
Resource Allocation in Multi-access Edge

Computing (MEC) Systems: Optimization and

Machine Learning Algorithms

Sheyda Zarandi

A thesis submitted to the

Department of Electrical Engineering and Computer Science

in conformity with the requirements for

the degree of Master of Applied Science

YORK UNIVERSITY

TORONTO, ONTARIO

April 2021

© Sheyda Zarandi, 2021

Abstract

With the rapid proliferation of diverse wireless applications, the next generation of

wireless networks are required to meet diverse quality of service (QoS) in various

applications. The existing one-size-fits-all resource allocation algorithms will not

be able to sustain the sheer need of supporting diverse QoS requirements. In this

context, radio access network (RAN) slicing has been recently emerged as a promising

approach to virtualize networks’ resources and create multiple logical network slices

on a common physical infrastructure. Each slice can then be tailored to a specific

application with distinct QoS requirement. This would considerably reduce the cost of

infrastructure providers. However, efficient virtualized network slicing is only feasible

if network resources are efficiently monitored and allocated.

In the first part of this thesis, leveraging on tools from fractional programming

and Augmented Lagrange method, I propose an efficient algorithm to jointly opti-

mize users’ offloading decisions, communication, and computing resource allocation

in a sliced multi-cell multi-access edge computing (MEC) network in the presence

of interference. The objective is to minimize the weighted sum of the delay devia-

tion observed at each slice from its corresponding delay requirement. The considered

problem enables slice prioritization, cooperation among MEC servers, and partial

offloading to multiple MEC servers.

ii

On another note, due to high computation and time complexity, traditional cen-

tralized optimization solutions are often rendered impractical and non-scalable for

real-time resource allocation purposes. Thus, the need of machine learning algorithms

has become more vital than ever before. To address this issue, in the second part of

this thesis, exploiting the power of federated learning (FDL) and optimization the-

ory, I develop a federated deep reinforcement learning framework for joint offloading

decision and resource allocation in order to minimize the joint delay and energy con-

sumption in a MEC-enabled internet-of-things (IoT) network with QoS constraints.

The proposed algorithm is applied to an IoT network, since the IoT devices suffer

significantly from limited computation and battery capacity. The proposed algorithm

is distributed in nature, exploit cooperation among devices, preserves the privacy, and

is executable on resource-limited cellular or IoT devices.

iii

Acknowledgments

I would like to thank my advisor, Prof. Hina Tabassum, for her continuous support

and encouragement. It was a great privilege and honor to work and study under her

guidance as a member of in research group.

I am also extremely grateful to my parent for their unconditional love, caring, and

sacrifices. They have always been my source of hope and love and I feel truly blessed

for having them in my life.

iv

Contents

Abstract ii

Acknowledgments iv

Contents v

List of Figures vii

1 Introduction 1
1.1 Beyond 5G and 6G networks . 1
1.2 Introduction to Cloud and Edge Computing 3

1.2.1 Benefits . 4
1.2.2 Challenges . 5

1.3 Introduction to Sliced Virtual Networks 7
1.3.1 Benefits . 8
1.3.2 Challenges . 9

1.4 Introduction to Intelligent Networks 11
1.4.1 Reinforcement Learning . 11
1.4.2 Federated Learning . 12

1.5 Thesis Contributions . 14
1.6 Publications . 15

2 Mathematical Background and Preliminaries 16
2.1 Fractional Programming . 16

2.1.1 Dinkelbach’s Transform . 17
2.1.2 Quadratic Transform . 18

2.2 Reinforcement Learning (Q-Learning) 20
2.2.1 Deep Q-Learning . 20
2.2.2 Double Deep Q-Learning . 22

2.3 Summary . 22

3 Delay Minimization in Multi-cell Sliced MEC Systems 23

v

3.1 Literature Review . 24
3.2 Novelty and Contributions . 25
3.3 System Model and Assumptions . 26

3.3.1 Communication model . 27
3.3.2 Computing model . 28

3.4 Problem Formulation . 29
3.5 Proposed Resource Allocation Framework 32
3.6 Computation Complexity Analysis 37
3.7 Simulation Results and Discussions 39
3.8 Summary . 40

4 Federated DDQN for Joint Delay and Energy Minimization in IoT
networks 42
4.1 Literature review . 43
4.2 Contributions . 44
4.3 System Model and Assumptions . 45
4.4 Multi-objective Problem Formulation 47
4.5 Proposed Federated DDQN Algorithm 49

4.5.1 Double deep Q-network for Offloading Decision-making 50
4.5.2 Federated DRL Approach . 54

4.6 Simulation Results and Discussions 55
4.7 Summary . 61

5 Conclusions and Future Directions 62
5.1 Conclusion . 62
5.2 Potential Future Directions . 63

5.2.1 Wireless Connectivity between MEC Servers 64
5.2.2 Delay of Cooperation among MEC Servers 64
5.2.3 Federated Actor-Critic Method 65
5.2.4 Federated DDQN in Sliced Networks 66

Bibliography 67

vi

List of Figures

1.1 Evolution of wireless networks from both research and commercializa-

tion perspective [1] . 3

3.1 System Model . 26

3.2 Weighted delay deviation Vs. Number of users 37

3.3 Weighted delay deviation Vs. Number of cells 38

3.4 Weighted delay deviation Vs. Number of iterations 38

4.1 The federated reinforcement learning process 51

4.2 The impact of neural network architecture on the convergence of the

proposed FedRL algorithm. 57

4.3 The impact of batch size on the convergence of the proposed FedRL

algorithm. 58

4.4 The impact of target network update frequency on the convergence of

the proposed FedRL algorithm. 59

4.5 Performance of federated DDQN compared to federated DQN and dis-

tributed non-federated DDQN. 60

vii

Chapter 1

Introduction

1.1 Beyond 5G and 6G networks

The need for fast, reliable, and ubiquitous wireless connections continues to grow

even after many of the technologies proposed in 5G were successfully implemented

and exploited in the existing network infrastructure [2]. While 3GPP is continuously

working on the evolution of 5G with Release 16 being finalized early 2020, industry

and academia has started looking towards the next generation of mobile networks,

6G, that is targeted for 2030 and aims at addressing challenges not easily achievable

in 5G evolution [3]. Some examples of these challenges are meeting distinct Quality-

of-Service (QoS) requirements for diverse applications, accommodating tremendous

number of devices connected to cellular networks, and providing devices with sufficient

computation capability to perform advanced and resource exhaustive tasks [4].

Fueled by the emergence of IoT networks [5] and dense cellular network deploy-

ments, these requirements that are also given in Table 1.1, became more vital than

ever before and still challenging to achieve. For instance, even a moderate delay

might be intolerable for connected autonomous vehicles and many of the smart home

1

applications. The massive connectivity, ultra low latency requirements, and the need

for vast infrastructure resources have created a new range of challenges of critical im-

portance not only for networks, but for the constantly changing society, which calls

for new network architecture and resource management solutions in cellular networks.

In recent years, many cutting-edge technologies have been developed targeting

some of the aforementioned challenges [6]. Three of the most promising technologies

in this regard are cloud computing and multi-access edge computing (MEC), network

slicing, and intelligent networks. In cloud and MEC computing, the ability to offload

resource intensive tasks to the remote servers provides a platform to process the

tasks that exceed the capability of simple mobile devices. As such, this technology

enables devices to enjoy versatile and cutting-edge services without worrying about

their limited resources. In network slicing, isolation of resources and virtually sharing

the network infrastructure, help service providers to guarantee the desired QoS of

their subscribers in a cost efficient manner and without over-provisioning [7].

Furthermore, intelligence in wireless networks has become one of the most attrac-

tive research areas in recent decades. With the proliferation of IoT devices, nowadays

more data is generated by geographically distributed and widespread IoT and mobile

devices. Based on a forecast published by Ericsson, by 2024 more than 45% of the

40-ZB global Internet data will be generated by the IoT devices [8]. This tremendous

available data which is fundamental for training accurate learning models, emergence

of cloud computing paradigm that facilitates remote processing of tasks, and the in-

ability of traditional resource allocation tools in addressing the scalability challenges

of massive IoT networks, have given rise to the popularity of deep learning and ma-

chine learning methods.

2

Table 1.1: Major requirements of the 5G and B5G networks [1, 9]

Type Data Rate Latency Reliability Connectivity
E2E Radio-only

4G
∼ 1 Gbps
(SE: bps/Hz/m2) ∼ 50 msec ∼ 5 msec four-nines

2000 connected devices
per .38 square miles

5G
∼ 10-20 Gbps
(SE: bps/Hz/m2)

∼ 5 msec ∼ 100 nsec five-nines
1 million connected devices
per .38 square miles

B5G/6G
∼ 1 Tbps
(SE: bps/Hz/m3)

1 msec ∼ 10 nsec seven-nines
1 trillion connected devices
per .38 square miles

Figure 1.1: Evolution of wireless networks from both research and commercialization
perspective [1]

In what follows, we will dive deeper into the above mentioned technologies and

outline some of their primary advantages and challenges.

1.2 Introduction to Cloud and Edge Computing

Driven by the visions of IoT and low latency communications, recent years have seen

a paradigm shift in mobile computing, from the centralized mobile cloud computing

(MCC) toward MEC. The main feature of MEC is to push mobile computing, network

control, and storage to the network edges (e.g., base stations and access points) so as

3

to enable computationally-intensive and latency-critical applications on the resource-

limited mobile devices [10]. In other words, devices are able to offload their tasks to

MEC servers if enough resources are not locally available to process them timely. As

the name suggests, MEC servers are located at the edge of the network and close to

devices, so devices do not necessarily have to deal with high latency to access their

services. Subsequently, MEC promises dramatic reduction in latency and energy

consumption of devices, while tackling some of the key challenges for successful roll-

out of 6G.

1.2.1 Benefits

MEC systems provide wireless devices with a reliable and low latency platform for

their resource-exhaustive tasks to be efficiently processed. Some of the major advan-

tages of MEC systems compared to traditional wireless networks (without offloading

capability) or cloud computing systems are [3]:

• Low Latency: In traditional networks, devices had to process their tasks them-

selves. Needless to say, as services became more sophisticated and computa-

tionally exhaustive, limited local computation capabilities became a bottleneck

that rendered mobile devices completely incapable of executing cutting-edge

services. Emergence of MCC partially addressed this issue. However, MCC

requires the information to pass through several networks including the radio

access network, backhaul network and Internet, where traffic control, routing

and other network-management operations can contribute to excessive delay.

Being deployed at the network edge, MEC circumvents these time-consuming

transmissions and shortens the service response time considerably [11]. Also,

4

for the computation latency, a cloud has a massive computation power that is

several orders of magnitude higher than that of an edge device. However, the

cloud has to be shared by a much larger number of devices than an edge device.

• Mobile Energy Savings : Due to their compact forms, IoT devices have limited

energy storage but are expected to cooperate and perform sophisticated tasks

such as surveillance, crowd-sensing and health monitoring. Powering the tens

of billions of IoT devices remains a key designing challenge given that frequent

battery recharging/replacement is impractical, if not impossible. By effectively

supporting computation offloading in an energy efficient manner, MEC stands

out as a promising solution for prolonging battery lives of IoT devices.

• Privacy/Security Enhancement: The capability of enhancing the privacy and

security of mobile applications is also an attractive benefit brought by MEC

compared to MCC. In MCC systems, the Cloud Computing platforms are public

large data centers, such as the Amazon EC2 and Microsoft Azure, which are

susceptible to attacks due to their high concentration of information. On the

other hand, due to the distributed deployment, small-scale nature, and the

less concentration of valuable information, MEC servers are much less likely to

become the target of a security attack.

1.2.2 Challenges

Just like any emerging technology, many unanswered challenges exist in MEC systems.

The benefits obtained from this paradigm, completely depends on whether these issues

are properly addressed or not. Some of these challenges are listed in what follows [12].

5

• Communication Delay : Unlike local computation for which a deterministic esti-

mation of service delay can be easily obtained based on the computation capa-

bility of local device, a significant part of the delay a device would experience in

MEC systems depends on the stochastic network environment. As an example,

if the channel condition of devices to their associated MEC server is not good or

the level of interference they have to cope with is too high, the communication

delay they experience would be significant and their process may not be finished

in the desired time frame. Therefore, precise physical layer resource allocation

(e.g. transmit power and subchannel allocation) becomes a necessity in MEC

networks and plays a significant role in minimization of this delay.

• Offloading Decision Optimization: While MEC can help devices with the pro-

cessing of their tasks in a timely manner, offloading to edge servers is not always

the best available option. For instance, if the channel quality of a given user

is not desirable, the offloading data rate can be low or the delay required for

the transmission of the task to the MEC server can surpass the delay required

for local processing. Under such conditions, it would be better for devices to

perform their task locally or find a more suitable server to offload their tasks

to. This observation emphasizes the substantial impact of accurate offloading

policy on the service delay devices’ would experience.

• Computation Resource Allocation: Even after devices offload their task in an

acceptable time span, they have to wait for their tasks to be processed by the

edge server. Given that the computation capacity of an edge server is limited

when compared to the cloud server, the proportion of computation resources

allocated to the task of each user plays a significant role in their computation

6

delay. This highlights the vital importance of optimal computation resource

allocation in the edge servers for efficient resource utilization and to ensure

quality service is provided to as many devices as possible.

• MEC Server Association and Partial Offloading : Unlike MCC, in MEC systems

usually more than one edge server exists in the proximity of user. Another chal-

lenge in MEC that needs to be carefully investigated, is how devices’ tasks are

assigned partially to different MEC servers. This is not only about the destina-

tion of the offloaded tasks, but also the proportion of task that is executed by

each server. To address these issues, many factors such as the available compu-

tation resources in each server and the nature of devices’ task (whether it can

be partially offloaded or not), should be taken into account.

1.3 Introduction to Sliced Virtual Networks

The economic sustainability of future mobile networks will largely depend on the

strong specialization of its offered services. The traditional business model for mobile

networks is centred on operators acquiring licence to use available spectrum, build-

ing their own infrastructure, and control the resource allocation according to their

needs. This model is now being challenged by a number of economic, regulatory, and

technical circumstances, which are expected to change the mobile landscape in future.

The first well known factor that is challenging the traditional business model is

the exponential growth of mobile traffic that is pushing operators to rapidly expand

their networks with technological upgrades and extensive deployment of resources.

Unfortunately, the average revenue per user is not growing with the same pace and

these new requirements pose a heavy financial burden on service providers, making

7

them unable to provide a qualified service for devices of cellular networks [13].

On another note, the next generation of mobile networks is expected to become

a dominant General Purpose platform on which millions of increasingly diversified

services will be hosted. As a consequence, network operators will need to support

heterogeneous QoS requirements. These trends are driving the design of cellular net-

works toward a strong differentiation of guarantees, separating services into macro-

scopic categories such as Mobile Broadband (eMBB), Ultra Reliable Low Latancy

Communications (URLLC), and Massive Machine Type Communication (mMTC),

based on their QoS requirements. To address such varied type of services on the

same infrastructure is another challenge service providers are struggling with.

To tackle the aforementioned challenges, it is crucial to rely on the diffusion of

software-defined networking (SDN) solutions, which enable network virtualization.

Using this virtualization approach, called Network Slicing, the traditional hard box-

based infrastructure can be evolved into a cloudified architecture. Network virtual-

ization enables the deployment of multiple virtual instances of the complete network,

named network slices. Slices are logical networks created on top of the physical infras-

tructure, each tailored to accommodate fine-tuned Service Level Agreements (SLAs)

reflecting the needs of different service providers.

1.3.1 Benefits

Network slicing is an indispensable technique to support heterogeneous services in

beyond 5G networks [14]. Using network slicing, multiple logical network slices can

be created on a common physical infrastructure. Each slice can be tailored to a specific

application with distinct QoS requirement. Some of the advantages of network slicing

8

that turn this new architecture into a necessity for delivering the promises in 6G are:

• Cost Effectiveness : One of the fundamental challenges observed by service

providers is their inability to address massive connectivity without strengthen-

ing their resources and infrastructure. On the other hand, via network slicing,

the role of service providers would be different from infrastructure providers

(InPs). InPs would deploy hardware resources, then exploiting resource virtu-

alization they will create logical end-to-end networks, called slices. InPs lease

these slices to the service providers. Clearly, this capability to separate logi-

cal and physical network plays a significant role in reducing both the capital

(CAPEX) and operational (OPEX) expenditures of service providers.

• Service Provisioning : With network slicing technology, service providers can

circumvent the need for deployment of physical networks while provisioning

new services and instead lease already available resources from InPs. This

would significantly decrease the time to market for service providers and as

such facilitates the provisioning of new services.

• Dynamic Resource Sharing among Slices : As slices are logically separated from

one another and the resources allocated per slice are defined through SDN-

based approaches, dynamic resource sharing is possible which would enhance

the overall efficiency of resource utilization in the network. This would instigate

continuous and seamless resource allocation in the whole network.

1.3.2 Challenges

Some of the major challenges in sliced networks are listed in the following [15]:

9

• Resource Isolation: Resource isolation is a fundamental property of network

slicing that assures performance guarantees and security for each tenant, even

when different tenants use network slices for services with conflicting perfor-

mance requirements. However, isolation may come at the cost of reduced mul-

tiplexing gain, which may result in inefficient network resource utilization. A

comprehensive method that not only isolates slices from each other, but also

enables maximum multiplexing in the network is needed to balance the isolation

versus resource multiplexing in sliced networks.

• End-to-End Resource Allocation: End-to-end slicing is crucial to facilitate a ser-

vice delivery all the way from the service providers to the end-user/customer(s).

Such a property has two extensions, (i) it stretches across different administra-

tive domains, i.e., a slice that combines resources belonging to distinct infras-

tructure providers, and (ii) it unifies various network layers and heterogeneous

technologies, e.g., RAN, core network, transport layer, and cloud. In particu-

lar, an end-to-end network slicing consolidates diverse resources and enables an

overlaid service layer which provides new opportunities for efficient networking

and service convergence [16].

• Slice Prioritization: To support a variety of QoS requirements, efficient slice

prioritization is also crucial. Slice prioritization refers to the mechanism in

which some slices are selected and are given privileges in the network. For

instance, often times these prioritized slices have access to a more considerable

proportion of resources in the network, and in any resource allocation strategy,

they would be prioritized in allocation of available resources. In this context,

it is also important to understand the impact of slice prioritization and how it

10

can be incorporated in the wireless resource allocation problems [17].

1.4 Introduction to Intelligent Networks

The stringent QoS requirements in many of the emerging applications such as au-

tonomous driving and virtual reality have increased the necessity of having a problem-

solving approach that not only is online and can produce the result in real-time fash-

ion, but also can handle the dynamic environment of wireless networks. On another

note, given the steep increase in the number of connected devices to cellular network

following the emergence of IoT and dense networks, it is now vital for any practi-

cal resource allocation framework to be distributed and scalable. In what follows, I

focus on two types of learning methods that can best address the requirements of a

distributed and scalable wireless resource allocation platform.

1.4.1 Reinforcement Learning

Reinforcement learning is one of the three main machine learning categories, with the

other two being supervised learning and unsupervised learning.

Supervised learning needs all the data to be labeled and labeling massive data

loads can be extremely time-consuming and resource-exhaustive [18]. This type of

learning may also fail in dynamic environments as the pace of change in such systems

are so fast that there would not be enough time to gather sufficient data, label them,

and then train the supervised model using this new dataset.

Different from supervised learning, unsupervised learning does not need labeled

data and the data (without any label) would be directly fed into the learning model.

Application of unsupervised learning is mostly to find hidden patterns in the datasets

11

so that we can either classify similar points together or find a relationship between

different features of data.

Different from supervised and unsupervised learning, reinforcement Learning en-

ables an agent to learn from repeatedly interacting with the environment and eval-

uating the feedback it receives that is modeled as a reward or loss signal. By this

evaluation, the agent would learn which action is more beneficial (maximizes its ac-

cumulative reward or minimizes its loss) in any given state.

Note that while both unsupervised learning and reinforcement learning target

finding a mapping between input and output (actions) without use of labels, instead

of mathematical properties of data points, reinforcement learning uses rewards and

punishments as signals for positive and negative behavior.

Furthermore, unsupervised learning and reinforcement learning differ in their ob-

jectives. While the objective of unsupervised learning is to find similarities and dif-

ferences between data points, reinforcement learning aims to find an accurate action

model that would maximize/minimize the total cumulative reward/loss of the agent.

The ability of reinforcement learning to learn by interacting with the environment,

turns it into an ideal problem-solving approach for the extremely dynamic cellular

networks. Also, as reinforcement learning does not need an input dataset for learning,

the need for saving and updating massive amount of data would be obliterated.

1.4.2 Federated Learning

Recently, federated learning (FDL) has emerged as a new paradigm for cooperative

learning, where multiple nodes contribute in training a single global model. The de-

vices use their local limited datasets to train a local model and then offload their

12

models to a central unit for global aggregation that is obtained by applying an ag-

gregation function, such as average, on the models. This new paradigm is beneficial

from the following aspects [19].

• Scalability: As explained above, in FDL, at each training round, a small subset

of agents send their pretrained local models at the centralized controller for

aggregation. Therefore, the need for having a central controller that is respon-

sible for the whole learning process would be removed. Therefore, this approach

would not be effected by exponentially growing number of devices in the system.

• Privacy: In FDL, devices are not required to share their data or experiences

with any external entity. As such, while their knowledge would be eventually

combined together in the global model, their privacy would be preserved [20].

• Spectrum efficiency: In FDL, there is no need to upload huge blocks of informa-

tion to an external unit at every training round, thus the available bandwidth

would not be burdened by constant transfer of tremendous amount of data from

all devices to the external controller [21].

• Cooperative learning: While data sharing is avoided in FDL, through integration

of local models, the global model would be a combination of all the knowledge

gathered through local models. By doing so, agents help each other to achieve

a more comprehensive model that can work well even in situations that are not

encountered by all the agents in the network. Therefore, using FDL, we will still

obtain a cooperative learning framework that is also privacy preserving [22].

13

1.5 Thesis Contributions

In this thesis, I investigated the problem of joint offloading, communication, and com-

putation resource allocation in a MEC system and develop novel resource management

algorithms leveraging on tools from optimization and machine learning theory. My

contributions can be listed as follows:

• Leveraging on tools from optimization theory, I develop a novel a framework

for joint subchannel, power, and computation resource allocation and offloading

decision optimization that aims at minimizing the devices’ delay in a virtually

sliced multi-cell MEC system with cooperative edge servers. The devices belong

to different slices and as such have different QoS demands. Also, I consider a

partial offloading scheme in which devices can perform part of their task locally

and offload the rest to either of the MEC servers. Particularly, the objective is

to minimize the gap between the experienced delay of devices and the maximum

tolerable delay threshold of their specific slice.

• Combining the benefits of FDL and reinforcement learning, I develop a machine

learning framework that aims to minimize the delay and energy consumption of

IoT devices by optimizing their offloading decisions, transmit powers and local

computation resource allocation. To address this problem we exploit the power

of RL and directly use the locally developed deep double Q-network (DDQN)

models as the input of federating process. We also employ optimization theory

to accurately estimate the loss function of each agent given any state/action

pair. By combining DDQN, FDL, and traditional optimization, we will obtain

a novel cooperative, scalable, and privacy-preserving framework that works well

14

in the dynamic and dense IoT-based networks.

1.6 Publications

The outcome of this thesis, were the following two papers:

• The work outlined in the first bullet of section 1.5 is published in IEEE Com-

munications Letters [23].

• The work outlined in the second bullet of section 1.5 is accepted in IEEE ICC

2021 Workshop on Wireless Networking Innovations for Mobile Edge Learning

[24].

15

Chapter 2

Mathematical Background and Preliminaries

In this chapter, an overview of fractional programming and reinforcement learning,

specifically Q-learning and double deep Q-learning is provided. These mathematical

preliminaries are provided so that one has enough knowledge to follow the discussions

and calculations in the following chapters. Thus, if the reader is familiar with these

tools, the reader can move to the next chapter.

2.1 Fractional Programming

Fractional programming (FP) refers to a family of optimization problems that involve

ratio term(s) [25]. Multi-ratio FP belongs to one of the major categories of FP that is

applicable in the context of wireless networks, since the wireless data rate calculations

are a function of signal-to-interference-plus-noise ratio (SINR) which has a fractional

form. In the following subsections, we will first explore Dinklebach method that is

one of the classical techniques of addressing FP and then present a unique approach

to address multi-ratio FP in cellular networks (adopted from [25]) that is later on

employed to address the problem in chapter 3.

16

2.1.1 Dinkelbach’s Transform

Let us consider a single-ratio problem FP problem. Given a nonempty constraint set,

such problem can be modeled as follows:

max
x

A(x)

B(x)
,

subject to: x ∈ X . (2.1)

The above single-ratio FP is in general not convex and thus difficult to address.

The conventional method of dealing with such problems is to reformulate the

problem by decoupling the numerator and denominator from each other, whereby

the joint optimization of A(x) and B(x) becomes simpler. One of the most common

techniques belonging to this approach is called Dinkelbach’s transform.

Dinkelbach transform was first proposed in [26]. In this method, any single-ratio

FP in the form given in (2.1) can be reformulated as:

max
x

A(x)−ΨB(x),

subject to: x ∈ X , (2.2)

where Ψ is an auxiliary variable whose value, at any time step t, is calculated as:

Ψt+1 =
A(xt)

B(xt)
. (2.3)

Given that A(x) is concave and B(x) is a convex function with respect to variable x,

it is proven that (2.2) converges to the optimal solution of problem (2.1).

17

2.1.2 Quadratic Transform

Classic approaches such as Dinkelbach transform work well for single-ratio problems,

but they cannot be readily generalized to multiple-ratio problems. This is due to

the fact that even though classic transforms have the property that the original and

the transformed problem have the same optimal solution, the optimal value of the

objective function in the transformed problem and the original FP maybe different

from one another. Therefore, in case of multiple ratios, we cannot apply the transform

to each individual ratio, separately.

Let us assume we have a sum of ratios FP problem given by:

max
x

M∑
m=1

A(x)

B(x)
,

subject to: x ∈ X . (2.4)

In this optimization method, unlike (2.1), we have a summation in the objective

function that encompasses the fractional form.

To solve the aforementioned problem, the quadratic transform is an efficient ap-

proach. Quadratic transform algorithm proposed in [25] is motivated by Dinkelbach

method, but with a new constraint added to the problem that the value of the objec-

tive function must remain the same. It is called quadratic transform because it uses

the properties of quadratic programming to re-state and then solve the FP.

18

To solve this problem, using the quadratic transform, we can restate (2.4) as:

max
x,y

M∑
m=1

(
2ym

√
Am(X)− y2

mBm(X)
)

(2.5)

subject to: x ∈ X , ym ∈ R. (2.6)

Note that as proven in Appendix A of [25], (2.5) is equivalent to (2.4) and is not

an approximation of it. Through this transform, we can also observe that a new type

of auxiliary variable y is added to the problem that refers to a collection of variables

{y1, · · · , yM}. In fact, the quadratic transform can be further extended to a more

general sum-of-functions-of-ratio problem.

Given non-decreasing functions fm(.) and a sequence of ratios in the form of Am

Bm
,

let us consider the following problem:

max
x

M∑
m=1

fm(
A(x)

B(x)
),

subject to: x ∈ X . (2.7)

Once more using Quadratic transform, we can state (2.7) in its equivalent form as:

max
x,y

M∑
m=1

fm
(
2ym

√
Am(X)− y2

mBm(X)
)

(2.8)

subject to: x ∈ X , ym ∈ R. (2.9)

The ability to restate a sum-ratio FP into an equivalent form without approximation

is a very strong tool that is made possible through Quadratic transform.

19

2.2 Reinforcement Learning (Q-Learning)

Q-learning is a form of model-free reinforcement learning. It provides agents with

the capability of learning to act optimally in Markovian domains by experiencing the

consequences of their actions, without requiring them to build maps of the domain.

As such, it is a very powerful tool for solving problems in wireless networks, where

finding a complete model of the system is difficult if not impossible all together. The

two primary methods of Q-learning are deep Q-networks and double deep Q-networks,

on which we will focus in the following subsections.

2.2.1 Deep Q-Learning

As previously explained, the goal of agent in reinforcement learning is to maximize

its cumulative reward over time. To this end, state/action value function denoted

by Q(s, a) for state s and action a is constantly estimated to evaluate the merit of

choosing action a given that we are currently at state s. If this action is beneficial and

agent’s reward is increased, then agent learns to choose this action when state s is

met, otherwise, it learns to avoid the action and even state in future. Therefore, it is

evident that the state/action value function and the accuracy of estimating it over the

learning process, plays a significant role in the learning speed and its accuracy [27].

In deep Q-learning (DQL), Q(s, a) is calculated as below:

Q(s, a) = r + γmax
a′

Q(s′, a′). (2.10)

where r represents the immediate reward that is obtained from being in state s and

choosing action a, γ denotes the discount factor whose value is between 0 and 1, and

20

s′ and a′ are the state and action in the next time step, respectively. By setting

discount factor, γ, to larger values, we encourage agent to put more emphasis on

future rewards rather than the immediate reward.

To estimate the value of future action-state pairs, in deep Q-learning, we train

a neural network at every round on a batch of data saved in a buffer that contains

previous experiences of the agent. By using this neural network, the need for knowing

the transition probability (the probability of moving to state s′ given that we were in

state s and chose action a) is not evident which is often impossible all-together.

Even with the above mentioned advantage, Q-learning still suffers from two major

shortcomings listed in the following:

• Over-estimation of Q-value: it can be clearly seen in (2.10) that, to estimate the

future rewards that can be obtained when we are at state s and choose action

a, max operator is used. Doing this, we are in fact using overestimated values

since the maximum value of estimations is taken into account. This systematic

overestimation introduces a maximization bias into learning process. As Q-

learning is based on bootstrapping — learning estimates from estimates — this

kind of overestimation can be problematic.

• Chasing non-stationary target: another observation from (2.10) is that, we are

bootstrapping the value of Q(s′, a′) to estimate Q(s, a), whereas Q(s′, a′) by it-

self is updated continuously. So we are using a value that is constantly changing

and this fact gives rise to the problem of non-stationary target at can slow down

the learning process significantly.

To solve these two challenges in conventional DQL, Double deep Q-networks

(DDQN) are proposed.

21

2.2.2 Double Deep Q-Learning

The solution of the two shortcomings of deep Q-network is to use two separate Q-

value estimators/neural networks, each of which is later on used to update the other

one. Employing these independent neural networks, we can obtain a more stable and

unbiased learning process. In DDQN, we train the model using an online network and

a target network. While the parameters of online network (its weights and biases) are

changed after every learning step, target network is kept mostly unchanged, and only

after multiple time steps, its parameters are updated with those of online network. By

doing so, we are effectively addressing the problem of chasing non-stationary targets

in DQL. Subsequently, the updated rule in DDQN is given by:

Q(s, a) = r + γQ(st+1, arg max
a′

Q′(s, a)). (2.11)

where Q(st+1, arg maxa′ Q
′(s, a)) is estimated using the online network and Q′(s, a) is

estimated using the target network.

Given the dynamic nature of the wireless networks, DDQN is a potential approach

to effectively deal with non-stationary environments and avoid over-estimation.

2.3 Summary

In this chapter, I provide an overview of the mathematical tools that will be used in

this thesis. I also explained the motivations behind selecting specific tools to address

our problems and their advantages over other existing approaches. In the following

chapter, we will introduce our first problem and our proposed solution to address it.

22

Chapter 3

Delay Minimization in Multi-cell Sliced MEC

Systems

Network slicing is an indispensable technique to support heterogeneous services in

fifth generation (5G) networks [28]. Using network slicing, multiple logical network

slices can be created on a common physical infrastructure. Each slice can be tailored

to a specific application with distinct QoS requirement. On another note, resource-

intensive and latency sensitive services necessitate MEC, that brings computational

resources to the Radio Access Network (RAN) edge. Thus, users would use both RAN

and computation resources to offload and process their tasks at the MEC servers. On

the other hand, in a sliced network, resources are restricted for each slice based on

a service level agreement (SLA) with infrastructure provider (InP). Subsequently,

joint optimization of RAN resources (e.g., subchannel and power) and computation

resources (e.g., CPU cycles of MEC servers) with optimal computation offloading in

a sliced network becomes imperative.

23

3.1 Literature Review

Recently, the problem of delay minimization in a multi-cell MEC network was solved

through communication and computation resource allocations (RAs) without network

slicing [29–31]. However, in all these works, the interference was either ignored [29,30]

or simplified [31]. Also, in [29], offloading decisions were not optimized, [30] did not

consider RAN RA, and [31] considered a binary offloading scheme.

A handful of research studies considered RA in sliced cellular networks [28, 32–

36]. In [28], the authors minimized a weighted combination of energy consumption

and delay through subchannel and computation RA. This work considered two slices

on a single base station (BS) with no interference. In [32], the authors minimized

delay through computation RA, considering multiple BSs, and in [33], the authors

maximized the offloaded workload that can be supported in a given time at each

fog node through energy optimization and server allocation. However, in both [32]

and [33], the inter-cell interference was ignored and offloading decisions and RAN

RA were not considered. The authors in [34] optimized the traffic allocation in a

multi-tier sliced architecture, while preventing over-provisioning. However RAN and

computation RA were considered abstractly, i.e., neither subchannel, power, and

computation RA were considered, nor offloading decisions were optimized. Similarly,

in [35], an abstract view of ’resource’ was adopted to minimize the weighted system

delay, i.e., RAN and computation RA were not addressed.

Recently, using stochastic optimization, joint subchannel, power and computation

RA was considered in a multi-cell sliced network to minimize system energy con-

sumption in [36], while ignoring offloading decisions. It should be noted that energy

24

consumption is a convex function of transmit power and subchannel allocation vari-

ables, and is different from delay, which at its simplest form, is a function of inverse

of non-convex data rate. Also, when all users offload, as in [36], the delay can be

easily restated in terms of the users’ data rate. However, with offloading decision

optimization, such simplifications are not applicable.

3.2 Novelty and Contributions

To our best knowledge, the problem of delay minimization with joint offloading,

computation, and communication RA in a cooperative multi-cell MEC network with

or without slicing is not investigated in the literature. Our contributions are:

• I jointly optimize users’ offloading decisions, RAN and computing RA in a multi-

cell MEC network to minimize the weighted sum of the difference between the

delay observed at each slice and its corresponding desired delay. The fractional

form of the objective function, discrete subchannel allocation, the partial of-

floading scheme, and the interference incorporated in the rate function, turns

this problem into a mixed integer non-linear programming problem (MINLP)

for which I proposed an efficient and novel algorithm.

• I decouple the original problem into two sub-problems: (i) offloading decision-

making and (ii) joint computation resource, subchannel, and power allocation.

I solve the first sub-problem optimally. For the second sub-problem, I propose

an efficient algorithm with polynomial computational complexity, leveraging on

tools from fractional programming and Augmented Lagrangian method (ALM).

Using alternating optimization, I solve these two sub-problems iteratively until

convergence. Complexity analysis is also presented.

25

Slice Coordinator
X2-Interface

Backhaul Links

Offloading Signal

Intercell Interference

Local
offloading

Available
Resources

In Use

Slice 1 Slice K

Figure 3.1: System Model

• Simulation results demonstrate the efficacy of my proposed algorithm compared

to existing schemes and provide insights related to the impact of interference,

slice prioritization, and cooperative MEC offloading, while demonstrating the

convergence in a few iterations.

3.3 System Model and Assumptions

I consider a MEC network with M edge points (or BSs) with co-located servers1 The

set of MEC servers is denoted asM = {1, 2, · · · ,M}. The available spectrum at each

cell is divided into N subchannels each with bandwidth B. Network resources are

sliced to accommodate K = {1, 2, · · · , K} tenants each of which provide one specific

type of service. Furthermore, the set of users for each tenant k is denoted by Uk
1The edge nodes can connect to each other using any type of topology such as full-mesh or star

topology.

26

and the set of all users is U = {1, 2, · · · , U}. Each tenant k has a SLA with InP

in which the proportion of computation capacity, βEk , and available bandwidth, αk,

reserved for its users is determined. The task of each user u is represented by the

tuple (Lu,Cu), with Lu as the size of the task and Cu as the computational demand

(CPU cycles) to process each bit.

To facilitate slice resource management, I consider a software-defined network

(SDN) controller referred to as slice coordinator (SC). The SC keeps track of resource

utilization in each slice and ensures that service providers (SPs) follow resource con-

straints in SLA and do not exceed their share of resources. This network architecture

is given in Fig. 3.1.

I denote yu,j as the proportion of the task of user u executed on the MEC server j.

Thus, I have
∑

j∈{M∪0} yu,j = 1, ∀u ∈ U , where index 0 denotes local computation.

3.3.1 Communication model

I consider that if a user offloads its task, it first sends its task to its assigned server

denoted by mu, and then the remaining communication (possible hand-offs between

servers) would be done over the high speed backhaul links. Denoting Ûj as the set of

users associated to server j, the data rate of each user u over subchannel n is:

ru,n= B log

(
1 +

xu,n pu,nhu,mu,n

σ2 + Iu,n

)
(3.1)

where pu,n, Iu,n, and σ2 represent the transmit power of user u over subchannel n,

its inter-cell interference calculated as Iu,n =
∑

j∈{M\mu}
∑

u′∈Ûj xu′,npu′,nhu′,mu,n, and

receiver noise power, respectively. Also, hu,j,n is the path-gain between user u and

BS j over subchannel n, and xu,n denotes the binary subchannel allocation variable

27

which is equal to one if subcarrier n is assigned to user u, and zero otherwise.

Now, I can calculate the total data rate of each user u as Ru(X,P) =
∑

n∈N ru,n,

where N , X, P, denote the set of N subchannels, subchannel allocation matrix,

and transmit power allocation matrix, respectively. Denoting Y as the matrix of

offloading decisions, the communication delay of user u is:

T comm
u,mu

(X,P,Y) =

∑
j∈M yu,jLu

Ru(X,P)
. (3.2)

3.3.2 Computing model

As a partial offloading scheme is adopted here, users’ task may be partly processed

locally. Denoting the computation capability of local device for user u as fLu , the local

computation delay would be:

T L
u (Y) =

yu,0LuCu
fLu

. (3.3)

With F representing the matrix of all computation resource allocation variables, since

the task of user u might be processed by servers other than its assigned server, the

computation delay of user u is:

TEu (X,P,F,Y) = T comm
u,mu

(X,P,Y)

+
∑

j∈{M\mu}

yu,jT
ho
mu,j + T comp

u (F,Y). (3.4)

where T ho
mu,j denotes the hand-off delay, including the time for communicating with

SC and the average round trip time for task transfer between mu to the jth server.

28

Moreover, T comp
u denotes the offloading computation delay of user u. If tasks’ frag-

ments are processed sequentially (one after the other), T comp
u would be the summation

of delays of user u in each server j as in (3.5). In case of parallel processing, the com-

putation delay of user would be equal to the delay in the slowest server. However, in

order to retain a tractable form for the objective function, I consider an upper-bound

and calculate the computation delay in both cases as follows:

T comp
u (F,Y) =

∑
j∈M

yu,jLuCu
fu,j

, (3.5)

where fu,j represents the computation resource that is allocated to user u in server j.

Note that even when parallel computation of the tasks is possible , due to 1) positiv-

ity of computation delay and 2) the independence between fu,j for different servers

,j, this upper bound would not significantly effect the optimized value of computa-

tion resource allocation in the slowest server, as minimizing the sum translates into

minimizing each component separately. Due to the typically small size of response, I

ignore the downlink transmission delay. Thus, the total delay of each user u is:

Tu(X,P,F,Y) = TLu (Y) + TEu (X,P,F,Y). (3.6)

3.4 Problem Formulation

In this section, I formulate the problem of minimizing the weighted sum of the differ-

ence between the delay observed at a given slice and its corresponding delay require-

ment (or weighted sum of the delay deviation at each slice), through jointly optimizing

users’ offloading decisions, RAN and computing RA in a cooperative multi-cell MEC

network.

29

Remark: This problem offers SPs a valuable insight into the adequacy of their

leased resources to meet the QoS requirement of their subscribers and the average

delay they would experience under the existing SLA. Analyzing the results obtained,

SPs can better plan their future strategies. If the value of objective function is

negative for any slice, then it can be interpreted that the SP is over-provisioning

resources and thus increasing its expenditure unnecessarily. Therefore, the SP can

either increase the number of its subscribers or reduce the amount of leased resources.

Otherwise, if the objective function is positive, it means some of the users in the slice

are not obtaining their QoS requirement. In this case, depending on the type of

service that the slice offers, the SP should decide to whether maintain the current

SLA, invest more on leasing resources, or to modify the subscription policy to decrease

the number of users allocated to the slice.

30

Now, I formally state the optimization problem as follows:

P : min
X,P,F,Y

∑
k∈K

∑
u∈Uk

λk(Tu(X,P,F,Y)− T̄k)

Subject to:

C1 :
∑
u∈Ûj

xu,n ≤ 1, ∀n ∈ N ,∀j ∈M,

C2 : xu,n ∈ {1, 0}, ∀n ∈ N ,∀j ∈M,∀u ∈ Ûj,

C3 : 0 ≤
∑
n∈N

xu,npu,n ≤ Pmax,u, ∀u ∈ U ,

C4 : yu,0LuCu ≤ FL
u , ∀u ∈ U ,

C5 :
∑
u∈U

yu,jLuCu ≤ FE
j , ∀j ∈M,

C6 :
∑
u∈Uk

∑
n∈N

xu,n ≤ αkMN, ∀k ∈ K,

C7 :
∑
u∈Uk

∑
j∈M

fu,j ≤ βEk S
E, ∀k ∈ K,

C8 :
∑

j∈{M∪0}

yu,j = 1, ∀u ∈ U ,

C9 : yu,j ∈ [0, 1], ∀u ∈ U ,∀j ∈M.

(3.7)

In the above optimization problem, T̄k denotes the desired delay threshold of each

slice k and λk is the weighting factor whose value is defined in SLA and handles the

precedence of slices over each other. Furthermore, constraint C1 indicates that each

subchannel can be allocated to at most one user in each cell and C2 shows the binary

nature of the subchannel allocation variable. In constraint C3, users’ transmit power

is restricted between zero and a maximum threshold denoted by Pmax,u. In constraints

C4 and C5, the limitation of local and edge computation resources are specified for

31

each user and server, respectively, with FL
u and FE

j denoting the total computation

capacity of user u and server j, in that order. Constraints C6 and C7 ensure that

resource consumption at each slice follows SLA. That is, C6 limits the spectrum usage

for each slice. Since there are M cells in the system and each cell has access to N

subchannels, then in total we have NM subchannels, from which only αk percent can

be used by users of slice k. Similar to communication resources, the proportion of

the total computation capacity SE (SE =
∑

j∈M FE
j) that is allocated to each slice k

is limited to βEk as given in constraint C7. Constraints C8 and C9 clarify the partial

offloading decision scheme adopted in this work.

Also it should be noted that since resources in slices are isolated from each other,

the value of objective function in one slice can not over-shadow the value of delay

deviation in other slices and reduce the quality of resource allocation in them.

As the result of interference included in the rate function, the binary subchannel

allocation variables, and the objective function which is in the form of summation of

ratios, optimization problem (4.8) is MINLP and thus difficult to tackle. In the what

follows I present my resource allocation algorithm.

3.5 Proposed Resource Allocation Framework

To tackle the difficulties of solving problem (4.8), I first take advantage of the problem

structure and decompose it into the following two subproblems:

P1 :min
Y

∑
k∈K

∑
u∈Uk

λk(Tu(Y)− T̄k)

Subject to: C4, C5, C8, C9.

(3.8)

32

P2 : min
X,P,F

∑
k∈K

∑
u∈Uk

λk(Tu(X,P,F)− T̄k)

Subject to: C1 − C3, C6, C7.

(3.9)

In problem (3.8), both the objective function and constraint set are affine with respect

to the variable Y. As such, it can be solved using standard optimization tools such

as CVX toolbox. The first challenge in (3.9) is the multiplication of subchannel and

power allocation variables in (1) as well as in constraint C3. To tackle this challenge,

I first replace all xu,npu,n terms with pu,n and then add the following constraint to

(3.9):

C3,1 : 0 ≤ pu,n ≤ xu,nPmax,u (3.10)

By using the above modification, users’ transmit power would be automatically set

to zero over subchannels they do not own. By adding this constraint, data rate

function Ru(X,P) would become a function of trasmit power only (Ru(P)). This

step solves the variable multiplication issue, however discrete subchannel allocation

variable is still challenging. To deal with this issue I replace C2 with the following

two constraints:

C2,1 : 0 ≤ xu,n ≤ 1, C2,2 : xu,n − x2
u,n ≤ 0. (3.11)

Remark 2: Although I relax xu,n to a continuous variable in C2,1, since the only two

values in [0,1] that fit C2,2 are 0 and 1, the binary nature of this variable would be

preserved.

The fractional form of users’ delay, Tu, is the next issue I focus on. After offload-

ing decision is obtained through solving subproblem P1, edge computation delay,

33

T comp
u (F,Y), in the objective function of P2 would turn into a convex function and

hand-off delay would be a constant. This leaves us with the summation of users’

transmission delay, whose non-convexity can be easily proved.

Lemma 1. Using the tools from FP, problem (3.9) can be restated as:

min
X,P,F

T (P,F) =
∑
k∈K

∑
u∈Uk

λk

[
yu,jLu

1

2Ru(P)2

∑
j∈M,j 6=mu

yu,jT
ho
mu,j +

∑
j∈M

yu,jLuCu
fu,j

− T̄k
]

S.to : C1 − C3, C6, C7.

(3.12)

Proof. An optimization problem with the form min
x∈Cx

∑I
i=1

Bi(X)
Ai(X)

, can be restated

equivalently as [37]:

min
x∈Cx,t∈R+

I∑
i=1

tiBi(X)2 +
I∑
i=1

1

4ti

1

Ai(X)2 , (3.13)

where ti = 1
2Bi(X)Ai(X)

. Using (3.13) and by setting Bi = 1 and Ai = Ru(P), I restate

problem (3.9) as given in Lemma 1.

Due to the presence of interference, Ri(P) is still a non-convex function.

Lemma 2. I obtain an equal but convex representation of communication delay func-

tion by restating the rate as:

r̂u,n(P, zu,n) =log2

(
1 + 2zu,n

√
hu,mu,npu,n − z2

u,n(Iu,n + σ2)
)
, (3.14)

Proof. As mathematically proven in [38] and since in Lemma 1, I set Ai = Ru(P),

and Ru(P) =
∑

n∈N ru,n, ru,n can be equally restated as (3.14). This modification,

not only makes ru,n a concave function of P, 1
Ru(P)2

would also become convex.

34

In (3.14), zu,n is a slack variable that will be updated iteratively. Using Lemma

2, I convexify the complex non-convex function T comm
u,mu

(P), also I redefine Ru(P) =∑
n∈N r̂u,n(P, zu,n). For optimizing P, X, and F I adopt ALM to obtain a locally

optimal solution. For a given zu,n, the the augmented Lagrangian function is given

in (3.15).

minL(X,P,F,Z,Γ) = T (X,P,F,Z) +
1

2Ψ

[([∑
u∈U

θu + Ψ(
∑
n∈N

pu,n − Pmax,u)

]+)2

−
∑
u∈U

θ2
u

+

([∑
k∈K

δk + Ψ
(∑
u∈Uk

∑
j∈M

fu,j − βEk SE
)]+)2

−
∑
k∈K

δ2
k +

([∑
n∈N

∑
j∈M

φn,j + Ψ
(∑
u∈U

xu,n − 1
)]+)2

−
∑
n∈N

∑
j∈J

φ2
n,j +

([∑
n∈N

∑
j∈M

∑
u∈U

ξu,n,j + Ψ

(∑
n∈N

∑
j∈M

∑
u∈Ûj

xu,n − x2
u,n

)]+)2
−
∑
n∈N

∑
j∈M

∑
u∈U

ξ2
u,n,j

+

([∑
u∈U

∑
n∈N

Ξu,n + Ψ(
∑
u∈U

∑
n∈N

pu,n − xu,nPmax,u)

]+)2

−
∑
u∈U

∑
n∈N

Ξ2
u,n

]
. (3.15)

In the augmented Lagrangian function, Ψ is a positive constant that plays the role

of an adjustable penalty coefficient and Γ is the vector of all Lagrangian multipliers

Θ, ∆, Φ, ξ, and Ξ. Solving problem (3.9) can be done in three steps. In the first

step, I consider Lagrangian multipliers to be fixed and minimize L(X,P,F,Z) given

in (3.15). In the second step, Lagrangian multipliers would be updated as:

θt+1
u =

[
θtu + Ψ

(∑
n∈N

pu,n − Pmax,u

)]+

, (3.16)

δt+1
k =

[
δtk + Ψ

(∑
u∈Uk

∑
j∈M

fu,j − βEk SE
)]+

, (3.17)

35

φt+1
n,j =

[
φtn,j + Ψ

(∑
u∈U

xu,n − 1
)]+

, (3.18)

ξt+1
u,n,j=

[∑
n∈N

∑
j∈M

∑
u∈U

ξtu,n,j+ Ψ

(∑
n∈N

∑
j∈M

∑
u∈Ûj

xu,n − x2
u,n

)]+

(3.19)

Ξt+1
u,n =

[∑
u∈U

∑
n∈N

Ξt
u,n + Ψ(

∑
u∈U

∑
n∈N

pu,n− xu,nPmax,u)

]+

. (3.20)

The third step is executed after a solution is obtained for (3.15). In this last step, using

the values obtained for P and X, I update slack variable zu,n as zu,n =

√
p∗u,nhu,mu,n

(Iu,n+σ2)
.

Our proposed algorithm is given in Algorithm 1.

Algorithm 1 Proposed Algorithm

1: Obtain the solution of problem (3.8) and initialize Z.
2: Repeat
3: Initialize Γ = [Θ,∆,Φ, ξ,Ξ] with small numbers.
4: Repeat
5: Solve problem (3.15) considering Γ to be fixed,
6: Update Γ using (3.16), (3.17), (3.18), (3.19), and (3.20).
7: Until convergence.

8: Set zu,n =

√
p∗u,nhu,mu,n

(Iu,n+σ2)
for all users and subchannels.

9: Until Convergence

36

3 6 9 12 15
Number of Users

-5

0

5

10

15

20

25

30

35

S
u

m
 o

f
W

e
ig

h
te

d
 D

e
la

y
D

e
vi

a
tio

n
 Proposed Algorithm

 Proposed Algorithm [Inelastic Slice]

 JOCRA (Enhanced version of [5])

JSPRA

 Proposed Algorithm w/o Server Cooperation

Figure 3.2: Weighted delay deviation Vs. Number of users

3.6 Computation Complexity Analysis

My proposed algorithm is divided into two sub-problems, i.e., (i) offloading decision

optimization and (ii) joint computation and RAN RA. For the first sub-problem, I

use interior point method in CVX whose complexity is in the order of O(log(C/t0ξ
ε

)),

where C, t0, ξ, and ε denote the total number of constraints, the initial point for

interior point method, the stopping criterion, and a representation of the accuracy

of the method, respectively. For the second sub-problem based on ALM the order of

complexity at each iteration is O(KUM)2 which is polynomial [39].

37

2 3 4
Number of Cells

1

2

3

4

5
A

ve
ra

g
e

 W
e

ig
h

te
d

 D
e

la
y

D
e

vi
a

tio
n

 P
e

r
U

se
r

 Proposed Algorithm

 JOCRA (Enhanced version of [5])

 Proposed Algorithm w/o Inelastic Slice

 JSPRA

Figure 3.3: Weighted delay deviation Vs. Number of cells

0 2 4 6 8 10 12

Number of Iterations

6

8

10

12

14

16

18

20

22

24

S
um

 o
f W

ei
gh

te
d

D
el

ay
 D

ev
ia

tio
n

 = [0.35,0.35,0.3]

 = [0.5,0.3,0.2]

Figure 3.4: Weighted delay deviation Vs. Number of iterations
38

3.7 Simulation Results and Discussions

I consider a network with two cells each having 6 users and 16 available subchannels,

unless stated otherwise. Similar to [35], I consider three slices/services as: elastic ser-

vices with flexible latency constraints, inelastic services that require ultra-low latency,

and background services with low latency requirement. The weighting parameter λ is

set to [3, 2, 1] for inelastic, elastic, and background services, with 50ms, 100ms, and

5s desired delay threshold, respectively. The value of Lu is 1 MB and the CPU cycle,

Cu, is randomly chosen from [1500, 2000, 2500].

Fig. 3.2 depicts the effect of number of users in each cell on the sum of weighted

delay deviation at each slice. I have compared my algorithm with

1. Joint Offloading and Computation RA (JOCRA): where only offloading

and computing RA is considered (with interference and server cooperation, this

scenario is in fact an improvement on [32]),

2. Joint offloading, Subchannel, Power RA (JSPRA): in which only RAN

RA is addressed and computation resource is equally allocated to users,

3. Proposed scheme without server cooperation: We can clearly observe

the significance of joint computation and RAN RA in the delay that users

experience. In fact, if we ignore computation RA we would have 58% and if

we overlook communication RA we will have 62% increase in network delay

deviation on average.

In Fig. 3.2, the impact of cooperation among cells is also illustrated. At first, when

number of users is not too high, there is almost no need for cooperation. However,

as the number of users increases, we observe that the effect of cooperation becomes

39

noteworthy (i.e., 9% reduction on average). The positive delay deviation occur when

network becomes infeasible (i.e., insufficient resources in at least one slice) and sat-

isfying the QoS of high priority services takes precedence in the network. Thus, we

can preserve the QoS of slices by increasing their weight (λk) for prioritization of the

slice or the quota of reserved resources (β and α) to avoid infeasibility. However, such

modifications are often a function of the cost SPs are willing to pay.

In Fig. 3.3, I examine how increasing the number of cells impacts the delay of

users. I again compare my proposed algorithm with JOCRA and JSPRA. As the

number of users per cell remains constant here, we depict the average delay deviation

per user. Increasing the number of cells notably increases the delay of users, however

this increase is more significant when communication RA is overlooked. Since while

the average amount of resources available for users remains almost the same since the

number of users in each cell is constant, more cells means intensified interference in

the network. To deal with the negative effect of this intensified interference, precise

RAN RA becomes imperative.

The convergence of my proposed algorithm and the importance of slice resource

management is numerically demonstrated in Fig. 3.4. Here, we observe that: i) my

algorithm converges to its final solution after a few iterations, and ii) careful resource

reservation plays a significant role in the QoS users of each slice achieve.

3.8 Summary

In this chapter, I proposed a framework to minimize the delay in cooperative MEC

network by optimizing both RAN and computation resources and offloading decisions,

using tools from fractional programming, convexification of rate function, and ALM.

40

Analyzing the results of this optimization problem provide deeper insights to service

providers on the adequacy of their leased resources to meet their service quality and

helps them better plan their future investment strategies to whether maintain their

current SLA, invest more on leasing resources, or to modify their subscription policy.

41

Chapter 4

Federated DDQN for Joint Delay and Energy

Minimization in IoT networks

Massive connectivity is among one of the most challenging requirements of Internet-

of-Things (IoT) networks which necessitates efficient, scalable, and low-complexity

network resource management. Furthermore, due to limited computation and battery

capacity of the IoT devices, it is often impossible for them to process their resource-

intensive tasks within a predefined deadline. In the sequel, mobile cloud computing

(MCC) and MEC enable IoT devices to offload their tasks to the cloud or edge servers

to access their substantial processing capabilities at the expense of having to transmit

the tasks over dynamic wireless channels. Subsequently, to take full advantage of

the MCC and MEC paradigms, it becomes essential to carefully optimize offloading

decisions, communication, and computation resources.

For example, the amount of energy an IoT device need to spend on processing

a given task can be optimized to improve the performance of device and ensure its

tasks’ QoS requirement.

42

4.1 Literature review

Most of the existing research works solved the joint offloading decision, communi-

cation, and computation resource allocation problem leveraging on tools from opti-

mization theory [23, 40]. However, the algorithms were typically non-scalable, time-

consuming, and computationally expensive.

Unlike optimization frameworks, deep reinforcement learning (DRL) enables agents

to learn by interacting with the environment. This unique approach to learning, turns

DRL into an ideal problem-solving tool in dynamic environments. Yet, most DRL

algorithms are centralized and thus suffer from lack of scalability when the number of

devices grow. Also, the computational complexity of finding an optimal policy may

increase exponentially as the state space and action space grow. Furthermore, the

centralized learning requires IoT devices to share their information in order to train

the global model which may violate their privacy and create unnecessary communi-

cation overhead on the already scarce frequency spectrum.

Recently, federated learning (FDL) has emerged as a new paradigm for cooperative

learning, where multiple nodes contribute in training a single global model. The

devices use their local datasets to train and then offload their local models to the

central unit for global aggregation. FDL enhances the cooperation between agents

and scalability of the network resource management algorithms. Furthermore, FDL

does not require local agents to share their data with any external entity, thereby

preserves the privacy of each agent [41].

In [42], the problem of computation resource allocation was addressed considering

an FDL system. However, FDL is only considered to formulate an optimization

problem which is later on solved by using a centralized actor-critic agent and without

43

using FDL in the solution approach.

None of the aforementioned research works applied FDL to enhance the efficacy of

solving a realistic wireless resource allocation problem. Very recently, [43,44] adopted

FDL to facilitate the learning process in DRL, i.e., local DRL models were trained and

then integrated together to cooperatively develop a comprehensive global DRL model.

However, in [43], a cooperative caching scheme was proposed and offloading decisions

were not considered. In [44], computational offloading was considered; however, the

network was modeled as a queuing system, transmit power was modeled as an integer

variable whose maximum value is equal to the maximum length of the energy queue.

Also, in [44], no explicit quality-of-service (QoS) was guaranteed for users’ tasks

and computation resource allocation was overlooked.

4.2 Contributions

In this part of thesis, I propose a federated DRL (FedRL) framework to solve a

multi-objective optimization problem, where I consider minimizing the expected task

completion delay and energy consumption of IoT devices. This is done by opti-

mizing offloading decisions, computation resource, and transmit power allocation.

Since the formulated problem is a mixed-integer non-linear programming program-

ming (MINLP), I first reformulate my problem as a multi-agent DRL problem and

address it using double deep Q-network (DDQN), where the actions are offloading de-

cisions. The immediate cost is calculated through solving either the transmit power

or local computation resource optimization, depending on the offloading decisions

(actions). Then, to enhance the learning quality and speed of DRL, I incorporate

FDL at the end of each episode. FDL enhances the scalability of the proposed DRL

44

framework, creates a context for cooperation between agents, and minimizes their

privacy concerns. Numerical results demonstrate the efficacy of the federated DDQN

framework in terms of learning speed compared to federated deep Q-network (DQN)

and non-federated DDQN algorithms.

4.3 System Model and Assumptions

I consider a network containing one MEC server, one cloud server, andN = {1, ..., N}

IoT devices with limited computation and energy resources. I consider a given time

horizon T which is divided into T time steps. At each time t, device i needs to process

one of the tasks in its queue, defined with the tuple (Li,t, Ci,t, T̂i,t), where Li,t is the

size of the task (in bits), Ci,t denotes the CPU cycle requirement of the task, and T̂i,t

denotes the maximum delay threshold of the task. At any time t, devices can either

execute their task locally or offload it to edge or cloud server.

Let us denote local offloading decision of device i at time t as xi,t, where xi,t = 1

means the task would be performed locally, and xi,t = 0, otherwise. Similarly, I define

MCC and MEC offloading variable of device i by zi,t and yi,t, respectively. If device

i offloads its task to the cloud zi,t = 1 and if it offloads the task to the edge server

yi,t = 1. As a binary offloading decision is considered, I have:

xi,t + yi,t + zi,t = 1. ∀t ∈ T . (4.1)

When device i offloads its task (whether to MEC server or to the cloud), the delay and

energy consumption would depend on the channel condition, the size of the task, and

the power with which the device transmits its task and, in case of local computation

they depend on computation resource utilization. In what follows, I model the delay

45

and energy consumption that an IoT device would experience, given its offloading

decision.

If the device i decides to offload its task, it should first transmit it to the MEC-

enabled base station (BS) through wireless channels. At time step t, the transmission

data rate of this user, denoted by ri,t is calculated as follows:

ri,t = B log2(1 +
pi,thi,t
σ2

), (4.2)

where B and pi,t denote the bandwidth and transmit power of device i at time step

t, respectively. Also, hi,t and σ2 represent the path-gain of device i at time t and the

receiver noise. Thus, the communication delay and energy consumption of device i,

while offloading is given, respectively, as follows:

T comm
i,t =

Li,t
ri,t

, (4.3)

Ecomm
i,t = pi,tT

comm
i,t =

pi,tLi,t

B log2(1 +
pi,thi,t
σ2)

(4.4)

If device i offloads its task to the edge server the computation delay would be T ei,t =

Ci,t

F e , where F e denotes the average computation capacity of edge server. Also, if device

i offloads the task to cloud server, the computation delay would be T ci,t =
Ci,t

F c , where

F c represents the average computation capacity of the cloud server.

From the perspective of IoT device, the energy that is consumed for processing a

task when it is offloaded to either of the servers, is the energy spent on the transfer

of the task. Therefore, both cloud and edge computing energy utilization at step t,

denoted by Ec
i,t and Ee

i,t, would be equal to Ecomm
i,t .

46

If device i chooses to perform its task locally, the local computation delay and

energy consumption would depend on the amount of computation resource allocated

to process the task at time t, which I denote by fLi,t. Thus, the local delay and energy

consumption of the device is modeled as follows:

TLi,t =
Ci,t
fLi,t

, EL
i,t = κi(f

L
i,t)

2. (4.5)

Note that higher resource utilization (transmit power or computation capacity) ,

decreases the task completion delay at the expense of increased energy consumption.

Therefore, this trade-off must be carefully managed through efficient offloading deci-

sion making and precise optimization of fi,t and pi,t in case of local computation and

offloading, respectively.

4.4 Multi-objective Problem Formulation

In this section, I formulate the multi-objective problem of jointly minimizing the

long-term delay and energy consumption of an IoT device in a decentralized manner

over a specified time horizon T . The long-term expected cost (weighted sum of delay

and energy consumption) for each IoT device i is formulated, respectively, as follows:

Ti(pi,fi,xi,yi, zi) = E[lim
t→∞

1

t

t∑
j=0

(
xi,jT

L
i,j+

yi,j(T
e
i,j + T comm

i,j) + zi,j(T
c
i,j + T comm

i,j + Ψ)
)
], (4.6)

47

Ei(pi, fi,xi,yi, zi)

= E[lim
t→∞

1

t

t∑
j=0

(
xi,jE

L
i,j + yi,jE

e
i,j + zi,jE

c
i,j

)
], (4.7)

where pi = [pi,1, pi,2, · · · , pi,t], fi = [fi,1, fi,2, · · · , fi,t], xi = [xi,1, xi,2, · · · , xi,t], yi =

[yi,1, yi,2, · · · , yi,t], and zi = [zi,1, zi,2, · · · , zi,t], represent the vectors of transmit pow-

ers, computation resource allocation, local computing, edge offloading, and cloud

offloading decision of device i, respectively. As cloud server is generally located far

from the IoT devices, the delay of accessing cloud is commonly more than the delay

of offloading to the edge server which is located at the edge of the network. In the

equation (4.6), Ψ denotes the delay of accessing the cloud server, including the time

necessary to transfer the task from BS to the cloud, the possible routing in the path,

and the response delay.

For any given device i at time t, I model my problem as:

min
pi,fi,xi,yi,zi

Ti + λiEi

subject to:

C1 : fLi,t <= Fmax,i, ∀t ∈ T ,

C2 : xi,tE
L
i,t + yi,tE

e
i,t + zi,tE

c
i,t <= Emax,i, ∀t ∈ T ,

C3 : Ti,t <= T̂i,t, ∀t ∈ T ,

C4 : xi,t + yi,t + zi,t = 1, ∀i ∈ N ,∀t ∈ T ,

C5 : xi,t, yi,t, zi,t ∈ {0, 1}, ∀i ∈ N ,∀t ∈ T .

(4.8)

In the above optimization problem, λi is a weighting factor whose value should

48

be carefully selected based on the heterogeneity of resources available at each indi-

vidual IoT device. If device i is more restricted in the energy resource compared to

computation resource, the value of λi should be set to a larger number. Otherwise,

λi should be a small number. Furthermore, constraint C1 indicates the local com-

putation capacity with the maximum threshold Fmax,i. Constraint C2 represents the

restriction on the energy resource of the device and that energy utilization should

not exceed Emax,i. Furthermore, constraints C4 and C5 define the binary offloading

scheme adopted in this problem. It can be proven that both equations (4.6) and

(4.7) are convex with respect to the variables pi,t and fi,t, respectively. However, with

binary offloading variables (xi, yi, and zi) included, (4.8) turns into a MINLP that

cannot be solved in an acceptable time span.

4.5 Proposed Federated DDQN Algorithm

To solve (4.8) at each IoT device, I propose a DDQN algorithm, and solve the problem

in the following two phases:

• Offloading Decision Optimization: Since each IoT device has three options

to process a task (namely local, edge server, or cloud server computing), the number

of possible offloading policies (from the perspective of a centralized controller) at each

given time step would exponentially increase as the number of devices surges in the

system. To address this problem, I apply a multi-agent DDQN framework where each

IoT device would train their local DDQN models using their local data.

• Computing and communication Resource allocation: Given the offload-

ing decision, I optimize computation capacity or transmit power of the devices to

minimize the weighted sum of energy consumption and delay. I use optimization

49

theory to address this part of the problem and then feed the results into the DDQN

framework as the immediate cost function. In this way, I provide the learning agent

with a real sense of the quality of the adopted offloading policy that reflects many

important aspects of the system model (such as limitation of resources in each device

and their QoS demands).

After the DDQN agent is trained through the above mentioned process for one

training round, I apply a federated learning framework where each IoT device will

train their DDQN models, share their models with the centralized controller, and

update their models to the central aggregating unit. This mechanism is detailed in

the flowchart provided in Fig. 4.1.

In what follows, I first focus on developing local models through DDQN algorithm

and then explain how FDL would be deployed.

4.5.1 Double deep Q-network for Offloading Decision-making

In the first step of my algorithm, I model my problem as a multi-agent DDQN prob-

lem. For each device (DRL agent), I have following components:

1. State space: the state space for each agent i, denoted by si, consists of the

following components: the length of the task queue of device i (tasks that are

not yet processed or are not successfully processed, would be kept in this queue)

which is denoted by Li,t, the path gain of the IoT device hi,t, the size of the task

currently being processed Li,t, its CPU cycle requirement, Ci,t, and available re-

sources. Thus, si = {Li,t, hi,t, Li,t, Ci,t, Emax,i, Fmax,i}. If a task is successfully

processed under a given offloading decision policy (its QoS requirement is sat-

isfied), it would be removed from the task queue of the device. Otherwise, it

50

Figure 4.1: The federated reinforcement learning process

will remain at the top of the queue to be processed under another offloading

decision.

2. Action space: The action space of agents, denoted by A, contains possible

offloading decisions, i.e., whether to process the task locally or offload.

3. Cost : (4.8) suggests that the cost of an agent is equal to the weighted summation

of the delay and energy consumption given in the objective function. The value

of this objective function and thus the cost depends on the value of pi,t in case of

offloading and fi,t if local computation is selected. Therefore, to ensure that the

cost function accurately reflects the benefit of a given offloading decision, these

51

variables should be carefully optimized. To this end, when local computation

is selected (xi,t = 1), the cost would be calculated solving the instantaneous

optimization problem below:

min
fi,t

TLi,t + λEL
i,t

subject to: C1, C2, C3.

(4.9)

In case offloading is selected (yi,t = 1 or zi,t = 1), the transmit power would be

optimized by solving the following optimization problem:

min
pi,t

yi,t(T
e
i,t + T comm

i,t + λEcomm
i,t)

+ zi,t(T
c
i,t + T comm

i,t + Ψ + λEcomm
i,t)

subject to: C2, C3.

(4.10)

The design of state and cost function has a significant impact on the success of

DDQN in finding the optimal offloading policy, π∗. By using a multi-agent approach,

I am in fact limiting the state and action space and focus on each device separately.

Also, by modeling the cost function as an optimization problem not only can we

optimize the local resource utilization and enforce system constraints, but also we

can provide the agent with an accurate estimation of the quality of an offloading

decision. Note that it can be easily proved that both (4.9) and (4.10) are convex

single variable optimization problems that can be solved using standard softwares.

Let us denote the immediate cost of each device i obtained from the solution of

the above mentioned optimization process as ui(s, a). Using Bellman equation, the

52

action-state value is:

Qi(s, a) = ui(s, a) + γ
∑
s′∈S

Pss′(a) max
a′∈A

Qi(s
′, a′), (4.11)

where S, Pss′(a), and γ are the set of states, the transition probability function, and

the discount factor, respectively. To overcome the need for having a full model of

environment, calculating the transition probability function, and to acquiring a more

stable learning process, DDQN is employed in this work. Each agent i has two neural

networks working alongside each other, one called online network with parameters

θonline
i and the other called target network with parameters θtarget

i . At each training

iteration the target value for training the online network in device i is calculated as:

Li = ui(s, a) + γQi(s
′, arg max

a′∈A
Qi(s

′, a′; θonline
i), θtarget

i) (4.12)

While θonline
i is updated at every iteration, the frequency of change in θtarget

i is typically

much lower and only once in every fupdate rounds, θtarget
i would be set equal to θonline

i .

As discussed before, training a DRL agent in a centralized manner can lead to

critical issues related to scalability, agents’ privacy, and additional communication

overheads. On the other hand, training a DRL agent in a distributed manner can

impact the overall performance gains (e.g., an agent might consume a longer time to

train its model). As such, I consider FDL to combine the benefits of both centralized

and distributed learning. FDL enables each agent to trains its own local model, using

its own local data. Then these local models are sent to a central aggregation unit to

be combined together. This process continues until a criterion is met.

53

4.5.2 Federated DRL Approach

The steps to train the FedRL agents are presented in the following:

4.5.2.1 Device selection strategy

At the beginning of each iteration of FDL (after each episode of DRL), a set of IoT

agents are selected to participate in the FDL process. Let us consider that of all N

devices in the network, only a small subset, denoted by I = {1, ..., I} is selected to

contribute in FDL process. In this work, the device selection is done based on the

following criterion:

arg max
i∈N

Var(
diPmax,i

Fmax,i

), (4.13)

where di represents the distance of device from BS and the function Var stands

for variance. This criterion helps in identifying devices whose experiences are more

heterogeneous and thus can contribute more in the the learning process.

4.5.2.2 Training local models

As explained previously , all IoT devices use DDQN to train their local models. After

this local training is finished (no more unprocessed task remains in the queue), the

weights of online network, θonline
i , is extracted in each agent and is then sent to the

central aggregating unit.

4.5.2.3 Model aggregation

When central unit receives the models of participating IoT devices, it would aggregate

the models which results in a single global model that would be then transmitted to

all agents. For the purpose of aggregation, I utilize FedAvg [45], and perform model

54

aggregation as:

θglobal =

∑
i∈I θ

online
i

|I|
. (4.14)

This global model, which has integrated the experiences of all devices, is then

transmitted back to IoT devices and the three steps above would be repeated. Note

that the convergence of FedAvg even on Non-iid datasets is proven [46]). The details

of my proposed framework is provided in Algorithm 2 as well as the flowchart given

in Fig. 4.1.

Algorithm 2 Proposed federated DDQN algorithm

1: Initialize the global model θglobal, and set maximum FDL iterations to K.
2: For each agent initialize online and target networks as: θonline

i = θtarget
i = θglobal.

3: While (K ≥ 0):
4: Set θonline

i = θtarget
i = θglobal, ∀i ∈ N ,

5: Select the set of participating devices, I, based on (4.13),
6: For each device i in I do:
7: For each time step t if |Li,t| > 0 do:
8: Interact with environment and calculate the cost using (4.9) or (4.10),
9: Save the experience in replay memory Mi,t.

10: Train the local model on Mi,t,
11: Transmit θonline

i to the central aggregation unit,
12: End For
13: End For
14: update θglobal using (4.14).

4.6 Simulation Results and Discussions

Here, I present my simulation results and extract useful insights related to the per-

formance of my proposed federated DDQN framework in comparison to federated

DDQN and distributed DDQN algorithms. In addition, I investigate the impact of

batch size, network layers, target network update frequency on the convergence of

55

the FDL. In what follows, I first focus on investigating the impact of parameters of

DRL on the learning speed of my proposed algorithm and then the comparison of the

proposed algorithm with benchmarks would be presented.

To simulate my system, I consider a network of 100 IoT devices among which only

20 devices are selected in each round to contribute in the FDL process. Without loss

of generality and for the sake of fair comparison, I assume the maximum computation

capacity and energy consumption limit of the IoT devices are 1 Gbps and 23 dBm,

respectively.

Fig. 4.2 demonstrates the effect of network architecture on the convergence of my

proposed FedRL algorithm. Here I have some shallow networks with up to five layers

and deeper networks that are obtained by stacking multiple layers with [16,32,32]

neurons on each other. I note that by increasing the number of layers, faster model

training can be achieved. The reason behind this observation is that, by exploiting

deeper neural networks, we can better find the patterns in data (here devices’ experi-

ences), which subsequently improves the quality of the local models. Thus, the global

model is trained much faster as its underlying components, local models, are more

accurate.

However, since my algorithm will be executed on IoT devices that often lack

necessary resources to train a deep network, it may be infeasible to implement deeper

neural networks. Therefore, in the next figure, I select a rather simple network

architecture with [30,64,16,32,32] neurons in each layer and instead look for other

parameters that may facilitate the learning process.

The other parameter I focus on in Fig. 4.3, is the batch size. We can observe from

this figure that as the batch size increases the convergence of the proposed FedRL

56

0 50 100 150 200 250 300
Number of Iterations

50

60

70

80

90

100

110

120
Co

st
pe

r U
ser

network layers= [30,64,16,32]
network layers= [30,64,16,32,32]
network layers= [30,64]+3*[16,32,32]
network layers= [30,64]+4*[16,32,32]

Figure 4.2: The impact of neural network architecture on the convergence of the
proposed FedRL algorithm.

algorithm becomes faster. When batch size is equal to 10 and is extremely small it

takes up to 200 iterations to finally converge to a relative global model, whereas in

case batch size is 30, convergence is achieved almost around iteration number 40. By

increasing the size of batches, we are basically training our model using more data

instances. which results in enhancing the quality of local models and faster training

process.

Similar to network architecture and the stated concern regarding the limited com-

putation capacity, memory is another bottleneck in learning process of IoT devices.

Larger batch size means higher memory consumption. If the device is limited both

in CPU and memory capacity, neither very deep neural networks nor increased batch

size can be a proper solution to facilitate deployment of FedRL on IoT devices.

57

0 50 100 150 200 250 300
Number of Iterations

60

70

80

90

100

110

120
Co

st
pe

r U
ser

batch size = 10
batch size = 20
batch size = 30

Figure 4.3: The impact of batch size on the convergence of the proposed FedRL al-
gorithm.

To this end, in Fig. 4.4, I illustrate the effect of one of the parameters of DDQN,

namely frequency of updating target network with online network. We can observe

here that while the effect of this parameter on performance of DDQN algorithm is

well investigated, this parameter is also considerably effective in the performance of

federated DDQNs. Since many of the components in my state space, such as path-

gain, QoS of tasks, and the length of the task queue, are constantly changing, efficient

choice of the frequency of updating target network can stabilize the environment

enough for the agent to track it better and obtain a better solution. This effect on

local models is quite notable on the FDL as well.

In Fig. 4.5, I compare the performance of my proposed federated DDQN approach

with those of federated DQN and simple distributed DDQN without any aggregation.

58

0 50 100 150 200 250 300
Number of Iterations

60

70

80

90

100

110
Co

st
pe

r U
ser

frequency = 15
frequency = 10
frequency = 5

Figure 4.4: The impact of target network update frequency on the convergence of the
proposed FedRL algorithm.

As can be seen, the performance of federated DDQN is superior to federated DQN in

terms of learning speed. As previously explained, the main advantage of DDQN over

DQN is the capability to keep target network stationary, helping with the tractability

of states’ values and subsequently a faster convergence to the correct estimation of

them. The impact of this approach is even more notable when DRL is combined

with FDL, since if the local models are not correctly trained, their errors would be

propagated to other devices’ local model through aggregation. Therefore, aggregation

can in fact negatively effect the result.

The comparison between distributed DDQN and federated DDQN underlines that

the benefits of federated DRL are not limited to its scalability and privacy preser-

vation. The aggregation incorporated in FDL provides IoT devices a great context

59

0 50 100 150 200 250 300
Number of Iterations

65

70

75

80

85

90
Sm

oo
the

d C
ost

 pe
r U

ser
Federated DQN
Federated DDQN
Distributed DDQN

Figure 4.5: Performance of federated DDQN compared to federated DQN and dis-
tributed non-federated DDQN.

to cooperatively train their models and merge their intelligence together while pre-

serving privacy of their information. Exploiting federated learning, at every training

round is almost as if devices’ models are trained with I times more data than their

local information. The significance of this share of knowledge and not data is quite

notable in Fig. 4.5, where as the result of this aggregation step, federated DDQN is

working much better and faster than simple distributed DDQN.

60

4.7 Summary

In this section, I investigated the problem of joint delay and energy minimization in

an IoT network with a three-tier offloading scheme. To solve this problem I com-

bined FDL, DDQN, and optimization theory. Combination of these tools helped us

to achieve a scalable, privacy-preserving, and computationally efficient framework for

joint power and computation resource allocation and offloading decision optimiza-

tion. In simulation results, I compared my work with those of 1) federated DQN

to demonstrate the superiority of DDQN, especially in dynamic environments and

2) with distributed DDQN to signify the impact of aggregation step incorporated in

FDL on the performance of the framework. As the proposed algorithm is compu-

tationally light-weight and energy efficient, it can readily be deployed for offloading

decision making and resource allocation in real-world IoT networks.

61

Chapter 5

Conclusions and Future Directions

In this chapter, first a conclusion of this thesis is provided. Afterwards, I will present

a brief overview of possible future research directions.

5.1 Conclusion

In this thesis, I investigated the problem of offloading decision making and resource

allocation in two different network models.

In the first problem, I jointly optimized partial offloading decision, transmit power,

subchannel, and computation resource allocation, in a two-tier virtually sliced MEC

network. I minimized the weighted sum of the gap between the observed delay at

each slice and its corresponding delay requirement, where weights set the priority of

each slice. I observed that fractional form of the objective function, discrete sub-

channel allocation, considered partial offloading, and the interference incorporated in

the rate function, make the considered problem a complex MINLP. Thus, I decom-

posed the original problem into two sub-problems: (i) offloading decision-making and

(ii) joint computation resource, subchannel, and power allocation. I solved the first

sub-problem optimally and for the second sub-problem, leveraging on novel tools from

62

fractional programming and Augmented Lagrangian method, I proposed an efficient

algorithm whose computational complexity is proved to be polynomial. Using alter-

nating optimization, I solved these two sub-problems iteratively until convergence is

obtained. Simulation results demonstrated the convergence of my proposed algorithm

numerically and its effectiveness compared to existing schemes.

In the second problem, I proposed a federated deep reinforcement learning frame-

work to solve a multi-objective optimization problem, where I considered minimizing

the expected long-term task completion delay and energy consumption of IoT devices.

This was done by optimizing offloading decisions, computation resource allocation,

and transmit power allocation. The formulated problem was a MINLP, which I first

cast it as a multi-agent distributed DRL problem and addressed it using DDQN,

where the actions were offloading decisions. The immediate cost of each agent was

calculated through solving either the transmit power optimization or local computa-

tion resource optimization, based on the selected offloading decisions (actions). Then,

to enhance the learning speed of IoT devices (agents), I incorporated FDL at the end

of each episode. I observed that FDL enhances the scalability of the proposed DRL

framework, creates a context for cooperation between agents, and minimizes their pri-

vacy concerns. Numerical results demonstrated the efficacy of my proposed federated

DDQN framework in terms of learning speed compared to federated DQN and non-

federated DDQN algorithms. Also, I investigated the impact of batch size, network

layers, DDQN target network update frequency on the learning speed of the FDL.

5.2 Potential Future Directions

Some of the possible future directions are listed in what follows.

63

5.2.1 Wireless Connectivity between MEC Servers

As given in Section 3. my system model is based on the presence of wired links

between MEC servers. Such mesh topology can be quite expensive for infrastructure

providers to deploy. By lifting this assumption and allowing BSs to communicate

with each other over wireless channels new opportunities would emerge.

On one hand, using wireless links, infrastructure providers can considerably cut

their expenses, and on the other hand, a new set of challenges would be introduced to

any resource allocation problem in such networks. To clarify, using wireless channels

would necessitate precise control of transmit power between BSs, managing their

interference level, and channel allocation.

This is particularly important considering BSs are far from each other and they are

the intended destination of so many signals, mostly sent by users under their coverage

area. As such, two major challenges need to be dealt with. First, BSs have to transmit

with high transmit power to overcome the long distance between them. This high

transmit power would intensify the interference level on almost all neighboring cells.

Second, regarding the increased interference in the network, devices may be forced to

increase their own transmit power which would shorten their already limited battery

life. Such trade-offs need a thorough investigation.

5.2.2 Delay of Cooperation among MEC Servers

In the system model outlined in Section 3.2, I assumed that the delay of sending a

task from a server with insufficient resources to another one with enough available

computation capacity, is constant. However, there are many factors that can effect

this delay and need to be considered if a precise and more accurate estimation of

64

delay is required. One of such factors is the size of the task. It is evident that

larger tasks require more time to be transferred, therefore, this factor can have a

significant impact on the total service delay of users. This is specifically true, if BSs

communicate over wireless channels. In such system models, transmit power of BSs

and their channel allocation should be controlled carefully while considering the size

of the task they want to transmit.

In light of such delay-prone environment, it is highly possible that the optimal

offloading decision would tend towards local computation as much as possible, and

enable offloading only when 1) the offloading part of the task is small enough that can

be processed by the users’ allocated BS (avoiding hand-off) or 2) when the priority of

the task or the slice it belongs to is high enough that guarantees sufficient available

resources in both RAN and server for immediate transfer and processing.

5.2.3 Federated Actor-Critic Method

One of the methods to improve the resource allocation algorithm proposed in Sec-

tion 4 by considering the learning for computation resource allocation in servers and

use actor-critic networks to address this problem. Actor-critic method solves rein-

forcement learning problems by updating a parameterized policy, which is commonly

known as an actor in a direction that maximizes an estimate of the expected reward

known as a critic. This method works well with mixed continuous and discrete ac-

tion spaces. Assuming that computation capacity of servers are accurately modeled

as continuous variables and offloading decisions are binary, we can effectively use

actor-critic networks to address the aforementioned problem.

65

5.2.4 Federated DDQN in Sliced Networks

In the first problem investigated in this thesis (introduced in Section 3), the benefits of

sliced virtual networks and their impact on reducing expenses and providing resource

isolation between service providers was extensively explained. Later on, in Section 4,

I talked about Federated DDQN, and how it helps us to obtain a scalable, privacy-

preserving, and cooperative resource allocation framework that fits well with the needs

of dynamic IoT networks.

In fact, these two sections effectively point toward the fact that federated DDQN

is a very efficient approach to address the resource allocation problems in sliced net-

works. In such networks, service providers can act as agents, deciding on how much of

their available resources should be allocated to their subscribers as to maximize their

cumulative reward. Such problem formulation can result in a cooperative solution

for the precise control of resource utilization in slices and allows us to consider the

fluctuation of networks’ data load over periods of time.

The merits of such method would become even more clear if we consider the fact

that service providers are businesses and as such would most probably be unwilling to

share their corporal data with any external entity. subsequently, federated learning

that refrains from asking agents to share their data with any other entity in the

network, would turn into a very attractive problem-solving tool in such networks.

66

Bibliography

[1] N. Hassan, M. T. Hossan, and H. Tabassum, “User association in coexisting RF

and TeraHertz networks in 6G,” IEEE Canadian Conference of Electrical and

Computer Engineering, 2020.

[2] E. Hossain, M. Rasti, H. Tabassum, and A. Abdelnasser, “Evolution toward 5G

multi-tier cellular wireless networks: An interference management perspective,”

IEEE Wireless Commun., vol. 21, no. 3, pp. 118–127, 2014.

[3] G. Wikström, J. Peisa, P. Rugeland, N. Johansson, S. Parkvall, M. Girnyk,

G. Mildh, and I. L. Da Silva, “Challenges and technologies for 6G,” in 2nd 6G

Wireless Summit (6G Summit), 2020, pp. 1–5.

[4] S. Zarandi, A. Khalili, M. Rasti, and H. Tabassum, “Multi-objective energy

efficient resource allocation and user association for in-band full duplex small-

cells,” IEEE Trans. on Green Commun. and Networking, 2020.

[5] H. Ibrahim, H. Tabassum, and U. T. Nguyen, “Meta distribution of SIR in dual-

hop internet-of-things (IoT) networks,” in IEEE Intl. Conference on Commun.

(ICC), 2019, pp. 1–7.

67

[6] J. Sayehvand and H. Tabassum, “Interference and coverage analysis in coexisting

RF and dense terahertz wireless networks,” IEEE Wireless Commun. Letters,

2020.

[7] S. D. A. Shah, M. A. Gregory, and S. Li, “Cloud-native network slicing using soft-

ware defined networking based multi-access edge computing: A survey,” IEEE

Access, vol. 9, pp. 10 903–10 924, 2021.

[8] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge

intelligence: The confluence of edge computing and artificial intelligence,” IEEE

Internet of Things Journal, vol. 7, no. 8, pp. 7457–7469, 2020.

[9] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applica-

tions, trends, technologies, and open research problems,” IEEE Network, vol. 34,

no. 3, pp. 134–142, 2020.

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile

edge computing: The communication perspective,” IEEE Commun. Surveys Tu-

torials, vol. 19, no. 4, pp. 2322–2358, Fourthquarter 2017.

[11] L. Zanzi, V. Sciancalepore, A. Garcia-Saavedra, H. D. Schotten, and X. Costa-

Pérez, “Laco: A latency-driven network slicing orchestration in beyond-5G net-

works,” IEEE Trans. on Wireless Commun., vol. 20, no. 1, pp. 667–682, 2021.

[12] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, and Y. Zhang, “Mobile

edge cloud system: Architectures, challenges, and approaches,” IEEE Systems

Journal, vol. 12, no. 3, pp. 2495–2508, 2018.

68

[13] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Pérez, “Resource

sharing efficiency in network slicing,” IEEE Trans. on Network and Service Man-

agement, vol. 16, no. 3, pp. 909–923, 2019.

[14] P. Zhao, H. Tian, S. Fan, and A. Paulraj, “Information prediction and dynamic

programming-based RAN slicing for mobile edge computing,” IEEE Wireless

Commun. Letters, vol. 7, no. 4, pp. 614–617, 2018.

[15] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing

and softwarization: A survey on principles, enabling technologies, and solutions,”

IEEE Commun. Surveys Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.

[16] X. Fu, Q. Shen, W. Wang, H. Hou, and X. Gao, “Slice merging/spliting oper-

ations and tenant profit optimization across 5G base stations,” IEEE Access,

vol. 9, pp. 9706–9718, 2021.

[17] A. M. Escolar, J. M. Alcaraz-Calero, P. Salva-Garcia, J. B. Bernabe, and

Q. Wang, “Adaptive network slicing in multi-tenant 5G IoT networks,” IEEE

Access, vol. 9, pp. 14 048–14 069, 2021.

[18] K. I. Ahmed, H. Tabassum, and E. Hossain, “Deep learning for radio resource

allocation in multi-cell networks,” IEEE Network, vol. 33, no. 6, pp. 188–195,

2019.

[19] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine learning:

Survey, multi-level classification, desirable criteria and future directions in com-

munication and networking systems,” IEEE Commun. Surveys Tutorials, pp.

1–1, 2021.

69

[20] F. Sattler, S. Wiedemann, K. R. Müller, and W. Samek, “Robust and

communication-efficient federated learning from Non-i.i.d. data,” IEEE Trans.

on Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3400–3413, 2020.

[21] S. Zhai, X. Jin, L. Wei, H. Luo, and M. Cao, “Dynamic federated learning for

gmec with time-varying wireless link,” IEEE Access, vol. 9, pp. 10 400–10 412,

2021.

[22] Y. Ye, S. Li, F. Liu, Y. Tang, and W. Hu, “Edgefed: Optimized federated

learning based on edge computing,” IEEE Access, vol. 8, pp. 209 191–209 198,

2020.

[23] S. Zarandi and H. Tabassum, “Delay minimization in sliced multi-cell mobile

edge computing (MEC) systems,” IEEE Commun. Letters, pp. 1–1, 2021.

[24] ——, “Federated double deep Q-learning for joint delay and energy minimization

in IoT networks,” IEEE Intl. Conference on Commun. Workshop (ICC’21), 2021.

[25] K. Shen and W. Yu, “Fractional programming for communication systems—part

i: Power control and beamforming,” IEEE Trans. on Signal Processing, vol. 66,

no. 10, pp. 2616–2630, 2018.

[26] W. Dinkelbach, “On nonlinear fractional programming,” Manage. Sci., vol. 133,

no. 7, p. 492–498, 1967.

[27] Y. Huang, T. Tan, N. Wang, Y. Chen, and Y. Li, “Resource allocation for

d2d commun. with a novel distributed q-learning algorithm in heterogeneous

networks,” in 2018 Intl. Conference on Machine Learning and Cybernetics

(ICMLC), vol. 2, 2018, pp. 533–537.

70

[28] P. Zhao, H. Tian, S. Fan, and A. Paulraj, “Information prediction and dynamic

programming-based RAN slicing for mobile edge computing,” IEEE Wireless

Commun. Letters, vol. 7, no. 4, pp. 614–617, 2018.

[29] E. El Haber, T. M. Nguyen, and C. Assi, “Joint optimization of computational

cost and devices energy for task offloading in multi-tier edge-clouds,” IEEE

Trans. on Commun., vol. 67, no. 5, pp. 3407–3421, 2019.

[30] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou, “Cooperative task of-

floading in three-tier mobile computing networks: An ADMM framework,” IEEE

Trans. on Vehicular Technology, vol. 68, no. 3, pp. 2763–2776, 2019.

[31] J. Zhang, W. Xia, F. Yan, and L. Shen, “Joint computation offloading and

resource allocation optimization in heterogeneous networks with mobile edge

computing,” IEEE Access, vol. 6, pp. 19 324–19 337, 2018.

[32] B. Xiang, J. Elias, F. Martignon, and E. Di Nitto, “Joint network slicing and

mobile edge computing in 5G networks,” in IEEE Intl. Conference on Commun.

(ICC), 2019, pp. 1–7.

[33] Y. Xiao and M. Krunz, “Dynamic network slicing for scalable fog computing

systems with energy harvesting,” IEEE Journal on Selected Areas in Commun.,

vol. 36, no. 12, pp. 2640–2654, 2018.

[34] H. Chien, Y. Lin, C. Lai, and C. Wang, “End-to-end slicing with optimized

communication and computing resource allocation in multi-tenant 5G systems,”

IEEE Trans. on Vehicular Tech., vol. 69, no. 2, pp. 2079–2091, 2020.

71

[35] U. Akgül, I. Malanchini, and A. Capone, “Dynamic resource trading in sliced

mobile networks,” IEEE Trans. on Network and Service Management, vol. 16,

no. 1, pp. 220–233, 2019.

[36] J. Feng, Q. Pei, F. R. Yu, X. Chu, J. Du, and L. Zhu, “Dynamic network slicing

and resource allocation in mobile edge computing systems,” IEEE Trans. on

Vehicular Tech., vol. 69, no. 7, pp. 7863–7878, 2020.

[37] K. Shen and W. Yu, “Fractional programming for communication systems—part

i: Power control and beamforming,” IEEE Trans. on Signal Processing, vol. 66,

no. 10, pp. 2616–2630, 2018.

[38] Z. Wang, L. Vandendorpe, M. Ashraf, Y. Mou, and N. Janatian, “Minimization

of sum inverse energy efficiency for multiple base station systems,” in 2020 IEEE

Wireless Commun. and Networking Conference (WCNC), 2020, pp. 1–7.

[39] A. Khalili, S. Akhlaghi, H. Tabassum, and D. W. K. Ng, “Joint user association

and resource allocation in the uplink of heterogeneous networks,” IEEE Wireless

Commun. Letters, vol. 9, no. 6, pp. 804–808, 2020.

[40] A. Khalili, S. Zarandi, and M. Rasti, “Joint resource allocation and offloading

decision in mobile edge computing,” IEEE Commun. Letters, vol. 23, no. 4, pp.

684–687, 2019.

[41] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q. Yang, D. Niy-

ato, and C. Miao, “Federated learning in mobile edge networks: A comprehensive

survey,” IEEE Commun. Surveys Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

72

[42] Y. Zhan, P. Li, and S. Guo, “Experience-driven computational resource alloca-

tion of federated learning by deep reinforcement learning,” in IEEE Intl. Parallel

and Distributed Processing Symposium (IPDPS), 2020, pp. 234–243.

[43] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated deep

reinforcement learning for internet of things with decentralized cooperative edge

caching,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9441–9455, 2020.

[44] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated learning-based

computation offloading optimization in edge computing-supported internet of

things,” IEEE Access, vol. 7, pp. 69 194–69 201, 2019.

[45] D. R. H. B. McMahan, E. Moore and B. A. Y. Arcas, “Federated learning of

deep networks using model averaging,” arXiv:1602.05629, 2016., 2016.

[46] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning for

wireless edge intelligence in IoT,” IEEE Internet of Things Journal, vol. 7, no. 7,

pp. 5986–5994, 2020.

73

