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A B S T R A C T   

Spatial soil information in forests is crucial to assess ecosystem services such as carbon storage, water purification 
or biodiversity. However, spatially continuous information on soil properties at adequate resolution is rare in 
forested areas, especially in mountain regions. Therefore, we aimed to build high-resolution soil property maps 
for pH, soil organic carbon, clay, sand, gravel and soil density for six depth intervals as well as for soil thickness 
for the entire forested area of Switzerland. We used legacy data from 2071 soil profiles and evaluated six 
different modelling approaches of digital soil mapping, namely lasso, robust external-drift kriging, geoadditive 
modelling, quantile regression forest (QRF), cubist and support vector machines. Moreover, we combined the 
predictions of the individual models by applying a weighted model averaging approach. All models were built 
from a large set of potential covariates which included e.g. multi-scale terrain attributes and remote sensing data 
characterizing vegetation cover. 

Model performances, evaluated against an independent dataset were similar for all methods. However, QRF 
achieved the best prediction performance in most cases (18 out of 37 models), while model averaging out
performed the individual models in five cases. For the final soil property maps we therefore used the QRF 
predictions. Prediction performance showed large differences for the individual soil properties. While for fine 
earth density the R2 of QRF varied between 0.51 and 0.64 across all depth intervals, soil organic carbon content 
was more difficult to predict (R2 = 0.19–0.32). Since QRF was used for map prediction, we assessed the 90% 
prediction intervals from which we derived uncertainty maps. The latter are valuable to better interpret the 
predictions and provide guidance for future mapping campaigns to improve the soil maps.   

1. Introduction 

Forest soils provide a wide range of crucial ecosystem services such 
as carbon storage, water cycle regulation and water filtering, wood 
production and biodiversity (Guo et al., 2001; Greiner et al., 2017; 
Pereira et al., 2018). Assessing these services has become increasingly 
important due to climate change (e.g. changes in tree species composi
tion, biomass production and carbon stocks (Lal, 2005; Bréda et al., 
2006; McDowell et al., 2020)), natural hazards (Hümann et al., 2011), 
biodiversity loss (Hartmann et al., 2012; Motiejūnaitė et al., 2019) or 
soil erosion (Hartanto et al., 2003). Therefore, spatially explicit infor
mation about soil properties such as pH, texture, organic carbon content 
or soil thickness is required. However, soil information is often only 

available for a subarea of the desired region or only described as broad 
soil series at a coarse scale. In Switzerland, for example, the legacy Swiss 
Soil Suitability Map (SSSM) at the scale of 1:200,000 (Swiss Federal 
Statistical Office, 2001) was used for forest species distribution model
ling (SDM) e.g. by Camathias et al. (2013) as no more detailed maps of 
Swiss forest soils were available. This coarse scaled map contains data 
collected mainly in agricultural areas with focus on agricultural soil 
suitability that have limited information on forest soils. Understanding 
the ecological requirements that determine, for example, the distribu
tion of tree species is a prerequisite for sustainable forest management. 
This requires knowledge of ecological conditions, such as the spatial 
distribution of edaphic information. Therefore, recent studies on SDM 
have emphasised that more effort should be made to derive covariates 
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such as soil pH and nutrients reflecting local edaphic conditions to 
improve SDM predictions (Mod et al., 2016; Scherrer and Guisan, 2019; 
Buri et al., 2020). 

Digital soil mapping (DSM) has been proven to be a useful approach 
to create maps of spatially continuous soil properties applying the 
‘scorpan’ (soil, climate, organisms, relief, parent material, age and 
space) model (e.g. McBratney et al., 2003; Minasny and McBratney, 
2016). Similar to SDMs, in the ‘scorpan’ model a relationship between 
field (soil) observations and environmental factors is established. 
However, unlike data on the occurrence of forest plant species, the 
availability of soil data in forested areas over large geographical extents 
is often limited, mainly due to high acquisition costs and time- 
consuming laboratory work (Grunwald et al., 2011). In combination 
with a not optimally distribution of the soil samples over the feature 
space and a high spatial variation of soil, which is particularly the case in 
mountainous regions due to e.g. heterogeneous topography and geology 
(Ballabio, 2009; Hoffmann et al., 2014; Simon et al., 2020), the accurate 
prediction of soil properties is challenging. To tackle this challenge, 
different model structures are compared to choose a single ‘best’ model 
or ‘best’ model set to improve prediction accuracy by reducing the 
variance of predicted values (Hastie et al., 2009). Machine learning 
methods such support vector machines (SVM), k-nearest neighbours 
(kNN), cubist or random forest (RF) are evaluated and the best per
forming one is used to make the prediction (e.g. Gomes et al., 2019; 
Keskin et al., 2019; Mahmoudzadeh et al., 2020). However, depending 
on the environmental conditions, quantity and distribution of soil 
samples, one model approach can lead to a more accurate prediction in a 
given area than others and vice versa (Diks and Vrugt, 2010; Guevara 
et al., 2018; Taghizadeh-Mehrjardi et al., 2019). Therefore, the concept 
of model averaging (MA) was introduced. The idea is to combine pre
dictions from different approaches that model differently structured 
relationships between response (dependent variable) and covariates. 
The combination of several predictions into a single one likely reduces 
the variance of the averaged model by balancing the errors of the single 
models and consequently results in a better fit and more robust pre
diction (Araujo and New, 2007; Tebaldi and Knutti, 2007; Abbott, 
2014). Various recent DSM studies implemented such a MA approach, e. 
g., for predicting pH, soil texture, soil organic matter, soil water storage 
capacity and soil types (Malone et al., 2014; Román Dobarco et al., 
2017; Nussbaum et al., 2018; Caubet et al., 2019; Taghizadeh-Mehrjardi 
et al., 2019; Chen et al., 2020). In these studies, model averaging often, 
but not always, improved predictive performance. 

The spatial representation of uncertainty in soil maps belongs to the 
fundamental principles of DSM and is therefore a crucial aspect when 
predicting soil properties (McBratney et al., 2003). In geostatistical 

models, the quantitative estimation of the uncertainty was a by-product 
and uncertainty maps were provided to users together with the soil maps 
(Vaysse and Lagacherie, 2017). A common way to visualize the uncer
tainty of a spatial prediction is to map the upper and lower limit of the 
90% prediction interval (PI). The PI reports the range of values within 
which the true value is expected to occur 9 times out of 10, with a 1 out 
of 20 probability for each of the two tails (Arrouays et al., 2014). 
Computing such intervals for machine learning predictions can be done 
by non-parametric bootstrapping techniques (Davison and Hinkley, 
1997) where models are repeatedly fitted to randomly resampled sub
sets of the data. The versatile approach of bootstrapping was used to 
create prediction intervals for regression tree based models (Padarian 
et al., 2017; Thomas et al., 2015; Viscarra Rossel et al., 2015), for 
gradient boosted trees (Hamzehpour et al., 2019), for shrinkage type 
regression (Liddicoat et al., 2015) or for convolutional neuronal net
works (Wadoux, 2019). Bootstrapping allows to combine uncertainties 
of several models, e.g. when random forest predictions are combined 
with a subsequent kriging of residuals (Szatmári and Pásztor, 2019). As a 
special case, quantile regression forest (QRF; Meinshausen, 2006) uses 
the model inherent bootstrap aggregation procedure (Hastie et al., 
2009) of random forest to quantify uncertainties directly from the model 
fit (Vaysse and Lagacherie, 2017; Dharumarajan et al., 2020). Besides 
resampling based bootstrap approaches, uncer tainties in machine 
learning have been quantified by quantile regression applied to nested 
cross-validation predictions (Kasraei et al., 2021) or the Monte Carlo 
dropout, a Bayesian optimization approach for neuronal networks (Gal 
and Ghahramani, 2016). Another versatile approach to empirically 
quantify uncertainties for machine learning predictions is based on 
partitioning the environmental factors. Covariate space is divided by 
(fuzzy) clustering and accompanying local uncertainties are assigned to 
the predictions belonging to the same cluster (Malone et al., 2011; 
Malone et al., 2014). 

In DSM, terrain attributes (TAs) are the most widely used covariates 
because topography is an important soil forming factor and digital 
elevation models (DEMs) are readily available to derive TAs (e.g. 
McBratney et al., 2003). Topography influences pedogenesis and thus 
soil properties through its effects on geomorphological, hydrological 
and biogeochemical processes (Creed et al., 2002; Seibert et al., 2007). 
These processes have a strong scale dependency (Cavazzi et al., 2013; 
Maynard and Johnson, 2014) operating at landscape scales (Grinand 
et al., 2008; Kim and Zheng, 2011) but also at local scales in submeter 
ranges (Baltensweiler et al., 2017; Baltensweiler et al., 2020). To 
incorporate various spatial scales, a multi-scale terrain analysis was 
suggested (Grinand et al., 2008; Behrens et al., 2010). Such a multi-scale 
approach improved prediction of soil types and properties compared to 
using only single-scale TAs (Behrens et al., 2010; Miller et al., 2015; 
Baltensweiler et al., 2020). 

Large sets of potentially relevant covariates are now available for 
DSM studies, not only because of the implementation of multi-scale 
terrain analysis (Behrens et al., 2010; Miller et al., 2015), but also due 
to the advent of high-resolution remote sensing data to describe e.g. 
vegetation cover or land use (Mulder et al., 2011), the availability of a 
wide range of climatic variables (Liddicoat et al., 2015) as well as the 
derivatives of geological and legacy soil maps (Nussbaum et al., 2014). 
Although such large sets of covariates may contain partly multi-collinear 
environmental data, they facilitate to find the relevant predictors to 
build the DSM models (Nussbaum et al., 2018). Many recent DSM 
studies, however, used a relatively small set of covariates, with less than 
30 predictors included (e.g. Vaysse and Lagacherie, 2015; Mulder et al., 
2016; Yang et al., 2016; Liu et al., 2020; Simon et al., 2020). Brungard 
et al. (2015) found that complex models using covariates identified by 
recursive feature selection were more accurate in predicting soil classes 
than models using covariates selected by soil scientists. Integrating a 
large number of covariates, however, seems advantageous regarding 
model performance (Nussbaum et al., 2018; Ågren et al., 2021; Peter
mann et al., 2021). 

Fig. 1. Location of the 2071 soil profiles (calibration and validation set) within 
the forested area of Switzerland. (1) Jura Mountains, (2) Central Plateau, (3) 
Northern Alps, (4) Central Alps, (5) Southern Alps. 
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The main objective of this study was to build high-resolution soil 
property maps for the entire forested area of Switzerland. We aimed to 
predict six soil properties (pH, soil organic carbon, clay, sand, gravel and 
soil density) for six soil depths (between 0 and 200 cm) as well as soil 
thickness (entity of all soil depths), resulting in a total of 37 target 
variables (responses). To efficiently predict this large number of re
sponses, our goal was to build models with minimal human intervention. 
We used large sets of covariates as input into six modelling approaches 
that all build different covariate-response relationships. We applied MA 
because we expected to reduce the prediction variance compared to the 
individual models. The predictive performance of all models was eval
uated with independent data. For the predictions calculated by the QRF, 
we derived accompanying uncertainty maps for each response. 

2. Materials and methods 

2.1. Study area 

The study area represents the forested area of Switzerland (circa 
45–47◦N and 6–10◦E), which covers roughly 30% of the country 
(13,000 km2; Brändli et al., 2020; Fig. 1). Due to the high variability of 
climate, geology and topography, Switzerland has strong environmental 
gradients within small distances. Forests extend over altitudes from 190 
to 2300 m a.s.l. (Brändli et al., 2020) and tree species composition varies 
along this altitudinal gradient. The climatic conditions vary consider
ably within the forested area: the mean annual temperature varies from 
− 1 to 13 ◦C and mean annual precipitation ranges from 600 to 2900 mm 
(MeteoSwiss, 2020). The geologic parent material for soil formation is 
often limestone or dolomite in the Jura Mountains and in parts of the 
Alps and Pre-Alps. In the Central Plateau fluvioglacial sediments of 
several Quaternary glaciations and of the Tertiary are widespread, while 
igneous and metamorphic rocks are common in the Southern Alps and in 
parts of the Central Alps. This large variation of soil forming factors 
results in a high diversity of forest soils across Switzerland (Walthert 
et al., 2004). 

2.2. Soil data 

We used data of 2071 soil profiles acquired in various soil surveys 
between 1968 and 2012 to build the models. Most of the profiles were 
collected by the Swiss Federal Institute for Forest, Snow and Landscape 
Research WSL (1412), some by various cantons (537; Mosimann, 2004- 
2010) or the research institute Agroscope (122) (Walthert et al., 2015). 
The soil profile density was 0.05 and 0.17 profiles per km2 in relation to 
the entire and the forested area of Switzerland, respectively. The loca
tion of the soil profiles was chosen by purposive sampling according to 
the aims of the various soil surveys. Therefore, the spatial distribution of 
the profiles was heterogeneous with clusters of profiles e.g. in the Cen
tral Plateau and sparse data in some mountainous regions (Fig. 1). 

We predicted the following six soil properties: gravel content [vol%], 
clay content [wt%], sand content [wt%], density of the fine soil fraction 
(≤ 2 mm) [g cm− 3], pH [− ] and soil organic carbon (SOC) content [wt 
%]. These properties were assessed for genetic soil horizons and had to 
be transferred to soil depths of fixed width (Nussbaum et al., 2018) as we 
used the following six standard depths of the GlobalSoilMap.net speci
fication (Arrouays et al., 2014): 0–5, 5–15, 15–30, 30–60, 60–100 and 
100–200 cm. The values of all genetic horizons within a given depth 
interval were summed in a weighted manner, where the weighting took 
into account the depth fraction, the fine-earth density, and the stone 
content of the corresponding genetic horizons. Due to the different data 
sources, tailored harmonisation procedures and quality checks were 
required to provide a consistent soil dataset. The gravel content (mineral 
particles >2 mm) in the soil pit was estimated in the field as volumetric 
percentage, sometimes in classes. The three texture classes clay (<
0.002 mm), silt (0.002–0.05 mm) and sand (0.05–2 mm) were deter
mined from 2-mm sieved soil samples either with the sedimentation 

method (Gee et al., 1986) or estimated in the field with a finger probe 
(AK SK, 2016). The density of the fine soil fraction (particles ≤ 2 mm) 
was measured on a selection of soil profiles by use of 559 volumetric 
samples mainly taken with steel cylinders (1000 m3) from mineral soil 
horizons. Based on this data set, Nussbaum et al. (2016) developed a 
linear regression pedotransfer function to estimate density in all soil 
profiles. Soil pH was measured potentiometrically in a suspension of 2- 
mm sieved soil samples in 0.01 M CaCl2. SOC content was determined in 
milled soil samples with seven different measurement techniques. For 
most of the samples from the cantonal profiles, the Walkley-Black 
method was used and for most of the WSL profiles, SOC content was 
analyzed by combustion of the samples with a CN analyzer NC 2500 (CE 
Instruments, Italy) whereby any existing carbonates were removed by 
HCl vapor prior to combustion (Walthert et al., 2010). For 184 soil 
samples SOC content was derived from soil color by use of the Munsell 
color code. 

For soil thickness prediction, we defined total soil depth [cm] as 
reaching down to a non-root-permeable layer or solid rock. If neither a 
non-permeable layer nor solid rock was encountered within the depth of 
the profile, the excavation depth of the profile pit was used. Soil thick
ness was limited in 5% of the soils by a non-permeable layer and in 11% 
by solid rock. 84% of the profiles had no visible depth limitation within 
the profile, so that in these cases soil thickness is not known. Soil 
thickness must therefore be interpreted as minimal expected soil 
thickness. 

2.3. Calibration and validation datasets 

The soil profiles were split into a calibration set (82%) and a vali
dation set (18%) to compute the model performance statistics (Supple
mentary Table S1). Not every soil property was assessed in every soil 
profile and in some cases soil data was not available for all six depth 
layers. Therefore, the number of 2071 soil samples per soil depth 
represent the maximum, with no missing values for a given target var
iable and soil depth layer. 

To ensure that the validation points represented well the different 
soil forming conditions we sampled validation points per physiographic 
unit of the Swiss soil suitability map (SSSM; Swiss Federal Statistical 
Office, 2001). The number of profiles per SSSM unit was 

nunit = 0.25*ntot*Aunit/Atotal (1)  

where Aunit = forest area in a given physiographic unit, Atotal = the sum 
of the forest area in all units, ntot = total number of soil profiles within all 
units and 0.25 = set value for the portion of validation points for each 
unit. The number of soil profiles was not proportionally distributed to 
the forested area per unit and some units had few profiles only. If the 
number to be sampled in a unit nunit was larger than 25% of the actual 
number of profiles in this unit, then 25% of the actual number of profiles 
was used. To avoid overrepresentation of validation points in clusters 
with a high profile density, validation points were sampled (without 
replacement) with probability weights corresponding to the forest area 
in the Voronoi polygons (Supplementary Fig. S1). 

2.4. Environmental covariates 

We built a comprehensive set of environmental covariates to 
describe the most important soil forming factors defined in the scorpan 
model (McBratney et al., 2003). All covariates were prepared as raster 
datasets with a resolution of 5 m × 5 m, regardless of the original 
resolution. 

2.4.1. Topography 
Using the Python API of ArcGIS (v.10.3, ESRI) and SAGA GIS 

(v2.1.2), a large number of terrain attributes (TAs) were derived based 
on two different Digital Elevation Models (DEMs) with a resolution of 5 
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and 25 m (Swisstopo, 2020). To include various spatial scales, we 
applied 2D convolution filters with a Gaussian weighting scheme to 
smooth the TAs. The filters were defined as circles with different radii: 
for the 5 m TAs, radii of 15, 30 and 60 m were applied, for the 25 m TAs 
50, 100 and 200 m were used. The calculation of the TAs was based on 
the following main computational functions: convexity, curvature, flow 
accumulation, flow length, flow path, slope, specific catchment area, 
ruggedness, stream power, topographic position index (TPI), topo
graphic wetness index (TWI) and valley depth. TPI was derived after 
Jenness (2011), the TWI was calculated with the single-flow direction 
algorithm according to O’Callaghan and Mark (1984) as well as with the 
multiple flow direction algorithm according to Freeman (1991). 

2.4.2. Parent material, soil legacy information and landscape types 
No detailed information on parent material was available for the 

extent of the Swiss forest. We therefore used two overview maps to 
describe the geology: the Geotechnical Map (map scale 1:200,000, 18 
classes; Bundesamt für Landestopografie, 1967) and the Hydro
geological Map (map scale 1:500,000, 9 classes; Swisstopo, 2007). To 
broadly partition the Swiss forested area into areas with similar pedo
genetic and geological conditions, we used the large-scaled Swiss Soil 
Suitability Map (SSSM, map scale 1:200,000; Swiss Federal Statistical 
Office, 2001). The SSSM contains soil-land units defined on the basis of 
strongly aggregated geomorphological and pedological criteria. We 
supplemented the SSSM with information from the Geological Map of 
Switzerland and the map of the last Glacial Maximum (map scale 
1:500,000; Swisstopo, 2009) resulting in a total of 30 classes (Nussbaum 
et al., 2014). In addition, the SSSM contains a finer classification with 
144 map units corresponding to second level soil series. We supple
mented these units with 10,865 data points of pH topsoil samples taken 
in forested areas throughout Switzerland (Swiss National Forest In
ventory LFI, 1984). As these legacy data were found to be unreliable in 
several cases due to survey inconsistencies and laboratory sample pro
cessing errors, we assigned the median pH values within a given SSSM 
unit and assigned these pH values to the respective unit. Furthermore, 
we used two overview maps that classify Switzerland into 10 biogeo
graphic regions (map scale 1:200,000; Gonseth et al., 2001), and 38 
landscape types (map scale 1:200,000; Bundesamt für Rau
mentwicklung, 2016). 

2.4.3. Climate 
We used three climate datasets on mean annual and monthly tem

perature and precipitation, cloud cover, sunshine duration, radiation 
and potential evapotranspiration. The datasets were based on different 
spatial resolutions and on different periods: 25 m resolution, 1961–1990 
(Zimmermann and Kienast, 1999); 100 m, 1981–1990 (Frehner et al., 
2011), and 250 m and 2 km, 1981–2010 and 1975–2010 (MeteoSwiss, 
2020). Because it was not a priori clear which data set was most 
appropriate, we used all three as covariates in the statistical analysis. 

2.4.4. Vegetation 
To capture the potential influence of the vegetation on the soil 

properties we calculated various vegetation indices. Based on Sentinel- 
2 satellite images (10 m resolution, level 1C; Drusch et al., 2012) 
covering the vegetation period of 2015 to 2018, we derived the 
Normalized Vegetation Index (NDVI; Rouse et al., 1974), the Pigment 
Specific Simple Ratio (PSSRa; Blackburn, 1998) and Green Normalized 
Difference Vegetation Index (GNDVI; Gitelson et al., 1996). To 
consider a longer time span we also calculated an averaged NDVI 
raster over the summer months for the years 1985–2015 based on 
Landsat-5 images (30 m resolution; Masek et al., 2006). To further 
account for vegetation we derived a terrain corrected canopy height 
model (resolution 25 m) from LIDAR data (Swisstopo, 2020) which 
describes the height of the forest cover. Both the vegetation indices 
and the canopy height model are proxies for forest productivity. We 
further included the proportion of coniferous and deciduous trees as a 
proxy for litter input (Waser et al., 2017). 

2.4.5. Final set of potential covariates for model building 
For the non-spatial models (LASSO, cubist, RF, SVM, see Section 

2.5.1), we included north and east coordinates besides the environ
mental covariates. Coordinate axes were additionally rotated by 30◦ and 
60◦ to allow for trend modelling in intermediate cardinal directions 
(Møller et al., 2020). To account for possible variation of the data over 
the long sampling period we added the sampling year as covariate. 
Predictions were made for the last observed year (2012). Strongly pos
itive skewed covariates were transformed by natural logarithm to avoid 
unstable model fits for approaches with non-robust loss functions (lasso, 
geoGAM, cubist, RF). Some covariates centred around zero (e.g. curva
ture) with long tails on either side. We log-transformed the absolute 
values of each side of the distribution separately re-adding the sign after 
transformation. 

To avoid multi-collinearity in the final set of covariates, we removed 
highly correlated covariates with a Pearson correlation coefficient |r| >
0.8. This finally led to 88 covariates representing topography, 52 with a 
climate information, 18 characterizing vegetation and 14 representing 
parent material, soil legacy information and landscape types. With the 
normal and rotated coordinates for the non-spatial models and the 
sampling year we started model building for each modelling method 
with 178 covariates. 

2.5. Methods 

2.5.1. Modelling methods 
We used three different statistical modelling methods, namely least 

absolute shrinkage and selection operator (lasso), robust external-drift 
kriging (georob), geoadditive modelling (geoGAM) as well as three 
machine learning procedures: random forest (RF), cubist and support 
vector machines (SVM). The machine learning methods were chosen for 
having satisfactory performance (Nussbaum et al., 2018) and being of 
different nature, hence possibly covering different relations between 
responses and covariates. The first four model methods were described 
in detail in Nussbaum et al. (2018). Cubist and SVM have been suc
cessfully used in DSM for predicting various soil properties (Brungard 
et al., 2015; Viscarra Rossel et al., 2015; Mulder et al., 2016). For all 
methods, except RF, we identified the optimal tuning parameters by 
calculating the root mean square error (RMSE, Eq. (4)) for the 10-fold 
cross-validation using the same cross-validation subsets. 

RF is widely used in DSM studies and is known to achieve good 
predicting performance (Hengl et al., 2018; Gomes et al., 2019; Keskin 
et al., 2019). Tuning parameters for RF are the number of trees ntree, the 
minimal number of observations at terminal nodes nmin and the number 
of randomly chosen covariates mtry to test at each split. According to 
Hastie et al. (2009; p. 288ff) RF performs remarkably well with little 
tuning, which also has been shown in DSM studies (Spiess, 2016; 
Camera et al., 2017; Nussbaum et al., 2018). We therefore used default 
values for the number of trees (ntree = 500) and the minimal number of 
observations at terminal nodes (nmin = 5) for all RF fits (R package 
randomForest, Liaw and Wiener, 2002). To reduce the large number of 
covariates we applied sequential recursive backward elimination (Kuhn 
and Johnson, 2013) based on node-impurity covariate importance 
(Hastie et al., 2009). To speed up computation, we removed 5 to 10 
covariates at each step fitting models with 168, 158, …, 108, 103, …, 8, 
3 covariates. Correlated covariates might substitute each other in the set 
of mtry candidates selected to test for binary splitting. As a result, the set 
of covariates after recursive backward elimination is often strongly 
correlated. To additionally reduce the covariates we applied an ad-hoc 
decorrelation procedure that was performing similarly to a more com
plex approach based on principal component analysis (Hertzog, 2017). 
The rows of the correlation matrix of the remaining covariates were 
compared. With pairwise differences above a threshold ε along the 
complete row the covariates were considered correlated and only the 
covariate with the largest importance was retained. Optimal ε was 
determined by minimizing out-of-bag RMSE (Eq. (4)). For covariate 
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removal we used as a default mtry = p/3. To find optimal mtry for the final 
covariate set we minimized out-of-bag RMSE by iterating through mtry 
= 1, 2, .., p. 

2.5.2. Response transformation 
For the parametric methods lasso, georob and geoGAM we trans

formed positively skewed responses Y(s). Suitable response trans
formation was chosen based on a profile plot of the Box-Cox 
transformation parameter λ (Box and Cox, 1964). Transformation by 
square root (sqrt) was applied to SOC content while the other responses 
were not transformed. 

Predictions of sqrt-transformed data were unbiasedly back- 
transformed by: 

Ỹ(s) = f̂ (x(s) )2
+ σ̂2

− Var
[

f̂ (x(s) )
]

(2)  

with f̂ (x(s) )2 being the prediction of the sqrt-transformed response, σ̂2 

the estimated residual variance of the fitted model and Var
[
f̂ (x(s) )

]
the 

variance of f̂ (x(s)) as provided by the final model. Predictions by lasso 

were back-transformed by (∙)2 because Var
[
f̂ (x(s) )

]
was not known. 

Responses for RF, cubist and SVM were not transformed. Clay and 
sand contents were modelled independently. Silt was computed as the 
remainder to 100%. 

2.5.3. Model averaging (MA) 
To combine the prediction of the six different modelling methods 

into one single prediction we applied a weighting scheme based on the 
performance of the individual models. The weights were computed 
proportional to the inverse cross-validation (CV) or out-of-bag mean 
squared error (MSE). We refrained from optimising weighting schemes 
as an additional test set was not available. The calibration data was used 

up to this step to find optimal tuning parameters by repeated CV and to 
calibrate the final model for each of the six modelling approaches. 
Hence, different weighing schemes for MA by comparing CV errors 
lacked independent calibration (Chen et al., 2020) and tests were 
inconclusive. 

2.5.4. Assessment of model performance 
The predictive model performance of the seven DSM methods 

(including MA) was quantified by comparing predicted Ỹ(si) and 
observed Y(si) soil properties for all locations si of the independent 
validation data set (see Section 2.3). The bias (Eq. (3)) was used to 
quantify systematic under- or overestimation, which should be close to 
zero for any reasonable DSM product. The RMSE (Eq. (4)) was calculated 
to assess prediction accuracy. To measure the proportion of variation 
explained we used R2 computed as mean squared error skill score (SSmse, 
Wilks, 2011, p. 359, Eq. (5)), interpreted with R2 = 1 for a perfect 
prediction, R2 = 0 if the prediction has the same variance as the data of 
the validation set and R2 < 0 if the prediction has a larger variance than 
the validation data. 

bias = −
1
n
∑n

i=1
(Y(si) − Ỹ(si)

)

(3)  

RMSE =

(
1
n

∑n

i=1

(
Y(si) − Ỹ(si)

)2
)1/2

(4)  

R2 = SSmse = 1 −

∑n

i=1

(
Y(si) − Ỹ(si)

)2

∑n

i=1

(

Y(si) −
1
n

∑n

i=1
Y(si)

)2 (5) 
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Fig. 2. Boxplots of R2 (for independent validation data) grouped by method (a), response type (b) and soil depth (c). Boxplots in: (a) summarize R2 values of n = 37 
responses per method (6 soil properties for 6 soil depth intervals and for soil thickness), (b) n = 42 responses per response type and (c) n = 36 responses per soil depth 
interval. For the response type soil thickness (b) R2 values are individually shown for the n = 7 models. Abbr.: lasso: grouped least absolute shrinkage and selection 
operator, georob: robust external-drift kriging, geoGAM: boosted geoadditive model, cubist: rule-based regression, RF: random forest, SVM: support vector machines, 
MA: model averaging. 
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2.5.5. Spatial prediction and uncertainty estimation 
For the spatial prediction of soil properties, all covariates were 

gridded to a 5 m cell size, which corresponds to the maximum resolution 
of the predictors. However, since the final soil maps were created with a 
resolution of 25 m, only every fifth pixel was considered for prediction. 

To quantify uncertainty for each predicted pixel, non-parametric 
bootstrap technique (Davison and Hinkley, 1997) has been shown to 
be useful for numerous machine learning methods (Liddicoat et al., 
2015; Thomas et al., 2015; Viscarra Rossel et al., 2015; Padarian et al., 
2017; Hamzehpour et al., 2019) and methods combinations (Szatmári 
and Pásztor, 2019). Here, we calculated uncertainties only for the 
method with the best model performance, namely RF (see Section 3.2) 
and used the quantile regression forest (QRF) method (Meinshausen, 
2006; Vaysse and Lagacherie, 2017) which retains all observations that 
fall in the terminal tree nodes for all fitted trees and therefore allows to 
assess the conditional distributions for each prediction. We derived the 
90%-prediction intervals (PI) by computing the α =0.05 and 0.95 
quantiles using the R package quantregForest (Meinshausen, 2017). The 
accuracy of the 90%-PIs was assessed by the ratio of validation obser
vations outside of the intervals computed with the calibration dataset. If 
less than 10% of the validation observations were outside the PIs, the 
intervals were too pessimistic, i.e. uncertainty was overestimated, if 
more than 10% were outside the PIs, the intervals were too optimistic 
(uncertainty was underestimated). To assess the local uncertainty of the 
QRF models we used accuracy plots (Goovaerts, 2001) comparing the 
nominal coverage probability of the validation observations with the 
estimated prediction intervals. The width of the 90% PI computed by the 
QRF was used to map the spatial patterns of uncertainty. 

3. Results and discussion 

3.1. Summary statistics of measured soil properties 

All measured soil properties showed a high variability reflecting the 
high variation of soil forming factors in the study region (Supplementary 
Tables S2 for descriptive statistics of untransformed soil properties). In 
the soil depth of 5–15 cm, for example, the sand content varied from 2 to 
89% and pH ranged between 2.8 and 7.8. For both soil properties, the 
interquartile range (IQR) tended to increase with soil depth (Supple
mentary Tables S2). For gravel, clay and sand content as well as for soil 
density and SOC content the validation set showed a larger IQR over all 
soil depths than the calibration set. 

3.2. Validation of model performance 

In general, the model performances were low to intermediate. The 
differences between methods were small (Fig. 2a, Supplementary 
Table S3). For 18 out of 37 responses, RF had most often the largest R2. 
MA outperformed the single models for five responses. Georob, cubist 
and SVM had the largest R2 for seven, five and two responses, respec
tively, while LASSO and geoGAM never performed best. GeoGAM, 
aiming to generate sparse and interpretable models, showed most often 
the lowest R2, namely in 17 out of 37 responses. Although with only 
slightly larger R2, RF was the most successful method, even better than 
the MA approach. Previous DSM studies showed that MA improved 
model performance for some but not all soil properties (e.g. Román 
Dobarco et al., 2017; Nussbaum et al., 2018; Chen et al., 2020). Nuss
baum et al. (2018), who used a similar set of methods and the same MA 
scheme as in this study, showed that out of 48 modelled soil properties, 
MA had the best performance in 23 responses, while RF was the best 
performing single model in 14 cases. However, the differences in model 
performance were rather small (< 0.05% in terms of R2) as also seen 
here. The better performance of RF compared to other methods found in 
the present study is in line with previous DSM analysis that have 
compared different model methods to predict various soil properties or 

soil classes (e.g. Heung et al., 2017; Assami and Hamdi-Aissa, 2019; 
Mahmoudzadeh et al., 2020). 

Because of the small differences in model performances, the weights 
used to calculate MA were balanced and showed a narrow dispersion 
(Supplementary Table S4). The smallest weight had geoGAM (0.136) 
and the largest weight had georob (0.195) both for SOC at 100–200 cm 
depth. 

The performances based on the external validation dataset depended 
largely on the predicted soil property (Fig. 2b, Supplementary Table S3). 
SOC content and soil thickness were difficult to predict: based on RF 
predictions, which were best for 5 of the 6 soil depths, R2 for SOC 
content ranged from 0.19 to 0.32. The median over all soil depths and 
methods was 0.17. The best validation of the soil thickness resulted in a 
R2 of 0.20 achieved by cubist. To improve the prediction of soil thickness 
in future, parametric survival approaches (e.g. Wei, 1992) that handle 
the right-censored nature of the data should be further investigated. The 
performance values for texture were larger: for clay, sand, and gravel, 
the median R2 were 0.41, 0.32, and 0.27, respectively. The high R2 for 
fine earth density was most likely influenced by the pedotransfer func
tion (PTF) also applied to the calibration and validation data (Nussbaum 
et al., 2016). The pH models showed the best performance at 30–60 cm 
depth with an R2 of 0.50 achieved by RF while the median R2 over all 
methods and depths was 0.43 (Fig. 2b, Supplementary Table S3). 
Opposed to previous studies (Vaysse and Lagacherie, 2015; Mulder 
et al., 2016; Nussbaum et al., 2018) we found no clear decrease in model 
performance over all soil properties with increasing soil depth (Fig. 2c). 
The bias was mostly small and for none of the models was its square 
above 10% of the MSE (Fig. 3). RF and the thereof influenced MA 
approach clearly showed the lowest bias whereas the largest bias was 
found for cubist and SVM. 

Furthermore, we evaluated whether the six modelling methods ten
ded to overfit the data. For that, we compared R2 calculated with 10-fold 
cross-validation or out-of-bag (OBB, RF) with the R2 obtained using the 
independent validation set for the different soil properties and depth 
intervals (Fig. 4). GeoGAM (Fig. 4c) was most prone to overfitting, 
especially for the soil properties with the lowest model performance 
(SOC, soil thickness, gravel) which is, although downweighted, also 
reflected in MA (Fig. 4g). SOC content showed the greatest variance 
across all methods and was partially underfitted in the independent 
validation for some depth intervals (Fig. 4b, d). This may be attributed to 
differences between the calibration and validation datasets (see Section 
3.1). Lasso revealed the lowest tendency of overfitting, which has also 
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grouped by method. Boxplots summarize ratios of n = 37 predicted 
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been found in previous studies (Fig. 4a, Liddicoat et al., 2015; Nussbaum 
et al., 2018). 

We decided to use RF models for predicting soil properties since this 
method showed the best overall performance in terms of explained 
variation, had the smallest bias of all methods, and was not prone to 
overfitting. 

3.3 Importance of covariates. 
For each soil property we assessed the relative importance of cova

riates using the RF algorithm, aggregated the values for different co
variate classes and calculated the average over all soil depths (Fig. 5). 
The classes comprise soil legacy information, climate, vegetation, relief, 
parent material and spatial position including geographic regions. For 
gravel, pH, SOC and soil thickness, relief was the most important class. 
Important covariates of this class were based on both unsmoothed TAs 
with 5 m resolution and TAs with 25 m resolution smoothed with large 
Gaussian filters. These different resolutions and filter sizes represent 
different spatial scales. Soil legacy information was most important to 
predict soil density, position/regions contributed most to predict clay 
and sand content. The latter covariate class includes spatial position, e.g. 
latitude and longitude, as well as information on geographic regions and 
landscape types. This class describes both spatial trends and region
alisation and is probably also a proxy for missing fine-scale geological 
information. Sampling year, included in the category soil legacy infor
mation, was not among the top 10 covariates for any soil property, but 
was selected for pH, SOC, clay and density in some of the models (8 out 
of 37 in total). 
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Fig. 4. R2 calculated by both 10-fold cross-validation and independent validation grouped by method (a–g). The different data points per soil property represent the 
soil depth intervals. The dotted line represents the 1:1 line. 

Fig. 5. Relative importance of environmental covariates in random forest 
aggregated over soil depths and covariates classes. 
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3.3. Uncertainty assessment 

The uncertainty for clay over all soil depths was underestimated as 
shown by the coverage probability computed with the independent 
validation set (Table 1). For sand and SOC, the uncertainty was over
estimated in the upper and lower soil layers, respectively. For gravel and 
pH, uncertainties were overestimated across all soil depths. Neverthe
less, the accuracy plot for pH in 5–15 cm depth shows that QRF pre
dicted accurately, as the coverage probability was close to the 1:1 line 
(Fig. 6). However, there was a slight overestimation for probability 
values between 0.6 and 0.8. 

3.4. Random forest pH map and spatial pattern of uncertainty 

As mentioned in Section 3.2, based on model evaluations (predictive 
performance, bias, overfitting) across all responses as well as preference 
for simpler models over more complex ones, we used the RF predictions 
for the final soil property maps. Using RF also had the advantage that we 
could use the computationally efficient PIs of QRF to create uncertainty 
maps to accompany the soil maps. As an example, we present and 
discuss here the pH soil map predicted for the 5–15 cm soil depth in
terval because of its high relevance for many ecological studies. The pH 

Fig. 6. Quantile regression forest (QRF) accuracy plot for pH in 5–15 cm depth 
computed with the independent validation set. 

Table 1 
Percentage [%] of validation observations outside of the 90%-prediction intervals for each soil property and soil thickness (10%: prediction intervals are exactly 
representing uncertainty, <10%: prediction intervals are too wide/uncertainty overestimated, > 10%: prediction intervals are too narrow/uncertainty 
underestimated.)  

Depth [cm]  0–5 5–15 15–30 30–60 60–100 100–200 

Gravel [%]  4.0 7.8 6.4 4.4 6.2 6.9 
Clay [%]  11.4 11.1 10.1 9.9 13.9 13.3 
Sand [%]  9.4 9.1 7.5 9.6 13.2 16.6 
Density [g cm− 3]  11.2 10.9 12.5 6.8 9.7 8.9 
pH  5.8 8.2 7.4 7.5 6.2 7.4 
SOC [%]  12.2 11.5 11.4 8.8 7.8 7.9 
Soil thickness [cm] 10.7        

Fig. 7. Random forest pH prediction at 5–15 cm soil depth for the forested area of Switzerland, including an inset map showing the fine-scale pH distribution. (1) 
Jura Mountains, (2) Central Plateau, (3) Northern Alps, (4) Central Alps, (5) Southern Alps. 
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Fig. 8. Uncertainty map for the pH predicted for 5–15 cm soil depth (a) and aggregated density map of soil profiles (b). Uncertainty is based on the width of the 90% 
prediction intervals using quantile regression forest and is expressed in pH units. The aggregated density map reflects the number of calibration soil profiles per km2 

forested area within a hexagon (interhexagon distance is 10 km). If no hexagon is present, there were no calibration points within this area. 

Fig. 9. Uncertainty map of pH (5–15 cm) for the Münstertal area. Within the class U of the Soil Suitability Map (Swiss Federal Statistical Office, 2001), the prediction 
interval and thus the uncertainty is higher than in the adjacent classes Uv and V. 
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map well reflects the general pattern of geology in Switzerland matching 
our expectations (Fig. 7). High pH-values (neutral to alkaline) were 
predicted in the Jura Mountains where Mesozoic limestones prevail. The 
Central Plateau is a Molasse basin filled with a mixture of calcareous and 
siliceous tertiary and quarternary sediments and therefore covers a wide 
range of pH values. In the Alps, the relation between predicted pH values 
and parent material is clearly visible, e.g. relatively high pH values in 
the inner Alpine valleys (west: Central Valais, east: Lower Engadine) 
with calcareous bedrock and low pH values in the upper Rhine valley 
(Surselva) with predominantly crystalline bedrock. The Southern Alps 
consist mainly of crystalline and metamorphic rocks and therefore have 
generally low pH values. Due to the high spatial resolution of the pre
diction and presumably also because of the multi-scale TAs, the map also 
well represents fine-scale pH variations. These plausible regional pat
terns correlate with topography and are particularly visible along ridges 
and valleys (Fig. 7, inset map). 

Density plots comparing the range and distribution of observed and 
predicted pH values show that the models could not reproduce the 
bimodal distribution pattern of the measured pH values (Supplementary 
Fig. S2). However, the predicted pH generally increased with soil depth, 
which is in accordance with the theory of soil pedogenesis. For the other 
soil properties, the range and distribution of observed values were also 
not fully reproduced in the predictions (Supplementary Figs. S2, S3 and 
S4). 

To assess the spatial pattern of uncertainty for this pH layer, we 
mapped the width of 90% PI computed by QRF (Fig. 8a). In general, the 
spatial patterns show large differences in PI widths across the forested 
area of Switzerland. Relatively small PI widths were found in the middle 
of the Central Plateau. This region largely coincides with the high 
sampling density of the soil profiles (Fig. 8b) and moreover, has rela
tively homogeneous and therefore uniformly acidified quaternary 
deposits. 

The largest interval widths were found in the Münstertal (south- 
eastern corner of Switzerland, Fig. 8a and Fig. 9). Here, the prediction 

uncertainty cannot be attributed to the profile density. It seems that the 
large uncertainty is due to the highly aggregated information and the 
coarse spatial delineation of the Swiss Soil Suitability Map (SSSM, Swiss 
Federal Statistical Office, 2001) that was used as a predictor. At the 
SSSM class boundaries between units “U” and “Uv” or “V”, strong de
creases in the interval width are evident. Whereas the unit “U” denotes 
“Alpine limestone mountains” and leads predominantly to alkaline soils, 
the unit “Uv” represents clastic sedimentary rocks (Verrucane) consist
ing of quartz conglomerates which lead to acidic soils. The latter also 
applies to the unit “V” which represents crystalline bedrock. The SSSM is 
unprecise in the Münstertal and overestimates the area of the unit “U” 
and therefore the pH is strongly overestimated in this unit. Although the 
SSSM does not adequately map the geological situation in the Münstertal 
region, overall it was an important covariate for our pH predictions. To 
improve the accuracy of pH modelling in this mountainous region, the 
description of the parent material needs to be improved. Similarly, 
Simon et al. (2020) showed for the Tyrolean Alps in Austria that detailed 
geological substrate information, including lithogenetic and mineral
ogical composition, is essential for digital soil mapping in mountainous 
areas. 

Interestingly, in large parts of the Ticino (southern part of 
Switzerland, Fig. 10), the patterns of the PIs reflect the topography. 
Areas with small PI widths are found on the mountain slopes and ridges, 
and larger PIs in the valleys. Apparently, in this region the soil profiles 
were mainly sampled on the mountain slopes, but not in the valleys and 
led to these distinct patterns. In order to improve the prediction in the 
valleys, additional sampling sites should be chosen considering 
topography. 

4. Conclusions 

The primary objective of our study was to create high-resolution soil 
maps for a total of 37 target soil variables for the forested area of 
Switzerland. All statistical modelling methods used were able to deal 

Fig. 10. Uncertainty map of pH (5–15 cm) for a region in the southern Swiss Alps. Large prediction interval widths (PI, high uncertainties) are associated with valleys 
while smaller PI are found on slopes and ridges. 
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with the large number of potential covariates and selected the relevant 
variables efficiently with a minimum of user interaction. Model per
formances for the study area with its strong environmental gradients 
were variable and largely depended on the predicted soil property. 
When comparing the performances of the six modelling methods used, 
the differences were considerably smaller than they were between the 
predicted soil properties. In most cases, RF performed best and, contrary 
to our expectations, generally even outperformed MA. Although MA did 
not reduce the prediction variance in our study, we agree with Taghi
zadeh-Mehrjardi et al. (2019), that when using multiple algorithms, MA 
should always be tested and not simply the best performing one applied 
to make the prediction. It would be interesting to evaluate whether other 
weighting schemes such as Granger-Ramanathan or Bias-corrected 
Variance Weighted would have produced better predictive results. 
However, this would have required an additional calibration dataset to 
simultaneously retain the validation dataset for an independent assess
ment of the predictive performance. 

Due to the only small differences in the performance of the modelling 
methods, we cannot give a clear recommendation as to which algorithm 
should generally be preferred to predict various soil properties. How
ever, when only one method is used, RF proved to be a good choice. If RF 
is chosen for a DSM project, we strongly recommend the application of 
QRF, as this generalised form of RF can be used to calculate uncertainty 
maps in addition to the predicted soil maps. Uncertainty maps help to 
interpret models and their predictions which is crucial for machine 
learning algorithms to gain credibility (Wadoux et al., 2020). The spatial 
measure of uncertainty can also provide guidance for future sampling 
locations or in which region improved covariates (e.g. information 
about parent material) are needed. 
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Version 2.3, Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL. https:// 
doi.org/10.3929/ethz-a-010693256. 

Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: representing model 
uncertainty in deep learning, international conference on machine learning. PMLR 
1050–1059. 

Gee, G.W., Bauder, J., Klute, A., 1986. Methods of soil analysis, part 1, physical and 
mineralogical methods. Soil science Society of America Book Series. American 
Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison, 
Wisconsin, pp. 404–410. 

Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote 
sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58 (3), 
289–298. https://doi.org/10.1016/S0034-4257(96)00072-7. 

Gomes, L.C., Faria, R.M., de Souza, E., Veloso, G.V., Schaefer, C.E.G.R., Filho, E.I.F., 
2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 340, 
337–350. https://doi.org/10.1016/j.geoderma.2019.01.007. 

Gonseth, Y., Wohlgemuth, T., Sansonnens, B., Buttler, A., 2001. Die biogeographischen 
Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Umwelt Materialien 
Nr. 137. Swiss Agency for the Environment, Forests and Landscape SAEFL, Bern. 

Goovaerts, P., 2001. Geostatistical modelling of uncertainty in soil science. Geoderma 
103 (1), 3–26. https://doi.org/10.1016/S0016-7061(01)00067-2. 

Greiner, L., Keller, A., Gret-Regamey, A., Papritz, A., 2017. Soil function assessment: 
review of methods for quantifying the contributions of soils to ecosystem services. 
Land Use Policy 69, 224–237. https://doi.org/10.1016/j.landusepol.2017.06.025. 

Grinand, C., Arrouays, D., Laroche, B., Martin, M.P., 2008. Extrapolating regional soil 
landscapes from an existing soil map: sampling intensity, validation procedures, and 
integration of spatial context. Geoderma 143 (1–2), 180–190. https://doi.org/ 
10.1016/j.geoderma.2007.11.004. 

Grunwald, S., Thompson, J.A., Boettinger, J.L., 2011. Digital soil mapping and modeling 
at continental scales: finding solutions for global issues. Soil Sci. Soc. Am. J. 75 (4), 
1201–1213. https://doi.org/10.2136/sssaj2011.0025. 

Guevara, M., Olmedo, G.F., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano 
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