ∈ [1,∞) such that ∂Π
∂M

> 0 and ∂Π∗

∂M
> 0

for all M < M ∗; and ∂Π
∂M

< 0 and ∂Π∗

∂M
< 0 for all M > M ∗.

11 In the innovation contest literature, the solver’s output uncertainty is often associated with the novelty of solutions
(e.g., Terwiesch and Xu 2008). In particular, solvers face little uncertainty in contests that seek low-novelty solutions,
whereas they face much greater uncertainty in contests that seek innovative solutions. Nittala and Krishnan (2016)
relate the solver’s output uncertainty to how broadly an organizer defines a problem, which may be linked to how
greater a degree of novelty an organizer is seeking in solvers’ solutions.
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Theorem 2 shows that there is an optimal number of contests M∗ that maximizes both the average

profit Π and each organizer’s profit Π∗; see Figure 3.12 The intuition is as follows. Until the solver’s

budget constraint binds, her total effort increases with the number of contests M because it is

optimal for her to participate in more contests (see the proof of Theorem 2). Increasing the number

of contests M has two effects. First, when a solver’s budget constraint binds, she splits her total

effort among more contests, and hence exerts less effort in each contest. This “scarcity effect”

reduces Π∗. Second, as M increases, each solver enjoys larger economies of scope, which can be

utilized by the coordinator to reduce the award A∗ in each contest. This “scope effect” improves

Π∗. When the number of contests is small (see region A in Figure 3, where M ≤ 5), the solver’s

budget constraint does not bind, so there is no scarcity effect. Hence, the scope effect leads to a

larger profit for each organizer. When the number of contests is large (see regions B and C in Figure

3, where M > 5), the solver’s budget constraint binds, so the scarcity effect is positive. However,

the benefit derived from the scope effect mitigates the reduced effort due to the scarcity effect, so

each organizer’s profit increases up to the optimal number of contests M∗ (see region B in Figure

3, where M∗ = 8). When the number of contests is above M∗, the benefit derived from the scope

effect no longer mitigates the reduced effort due to the scarcity effect, so each organizer’s profit

decreases (see region C in Figure 3). Thus, each organizer’s profit Π∗ is unimodal in M , and there

is an optimal number of contests M∗. This result suggests that an organization such as Elanco or

the Gates Foundation may benefit from running multiple contests that exhibit economies of scope

(due to common investment), but only up to the optimal number of contests M∗. The following

corollary shows, interestingly, that M∗ increases with the solver’s output uncertainty.

Corollary 2. Suppose that Assumption 1 holds, the optimal number of contests M∗ > 1, and the

output shock ξ̃im is transformed to ξ̂im = αξ̃im with parameter α > 0. Then, M∗ is increasing in α.

Corollary 2 shows that the optimal number of contests M∗ is closely related to the spread of

the output shock ξ̃im. Specifically, when the spread of the output shock ξ̃im increases via a scale

transformation with α > 1, the optimal number of contests M∗ increases. The intuition is as follows.

As the solver’s output uncertainty increases, the marginal impact of her effort on her expected total

award decreases, so she reduces her effort. Less effort reduces both the scarcity effect and the scope

12 It is worth noting that the solver’s probability of winning in our model boils down to the Tullock contest success
function eim/(

∑N
j=1 ejm) (cf. Azmat and Möller 2009) when the effort function r(e) = log(e) and the output shock

ξ̃im follows a Gumbel distribution with mean zero and scale parameter 1. Even in that case, an innovation contest
differs from a Tullock contest because in a Tullock contest, the organizer is interested in the total effort of solvers,
whereas in an innovation contest, the organizer is interested in the best output of solvers, which consists of both the
equilibrium effort and the maximum of output shocks (i.e., maxi∈{1,2,...,N} ξ̃im). Because of this difference, in Tullock
contests the exclusive case always yields a larger average profit than the non-exclusive case, so Theorem 1 does not
hold. Theorem 2, on the other hand, directly applies to Tullock contests.
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1 5 12

A B C

Figure 3 M values where there is no scarcity effect (A), there is a scarcity effect but it is dominated by the scope

effect (B), and the scope effect is dominated by the scarcity effect (C). Setting: ξ̃im ∼ Gumbel with

mean 0 and scale parameter 1, N = 100, B = 0.15, r(e) = log(e), η(e) = 0.1e0.6, and φ(e) = e3.

effect. However, as we show in Corollary 2, the scarcity effect decreases with the solver’s output

uncertainty more than the scope effect. Hence, the scope effect outweighs the scarcity effect up to

a larger number of contests M∗. This finding suggests that organizers will benefit from a larger

number of contests when they are seeking innovative solutions rather than low-novelty solutions.

3.3. Fixed Cost of Participation and Participation in a Limited Number of Contests

In this section, we enrich our analysis by first incorporating a fixed cost of participation and then

considering a case in which each solver participates in a limited number of contests.

Fixed cost of participation. We consider a case where each solver incurs a fixed cost cf for each

contest she participates in and analyze the impact of the fixed cost on the solver’s participation in

multiple contests. As setting equal awards for all contests is optimal (see Lemma EC.5 of Online

Appendix), we assume that the award for each contest is A. To isolate the impact of the fixed cost,

we omit the solver’s budget constraint, so her utility from participating in M contests is

U [M ] =
AM

N
−M bη(φ(e∗))−Mcf , (6)

where e∗ is the equilibrium effort as given in Lemma 1. If the solver’s participation condition holds

(i.e., U [M ] ≥ 0), the solver finds it beneficial to participate in M contests.13 We assume that the

fixed cost cf is not prohibitively high so that under award A, each solver participates in at least

one contest (i.e., U [1] ≥ 0). The following proposition characterizes the relationship between the

solver’s participation and the number of contests M .

Proposition 2. Suppose Assumption 1 holds.

(a) Suppose k ≥ 1. The solver’s participation condition holds for any M .

(b) Suppose k < 1, and that the output shock ξ̃im is transformed to ξ̂im = αξ̃im with a scale parameter

α > 0. Then, there exists a unique M such that the solver’s participation condition is violated when

M > M . Also, M is increasing in α.

13 Alternatively, one may define the solver’s participation condition as U [M ] = maxm∈{1,2,...,M}{U [m]}. Proposition
2 holds under this definition as well.
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Proposition 2(a) shows, interestingly, that having a fixed cost does not necessarily limit the number

of contests that each solver participates in. The intuition is as follows. The solver’s participation

condition (i.e., U [M ]≥ 0) depends on the solver’s utility U [M ], and the number of contests M has

two opposing effects on U [M ]. On one hand, as M increases, the solver can improve her expected

total award by participating in more contests, and this raises the solver’s utility U [M ]. On the other

hand, each solver increases her effort e∗ to compete in more contests and to benefit from economies

of scope, and this reduces U [M ]. Depending on which effect is more dominant, the solver’s utility

can increase or decrease. When k ≥ 1 (where r′ is homogenous of degree −k), the marginal impact

of the solver’s effort on her output decreases quickly. Hence, as M increases, she does not increase

her total effort significantly, leading to a small increase in her cost of effort. Larger expected total

award dominates larger cost of effort, so the solver’s utility increases with M (see the proof of

Proposition 2). Thus, the solver’s participation condition holds for any M .

Proposition 2(b) shows that when k < 1, the solver’s participation condition holds for a limited

number of contests. The intuition is as follows. When k < 1, the marginal impact of the solver’s

effort on her output decreases slowly, so as M increases, she increases her total effort significantly,

leading to a substantial increase in her cost of effort. The increased cost of effort dominates the

increased expected total award, eventually leading her utility to decrease. Thus, when a solver

participates in more than M contests, her participation condition is violated. Proposition 2(b)

further shows that M increases with the solver’s output uncertainty. This result is in line with

Corollary 2, which shows that the optimal number of contests M∗ increases with the solver’s

output uncertainty. Thus, these results suggest that even when there is a fixed cost of participation,

both organizers and solvers benefit from a larger number of contests when organizers are seeking

innovative solutions rather than low-novelty solutions.

Solver’s participation in a limited number of contests. In practice, a solver may participate

in a limited number of contests, either because these contests are exclusive as in §3.1 or because

her participation condition prevents her from entering all contests (even though these contests are

non-exclusive) as discussed above. We next analyze this case. For tractability, we consider a setting

with N solvers where each solver enters a single contest. We compare the average profit when N

solvers enter a single contest with the average profit in a two-contest setting where N1 solvers enter

one contest and N2(= N −N1) solvers enter the other contest. To isolate the impact of a solver’s

participation in a limited number of contests, we again omit the budget constraint.

Proposition 3. Suppose that the output shock ξ̃im is transformed to ξ̂im = αξ̃im with a parameter

α > 0. Under Assumptions 1 and 3, two contests with N1 and N2 solvers yield a larger average profit

Π
L

than a single contest with N1 + N2 solvers if and only if α < αL ≡ θ
bp

log(IN1
IN2)−2 log(IN1+N2)

2μ
N1+N2
(1)

−μN1
−μN2

.
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Proposition 3 shows that when each solver participates in a limited number of contests, the

average profit Π
L

increases with more contests if and only if the solver’s output uncertainty is

sufficiently small. This is because each organizer’s profit (denoted by Π∗,L
m for m = 1,2) increases

with the number of contests M if and only if the solver’s output uncertainty is sufficiently small.

The intuition is as follows. Let Nm be the number of solvers in contest m. When each solver

participates in a subset of contests, as M increases, solvers are split among more contests, so the

number of solvers Nm in each contest m decreases. In contest m, this decrease in Nm can affect the

organizer’s profit Π∗,L
m = r(e∗)+ μ̂Nm −A∗ through the effort term r(e∗), the shock term μ̂Nm , and

the award term A∗. First, the award term A∗ = θ/(bp) in the setting of Proposition 3, so A∗ does

not change with Nm. Second, as Nm decreases, fewer solvers compete in contest m, and the impact

of each solver’s effort on her expected total award is generally larger, so each solver in contest

m generally exerts more effort.14 Thus, the effort term r(e∗) generally increases as Nm decreases.

Third, as Nm decreases, organizer m receives a less diverse set of solutions; i.e., the shock term

μ̂Nm decreases. When the solver’s output uncertainty is small, the increase in the effort term r(e∗)

outweighs the decrease in the shock term μ̂Nm , so each organizer’s profit Π∗,L increases with more

contests. In contrast, when the solver’s output uncertainty is large, the decrease in the shock term

outweighs the increase in the effort term, so each organizer’s profit decreases with more contests.

3.4. Managerial Insights

In this section, we discuss the key managerial insights from our results. We classify these insights

based on the solvers’ output uncertainty and summarize them in Table 2.

When the solvers’ output uncertainty is small, Theorem 1 and Corollary 1 show that each

organizer’s profit is maximized if solvers are discouraged from participating in multiple contests;

i.e., exclusive contests are optimal. Proposition 3 builds on this result and shows that it is optimal

to run multiple exclusive contests where each solver participates in a single contest. Thus, we advise

practitioners who seek low-novelty solutions to run multiple contests in parallel but to discourage

solvers from participating in more than one contest. This insight seems consistent with practice.

For instance, as discussed in §1, Topcoder organizes multiple parallel development challenges that

seek low-novelty solutions but aims to focus each solver’s effort on just one of these contests.

When solvers’ output uncertainty is large, Theorem 1 and Corollary 1 show that each organizer’s

profit is maximized if solvers are encouraged to participate in multiple contests; i.e., non-exclusive

contests are optimal. Theorem 2 builds on this result, and shows that each organizer’s profit

14 We use the word “generally” because Ales et al. (2020) show that the equilibrium effort e∗ decreases with the
number of solvers N in a contest for most commonly used distributions for the output shock (e.g., exponential,
Gumbel, logistic, or normal distribution).
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Table 2 Summary of key results and managerial insights.

Low level of uncertainty (e.g., when
seeking low-novelty solutions)

High level of uncertainty (e.g., when
seeking innovative solutions)

Exclusive vs
non-exclusive

Exclusive contests are optimal
(Theorem 1 and Corollary 1).

Non-exclusive contests are optimal
(Theorem 1 and Corollary 1).

Multiple
contests or not

Running more contests than any one
solver can participate in improves
each organizer’s profit (Proposition 3).

Each organizer’s profit increases with
the number of contests up to an optimal
number of contests (Theorem 2).

Managerial
insights

Advisable to run multiple contests in
parallel (up to a certain number) but
discourage solvers from participating
in more than one of these contests.

Advisable to run multiple contests in
parallel (up to a certain number) and
encourage solvers to participate in
several of these contests.

increases with the number of contests M only up to an optimal number of contests M∗. Consistent

with this finding, Proposition 2(b), together with Proposition 3, suggests that each organizer’s profit

decreases as M exceeds the threshold M over which the solver’s participation condition is violated.

These results together show that each organizer’s profit increases with M only up to min{M∗,M}.

Interestingly, Corollary 2 and Proposition 2(b) show that min{M∗,M} increases with the solver’s

output uncertainty. Combining all these findings, we advise practitioners who are seeking innovative

solutions to run multiple parallel contests up to a certain threshold and to encourage solvers to

participate in multiple contests. This insight seems to be consistent with practice. For instance, as

discussed in §1, InnoCentive organizes multiple parallel theoretical challenges that seek innovative

solutions, and solvers are encouraged to participate in several of these contests.

4. Analysis of Asymmetric Contests

In this section, we show that our main results hold for asymmetric contests and we analyze various

aspects of such contests. We first provide a generalized version of Theorem 1.

Theorem 3. Suppose that the output shock ξ̃im is transformed to ξ̂im = αξ̃im with parameter α > 0

for a subset of contests MI . Under Assumption 1, there exists α0 such that the average profit Π in

the non-exclusive case is greater than the average profit Π
X

in the exclusive case for any α > α0.

Theorem 3 not only extends Theorem 1 to asymmetric contests, but also shows a stronger result.

Specifically, when the output uncertainty is sufficiently large for a subset of contests, the non-

exclusive case yields a larger average profit than the exclusive case. Thus, when only a subset of

contests seek cutting-edge innovation, even if other contests seek low-novelty solutions, the non-

exclusive case yields a larger average profit than the exclusive case. The intuition is similar to

Theorem 1. Whereas exclusive contests can elicit greater effort, non-exclusive contests benefit from

a more diverse set of solutions. When a subset of contests are seeking cutting-edge innovation, the
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(a) Average profit.
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(c) Type 2 organizer’s profit.

Figure 4 Comparison of (a) the average profit Π and (b)–(c) the organizer’s profit Π∗
(j) for contests of type

j (∈ {1,2}) under non-exclusive and exclusive cases as the output shock in type 1 contests is scale-

transformed with a scale parameter α(1). The setting is as in Example 1 where ν(1) = 1, ν(2) = 0.7,

M(1) = M(2) = 1, N = 40, B = 0.05, r(e) = 2 log(e), η(e) = 0.01e0.75, and φ(e) = e2.5.

diversity benefit in these contests outweighs potentially lower level of efforts in all contests. To

generate further insights, we consider the following example.

Example 1. Suppose the setting in Assumption 3 and that J = 2, where the output shock ξ̃im of

solver i in a contest of type j follows Gumbel distribution with scale parameter ν(j), j ∈ {1,2}.

Figure 4(a) depicts the average profit for exclusive and non-exclusive cases under the setting of

Example 1 when the output uncertainty in type 1 contests increases via a scale transformation

with a parameter α(1). The figure illustrates Theorem 3 by showing that the non-exclusive case

yields a larger average profit than the exclusive case when the output uncertainty in type 1 contests

(measured by α(1)) increases. This does not necessarily mean, however, that the non-exclusive case

leads to larger profits for both types of organizers. Specifically, an increase in α(1) may increase or

decrease the profits of type 2 organizers under the non-exclusive case, whereas it has no effect on

the profits of type 2 organizers under the exclusive case; see Figure 4(c). The reason is as follows.

An increase in α(1) reduces the equilibrium effort in any type 1 contest. When the solver’s budget

constraint binds, reduced effort in type 1 contests leads to greater effort in type 2 contests. Thus,

the profits of type 2 organizers increase with the uncertainty in type 1 contests. When the solver’s

budget constraint does not bind, reduced effort in type 1 contests leads to reduced effort in type 2

contests, due to lower economies of scope. Thus, the profits of type 2 organizers decrease with the

uncertainty in type 1 contests. The exclusive case may therefore lead to larger profits for type 2

contests, although the average profit is larger under the non-exclusive case.

The following theorem analyzes the impact of the number of contests on organizers’ profits.

Theorem 4. Suppose Assumption 1 holds.

(a) For any set of awards (A(1),A(2), ...,A(J)), an organizer’s profit Π∗
(l) in any contest of type

l ∈ {1,2, ..., J} is unimodal in the number of contests M(j) of any contest type j ∈ {1,2, ..., J}; i.e.,

there exists M∗
(j) such that

∂Π∗
(l)

∂M(j)
> 0 for all M(j) < M∗

(j); and
∂Π∗

(l)

∂M(j)
< 0 for all M(j) > M∗

(j).
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(b) Suppose that the output shock ξ̃im in each contest of type l is transformed to ξ̂im = α(l)ξ̃im with

a scale parameter α(l) > 0. M∗
(j) is non-decreasing in α(l).

Theorem 4(a) shows that an organizer’s profit Π∗
(l) in any type l contest is unimodal in the number

of any type j contests with a mode M∗
(j). Similar to Theorem 2, this result stems from the tradeoff

between the economies of scope across contests and the scarcity of resources due to the budget

constraint. Although Theorem 4 considers a fixed set of awards, Figure 5(a) illustrates this result

with the optimal set of awards using the setting in Example 1. An important observation is that

different contests yield different profits. In the setting of Figure 5(a), type 1 contests have higher

profit potential than type 2 contests. Thus, when the number of type 2 contests increases, profits in

individual contests increase as shown in Figure 5(a), but the average profit can decrease due to the

addition of low-profit contests; see Figure 5(b). Theorem 4(b) shows that the mode M∗
(j) for any

type j contest increases with the output uncertainty for any type l contest. This result suggests

that it is better to run a larger number of contests in parallel when some of these contests are

seeking cutting-edge innovation. This result corroborates Corollary 2 and has the same intuition.

In practice, crowdsourcing platforms are often stratified so that some platforms like InnoCentive

focus on obtaining highly innovative solutions, whereas others like Topcoder focus on less inno-

vative solutions to more standard problems. We also observe that platforms tend to specialize in

terms of the subject area. For instance, Topcoder focuses on software solutions, Kaggle on data

science, Ennomotive on engineering solutions, and 99designs on design solutions. In a similar spirit,

InnoCentive divides its contests into subject categories such as biology, chemistry, and business.

Our results indicate that such specialization can provide two advantages. First, they show that

having a large gap between the level of novelty sought in different contests can sometimes nega-

tively affect some contests under the non-exclusive case (and can negatively affect others under the

exclusive case). Thus, bringing together contests of similar types may help eliminate this negative

effect. Second, specialization may increase economies of scope across contests in these platforms

and hence increase the optimal number of parallel contests.

5. Extensions

We next show the robustness of our main results to cases with heterogeneous solvers (§5.1) and a

multiplicative output function (§5.2). To tease out the impact of these model components, and for

tractability purposes, we focus on symmetric contests where each contest offers a winner award A.

5.1. Contests with Heterogeneous Solvers

In §3, we assume that solvers are ex-ante symmetric consistent with the innovation contest literature

reviewed in §1. In this section, we consider a case where solvers are heterogeneous with respect
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(a) Π∗
(j) as a function of M(2).

1 25

(b) Π as a function of M(2).

Figure 5 (a) An organizer’s profit Π∗
(j) for contests of type j ∈ {1,2} and (b) the average profit Π as a function

of the number of contests of type 2. The setting is as in Example 1 where ν(1) = 1.1, ν(2) = 1, M(1) = 1,

N = 100, B = 0.05, r(e) = log(e), η(e) = 0.1e0.9, and φ(e) = e2.

to their cost of effort. Specifically, we assume that solver i has a cost of effort ciη
(∑M

m=1 φ(eim)
)

when she exerts effort eim in contest m ∈ {1,2, ...,M}. We assume that ci is common knowledge

and c1 ≥ c2 ≥ ∙ ∙ ∙ ≥ cN without loss of generality. For analytical tractability throughout the section,

we assume the setting used by Terwiesch and Xu (2008), where the effort function r(e) = θ log(e)

and the output shock ξ̃im follows a Gumbel distribution with mean zero and scale parameter α.

We summarize our assumptions below.

Assumption 4. r(e) = θ log(e), the output shock ξ̃im follows a Gumbel distribution with mean zero

and scale parameter α, and bpα≥ θ.

The following proposition characterizes the equilibrium effort and extends Theorems 1 and 2.

Proposition 4. Let γi = (e∗i )θ/α

∑N
j=1(e∗j )θ/α and q(γ) = γ(1−γ)

g−1(γα/θ) . Suppose Assumptions 1 and 4 hold.

(a) When no solver’s budget constraint binds, the equilibrium effort e∗i satisfies

e∗i = g

(
AM 1−bγi(1− γi)

αci

)

and
N∑

j=1

q−1

(

cj

q(γi)
ci

)

= 1 for all i = 1,2, ...,N. (7)

When all solvers’ budget constraints bind, e∗i = φ−1η−1
(

B
ciM

b

)
for i∈ {1,2, ...,N}.

(b) There exists α0 such that the average profit Π in the non-exclusive case is greater than the

average profit Π
X

in the exclusive case for any α > α0.

(c) Π and an organizer’s profit Π∗ are increasing in any M such that no solver’s budget constraint

binds; and Π and Π∗ are decreasing in any M such that all solvers’ budget constraints bind.

Proposition 4(a) characterizes the equilibrium when solvers are heterogeneous in their cost of effort.

We can make interesting observations from (7). First, γi, which is related to the magnitude of

solver i’s effort relative to others, depends on the relative cost of solver i compared to the costs of

other solvers. For instance, a solver with a lower cost of effort intuitively exerts more effort. Second,

when no solver’s budget constraint binds, all solvers exert more effort as the award A increases or
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Figure 6 Coefficient of variation (CV) as the shock ξ̃im is scale transformed with scale parameter α.

as the number of contests M increases because γi does not depend on A or M . When all solvers’

budget constraints bind, a solver’s effort does not change with A but decreases with M . These

results drive Proposition 4(c). Proposition 4(b) extends Theorem 1 and it has the same intuition.

5.2. Multiplicative Output Function

In this section, we show that our main results are not driven by the additive form we use for the

output function. Specifically, we assume that solver i’s output in contest m takes the multiplicative

form yim = r(ãimeim), where r is an increasing and concave function as in §2 and ãim is a positive

valued random productivity shock that determines how effective a solver’s effort is.15 As in our

main analysis in §3, we are interested in the impact of the output uncertainty. In line with the

studies on other topics using multiplicative forms (e.g., Deo and Corbett 2009, Arifoglu et al. 2012),

we utilize the coefficient of variation (i.e., standard deviation over mean) to measure the output

uncertainty. To avoid assuming a specific distribution for ãim when capturing the change in the

coefficient of variation, we define ãim = exp(ξ̃im), where ξ̃im is a random variable defined as in §2,

and we consider a scale transformation of ξ̃im. For instance, if ξ̃im follows a normal distribution

with mean 0 and standard deviation σ, and is transformed with scale parameter α, then ãim follows

a lognormal distribution with mean exp(α2σ2/2) and variance [exp(α2σ2) − 1] exp(α2σ2). Thus,

the coefficient of variation of lognormal
√

exp(α2σ2)− 1 increases with α. Our numerical analysis

shows that when ξ̃im follows a uniform, exponential, or Gumbel distribution, and ξ̃im is transformed

with a scale parameter α, the coefficient of variation of ãim increases with α; see Figure 6 for an

illustration.16 Thus, we use α to measure the output uncertainty.

The following proposition characterizes the equilibrium effort and extends Theorems 1 and 2.

15 We are not aware of any paper on contests that uses a multiplicative model to capture effort and output uncertainty.
Thus, we adopt the multiplicative model that Körpeoğlu and Cho (2018) use to capture effort and solver heterogeneity,
although they did not consider output uncertainty.

16 We have numerically shown that the coefficient of variation increases with the scale parameter α. We have randomly
generated 10,000 instances each for uniform(−d,d), exponential(λ), and Gumbel(μ) distributions. At each instance,
we have randomly selected two α values from uniform(0,50) and checked whether a larger α leads to a larger coefficient
of variation. We have randomly selected parameter values d, λ, and μ from uniform(0.5,5).
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Proposition 5. Suppose Assumption 1 holds.

(a) Let g be the increasing function such that g−1(x) = (η ◦ φ)′(x)x. The equilibrium effort e∗m =

min
{
g (AINM 1−b) , φ−1

(
η−1(BM−b)

)}
where IN is as in §2.

(b) Let Π
X

be the average profit in the exclusive case. Suppose that the shock ξ̃im is transformed

to ξ̂im = αξ̃im with a scale parameter α > 0. There exists α0 such that the average profit Π in the

non-exclusive case is greater than the average profit Π
X

in the exclusive case for any α > α0.

(c) The average profit Π and an organizer’s profit Π∗ are unimodal in the number of contests M .

Proposition 5(a) shows that when the equilibrium effort is written in terms of the IN term

of the shock ξ̃im, it has a very similar structure to the equilibrium effort in the additive model.

However, an organizer’s profit Πm = r(ãime∗m) − A is significantly different from an organizer’s

profit in the additive model. For example, we cannot decompose Πm into additive effort and shock

terms as in §3, and due to the multiplicative form, exerting more effort increases both the mean

and the variance of the solver’s output. Thus, one may expect that Theorem 1 will no longer hold

because increasing uncertainty leads to a reduction in effort, which in turn decreases the variance

of the solver’s output. However, Proposition 5(b) shows that as the output uncertainty measured

by the scale parameter α increases, the non-exclusive case yields a larger average profit than the

exclusive case; see Figure 7(a)-(c) for an illustration of the results with different distributions of

ξ̃im. Note that Proposition 5(b) holds when ãim follows a lognormal distribution (and hence ξ̃im

follows a normal distribution). We also numerically obtain the same result when ãim follows a

Gamma distribution and we capture the uncertainty using the coefficient of variation, without

using the approach above; see Figure 7(d) for an illustration.17 The intuition of this seemingly

counterintuitive result is similar to that of Theorem 1. A non-exclusive contest benefits from the

best of a larger number of solutions, whereas an exclusive contest elicits greater effort. As the

output uncertainty measured by α increases, the equilibrium effort decreases, thereby reducing the

advantage of an exclusive contest. Although lower effort also leads to a decrease in the variance

of the solver’s output yi = r(ãime∗m), increasing α leads to an increase in the variance of yi by

increasing the variance of ãim. Because the latter effect outweighs the former effect, the variance of

yi increases with α, and so does the advantage of a non-exclusive contest. Thus, when the output

17 We have numerically tested whether the non-exclusive case yields a larger average profit than the exclusive case
when the coefficient of variation (CV) of Gamma distribution is sufficiently large. We have randomly generated 10,000
instances from Gamma distribution with a scale parameter drawn from Uniform(0.5,5). In all of these instances,
we have checked CV values of 5, 10, ..., 50, and shown that there exists a CV value above which the non-exclusive
case with N = N1 + N2 solvers yields a larger profit than the exclusive case with N1 and N2 solvers (N1 and N2

are randomly selected from discrete uniform distribution between 2 and 50). We let M = 2, r(e) = θ e1−a−1
1−a

, and

randomly selected parameter values θ ∼ Uniform(0,10), a∼ Uniform(0,1), B ∼ Uniform(0,1), bp∼ Uniform(2,5), b∼
Uniform(0,1), p = bp/b, c∼ Uniform(0,1).



Körpeoğlu, Korpeoglu, and Hafalır: Parallel Innovation Contests
Article forthcoming at Operations Research 27

0.5 1 1.5

Non-exclusive
Exclusive

(a) ξ̃im ∼ Exponential(1).

1 3 5

Non-exclusive
Exclusive

(b) ξ̃im ∼ Uniform(-1,1).

0.5 1 1.5

Non-exclusive
Exclusive

(c) ξ̃im ∼ Gumbel(1).

0.5 1 1.5

Non-exclusive
Exclusive
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Figure 7 The average profit from five non-exclusive contests with 100 solvers versus the average profit from five

exclusive contests with 20 solvers each when (a)–(c) ξ̃im follows an exponential, uniform, or Gumbel

distribution and is transformed with scale parameter α and (d) ãim follows a Gamma distribution and

its coefficient of variation (CV) increases. Setting: r(e) = 2 e0.5−1
0.5

B = 0.6, η(e) = 0.1e0.9, and φ(e) = e3.

uncertainty, as measured by α, is sufficiently large, the non-exclusive case yields a larger average

profit than the exclusive case. Proposition 5(c) extends Theorem 2 and has the same intuition.18

6. Conclusion

In recent years, contests have grown in popularity as a tool for outsourcing innovation from inde-

pendent solvers. Each year, organizations such as Elanco and the Gates Foundation and platforms

such as InnoCentive and Topcoder run numerous contests, providing solvers with several problems

to work on. This multiple-contest environment leads to tensions that do not arise in a single-contest

environment. Specifically, solvers may benefit from economies of scope by working on multiple

contests, but due to limited resources they may have to split their efforts among multiple contests

or even refrain from participating in some of these contests; this potentially reduces the profits for

organizers. Discouraging solvers from participating in multiple contests may focus solvers’ efforts

but may hinder the diversity of solutions produced in each contest. These trade-offs raise two

important questions for practitioners that the academic literature has yet to answer: When should

solvers be discouraged from participating in multiple contests, and how does the number of contests

affect an organizer’s profit? In this paper, we take the first step towards answering these questions.

We analyze these questions by building a model of innovation contests, and our analysis yields

the following results. First, we show that when solvers face a high degree of output uncertainty,

holding non-exclusive contests where each solver can enter multiple contests generates larger profits

18 Proposition 5, along with our numerical analyses, indicates that our insights are not driven by the functional form
of the solver’s output and hints that our main insights would hold when using even more general versions of the
output function. For instance, a good candidate for a general model is where the solver’s output follows a general
distribution F (yim|eim) where F is decreasing in eim. Our additive and multiplicative models are special cases of this
general model, where F (yim|eim) = H(yim − r(eim)) and F (yim|eim) = H(r−1(yim)/eim), respectively. We leave the
consideration of such general output functions to future research. An important issue in any such endeavor would
be to consider how to measure the output uncertainty under such a general output function. Our work initiates this
discussion and contributes to the innovation contest literature by offering an effective way to capture the output
uncertainty in a multiplicative model while preserving analytical tractability.
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for organizers than exclusive contests where solvers are permitted to participate in only one contest

at any one time. In contrast, when the degree of uncertainty solvers face is low, holding exclusive

contests generates larger profits for organizers. Second, we show that an organizer’s profit can

increase up to an optimal number of contests, and that the drivers of the optimal number of contests

depend on the solvers’ output uncertainty. Taken together, our results provide two managerial

insights. First, practitioners seeking innovative solutions could run multiple parallel contests that

exhibit economies of scope, and encourage solvers to participate in several of these contests at a

time. Second, those seeking low-novelty solutions could run multiple parallel contests but discourage

solvers from participating in more than one contest at a time.

In addition to providing some key managerial insights, we make several technical contributions to

innovation contest theory. First, while previous studies have focused on a single contest, we study

multiple contests and the resulting multidimensional optimization problem for individual solvers,

who decide how much effort to exert in each contest they are entering by considering their total

cost of effort. This technical contribution is even more pronounced when heterogeneous contests

are considered. Second, while it is standard in the innovation contest literature to assume identical

solvers and additive output functions, we consider heterogeneous solvers and multiplicative output

functions. Our approaches to tackling these technically difficult cases can guide future studies that

seek to capture these model components. Third, while it has mainly been assumed in prior studies

that there is no fixed cost of participation or a bound on solvers’ costs, we do consider a fixed cost

and a budget constraint. Fourth, we propose a cost function that captures both diseconomies of

scale in each contest and economies of scope across contests. While these features require special

technical attention, they help our paper to capture a richer set of environments in practice.

Our model has the following limitations that can lead to new research opportunities. First, as

is common in the literature, we use a static model when analyzing the impact of multiple parallel

contests (see §1 for a detailed discussion). Consequently, our model does not take into account the

organizer’s decision of whether to run multiple contests in parallel or to run them sequentially.

However, it captures a critical trade-off that may arise in a sequential setting. Specifically, running

contests in parallel may lead to larger economies of scope, but may also lead solvers to split their

effort. Future studies could consider how to schedule multiple contests dynamically, and potentially

what the duration of each contest should be, to maximize the average or total profit. Second, while

information asymmetry is not considered in our model, incorporating this into future models would

be an important, albeit technically challenging, area for further research.
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Appendix. Proofs

Proof of Proposition 1. Let IN,m ≡
∫

s∈Ξm
(N − 1)Hm(s)N−2hm(s)2ds. The solver’s budget con-

straint is
∑M

m=1 φ(e∗m) ≤ η−1(B). Let λ be the Lagrange multiplier of this constraint. By Lemma

EC.3 of Online Appendix, an equilibrium solves the following Kuhn-Tucker conditions:

Amr′(e∗m)IN,m −

(
φ(e∗m)

∑M

l=1 φ(e∗l )

)1−b

η′ (φ(e∗m))φ′(e∗m) = λ∗φ′(e∗m), m∈ {1,2, ...,M}. (8)

λ∗

(

η−1(B)−
M∑

m=1

φ(e∗m)

)

= 0,
M∑

m=1

φ(e∗m)≤ η−1(B), and e∗m, λ∗ ≥ 0, m∈ {1,2, ...,M}. (9)

Case 1: Suppose λ∗ = 0. Then, the equilibrium (e∗1, e
∗
2, ..., e

∗
M) solves (for all m∈ {1,2, ...,M}):

Amr′(e∗m)IN,m = η′

(
M∑

l=1

φ(e∗l )

)

φ′(e∗m). (10)

We show that there exists a unique vector (e∗1, e
∗
2, ..., e

∗
M) that solves (10). We first convert (10)

into M equations, each of which consists of a single variable. From (10), we have Amϕ(e∗m)IN,m =

η′(
∑M

l=1 φ(e∗l )) for all m∈ {1,2, ...,M} where ϕ(x) = (r′/φ′)(x). Thus,

AmIN,mϕ(e∗m) = AlIN,lϕ(e∗l ) for all m, l ∈ {1,2, ...,M},

From this relationship, we obtain

e∗l = ϕ−1

(
AmIN,mϕ(e∗m)

AlIN,l

)

. (11)

By plugging (11) back into (10), we obtain

Ωm(e∗m,A1,A2, ...,Am)≡Amr′(e∗m)IN,m − η′

(
M∑

l=1

φ

(

ϕ−1

(
AmIN,mϕ(e∗m)

AlIN,l

)))

φ′(e∗m) = 0. (12)



Körpeoğlu, Korpeoglu, and Hafalır: Parallel Innovation Contests
32 Article forthcoming at Operations Research

We next characterize (e∗1, e
∗
2, ..., e

∗
M). Because ϕ−1 is homogenous of degree −1/(k + p − 1), φ is

homogenous of degree p, and η′ is homogenous of degree (b− 1), we can write (12) as:

Amr′(e∗m)IN,m −

(
M∑

l=1

(
AmIN,m

AlIN,l

)− p
k+p−1

)b−1

η′ (φ (e∗m))φ′(e∗m) = 0. (13)

Letting g = ((η ◦φ)′/r′)−1, we can rewrite (13) as:

e∗m = g



(AmIN,m)
k+bp−1
k+p−1

(
M∑

l=1

(AlIN,l)
p

k+p−1

)1−b


 for all m∈ {1,2, ...,M}. (14)

Therefore, (e∗1, e
∗
2, ..., e

∗
M) is the unique symmetric equilibrium if and only if

∑M

m=1 φ(e∗m)≤ η−1(B).

Case 2: Suppose λ∗ > 0. In this case, the unique candidate for the symmetric equilibrium effort

e∗m in contest m∈ {1,2, ...,M} satisfies (8)-(9), and these conditions boil down to

Amϕ(e∗m)IN,m = Alϕ(e∗l )IN,l for all m, l ∈ {1,2, ...,M} and
M∑

l=1

φ(e∗l ) = η−1(B). (15)

Then, plugging (11) into (15) gives
∑M

l=1 φ
(
ϕ−1

(
AmIN,mϕ(e∗m)

AlIN,l

))
= η−1(B), and hence

e∗m = φ−1

(
(AmIN,m)

p
k+p−1 η−1(B)

∑M

l=1 (AlIN,l)
p

k+p−1

)

. (16)

Finally, we need to derive the condition under which λ∗ > 0. The left-hand side of (8) is decreasing

in e∗ because r is concave (i.e., r′ is decreasing), η ◦φ is convex (i.e., (η′ ◦φ)φ′ is increasing), and
(

φ(e∗m)
∑M

l=1 φ(e∗
l
)

)1−b

is increasing. The right-hand side of (8) is increasing because φ is convex. Thus, in

order to have λ∗ > 0, we need e∗m in (14) to be strictly greater than e∗m in (16).

Let êm ≡ g

(

(AmIN,m)
k+bp−1
k+p−1

(∑M

l=1 (AlIN,l)
p

k+p−1

)1−b
)

and em = φ−1

(
(AmIN,m)

p
k+p−1 η−1(B)

∑M
l=1(AlIN,l)

p
k+p−1

)

for

m ∈ {1,2, ...,M}. Then, because ϕ(x) = (r′/φ′)(x) is decreasing, we can deduce from (9) and (15)

that either êm ≤ em for all m∈ {1,2, ...,M} or êm > em for all m∈ {1,2, ...,M}.

(a) Suppose êm ≤ em for all m∈ {1,2, ...,M}. Then the condition
∑M

m=1 φ(e∗m)≤ η−1(B) in case 1 is

satisfied and the condition for λ∗ > 0 in case 2 is violated. Thus, the unique symmetricequilibrium

effort e∗m = êm for all m∈ {1,2, ...,M}.

(b) Suppose êm > em for all m∈ {1,2, ...,M}. Then the condition
∑M

m=1 φ(e∗m)≤ η−1(B) in case 1 is

violated and the condition for λ∗ > 0 in case 2 is satisfied. Thus, e∗m = em for all m∈ {1,2, ...,M}.

Proof of Lemma 1. (a) Because the coordinator optimally sets equal awards in all contests by

Lemma EC.5 of Online Appendix, without loss of optimality, the coordinator’s problem can be

rewritten as follows (where A is the award given in each contest, and μN
(j) = E[ξ̃N

(j)m]):

max
A

r(e∗)+ μN
(1) −A s.t. e∗ = min{g(AINM 1−b), φ−1

(
η−1(BM−b)

)
}. (17)

Note that the coordinator never sets A such that g(AINM 1−b) > φ−1
(
η−1(BM−b)

)
because if that

were the case, reducing A would improve the objective function in (17). Thus, without loss of
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optimality, (17) can be written as:

max
A

r(g(AINM 1−b))+ μN
(1) −A s.t. g(AINM 1−b)≤ φ−1

(
η−1(BM−b)

)
. (18)

Let Φ(A) = r′ (g (AINM 1−b))g′ (AINM 1−b) INM 1−b −1. Note that Φ is the first derivative of the

objective function in (18) with respect to A. Next, let A = M b−1g−1
(
φ−1

(
η−1(BM−b)

))
/IN , and

suppose that Φ(A) ≥ 0. Because r′(g(x))g′(x) is decreasing in x (as assumed in §2), the objective

function in (18) is concave in A, and hence Φ(A) is decreasing in A. Moreover, because A > A

violates the constraint in (18), and because Φ is decreasing, A∗ = A solves (18). Thus, Am = A∗ = A

maximizes the average profit Π, and e∗m = e∗ = φ−1
(
η−1(BM−b)

)
is the corresponding equilibrium

effort. Suppose that Φ(A) < 0. Then, because limx→0 r′(g(x))g′(x) = ∞, Φ(0) > 0 (which follows

from (r′ ◦ g)g′ being homogenous of degree 2−2k−bp
bp+k−1

< 0), and by the Intermediate Value Theorem,

there exists Â such that Φ(Â) = 0. Note that Â is unique because Φ is decreasing. Hence, in this

case, A∗ = Â solves (18). Thus, we can conclude that Am = A∗ = Â maximizes Π, and e∗m = e∗ =

g(A∗INM 1−b) is the equilibrium effort.

(b) A = M b−1g−1
(
φ−1

(
η−1(BM−b)

))
/IN is decreasing in M because b < 1 and g−1, φ−1, and

η−1 are decreasing functions. Because (r′ ◦ g)g′ is homogenous of degree 2−2k−bp
bp+k−1

< 0, Φ(A) is

decreasing in A. Thus, Â increases with M if and only if Φ(A) increases with M . We can rewrite

Φ(A) = M (1−b) 2−2k−bp
bp+k−1 +1−br′ (g (AIN))g′ (AIN) IN − 1, which is decreasing in M if and only if (1−

b) 2−2k−bp
bp+k−1

+1− b = (1− b) 2−2k−bp+bp+k−1
bp+k−1

= (1−k)(1−b)

bp+k−1
. The result follows because b < 1 and bp > 1.

Proof of Theorem 1. We compare the average profit in exclusive and non-exclusive cases. In the

exclusive case, let N∗,X
m be the optimal number of solvers and A∗,X

m be the optimal award in contest

m ∈ {1,2, ...,M}. Let e∗,X
m be the corresponding equilibrium effort in contest m ∈ {1,2, ...,M}.

Suppose that the output shock ξ̃im is transformed to ξ̂im = αξ̃im with a scale parameter α > 0. Note

that it is never optimal for the coordinator to set awards such that e∗,X
m > φ−1

(
η−1(B)

)
because

the coordinator can improve the average profit by reducing the award in contest m∈ {1,2, ...,M}.

Thus, by Lemma 1, the equilibrium effort in the exclusive case is e∗,X
m = g

(
A∗,X

m I
N

∗,X
m

/α
)

in contest

m. Without loss of generality, assume that e∗,X
1 ≥ e∗,X

m for all m. After incorporating the optimal

solution, the average profit in the exclusive case becomes

Π
X

=
1
M

M∑

m=1

(r(e∗,X
m )+ αμN

∗,X
m −A∗,X

m ). (19)

In the non-exclusive case, suppose that the coordinator offers an award A in each contest so that

the equilibrium effort in each contest m is e∗ = (
∑M

l=1 e∗,X
l )/M . From Lemma 1, we can see that this

requires e∗ = g (AINM 1−b/α). Note that because φ is increasing an convex, for sufficiently small α,
∑M

m=1 φ(e∗)≤
∑M

l=1 φ(e∗,X
l )≤ η−1(B); and note that g−1 is increasing. Thus, from (10),

A =
αM b−1

IN

g−1

(∑M

l=1 e∗,X
l

M

)

≤
αM b−1

IN

g−1
(
e∗,X
1

)
=

M b−1

IN

A∗,X
1 I

N
∗,X
1

.
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Then, the average profit in the non-exclusive case can be written as:

Π = r

(∑M

l=1 e∗,X
l

M

)

+
1
M

M∑

m=1

αμN −
1
M

M∑

m=1

A≥
1
M

M∑

m=1

r(e∗,X
m )+ αμN −

M b−1

IN

A∗,X
1 I

N
∗,X
1

. (20)

Subtracting (19) from (20) yields the following inequality

Π−Π
X
≥ α

(

μN −
1
M

M∑

m=1

μ
N

∗,X
m

+
1
M

M∑

m=1

A∗,X
m

α
−

M b−1A∗,X
1 I

N
∗,X
1

αIN

)

. (21)

By Lemma EC.6 of Online Appendix, limα→∞ A∗,X
m /α = 0 for each m∈ {1,2, ..,M}. Also, because

N > N ∗,X
m for some m ∈ {1,2, ...,M}, ξ̃N

m first-order stochastically dominates ξ̃Nm
m (and not vice

versa), so μN > 1
M

∑M

m=1 μ
N

∗,X
m

. Thus, there exists α0 such that Π−Π
X

> 0 for any α > α0.

Proof of Corollary 1. Consider the exclusive case where N1 and N2 solvers participate in

contest 1 and 2, respectively. In the non-exclusive case, all N(= N1 + N2) solvers participate in

both contests. Let A∗,M,N = min{ θ
bp

, bpB
θMIN

}. In the non-exclusive case, by incorporating Assumption

3 to Proposition 1 and Lemma 1, we obtain the equilibrium effort e∗ =
(

θA∗IN21−b

cbp

) 1
bp

, where

A∗ = A∗,2,N . Then, the average profit in the non-exclusive case is

Π = r(e∗)+ μN −A∗ =
θ

bp
log

(
A∗,2,NθIN21−b

cbp

)

+ μN −A∗,2,N .

Moreover, the average profit in the exclusive case with two contests is

Π
X

=

[
θ

bp
log

(
θ
√

A∗,1,N1IN1
A∗,1,N2IN2

cbp

)

+
μN1

+ μN2

2
−

A∗,1,N1 + A∗,1,N2

2

]

.

When ξ̃im is transformed to ξ̂im = αξ̃im with α > 0, we have A∗,M,N = min{ θ
bp

, αbpB
θMIN

}.

(i) When α ≥ α1 ≡ θ2

p2b2B
max{IN1

, IN2
,2IN1+N2

}, we have A∗,2,N = A∗,1,Nm = θ
pb

. The difference

between the average profit in the non-exclusive and the exclusive case is

Π−Π
X

=
θ

2bp
log

(
22−2bI2

N1+N2

IN1
IN2

)

+ αμN1+N2
−α

μN1
+ μN2

2
. (22)

Because ξ̃N1+N2
first-order stochastically dominates ξ̃Nm for m ∈ {1,2} (and not vice versa), we

have μN1+N2
−μNm > 0 for m∈ {1,2}, so Π −Π

X
≥ 0 if α≥ α0 ≡max{α1, α2}, where

α2 ≡
θ

bp

log (IN1
IN2

)− 2 log (21−bIN1+N2
)

2μN1+N2
−μN1

−μN2

.

(ii) When α≤ α3 ≡ θ2

p2b2B
min{IN1

, IN2
,2IN1+N2

}, we have A∗,2,N = αbpB
2θIN

and A∗,1,Nm = αbpB
θINm

. Thus,

the equilibrium effort under non-exclusive and exclusive cases are e∗ =
(
B2−b

) 1
bp and e∗,X =

(
B
) 1

bp

respectively. The difference between the average profits is

Π−Π
X

=−
θ

p
log (2) + αμN1+N2

−α
μN1

+ μN2

2
−

αbpB

2θIN1+N2

+
αbpB

2θIN1

+
αbpB

2θIN2

. (23)

Because ξ̃N1+N2
first-order stochastically dominates ξ̃Nm for m ∈ {1,2} (and not vice versa), we

have μN1+N2
−μNm > 0 for m∈ {1,2}. Furthermore, Lemma EC.7 of Online Appendix shows that
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1
IN1

+ 1
IN2

≥ 1
IN1+N2

, so Π −Π
X
≤ 0 if α≤ α0 ≡min{α3, α4}, where

α4 ≡
θ

p

log (2)

μN1+N2
−

μN1
+μN2
2

+ bpB
2θ

[
1

IN1
+ 1

IN2
− 1

IN1+N2

] .

(iii) Suppose that B is sufficiently large so that α1 < α2. From the above discussion, we have

Π −Π
X
≥ 0 if α ≥ max{α1, α2} = α2. Furthermore, from (23), we see that if α < α2, Π −Π

X
< 0.

Therefore, Π −Π
X
≥ 0 if and only if α≥ α0 = α2.

Proof of Theorem 2. Let Φ(A) be defined as in Lemma 1. Let e = φ−1
(
η−1(M−bB)

)
. Note that

Φ(A) = r′
(
g
(
AINM 1−b

))
g′
(
AINM 1−b

)
INM 1−b − 1 = r′ (e)g′

(
g−1(e)

)
INM1−b − 1 (24)

is increasing in M because r′(g(x))g′(x) is decreasing in x and M 1−b is increasing in M . Because

Φ(A) is increasing in M and limx→0 r′(g(x))g′(x) =∞, there exists M0 ∈ [1,∞) such that Φ(A) < 0

for any M < M0, and Φ(A) ≥ 0 for any M ≥ M0. We next show that the average profit Π =

Π∗ = r(e∗) + μN
(1) −A∗ is increasing in the number of contests M up to some M∗ and decreasing

afterwards. When M < M0, from Lemma 1 and the above discussion, the constraint in (18) can be

relaxed. Applying the Envelope Theorem to Π≡maxA r(e∗)+ μN
(1) −A, we obtain

∂Π
∂M

= r′(e∗)
∂e∗

∂M
= (1− b)r′(e∗)g′

(
A∗INM 1−b

)
A∗INM−b. (25)

Because g is increasing, g′ > 0, and because r is increasing, r′ > 0. Thus, from (25), Π is increasing

in M when M < M0. When M ≥M0, A∗ = A, so the average profit becomes

Π = r (e) + μN
(1) −

1
INM 1−b

g−1 (e) . (26)

Noting that e = M−1/pφ−1
(
η−1(B)

)
, and hence ∂e

∂M
= −(1/p)M−1/p−1φ−1

(
η−1(B)

)
= −e/(pM),

the derivative of the average profit Π with respect to M can be written as:

∂Π
∂M

= −r′ (e)
e

pM
+

1
INM 1−b

(g−1)′ (e)
e

pM
+

1− b

INM 2−b
g−1 (e) . (27)

As r′, η, and φ are homogenous of degree −k, b, and p, respectively, g−1 =
(

(η◦φ)′

r′

)
is homogenous

of degree pb + k− 1. Noting that (g−1)′(x) = (pb + k− 1)g−1(x)/x, we can write (27) as

∂Π
∂M

= −
r′ (e)φ−1

(
η−1(B)

)

pM 1/p+1
+

p + k− 1
pINM 2−b

g−1 (e) =
r′ (e)

pM 1/p+1

(

−φ−1
(
η−1(B)

)
+

p + k− 1
pINM 1−b−1/p

g−1

r′
(e)

)

.

Note that ∂Π
∂M

has the same sign as

ς ≡−φ−1
(
η−1(B)

)
+

p + k− 1
pINM (p+2k−2)/p

g−1

r′
(
φ−1

(
η−1(B)

))
, (28)

which is always decreasing in M because pb+k−b > 0 and p+2k−2 > 0 (note that pb+2k−2≥ 0).

Thus, there exists M∗ ∈ [M0,∞) such that ς > 0 and hence ∂Π
∂M

> 0 for all M ∈ [M0,M
∗); and ς < 0

and hence ∂Π
∂M

< 0 for all M > M ∗. Finally, since we also established above that ∂Π
∂M

> 0 for all

M < M0, we have ∂Π
∂M

> 0 for all M < M ∗ and ∂Π
∂M

< 0 for all M > M ∗.
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Proof of Corollary 2. Suppose that the output shock ξ̃im is transformed to ξ̂im = αξ̃im with a

parameter α > 0. After the transformation, ÎN = IN/α. Thus, for any M , Φ(A) in (24) is decreasing

in α, so M0 in the proof of Theorem 2 is non-decreasing in α (increasing in α if M0 > 1). Because

ς in (28) is also increasing in α, M∗(> 1) is increasing in α.

Proof of Proposition 2. Because r′, η, and φ are homogenous of degree −k, b, and p, respectively,

g = ((η ◦ φ)′/r′)−1 is homogenous of degree 1/(bp + k − 1). Thus, we can rewrite a solver’s utility

when she participates in M contests as (note that since we assume B is sufficiently large, the

equilibrium effort e∗ = g(AINM 1−b))

U [M ] =
AM

N
− η(Mφ(e∗))−Mcf =

AM

N
− η(Mφ(g(M 1−bAIN )))−Mcf

=
AM

N
−M b+

(1−b)bp
bp+k−1 η(φ(g(AIN)))−Mcf =

AM

N
−M

bp+b(k−1)
bp+k−1 η(φ(g(AIN )))−Mcf .

The derivative of U [M ] with respect to M

∂U [M ]
∂M

=
A

N
−

bp + b(k− 1)
bp + k− 1

M
(b−1)(k−1)

bp+k−1 η(φ(g(AIN )))− cf

= U [1]−

(
bp + b(k− 1)
bp + k− 1

M
(1−b)(1−k)

bp+k−1 − 1

)

η(φ(g(AIN ))).

(a) Because U [1] > 0, when k ≥ 1, we have bp+b(k−1)

bp+k−1
< 1 and (1−b)(1−k)

bp+k−1
< 0. Because M ≥ 1, we have

∂U [M ]/∂M > 0. Thus, U [M ] > 0 for all M .

(b) Suppose that k < 1. Then, bp+b(k−1)

bp+k−1
> 1, and in turn, limM→∞ U [M ]/M =−∞ and U [M ]/M is

decreasing in M . Thus, there exists a unique M such that U [M ] = 0, and U [M ] < 0 for all M > M .

Furthermore, when the output shock ξ̃im is transformed to ξ̂im = αξ̃im with a parameter α > 0, the

solver’s utility becomes U[M ] = AM
N

−M
bp+b(k−1)

bp+k−1 η(φ(g(AIN/α)))−Mcf . Thus, the solver’s utility

is increasing in α, which means that M is increasing in α.

Proof of Proposition 3. Consider two contests with N1 and N2 solvers and suppose that B is

sufficiently large. Each organizer’s profit is

Π∗,L
1 =

θ

bp
log

(
θ2IN1

cb2p2

)

+ μN1
−

θ

bp
and Π∗,L

2 =
θ

bp
log

(
θ2IN2

cb2p2

)

+ μN2
−

θ

bp
.

The average profit under two contests

Π
L,II

=
1
2

[
θ

bp
log

(
θ4IN1

IN2

c2b4p4

)

+ μN1
+ μN2

−
2θ

bp

]

.

The average profit under a single contest with N1 + N2 solvers

Π
L,I

=
θ

bp
log

(
θ2IN1+N2

cb2p2

)

+ μN1+N2
−

θ

bp
.

When the output shock ξ̃im is transformed to ξ̂im = αξ̃im with a parameter α > 0, the difference

between the average profit under two contests and that under a single contest is

Π
L,II

−Π
L,I

=
θ

2bp
log

(
IN1

IN2

I2
N1+N2

)

+ α
μN1

+ μN2

2
−αμN1+N2

(1) .
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Noting that μN1+N2
(1) − μNm

(1) > 0 for m ∈ {1,2} because ξ̃N1+N2
(1)m first-order stochastically dominates

ξ̃Nm
(1)m (and not vice versa), Π

L,II
−Π

L,I
> 0 if and only if α < αL, where

αL ≡
θ

bp

log (IN1
IN2

)− 2 log (IN1+N2
)

2μN1+N2
−μN1

−μN2

.

Proof of Theorem 3. We compare the average profit in exclusive and non-exclusive cases when a

subset MI of contests have sufficiently large uncertainty. Let MS = {1,2, ...,M}\MI , MS = |MS |

and MI = |MI |. Also, let IN
m (m∈ {1,2, ...,M}) denote the Im in Lemma 1 under N solvers. In the

exclusive case, let N∗,X
m be the optimal number of solvers and A∗,X

m be the optimal award in contest

m∈ {1,2, ...,M}. Let e∗,X
m be the corresponding equilibrium effort in contest m∈ {1,2, ...,M}. Note

that it is never optimal for the coordinator to set awards such that e∗,X
m > φ−1

(
η−1(M−bB)

)
because

the coordinator can improve the average profit by reducing the award in contest m∈ {1,2, ...,M}.

Thus, by Proposition 1, the equilibrium effort in the exclusive case e∗,X
m = g

(
A∗,X

m IN
∗,X
m

m

)
in contest

m. After incorporating the optimal solution, the average profit in the exclusive case becomes

Π
X

=
1
M

M∑

m=1

(r(e∗,X
m )+ μ

N
∗,X
m ,m

−A∗,X
m ). (29)

In the non-exclusive case, suppose that the coordinator offers an award Am = A∗,X
m in each contest

m∈ {1,2, ...,M} and let e∗m be the corresponding equilibrium effort. Then, the average profit is

Π =
1
M

M∑

m=1

r(e∗m)+
1
M

M∑

m=1

μN,m −
1
M

M∑

m=1

A∗,X
m . (30)

Suppose that the output shock ξ̃im at each contests m ∈MI is transformed to ξ̂im = αξ̃im with

a scale parameter α > 0, while keeping the output shocks in other contests the same. Then, the

difference between the average profit in non-exclusive and exclusive cases is

Π−Π
X

=
1
M

M∑

m=1

(r(e∗m)− r(e∗,X
m ))+

α

M

∑

m∈MI

(μN,m −μ
N

∗,X
m ,m

)+
1
M

∑

m∈MS

(μN,m −μ
N

∗,X
m ,m

).(31)

We want to show that limα→∞(Π − Π
X

)/α > 0 so that Π > Π
X

for a sufficiently large α. As

Lemma EC.6 of Online Appendix shows, limα→∞ A∗,X
m /α = 0 for all m ∈ MI , so by Proposi-

tion 1, limα→∞ e∗m = g

(

(A∗,X
m IN

m )
k+bp−1
k+p−1

(∑
l∈MS

(A∗,X
m IN

l )
p

k+p−1

)1−b
)

in contest m ∈ MS. Thus,

limα→∞
1
α

∑
m∈MS

(r(e∗m) − r(e∗,X
m )) = 0. We also have limα→∞

1
α

∑
m∈MS

(μN,m − μ
N

∗,X
m ,m

) = 0

because μN,m and μ
N

∗,X
m ,m

do not depend on α for any m∈MS. Furthermore,

lim
α→∞

(
1
α

(r(e∗m)− r(e∗,X
m ))

)

= lim
α→∞

1
α



r



g




(

A∗,X
m IN

m

α

) k+bp−1
k+p−1

(
∑

m∈MS

(
A∗,X

m IN
l

) p
k+p−1

)1−b






− r

(

g

(
A∗,X

m IN
∗,X
m

m

α

))

 .

Case 1: limα→∞(r(e∗m)− r(e∗,X
m ))>−∞. Then limα→∞

(
1
α
(r(e∗m)− r(e∗,X

m ))
)
≥ 0.

Case 2: limα→∞ ((r(e∗m)− r(e∗,X
m ))) = −∞. Let K1 ≡

(
A

∗,X
m IN

m
α

) k+bp−1
k+p−1

(∑
m∈MS

(A∗,X
m IN

l )
p

k+p−1

)1−b
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and K2 = g(A∗,X
m IN

∗,X
m

m ). Then we have

lim
α→∞

(
1
α

(r(e∗m)− r(e∗,X
m ))

)

= lim
α→∞

1
α

(
r
(
α

−1
k+p−1 K1

)
− r
(
α

−1
k+bp−1 K2

))
.

= lim
α→∞

(
−K1

k + p− 1
r′
(
α

−1
k+p−1 K1

)
α

−1
k+p−1−1 +

K2

k + bp− 1
r′
(
α

−1
k+bp−1 K2

)
α

−1
k+bp−1−1

)

.

= lim
α→∞

(
K1

k + p− 1
r′ (K1)α

−p
k+p−1 +

K2

k + bp− 1
r′ (K2)α

−bp
k+bp−1

)

= 0,

where the equalities follow from L’Hopital’s Rule. Either case, limα→∞

(
1
α
(r(e∗m)− r(e∗,X

m ))
)
≥ 0, so

lim
α→∞

Π−Π
X

α
= lim

α→∞

(
1

αM

∑

m∈MI

(r(e∗m)− r(e∗,X
m ))+

1
M

∑

m∈MI

(μN,m −μ
N

∗,X
m ,m

)

)

> 0, (32)

because under the assumption that N > N ∗,X
m for some m ∈MI , we also have N ≥ N∗,X

l for all

l ∈MI \{m}, so ξ̃N
(1)m

first-order stochastically dominates ξ̃Nm
(1)m (and not vice versa), and hence we

have μN,m > μ
N

∗,X
m ,m

and similarly we have μN,l ≥ μ
N

∗,X
l

,l
for all l ∈MI \ {m}. Thus, there exists

α0 such that for any α > α0, we have Π−Π
X

> 0. The only case where the assumption N > N ∗,X
m

does not hold for any m∈MI is the case where MI has a single element m and N∗,X
m = N . Because

contest m has the same profit as the average profit in the non-exclusive case under M = 1, and the

budget constraint does not bind for a sufficiently large α, Theorem 4(a) implies that the average

profit under the non-exclusive case is larger than that under the exclusive case.

Proof of Theorem 4. (a) The derivative of the organizer’s profit in a contest of type l with

respect to the number of contests of type j is

Π(l)

∂M(j)

= r′(e∗(l))
∂e∗(l)
∂M(j)

. (33)

Because r′ > 0, we need to show that there exists M∗
(j) such that

∂e∗(l)
∂M(j)

> 0 for all M(j) < M∗
(j)

and
∂e∗(l)

∂M(j)
< 0 for all M(j) > M ∗

(j). Let ê(l) ≡ g

(

(A(l)I(l))
k+bp−1
k+p−1

(∑J

j=1 M(j)

(
A(j)I(j)

) p
k+p−1

)1−b
)

and

e(l) = φ−1

(
(A(l)I(l))

p
k+p−1 η−1(B)

∑J
j=1 M(j)(A(j)I(j))

p
k+p−1

)

for l ∈ {1,2, ..., J}. From Proposition 1, we can deduce that

e∗(l) = min{ê(l), e(l)} for all l ∈ {1,2, ..., J}. Since g and φ−1 are increasing and homogenous, ê(l) is

increasing and unbounded in M(j) and e(l) is decreasing in M(j). Thus, there should exists M∗
(j)

such that e∗(l) = ê(l) for all M(j) < M∗
(j) and e∗(l) = e(l) for all M(j) > M∗

(j). Because ϕ(x) = (r′/φ′)(x)

is decreasing, we can deduce from (9) and (15) that either ê(l) ≤ e(l) for all l ∈ {1,2, ..., J} or

ê(l) > e(l) for all l ∈ {1,2, ..., J}. Thus, for any l ∈ {1,2, ..., J},
∂e∗(l)

∂M(j)
> 0 and hence

∂Π(l)

∂M(j)
> 0 for all

M(j) < M ∗
(j); and

∂e∗(l)
∂M(j)

< 0 and
∂Π(l)

∂M(j)
< 0 for all M(j) > M ∗

(j).

(b) Suppose that the output shock ξ̃im in each contest of type l ∈ {1,2, ..., J} is transformed to ξ̂im =

α(l)ξ̃im with a parameter α(l) > 0. Then, ê(l) ≡ g

(
(

A(l)I(l)
α(l)

) k+bp−1
k+p−1

(
∑J

j=1 M(j)

(
A(j)I(j)

α(j)

) p
k+p−1

)1−b
)



Körpeoğlu, Korpeoglu, and Hafalır: Parallel Innovation Contests
Article forthcoming at Operations Research 39

e(l) = φ−1





(
A(l)I(l)

α(l)

) p
k+p−1

η−1(B)

∑J
j=1 M(j)

(
A(j)I(j)

α(j)

) p
k+p−1



. Then, we have

ê(l)

e(l)

=

(
A(l)I(l)

α(l)

) 1
k+p−1

g

((
∑J

j=1 M(j)

(
A(j)I(j)

α(j)

) p
k+p−1

)1−b
)

(
A(l)I(l)

α(l)

) 1
k+p−1

φ−1



 η−1(B)

∑J
j=1 M(j)

(
A(j)I(j)

α(j)

) p
k+p−1





=

g

((
∑J

j=1 M(j)

(
A(j)I(j)

α(j)

) p
k+p−1

)1−b
)

φ−1



 η−1(B)

∑J
j=1 M(j)

(
A(j)I(j)

α(j)

) p
k+p−1





is decreasing in α(n) for any n ∈ {1,2, ..., J}. Thus, because ê(l) is increasing in M(j) and e(l) is

decreasing in M(j), M∗
(j) is non-increasing with α(n) for any n∈ {1,2, ..., J}.

Proof of Proposition 4. (a) Suppose that ξ̃im are i.i.d Gumbel with scale parameter α, and let

dim (i∈ {1,2, ...,N}) be scalars. Then we have the following property (cf. Terwiesch and Xu 2008):

Pr

{

dim + ξ̃im = max
j∈{1,2,...,N}

{
djm + ξ̃jm

}}

=
exp

{
dim
α

}

∑N

j=1 exp
{

djm

α

} .

Let dim = r(eim). Then, solver i’s utility can be written as:

Ui(eim) =
M∑

m=1

Am

exp
{

r(eim)

α

}

∑N

j=1 exp
{

r(ejm)

α

} − ciη

(
M∑

m=1

φ(eim)

)

.

Ignoring the solver’s budget constraint, we obtain the first-order conditions with respect to eim as:

Am

α
r′(eim)

exp
{

r(eim)

α

}∑
j 6=i exp

{
r(ejm)

α

}

(∑N

j=1 exp
{

r(ejm)

α

})2 − ciη
′

(
M∑

l=1

φ(eil)

)

φ′(eim) = 0. (34)

Evaluating (34) at eim = e∗i , ejm = e∗j , and Am = A, and letting f = g−1 = ((η ◦φ)′/r′), we obtain

A

α

exp
{

r(e∗i )

α

}∑
j 6=i exp

{
r(e∗j )

α

}

(∑N

j=1 exp
{

r(e∗j )

α

})2 = ciM
b−1f(e∗i ). (35)

Note that f is homogenous of degree pb+k−1 > 0 and pb+k−1 > 1−k from §2. Let zi = exp
{

r(e∗i )

α

}

and Z =
∑N

j=1 zj . Note that e∗i = r−1(α log(zi)). Then, we can write (35) as:

A

α

zi(Z − zi)
Z2

= ciM
b−1f(r−1(α log zi)) for all i = 1,2, ...,N.

Under r(ei) = θ log(ei), we have f(r−1(α log(zi)))/zi = f(zα/θ
i )/zi, which is increasing in zi given

pbα/θ ≥ 1 since f is homogenous of degree pb+k−1 = pb. Let γi = zi
Z

for all i∈ {1,2, ...,N}. Then,

γi(1− γi) = ci

α

A
M b−1f(zα/θ

i ) = ci

α

A
M b−1f

(
z

α/θ
i

Zα/θ

)

Zpbα/θ = ci

α

A
M b−1f

(
γ

α/θ
i

)
Zpbα/θ. (36)

Let q(γ) = γ(1−γ)

f(γα/θ) , which is a decreasing function. Then, we can obtain from (36) that

q(γi)
ci

=
α

A
M b−1Zpbα/θ =

q(γj)
cj

for all i, j ∈ {1,2, ...,N}. (37)
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From (37), we obtain γj = q−1
(
cj

q(γi)

ci

)
. Thus, the following equations characterize γi:

N∑

j=1

q−1

(

cj

q(γi)
ci

)

= 1 for all i∈ {1,2, ...,N}. (38)

Plugging γi = zi
Z

=
exp

{
r(e∗i )

α

}

∑N
j=1 exp

{
r(e∗

j
)

α

} = (e∗i )θ/α

∑N
j=1(e∗j )θ/α in (35), we obtain e∗i = g

(
AM1−bγi(1−γi)

ciα

)
.

When all solvers’ budget constraints bind, we obtain e∗i = φ−1η−1
(

B
ciM

b

)
for i∈ {1,2, ...,N}.

(b) From (37), we can deduce that γ1 ≤ γ2 ≤ ∙ ∙ ∙ ≤ γN because q is decreasing and c1 ≥ c2 ≥ ∙ ∙ ∙ ≥ cN .

By applying logarithmic transformation on (37) and using homogeneity of f , we obtain

log(1− γj)− log(1− γi)+ log ci − log cj

logγj − logγi

=
pbα

θ
− 1 for all i∈ {1,2, ...,N − 1}, j > i. (39)

Thus, as α approaches infinity, γi approaches 1/N . Thus, e∗i = g
(

AM1−bγi(1−γi)

ciα

)
is asymptotically

equivalent to g
(

AM1−b(N−1)

ciαN2

)
, which clearly approaches zero as α approaches infinity. Thus, for

sufficiently large α, no solver’s budget constraint binds. For any split of solvers in the exclusive

case with Nm solvers in contest m, an upper bound on the average profit can be written as

Π
X
≤

1
M

M∑

m=1

(θ log(e∗,X
Nm,m)+ μNm −A), (40)

where e∗,X
Nm,m

is the equilibrium effort of the solver with the lowest cost (and hence the highest

effort by part (a)) in contest m. Note that e∗,X
i,m

= g
(

AγNm,i(1−γNm,i)

ciα

)
where γNm,i =

(e
∗,X
i,m )θ/α

∑Nm
j=1(e

∗,X
j,m )θ/α

.

In the non-exclusive case, a lower bound on the average profit can be written as

Π≥
1
M

M∑

m=1

(θ log(e∗1)+ μN −A). (41)

Thus, noting that g is homogenous of degree pb, the difference between the average profit in non-

exclusive and exclusive cases satisfies

Π−Π
X
≥ α

(
M∑

m=1

θ

pbα
log

(
M 1−bγ1(1− γ1)

γNm,Nm(1− γNm,Nm)

)

+ μN −
1
M

M∑

m=1

μNm

)

. (42)

As discussed above, as α approaches infinity, γi approaches 1/N and by the same reasoning,

γNm,i approaches 1/Nm. Also, when N > Nm, ξ̃N
m first-order stochastically dominates ξ̃Nm

m for

m ∈ {1,2, ...,M} (and not vice versa), so by the same reasoning as Theorem 1, we have μN >

1
M

∑M

m=1 μNm . Thus, there exists α0 such that for any α > α0, we have Π−Π
X

> 0.

(c) From (38), we can see that γi does not depend on M . Thus, when no solver’s budget constraint

binds, the equilibrium effort e∗i = g
(

AM1−bγi(1−γi)

ciα

)
increases with M for all i∈ {1,2, ...,N}. Thus,

an organizer’s profit at any contest m, Π∗
m = E[maxi∈{1,2,...,N}{θ log(e∗i ) + ξ̃im}]−A, as well as the

average profit Π = 1
M

∑M

m=1 Π∗
m increases with M . When all solvers’ budget constraints bind, the

equilibrium effort e∗i = φ−1η−1
(

B
ciM

b

)
decreases with M for all i∈ {1,2, ...,N}. Thus, an organizer’s

profit Πm at any contest m as well as the average profit Π decreases with M .
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Proof of Proposition 5. (a) Solver i’s output in contest m is yim = r(ãimeim) where ãim =

exp(ξ̃im). Suppose that the shock ξ̃im is transformed to ξ̂im = αξ̃im with a scale parameter α > 0.

Then, after the transformation, ãim = exp(ξ̃im). Solver i’s probability of winning is

P (eim, e∗m) = Pr{yim ≥ yjm, j 6= i}= Pr{r(eim exp(αξ̃im))≥ r(e∗m exp(αξ̃jm)), j 6= i}

=
∫

s∈Ξ

Pr

{
1
α

log

(
eim exp(αs)

e∗m

)

≥ ξ̃jm, j 6= i

}

h(s)ds

=
∫

s∈Ξ

Pr

{

ξ̃jm ≤
1
α

log

(
eim exp(αs)

e∗m

)}N−1

h(s)ds =
∫

s∈Ξ

H

(
1
α

log

(
eim exp(αs)

e∗m

))N−1

h(s)ds.

The derivative of the probability of winning evaluated at symmetric equilibrium is:

∂P (eim, e∗)
∂eim

∣
∣
∣
∣
eim=e∗

=
∫

s∈Ξ

(N − 1)H (s)N−2

(
1

αe∗m

)

h(s)2ds.

Then, when the budget constraint does not bind, solver i’s first-order condition is
(

A

αe∗m

)

IN − η′

(
M∑

m=1

φ(e∗m)

)

φ′(e∗m) = 0 where IN =
∫

s∈Ξ

(N − 1)H (s)N−2
h(s)2ds.

Then, letting g be the increasing function such that (g(x))−1 = (η ◦ φ)′(x)x, we can write the

solution to the above conditions as e∗m = g
(

AIN M1−b

α

)
. Note that g is homogenous of degree 1

bp
.

When e∗m ≤ φ−1
(
η−1(BM−b)

)
, the budget constraint holds so e∗m = g

(
AIN M1−b

α

)
is the equilibrium

and otherwise e∗m = φ−1
(
η−1(BM−b)

)
is the equilibrium. Thus, the equilibrium effort satisfies

e∗m = min
{
g (AINM 1−b) , φ−1

(
η−1(BM−b)

)}
.

(b) An organizer’s profit is Πm = E[maxi∈{1,2,...,N} r(e∗m exp(αξ̃im))]−A. Because both r and exp

are positive and increasing functions, and α and e∗m are constants in i, for any sj > si, we have

r(e∗m exp(αsj)) > r(e∗m exp(αsi)). Thus, we can write E[maxi∈{1,2,...,N} r(e∗m exp(αξ̃im))] as follows:

E[ max
i∈{1,2,...,N}

r(e∗m exp(αξ̃im))] =
∫

s∈Ξ

∫

s∈Ξ

∙ ∙ ∙
∫

s∈Ξ

max
i∈{1,2,...,N}

r(e∗m exp(αsi))
N∏

i=1

(h(si)dsi)

=
∫

s∈Ξ

∫

s∈Ξ

∙ ∙ ∙
∫

s∈Ξ

r(e∗m exp(α max
i∈{1,2,...,N}

si))
N∏

i=1

(h(si)dsi)

= E[r(e∗m exp(α max
i∈{1,2,...,N}

ξ̃im))]

= E[r(exp(log(e∗m)+ α max
i∈{1,2,...,N}

ξ̃im))]

For a sufficiently large α, e∗m = g
(

AIN M1−b

α

)
. Thus, for any split of solvers in the exclusive case

with Nm (≥ 2) solvers in contest m, the average profit under the exclusive case can be written as:

Π
X

=
1
M

M∑

m=1

E

[

r

(

exp
(
log(g(AINmM 1−bα−1))+ αξ̃Nm

m

)
)]

−A. (43)

In the non-exclusive case, the average profit can be written as:

Π =
1
M

M∑

m=1

E

[

r

(

exp
(
log(g(AINM 1−bα−1))+ αξ̃N

m

)
)]

−A. (44)
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We have limα→∞
1
α

log(e∗m) = limα→∞
1
α

log(α
−1
bp g (AINM 1−b)) = 0. Then, in the limit, 1

α
log(e∗m) +

maxi∈{1,2,...,N} ξ̃im first-order stochastically dominates 1
α

log(e∗m)+maxi∈{1,2,...,Nm} ξ̃im, and not vice

versa. Thus, because r and exp are increasing functions, by Theorem 1.A.3 of Shaked and Shan-

thikumar (2007), for sufficiently large α, we have

E

[

r

(

exp
(
log(g(AINM 1−bα−1))+ αξ̃N

m

)
)]

> E

[

r

(

exp
(
log(g(AINmM 1−bα−1))+ αξ̃Nm

m

)
)]

.

Thus, there exists α0 such that for any α > α0, we have Π−Π
X

> 0.

(c) g (AINM 1−b) is increasing in M and φ−1
(
η−1(BM−b)

)
is decreasing in M so there exists M0

such that for any M < M0, e∗ = g (AINM 1−b), and for any M > M0, e∗ = φ−1
(
η−1(BM−b)

)
. Thus,

the result holds because E[r(exp(log(e∗m) + αmaxi∈{1,2,...,N} ξ̃im))] is increasing in M < M0 and

decreasing in M > M0.
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Online Appendix

EC.1. Existence of Equilibrium

In this section, we discuss the existence of a symmetric pure strategy Nash equilibrium. The section

proceeds as follows. We first present Lemma EC.1 that provides a generic sufficient condition for the

concavity of solver i’s utility function Ui under her effort levels (ei1, ei2, ..., eiM ). In Lemma EC.2,

we present more specific and precise sufficient conditions under special cases of our general model.

In such cases, the set of efforts (e∗1, e
∗
2..., e

∗
M) (characterized by Proposition 1) solves the solver’s

utility maximization problem in (3), and a symmetric equilibrium exists. Finally, we present a

numerical analysis to show that a symmetric equilibrium exists under a broad set of parameters.

Lemma EC.1. Suppose b ≥ b ≡ 1 − κp−1
p

where κ ≡ inf(ei1,ei2,...,eiM )

∑M
l=1 eilφ

′(eil)∑M
l=1 eimφ′(eil)

≥ 1/M . Suppose

that the output shock ξ̃im is transformed to ξ̂im = αξ̃im with a scale parameter α > 0. There exist α >

0 such that for any α > α, solver i’s utility function Ui =
∑M

m=1 AmPm(eim, e∗m)−ψ(ei1, ei2, ..., eiM )

is concave under her effort levels (ei1, ei2..., eiM ), where Pm(eim, e∗m) is as in (2).

Proof. For notational convenience, we drop e∗m from Pm(eim, e∗m). The Hessian matrix of Ui is

D2Ui =











B1 − η′′
(∑M

l=1 φ(eil)
)

(φ′(ei1))
2 η′′

(∑M
l=1 φ(eil)

)
φ′(ei1)φ

′(ei2) ∙ ∙ ∙ η′′
(∑M

l=1 φ(eil)
)

φ′(ei1)φ
′(eiM )

η′′
(∑M

l=1 φ(eil)
)

φ′(ei2)φ
′(ei1) B2 − η′′

(∑M
l=1 φ(eil)

)
(φ′(ei2))

2 ∙ ∙ ∙ η′′
(∑M

l=1 φ(eil)
)

φ′(ei2)φ
′(eiM )

...
...

. . .
...

η′′
(∑M

l=1 φ(eil)
)

φ′(eiM )φ′(ei1) η′′
(∑M

l=1 φ(eil)
)

φ′(eiM )φ′(ei2) ∙ ∙ ∙ BM − η′′
(∑M

l=1 φ(eil)
)

(φ′(eiM ))2











,

where Bm = AmP ′′
m(eim) − η′

(∑M

l=1 φ(eil)
)

φ′′(eim). Ui is concave if and only if D2Ui is negative

semi-definite. This holds if and only if D2Ui has non-positive eigenvalues because D2Ui is symmetric

(so it has real eigenvalues). By Gershgorin Circle Theorem, D2Ui has non-positive eigenvalues if

Bm − η′′

(
M∑

l=1

φ(eil)

)

(φ′(eim))2 ≤ 0 for m∈ {1,2, ...,M}, (EC.1)

and D2Ui is diagonally dominant; i.e.,
∣
∣
∣
∣Bm − η′′

(
M∑

l=1

φ(eil)

)

(φ′(eim))2

∣
∣
∣
∣≥

∣
∣
∣
∣

∑

n∈{1,2,...,M}\{m}

η′′

(
M∑

l=1

φ(eil)

)

φ′(eim)φ′(ein)

∣
∣
∣
∣. (EC.2)

When the condition in (EC.1) holds, since η′′ < 0, the condition in (EC.2) boils down to:

AmP ′′
m(eim)− η′

(
M∑

l=1

φ(eil)

)

φ′′(eim)− η′′

(
M∑

l=1

φ(eil)

)

φ′(eim)

( M∑

l=1

φ′(eil)

)

≤ 0. (EC.3)

We first show that (EC.1) holds when the level of uncertainty is sufficiently large.

η′
(∑M

l=1 φ(eil)
)

φ′(eim) =
(

φ(eim)
∑M

l=1 φ(eil)

)1−b

η′ (φ(eim))φ′(eim) is increasing in eim, so when eim > 0,

η′
(∑M

l=1 φ(eil)
)

φ′′(eim)+ η′′
(∑M

l=1 φ(eil)
)

(φ′(eim))2 > 0. Thus, it suffices to show that P ′′
m(eim)≤

0. After a scale transformation of the output shock ξ̃im to ξ̂im = αξ̃im with a scale parameter α >
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0, we have Pm(eim) =
∫

s∈Ξm
Hm

(
s + r(eim)−r(e∗m)

α

)N−1

hm(s)ds = E
[
HN−1

m

(
ξ̃im + r(eim)−r(e∗m)

α

)]
. Its

first derivative P ′
m(eim) = r′(eim)

α
E
[
hN−1

m

(
ξ̃im + r(eim)−r(e∗m)

α

)]
. Then, letting r∗m = r(e∗m)), we have

P ′′
m(eim) =

r′(eim)2

α2
E

[
(
hN−1

m

)′
(

ξ̃im +
r(eim)− r∗

m

α

)]

+
r′′(eim)

α
E

[

hN−1
m

(

ξ̃im +
r(eim)− r∗

m

α

)]

. (EC.4)

As α approaches infinity, both expectations in (EC.4) converge, and E
[
hN−1

(1)

(
ξ̃im + r(eim)−r∗m

α

)]

converges to a positive constant. Furthermore, since r is increasing and concave, r′(eim)2/α2 (> 0)

approaches 0 faster than r′′(eim)/α (< 0). Thus, there exists α such that for all α > α, P ′′
m(eim)≤ 0.

To show that (EC.3) holds when P ′′
m(eim)≤ 0, it suffices to show the following property:

η′

(
M∑

l=1

φ(eil)

)

φ′′(eim)+ η′′

(
M∑

l=1

φ(eil)

)

φ′(eim)

( M∑

l=1

φ′(eil)

)

= η′

(
M∑

l=1

φ(eil)

)

φ′′(eim)+
b− 1

(
∑M

l=1 φ(eil)

)η′

(
M∑

l=1

φ(eil)

)

φ′(eim)

( M∑

l=1

φ′(eil)

)

=
η′
(∑M

l=1 φ(eil)
)

(
∑M

l=1 φ(eil)

)

[( M∑

l=1

φ(eil)

)

φ′′(eim)− (1− b)φ′(eim)

( M∑

l=1

φ′(eil)

)]

≥ 0. (EC.5)

Noting that φ′(eim) = eim
p−1

φ′′(eim) and φ(eim) = eim
p

φ′(eim), the above condition is satisfied if and

only if the following inequality is satisfied
∑M

l=1 eilφ
′(eil)

∑M

l=1 eimφ′(eil)

p− 1
p

≥ (1− b). (EC.6)

This inequality is satisfied by any (ei1, ei2, ..., eiM ) when b≥ b≡ 1−κp−1
p

, where

κ = inf
ei1,ei2,...,eiM

∑M

l=1 eilφ
′(eil)

∑M

l=1 eimφ′(eil)
. (EC.7)

Observe that when ei1 ≥ eim,
∑M

l=1 eilφ
′(eil)∑M

l=1 eimφ′(eil)
is increasing in ei1. Thus, when deriving κ we can restrict

attention to eil such that eil ≤ eim. Under this condition, we have
∑M

l=1 eilφ
′(eil)

∑M

l=1 eimφ′(eil)
≥

∑M

l=1 eilφ
′(eil)

∑M

l=1 eimφ′(eim)
≥

eimφ′(eim)
Meimφ′(eim)

=
1
M

. (EC.8)

Thus, κ≥ 1/M . Therefore, as a sufficient condition, whenever b≥ 1− p−1
Mp

, (EC.5) holds.

Using the proof of Lemma EC.1, we can obtain the following corollary.

Corollary EC.1. Suppose b ≥ 1− κp−1
p

, where κ = inf(ei1,ei2,...,eiM )

∑M
l=1 eilφ

′(eil)∑M
l=1 eimφ′(eil)

. In any setting

where Pm is concave for all m ∈ {1,2, ...,M}, Ui is concave. Therefore, under this condition,

(e∗1, e
∗
2..., e

∗
M) in Proposition 1 solves the solver’s utility-maximization problem in (3).

Lemma EC.1 along with Corollary EC.1 imply that when the output uncertainty is sufficiently

large, Ui is concave. It is important to note that some uncertainty in solvers’ output is necessary

for the existence of pure-strategy Nash equilibrium. To illustrate, consider an extreme case where
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solvers face no uncertainty. Then, given other solvers’ efforts, a solver can set her efforts to yield

marginally larger outputs than other solvers and win all contests. This leads to a discontinuity in the

solver’s utility, and hence prevents the existence of a pure-strategy Nash equilibrium. Thus, there

should be sufficient uncertainty in solvers’ outputs to ensure a pure-strategy Nash equilibrium.

Although it is analytically intractable to characterize a precise bound on the output uncertainty

that is sufficient for concavity under our general setting, Corollary EC.1 helps us derive such bounds

under some specific settings. Specifically, the innovation contest literature often assumes conditions

under which a solver’s utility function is concave for a single contest; and if these conditions

are satisfied in all contests of a multiple-contest environment and b ≥ 1 − κp−1
p

, Corollary EC.1

ensures that a solver’s utility function is concave under multiple contests as well. Along this line,

the following lemma depicts two cases, where the concavity of a solver’s utility is ensured under

b≥ 1−κp−1
p

.

Lemma EC.2. A solver’s probability of winning Pm in any contest m ∈ {1,2, ...,M} is concave

when

(i) The effort function r(eim) = θ log(eim) and the output shock ξ̃im follows Gumbel distribution

with scale parameter νm ≥ θ (as in Terwiesch and Xu 2008);

(ii) N = 2 and the output shock ξ̃im follows uniform distribution (as in Mihm and Schlapp 2019)

or any distribution with a decreasing density function (e.g., exponential).

Proof. (i) When the effort function and the output shock distribution is the same as that in

Terwiesch and Xu (2008), the probability of winning Pm in a contest m is the same as that in a

single contest setting of Terwiesch and Xu (2008). Thus, from the proof of Theorem 1A in Terwiesch

and Xu (2008), we can see that a sufficient condition for Pm to be concave is νm ≥ θ.

(ii) Plugging N = 2 in (EC.4) yields the second derivative of the probability of winning as:

P ′′
m(eim) =

r′(eim)2

α2
E

[

h′
m

(

ξ̃im +
r(eim)− r∗m

α

)]

+
r′′(eim)

α
E

[

hm

(

ξ̃im +
r(eim)− r∗m

α

)]

.

When h is constant (as in uniform distribution) or decreasing, h′ ≤ 0 so E
[
h′

m

(
ξ̃im + r(eim)−r∗m

α

)]
≤

0. Because r′ > 0 and r′′ < 0, we have P ′′
m ≤ 0, so Pm is concave.

Lemma EC.2 illustrates that the solver’s output uncertainty need not be very large to guaran-

tee the concavity of a solver’s utility function. Although Lemmas EC.1 and EC.2 offer sufficient

conditions for the concavity of a solver’s utility, concavity is sufficient but not necessary for the

existence of a symmetric pure-strategy Nash equilibrium. In fact, as pointed out in the following

lemma, (e∗1, e
∗
2..., e

∗
M) characterized in Proposition 1 is the symmetric equilibrium in any setting

where (e∗1, e
∗
2..., e

∗
M) solves the solver’s utility-maximization problem in (3).
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Lemma EC.3. If (e∗1, e
∗
2..., e

∗
M) in Proposition 1 solves the solver’s utility-maximization problem in

(3), then it is the symmetric pure-strategy Nash equilibrium in solvers’ subgame.

Proof. Suppose (e∗1, e
∗
2..., e

∗
M) solves the solver’s utility maximization problem in (3). Then, exerting

efforts (e∗1, e
∗
2..., e

∗
M) is a solver’s best response when all other solvers exert efforts (e∗1, e

∗
2..., e

∗
M ).

Thus, (e∗1, e
∗
2..., e

∗
M) is a symmetric pure-strategy Nash equilibrium.

One may wonder how restrictive the condition in Lemma EC.3 is. To address this question,

we numerically check the settings under which this condition is satisfied, and hence a symmet-

ric equilibrium exists. For this analysis, we consider Gumbel, normal, and uniform distributions

for the output uncertainty, and under each distribution, we randomly generate 10,000 instances

to check whether a symmetric equilibrium exists. At each instance, we randomly draw N from

{2,3, ...,20}, M from {1,2, ...,10}, b from Uniform[0.5,1], pb from Uniform[1,5], c, k, and θ from

Uniform[0.5,1.5], and Am from Uniform[1,10] for each contest m∈ {1,2, ...,M}. In simulations with

Gumbel distribution, we use mean 0 and scale parameter νm for each contest m ∈ {1,2, ...,M},

where νm is drawn from Uniform[1,10]. In this case, 98.3% of 10,000 instances contain a symmetric

equilibrium. In simulations with normal distribution, we use mean zero and standard deviation

σm for each contest m ∈ {1,2, ...,M}, where σm is drawn from Uniform[1,10]. In this case, 98.5%

of 10,000 instances contain a symmetric equilibrium. In simulations with uniform distribution, we

use bounds −am and am for each contest m∈ {1,2, ...,M}, where am is drawn from Uniform[1,10].

In this case, 69.4% of 10,000 instances contain a symmetric equilibrium. The fact that uniform

distribution yields fewer settings that contain a symmetric equilibrium is not surprising because

under the parameter settings we use, uniform distribution has less variance (which corresponds to

smaller α) than Gumbel or normal distributions. If we instead draw am from Uniform[
√

3,10
√

3],

which corresponds to the same standard deviation as σm drawn from Uniform[1,10], we have 86.8%

of 10,000 instances containing a symmetric equilibrium. Lastly, when we ensure sufficient curvature

for the solver’s cost function by assuming pb ≥ 2 (i.e., drawing pb from Uniform[2,5]), the per-

centage of settings with symmetric equilibrium for uniform distribution increases to 94.9%. These

results indicate that symmetric equilibrium exists under a very broad set of parameters.

EC.2. Further Extensions

In this section, we provide further extensions of our main results. In §EC.2.1, we consider the total

profit of organizers (instead of the average profit) as the coordinator’s objective. In §EC.2.2, we

consider the decentralized case where organizers set the awards at their contests and compete for

solvers’ efforts. In §EC.2.3, we consider an alternative way of modeling economies of scope. To

focus on the isolated impact of these different aspects, we restrict attention to symmetric contests.
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EC.2.1. Alternative Objective for Coordinator

Our main model in §2 assumes that the coordinator maximizes the average profit. As discussed

in §2, this objective seems to be aligned with the objective of a contest platform, and with the

objective of an organization such as Elanco or Gates Foundation when it determines whether to

run contests in parallel. In this section, we analyze the case where the coordinator maximizes the

total profit of organizers (hereafter, total profit). This alternative objective for the coordinator

complements the one in §2, and provides insights for an organization that considers whether to run

a new contest in parallel with others or to never run it (and hence lose the potential profit). We

first discuss when the coordinator should run exclusive contests.

Corollary EC.2. Theorem 1 holds when the coordinator maximizes the total profit.

Corollary EC.2 shows that when the solver’s output uncertainty is sufficiently large, the non-

exclusive case yields a larger total profit than the exclusive case, so solvers should be encouraged

to participate in multiple contests. Corollary EC.2 has exactly the same intuition as Theorem 1.

We next discuss the optimal number of contests. Consistent with practice, we restrict attention

to contests with non-zero awards. Before presenting the main result of this section, we make the

following assumption.

Assumption EC.1. For M = 1, Π∗ = r(e∗)+ μN
(1) −A∗ > 0, where e∗ and A∗ are as in Lemma 1.

Assumption EC.1 states that when there is a single contest (i.e., M = 1), an organizer can make

positive profit by giving the optimal award A∗. We make this mild assumption because otherwise,

increasing the number of contests may add up negative profits. The following proposition extends

Theorem 2 by showing that the coordinator’s objective is unimodal in the number of contests.

Proposition EC.1. Suppose that the coordinator sets non-zero awards at M contests. Under

Assumption EC.1, Π∗,Σ ≡
∑M

m=1 Π∗ is unimodal in M , i.e., there exists M∗,Σ such that ∂Π∗,Σ

∂M
> 0

for all M < M ∗,Σ and ∂Π∗,Σ

∂M
< 0 for all M > M ∗,Σ.

Proposition EC.1 shows that even when the coordinator maximizes the total profit, there is an

optimal number of contests. To explain the intuition, we first discuss how each organizer’s profit Π∗

changes with the number of contests M , and then discuss the impact of M on the total profit. When

M increases, as discussed in §3.2, each organizer’s profit Π∗ increases as long as the scope effect

outweighs the scarcity effect. Yet, when M is above a threshold M∗, the scarcity effect outweighs

the scope effect, so each organizer’s profit Π∗ decreases with M . When the coordinator maximizes

the total profit, even if each organizer’s profit Π∗ decreases with M , the total profit MΠ∗ may still

increase with M , and hence it may be optimal to run more contests than M∗. However, Proposition

EC.1 shows that as M increases, the decrease in each organizer’s profit due to the scarcity effect

becomes so large that the total profit decreases as well. Thus, in line with Theorem 2, there is an

optimal number of contests M∗,Σ even when the coordinator maximizes the total profit.
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EC.2.2. Decentralized Contests

In this section, we consider the decentralized case where organizers set the awards at their contests

and compete for solvers’ efforts. Given that other organizers give the award Aj 6=m = A∗,D, and that

each solver exerts the equilibrium effort e∗m in contest m as in Lemma 1, each organizer m chooses

award Am to maximize expected profit by solving the following problem:

max
Am

r(e∗m)+ μN −Am. (EC.9)

We refer to A∗,D that solves (EC.9) as the equilibrium award in the decentralized case. As in §2,

we focus on symmetric pure-strategy Nash equilibria for both organizers and solvers.

Proposition EC.2. In the decentralized case, under Assumption 3, the following results hold.

(a) Let Π
X

be the average profit in the exclusive case. Suppose that the output shock ξ̃im is trans-

formed to ξ̂im = αξ̃im with a scale parameter α > 0. Then, there exists α0 such that the average

profit in the non-exclusive decentralized case Π
D

is greater than Π
X

for any α > α0.

(b) There exist M∗,D
1 and M∗,D

2 such that ∂Π
D

∂M
> 0 for all M < M ∗,D

1 and ∂Π
D

∂M
< 0 for all M > M ∗,D

2 .

Proposition EC.2(a) extends Theorem 1 to the decentralized case, and has the same intuition

as Theorem 1. The average profit in the exclusive centralized case Π
X

is an upper bound for

the average profit in the exclusive decentralized case where solvers determine which contest(s) to

participate in and their efforts, organizers determine their awards. We use the upper bound Π
X

because in the exclusive decentralized case, a pure-strategy Nash equilibrium among organizers

may not exist. Note that whenever the average profit in the non-exclusive decentralized case Π
D

is larger than the average profit in the exclusive centralized case Π
X

, each organizer’s profit in the

non-exclusive decentralized case is larger than that in the exclusive decentralized case.

Proposition EC.2(b) extends Theorem 2 to the decentralized case, and has the same intuition

as Theorem 2. The only difference is that Theorem 2 shows that the average profit is unimodal in

the number of contests M with a peak M∗, yet Proposition EC.2(b) shows two thresholds M∗,D
1

and M∗,D
2 such that each organizer’s profit increases with M when M < M ∗,D

1 and decreases with

M when M > M ∗,D
2 . Nevertheless, this result corroborates the insight of Theorem 2 that multiple

contests are beneficial to organizers only up to the optimal number of contests.

EC.2.3. Alternative Model for Economies of Scope

Consistent with the innovation contest literature (e.g., Terwiesch and Xu 2008, Ales et al. 2017),

our main model in §2 interprets a solver’s effort as the set of actions she takes to improve her out-

put, such as conducting literature review. Alternatively, effort can be interpreted as deterministic

improvement a solver makes to her solution quality (e.g., Moldovanu and Sela 2001). These two
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interpretations lead to modeling economies of scope through the solver’s cost function ψ, and this

is consistent with the traditional definition of economies of scope (e.g., Willig 1979, Panzar and

Willig 1981). In this section, we consider a third interpretation of effort as the time a solver spends

on a contest. To do so, we consider spillover in the solver’s output function rather than economies of

scope in the solver’s cost function. Specifically, the time solver i spends on one contest may improve

her output at another contest, so her output in contest m is yim = θ
(
eim + a

∑
l 6=m eil

)
+ ξ̃im, where

a∈ (0,1).19 This model builds on the Sutton (2001) model of output spillover. The innovation con-

test literature that focuses on a single contest commonly uses this type of a linear effort function

with a convex cost function (e.g., Mihm and Schlapp 2019, Hu and Wang 2021). Consistent with

Sutton (2001) and the innovation contest literature, we assume that solver i’s total cost of effort

is
∑M

l=1 φ(eil), where φ is an increasing, convex, and homogenous function of degree p (> 2). The

cost function φ may represent the solver’s disutility from spending time on a contest. To capture

the impact of solvers’ limited resources as in our main model, we assume that each solver’s total

effort cannot exceed E.

Proposition EC.3. (a) Let Π
X

be the average profit when the coordinator optimally allocates

solvers and awards in the exclusive case. Suppose that the output shock ξ̃im is transformed to

ξ̂im = αξ̃im with a scale parameter α > 0. Then, there exists α0 such that the average profit in the

non-exclusive case Π is greater than that in the exclusive case Π
X

for any α > α0.

(b) The average profit Π is unimodal in the number of contests M , i.e., there exists M∗ such that
∂Π
∂M

> 0 for all M < M ∗ and ∂Π
∂M

< 0 for all M > M ∗.

Proposition EC.3 extends Theorems 1 and 2, and presents somewhat expected results as there is

a strong correlation between the three interpretations of effort and between output spillover and

economies of scope. Specifically, when a solver spends more time on a contest, the deterministic

part of her output, i.e., θ
(
eim + a

∑
l 6=m eil

)
, at another contest also improves. Thus, when a solver

improves her output at one contest, it is less costly to improve her output at another contest, leading

to economies of scope across contests. This strong correlation among different interpretations of

effort explains the analogous results in Proposition EC.3 and Theorems 1 and 2.

EC.3. Proofs of Further Extensions

Proof of Corollary EC.2. Because the number of contests is fixed in Theorem 1, whenever the

average profit is maximized, the total profit is also maximized. Thus, Theorem 1 directly extends

to the case where the coordinator maximizes the total profit.

19 It is plausible that the spillover from one contest may diminish with the spillover from other contests. This case
can be modeled by taking the coefficient a as a decreasing function of M . Our results extend to this case as well.



ec8 e-companion to Körpeoğlu, Korpeoglu, and Hafalır: Parallel Innovation Contests

Proof of Proposition EC.1. Let e = φ−1
(
η−1(M−bB)

)
. The coordinator’s problem is

max
A

Mr(e∗)+ MμN
(1) −MA, where e∗ = min{g(AINM 1−b), e}. (EC.10)

From the above problem, we can deduce that the coordinator never sets A such that g(AINM 1−b) >

e because otherwise the coordinator can improve the total profit by reducing A. Thus, without loss

of optimality, the coordinator’s problem can be rewritten as follows:

max
A

Mr(g(AINM 1−b))+ MμN
(1) −MA, where g(AINM 1−b)≤ e. (EC.11)

Let Φ(A) = Mr′ (g (AINM 1−b))g′ (AINM 1−b) INM 1−b −M and A = M b−1g−1 (e)/IN . Note that

Φ is the first derivative of (EC.10) with respect to A. Suppose that Φ(A)≥ 0. Because r′(g(x))g′(x)

is decreasing in x (as assumed in §2), the objective function in (EC.11) is concave in A, and hence

Φ(A) is decreasing in A. Because A > A violates the constraint in (EC.11), and Φ is decreasing,

A∗ = A solves (EC.11). Thus, Am = A∗ maximizes the total profit Π∗,Σ, and e∗m = e∗ = e is the

corresponding equilibrium effort. Suppose that Φ(A) < 0. Then, as limx→0 r′(g(x))g′(x) = ∞, we

have Φ(0) > 0, so by the Intermediate Value Theorem, there exists Â such that Φ(Â) = 0. Note

that Â is unique because Φ is decreasing. In this case, A∗ = Â solves (EC.11). Thus, Am = A∗ = Â

maximizes the total profit Π∗,Σ, and e∗m = e∗ = g(A∗INM 1−b) is the corresponding equilibrium

effort.

Φ(A)/M = r′
(
g
(
AINM 1−b

))
g′
(
AINM 1−b

)
INM 1−b − 1 = r′ (e)g′ (g−1(e)) INM 1−b − 1 is increas-

ing in M because e is decreasing in M , r′(g(x))g′(x) is decreasing in x, and M 1−b is increasing in M .

Because Φ(A)/M is increasing in M and limx→0 r′(g(x))g′(x) =∞ and hence limM→∞(Φ(A)/M) >

0, there exists M0 ∈ [1,∞) such that for any M < M0, Φ(A) < 0 and for any M ≥M0, Φ(A)≥ 0.

Let Π∗,M be an organizer’s profit when there are M contests and the coordinator optimally

chooses the award as A∗. We next show that the total profit Π∗,Σ = MΠ∗,M = Mr(e∗) + MμN
(1) −

MA∗ is increasing in the number of contests M up to some M∗ and decreasing afterwards. When

M < M0 as in the proof of Theorem 2, the constraint in (EC.11) can be relaxed. Applying the

Envelope Theorem to Π∗,Σ ≡maxA Mr(e∗)+ MμN
(1) −MA, we obtain

∂Π∗,Σ

∂M
= Π∗,M + Mr′(e∗)

∂e∗

∂M
= Π∗,M + M(1− b)r′(e∗)g′

(
A∗INM 1−b

)
A∗INM−b. (EC.12)

A∗ that maximizes Π∗,Σ also maximizes Π∗,M , and we have ∂Π∗,M

∂M
> 0 for all M < M0 (see proof

of Theorem 2), so under Assumption EC.1, we have Π∗,M > Π∗,1 > 0. As g′ > 0 and r′ > 0, from

(EC.12), Π∗,Σ is increasing in M when M < M0. When M ≥M0, A∗ = A so the objective function

in (EC.11) can be written as:

Π∗,Σ = Mr (e) + MμN
(1) −

M

INM 1−b
g−1 (e) . (EC.13)

The derivative of the coordinator’s objective with respect to M

∂Π∗,Σ

∂M
= Π∗,M + M

∂Π∗,M

∂M
= Π∗,M −Mr′ (e)

e

pM
+

1
INM−b

(g−1)′ (e)
e

pM
+

1− b

INM 1−b
g−1 (e) .
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As r′, φ, and η are homogenous of degree −k, p, and b, respectively, g−1 =
(

(η◦φ)′

r′

)
is homogenous

of degree pb + k− 1. Noting that (g−1)′(x) = (pb + k− 1)g−1(x)/x, we have

∂Π∗,M

∂M
= −

r′ (e)φ−1
(
η−1(B)

)

pM 1/p+1
+

p + k− 1
pINM 2−b

g−1 (e) =
r′ (e)

pM 1/p+1

(

−φ−1
(
η−1(B)

)
+

p + k− 1
pINM 1−b−1/p

g−1

r′
(e)

)

.

Note that ∂Π∗,M

∂M
has the same sign as ς ≡−φ−1

(
η−1(B)

)
+ p+k−1

pIN M(p+2k−2)/p
g−1

r′

(
φ−1

(
η−1(B)

))
, which

is always decreasing in M because pb + k − b > 0 and p + 2k − 2 > 0 (note that pb + 2k − 2 ≥ 0).

Thus, there exists M1 ∈ [M0,∞) such that ς > 0 and hence ∂Π∗,M

∂M
> 0 for all M ∈ [M0,M1); and

ς < 0 and hence ∂Π∗,M

∂M
< 0 for all M > M1. Then, as Π∗,M > 0 for all M < M0, and ∂Π∗,M

∂M
> 0 for

all M ∈ [M0,M1), we have Π∗,M > 0 for all M < M1. For M > M1, ∂Π∗,M

∂M
< 0, and hence Π∗,M is

decreasing in M . Thus, there exists M∗,Σ such that ∂Π∗,Σ

∂M
> 0 for all M < M ∗,Σ and ∂Π∗,Σ

∂M
< 0 for all

M > M ∗,Σ. Also, because r(e∗) = r(1) +
∫ e∗

1
r′(e)de = r(1) +

∫ e∗

1
e−kr′(1)de = r(1) + r′(1) (e∗)1−k−1

1−k
,

for k ≥ 1, we have limM→∞ Π∗,M = limM→∞

(
r(1)+ r′(1) (e)1−k−1

1−k
+ μN

(1) −
1

IN M1−b g
−1 (e)

)
=−∞, so

M∗,Σ ∈R+.

Proof of Proposition EC.2. We find the symmetric equilibrium in the decentralized case, and

then prove parts (a) and (b), respectively.

We first find the unconstrained decentralized award by relaxing the solver’s budget constraint,

which we denote by Â. Suppose that each organizer k 6= m chooses Â and organizer m chooses A.

Let e be the solver’s effort in contest m and let ê be the unconstrained equilibrium effort at other

contests. In this case, using (10), the first-order conditions for the solver can be written as:

Âr′(ê)IN − η′ ((M − 1)φ(ê)+ φ(e))φ′(ê) = 0,

Ar′ (e) IN − η′ ((M − 1)φ(ê)+ φ(e))φ′(e) = 0.

Under Assumption 3, from the above equalities, we can derive the following equalities:

A
θ

ep
IN = Â

θ

(ê)p
IN = cbp ((M − 1) (ê)p + ep)b−1

.

From the first equality, we get ep = A

Â
(ê)p, and by plugging this into the second equality, we get

Â
θ

(ê)p
IN = b

(

(M − 1) (ê)p +
A

Â
(ê)p

)b−1

= cbp(ê)(b−1)p

(
(M − 1)Â+ A

Â

)b−1

,

which yields ê = (Â)
1
p

(
θIN

cbp((M−1)Â+A)b−1

) 1
pb

and e = A
1
p

(
θIN

cbp((M−1)Â+A)b−1

) 1
pb

.

While other organizers choose Â, organizer m’s profit (when choosing A) can be written as:

Πm(A, Â) =
θ

p
log(A)+

θ

bp
log

(
θIN

cbp

)

+
θ(1− b)

bp
log
(
(M − 1) Â+ A

)
+ μN

(1) −A.

A necessary condition for Â to be unconstrained equilibrium is

∂Πm(A, Â)
∂A

∣
∣
∣
∣
∣
A=Â

=
θ

p

(
1

Â
+

1− b

b

1

A+(M − 1)Â

)∣∣
∣
∣
∣
A=Â

− 1 =
θ

p

(
1

Â
+

1− b

b

1

MÂ

)

− 1 = 0,
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which yields

Â =
θ (1− b + Mb)

Mbp
=

θ
(
M + 1−b

b

)

Mp
.

Let A = M b−1g−1
(
φ−1

(
η−1(BM−b)

))
/IN = bpB

θMIN
. Note that if all organizers give award A, then

the equilibrium effort in each contest is φ−1
(
η−1(BM−b)

)
. Suppose that Â < A. The solver’s budget

constraint is satisfied by the unconstrained equilibrium, and hence the equilibrium award in the

decentralized case is A∗,D = Â. Note that all organizers giving awards A is not an equilibrium as

θ

p

(
1

A
+

1− b

b

1

MA

)

− 1 <
θ

p

(
1

Â
+

1− b

b

1

MÂ

)

− 1 = 0,

which shows that organizers can improve profits by reducing their awards.

Suppose that Â≥A. In this case, any award A < A cannot be an equilibrium award because

θ

p

(
1
A

+
1− b

b

1
MA

)

− 1 >
θ

p

(
1

A
+

1− b

b

1

MA

)

− 1≥
θ

p

(
1

Â
+

1− b

b

1

MÂ

)

− 1 = 0,

which indicates that an organizer has an incentive to increase the award above A. Suppose all other

organizers give award Ǎ, where Ǎ ≥ A, and let ě be the corresponding equilibrium effort. In this

case, when an organizer selects award A such that the solver’s budget constraint binds, we have

ě≡ φ−1

(
Ǎ

p
k+p−1 η−1(B)

(M−1)A
p

k+p−1 +(M−1)Ǎ
p

k+p−1

)

and e≡ φ−1

(
A

p
k+p−1 η−1(B)

(M−1)A
p

k+p−1 +(M−1)Ǎ
p

k+p−1

)

. Under Assumption

3, the equilibrium efforts become

ě≡

(
Ǎ(B/c)1/b

A+(M − 1)Ǎ

)1/p

and e≡

(
A(B/c)1/b

A +(M − 1)Ǎ

)1/p

.

Then,

de

dA

∣
∣
∣
∣
A=Ǎ

=
1
p

(
(B/c)1/b

M

)1/p−1
(M − 1)(B/c)1/b

M2Ǎ
. (EC.14)

Organizer m’s first-order condition evaluated at A = Ǎ can be written as:

∂Πm(A, Ǎ)
∂A

∣
∣
∣
∣
A=Ǎ

=
θM 1/p

(B/c)1/pb

1
p

(
(B/c)1/b

M

)1/p−1
(M − 1)(B/c)1/b

M 2Ǎ
− 1 = 0, (EC.15)

which yields the equilibrium award in the decentralized case A∗,D as:

A∗,D = Ǎ =
θ

p

(M − 1)
M

. (EC.16)

(a) We next compare the average profit in the non-exclusive decentralized case with that in the

exclusive case. Suppose that the output shock ξ̃im is transformed to ξ̂im = αξ̃im with α > 0. Note

that A increases with the parameter α as ÎN = IN/α decreases with α. As Â does not depend

on α, there exists α such that for all α > α, the equilibrium award in the decentralized case is

A∗,D = Â =
θ(M+ 1−b

b )
Mp

. The average profit in the non-exclusive decentralized case is

Π
D

=
θ

bp
log

(
θ2INM 1−b(Mb− b + 1)

αcb2p2M

)

+ αμN −
θ(Mb− b + 1)

Mbp
. (EC.17)
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The equilibrium effort in the exclusive case is e∗,X
m =

(
θA

∗,X
m I

N
∗,X
m

cbp

) 1
bp

, where the optimal award

A∗,X
m = θ

bp
, for m∈ {1,2}. Then, the average profit in the exclusive case is

Π
X

=
1
2

2∑

m=1

(
θ

bp
log

(
θ2I

N
∗,X
m

αcb2p2

)

+ αμ
N

∗,X
m

−
θ

bp

)

. (EC.18)

The difference between the average profit in non-exclusive decentralized and exclusive cases is

Π
D
−Π

X
=

θ

bp
log

(
IN (2b− b +1)

2b(I
N

∗,X
1

I
N

∗,X
2

)1/2

)

+ α

(

μN −
1
2

2∑

m=1

μ
N

∗,X
m

)

−
θ(b− 1)

2b
. (EC.19)

Using the same argument as in the proof of Theorem 1, we have μN > 1
2

∑2

m=1 μ
N

∗,X
m

for m∈ {1,2}.

Thus, for a sufficiently large α, Π
D
− Π

X
> 0, so there exists α0 (≥ α) such that for any scale

transformation ξ̂im = αξ̃im of the output shock ξ̃im with α > α0, Π
D

is greater than Π
X

.

(b) From part (a), for A = bpB
θMIN

, we know that the equilibrium award in the decentralized case is

A∗,D = Â if Â < A and A∗,D = Ǎ if Ǎ > A. First, we analyze when Â < A holds and then we analyze

when Ǎ > A holds. By rearranging, we obtain Â < A if and only if

θ
(
M + 1−b

b

)

p
<

bpB

θIN

.

Thus, when M is sufficiently small, the equilibrium award A∗,D = Â. Thus, there exists a threshold

M∗,D
1 such that for all M < M ∗,D

1 , we have A∗,D = Â. To have M∗,D
1 > 1, we need θ <

(
bp2B

(M+ 1−b
b )IN

) 1
2

.

Similarly to above, by rearranging, we obtain Ǎ > A if and only if θ(M−1)

p
> bpB

θIN
. Thus, when M

is sufficiently large, the equilibrium award A∗,D = Ǎ. Therefore, there exists M∗,D
2 such that for all

M > M ∗,D
2 , we have A∗,D = Ǎ.

We next show that when M < M ∗,D
1 , so A∗,D = Â , we have ∂Π

D

∂M
> 0. Note that we have

Π
D

=
θ

bp
log

(
θ2INM 1−b(Mb− b + 1)

αcb2p2M

)

+ μN −
θ(Mb− b + 1)

Mbp
.

As b < 1, − θ(Mb−b+1)

Mbp
is increasing in M . Also, M1−b(Mb−b+1)

M
is increasing in M for M ≥ 1. Thus,

we have ∂Π
D

∂M
> 0 for all M < M ∗,D

1 . We next show that when M > M ∗,D
2 , we have A∗,D = Ǎ, and

hence ∂Π
D

∂M
< 0. Note that we have e∗ = ě = ((B/c)1/b/M)(1/p). Thus, Π

D
= θ

p
log
(

(B/c)1/b

M

)
+μN − Ǎ,

which is decreasing in M, because Ǎ in (EC.16) is increasing in M .

Proof of Proposition EC.3. We first characterize the solver’s equilibrium effort, and then prove

the two parts of the proposition. Solver i solves the following problem:

max
ei1,ei2,...,eiM

M∑

m=1

Am

∫
H

(

s +(1− a)eim +
M∑

l=1

aeil − (1− a)e∗m −
M∑

l=1

ae∗l

)N−1

h(s)ds−
M∑

m=1

φ(eim),

s.t.
M∑

m=1

eim ≤E.
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When the solver’s constraint is relaxed, the first-order conditions of the above problem evaluated

at symmetric equilibrium yields êm = (φ′)−1
((

(1− a)Am + a
∑M

l=1 Al

)
IN

)
. When all contests give

award A, the solver’s equilibrium effort considering her constraint is

e∗m = min

{

(φ′)−1 (A (1+ a(M − 1)) IN ) ,
E

M

}

. (EC.20)

(a) We prove the first part of the result for two contests but the result can be generalized to any

number of contests M > 2. We compare the average profit in exclusive and non-exclusive cases.

In the exclusive case, let N∗,X
m be the optimal number of solvers and A∗,X

m be the optimal award

in contest m ∈ {1,2}, and let e∗,X
m be the corresponding equilibrium effort in contest m ∈ {1,2}.

Suppose that the output shock ξ̃im is transformed to ξ̂im = αξ̃im with a scale parameter α > 0.

Note that it is never optimal for the coordinator to set awards such that e∗,X
m > E (for m∈ {1,2})

because the coordinator can improve the average profit by reducing the award in contest m∈ {1,2}.

Thus, the equilibrium effort in the exclusive case is e∗,X
m = e∗,X

m = (φ′)−1(A∗,X
m I

N
∗,X
m

/α) in contest

m ∈ {1,2}. Without loss of generality, suppose that e∗,X
1 ≤ e∗,X

2 . After incorporating the optimal

solution, the average profit in the exclusive case becomes

Π
X

=
1
2

2∑

m=1

(θe∗,X
m + αμN

∗,X
m

(1) −A∗,X
m ). (EC.21)

In the non-exclusive case, suppose that the coordinator offers an award A in each contest so that

the equilibrium effort in each contest m∈ {1,2} is e∗m = (e∗,X
1 + e∗,X

2 )/2. Under sufficiently large α,
∑2

m=1 e∗m = e∗,X
1 + e∗,X

2 ≤E, so from (EC.20), A satisfies

A =
α

(1+ a) IN

φ′

(
e∗,X
1 + e∗,X

2

2

)

≤
α

(1+ a) IN

φ′(e∗,X
2 ) =

A∗,X
2 I

N
∗,X
2

(1+ a) IN

.

Using the above inequality, the average profit in the non-exclusive case becomes

Π = (1+ a)θ

(
e∗,X
1 + e∗,X

2

2

)

+ αμN
(1) −A≥

1
2

2∑

m=1

(1+ a)θe∗,X
m + αμN

(1) −
A∗,X

2 I
N

∗,X
2

(1+ a) IN

. (EC.22)

The difference between the average profit in non-exclusive and exclusive cases satisfies

Π−Π
X
≥ α

(

μN
(1) −

1
2

2∑

m=1

μN
∗,X
m

(1) +
1
2

2∑

m=1

A∗,X
m

α
−

A∗,X
2 I

N
∗,X
2

α(1+ a)IN

)

. (EC.23)

Using the same argument as in the proof of Theorem 1, we have μN
(1) > 1

2

∑2

m=1 μN
∗,X
m

(1) for m∈ {1,2}.

Thus, there exists α0 such that for any α > α0, we have Π−Π
X

> 0.

(b) The average profit can be written as:

Π =
1
M

[
M∑

m=1

(

(1− a)e∗m +
M∑

l=1

ae∗l

)

+
M∑

m=1

E[ξ̃N
(1)m]−

M∑

m=1

Am

]

=
1
M

[
M∑

m=1

(1+ (M − 1)a)e∗m +
M∑

m=1

μN
(1) −

M∑

m=1

Am

]
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=
1
M

[
M∑

m=1

(1+ (M − 1)a)(φ′)−1

((

(1− a)Am + a
M∑

l=1

Al

)

IN

)

+
M∑

m=1

μN
(1) −

M∑

m=1

Am

]

.

Due to the symmetry with respect to all contests and the concavity of (φ′)−1 (which is guaranteed

because p > 2), the coordinator sets the same award in each contest (otherwise the average profit

can be improved by a perturbation that makes the awards equal with the same total award). Let

A≡ 1
IN (1+(M−1)a)

φ′
(

E
M

)
. Note from (EC.20) that when the coordinator offers an award A in each

contest, then the solver’s total equilibrium effort is E. The coordinator never chooses an award

A > A because otherwise, the average profit can be improved by reducing awards marginally (and

keeping the total effort as E). Thus, the coordinator solves the following problem:

Π(A∗) = max
A

[
(1+ (M − 1)a)(φ′)−1 ((1+ (M − 1)a)AIN) + μN

(1) −A
]

s.t. A≤A.

Let Â be the solution to the above problem when the constraint is relaxed. Note that because

(φ′)−1 is increasing, when ignoring the constraint, the Envelope Theorem implies that

∂Π(Â)
∂M

= a(φ′)−1
(
(1+ (M − 1)a)ÂIN

)
+(1+ (M − 1)a)((φ′)−1)′

(
(1+ (M − 1)a)ÂIN

)
> 0.

Thus, the coordinator’s objective improves with M if Â < A. Also, we can derive Â as:

Â =
1

(1+ (M − 1)a)IN

(((φ′)−1)′)−1

(
1

(1+ (M − 1)a)2IN

)

= (1+ (M − 1)a)
p

p−2 (((φ′)−1)′)−1

(
1
IN

)
1
IN

,

which is increasing and unbounded in M because p > 2 and Â < A. Thus, there exists M0 such

that for all M ≥M0, Â≥A, and hence it is optimal for the coordinator to set A∗ = A. Therefore,

for M ≥M0, the coordinator’s objective under the optimal award becomes

Π(A∗) = (1+ (M − 1)a)
E

M
+ μN

(1) −
1

IN(1+ (M − 1)a)
φ′

(
E

M

)

.

The derivative of the coordinator’s objective with respect to M

∂Π(A∗)
∂M

=−(1− a)
E

M 2
+

a

IN(1+ (M − 1)a)2
φ′

(
E

M

)

+
1

IN (1+ (M − 1)a)
φ′′

(
E

M

)
E

M 2
.

Note that ∂Π(A∗)

∂M
has the same sign as:

M 2∂Π(A∗)
∂M

=−(1− a)E +
aφ′(E)M

IN (1+ (M − 1)a)2
M 2−p +

φ′′(E)E
IN (1+ (M − 1)a)

M2−p,

which is decreasing in M because M
(1+(M−1)a)2

decreases with M and p > 2. Furthermore,

limM→∞
∂Π(A∗)M2

∂M
= −(1− a)E, which means that there exists M∗ such that for all M > M ∗, we

have ∂Π(A∗)

∂M
< 0 and for all M < M ∗ (where M∗ can be equal to M0), we have ∂Π(A∗)

∂M
> 0.

EC.4. Additional Results

Lemma EC.4. (i) The cost function ψ = η
(∑M

m=1 φ(eim)
)

exhibits diseconomies of scale for each

contest m; i.e., ∂2ψ

∂e2
im

≥ 0 for all m∈ {1,2, ...,M}. When there is a single contest, i.e., M = 1, ψ is

a convex function. (ii) ψ exhibits economies of scope across contests; i.e., ∂2ψ
∂eimeij

< 0 for all j 6= m.
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Proof. (i) The partial derivative of ψ with respect to eim

∂ψ

∂eim

= η′

(
M∑

l=1

φ(eil)

)

φ′(eim). (EC.24)

Because η′ is homogenous of degree (b− 1), we have

∂ψ

∂eim

=

(∑M

l=1 φ(eil)
φ(eim)

)b−1

η′ (φ(eim))φ′(eim).

(∑M
l=1 φ(eil)

φ(eim)

)b−1

is positive and increasing in eim as b < 1. Also, as η ◦ φ is a convex function,

η′ (φ(eim))φ′(eim) is positive and increasing in eim. Thus, ∂ψ
∂eim

is increasing in eim, which means that
∂2ψ

∂e2
im

> 0. When M = 1, ψ(ei1) = η (φ(ei1)), which is convex because η ◦φ is convex by assumption.

(ii) Then, the cross partial derivative of ψ

∂2ψ

∂eim∂eij

= η′′

(
M∑

l=1

φ(eil)

)

φ′(eim)φ′(eij).

Because φ′ > 0 and η is concave (i.e., η′′ < 0), ∂2ψ
∂eim∂eij

< 0.

Lemma EC.5. In an optimal award scheme (A∗
1,A

∗
2, ...,A

∗
M ) that maximizes the average or total

profit, there exist no contests m and l such that A∗
m > A∗

l > 0.

Proof. For ease of illustration, we prove this result for two contests, but the proof can be extended

to any number of contests. While we prove this result for the average profit objective, the same

steps can be applied to prove the result for the total profit objective. Suppose to the contrary

that it is optimal for the coordinator to give different awards at different contests. Without loss

of generality, we label the contest with the largest award as contest 1 and the contest with the

smallest award as contest 2. Then, in the optimal award scheme (A∗
1,A

∗
2), A∗

1 > A∗
2. Let e∗1 and e∗2 be

the corresponding equilibrium effort in contest 1 and 2, respectively. It is never optimal to set an

award such that the Lagrange multiplier λ in (8)-(9) is strictly positive because the average profit

can be improved by marginally reducing awards. Thus, e∗1 and e∗2 should satisfy (11), which means

that e∗1 > e∗2 because ϕ is decreasing. Consider a perturbation with an alternative set of awards

(A1,A2) such that r(e1) = r(e∗1)− ε and r(e2) = r(e∗2) + ε (with a sufficiently small ε > 0 such that
∑2

m=1 φ(em) ≤ η−1(B) due to the concavity of r). Because the total effort
∑2

m=1 φ(em) ≤ η−1(B),

we have Am = g−1(em)

IN

(
φ(em)

∑2
l=1 φ(el)

)1−b

from (10). Then, the change in the average profit Π after the

perturbation is
(
note that e∗1 = r−1(r(e1) + ε), e∗2 = r−1(r(e2)− ε),

∑2

m=1 r(em) =
∑2

m=1 r(e∗m), and

E
[∑2

m=1 ξ̃N
(1)m

]
does not change after perturbation

)

Δ ≡ (−A1 + A∗
1 −A2 + A∗

2)/2

= −
g−1(e1)

2IN

(
φ(e1)

φ(e1) + φ(e2)

)1−b

+
g−1(e1)

2IN

(
φ(e1)

φ(e1) + φ(r−1(r(e2)− ε))

)1−b

−
g−1(e1)

2IN

(
φ(e1)

φ(e1) + φ(r−1(r(e2)− ε))

)1−b

+
g−1(r−1(r(e1) + ε))

2IN

(
φ(r−1(r(e1) + ε))

φ(r−1(r(e1) + ε)) + φ(r−1(r(e2)− ε))

)1−b
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−
g−1(e2)

2IN

(
φ(e2)

φ(e1) + φ(e2)

)1−b

+
g−1(e2)

2IN

(
φ(e2)

φ(r−1(r(e1) + ε)) + φ(e2)

)1−b

−
g−1(e2)

2IN

(
φ(e2)

φ(r−1(r(e1) + ε)) + φ(e2)

)1−b

+
g−1(r−1(r(e2)− ε))

2IN

(
φ(r−1(r(e2)− ε))

φ(r−1(r(e1) + ε)) + φ(r−1(r(e2)− ε))

)1−b

.

Taking the limit limε→0
2INΔ

ε
, and noting that em = r−1(r(em)) and ϕ(e∗1)A

∗
1 = ϕ(e∗2)A

∗
2, we obtain

δ ≡ (1− b)

(
φ(e1)

φ(e1)+ φ(e2)

)−b
φ(e1)g−1(e1)

(φ(e1)+ φ(e2))2
φ′(e2)
r′(e2)

− (1− b)

(
φ(e2)

φ(e1)+ φ(e2)

)−b
φ(e2)g−1(e2)

(φ(e1)+ φ(e2))2
φ′(e1)
r′(e1)

+(1− b)

(
φ(e1)

φ(e1)+ φ(e2)

)−b
φ(e2)g−1(e1)

(φ(e1)+ φ(e2))
2

φ′(e1)
r′(e1)

+

(
φ(e1)

φ(e1)+ φ(e2)

)1−b 1
g′(g−1(e1))

1
r′(e1)

−(1− b)

(
φ(e2)

φ(e1)+ φ(e2)

)−b
φ(e1)g−1(e2)

(φ(e1)+ φ(e2))
2

φ′(e2)
r′(e2)

−

(
φ(e2)

φ(e1)+ φ(e2)

)1−b 1
g′(g−1(e2))

1
r′(e2)

.

Note that whenever δ > 0, the average profit improves after the perturbation, so we prove that

when k and b are sufficiently large, δ > 0. Note that the first line in δ is equal to zero because

φ′(em) = pφ(em)/em and g−1 = η′(φ)φ′/r′. Furthermore, because 2−2k− bp≤ 0 (as assumed in §2),
(

φ(e1)
φ(e1)+ φ(e2)

)1−b 1
g′(g−1(e1))

1
r′(e1)

>

(
φ(e2)

φ(e1)+ φ(e2)

)1−b 1
g′(g−1(e2))

1
r′(e2)

. (EC.25)

Υ(e1, e2) ≡ (1− b)
(

φ(e1)

φ(e1)+φ(e2)

)−b
φ(e2)g−1(e1)

(φ(e1)+φ(e2))2
φ′(e1)

r′(e1)
approaches 0 as b approaches 1. Thus, when b

is sufficiently close to 1, δ > 0 from (EC.25). Furthermore, we have Υ(e1, e2)−Υ(e2, e1) > 0, and

hence δ > 0 whenever
φ(e1)−bg−1(e1)

φ(e1)
φ′(e1)
r′(e1)

>
φ(e2)−bg−1(e2)

φ(e2)
φ′(e2)
r′(e2)

. (EC.26)

As φ−bg−1

φ
φ′

r′
is homogenous of degree −bp+ bp+k− 1+ p− 1− p+k = 2k− 2, (EC.26) holds when

k ≥ 1. In either case, δ > 0, which contradicts the optimality of A∗
1 > A∗

2.

Lemma EC.6. (Adopted from Lemma EC.7 of Ales et al. 2020) Suppose that M = 1, and that the

output shock ξ̃im is transformed to ξ̂im = αξ̃im with a scale parameter α > 0. Then, limα→∞
A∗

α
= 0.

Proof. When ξ̃im is transformed to ξ̂im = αξ̃im with α > 0, IN is converted to ÎN = IN/α. Note

that when M = 1, relaxing the solver’s budget constraint, the optimal award Â[α] satisfies

r′

(

g

(
Â[α]IN

α

))

g′

(
Â[α]IN

α

)
IN

α
− 1 = 0. (EC.27)

Because r′(g(x))g′(x) is decreasing in x, and IN/α is decreasing in α, for Â[α] to satisfy (EC.27),

Â[α]/α should be decreasing in α. Since Â[α]/α is decreasing in α, and Â[α]≥ 0, Â[α]/α converges.

Furthermore, because limα→∞
IN
α

= 0, we need limα→∞
Â[α]

α
= 0 to satisfy (EC.27). Under Â, the

equilibrium effort e∗ = g
(

Â[α]IN
α

)
. Because limα→∞

Â[α]

α
= 0, for a sufficiently large α, we have

η(φ(e∗))≤B, so A∗ = Â. Thus, limα→∞
A∗[α]

α
= 0.

Lemma EC.7. For any N1,N2 ∈Z+ \ {0,1}, 1/IN1
+1/IN2

≥ 1/IN1+N2
.
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Proof. By Lemma EC.6 in Online Appendix of Ales et al. (2020), (N1 + N2)IN1+N2
≥ N1IN1

and (N1 + N2)IN1+N2
≥ N2IN2

. Thus, 1
IN1

≥ N1
(N1+N2)IN1+N2

and 1
IN2

≥ N2
(N1+N2)IN1+N2

. Adding these

inequalities, we obtain 1
IN1

+ 1
IN2

≥ 1
IN1+N2

.


