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ABSTRACT 

Ilikci, Burak , Heat-map based emotion and face recognition from thermal images. 
Master of Science (Computing and Information Science), May, 2019, Sam Houston State 
University, Huntsville, Texas. 
 

Nowadays, emotion recognition has become a feasible problem with 

implementation of Convolutional Neural Networks in Computer Vision domain. However, 

credibility of emotion recognition from daily images or videos is not enough. As people 

can easily mimic emotions one after another and fooling the trained models, a different 

approach should be taken into consideration. Thermal cameras would be a suitable way to 

develop more credible emotion recognition models. Heat-map of faces proved hinting 

emotions before, and it is not easy to fool the models trained from thermal heat-maps as it 

visualizes state of the body’s heat. In this research a method is adapted for training a model 

for recognizing emotions from thermal heat-mapped cameras with a fast detection 

algorithm -YOLOv3-. With this method the main aim is to detecting emotions from a given 

picture which taken from thermal cameras. 

 

KEY WORDS: Thermal images, Emotion recognition, Convolutional Neural Network, 
Eigen-space Method, YOLOv3 
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CHAPTER I 

Introduction 

With the emergence of Convolutional Neural Networks, image/video processing and 

recognition of various categories of a material became more feasible. Automated emotion 

recognition from humans relies as one of the most fascinating problems that seems possible 

to achieve within the domain of Deep Learning. As machines becoming more humanoid 

entities day-by-day, detecting emotions autonomously stands as a crucial challenge for 

researches because emotion detection is an essential skill for an ‘intelligent’ being and we 

can make machines work on this problem as a person does. 

Detecting emotions is not just technical challenge for programming, the success also 

relies within the quality lightning conditions in the photo. To tackle this problem, thermal 

images comes as a reliable technique. Infrared cameras are not sensitive to light conditions. 

Also, since emotions is related with neurological effect of a body’s own, heat maps taken 

from infrared cameras can be a great clue to detect emotions. The other advantage of thermal 

images are faking states of emotion with mimics, however, it is not comparatively easy to 

fake expressions with infrared cameras. It was examined that change of emotions that 

caused by external sounds, objects and actions causes plummet or increase in heat of a 

person’s forehead, mouth and cheek area1. Therefore, thermal imaging is more reliable 

method to estimate human emotions because it is contract free, non-invasive and free from 

startling the subject in case getting abnormal results in an experiment session2. In addition, 

it is important to point out that facial thermal images do not depend on skin or color of a 

subject3. 
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Infrared spectrum is divided into four sub-bands: near IR (NIR), short wave IR 

(SWIR), medium wave IR (MWIR) and long wave IR (LWIR). Most of the heat energy 

radiated from infrared spectrum is LWIR sub-band and after LWIR, MWIR does also 

radiates a significant amount of heat-wave. That is why LWIR and MWIR sub-band 

supported cameras is used with most of the work in the literature4.  

Robustness of thermal images in detecting human emotions can bring great benefits 

for applications which needs correct interpretation of human emotions. To name few areas 

where emotion detection is useful; socially aware systems5,6, socially skilled robots7, 

frustration analysis of students in e-learning8, tracing a patient’s pain analysis in clinical 

environments9, 10, 11, detecting if a person is lying during interrogation or interview process12 

may be given as examples of benefits of emotion detection with thermal images13. 

Structure of the paper is; section II focuses on the techniques implemented in 

mentioned works, section III describes the methodology to process taken image or video 

from a thermal camera to detect emotions with pre-trained convolutional architecture 

model, section IV portrays the timeline of process of the research. 
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CHAPTER II 

Background 

As a recognition technique for detecting the faces from a given image or video, 

Eigenface-based approach and Principal Component Analysis (PCA) lies as crucial ones 

that helps extracting the features of images to mathematical entities14. In order to detect the 

heat levels taken from infrared cameras to detect emotion, it is important to divide the image 

into sub-space parts and examine the differences by those parts is helpful to detect emotions. 

Those sub-parts of an image are called Region of Interests (ROIs) in the literature. 

Nguyen et al.15 proposed a method of automation of emotion recognition by 

proposing a temperature space method to correct an alien object’s effect on eye region, and 

later using PCA, Eigen-space method based on class-features EMC, and PCA-EMC method 

to classify emotions from the images which was made more suitable for mathematical 

operations to obtain a result. They used Kotani Thermal Facial Emotion (KTFE) database16. 

As a result, Nguyen et al. got maximum of %66.19 accuracy with PCA-EMC with subject 

having an eye glass on and %73.96 accuracy with PCA after the eye glass was taken off. 

Another method was proposed by Basu et al.17 which divides the thermal image to 

6 specific sub-regions (forehead, eyes, left cheek, right cheek, nose and mouth) and uses 

Hu’s moment invariants to calculate feature vectors from the six facial paths to create ROI 

for emotions. Then, statistical feature of each ROI is computed and fused with moment 

invariant and later Multi-class Support Vector Machine is used as a classification tool and 

a suitable kernel function is chosen to maximize the inter class distance and to minimize 

overlapping between classes. Basu et al. used KTFE database. Overall, they have achieved 

average of %87.5 accuracy. 
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Next method considered for this research uses Eigen face technique which reduces 

dimension of images and helps dealing with large dataset of face images. Later, PCA derives 

the weights from original images and ADA Boost algorithm is applied in order to simplify 

and reduce the number of weights to boost calculation. Scale Invariant Feature Transform 

(SIFT) algorithm extracts the eyes, nose and lips for detailed description of the image and 

Gray Level Co-occurrence Matrix (GLCM) holds the numbers of pixel and position details. 

Finally, obtained gray images from previous steps faces applied to Feed Forward Neural 

Networks (FFNN) to train the model18. The final accuracy for 80 pictures is above %94 for 

each emotions and results are better than Support Vector Machines. 

Another research by Irving et al.19 implements a smart thermal system and examines 

emotion detection while emotion changes are happening in a time span. Subjects were 

placed in an environment while they were getting recorded by a thermal camera and they 

were under surveillance by an ‘expert’. The emergence of emotions was planned to take 

place in subject with the help of pre-selected videos with the help of experts from the 

Psychology area because it was stated that videos are one of the most effective tools to 

stimulate emotions20. Technique to detect emotions as follows; first thermogram is taken 

from subject at the first phase and ROIs are analyzed as the previous mentioned works done. 

ROIs are examined by a fuzzy logic system; 4 inputs are considered: forehead, cheeks, nose 

and maxillary. After, when an emotion is forming, subject’s thermogram is taken again and 

analysis of ROIs are calculated one more time and 4 inputs (forehead, cheeks, nose, 

maxillary) passes new temperature levels to calibration step. Calibration step divides and 

compares the two pictures ROIs and divides the phases into 3 groups; low means 

temperature has decreased, normal means temperature stayed still, and high means 
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temperature has risen. Based on change of temperatures, outputs are created for each ROI 

stating their status (increased or decreased). Finally, the classifier they implemented 

diagnoses one of the five emotions (joy, disgust, fear, anger, sadness) by using top-down 

hierarchical classifier which considers the temperature differences by obeying the emotion 

rules. Overall, the accuracy for 8 male subjects was %90.3 and 17 female subjects 

was %89.5 resulting %89.9 overall accuracy. 

This research proposes to apply You Only Look Once v3 (YOLO v3)21 algorithm 

for the thermal emotion detection. YOLOv3 works with a custom deep architecture called 

Darknet and it has 53 convolutional layer network trained on one of the image database 

platforms. It uses logistic regression and comes up with an objectness score for each 

bounding box which is predicted by the network. 
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CHAPTER III 

Methodology 

The generated pictures will be applied to YOLOv3 21 for training. The network 

contains 53 convolutional layers as shown in Figure 1. 

 

Figure 1. Architecture of Darknet 53 which was implemented for the use of YOLOv3 21.  
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The system predicts bounding boxes using dimension clusters as anchor boxes. 

Then, anchor boxes determine the objectness score for the object and displays what is the 

object. The mentality of bounding boxes is shown in figure 223. 

 

Figure 2. The width and height of the box as offsets from cluster centroids. Center 
coordinates of the box is predicted by using sigmoid function23.  
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CHAPTER IV 

Dataset 

Facilities for conducting an emotion recognition research for deep convolutional 

networks is scarce. As a first step searching for suitable dataset which contains posed 

pictures of individuals with sorted by classification of emotions took a long time. 

Unfortunately, there are not many data sets of faces taken from LWIR and MWIR sub-

band supported cameras. As one of the few, NVIE (Natural Visible and Infrared Facial 

Expression) Database from University of Science and Technology of China provides an 

intensive thermal face database22. The database contains pictures of more than a hundred 

subjects with posed and spontaneous expressions. Few different factors such as 

illuminating from three different perspective and images of individuals with glasses and 

non-glasses were considered. For classification purposes, 13 points in each individual’s 

picture are pointed manually. With manually marked points PCA and PCA+LDA 

techniques were used in order to examine the relationship with statistical analysis 

between facial temperature and emotion. For training the model, only posed infrared 

images were used from NVIE Database. Posed database contains a total of 3452 images 

which contains seven emotions; anger, disgust, fear, happiness, neutral, sadness and 

surprise. The number of each emotion and one example for each emotion are shown in 

the Table 1. 
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Table 1 

Distribution of types of classified emotions in the dataset with an example 

Type of Emotion Example Count 

Anger 

 

549 

Disgust 

 

535 

Fear 

 

550 

Happiness 

 

550 

Neutral 

 

206 

Sadness 

 

532 
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Type of Emotion Example Count 

Surprise 

 

530 

 Total: 3452 

 

  
YOLO 

YOLO algorithm divides a picture into SxS grid. Each grid is responsible for 

detecting an object if the center of it encounters to that specific grid. After the prediction 

is made from a grid, bounding boxes label the object with their confidence score. 

However, this method may result having more than one bounding box were put by model 

for an object. In order to eliminate multiple labels to one on an object, predicted score of 

object gets multiplied with Intersection over union scores between bounding boxes. 

Highest scored bounding box remains on object and others are eliminated. 
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Figure 3. Visualization of grids with an example of 19x19 with 5 anchor boxes and 80 
class probabilities  

 
YOLO requires a text file for image with labels prepared on each object for training the 

model. In order to strengthen the model, each image in the selected database labeled one 

by one. As a result, a text file was generated with following format:  

<class of object> <x coordinate of label> <y coordinate of label> <width of label> 

<height of label>24. 

YOLO is open-sourced and publicly available in order to use the neural 

architecture to train a model. Although NVIE database contains information of 

coordinates of specific marked points in each picture, due to required format difference, 
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information of bounding box coordinates of emotions for each picture created from 

scratch and included into the source code. 

Results 

Pre-trained convolutional weights are used as initial weights for the model. These 

weights are produced by Darknet-53 model and trained on Imagenet25. These weights 

provide a great start for training emotion detection model. Model was trained for 9000 

iterations. In each iteration batch size was 64 and subdivision was 16. Threshold for 

detecting emotions set to the confidence of 25 percent. After each thousands iterations, 

weights were saved for comparison purposes.  

Average precision of each classes began from average of 25 percentages and after 

9000 iterations it raised up to 90 percent for each classes except fear and neutral.  Mean 

average precision in last iteration is 92.72 percent. As shown in the Figure 5 the model is 

really good at detecting happiness. It is also good in detecting surprise and disgust. Other 

emotions; anger, fear, neutral and sadness, are the ones that the model was having bad 

precision scores. That is correlational with having multiple detections for an image. As 

can shapes of specific locations such as position of eyebrows, visibility of lips, etc… can 

be similar during different emotions. Average IoU (Intersection over Union) also 

indicates that with a final score of 71.65 percent. 
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Figure 4. Examples of detections. The model predicted more than one emotions in some 
cases which shows similarity of face positions may lead more than one detection. 
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Figure 5.Average precision of each detection per iteration.  
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Figure 6. Mean Average Point(mAP), Average Intersection Over Union(IoU) and F1 
scores per iteration.  

Comparison 

For the sake of comparison emotion detection from NVIE Dataset also trained 

with DenseNet-20126 and ResNet-15227. Average IoU and mean average precision scores 

for each thousand iterations up to 9000 for YoloV3, DenseNet-201 and ResNet-152 are 

shown in the Table 2. In addition, graphs also included in Figure 7 and Figure 8. 
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Table 2 

mAP and IoU scores of YOLO, DenseNET and ResNET in each iteration up to 9000 

 YOLO DenseNET ResNet 

Number of 
Iterations 

mAP IoU mAP IoU mAP IoU 

1000 %27.97 %36.73 %43.88 %33.37 %43.59 %29.35 

2000 %45.12 %31 %56.6 %35.91 %58.08 %38.01 

3000 %54.96 %35.56 %73.84 %46.25 %67.28 %40.64 

4000 %67.67 %42.22 %82.97 %50.95 %78.91 %47.86 

5000 %75.63 %49.26 %87.18 %58.4 %83.63 %54.55 

6000 %83.01 %56.34 %92.67 %66.23 %89.13 %62.28 

7000 %86.68 %62.29 %93.65 %71.87 %90.76 %67.84 

8000 %89.94 %66.54 %93.61 %73.44 %92.65 %71.8 

9000 %92.72 %71.65 %96.46 %74.55 %94.2 %73.31 

 

 



17 

 

 

Figure 7. Mean Average Precision scores of YOLO, DenseNET and ResNET.  
 

 

Figure 8. Average Intersection Over Union scores of YOLO, DenseNET and ResNET. 
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As also mentioned in YOLOv321, DenseNet and ResNet perform better on mAP 

calculations because that models are deeper in comparison with Darknet 53’s 

architecture. However, this advantage of DenseNet and ResNet costs more time as it 

becomes longer to train these networks. On the other side when it comes to detection 

times, DenseNet and ResNet are slower than YOLOv3.  

In this experiment, it can be seen from the figures and table in this section, 

DenseNet and ResNet jumped quickly on measurements with DenseNet reaching %90 

mAP on 6000 iterations and ResNet on 7000 iterations. However, if the curve of YOLO 

taken into consideration in Figure 7, it did not stall in last 2000 iterations and caught up 

other algorithms mAP scores. In coherence with YOLOv3’s research the detection times 

were faster compared to other algorithms. 

Weaknesses 

Model performs greatly on the dataset. However, the advantage of the dataset 

becomes a hurdle when it comes to test the model with images from outside. Since 

database is homogenous the model does not reflect on other images as it does to the 

dataset. Model tends to label an image with 2 emotions more often as far as I observed. 

Also, model rarely detect emotions in outsourced image with two contradictory states 

such as happiness-sadness or disgust-surprise etc… 
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Figure 9. Testing model with outsourced images. 
 

Conclusion & Future Work 

YOLOv3 is such a great algorithm to detect objects. The trained model in this 

research shows that YOLO algorithm and Darknet architecture can potentially be used for 

detecting emotions. The problem is lack of thermal databases in academia. For future 

work there could be an attempt to build a dataset with multiple people posing in a picture 

which potentially would be more reliable approach to be tested in daily life for tasks to 
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help in psychology and internal security. Emotions play a key role in detecting an 

individual’s psychology. As for security people who are going to commit crime or 

disturbance in the public might be detected from their unusual heat levels.   
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