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Abstract

Internet of Things (IoT) software is becoming a critical infrastructure for many do-

mains. In IoT, sensors monitor their environment and transfer readings to cloud, where

Machine Learning (ML) provides insights to decision-makers. In the healthcare do-

main, the IoT software designers have to consider privacy, real-time performance and

cost in addition to ML accuracy. We propose an architecture that decomposes the ML

lifecycle into components for deployment on a two-tier cloud, edge-core. It enables

IoT time-series data to be consumed by ML models on edge-core infrastructure, with

pipeline elements deployed on any tier, dynamically. The architecture feasibility and

ML accuracy are validated with three brain-computer interfaces (BCI) based use-cases.

The contributions are two-fold: first, we propose a novel ML-IoT pipeline software ar-

chitecture that encompasses essential components from data ingestion to runtime use

of ML models; second, we assess the software on cognitive applications and achieve

promising results in comparison to literature.

ii



Acknowledgement

Firstly, I would like to express my gratitude to my supervisor, Professor Marin Litoiu.

Under his guidance, I was able to get involved in fields of Internet of Things, Machine

Learning and Cloud Computing. I could not have accomplished this thesis without

his valuable insights and feedback. Professor Litoiu would constantly provide new

perspectives and insights to my research that were invaluable to my progress in the

Master’s program. I am genuinely appreciative of the assistance of Professor Lauren

Sergio. With her combined knowledge of the field of computational neuroscience, her

vision and expertise were essential for this accomplishment. I am deeply grateful of

the valuable research experience that I gained working under her. In addition, I kindly

thank Dr. Sumona Mukhopadhyay for generously providing a large amount of positive

feedback and constructive criticism to my work. I want to thank Dr. Meaghan Adams

for helping me with the concepts of cognitive neuroscience and for continuously giving

me feedback on my work. I give my thanks to the examination committee members

Professor Hamzeh Khazaei and Professor Manar Jammal for taking out time to be a

part of the examination committee. I would also like to express my gratitude to all

the members I worked with at CERAS labs. I would like to thank York University’s

Human Participants Research Committee for approving all procedures for human par-

ticipation. I would also like to thank the various people to voluntarily participated in

the experiments.

Finally, I want to dedicate this work to my father Mr.Dinesh Chaudhary, my mother

Mrs. Sangeeta Chaudhary, my brother Sujay, my sister Mohita and many of my friends

for supporting me throughout my studies as a graduate student. All of your presence

has brought immeasurable positive energy in my life. Thank you for all the uncondi-

tional love and constant support.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Objectives and Questions . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2: Background and Related Work . . . . . . . . . . . . . 10

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 EEG and Wearable headbands . . . . . . . . . . . . . . . . . 10

2.1.2 Digital Signal Processing . . . . . . . . . . . . . . . . . . . . 11

2.1.2.1 Time-Frequency Analysis . . . . . . . . . . . . . . 11

2.1.2.2 Morlet Wavelet Transform . . . . . . . . . . . . . . 12

2.1.2.3 Spectrograms . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



2.1.5 Muse Headband . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.6 BrDI Application with Cognitive Motor Integration Task . . . 19

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Related Work in Classification of Color Stimuli . . . . . . . . 20

2.2.2 Related Work in Classifying Cognitive Load . . . . . . . . . 21

2.2.3 Related Work in Detecting Performance Sabotage . . . . . . . 23

2.2.4 Related Work in ML-IoT architectures . . . . . . . . . . . . . 26

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3: Architecture and Methodology . . . . . . . . . . . . . 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Architecture for training phase . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Architecture for the Real-time Analysis/Inference Phase . . . . . . . 32

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Data Collection on Edge . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Data Cleaning and Preprocessing . . . . . . . . . . . . . . . 34

3.4.3 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3.1 Time Frequency Analysis using Fast Fourier Trans-

form . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3.2 Statistical fetaures using sliding window . . . . . . 38

3.4.3.3 Feature reduction . . . . . . . . . . . . . . . . . . 40

3.4.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



Chapter 4: Understanding Brain Dynamics for Color Perception using

Wearable EEG headband . . . . . . . . . . . . . . . . . . . . . 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Data cleaning and preprocessing . . . . . . . . . . . . . . . . 47

4.2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3.1 Spectral features . . . . . . . . . . . . . . . . . . 48

4.2.3.2 Pairwise Correlation features . . . . . . . . . . . . 49

4.2.3.3 Statistical Features . . . . . . . . . . . . . . . . . . 50

4.2.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 K Nearest Neighbor (KNN) . . . . . . . . . . . . . . . . . . 53

4.3.2 Logistic Regression (LR) . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Random Forest (RF) . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 Artificial Neural Network (NN) . . . . . . . . . . . . . . . . 55

4.3.5 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . 55

4.3.6 Gradient Boosting (GB) . . . . . . . . . . . . . . . . . . . . 55

4.4 Evaluation Metrics for Multi-class Classification . . . . . . . . . . . 55

4.4.1 Accuracy Score . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 ROC-AUC score . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.3 Matthews Correlation Coefficient . . . . . . . . . . . . . . . 57

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Results without Feature Selection . . . . . . . . . . . . . . . 60

4.5.2 Results with Forward Feature Selection . . . . . . . . . . . . 60

vi



4.5.3 Results with Autoencoders . . . . . . . . . . . . . . . . . . . 61

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 5: A Deep Learning Approach To Classify Cognitive Load Using

Wearable EEG . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Description of Cognitive Tasks . . . . . . . . . . . . . . . . . 68

5.2.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Architecture used for Att-MC-CNN . . . . . . . . . . . . . . 74

5.3.2 Architecture used for Att-MC-BiLSTM . . . . . . . . . . . . 75

5.3.3 Architecture used for Att-MC-CNN-LSTM . . . . . . . . . . 77

5.3.4 Architecture used for Att-MC-CLSTM . . . . . . . . . . . . 77

5.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Evaluation Metrics for binary classification . . . . . . . . . . . . . . 80

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6.1 Training Procedure for Intra-subject Classification . . . . . . 83

5.6.2 Training Procedure for Inter-subject Classification using Trans-

fer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 6: Sabotage detection using Deep Learning models on EEG data

from cognitive-motor integration task . . . . . . . . . . . . . . . . 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vii



6.3 Experimental Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Data Preprocessing and Feature Engineering . . . . . . . . . . . . . . 90

6.5 Deep Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5.1 Architecture used for Att-MC-CNN-LSTM . . . . . . . . . . 92

6.5.2 Transfer Learning for Sabotage Detection . . . . . . . . . . . 93

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 7: Conclusion and Future work . . . . . . . . . . . . . . 100

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Appendix A: Implementation . . . . . . . . . . . . . . . . . . . . 110

viii



List of Tables

4.1 The features obtained from raw data. . . . . . . . . . . . . . . . . . . 50

4.2 Accuracy by using all the features at 200ms time window. . . . . . . 60

4.3 Accuracy by using 10 features by forward selection at 200ms time win-

dow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Accuracy by using 10 features by Autoencoder at 200ms time window 62

4.5 Performance of other methods on EEG classification into color stim-

uli. Our aprroach shows 5-folds average accuracy value for intra-class

classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Performance of DL models on train data for intra-subject classification. 81

5.2 Performance of DL models on test data for intra-subject classification. 83

5.3 Average performance metics of Att-MC-CLSTM with Transfer Learn-

ing for inter-subject classification. . . . . . . . . . . . . . . . . . . . 85

5.4 Comparison with past approaches . . . . . . . . . . . . . . . . . . . 86

6.1 Performance of the model on raw data . . . . . . . . . . . . . . . . . 95

6.2 Performance of the model on spectrograms of raw data. . . . . . . . . 97

6.3 Performance of Att-MC-CNN-LSTM on Inter-subject with Transfer

Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ix



List of Figures

Figure 1 The brain waves present in raw EEG signals. . . . . . . . . . . 11

Figure 2 The 10-20 system of electrode placement for Muse. . . . . . . 19

Figure 3 (a): Task 1 (Simple sliding finger along the same direction); (b):

Task 2, A CMI task. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 4 End-to-End ML pipeline. The pipeline arrangement proposed

by our architecture divides the ML tasks under the following com-

ponents, namely, Data Ingestion, Data Cleaning, Data Preprocessing,

Modelling and Deployment. . . . . . . . . . . . . . . . . . . . . . . 28

Figure 5 Proposed architecture for Model training. The data is sent from

sensors to edge. The data from edge is sent to core where the tasks

like data preprocessing, feature engineering, training and model de-

ployment take place. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 6 Proposed architecture for Real-time Analysis/Inference phase.

The inference phase consists of pretrained models which are saved in

form of workflows. The data is streamed or sent in batch to the core

from the edge to core. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 7 The steps followed for Time-Frequency Transform. The tech-

nique of fast fourier transform was used to get time-frequency repre-

sentation of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



Figure 8 The flowchart for Forward Feature Selection. It gave the top n

best features for a model. . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 9 Structure of an autoencoder. The data in the encoded form or

latent space from the autoencoder was fed to the classifier for classifi-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 10 The architecture used in the methodology to classify raw EEG

data into primary colors. . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 11 The experiment protocol for data acquisition for the color stim-

uli application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 12 The original EEG signal and its Morlet-convolution version us-

ing a wavelet of 30 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 13 Spectrograms of (a) Red, (b) Green, and (c) Blue respectively.

The stimuli for different colors is discriminated in respective spectro-

grams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 14 Visualization of data of Subject 1 for a single trial in 2-D space

using Linear Discriminant Ananlysis . . . . . . . . . . . . . . . . . . 53

Figure 15 Final Autoencoder Architecture used for color stimuli application. 54

Figure 16 Average Accuracy, Average ROC-AUC score and Average MCC

score for different time windows for intra-subject classification. . . . . 58

Figure 17 Average Accuracy, Average ROC-AUC score and Average MCC

score for different time windows for inter-subject classification. . . . . 59

Figure 18 The ROC-AUC curve using our proposed architecture for all the

subjects for color classification. . . . . . . . . . . . . . . . . . . . . . 63

xi



Figure 19 The methodology used in our approach for classifying cognitive

load using EEG data. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 20 A participant performing the experiment (a) Standard Task (b)

CMI task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 21 The average absolute power for different frequency bands for (a)

low cognitive task and (b) high cognitive task. The average absolute

band for gamma and alpha increased in case of high cognitive task

when compared to baseline low cognitive task. The makers M1 and

M2 show the start and end of stimulus respectively. This plot is for a

single subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 22 Spectrograms for High Cognitive and Low Cognitive activities

for Subject 1 for the four channels TP9, AF7, AF8 and TP10. . . . . . 73

Figure 23 (a) Spectral maps for different frequencies for low cognitive

tasks; (b) Spectral maps for different frequencies for high cognitive tasks 76

Figure 24 The training methodology used for transfer learning for inter-

subject classification. The original model is trained with the data from

all subjects except one and the best cross validation weights are saved.

Two additional dense layers are added to the model and the original

layers are frozen; the newly added layers are initialized with the best

cross validation weights and are trained on the data of one remaining

subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 25 (a)The average accuracy of Att-MC-CLSTM during training

phase on training and validation data for intra-subject classification;(b)The

average accuracy of transfer learning on Att-MC-CLSTM during train-

ing phase on training and validation data for inter-subject classification 82

xii



Figure 26 Spectrograms for Sabotage and No Sabotage activities for Sub-

ject 1 for the four channels TP9, AF7, AF8 and TP10 . . . . . . . . . 90

Figure 27 The methodology used in our approach for Sabotage detection. 91

Figure 28 TSNE visualization of data for Sabotage detection. . . . . . . 92

Figure 29 The methodology used for transfer learning for inter-subject

classification for sabotage detection. . . . . . . . . . . . . . . . . . . 94

Figure 30 (a) The average accuracy for different timewindows and over-

lap values for spectrogram data (b) The average accuracy for different

timewindows and overlap values for raw data . . . . . . . . . . . . . 96

Figure 31 Block diagram for the proposed implementation. . . . . . . . . 110

Figure 32 The UI for proposed application. . . . . . . . . . . . . . . . . 112

xiii



Chapter 1

Introduction

IoT is a technological revolution as it connects an enormous amount of heterogeneous

devices that are equipped with control, communication, sensing and actuating capabil-

ities [1]. Thereby, IoT results in an avalanche of data and it is therefore one of the main

contributors to the Big Data paradigm. Innovative applications can be developed by

connecting the IoT devices globally to the Internet, though to obtain economic bene-

fits, the huge amount of generated data must be analyzed [2]. Thus, IoT applications

must be equipped with an intelligent processing system that permits to infer, learn and

extract information from the IoT data [3]. This capacity is provided by machine learn-

ing (ML). The conventional approach for IoT data analytics sends all the data to a

single service, where ML algorithms are applied to extract valuable information for the

end-user applications after cleaning and preprocessing the data. In this work however,

we propose a ML architecture where the workflow resides flexibly in an edge-core ar-

chitecture, and each part of the pipeline works independently. This facilitates pipeline

to be highly maintainable, testable and independently deployable. Thus, each part like

feature engineering and application of model can be invoked separately.
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1.1 Problem and Motivation

Recently, many IoT applications have been actively exploiting ML technologies, which

use Deep Learning (DL) [4] models like deep neural networks to capture and un-

derstand their environments. For instance, Amazon Echo, Google Home and Apple

Homepod can be categorised as IoT applications as they connect the physical and hu-

man world with the digital world, by translating human voice commands using DL.

The training of datasets for ML models must be managed across multiple physical en-

vironments throughout their lifecycle, from ingestion to transformation, exploration,

training and deployment. In a mainstream system design, all of these tasks would run

together in a monolithic manner. This means the same script will extract the data,

clean and prepare it, model it, and deploy it. Since ML models usually consist of far

less code than other software applications, the approach to keep all of the assets in

one place makes sense. However, scaling of this monolith architecture can give rise to

problems related to volume for instance the ingestion and preparation will be repeated

regularly although they are exactly identical. Also the versioning will be difficult, be-

cause changing the configuration will require manual update of all the scripts, which

is time consuming and error-prone. We therefore intend to organize the ML workflow

in a manner that each process can work independently of the rest. In our proposed

method, ML benefits from a holistic architecture with data management that extends

across two tiers edge and core.

A smart data architecture alleviates the exhaustive data housekeeping tasks so that they

can focus on AI applications that deliver business value. This work describes an edge-

core ML architecture for IoT applications. We explore the possibility to divide the ML

pipeline from ingestion to model deployment, into independent and compact units such

that they can be placed on the edge or core. We describe this architecture by applying it

2



to the most relevant usecases based on Brain-Computer Interfaces (BCI) [5] i.e. appli-

cations that integrate computational neuroscience with algorithms to control the envi-

ronment. BCI is often defined as the communication system that acquires brain signals,

monitors and examines them to translate the cerebral activity to certain features, corre-

sponding to user intentions, to control sensing and actuation of devices remotely. The

advancements in sensor technologies have facilitated the growth of wearable headband

devices for development in BCI applications and therefore it is emerging as a novel

alternative for supporting interaction between IoT devices and individuals. The unifi-

cation of BCI and IoT systems can enable interaction from the brain to smart objects

(i.e. sensors) which could allow actuation and sensing to be performed on smart de-

vices through commands sent by people from their controlled brain activity. In terms

of application/implementation, this thesis mainly focuses on the potential of Electroen-

cephalogram (EEG) signals from a portable, wearable and non-invasive device to cap-

ture the brain activity associated to the user intent. The raw incoming data from the

wearable EEG has been cleaned, preprocessed and engineered into meaningful data

which can be fed to a ML pipeline and the results can be used to regulate and operate

devices and other applications through an integrated edge-core IoT framework.

In this study, a flexible machine learning architecture for edge-core IoT applications

has been proposed, using a wearable EEG which can be used for BCI control op-

erations. We have designed an ML-IoT infrastructure that can be used in a variety

of domains, from creating smart and accessible homes for individuals with restricted

motor abilities that can optimize and automate the use of control appliances [6, 7] for

them to applications for baseline testing [8,9], monitoring performance deterioration in

workplaces [10] and applications that involve information personalization and adaptive

intelligence. The raw EEG data, like any other sensor data, is generally not of much

3



use if it is not engineered and processed properly before feeding it into an intelligent

ML algorithm, to find useful results and inferences. Therefore, in current research we

have focused on building a robust preprocessing pipeline that could transform time-

series sensor data into desirable form so that it could be utilized by ML models in the

later phase. The focus has been on three applications that have been designed using

raw sensor data from EEG device for time-series classification. In first application we

designed a multiclass classification model to detect the primary colors, red (R), green

(G), and blue (B), from the features of raw EEG signals. Such application could be

potentially used in scenarios where people with restricted motor ability could switch

on/off appliances by looking at a particular color, control driving of a car by following

certain color sequences e.g. apply brakes when looking at red color or to control robotic

arms. The second application is based on a deep learning-based performance sabotage

detection architecture, that can efficiently detect wilful misperformance in workplace

safety application for companies that monitor performance impairment, like assembly

lines and such, and the insurance industry that is obsessed with ’malingering’. The

third application can be potentially used for monitoring of cognitive load conditions

in e-learning or by clinicians to monitor behavioural performance by classifying EEG

data into high cognitive and low cognitive. All this work has been achieved by using

Interaxon’s Muse 2 which is a wearable headband commercially used for meditation

purpose. The applications have been integrated into a single web application that has

integrated data preprocessing, data engineering and machine learning pipeline for the

three proposed applications.
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1.2 Research Objectives and Questions

The goal of this research is to answer the following research questions (RQ):

1. RQ 1: Can we design robust ML software architecture for IoT applications that

can ensure flexibility, extensibility, and, scalability?

2. RQ 2: Can portable applications using data from a wearable device be used to

test our proposed architecture ?

3. RQ 3: Can the ML architecture be divided into components that work indepen-

dently across edge-core for training and inference ?

The RQs are described in details below:

RQ-1: ML does not only revolve around complex models but involves various

steps that are important for the models to perform well on the data [11]. All these steps

account for a ML workflow that can ingest raw data and transform it into some mean-

ingful feature vector that can be fed to ML models for predictions. These pipelines are

of utmost importance in case of raw IoT sensor data, that, if used in its original form

would not yield good results. This data needs to be cleaned and preprocessed to extract

features before feeding it to the models. We intend to introduce a pipeline that can

work for most of the IoT applications and is flexible, extensible and scalable.

RQ-2: We aim to test the proposed architecture with novel applications that are

based on BCI and that deal with huge amount of sensor data which is noisy and requires

preprocessing before applying ML.

RQ-3: In the big data archetype, the computing is distributed across edge-core

[12]. Edge is a smaller cloud, with limited resources and at close proximity to the IoT

device. Core refers to private or public cloud (such as IBM or AWS cloud), with many

resources. We investigate the possibility to divide the ML pipeline into independent
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components that can work efficiently across the edge-core architecture. This can ensure

robustness and portability of IoT applications.

1.3 Thesis Contributions

The goal of this thesis is to design a framework that can work with wearable sensor

technology by integrating flexible machine learning architecture with IoT applications,

that can operate on two tiers, the edge and the core. The research contributions (RC)

are:

1. RC 1: In this work, we propose a novel architecture that can accept sensor data

from IoT infrastructure, and, systematically address tasks like data ingestion,

data cleaning, preprocessing, modeling and deployment in form of computation

units that are easy to replace such that it is possible to rework them independently

without changing the rest of the system to ensure better implementation. The

focus of the architecture has primarily been on the problem of time-series clas-

sification of raw sensor data. To this end, we provide various data preprocessing

and feature engineering functionalities like; performing imputation of missing

values, normalizing the raw data, performing time-frequency analysis using fast

fourier transform, generating statistical features and performing feature reduc-

tion. Various machine learning algorithms are provided by the architecture that

take care of hyperparameter optimization in order to give the best performing

model to the user. The user can save the entire pipeline from data preprocessing

and engineering to the final machine learning model as a workflow to use it later

for prediction.

2. RC 2: A major contribution of this thesis is three BCI applications. Our re-
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search identifies use-case applications that are a good fit for edge-core deployed

machine learning. We have designed applications that work on brain wave data

and utilize the proposed architecture for various BCI tasks. We have worked

with wearable headband technology to come up with cost effective, portable and

easy-to-use cognitive solutions.

The first application investigates the relationship between the primary colors and

brain stimuli. We propose a multiclass classification model to detect red, green

and blue (RGB) colors from raw brain wave data. The classification results have

shown an improvement of almost 20% from the past studies done in this domain

using wearable devices. This application could potentially be used in an inte-

grated IoT environment where it could be used to control and actuate appliances.

One such application could be, where people with restricted motor ability could

switch on/off appliances by looking at a particular color. The work can also be

expanded in the healthcare field where it could be used to detect color blindness.

3. RC 3: The second application that we have developed, works on the idea of clas-

sifying cognitive load levels using brain wave data while the participants perform

a cognitive motor integration (CMI) task. We have preprocessed and transformed

the data using the architecture proposed in RC 1. We have engineered the raw

data by using the time frequency analysis functionality and fed this represen-

tation to various self attention based multi-channel deep learning models. An

improvement of approximately 9% was observed over past approaches that used

portable headbands. The technique of transfer learning has been used to per-

form classification on unseen brain wave data using pretrained model. To our

best knowledge, transfer learning on EEG data has not been performed earlier

in any cognitive study and it helped us to reuse the existing model in case of
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shortage of data and to reduce the cost incurred by retraining the entire model.

Our methodology can help an individual identify the optimal level of mental

workload and hence enhance one’s learning performance. An early automated

diagnosis of workload can allow monitoring performance demand levels in work

or duty situations so that the employees can perform to their fullest potential.

In an academic setting, a regular assessment of student’s cognitive engagement

can be used to optimize the pace of teaching and enhance the effectiveness of

the learning process and can be potentially used for monitoring of cognitive load

conditions in e-learning.

4. RC 4: The novel problem of sabotage detection from brain wave data has been

studied in the third application. There have been no previous studies that have

focused on this problem, thus we propose a model that can detect human perfor-

mance sabotage from brain wave data. Spectrogram stacks have been generated

using time frequency analysis functionality of the architecture . A deep learning

model has been trained on this data to perform binary classification into sabotage

and no-sabotage classes and promising results were obtained. We have achieved

an overall accuracy of 98.71%, as well as low false-positive rates. Our method

can be applied in clinical applications such as baseline testing, assessing cur-

rent state of injury and recovery tracking as well as industrial applications like

monitoring performance deterioration in workplaces.

5. RC 5: Our final contribution has been a prototype implementation of the archi-

tecture in RC 1 by making the ML pipeline granular in terms of deployment i.e.

deploy the independent components across edge-core. We attempted to auto-

mate the steps of ML training and deployment. It was observed that proposed

distribution of granular tasks over edge-core ensured reusability and provided a
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scope of extention. The solution that we put forward follows the microservices

architecture and fulfils the requirements of the ML pipeline by addressing the

services with API endpoints that are provided by docker containers. Thus, we

suggest a cloud-native end-to-end pipeline for ML workflows. We have designed

the application in a way such that the user can define customized ML workflow

and save them for inference, however for each workflow we do not create sepa-

rate docker containers instead we use the workflow definition over a predefined

container to get the results for online/batch prediction, this makes our proposed

application economical to use.

1.4 Thesis Organization

This research work is structured as follows. Chapter 2 presents the background and

research related to the field. Chapter 3 presents the framework of the architecture

and methodology. Chapter 4, 5 and 6 demonstrate the BCI applications and results

achieved. Finally, Chapter 7 concludes our work and presents the next steps to improve

the architecture based on our research.
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 EEG and Wearable headbands

Electroencephalography (EEG) [13] is a neuroimaging modality for monitoring and

recording electrical activity of the brain. The primary measure of EEG activity used in

psychophysiological research is in the form of signals which are measured in micro-

volts. The raw EEG contains the following main frequencies [14]; Delta with frequency

3Hz or below (Deep dreamless sleep), Theta with frequency 3.5 Hz to 7.5 Hz (Deep

meditation), Alpha with frequency 7.5 Hz to 13 Hz(Calm relaxed yet alert state), Beta

with frequency 14 Hz to 39 Hz (Active, busy thinking) and Gamma with frequency

greater than 40 Hz (Higher mental activity). Each type of brainwave controls a variety

of states of consciousness ranging from sleep to active thinking. Figure1 shows the dif-

ferent waves in EEG. EEG can be obtained in two ways; invasive, with the electrodes

placed along the scalp and non-invasive, from electrodes implanted inside the cranium.
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The portable EEG headbands offer a non-invasive way of recording the brain wave

signals. Wearable EEG devices generally have lower number of electrodes or channels

when compared to traditional medical-grade EEG and are more economical, to name a

few, NeuroSky (1 channel), Muse (4 channels), Emotiv (+ 5 or 14 channels), OpenBCI

(8 – 16 channels), are in popular culture.

Figure 1: The brain waves present in raw EEG signals.

2.1.2 Digital Signal Processing

EEG signals are time-dependent, non-stationary, and most likely multicomponent sig-

nals because of cumulative electrical activity. The EEG from non-invasive source is

very prone to noise and artifacts and therefore are not much useful when used in their

raw form. This data should be subjected to suitable signal processing techniques to

obtaining meaningful signals from them.

2.1.2.1 Time-Frequency Analysis

In signal processing, time–frequency analysis (TFA) consists of techniques that study a

time domain signal in both the time and frequency domains simultaneously. By the use
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of TFA on EEG one can detect the presence of Delta, Theta, Alpha, Beta and Gamma

band signals over all the time points across the signal. TFA basically represents the

power intensity of a particular frequency at a particular point of time in a signal. It can

be performed using various techniques, we have employed Morlet Wavelet Transform

to get the time-frequency representation of the EEG data. For the analysis of data with

respect to time, there are many time domain analyses: autocorrelation analysis, cross-

correlation analysis, stationarity analysis, seasonal adjustment/decomposition analysis,

singular spectrum analysis (principal component analysis for time series), count series

analysis, and many others. For the analysis of data with respect to frequency, there are

many frequency domain analyses: Fourier analysis, wavelet analysis, Laplace trans-

form analysis, and many others. Most frequency domain analyses assume that the time

series is stationary. Time-frequency analysis (TFA) simultaneously analyzes both time

and frequency. TFA is particular useful for time series data that are nonstationary with

respect to time, frequency, or both: time series that have time-varying trends, time-

varying periodic cycles, irregular cycles, and other time-dependent properties.

2.1.2.2 Morlet Wavelet Transform

Complex Morlet wavelets are very widely used in EEG data analysis for time-frequency

decomposition. They have a sinusoidal shape which is weighted by a Gaussian kernel,

and they can therefore capture local oscillatory components in the time series. Unlike

the standard short-time Fourier transform, wavelets have variable resolution in time and

frequency. The frequency resolution is high but the time resolution is low for low fre-

quencies. It’s the opposite for low frequencies. Thus wavelets provide both frequency

and temporal precision.
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2.1.2.3 Spectrograms

A spectrogram is a visual way of representing the signal intensity over time at various

frequencies present in a particular waveform. Spectrograms are matrix like represen-

tations of the data in time-frequency domain where the third dimension represented by

colors.

2.1.3 Machine Learning

Machine Learning (ML) focuses on teaching computers how to learn without the need

to be programmed for specific tasks by training them on some examples or data. In ML,

algorithms can be used for a variety of tasks like classification, clustering, prediction

etc. In our particular case we have used ML for time-series classification. Also, four

common classes are used to group ML algorithms: supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning.

• Supervised learning uses a set of labelled examples to coach an algorithm. La-

belled data implies that each input in the training dataset has a defined output,

which is referred to as the class label value. At the end of training, for each

input point, the trained algorithm predict an output similar to the label value.

Supervised learning can be applied to solve two types of problems: classifica-

tion problems and regression problems. In classification problems, algorithms

are used to provide a class label classifying the input data as part of a category

or group. Regression problems involve predicting a continuous value from each

input data point.

• Unsupervised Learning is a ML technique in which the users do not need to pro-

vide labelled data to the model. Instead, it allows the model to work on its own
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to recognise patterns and hidden information that was previously undetected. It

mainly deals with the data that has no class labels. Unsupervised learning algo-

rithms enable the users to perform more complicated processing tasks compared

to supervised learning.

• Semi-supervised learning trains ML models using datasets that contains both

labelled and unlabelled data. In some cases, labelling all the input data points is

a time consuming and tiresome task because it involves huge volumes of data,

which leads to the use of semi-supervised learning. In semi-supervised learning,

data labels are still needed to validate accuracy of algorithms.

• Reinforcement learning is a method of training the ML models to make a se-

quence of decisions. The agent learns to achieve a goal in an potentially com-

plex environment. The agent employs trial and error method to come up with

a answer to the problem. If the algorithm takes action that moves closer to the

goal, it receives a reward; otherwise, it is receives a punishment. Its goal is to

maximize the total reward.

In our study we have used the supervised learning approch to perform time series

classification task using the following models:

K Nearest Neighbor (KNN) KNN is a non-parametric and lazy learning algorithm.

Non-parametric means there is no assumption for underlying data distribution and

that’s why we tested it in our problem. K is a critical hyperparameter. The Euclidean

distance is often used as the distance metric.

Logistic Regression (LR) It is a classification algorithm used to assign observations

to a discrete set of classes. Some of the examples of classification problems are Online
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transactions Fraud or not Fraud, Email spam or not spam. LR transforms its output

using the logistic sigmoid function as activation function to return a probability value.

Random Forest (RF) The random forest algorithm is an ensemble approach that

uses multiple decision trees and makes a classification decision by voting from all the

trees. The number of estimators is a hyperparameter for RF that is equivalent to number

of trees.

Artificial Neural Network (NN) A neural network consists of neurons, arranged

in single or many layers, which apply some activation function to an input vector to

convert them into some output. Each unit takes an input, applies an activation function

to it, and then passes the output produced on to the next layer. These networks are

referred to as feed-forward beacuse a unit feeds its output to all the units on the next

layer without any feedback to the previous layer. Weights are applied to the signals

passing from one unit to another, and these weights are learned in the training phase to

adapt a neural network to the particular problem.

Support Vector Machine (SVM) SVM or Support Vector Machine is a linear model

for classification and regression problems. It can solve both linear and non-linear prob-

lems and work well for many practical problems. The idea of behind SVM is the

algorithm creates a line or a hyperplane which separates the data into classes. SVMs

can be categorized as hard-margin and soft-margin SVMs.

Gradient Boosting (GB) Gradient boosting is an ensemble learning approach that

produces a prediction model in the form of an ensemble of weak prediction models.

Gradient boosting combines weak learners into a single strong learner.
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2.1.4 Deep Learning

Deep Learning (DL) is a subfield of ML, that is inspired by the structure of the brain and

it uses complex multi-layered neural networks, where the level of abstraction increases

gradually by non-linear transformations of input data. We have employed the following

models in our study.

CNN A CNN [15] is a kind of artificial neural network that uses a system much like

a multilayer perceptron that has been designed for reduced processing requirements. A

classical CNN may contain mainly a convolution layer, pooling layer, fully connected

layer and normalization layer. Recently, CNNs have shown state-of-the-art results on

challenging activity recognition tasks with very less or no data feature engineering, by

instead using feature learning on raw data and that is the reason we use these in our

case. The full CNN framework and formula derivation can be seen in the literature [16].

In a CNN, the convolutional product between the image and the filter is done and a 2D

matrix is obtained where each element is the sum of the elementwise multiplication

of the filter and of the given input in matrix form. Often a bias is also added to the

the result. For simplicity we only provide the formula for convolutional layer, which

works as a filter and is then activated by a non-linear activation function, as follows:

gx,y = f(ΣnH
i=1Σ

nW
j=1Σ

nC
k=1Ki, j,kIx+i−1,y+ j−1,k +b) (2.1)

where gx,y is the corresponding activation,Ki, j,k denotes the i×j×k weight matrix of con-

volution kernel, Ix+i−1,y+ j−1,k indicates the activation of the upper neurons connected

to the neuron (x, y), (nH ,nW ,nC) is the dimension of the input (image)where nH is the

height(64 in our case), nW is the width(64 in our case) and nC is the number of channels
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(4 in our case b is the bias value, and f is a non-linear function.

LSTM LSTM [17] network models are a type of recurrent neural network that are

able to learn and remember over long sequences of input. They are intended for use

with data that is comprised of long sequences of data. They are a good fit for time-series

problem. The model learns to extract features from sequences of observations (RAW

data in our case) and how to map the internal features to different activity types. The

benefit of using LSTMs for time-series sequence classification is that they are directly

able to learn from the raw time series data, and in turn do not require domain experts

to manually engineer input features. The model can learn an internal representation of

the time series and can achieve comparable performance to models fit on a dataset with

engineered features.

A vanilla LSTM [18] block has three gates (input, forget and output), block input, a

single cell, an output activation function, and peephole connections. The output of the

block is recurrently connected back to the block input and all of the gates. The vector

formulas for LSTM layer forward pass are given in [18].

Self-Attention The self-attention [19] mechanism allows the inputs to interact with

each other and find out who they should pay more attention to. The attention layer

aims to learn the important time points from the sensor time series data that aid in

determining the state label. After leveraging both local contextual features and tem-

poral dynamics by fusing CNN layer and LSTM units from the input time series, we

used self-attention layer to learn weight coefficients which were the importance of each

feature in input data samples. The attention score, s, for a sample is then given by:

as = softmax(Vatttanh(Uattht ‘) (2.2)
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s = asht ‘ (2.3)

In the above equations, Uatt ∈R DxE and Vatt ∈ R FxD are weight matrices forming

the attention module, F represents the attention length, D represents the length of the

output and E represents the number of hidden units in the previous layer (LSTM in our

case) and ht ‘ is the encoded input from LSTM. Equation 12 finds the softmax of the

compatibility (similarity) of the input and Equation 13 gives the combination of the

transformed input.

ConvLSTM ConvLSTM [20] is another type of recurrent neural network that has re-

cently become popular for time-series classification problems. In ConvLSTM the ma-

trix multiplication is replaced by convolution operation in the state-to-state and input-

to-state transitions and thus what we get as output from this a ConvLSTM layer is the

transformed data in its original dimension or input dimension which is 4 in our case.

The advantage of ConvLSTM over traditional LSTM is that it captures spatio-temporal

patterns in the data.

2.1.5 Muse Headband

Muse headband is a wearable meditation device. It consists of four channels/electrodes

namely AF7 and TP9 on the left and AF8 and TP10 on the right as we can see in Figure

2. These are named and positioned according to the International 10-20 System. The

sampling rate of Muse is 256Hz.
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Figure 2: The 10-20 system of electrode placement for Muse.

2.1.6 BrDI Application with Cognitive Motor Integration Task

It is a computer-based visuomotor skill assessment task (BrDI™) that includes one

standard and one non-standard conditions where vision and action are decoupled as

shown in Figure 3. This latter condition requires the integration of spatial and cogni-

tive rules, and thus required cognitive-motor integration (CMI). The task requires one

move the index finger of their dominant hand along the touch screen of the tablet to

move a cursor (white dot, 5 mm diameter) from a central location to one of four pe-

ripheral targets (up, down, left, or right relative to center) as quickly and as accurately

as possible. We used the EEG data collected from Muse while participants performed

this task for cognition and sabotage applications.

2.2 Related Work

In recent years, researchers have used wearable headbands to analyze the response of

EEG under different stimuli. K. Johannesen et. al. [21] used SVM to derive useful

EEG features in order to predict working memory performance in schizophrenia and

healthy adults. The authors in [22] used a regression model trained on data gathered

from cognitive tasks (collected from a 6-channel EEG headset ) in order to model men-
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Figure 3: (a): Task 1 (Simple sliding finger along the same direction); (b): Task 2, A
CMI task.

tal workload using EEG features for intelligent systems. In [23, 24] the EEG data has

been used to examine driver’s alertness during driving sessions.

2.2.1 Related Work in Classification of Color Stimuli

Diane Aclo et. al. [25] used a 14 channel EEG device to monitor the effect of color

stimuli on people. They used features like power spectral density and waveform length

for classification using an Artificial Neural network. In [26] feature selection algo-

rithm has been investigated for EEG signal due to RGB colors using screwable gold

EEG electrodes. Arnab Rakshit et. al. [27] proposed the use of a fuzzy space classifier

to discriminate colors from EEG by using a 10 electrode device. In [28], an Emotiv

headset has been used to study separation and classification of EEG response to color

stimuli by using SVM. Zhang et. el. in [29] showed how alpha and beta band powers

are affected by stimuli from RGB colors. All the above classification tasks have been

conducted using complicated EEG devices in contrast to our work. Furthermore, our

proposed method achieves a high accuracy using the Muse headband. Recently, the
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use of portable headband devices have gained popularity due to their ease of use and

accessibility. The authors in [30, 31] have used four channel G.tec’s MOBIlab four

channel portable device in a problem similar to ours. However, their method yielded

a lower accuracy of 58% in comparison to our proposed approach. A headband from

Mindwave Neurosky has also been applied [32] in a task similar to our. However, the

authors achieved a lower accuracy of 53% with their method. Our results have shown

significant improvement. In many studies, Muse has also been used to acquire EEG

signals for various classification tasks. EEG-based excitement detection in immersive

environments has been studied by Jason et. al in [33]. Krigolson et. al. [34]used Muse

headband to Assess Human visual attention by assigning subjects an ”oddball”task

wherein they saw a series of infrequently and frequently appearing circles and were

instructed to count the number of target circles that they saw. However they did not

apply any ML model in their work. In [35] classification task has been performed to

classify recreational and instructional video sessions using Muse. They used spectral

power and connectivity features from raw EEG in their work and got the best perfor-

mance with SVM and Logistic Regression model.

2.2.2 Related Work in Classifying Cognitive Load

Recently, there has been a lot of interest in detecting cognitive effort using EEG data

and many researchers have studied this problem using data from a variety of tasks. In

our work, we have specifically used a CMI task for this purpose. Ronglong Xiong et

al. in [36] used conventional ML models like Decision Tree and Support Vector Ma-

chine (SVM) for the classification of cognitive load using data from Neurocom EEG

128-channel system. They achieved an accuracy of 97.2% using SVM, comparable
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to ours using a 4-channel headband. Cognitive load based on five pre-defined men-

tal tasks: Relax, Letter Composition, Multiplication, Counting, and Rotation has been

studied in [37] and the EEG data has been classified using Extreme Machine Learning

(ELM) approach. The highest accuracy of 86.70% was obtained. Deep recurrent neural

network has been used by Kuanar et al. [38] for cognitive analysis of working memory

load and a classification accuracy of 92.5% has been attained. A variation of CNN with

large-margin softmax loss function has been used in [39] to classify cognitive load sig-

nals from 64 electrodes EEG device and an error rate of 6.43 has been obtained.

In [40] a deep learning methodology using a stacked denoising autoencoder-LSTM-

MLP (Multi-layer perceptron) has been proposed for classification of cognitive load

estimation and an accuracy of 89.51% has been achieved. Authors in [41] used a fuzzy

c-means unsupervised clustering approach for classifying cognitive load. Some studies

have also used Muse headband to study cognitive load. Human stress has been stud-

ied using Muse by Aamir Arsalan et al. in [42] and an accuracy of 92.85% has been

achieved for binary classification using SVM, Naive Bayes, and MLP. In [43] mental

states in 2D and 3D virtual environments have been studies using Muse EEG and an

accuracy of 66.88% and 59.27% in 3D-VR and 2D-screen group respectively has been

achieved using SVM. Richer et al. [44] performed classification using quantiles of the

estimated histogram as threshold for mental state recognition using Muse and achieved

highest sensitivity of 82.0%. A similar study was done by Bird et al. in [45] using

Muse and they achieved an overall accuracy of 87% using Random Forest classifier.

In [46] a CNN has been proposed to classify mental workload using 28 Channel EEG

and an accuracy of 72.7% has been achieved. DL for health informatics has become

quite popular and has been proposed in various previous studies [47, 48]. In our ap-

proach we have used various DL models and used data cubes as input to the models.
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We have also applied the concept of Self-attention to improve the performance of these

models further. The test accuracy that we have achieved (96.1%) is higher than all of

these previous studies. The advantage of using attention based multi-channel models

for this classification problem is that we were able to take into account the data from all

the channels of EEG and yet only focus on the important details using the self-attention

technique and this is what has improved the performance of our model over the past

approaches.

2.2.3 Related Work in Detecting Performance Sabotage

Mild traumatic brain injuries (mTBI) or concussions have become an increasing public

health concern, affecting an estimated 42 million individuals annually [49]. As a brain

injury, concussion affects many aspects of function, including sensory, motor, and cog-

nitive domains, and can thus have major implications for participation in activities of

daily living. Approximately 15-20% of those who sustain concussions, develop chronic

symptoms and functional impairments that persist for months or years [50, 51]. As a

result, individuals affected by concussion are seeking clinical and rehabilitation care in

greater numbers than ever, highlighting the need for such care to reflect evidence based

on objective metrics.

One issue with the current state of injury impact assessment and recovery tracking is

its reliance on self-report. By their nature, symptoms are subjective: there is no way to

measure a headache other than to record what an individual reports. However, there is

evidence that subjective symptoms may resolve before full neurological recovery has

occurred, leading to vulnerability to further injury [52,53]. Deficits have been reported

in a wide range of laboratory and neurophysiological outcome measures in asymp-
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tomatic individuals after concussion [54–59]. This reliance of self-reported symptoms,

therefore, means that diagnosis is less precise, intervention targets are more difficult

to identify, and determining recovery is less clear than would be possible with more

objective measures.

A second issue around assessment and recovery tracking at present is the use of pre-

injury assessments. Objective measures applied to the same person pre-post injury

would be a useful metric to assess injury effects and monitor recovery, since they would

allow for more personalized care. However, because of their unreliability, the utility of

‘baseline measures’ often collected annually for those in athletics or lines of duty have

been called into question [60,61]. A primary contributor to this concern is the potential

for individuals to sabotage their baseline tests (i.e., deliberately perform poorly to erode

or incapacitate the assessment). For a variety of personal or social factors, such as a

desire to return to work, duty, sport, or the pressures of impending litigation, individu-

als may not perform to the best of their ability. Thus, any injury/recovery assessment

approach using baseline measures is only effective if both the pre- and post-injury as-

sessments capture an individual’s best effort. To this end, a way to detect and prevent

sabotage during baseline testing would add considerable reliability to concussion as-

sessment and recovery metrics, improving care and preventing further injury.

Electroencephalography (EEG) has been used in several previous studies examining

objective sabotage detection. [62], used EEG to detect when people were lying by an-

alyzing eye blinks, and were able to detect lies with 95% accuracy. In literature, there

are many studies that have worked on the problem of Lie Detection using EEG data

obtained by Guilty Knowledge Test (GKT), a psychophysiological questioning tech-

nique that can be used to determine whether a person is lying especially in a polygraph

test. [63] acquired data from participants by making them answer GKT and extracted
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various features from the EEG like morphological features and frequency based fea-

tures, and then selectively fed features to Linear Discriminant Analysis algorithm for

classification. They achieved 86% correct detection of total subjects. Deep Belief Net-

work was used for deceit classification by [64] based on GKT and the highest subject

accuracy achieved was 83.4% using 16 channel EEG. A new machine learning method

referred to as F-score based Extreme Learning Machine (ELM) was proposed by [65]

to classify the lying and truth-telling using the EEG signals (from GKT based task)

from a 9 channel medical-grade electrode and they achieved best accuracy of 98.97%

was achieved.

A support vector machine (SVM) was used to detect lie by [66] using a 9 channel EEG

headband to collect data from a stimulus display task, after preprocessing and feature

extraction, SVM gave the best accuracy of 70.83% in this study. [67] classified the

two states i.e. lie and deception based on the EEG patterns while the participants were

responding to ”Pokemon cards” whether the card belongs to them or not. They used

Short-time Fourier transform (STFT) and Multi-layer Perceptron (MLP) for classifica-

tion and achieved the accuracy of around 90%.

However, no studies have examined changes in the time-frequency sepctrograms of

EEG signals in response to sabotaging a cognitive-motor integration task. In our ap-

proach we propose to use spectrograms of the EEG data as the input to our model.

Previous studies examining sabotage detection have all used traditional EEG systems,

collecting data from a minimum of 9 scalp electrodes. An important focus when con-

sidering the application of our work to clinical concussion care [and workplace/clinic

assessment] is the use of technologies that are deployable in clinical environments.

To this end we used a portable EEG headband (Muse2™, InteraXon Inc., Toronto,

Canada), a commercially available and consumer-grade device, to collect our EEG
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data. To our knowledge, this is the first time a portable EEG system has been used to

detect sabotage. Here, we use a Deep Learning (DL) [68] approach to analyze EEG

spectral data. DL is a subfield of Machine Learning (ML) [69], which is in turn a form

of artificial intelligence [70] that focuses on teaching computers how to learn without

the need to be programmed for specific tasks by training them on some examples or

data. Deep learning is a class of machine learning algorithms inspired by the struc-

ture of the brain which uses complex multi-layered neural networks, where the level of

abstraction increases gradually by non-linear transformations of input data. We have

employed a multi-channel attention based CNN-LSTM [16, 17] model to identify sab-

otage and the model has been trained on EEG data from a CMI task. The proposed

model i.e. CNN-LSTM has also been used in the past [71, 72] for classifying time se-

ries data. However in our model is different as it uses Multi-Channel CNN i.e. a CNN

that accepts inputs from all the EEG channels at the same time and Self-Attention [19]

mechanism.

The objective of the present study was to determine if performance sabotage could be

detected using a deep learning analysis of neurophysiological data collected during a

visuomotor skill assessment. We hypothesized that these EEG spectral measures of

neural activity during intentionally poor performance on a CMI task would be signifi-

cantly different from a maximal effort performance.

2.2.4 Related Work in ML-IoT architectures

In [73] Zhao et al. proposed an architecture using ML libraries to support the sharing of

ML models. This platform enabled one to make Docker images of pre-trained models.

Their work also described training and deployment of models using container-based

virtualization.

26



A platform called Rafiki was introduced by Wang et al. in [74] that provided func-

tionality for both training and inference of ML models. However this platform did

not let the user construct ML models, tune hyper-parameters or apply preprocessing

on data. They used docker containers to implement the workflow. Another platform

called Clipper was introduced by Clipper et al. in [75]. In this platform the models

were containerized to facilitate isolation.

In [76] a similar approach has been proposed however they mainly focus on limited

ML models and also deploy separate container for each model and each functionality

which is not needed in most cases and can incur huge costs.

Previous work [73–76] has been main focus has been to provide generic ML plat-

forms, which are more focused on achieving better efficiency during training and de-

ployment of ML models. In this work, we focus more on challenges in handling IoT

data and provide an approach that focuses on the complete pipeline of data ingestion,

preprocessing, data engineering, model training and inference.

2.3 Summary

In this chapter, we introduced the basic concepts and background for our proposed

platform. We then discussed relevant literature related use of ML using EEG data to

study color classification, cognitive load and sabotage detection. We also discussed

about related work in ML-IoT architecture.
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Chapter 3

Architecture and Methodology

Data Ingestion Data Cleaning Data Preprocessing Modeling Model deployment

Figure 4: End-to-End ML pipeline. The pipeline arrangement proposed by our archi-
tecture divides the ML tasks under the following components, namely, Data Ingestion,
Data Cleaning, Data Preprocessing, Modelling and Deployment.

3.1 Introduction

The end-to-end ML [77] pipeline that we have used is shown in Figure 4. This is the tra-

ditional pipeline that is used for ML workflows. Our proposed architecture comprises

of the edge where the raw data is ingested and the core where the data is analysed,

preprocessed and engineered to feed it to the model for training. Often a third tier of

cloud is also added to the above architecture for data archival. The steps involved in

the workflow are often written as a single source code at the time of testing and this

often creates dependencies and restricts the use of cross-platform models, however if
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each step is treated as independent unit then it becomes easier to scale the pipeline,

add new functionalities without affecting the existing ones and also makes it possible

to leverage the models offered by different platforms.

ML workflows in our study are considered for two scenarios; first is the training phase

and the second one is the inference phase. In the former, we use the data stored over

time, generally in form of big data from a data source and we then apply the tasks to

prepare the data for training. A variety of models are tried over the dataset and often

with different hyperparameters. The best performing model offered from the train-

ing is generally used for the realtime inference phase. The inference phase uses the

same preprocessing steps as defined in training phase and sends the data to finalised

ML model for prediction. In IoT applications, these predictions can be used to mon-

itor applications, actuate control devices and plenty of other tasks. In this work, we

have addressed the issue of having a systematic workflow for applications that revolve

around timeseries data that is often noisy, has missing values and is the most demand-

ing in terms of data cleaning. In order to achieve an optimal model one needs to apply

proper data engineering methods on the data to get the best possible results. The data

pipeline followed during the training phase needs to be the same as that for the in-

ference phase. We propose an application that can be used across edge and core to

accomplish ML pipeline for different workflows. In our proposed architecture, each

process takes place in a different module and independently, only the data is shared

across various modules. The different processes in the pipeline follow the microser-

vices architecture and are accessible as restful APIs, which can be deployed as docker

containers. This makes it possible to simply call the service in order to perform a task

and helps in reusability of code. Our methodology allows users to create a ML work-

flow without writing any piece of code and use it on the go for inference on test data.
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Each workflow created is independent of each other and uses the process modules for

tasks like preprocessing and model training in a self-reliant manner. We now explain

the two scenarios and their edge-core architecture in detail.

3.2 Architecture for training phase

Data Lake

Data
Preprocessing

& Cleaning

Train & Test
data

Training

Machine
Learning

Model

Deployment

Core

Feature
Engineering

Process
data

Data collected
from sensors

by edge
devices

Figure 5: Proposed architecture for Model training. The data is sent from sensors to
edge. The data from edge is sent to core where the tasks like data preprocessing, feature
engineering, training and model deployment take place.

The training is generally done offline with the data that is collected over time. This

phase is very important as it is on the basis of the training that the final model for a

problem is decided. The training phase generally has many preprocessing steps after

which the data is fed to various models for the final training. During the model training

there are various hyperparameters that are to be taken care of. Our approach takes

care of every process in the training phase, from data preprocessing to hyperparameter

optimization and finally model training. We put forward an architecture that spreads

across the edge and the core and addresses the different tasks as microservices that

work in an autonomous manner. The advantage of this is that pipeline becomes highly

maintainable, testable and independently deployable. The processes like data cleaning

and preprocessing can be done in a customized manner using our architecture and
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the user can apply models as per their requirements. Our application using the user-

specified pipeline gives a final result. Based on the result the user can save and store

the pipeline for inference or testing purposes. We now discuss in detail our proposed

architecture.

3.2.1 Edge

The edge mainly comprises of data ingestion. The variety of IoT sensors and devices

that generate data from a few gigabytes to a petabytes form the edge in a typical edge-

core pipeline. In our case the edge can be a device with limited resources (laptop or

a mobile device) and the task of the edge is to host the interface for serving data to

our architecture. The edge then sends the request to the processes running on core for

further computation. Computing on edge is another possibility however, it has certain

disadvantages. More storage capacity is required to perform computing on the edge,

however it might not be a good idea to have an extra storage for processes that are not

always running, rather using a core based solution is a better idea that enables storage

on the go. There are often security challenges in edge computing as, if we store or

process data on end-user devices, that we don’t control, it’s difficult to guarantee those

devices are free from vulnerabilities that could be exploited by attackers. It is also

very cost ineffective, and requires advanced infrastructure. However, it’s important to

mention that edge regardless of disadvantages, is needed for its proximity especially

if we’re dealing with mission or data critical applications. The edge in our proposed

solutions serves as a host and a proxy between the microservices and the data source

and provides an easy medium for the user to interact with the various components of

the workflow. It serves the user interface which makes it easy for the user to connect

with APIs which serve the request for the users.
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3.2.2 Core

The core is the most important part of our architecture. It can possibly be in the cloud

with an S3 tier for storage, or on premises with a file store or object store. In our case,

the core is served on the cloud which makes it possible to host the various services in

form of a microservices architecture. The core is supposed to have large computation

power and resources as compared to the edge. It serves the requests which it receives

from the edge devices and performs the tasks accordingly. In this work, the core is

where the docker containers providing various services run and they serve edge with

response of various tasks that have been requested by the user. For the user the core

is like a black box that runs all the processes in the backend. It has primarily the fol-

lowing processes running; data cleaning and preprocessing, feature engineering, model

training and deployment.

3.3 Architecture for the Real-time Analysis/Inference

Phase

In order to get real time result from the proposed pipeline, we use the edge-core archi-

tecture such that, the data can be sent to the core from edge devices and, the compu-

tation and model prediction can be done on core. This data can be collected over time

and can be used to retrain the model in production. The data can either be streamed

to the edge device which acts as a proxy or it can be provided in bulk by the user for

inference. For the inference, our architecture provides the user with capability to save

the final pipeline that was generated in the training phase along with it’s metadata and

this can later be retrieved by the user to do real-time analysis or batch inference. The

inference phase is also similar to the training phase the only difference is that it does
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Figure 6: Proposed architecture for Real-time Analysis/Inference phase. The inference
phase consists of pretrained models which are saved in form of workflows. The data is
streamed or sent in batch to the core from the edge to core.

not require training of the model but it uses the model that was saved during the training

phase for predictions.

3.4 Methodology

We shall now explain the methodology we have followed in each stage of the ML

workflow.

3.4.1 Data Collection on Edge

The sensors or the IoT devices send/stream the data to the edge layer. This data either

collected over some interval (for training) or in real time (for prediction) is sent to the

core where the rest of the processing takes place. In our usecase, we used Open Sound

Protocol (OSC) to stream the data to the core. This data was sent in its raw form to the

subsequent pipeline for further analysis.
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3.4.2 Data Cleaning and Preprocessing

It mainly involves forming a unified data lake by normalizing the data and cleaning it

by various imputation methodologies. Many real-world datasets may contain missing

values for various reasons. They are often encoded as NaNs, blanks or any other place-

holders. Training a model with a dataset that has a lot of missing values can drastically

impact the machine learning model’s quality. In our solution, we provide three main

ways to deal with the missing value.

• Drop the missing values :The easiest way to deal with missing value problem is

to drop the missing values but this leads into a lot of data loss.

• Impute with Mean/Median: The mean/median of non-missing values is calcu-

lated in each column and this value is used to impute the missing value. It is

easy and fast method and works well with datasets that are small however it is

not very accurate.

• Replace with zero : It replaces the missing values with zero. This helps to avoid

the loss of the values that are removed by dropping the missing values.

Another important step for preparing the data is normalization. Since the time-

series IoT data is from different sensors it might vary in its range for each sensor, in

this scenario it becomes important to normalize the missing values. The main goal of

normalization is to vary the values of numeric columns within the dataset to a typical

scale, without distorting differences within the ranges of values. For ML model, every

dataset doesn’t require to undergo normalization. It’s required only when features have

different ranges. There are mainly two types of normalization techniques and we offer

them in our architecture, namely Standard scalar and Min-max normalization.

• Standard Scalar normalization (Z-score normalization): It standardizes features
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by removing the mean and scaling to unit variance. The standard scaled value

for x is given by:

z =
(x− x̄)

s
(3.1)

where x̄ is the mean of the samples and s is the standard deviation of the samples.

• Min-max normalization: The data is scaled to a fixed range, usually 0 to 1, using

this approach. In contrast to standardization, the price of getting this bounded

range is that we’ll have smaller standard deviations, which might suppress the

effect of outliers. Thus min-max Scalar is sensitive to outliers and is given by

the formula:

xnorm =
x− xmin

xmax− xmin
(3.2)

3.4.3 Feature Engineering

ML fits mathematical models to data so as to derive insights or make predictions. These

models take features as input. A feature could be a numeric representation of a facet

of data. Features sit between data and models within the machine learning pipeline.

Feature engineering is that the act of extracting features from information, and remod-

eling them into formats that’s suitable for the ML model. It’s a vital step within the

pipeline [78], because the proper features can ease the issue of modelling, and thus en-

able the pipeline to output results of upper quality. The process of feature engineering

is generally very important when the models being used are the traditional ML mod-

els, however in case of DL model one can skip the overhead of feature engineering

but the data needed to train a DL model is huge so a potential bottleneck comes in

there. Our solution offers a variety of feature engineering techniques to the users. The

users just have to specify a few parameters and can easily apply the feature engineering
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techniques. Feature engineering encompasses techniques like feature transformation/-

generation and feature selection and reduction. We offer a variety of these techniques

in our architecture which are mainly aimed for timeseries classification and we shall

discuss some of them now.

3.4.3.1 Time Frequency Analysis using Fast Fourier Transform

Many organizations have to analyze large numbers of time series that have frequency-

varying or time-varying properties (or both). The time-varying properties can include

trends that vary in time, and the frequency-varying properties can include periodic cy-

cles that are time-varying. Time-frequency analysis can simultaneously analyze both

time and frequency; it is particularly useful for monitoring time series that contain sev-

eral signals which differ in frequency [79]. These signals are commonplace in data

that are associated with the Internet of Things (IoT). This is a very crucial part of the

pipeline and we applied various techniques to process the data. For our proposed ap-

plications we used Continuous wavelet transform (CWT) to convert the raw data into

time-frequency domain. We used a Morlet wavelet to perform the CWT. A Morlet

wavelet was obtained by the convolution of a Gaussian with a sine wave and is de-

scribed by the following equation.

Ψσ (t) = cσ π
− 1

4 e−
1
2 t2

(eiσt −κσ ) (3.3)

where κσ = e−
1
2 σ2

, σ is duration of the wavelet, and the normalisation constant cσ is:

cσ =
(

1+ e−σ2 −2e−
3
4 σ2
)− 1

2
(3.4)
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The Morlet wavelet helped to reduce edge artifacts and noise from the data. It also

helped to obtain a balance in temporal precision and frequency precision. The tech-

nique of Fast Fourier Transform (FFT) has been used to convert the data into time-

frequency domain. We first performed FFT on the raw data to convert it into frequency

domain as shown in Equation 3.5.

x̂(ω) =
∫ +∞

−∞

x(t)e−iωtdt (3.5)

where x(t) is the time series signal and then we performed FFT on the Morlet wavelet

(the wavelet was formed from the frequency of interest) following Equation 3.6.

Ψ̂σ (ω) = cσ π
− 1

4

(
e−

1
2 (σ−ω)2 −κσ e−

1
2 ω2
)

(3.6)

After we got the two signals in frequency domain we convolved them by point-wise

multiplication (the sampling rate of the signal and the Morlet wavelet must be the same

in order to perform convolution). The data was then converted back to time domain

using inverse fourier transform using Equation 3.7.

Cw=
1

2π

∫ +∞

−∞

x̂(ω)Ψ̂σ (ω)dω (3.7)

The power of this signal was then calculated by finding the magnitude of the complex

signal and then squaring it to get the absolute power component of the signal. In

Algorithm 1 we summarize the procedure we followed to find band power from the

raw data. Figure 7 shows the methodology followed for time-frequency transform.
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Algorithm 1: How to extract band powers from Raw data from Morlet
wavelet convolution

Input: Raw data
Output: Band power in form of spectrogram
1. Initialize the FFT parameters i.e. the minimum and maximum frequency,

the time period of the wavelet which is equal to the sampling rate of the
signal, the result matrix.

2. Find the FFT of the Raw data.
3. while Frequency ≤MaxFrequency do

4. Create a complex morlet wavelet from frequency by convolution of sine
wave and gaussian.

5. Find the FFT of the wavelet.
6. Find the convolution of FFT of signal and FFT of wavelet by pointwise

multiplication.
7. Find inverse fourier transform of convoluted signal to convert back to

time domain.
8. Extract the magnitude of the complex signal and square it to get the

absolute power component of the signal and add it to the result matrix.
end

3.4.3.2 Statistical fetaures using sliding window

Finding features like mean, variance, skewness, kurtosis values for a given raw data can

help generate new features for the dataset and this can help in reducing the noise that

may be caused by individual data points due to noise [80]. For a given timewindow t

where n is the number of timepoints, the mean, variance, standard deviation, skewness,

kurtosis can be calculated as:

mean = x =
Σ

T+t
i=T xi

n
(3.8)

variance = σ
2 =

Σ
T+t
i=T xi−

Σ
T+t
i=T xi

n
n−1

(3.9)

standard dev = s =

√
Σ

T+t
i=T xi−

Σ
T+t
i=T xi

n
n−1

(3.10)
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Figure 7: The steps followed for Time-Frequency Transform. The technique of fast
fourier transform was used to get time-frequency representation of the data.

skewness =
(ΣT+t

i=T xi−
Σ

T+t
i=T xi

n )3/n
s3 (3.11)

kurtosis =
(ΣT+t

i=T xi−
Σ

T+t
i=T xi

n )4/n
s4 (3.12)

After preprocessing and feature engineering, we use this module to perform cross

validation training of the ML model after dividing the data into train and test. Our

solution automatically trains, tests, and validates a variety of ML models using the
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features built in feature engineering. Each model is supplied a set of examples, and

tasked with learning a general relationship between the features and the goal. The

models are then evaluated on a unseen set of data that was not initially used during

training, and the best performing model is selected as the winning model. We also use

the technique of Grid search to perform hyperparameter optimization for the model.

Different ML models are tested on the data with different hyperparameters.

3.4.3.3 Feature reduction

Feature reduction, also called dimensionality reduction, is that the process of reducing

the quantity of features during a resource heavy computation without losing important

information. Reducing the quantity of features means the quantity of variables is re-

duced making the computer’s work easier and faster. There are many techniques by

which feature reduction is accomplished. a number of the foremost popular are gen-

eralized discriminant analysis, autoencoders, non-negative matrix factorization, and

principal component analysis. Feature reduction leads to the need for fewer resources

to complete computations. Less computation time and less storage capacity needed

means the computer can do more work. In ML, it removes multicollinearity which

leads to improvement of the model in use. Algorithms that rely on Euclidean distance

as the measure of distance between two points don’t work well. This is referred to as the

curse of dimensionality. Models such as K Nearest Neighbors and Linear Regression

can easily overfit to high dimensional data and hyperparameter tuning is very important

for them. Thus dimensionality reduction can be quite advantageous for any predictive

model. We provide the users with two main techniques forward feature selection and

autoencoders.
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Forward Feature Selection In this method, we start by selecting one feature and

calculating the metric value for each feature on the cross-validation dataset. The feature

offering the best metric value is selected and appended to a list of features. The process

is repeated next time with two features, one selected from the previous iteration and the

other one selected from the set of all features not present in the set of already chosen

features. The metric value(f-measure) is computed for each set of two features and

features offering the best metric value are appended to the list of relevant features. This

process is repeated until we have the desired number of features as shown in Figure 8

Generate
feature subset

Evaluate
feature subset

Stopping
Criterion

Output best
performing

subset

Data set
with original

features

Feature
subset

Selected best
subset

YesNo

Figure 8: The flowchart for Forward Feature Selection. It gave the top n best features
for a model.

Autoencoders Autoencoders are an unsupervised learning technique within which

neural networks are leveraged for representation learning. Particularly, a neural net-

work architecture is designed in a manner that it imposes a bottleneck in the network

which forces a representation of compressed knowledge of the original input. If the

input features are each independent of one another, the compression and reconstruc-

tion would be a very tedious task. However, if some sort of correlations exists in the

data, it can be learned and consequently leveraged when forcing the input through the

network’s bottleneck. A stacked autoencoder as shown in Figure 9 is a neural network

that consists of several layers of autoencoders where output of each hidden layer is
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connected to the input of the next hidden layer.
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Figure 9: Structure of an autoencoder. The data in the encoded form or latent space
from the autoencoder was fed to the classifier for classification.

3.4.4 Modeling

We used a variety of traditional machine learning and deep learning models in this

step. We have applied K Nearest Neighbor (KNN), Logistic Regression (LR), Random

Forest(RF), Artificial Neural Network (NN), Support Vector Machine (SVM) and Gra-

dient Boosting(GB) as well as deep learning models like convolutional neural networks

(CNN), long short term memory (LSTM) and their variants like CNN-LSTM. We pro-

vide the best performing models for the final deployment. For deploying a workflow

the user has to save the workflow. For a workflow, the best performing model and its

parameters and the metadata for preprocessing are saved in pickle, h5 and JSON for-

mat.
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3.5 Summary

In this chapter, we discussed in detail about the architecture. We explained the imple-

mentation of the proposed approach for training and prediction phase. The methodol-

ogy was then explained in subsequent sections. In the next chapters we discuss in detail

about each IoT application that we have implemented in this work. The applications

that we have worked on provide a generic usecase which can be replicated and gener-

alized on similar application or application that deal with timeseries data like human

activity recognition, price/yield forecasting, anomaly detection in signals and others.
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Chapter 4

Understanding Brain Dynamics

for Color Perception using

Wearable EEG headband

4.1 Introduction

The perception of color is an important cognitive feature of the human brain. The va-

riety of colors that impinge upon the human eye can trigger changes in brain activity

which can be captured using electroencephalography (EEG). In this work, we have de-

signed a multiclass classification model to detect the primary colors from the features of

raw EEG signals. In contrast to previous research, our method employs spectral power

features, statistical features as well as correlation features from the signal band power

obtained from continuous Morlet wavelet transform instead of raw EEG, for the clas-

sification task. We have applied dimensionality reduction techniques such as Forward
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Feature Selection and Stacked Autoencoders to reduce the dimension of data eventually

increasing the model’s efficiency. Our proposed methodology using Forward Selection

and Random Forest Classifier gave the best overall accuracy of 80.6% for intra-subject

classification. Our approach shows promise in developing techniques for cognitive

tasks using color cues such as controlling Internet of Thing (IoT) devices by looking at

primary colors for individuals with restricted motor abilities. We mainly focused on Al-

pha and Beta frequency bands, as these are most likely to be stimulated when a person

is alert, attentive, or concentrating and not performing a high cognitive activity. We

employed various linear and non-linear Machine Learning (ML) algorithms namely,

K Nearest Neighbors, Support Vector Machine (SVM), Logistic Regression, Random

Forest, models like Artificial Neural Networks, and boosting approaches like Gradient

Boosting, to perform the three-class classification task. We investigated the classifi-

cation performance of ML algorithms both on a single person’s data (intra-subject) as

well as on combining the data from different people (inter-subject). We also applied

dimensionality reduction techniques like forward feature selection and stacked autoen-

coders to increase the performance of the architecture. Our approach shows promise

in developing techniques for cognitive tasks using color cues such as controlling IoT

devices by looking at primary colors for individuals with restricted motor abilities. The

possible research questions we seek to answer using this application are:

1. Is it possible to distinguish EEG signals from a four-channel wearable head-

band, produced by RGB color exposure, by training ML models on features that

account for statistical, spectral and correlation properties of EEG?

2. Can feature reduction techniques like Forward-Feature Selection(supervised) and

Autoencoders (unsupervised) make the ML algorithms for EEG classification

more efficient?
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3. Does the performance of ML algorithms differ for intersubject and intra-subject

classification?

4.2 Proposed Methodology

This work has been accomplished in the following five phases: data acquisition, data

cleaning and preprocessing, feature extraction, feature selection, and classification of

data into red, green, and blue which is shown in Figure 10.
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Figure 10: The architecture used in the methodology to classify raw EEG data into
primary colors.
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4.2.1 Data Acquisition

Muse headband consists of four electrodes/channels.There were eight subjects (aged

18-30yrs) who participated in the visual experiment. The experiment was conducted

using the University of Nottingham’s Psychopy 3 toolbox [81]. Three trials each four

minutes long were conducted for each participant at different times. In each trial, a

color from RGB was shown in a random order, twenty times each, for a period of two

seconds each, such that a black color was shown for two seconds between each of the

RGB colors to provide a baseline to the experiment. The experiment was conducted

in a dark room and the subjects were told to do minimum facial movements and eye

blinks.

Black Color
(2s)

Repeat 20 times

Color Stimuli
(2s)

Black Color
(2s)

Black Color
(2s)

Color Stimuli
(2s)

Color Stimuli
(2s)

Jaw Clench

Figure 11: The experiment protocol for data acquisition for the color stimuli applica-
tion.

4.2.2 Data cleaning and preprocessing

The raw EEG data is generally very noisy and it needs to be cleaned and pre-processed

in order to remove artifacts from it. In our methodology we cleaned the data in two

steps. Firstly we analyzed the data using Matlab’s EEG lab software [82] and labeled

any visible unwanted spikes and noise manually from the data. Secondly, we divided

the data into small time windows of 50 ms and computed the variance of data in each

window, if it was more than an selected threshold then the time window was flagged.

We also examined the individual subject’s data and used the trial that has a minimum

number of jaw clenches and eye blinks for further experimentation. We then passed
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this data to the proposed web application for further preprocessing.

4.2.3 Feature Extraction

Feature extraction is a very vital part of our problem. The use of raw EEG data did

not give good results in our experiment and so we used Time-Frequency analysis to

find frequency band coefficients that were most relevant for our problem i.e. Alpha

coefficients(8- 12Hz) and Beta coefficients(13-30Hz). In past works, [35, 83] Dis-

crete wavelet transform(DWT) has been used to extract the frequency bands of interest.

However in our case, we are not interested in all the frequency bands, instead, we only

consider alpha and beta bands. The use of DWT would have given us an improper

breakdown of bands with the Alpha band in the range of 8-16Hz and beta in range of

16-32Hz and therefore to avoid this we used Continuous wavelet transform method to

extract the bands of interest.

The mother wavelet that we used is the Morlet wavelet. The morlet wavelet has a

peak in the center after which it tapers to the edges. The complex Morlet wavelet can

be obtained by the convolution of a Gaussian with a sine wave. We now explain the

features that we extracted from the time-frequency spectrograms:

4.2.3.1 Spectral features

These features were calculated by taking into account the average power of each band,

the variance in the power of each band, and the hemispherical difference in each band

over a time window for each of the four electrodes. Thus we got 18 features(8 average

power coefficients for each channel, 8 variance power coefficient for each channel,

and 2 hemispheric difference coefficients) for each sample that was formed by a single

time window. This method was similar to the one followed in [35]. This set of spectral
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Figure 12: The original EEG signal and its Morlet-convolution version using a wavelet
of 30 Hz.

features are the most commonly used feature in many EEG related studies as they allow

the model to evaluate any potential changes in the absolute band power due to stimuli.

4.2.3.2 Pairwise Correlation features

In addition to the spectral features, it is also important to study the correlation among

different frequency bands from different electrodes.We calculated this using a pairwise

correlation in the time windows for each band and each electrode. [35] follows this

method too. We got a total of 28 correlation features using this method from a single

time window. These features were helpful to find cross-region similarity as some of

our data was discontinuous because of artifact removal.
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4.2.3.3 Statistical Features

Features that represent the statistical properties of the signal like Kurtosis, Skewness,

Shannon Entropy and Hjorth Parameters were also extracted.

Kurtosis, Skewness and Shannon Entropy Kurtosis is a measure of outliers in

data. Data with less value of Kurtosis has less number of outliers. The Skewness

measures the asymmetry in data. The entropy is a measure of information in data. We

calculated each of these parameters both for alpha and beta bands, therefore we got 24

features from these properties.

Hjorth Parameters They are indicators of statistical properties used in signal pro-

cessing in the time domain introduced by Bo Hjorth in 1970 [81]. We obtained 16

Hjorth parameters for alpha and beta band for all 4 channels. We calculated two Hjorth

parameters namely, the mobility parameter as in equation 4.1 and complexity parame-

ter as in equation 4.2 on alpha and beta power bands that we obtain from CWT.

Mobility =

√
var dy(t)

dt
vary(t)

(4.1)

Complexity =

√
Mobility dy(t)

dt
Mobility(y(t))

(4.2)

Here y(t) is the alpha or beta band power for a time window. We got a total of

40 statistical features. Figure 14 shows the visualization of features in 2-D space by

applying Linear Discriminant Analysis. It shows that the three classes are almost sep-

arable.
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Table 4.1: The features obtained from raw data.

Features Alpha Beta

Total Features

Avg. Power features TP9, TP10, AF7, AF8 TP9, TP10, AF7, AF8 8

Var. Power features TP9, TP10, AF7, AF8 TP9, TP10, AF7, AF8 8

Hem. diff features Left hem sensors - right hem sensors Left hem sensors - right hem sensors 2

Correlation features

Cross corr of alpha

& beta for all

channels

Cross corr of alpha

& beta for all

channels

28

Kurtosis TP9, TP10, AF7, AF8 TP9, TP10, AF7, AF8 8

Sknewness TP9, TP10, AF7, AF8 TP9, TP10, AF7, AF8 8

Shannon Entropy TP9, TP10, AF7, AF8 TP9, TP10, AF7, AF8 8

Hjorth Parameters TP9, TP10, AF7, AF8 TP9, TP10, AF7, AF8 16

Total Features 86

4.2.4 Feature Selection

The process of feature selection is important because it has many advantages like re-

duced training times, simplified and interpretable models, reduced chances of over-

fitting i.e. lesser variance and less impact of the curse of dimensionality.We perform

feature selection by two different methods. Firstly we used the Forward Feature se-

lection technique which is a supervised approach and secondly, we used Autoencoders

which is an unsupervised approach for feature reduction.

4.3 Classification Task

We applied ML models on the 86 features that we extracted by the procedure explained

in Section 4.2.3. The classification task was done in two folds. We first considered the

data from individual subjects and applied models to that data to perform intra-subject

classification for which we achieved an accuracy of 80.6%. Intra-subject classification
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Figure 13: Spectrograms of (a) Red, (b) Green, and (c) Blue respectively. The stimuli
for different colors is discriminated in respective spectrograms.

helped us to study subject-specific differences of the EEG reactivity patterns. Then we

considered the combined data from all the subjects and performed inter-subject clas-

sification and got an accuracy of 58.1%. The inter-subject case helped us to make a

more generalized model. The classification was done in two ways and their perfor-

mances have been compared. We performed classification using the original feature

set as well as the reduced feature set from forward selection and autoencoders for both

intra-subject and inter-subject. Below we elaborate on the models that we have used

along with the chosen hyperparameters. We tuned the hyperparameters using Grid

Search and Keras tuner.
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Figure 14: Visualization of data of Subject 1 for a single trial in 2-D space using Linear
Discriminant Ananlysis

4.3.1 K Nearest Neighbor (KNN)

KNN is a non-parametric and lazy learning algorithm. Non-parametric means there

is no assumption for underlying data distribution and that’s why we tested it in our

problem. K is a critical hyperparameter that we varied in the range 4 to 8 in our ex-

periment. The Euclidean distance was used as the distance metric. As KNN is a lazy

learner, therefore it is not advisable to use it in our application, we use it for comparison

purposes only.

4.3.2 Logistic Regression (LR)

We used logistic regression model both with ridge and lasso regularization. We varied

the parameter C or penalty term in the range 0.01 to 100. We found out that lasso

regularization gave better results on our data.
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Figure 15: Final Autoencoder Architecture used for color stimuli application.
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4.3.3 Random Forest (RF)

The random forest algorithm is an ensemble approach that uses multiple decision trees

and makes a classification decision by voting from all the trees. The number of estima-

tors in our problem were varied from 10 to 100.

4.3.4 Artificial Neural Network (NN)

We have used ANN with the following architecture: First hidden layer with 300 neu-

rons and second hidden layer with 100 neurons. The activation function used was

sigmoid. L2 regularization had been used to avoid overfitting, with a regularization

rate of 0.0001. The hyperparameter tuning was done using grid search and keras tuner.

4.3.5 Support Vector Machine (SVM)

SVM with RBF kernel has been used in our experiment. The hyperparameters C and

Gamma were varied between 0.001 and 100 and 0.01 and 10 respectively.

4.3.6 Gradient Boosting (GB)

Gradient boosting is an ensemble learning approach that produces a prediction model

in the form of an ensemble of weak prediction models. Gradient boosting combines

weak learners into a single strong learner. In our Gradient boosting model we varied

the hyperparameter estimators from 10 to 100.

4.4 Evaluation Metrics for Multi-class Classification

Many metrics are used to evaluate ML Models like average accuracy, precision, recall,

F-measure, ROC-AUC score, MCC score etc. In our case, we used three metrics for
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performance evaluation of our models- Average Accuracy, Average ROC-AUC score,

and Average Matthews Correlation Coefficient (MCC). Since our data is balanced i.e.

each class has almost equal representation the average accuracy score would have suf-

ficed but we used the other two additional metrics to verify the performance of our

models. We used scikit learn [77] library of python to evaluate the models.

4.4.1 Accuracy Score

The accuracy score in our problem was calculated as :

Average Accuracy Score(y, ŷ) =
1

nsample
Σ

nsamples−1
i=0 1(yi = ŷi) (4.3)

In equation 8, ŷi is the predicted value of the i-th sample and yi is the corresponding

true value and 1(x) is the indicator function. nsamples is the total number of samples.

The accuracy indicates the samples that were correctly classified from all the samples.

4.4.2 ROC-AUC score

ROC-AUC stands for Receiver operator characteristics- Area under the curve, it ba-

sically calculates the area under the receiver operator curve.The ROC curve is cre-

ated by plotting the true positive rate (TPR = T P
T P+FN ) against the false positive rate

(FPR = FP
T N+FP ) at various threshold settings. We find the area under the curve to eval-

uate our model. Since our problem is multiclass therefore we computed the average

AUC of all possible pairwise combinations of classes using equation 5 as suggested

in [82].

Average ROC-AUC Score =
2

c(c−1)
Σ

c
j=1Σ

c
k> j(AUC( j|k)+AUC(k| j)) (4.4)
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where c is the number of classes and AUC( j|k) is the AUC with j as the positive

class and k as the negative class and AUC(k| j) is vice versa. In general, AUC( j|k) 6=

AUC(k| j)) in the multiclass case.

4.4.3 Matthews Correlation Coefficient

The Matthews correlation coefficient [84] is used to evaluate the quality of binary and

multiclass classifications. The MCC is a kind of correlation coefficient value between

-1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random

prediction and -1 an inverse prediction. In the multiclass case, Matthews correlation

coefficient can be defined in terms of a confusion matrix C for K classes. The MCC for

multiclass as suggested in [83] is calculated as follows:

MCC =
c× s−ΣK

k pk× tk√
(s2−ΣK

k p2
k)× (s2−ΣK

k t2
k )

(4.5)

where tk = ΣK
i Cik is the number of times class k truly occurred, pk = ΣK

i Cki is the

number of times class k predicted, c = ΣK
k Ckk is the total number of samples correctly

predicted and s = ΣK
i ΣK

j Ci j the total number of samples.

4.5 Experimental Results

We performed two categories of classification namely, intra-subject and inter-subject

classification. For intra-subject classification, we applied 5-folds cross-validation for

data from five trials of each subject and in the second classification, we applied leave

out one subject cross-validation where we trained the model on seven subjects data

and validated it using a single subject data and we repeated it for all subjects. The

performance metrics that we used to evaluate our model are average cross validation
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Figure 16: Average Accuracy, Average ROC-AUC score and Average MCC score for
different time windows for intra-subject classification.
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Figure 17: Average Accuracy, Average ROC-AUC score and Average MCC score for
different time windows for inter-subject classification.

accuracy, average ROC-AUC score, and average MCC. We report the results on the

complete dataset as well on the reduced dataset from dimensionality reduction tech-

niques. The average accuracy, average AUC score, and average MCC score with dif-

ferent time windows for both intra-subject and inter-subject classification are shown

in Figure 16 and Figure 17 respectively. We got the best results for a time window of

200ms. We considered the time window of 200ms for further experimentation. We dis-

cuss the results in three segments, the results without dimensionality reduction, results

after dimensionality reduction from the forward selection algorithm and results after di-

mensionality reduction from Autoencoder. In the following subsections, we show the

results considering the average metric score of all the subjects, the best metric score

among all subjects and the inter-subject metric score for the three metrics explained

in Section 4 . In all the tables the number in brackets is the standard deviation. We
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have highlighted the highest metrics for each case in all tables. The code for all the

experiments is available online

4.5.1 Results without Feature Selection

We saw that the Random Forest algorithm performed the best and Neural Network and

Gradient Boosting classifier also showed comparable results as shown in Table 4.2.

The highest accuracy for an individual was 70.2% which was reasonably better than the

accuracy of random guess i.e. 33%. The inter-subject accuracy of 56.8% was also very

promising considering the fact that we applied leave one subject out cross-validation

in this case. The results were better for intra-class classification which means that a

customized model could be trained on an individual’s data and then it can be used for

predictions for a particular subject rather than using data from different people which

might also cause privacy issues.

Table 4.2: Accuracy by using all the features at 200ms time window.

Metrics KNN SVM
Logistic

Regression

Random

Forest

Neural

Network

Gradient

Boost

Avg Subject

Accuracy

0.414

(0.056)

0.474

(0.018)

0.506

(0.028)

0.625

(0.018)

0.523

(0.013)

0.608

(0.057)

Best Subject

Accuracy

0.513

(0.021)

0.578

(0.031)

0.600

(0.022)

0.702

(0.000)

0.700

(0.026)

0.669

(0.039)

Inter-subject

Accuracy

0.338

(0.033)

0.377(

0.030)

0.408

(0.030)

0.568

(0.025)

0.490

(0.033)

0.472

(0.040)

4.5.2 Results with Forward Feature Selection

We saw significant improvement in the results with the use of forward feature selection which is

a supervised feature selection technique. The irrelevant and noisy features were removed and the
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feature set was reduced to 10. This methodology helped us to curb the overfitting issue too and

thus the performance on the validation set improved. There was an increase in average accuracy

by nearly 10% and we got the highest accuracy of almost 80.6 which was much better than any

other previous approaches that have been used for EEG classification using RGB colors using

wearable devices. The average subject accuracy of 72% showed that the classifier performed

well for all the subjects. The average accuracy increased by 9.5İn this case, also the results of

intra-subject classification were better than that of inter-subject classification. The inter-subject

classification accuracy improved by 1.3%. Random Forest algorithm had given us the best results

in this case too with Neural network and Gradient Boost with comparable performance. The

results are shown in Table 4.3.

Table 4.3: Accuracy by using 10 features by forward selection at 200ms time window

Metrics KNN SVM
Logistic

Regression

Random

Forest

Neural

Network

Gradient

Boost

Avg Subject

Accuracy

0.492

(0.038)

0.487

(0.045)

0.492

(0.028)

0.720

(0.035)

0.513

(0.036)

0.597

(0.048)

Best Subject

Accuracy

0.615

(0.051)

0.604

(0.028)

0.590

(0.050)

0.806

(0.041)

0.766

(0.039)

0.720

(0.035)

Inter-subject

Accuracy

0.377

(0.013)

0.366

(0.024)

0.388

(0.012)

0.581

(0.032)

0.475

(0.040)

0.411

(0.019)

4.5.3 Results with Autoencoders

We applied autoencoder to observe how an unsupervised feature reduction technique would work

on our data. With the autoencoder, a reduced feature set of 10 was obtained. Using this reduced

feature set as input to the ML models, we achieved a lower average CV accuracy in comparison

to classification using forward feature selection. Therefore autoencoders are not recommended

for our application. We show the results in Table 4.4.

The final proposed model for our application is that of Random Forest classifier with forward

feature selection. In Table 4.4 we compare our results with previous efforts that have been done
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to classify EEG signals on the basis of color stimuli using wearable EEG devices. In Figure 18

we show the ROC curve for the proposed model with AUC-ROC score of individual classes for

all the subjects where 0 represents red, 1 represents green and 2 represents blue.

Table 4.4: Accuracy by using 10 features by Autoencoder at 200ms time window

Metrics KNN SVM Logistic

Regression

Random

Forest

Neural

Network

Gradient

Boost

Avg Subject

Accuracy

0.398

(0.010)

0.362

(0.026)

0.393

(0.022)

0.430

(0.011)

0.409

(0.009)

0.417

(0.000)

Best Subject

Accuracy

0.417

(0.000))

0.406

(0.000)

0.434

(0.000)

0.489

(0.008)

0.473

(0.024)

0.510

(0.000)

Inter-subject

Accuracy

0.358

(0.012)

0.348

(0.027)

0.347

(0.023)

0.397

(0.017)

0.355

(0.028)

0.398

(0.012)

Table 4.5: Performance of other methods on EEG classification into color stimuli. Our
aprroach shows 5-folds average accuracy value for intra-class classification

Algorithms

Best Average

Accuracy

Martin Angelovski et.al. [85]

using 2 channel portable EEG
53%

Sara Åsly et. al. [35, 86]

using 4 channel portable EEG
58%

Kyle Phillips et. al. [87]

using 14 channel emotiv EEG
79.6%

Rakshit et. al. [88]

using 10 channel medical EEG
81.2%

Our approach using 4 channel portable EEG 80.6%
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Figure 18: The ROC-AUC curve using our proposed architecture for all the subjects
for color classification.
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4.6 Summary

We have used EEG signals from a wearable consumer-grade EEG headband to classify the raw

EEG data into three classes of colors, red, green, and blue. In our approach, we focussed mainly

on Alpha and Beta frequencies and discarded all other lower and higher frequencies which oth-

erwise would have added noise to the data. We extracted various spectral, correlation and statis-

tical features from the data and apply ML models to it. Our proposed model of Random Forest

with forward feature selection showed significant improvement when compared to previous ap-

proaches. Our methodology achieved an improvement of almost 20% in the average accuracy of

classification.

Despite having a fewer number of electrodes Muse performed well in the classification task and

gave promising results. The intra-class classification accuracy of 80.6% shows that wearable

devices can be used in integrated IoT frameworks where they can be used in various control

applications. The IoT pipeline for this application must take into account the data preprocessing

and feature extraction in real-time. The time window for our particular application was small to

capture the effect of color stimuli only and avoid unnecessary artifacts in data. This time-window

might vary for different applications. One drawback of Muse that we encountered during exper-

iments was that it cannot be worn for a long time due to comfort issues and also the connection

can become weak sometimes however one can overcome this problem by applying water to the

channels. With the advancement in wearable computing, more comfortable devices are now

available that would not bother one if used for a longer time like the new Muse S headband. The

Muse 2 device is also sensitive to muscle movements but that is not an issue in our application

as we are only interested in a small time window of data when a person focuses on a color. Our

work has thus highlighted the capability of these wearable devices to detect and classify the EEG

signal on the basis of color stimuli and the results are encouraging. This study opens up a new

door to integrate these devices in our day to day lives to use brain signals to control various

devices.
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Chapter 5

A Deep Learning Approach To

Classify Cognitive Load Using

Wearable EEG

5.1 Introduction

In this work, we have proposed a robust method to identify cognitive load using a wearable de-

vice to acquire EEG signals while performing a cognitive motor integration (CMI) task. EEG

signals have been extensively used for cognitive load assessment as they produce clear manifes-

tations of cognitive changes by estimating neural arousal in the brain. We have designed various

self attention based multi-channel deep learning models, classifying the data into high and low

cognitive load classes. Our proposed model has achieved the highest overall cross validation

train accuracy of 98.1% and test accuracy of 96.1% for intra-subject classification using atten-

tion multi-channel ConvLSTM. The technique of transfer learning was used to train the best

performing model for inter-subject classification and we achieved the best cross validation train
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and test accuracy of 87.5% and 86.3% respectively. Our study is the first of its kind to use transfer

learning for inter-subject classification of EEG signals. The results that we have achieved have

shown an improvement of approximately 9%, in terms of accuracy, over the past approaches.

Moreover, the fact that we use a wearable device paired with a tablet-based performance task,

makes our application portable, economical and easy to use.

Cognitive load refers to the total amount of mental activity imposed on working memory [89,90]

in any one instant and it was first proposed by John Sweller in [89] out of a study of problem

solving in the late 1980s. It can be understood as the level of mental engagement which has

a direct impact on the efficacy and quality of learning [91]. Cognitive overload occurs when

a person is mentally overwhelmed and it affects one’s memory and decision-making abilities,

it also deteriorates performance [92]. There are also physiological reactions that can happen,

such as frustration, stress and depression [93]. We have proposed a Deep Learning (DL) based

method to estimate mental workload which can help an individual identify the optimal level of

mental workload and hence enhance one’s learning performance. Our methodology can be used

in workplaces where it can monitor stress levels and minimize overwhelming job tasks, so that

the employees can perform to their fullest potential. In an academic setting, a regular assessment

of student’s cognitive engagement can be used to optimize the pace of teaching and enhance the

effectiveness of the learning process. The approach that we put forward in this work has outper-

formed the existing approaches to identify cognitive load. We performed binary classification

of EEG signals from a low cognitive task and a high cognitive task using DL models. An EEG

detects electrical activity in the brain using small, metal discs (electrodes/channels) attached to

the scalp and forehead. EEG is a non-invasive neuroimaging modality which measures the elec-

trical signal changes in the brain induced by cortical activity. The integration of computational

neuroscience with algorithms to control the environment is often termed as Brain Computer In-

terface (BCI). We propose a BCI application for classifying human cognitive effort which can

be potentially used for monitoring of cognitive load conditions in e-learning or by clinicians to

monitor behavioural performance. We collected data from Muse 2 headband.
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We propose a methodology to perform time-series classification on the EEG data using four

time-series classification models namely, Attention Multi-Channel Convolutional Neural Net-

work(CNN), Attention Multi-Channel Convolutional Neural Network with Long Short Term

Memory (CNN-LSTM), Attention Multi-Channel ConvLSTM and Stacked Bidirectional LSTM.

These models have been used in various previous studies [72, 94], where authors have tried to

classify time series data. We made few variations in these models like making them Multi-

Channel i.e. giving the input from all the (4) channels altogether. The multi-Channel approach

that takes data cubes (multi-channel stacked spectrograms) as the input to the model, allowed to

capture the correlation and causality between different channels and it gave more importance to

spatial and temporal information of EEG data by constructing 2-D spectrograms sequences as

multi-channel input. Similar multi-channel models have been lately used to classify time series

data [95–97]. Using such representation, we avoid the selection of frequency bands or channels

in the process of feature selection. We also applied the concept of Self-attention to improve the

performance of the models.

The approach that we put forward in this work has outperformed the existing approaches to iden-

tify cognitive load. We performed binary classification of EEG signals from a low cognitive task

and a high cognitive task using DL models. An important point to mention is that in this work

we mainly focus on mental load and not on mental stress as both are different concepts [98] and

therefore we do not compare our results with the work dealing with mental stress. We performed

the classification task on intra-subject data i.e. data of a single subject as well as inter-subject

data which was done by combining the data from all the subjects together. The inter-subject

classification was performed using Transfer Learning and it helped us to test the generalizability

of the models. Our contributions are:

• We used the data from a CMI task to classify cognitive load using Deep Learning. The

proposed architecture uses a novel technique to classify data based on Multi-Channel

approach where the input is in form of spectrogram stack from all the channels of Muse

2.
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• We compared state-of-the-art time-series classification DL models on the basis of their

performance on our data and achieved the highest test accuracy of 96.1% for intra-subject

classification using Attention Multi-Channel ConvLSTM. Our model has surpassed the

performance of previously proposed models and hence shows promise in reliable detec-

tion of cognitive load.

• Our proposed model obtained the highest inter-subject test accuracy of 86.3% for inter-

subject classification using the concept of Transfer Learning on Attention Multi-Channel

ConvLSTM. Our study is first of its kind to propose the use of Transfer Learning in EEG

cognitive classification problem.

5.2 Methodology

We applied data processing techniques to get the brain waves frequencies and use them as input

to our DL models. Continuous wavelet transform was used on the raw data to convert it into

time-frequency domain and then we fed this representation of the data to DL models. In our

methodology we first acquired data from a CMI task, then we preprocessed and engineered it

and finally we applied various DL models for classification. The methodology we followed is

shown in Figure 19.

5.2.1 Description of Cognitive Tasks

Participants completed two blocks of a computer-based visuomotor skill assessment task (BrDI™)

that included one standard and one non-standard conditions where vision and action were de-

coupled. This latter condition required the integration of spatial and cognitive rules, and thus

required cognitive-motor integration (CMI). Participants sat at a desk so they could comfortably

reach a 10.1” tablet (Samsung Galaxy Tab A) placed on the desk in front of them. All hand

movements were made on the tablet. The task required participants move the index finger of

their dominant hand along the touch screen of the tablet to move a cursor (white dot, 5 mm di-
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Figure 19: The methodology used in our approach for classifying cognitive load using
EEG data.

ameter) from a central location to one of four peripheral targets (up, down, left, or right relative

to center) as quickly and as accurately as possible. To start a trial, participants guided the cursor

to a solid green 8 mm diameter circle in the center of the screen. After a 2000-ms center hold

time, an open green peripheral 10 mm diameter target was presented, which served as the “Go”

signal for the participant to initiate movement. The participant slid their finger along the touch

screen to move the solid green cursor onto the open green target. Once the cursor reached and

remained in the peripheral target for 500 ms, it disappeared, signaling the end of the trial. The

next trial began with the presentation of the central target after an intertrial interval of 2000 ms.

Peripheral targets on the tablet were located 37.5 mm from the central start target (center-to-

center distance). There were 20 trials for each task, 5 to each target. In the standard condition,

participants looked at the target and used their finger to displace the cursor that was directly un-

der their finger, thereby directly interacting with the targets. In the non-standard CMI condition,

the display was split by a horizontal white line. The participant had to view the targets and the

cursor presented in the top half of the tablet screen. To displace the cursor in this task, however,

they had to slide their finger within the bottom blank half of the tablet screen. Furthermore, the
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cursor feedback was 180◦ rotated from finger motion, such that the participant had to slide one

direction to move the cursor in the opposite direction to reach the target. They were instructed to

view the targets on the upper screen and not their (extrafoveally located) hand in the blank lower

screen. Participants completed two practice trials in each of the four directions before each task

was presented for the first time in order to become familiar with the task requirements.

For each condition, they were instructed to complete the task as quickly and as accurately as

possible. In summary, participants completed the two tasks (standard task, CMI task), for a total

of 40 trials. The entire behavioural task took approximately 6 minutes (2 minutes for each 20-

trial of standard task and 3-4 minutes for each 20-trial of CMI task). Both the standard vs. CMI

task were randomized for each participant.

5.2.2 Data Collection

EEG data from Muse 2 headband was collected from 12 participants (aged 20-50 years) from all

four channels i.e. TP10, TP9, AF7 and AF8. All procedures were approved by York University’s

Human Participants Research Committee, and all participants provided informed consent to par-

ticipate.A participant performing the task can be seen in Figure 20. The EEG data was captured

in microvolts at a frequency of 256 Hz which is the default frequency of device. The participants

were instructed to relax before the start of the experiment and were asked to minimize eye and

muscle movements in order to avoid noise in data. A third party application called Mind Mon-

itor was used to collect raw EEG data from Muse. The application has the capability to detect

potential eye blinks and jaw clenches and this functionality was later used to clean data. It also

provided markers for experiments which facilitated in data collection. The EEG data was col-

lected using Open Sound Control Protocol (OSC) from Mind Monitor application. The default

frequency of 256Hz facilitated to perform Wavelet Analysis to extract band power from the data.

The brain wave data from both tasks has been plotted in Figure 21.

70



(a)

(b)

Figure 20: A participant performing the experiment (a) Standard Task (b) CMI task.
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Absolute Band Powers for
Low Cognitive Task 

Absolute Band Powers for
High Cognitive Task 

(a)

(b)

Figure 21: The average absolute power for different frequency bands for (a) low cogni-
tive task and (b) high cognitive task. The average absolute band for gamma and alpha
increased in case of high cognitive task when compared to baseline low cognitive task.
The makers M1 and M2 show the start and end of stimulus respectively. This plot is
for a single subject.

5.2.3 Data Preprocessing

We performed data cleaning and preprocessing in a manner similar to the one described in Sec-

tion 4.2.2. We then performed time-frequency analysis on the raw data. The conversion of raw

EEG signals to time-frequency domain improved the overall performance of the model. We ob-

tained the spectograms of the signals in time frequency domain from all the four channels, this

helped us to extract temporal and frequency precision of the raw signals. After the signal was
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Figure 22: Spectrograms for High Cognitive and Low Cognitive activities for Subject
1 for the four channels TP9, AF7, AF8 and TP10.73



converted to the desired form we divided the signal into overlapping windows (with overlap of

50%) of size 64. This was done for the signals from all the four channels. We explain in the

results section the reason for taking the time window of 64 with a overlap of 50%. Since the

spectrograms we got were of shape N×64×4, where N is the data size, after dividing the data

into sliding window of 64 with half overlap, we obtained on the dimension M×64×64×4, where

M is the data size after windowing, and this was fed to the DL models. Since we inputted the

signals from all the four channels altogether to our models we call our models Multi-Channel.

In Figure 22 we show the spectrograms from the 4 channels for the two tasks. The spectrograms

for high cognitive task show that the power spectral density (PSD) is of frequencies greater than

30 Hz are higher for high cognitive tasks and lower for low cognitive tasks, thus it shows that the

PSD indicated in spectrogram form clearly shows the distinction in two classes. In Figure 23 we

can see the spectral map of the various frequencies present in the raw data. Figure 23(a) shows

the spectral maps for low cognitive task and Figure 23(b) shows the spectral maps for high cog-

nitive task. In high cognitive spectral maps higher frequencies have more power spectral density

which abide by our experiment and show that high frequencies are more prevalent in complex

mental tasks.

5.3 Deep Learning Models

5.3.1 Architecture used for Att-MC-CNN

This model comprised of CNN layers to which the input of shape (Nx64x64x4), where N is

the data size, was fed followed by a self-attention layer. The first layer was Conv2D layer that

comprised of 32(5x5) filters and it was followed by a maxpool (2x2) and a batch normalization

layer. The output of first CNN was fed to another Conv2D layer of similar specification and

also followed by maxpool and batch normalization layer. The final output from the second CNN

was fed to a self-attention layer. The output was then flattened and passed to dense layers of

dimension with 1000 neurons with relu activation. This final output was passed to a softmax to
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Algorithm 2: Generate 64 by 64 spectrograms from Raw EEG data.
Input: Raw data EEG data
Output: Matrix containing spectrograms of 64 by 64
1. Initialize the FFT parameters i.e. the minimum and maximum

frequency(64), the time period of the wavelet which is equal to the sampling
rate of the signal (256), the result matrix.

2. Find the FFT of the Raw data.
3. while Frequency ≤ 64 do

4. Create a complex morlet wavelet from frequency by convolution of sine
wave and gaussian.

5. Find the FFT of the wavelet.
6. Find the convolution of FFT of signal and FFT of wavelet by pointwise

multiplication.
7. Find inverse fourier transform of convoluted signal to convert back to

time domain.
8. Extract the magnitude of the complex signal and square it to get the

absolute power component of the signal and add it to the result matrix.
end
9. Initialize a new matrix (final result) of size N x 64 x 64 x number of

channels, where N is the total number of datapoints.
10. while i ≤ len(result matrix) do

11. Divide the data in result matrix into overlapping windows of 64 and
store in the matrix initialized in step 9 i.e. final result matrix

end
12.Return the final result matrix.

get the desired prediction.

5.3.2 Architecture used for Att-MC-BiLSTM

Three layers of Bidirectional LSTM in which the signal propagates backward as well as forward

in time. The input of (Nx64x64x4), where N is the data size, shape was fed to first BiLSTM

layer of 20 LSTM units, the output of this was fed to second BiLSTM layer of 20 LSTM units

and finally the output of second layer was fed to final BiLSTM layer of similar configuration.

This output form the stacked unit was passed to self-attention, after this a softmax was applied

to get the classification result.
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Frequency (Hz)
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Figure 23: (a) Spectral maps for different frequencies for low cognitive tasks; (b) Spec-
tral maps for different frequencies for high cognitive tasks
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5.3.3 Architecture used for Att-MC-CNN-LSTM

In this model, we fed the input in form of 64x64 spectrogram-like matrix from all the four

channels so the shape of our input is 64x64x4, where the last dimension denotes the number

of channels. This input was fed to a Conv2D layer with 32(5x5) filters and the output of this

layer was fed to another Conv2D layer with 32(3x3) filters. A dropout layer was then applied

to avoid overfitting. The output of the dropout layer was then maxpooled with pooling filter of

size 2x2 and then flattened. The flattened data was then sent to two LSTM layers, after which

self-attention was applied to the encoded data from LSTM. The last layer was a Dense/fully

connected (FC) layer. The output of FC was passed through softmax to get the prediction i.e.

low-cognitive and high-cognitive. Batch Normalization was applied in training to normalize the

outputs of the layer.

It has been seen that adding convolutional layers to capture local, temporal pattern on top of

LSTM layers can be immensely helpful [35, 85]. The CNN LSTM architecture involves using

CNN layers for feature extraction on input data combined with LSTMs to support sequence

prediction.

5.3.4 Architecture used for Att-MC-CLSTM

In this model we fed the input (Nx64x64x4), where N is the data size, shape to a ConvLSTM2D

layer that comprised of 32(2x2) filter and a relu activation. The output from ConvLSTM2D

was then batch normalized and fed to another similar ConvLSTM2D layer and was also batch

normalized. Self-attention layer was then applied to the data. A dropout layer was then applied

and the data was then flattened and fed to a dense layer of 100 neurons. This data from dense

layer was then passed through a softmax to get the output.
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5.4 Transfer Learning

We used the technique of transfer learning to perform inter-subject classification. Transfer Learn-

ing is a machine learning method in which the model trained on one task can be reused for an-

other similar task. In our approach, we used the best performing model (Att-MC-CLSTM) and

added two dense layers of 32 and 16 neurons respectively and a softmax in the end and trained

the last layers using the train data of a single subject (from a total of S subjects) that was not

used in training, leaving the original model frozen (which was originally trained with data of

S-1 subjects). To make a clear intuition of our methodology consider that we have data from S

participants and each participant’s data is xi s.t. i ∈ [1,S], then the training set A can be denoted

as A = {xi : ∀xi∃i = j : x j 6∈ A} . A is used to train the initial model leaving data from one subject,

x j, for transfer learning and the weights are frozen. We then use the data of left out subject, x j

to train the newly added layers by using the frozen weights. Thus, we reused the weights from

the training of other subjects’ data and used them to retrain the modified model with extra layers

using a single subject data that was not initially used for training. In Figure 24, we show the

methodology we used for transfer learning. The use of transfer learning enabled us to reuse the

DL model by only training the newly added layers to adjust the old weights according to the

new data. Thus a model that has already been trained on the data of other participants can be

utilised on new data of some new participant by only adding a few layers in the original model.

This saves time for training the complete model, promotes reusability of the trained model on

unseen data, and it can be helpful to classify data of a new participant in case when there is no

or less data for that participant. We initially used old model without adding the extra layers and

evaluated it using leave one subject out cross validation (cv) however that model did not perform

well and therefore we added some layers in the trained model to retrain on new subject’s data so

as to fine tune the weights according to the new subject using Transfer Learning. We explain the

procedure in Algorithm 3.
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Algorithm 3: Transfer Learning of Att-MC-CLSTM
1. Save the weights of the best performing model (Att-MC-CLSTM) for S-1

participants.
2. Add two dense layers of 32 and 16 neurons respectively and a softmax in

the end of the model.
3. Freeze the initial layers of the saved model.
4. Retrain the modified model with K fold cross validation with extra layers on

the data of left out participant by initializing the weights with the saved
weights.
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Figure 24: The training methodology used for transfer learning for inter-subject clas-
sification. The original model is trained with the data from all subjects except one and
the best cross validation weights are saved. Two additional dense layers are added to
the model and the original layers are frozen; the newly added layers are initialized with
the best cross validation weights and are trained on the data of one remaining subject.
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5.5 Evaluation Metrics for binary classification

The evaluation metrics used to measure the performance of our model were mainly four, namely,

Accuracy, Precision, Recall and F1 score.

The accuracy indicates the samples that were correctly classified from all the samples.

Accuracy=
TP+TN

TP+TN+FP+FN
(5.1)

where TP = True Positives (low cognitive classified as low cognitive) , TN = True Negatives

(high cognitive classified as high cognitive), FP = False Positives (low cognitive classified as

high cognitive), and FN = False Negatives (high cognitive classified as low cognitive).A TP is

an outcome where the model correctly predicts the positive class. Similarly, a TN is an outcome

where the model correctly predicts the negative class. A FP is an outcome where the model

incorrectly predicts the positive class. And a FN is an outcome where the model incorrectly

predicts the negative class.

Precision expresses the proportion of the data points our model says was relevant actually

were relevant.

Precision=
TP

TP+FP
(5.2)

Recall is the model’s ability to find all the data points of interest in a dataset. It is also called

sensitivity or true positive rate (TPR).

Recall=
TP

TP+FN
(5.3)

The F1 score is the harmonic mean of precision and recall taking both metrics into account

in the following equation.

F1 Score=2× Precision x Recall
Precision + Recall

(5.4)
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5.6 Experimental Results

We have applied four time-series classification models to perform binary classification task on

EEG data. We classified data into low-cognitive and high-cognitive. The raw EEG data was

preprocessed and spectrograms were obtained by performing continuous wavelet transform. The

data after time-frequency analysis was divided into overlapping windows of size 64 with an

overlap of 50%. Thus the data shape we got after wavelet transform was (Nx64x4), where N

represents the size of data, and after applying sliding window the final input shape obtained was

(Mx64x64x4), where M represents the data size after dividing the data into overlapping windows

of 64, and this was fed to the models for classification. The timewindow of 64 was chosen after

experiment with different window sizes (32,64,128,256) and an overlap of 50% gave the best

results when compared to other overlap of 0%, 25% and 75%. In our results we report four

metrics accuracy (acc), precision (pre), recall (TPR) and F1-score (F1).

Table 5.1: Performance of DL models on train data for intra-subject classification.

Data Set
Att-MC-CNN Att-MC-BiLSTM

Acc Pre TPR F1 Acc Pre TPR F1

Best Subject 94.2% 0.940 0.939 0.939 92.5% 0.921 0.923 0.922

Avg Subject 89.3% 0.892 0.894 0.893 86.5% 0.863 0.864 0.863

Data Set
Att-MC-CNN-LSTM Att-MC-CLSTM

Acc Pre TPR F1 Acc Pre TPR F1

Best Subject 96.3% 0.963 0.961 0.962 98.1% 0.979 0.982 0.980

Avg Subject 94.4% 0.941 0.946 0.943 95.8% 0.955 0.954 0.954
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Average inter-subject train and val accuracy at each fold for Att-MC-CLSTM

Average intra-subject train and val accuracy at each fold for Att-MC-CLSTM

(a)

(b)

Ac
cu

ra
cy

Ac
cu

ra
cy

Epochs

Epochs

Figure 25: (a)The average accuracy of Att-MC-CLSTM during training phase on train-
ing and validation data for intra-subject classification;(b)The average accuracy of trans-
fer learning on Att-MC-CLSTM during training phase on training and validation data
for inter-subject classification
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Table 5.2: Performance of DL models on test data for intra-subject classification.

Data Set
Att-MC-CNN Att-MC-BiLSTM

Acc Pre TPR F1 Acc Pre TPR F1

Best Subject 93.2% 0.931 0.932 0.931 90.8% 0.903 0.907 0.905

Avg Subject 87.8% 0.863 0.860 0.861 83.6% 0.843 0.826 0.820

Data Set
Att-MC-CNN-LSTM Att-MC-CLSTM

Acc Pre TPR F1 Acc Pre TPR F1

Best Subject 94.3% 0.955 0.943 0.949 96.1% 0.961 0.959 0.960

Avg Subject 92.4% 0.927 0.918 0.922 93.8% 0.936 0.939 0.937

5.6.1 Training Procedure for Intra-subject Classification

The data of each subject was divided into train and test where 30% of data was kept for testing.

The training was done using 5 fold cross validation on each subject’s data seperately. We trained

the the data using the training data and validated it with the validation data with 20 epochs

for each fold. During the training we saved the weights for the best epoch for each fold. The

final train accuracy was calculated by evaluating the best performing weights over the complete

training set. We also used Early Stopping to end the training for each fold if the accuracy did not

improve upto 5 epochs. This made the training procedure efficient. In Table 5.2 , we report the

best subject train metrics achieved for intra-subject classification,where we provide the highest

performance metric from among all the 12 subjects and we also provide the average subject

performance metric where we give a mean for all the subjects, this helps to understand how the

models perform for all subjects and in Table 5.1 we provide the test metrics.
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5.6.2 Training Procedure for Inter-subject Classification using Trans-

fer Learning

In order to perform inter-subject classification, we used Transfer Learning technique. We per-

formed inter-subject classification by using the best performing model i.e. Att-MC-CLSTM.

Firstly we trained the model using the same procedure as we described in intra-subject clas-

sification, i.e. we combined the data of all the subjects except one (which was kept aside for

retraining and testing) to form the training data, with which we performed 5 fold cross valida-

tion training, each fold having 20 epochs. We saved the best weights while the training. The

one subject’s data we left we used it for transfer learning. We froze the all layers of the model

and assigned them the best weights that we saved by training procedure from the combined data

set. We added two dense layers to the model and retrained the model with one subject’s data

we left initially using the best performing weights. The training was done by dividing the one

subject’s data into train and test with 30% test data. We trained the new combined model using

the the train data of one subject using 5 fold cross validation. After the training was done we

calculated the train accuracy using the whole train data and the test accuracy using the test data.

We repeated this for all the subjects.

Att-MC-CNN-LSTM and Att-MC-CLSTM performed relatively well on the data. The possible

reason could be that had CNN and LSTM models integrated into the architecture that accounted

for the spatial and temporal dependencies of the data.The highest test accuracy of 96.1% was

achieved by Att-MC-CLSTM for intra-subject and the highest average test accuracy for intra-

subject was also achieved by Att-MC-CLSTM which was 93.8%, this shows that the model

performed relatively well for all the subjects.

The average inter-subject test accuracy of 86.3% was obtained using Transfer Learning on Att-

MC-CLSTM. This shows that with little training on some data the model could be used by other

people. Our proposed methodology has shown improvement over the past approaches [31, 99]

that have worked on similar problems using wearable EEG by 10% from the highest achieved

accuracy and we have achieved comparable performance to the works that have used complex
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Table 5.3: Average performance metics of Att-MC-CLSTM with Transfer Learning for
inter-subject classification.

Data Set
Att-MC-CLSTM

Acc Pre TPR F1

Train Data 87.5% 0.877 0.874 0.875

Test Data 86.3% 0.863 0.860 0.861

medical grade EEG. The results achieved show that our model is promising for this type of clas-

sification on EEG data. Our results are comparable to the results obtained by medical grade EEG

devices. The results for inter-subject can be seen in Table 5.3.

In Table 5.4 we compare our results with previous approaches.

5.7 Summary

We used the data from a CMI task to classify cognitive load using DL. The proposed architecture

used a novel technique to classify data based on multi-channel approach where the input was

in form of spectrogram stack from all the channels of Muse 2. We compared state-of-the-art

time-series classification DL models on the basis of their performance on our data and achieved

the highest test accuracy of 96.1% for intra-subject classification using attention multi-channel

ConvLSTM. Our model surpassed the performance of previously proposed models and hence

showed promise in reliable detection of cognitive load.

Our proposed model obtained the highest inter-subject test accuracy of 86.3% for inter-subject

classification using the concept of transfer learning on attention multi-channel ConvLSTM. Our

study proposed the use of transfer learning in EEG cognitive classification problem. Current

work has shown improvement over the past approaches that have worked on similar problems

using wearable EEG by 9% from the highest achieved accuracy and we achieved comparable

performance to the works that have used complex medical grade EEG .
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Table 5.4: Comparison with past approaches

Study Device Electrodes Model Accuracy
Validation
Approach

Bird et al. [45] Muse 4 Random Forest 87.16%
Intra-subject
(10-fold cv)

Appriou et al. [100]
Medical-

grade
EEG

28 CNN 72.7% Intra-subject

Pouya et al. [35] Muse 4 SVM 75%
Inter-subject
(leave-one-
subject-out)

Xiong et al. [36]
Medical-

grade
EEG

128 SVM 96.3%
Inter-subject
(leave-one-
subject-out)

Liang et al. [37]
Not

Known 6 ELM 86.7% -

Kuanar et al. [38]
Neurofax

EEG-
1200

64 ELM 92.5%
Inter-subject
(leave-one-

subject-out))

Liu et al. [10]
Not

known 64 CNN 93% -

Saha et al. [40]
Medical-

grade
EEG

64 SDAE+MLP 89.51%

Inter-subject
(MonteCarlo cv

with four
splits)

Wang et al. [101]
Emotiv
EEG 14 PCA,SVM 97.14%

Intra-subject
(4-fold cv)

Chakladar et al. [102] - 14 BLSTM-LSTM 86.33% -

Dimitrakopoulos
et al. [86]

ANT
waveguard

system
64 SVM 86%

Inter-subject
(leave-one-
subject-out)

Plechawska et al. [103]
Mitsar
EEG
201

21 SVM 91.50%
Inter-subject
(5 fold cv)

Ours Muse 4 Att-MC-CLSTM

98.1% Intra-subject
train

96.1% Intra-subject
test

87.5% Inter-subject
train

86.3% Inter-subject
test
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Identifying cognitive load effectively can help one to design smart, adaptive, personalized and

intelligent information systems and thus in this work we have devised a DL approach to classify

cognitive load using EEG data from a wearable headband from a CMI task. We have applied

four models to perform binary classification task to classify data into low cognitive and high

cognitive. We converted the raw data into spectrograms and then trained the models on this data.

We have also proposed using multi-channel models that accept the data from all the channels of

the EEG at the same time. The addition of self-attention in our models made the classification

more efficient. Out of the four models two models outperformed the other two Att-MC-CNN-

LSTM and Att-MC-CLSTM gave the best results with the highest test accuarcy of 96.1%. This

result is very promising considering we are using a 4-channel EEG headband.

In future work, an integrated IoT application can be designed using our proposed models. There

are several other wearable devices available in the market like Muse S, Emotiv, Neurosky, Starlab

etc, one can apply our methodology using data from these headbands also. The performance of

the models can be checked for improvement by applying more preprocessing on the data and

using representations other than spectrograms.
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Chapter 6

Sabotage detection using Deep

Learning models on EEG data

from cognitive-motor

integration task

6.1 Introduction

Sabotage detection has many clinical and industrial applications especially where one needs to

detect willful deceit. In this work, we have proposed a novel method to detect performance sabo-

tage using a deep learning approach on the electroencephalogram (EEG) signals from a wearable

device. The EEG signals from a four-channel headband were acquired from a cognitive-motor

integration (CMI) task. Each participant completed sabotage and no-sabotage conditions in ran-

dom order. A multi-channel CNN-LSTM (convolutional neural network with long short term
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memory) model with self-attention has been used to perform the time-series classification into

sabotage and no-sabotage, by transforming the time series into 2D image-based spectrogram

representations. This approach allows the inspection of frequency-based, as well as temporal

features of EEG and the use multi-channel model facilitates in capturing correlation and causal-

ity between different EEG channels. By treating the 2D spectrogram as an image, we show that

the trained CNN-LSTM classifier based on automated visual analysis can achieve high levels of

discrimination and an overall accuracy of 98.71%, as well as low false-positive rates. We also

compare the spectrogram-based results with the results that we obtained by using raw timeseries.

Our proposed methodology has outperformed previous studies that have been done on deceit de-

tection. Our method can be applied in clinical applications such as baseline testing, assessing

current state of injury and recovery tracking as well as industrial applications like monitoring

performance deterioration in workplaces.

6.2 Participants

Electroencephalography (EEG) and behavioural data were collected from 12 healthy volunteers

(8 female, 4 male) aged 22-50 years of age. Participants had no history of substance abuse,

neurological illness or impairment, brain injury, psychoactive drug treatment, or concussion. All

procedures were approved by York University’s Human Participants Research Committee, and

all participants provided informed consent to participate.

6.3 Experimental Task

The experimental task for similar to the one described in Section 5.2.1 with the difference being

that for each condition, they were instructed to either complete the task as quickly and as accu-

rately as possible (true effort condition), or to willfully perform poorly while still completing the

trials (sabotage condition). In summary, participants completed two sets (true effort condition,

sabotage condition) of the two tasks (standard task, CMI task), for a total of 80 trials. The entire
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Spectrograms for Sabotage and No Sabotage for the four channels TP9, AF7, AF8 and TP10

Figure 26: Spectrograms for Sabotage and No Sabotage activities for Subject 1 for the
four channels TP9, AF7, AF8 and TP10

behavioural task took approximately 10 minutes (2-3 minutes for each 20-trial individual task).

Both the conditions and the standard vs. CMI task within a condition were randomized for each

participant.

6.4 Data Preprocessing and Feature Engineering

The steps similar to the ones described in Section 5.2.3 were followed and spectrograms of

64×64×4 were obtained. The process is shown in Figure 27.

6.5 Deep Learning Approach

In our methodology, we used four time-series classification models namely, Attention Multi-

Channel Convolutional Neural Network(CNN), Attention Multi-Channel Convolutional Neural

Network with Long Short Term Memory (CNN-LSTM), Attention Multi-Channel ConvLSTM

and Stacked Bidirectional LSTM on our data, however, we only discuss the results of Self-

Attention based Multi-Channel Convolutional Neural Network- Long Short Term Memory as

we got the best results using this model. We call this model Multi-Channel because we sent the

input in form of spectrograms from all the four channels at the same time to the model.
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Figure 28: TSNE visualization of data for Sabotage detection.

6.5.1 Architecture used for Att-MC-CNN-LSTM

In our proposed model, the input took the form of 64×64 spectrogram-like matrix from each of

the four channels. The overall shape of input was 64×64×4, where the last dimension denotes

the number of channels. This input was fed to a Conv2D layer with 32(5×5) filters followed by a

maxpool layer of 2×2 and the output of this layer was fed to another Conv2D layer with 32(3x3)

filters followed by a maxpool again. A dropout layer was then applied to avoid overfitting. The

output of the dropout layer and then flattened. The flattened data was then sent to two LSTM

layers, after which self-attention was applied to the encoded data from LSTM. The last layer

was a dense/fully connected (FC) layer. The output of FC was passed through softmax layer to

get the prediction i.e. sabotage or no-sabotage. Batch Normalization was applied in training to

normalize the outputs of the layer.

Although, CNN and LSTM effectively capture spatio-temporal information, there is a need to tar-

get specific information from the embeddings generated by the combination of CNN and LSTM
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and bring them together since multiple components can together form relevant semantics for de-

coding the activity being performed. This has been done using the self-attention mechanism that

forms a 2-dimenstional matrix to represent the embedding of the input, such that each row of the

matrix caters to a different part of the time-series. Along with CNN and LSTM, we show that

self-attention leads to a statistically significant results.

6.5.2 Transfer Learning for Sabotage Detection

We applied Transfer learning in case of Sabotage detection too, we used the same methodology

used in Section 5.4, the only difference being that we added only two additional layers to the

transfer learning model one fully connected layer and one softmax layer. The use of two FC

layers did not show much improvement when compared to one FC layer and therefore we went

ahead with single FC layer as this saved the retraining time of the new layers.

6.6 Experimental Results

In order to analyse the benefit of time-frequency analysis on classification result on our data

we applied our proposed model both on raw data with time-frequency analysis i.e. on raw data

spectrograms as well as on raw data without time-frequency analysis. We discuss the result on

both of type of data in this section. As we earlier mentioned, that we divided the data into over-

lapping windows of 64 data points with different values of overlap. We tried different window

sizes 32,64,128 and 256 and different overlap values (no-overlap, 25%, 50% and 75%) for the

both the types of data i.e. with and without time-frequency analysis. We got the best average

accuracy for a window of 64 with 50% overlap so we went ahead with this time-window for

further experimentation.

We divided the data into training data and test data. The train and test splits were in the ratio

70% and 30% respectively. The data was trained using 5-fold cross validation on the training data

with 20 epochs for each fold and after each epoch the model was cross-validated on the validation
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Figure 29: The methodology used for transfer learning for inter-subject classification
for sabotage detection.
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Table 6.1: Performance of the model on raw data

Subject Accuracy Precision Recall F1-Score

Subject 1 92.05 0.934 0.909 0.919

Subject 2 94.05 0.921 0.941 0.931

Subject 3 88.12 0.914 0.791 0.848

Subject 4 85.56 0.923 0.779 0.853

Subject 5 94.43 0.961 0.923 0.939

Subject 6 91.36 0.924 0.908 0.915

Subject 7 91.66 0.952 0.871 0.909

Subject 8 87.83 0.879 0.866 0.872

Subject 9 88.78 0.897 0.882 0.893

Subject 10 80.76 0.729 1.0 0.843

Subject 11 86.67 0.872 0.859 0.865

Subject 12 85.85 0.808 0.989 0.889

Average Intra-subject 89.19 0.899 0.876 0.877

data. The metrics in the results are reported on the test data. We performed classification on indi-

vidual participant data that we called intra-subject classification, as well as we combined the data

from all the participants and performed classification and we called it inter-subject classification.

In case of inter-subject classification we performed 5-fold leave one subject out cross-validation

i.e. we trained the model by combining data from all participants except one and used this data

for testing. We can see the performance with different timewindows and overlap in Figure 30.
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(a)

(b)

Figure 30: (a) The average accuracy for different timewindows and overlap values
for spectrogram data (b) The average accuracy for different timewindows and overlap
values for raw data
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Table 6.2: Performance of the model on spectrograms of raw data.

Subject Accuracy Precision Recall F1-Score

Subject 1 96.80 0.975 0.961 0.968

Subject 2 98.71 1.0 0.975 0.987

Subject 3 93.23 0.959 0.870 0.912

Subject 4 89.10 0.967 0.848 0.903

Subject 5 96.01 0.977 0.942 0.959

Subject 6 93.57 0.949 0.925 0.936

Subject 7 93.15 0.971 0.884 0.925

Subject 8 92.94 0.915 0.935 0.925

Subject 9 83.89 0.849 0.833 0.841

Subject 10 95.27 0.915 0.980 0.946

Subject 11 90.23 0.899 0.902 0.901

Subject 12 93.10 0.895 0.992 0.9414

Average Intra-subject 92.98 0.943 0.914 0.927

Table 6.3: Performance of Att-MC-CNN-LSTM on Inter-subject with Transfer Learn-
ing.

Data Set
Att-MC-CNN-LSTM

Accuracy Precision Recall F1-Score

Train 82.6% 0.826 0.813 0.819

Test 80.3% 0.803 0.800 0.801

Table 6.1 shows the performance of our model on raw EEG data i.e. data without spectrogram

representation. The highest intra-subject accuracy we got with this data set was 94.43% and the

minimum intra-subject accuracy was 85.56%. The average intra-subject accuracy was 89.19%,

this shows that the model performed relatively well for all the subjects. The inter-subject ac-

curacy obtained was 72.50%. The inter-subject classification was done to see the generalized

performance of the model.

We then applied our model on the spectrogram representation of the raw data from the four

channels. The results improved on this data set and are shown in Table 6.2. We got the highest
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intra-subject accuracy of 98.71% and the lowest intra-subject accuracy of 89.10%. The average

accuracy of all subjects was 92.98% which shows that the performance of the model improved

the average accuracy for all subjects. The inter-subject accuracy also improved and became

76.15%. The results were relatively very good using spectrograms and the performance of the

model improved on the spectrograms. Our proposed model is spectrograms with Self-Attention

based Multi-Channel Convolutional Neural Network- Long Short Term Memory. We also per-

formed Transfer Learning using the methodology and we report the results on test and train data

in Table 6.3.

6.7 Summary

The primary aim of this study was to determine if performance sabotage could be detected by

analyzing EEG data collected during a visuomotor skill assessment. Using a multi-channel deep

learning approach, we found that analysis of EEG spectral data enabled us to differentiate in-

tentionally poor task performance from maximal effort performance with 98.71% accuracy. The

present results revealed that the time-frequency representation as the input to the model led to

better results than the use of raw data. For future work we recommend applying different feature

extraction techniques on the data or using topographical maps as input to the model to further

improve classification accuracy.

The visuomotor skill assessment used in the present study has shown promise in as an objec-

tive tool to determine if a concussion has been sustained, as well as whether full recovery has

occurred. Used as a baseline test, individuals at known risk of concussion would complete this

assessment when they are known to be concussion-free and then again once an injury is sus-

pected. However, this protocol is only useful if both tests reflect an individual’s best effort, and

the threat of litigation or a desire to resume or avoid certain activities leads some individuals to

sabotage their test results, under-performing on a pre-injury test to enable earlier return to activ-

ity, or under-performing on a post-injury test to delay a diagnosis of recovery. The addition of

EEG spectral analysis to the visuomotor task used in this study ensures that an individual’s best
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effort is captured during the assessment, and improves the clinical utility of the results.

A strength of this analysis was that it used technology consumer-grade EEG technology (MUSE

2™ EEG headband), along with a tablet-based task to assess cognitive-motor integration. The

technology is portable and affordable; as a result, this is a protocol that can be easily translated

to clinical patient care settings. With the advancement in wearable computing, more portable

EEG devices are available and future studies replicating these findings with such devices would

be useful to further expand the utility of this form of performance monitoring.

This proof-of-concept study showed that a multi-channel CNN-LSTM model can be used on

EEG data to detect sabotage at an average approximately 93% of the time during the perfor-

mance of a cognitive-motor integration task. Expanding our data collection to a larger sample

size will allow for further refinement of the model, as well as the development of a user interface

and standard operating procedure to translate this work into clinical practice. Future work will

also focus on applying this sabotage detection process to a range of brain-computer interfaces for

real-time, in-situ deceit detection. Such an application would increase the utility of both injury

diagnosis and recover assessment using behavioural performance measures.
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Chapter 7

Conclusion and Future work

In this chapter we summarise our work and present the concluding remarks. We also discuss the

future work.

7.1 Conclusion

The work in the thesis can be summarised as follows:

• We proposed a novel ML-IoT pipeline software architecture that encompasses the essen-

tial components from data ingestion to runtime use of ML models. The proposed pipeline

is highly maintainable, testable and independently deployable as opposed to the mono-

lithic machine learning archietcures where the same script is used to extract the data,

clean and prepare it, model it, and deploy model trained on it. Our architecture divides

ML pipeline into components that work independently across edge-core for training and

inference.

• The architecture has been validated using three BCI applications. We have used EEG

signals from a wearable consumer-grade EEG headband to acquire the raw EEG data

and then use this data to design IoT applications. These applications can be used in a
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variety of scenarios such as recognizing color stimuli from brain waves which can be

used in developing techniques for cognitive tasks using color cues such as controlling

IoT devices by looking at primary colors for individuals with restricted motor abilities,

detecting performance sabotage to cater various clinical maneuvers like baseline testing

and classifying cognitive load for monitoring behavioural performance.

• We have achieved state-of-the-art results using our methodology for each application

and our results have significant improvement over the results achieved by previous ap-

proaches. Our applications are novel in the terms of technique we used to preprocess and

engineer the data and the multi-channel based approach we have used in the cognition

and sabotage application. Also, the use of transfer learning in cognitive study has not

been done in any previous study to classify inter-subject data. We propose to use transfer

learning to analyse the generalizability of our models.

• The work on color classification using EEG signals has mainly focussed on on Alpha and

Beta frequencies. In order to classify EEG data to RGB we extracted various spectral, cor-

relation and statistical features from the data and applied ML models to it. Our proposed

model of Random Forest with forward feature selection showed significant improvement

when compared to previous approaches. Our methodology achieved an improvement of

almost 20% in the average accuracy of classification. The intra-subject classification ac-

curacy of 80.6% shows that wearable devices can be used in integrated IoT frameworks

where they can be used in various control applications.

• We also proposed application to classify cognitive load using DL models. This application

can help one to design smart, adaptive, personalized and intelligent information systems.

We converted the raw data into spectrograms and then trained the models on this data. We

have also proposed using multi-channel models that accept the data from all the channels

of the EEG at the same time. The addition of self-attention in our models made the

classification more efficient. Out of the four models two models outperformed the other

two Att-MC-CNN-LSTM and Att-MC-CLSTM gave the best results with the highest test

101



accuarcy of 96.1%. This result is very promising considering we are using a 4-channel

EEG headband.

• A third application that is proposed in this work analyses rich data sets for the purpose

of detecting behavioural performance sabotage. Our results supported our hypothesis

that such deep learning networks were capable of detecting significant neural activity

differences as a function ‘true effort’ versus ‘intentionally poor effort’. Using a multi-

channel deep learning approach, we found that analysis of EEG spectral data enabled us to

differentiate intentionally poor task performance from maximal effort performance with

98.71% accuracy. The visuomotor skill assessment used in the present study has shown

promise in as an objective tool to determine if a concussion has been sustained, as well

as whether full recovery has occurred. Used as a baseline test, individuals at known risk

of concussion would complete this assessment when they are known to be concussion-

free and then again once an injury is suspected. A strength of this analysis was that it

used technology consumer-grade EEG technology (MUSE 2 EEG headband), along with

a tablet-based task to assess cognitive-motor integration. The technology is portable and

affordable; as a result, this is a protocol that can be easily translated to clinical patient

care settings.

• In this work, we propose an architecture that can accept sensor data from IoT infrastruc-

ture, and, automatically address tasks like data ingestion, data cleaning, preprocessing,

modeling and deployment in form of computation units that are easy to replace such that

it is possible to rework them independently without changing the rest of the system to

ensure better implementation.

7.2 Future work

In future work, we plan to design an architecture to dynamically distribute the ML computing and

storage across an IoT infrastructure. We plan to propose the placement of pipeline components
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and the dynamic adaptation of the edge core pipeline based on various optimization options like

CPU utilization, response time, memory usage, etc, and set up the parameters like response time

threshold, memory utilization threshold and using these the module would dynamically distribute

the architecture at run time to ensure that the optimization standards are met.

We would try to emulate a real situation, similar to the static one and report the performance of

adaptation and the improvement it achieves based on the various adaptation settings. A dedicated

module called ’Adaptive Manager’ could be designed to take care of the performance of the

architecture.

In case of BCI applications, with the advancement in wearable computing, more portable EEG

devices are available and future studies replicating these findings with such devices would be

useful to further expand the utility of this form of performance monitoring. There are several

other wearable devices available in the market like Muse S, Emotiv, Neurosky, Starlab etc, one

can apply our methodology using data from these headbands also. The performance of the

models can be checked for improvement by applying more preprocessing on the data and using

representations other than spectrograms. Future work will also focus on applying the cognitive

process to a range of brain-computer interfaces for real-time, in-situ deceit detection. Such an

application would increase the utility of both injury diagnosis and recover assessment using

behavioural performance measures.
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Appendix A: Implementation

preprocessData() python docker
container returns JSON--{data:{...} , classes:{...}}

API Post (Input file)

Data in prescribed json format
getdata() python docker container 

returns JSON--{properties:{...} , results:{...}}

Preprocesses API Post (json data+
data preprocess params)

Preprocessed data in prescribed
json format

Model 1 API Post (json data+ data
preprocess params) model1 () python docker container returns JSON-

-{metrics:{...} , model:{...}, params:{...}}

modelN () python docker container returns
JSON--{metrics:{...} , model:{...}, params:{...}}

Model N API Post (json data+ data
preprocess params)

Edge Core

generateWorkflow () python docker container
saves model and associated metadata in

storage returns JSON--{Workflow Created !}

Workflow API Post (best model +
metadata for preprocess)

Data Ingestion
Module

Preprocessing
Module

Machine Learning
Module

Best Model

Worflow generator
Module
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Figure 31: Block diagram for the proposed implementation.
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We have implemented our proposed application using Angular frontend and Python back-

end. Each component in frontend communicates to the backend by sending GET/POST HTTP

requests using respective API endpoints. The endpoints have been written using python’s flask

framework. The main components that we propose to use are Data Ingestion, Data Preprocess-

ing, Machine Learning and Workflow generator module. Each module works independently and

can interact with one another by sharing data. The flask services have been containerized us-

ing docker and hosted on AWS and can be accessed by simple API calls. We also provide a

easy to use interface that makes the interaction of the user with our architecture easy. Writing

dedicated and customized software code to execute these steps often leads to duplicate and hard-

to-maintain glue code. Defining ML workflows employing a Graphical User Interface (GUI)

helps to avoid unnecessary duplication of code and produces standardized representations of

those workflows. Our application splits the ML workflow into granular and independent tasks.

Also, splitting the ML workflows into small and specialized services facilitates the reuse of those

software components. Lastly, it contributes to the extensibility of our application, because when

ML workflows are divided into well-defined components, it creates natural points of extension

for brand new functionalities. We shall now dicuss each component in detail:

User Interface

The user interface has been designed using Angular in form of a web application. Various angular

functionalities have been used to like components, directives, routing, services etc. The interface

is easy to use and interactive and helps the user to easily use various functionalities that are

provided by the app.

Data Ingestion Module

The data ingestion module accepts the data in CSV format (with a header) and converts it to

JSON for further processing by sending request to getData API. The JSON format helps to
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Figure 32: The UI for proposed application.

further analyse data and sharing the data to other API endpoints.

Data Preprocessing Module

The data preprocessing module enables the user to apply various data preprocessing, feature

engineering and feature reduction techniques. Each process has a different API end point so

that each component can operate independently. The user can select the preprocessing they want

to apply and the module will perform the preprocessing in a sequential manner and give the

final output of preprocessed data as a JSON object. The main python libraries used for various

preprocessing steps are pandas, scipy, numpy, pywavelet and sklearn.preprocessing.
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Machine Learning Module

This module provides various ML models that the user can apply on raw or preprocessed data.

The models are provided by different docker images and can be accessed by endpoints. The

training of models is done using the cross validation approach and the hyperparameter optimiza-

tion is done using GridSearchCV. The ouput of this module is the best performing model with

the best hyperparameters. The main libraries used in the backend for this module are scikit-

learn, keras and tensorflow. The advantage of using containerized approach for providing ML

models is that models that are provided by different languages can also be incorporated in the

architecture, however for our case the models provided by python were suffice so we only used

them.

Workflow generator Module

This module allows the user to generate and save ML workflows which give the best result.

When a user saves the workflow what is saved is the best performing model along with a JSON

file storing the preprocesses applied before the training. This can be used by the user at the

time of online or batch testing for predicting the results on the test data. One advantage of

this approach is there is no dedicated container allotted to each workflow, when the user runs

the workflow the model and metadata is retrieved and a single container always addresses the

prediction request. This container can also be horizontally scaled for serving multiple requests.

The workflow generated is stored in MongoDB and can be retrieved on demand when a request is

sent to use it for prediction. The model is saved in a binary format using Python’s pickle library

along with the other metadata in JSON format. Each model is stored in separate collection in the

same database. We used MongoDB’s M0 Sandbox (General) tier to store this data, it is freely

available tier.
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