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Abstract

The reticulation of an algebra A is a bounded distributive lattice whose
prime spectrum of ideals (or filters), endowed with the Stone topology, is homeo-
morphic to the prime spectrum of congruences ofA, with its own Stone topology.
The reticulation allows algebraic and topological properties to be transferred
between the algebra A and this bounded distributive lattice, a transfer which
is facilitated if we can define a reticulation functor from a variety containing A
to the variety of (bounded) distributive lattices. In this paper, we continue the
study of the reticulation of a universal algebra initiated in [27], where we have
used the notion of prime congruence introduced through the term condition
commutator, for the purpose of creating a common setting for the study of the
reticulation, applicable both to classical algebraic structures and to the alge-
bras of logics. We characterize morphisms which admit an image through the
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reticulation and investigate the kinds of varieties that admit reticulation func-
tors; we prove that these include semi–degenerate congruence–distributive vari-
eties with the Compact Intersection Property and semi–degenerate congruence–
distributive varieties with congruence intersection terms, as well as generaliza-
tions of these, and additional varietal properties ensure that the reticulation
functors preserve the injectivity of morphisms. We also study the property of
morphisms of having an image through the reticulation in relation to another
property, involving the complemented elements of congruence lattices, exem-
plify the transfer of properties through the reticulation with conditions Going
Up, Going Down, Lying Over and the Congruence Boolean Lifting Property,
and illustrate the applicability of such a transfer by using it to derive results
for certain types of varieties from properties of bounded distributive lattices.
2010 Mathematics Subject Classification: primary: 08B10; secondary:
08A30, 06B10, 06F35, 03G25.
Keywords: (congruence–modular, congruence–distributive, semi–degenerate)
variety, (term condition, modular) commutator, (prime, compact) congruence,
reticulation.

1 Introduction

The reticulation of an algebra A from a variety C is a bounded distributive lattice
L(A) such that the spectrum of the prime congruences of A, endowed with the Stone
topology, is homeomorphic to the spectrum of the prime ideals or the prime filters
of L(A), endowed with its Stone topology. The construction for the reticulations
of the members of C allows algebraic and topological properties to be transferred
between C and the variety D01 of bounded distributive lattices. While a known
property of bounded distributive lattices ensures the uniqueness of L(A) up to a
lattice isomorphism (once we have chosen, for its construction, either its spectrum
of prime ideals or that of its prime filters, since the reticulation constructed w.r.t. to
one of these prime spectra is dually lattice isomorphic to the one constructed w.r.t.
the other), prior to our construction for the setting of universal algebra from [27],
the existence of the reticulation had only been proven for several concrete varieties
C, out of which we mention: commutative unitary rings [33, 48], unitary rings [10],
MV algebras [9], BL algebras [20] and (bounded commutative integral) residuated
lattices [39, 40, 42].

In [27], we have constructed the reticulation for any algebra whose one–class
congruence is compact, whose term condition commutator is commutative and dis-
tributive w.r.t. arbitrary joins and whose set of compact congruences is closed w.r.t.
this commutator operation. In particular, our construction can be applied to any
algebra from a semi–degenerate congruence–modular variety having the set of the
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compact congruences closed w.r.t. the modular commutator, hence this construction
generalizes all previous constructions of the reticulation for particular varieties, and
can be further applied to other varieties, both of classical algebras and of algebras
arising in the study of non–classical logics. Indeed, note, in the papers cited above,
that the construction for the reticulations of residuated lattices, which generalizes
that for BL algebras, which in turn generalizes that for MV algebras, relies on prime
filters of residuated lattices, which are just the meet–prime elements of their lattices
of filters, which are isomorphic to their lattices of congruences, whose meet–prime
elements are exactly their prime congruences w.r.t. the commutator since the com-
mutator equals the intersection in the congruence–distributive variety of residuated
lattices, thus also in its subvarieties of BL algebras, respectively MV algebras; on
the other hand, the construction of the reticulation for unitary rings, which gen-
eralizes that for commutative unitary rings, relies on prime ideals, i.e. the ideals
which are prime w.r.t. the multiplication of ideals, which are taken by the isomor-
phism between the lattice of ideals and the lattice of congruences into the prime
congruences w.r.t. the modular commutator; hence our choice for the definition
of the reticulation in this general setting, relying on congruences which are prime
w.r.t. the commutator. Out of the many definitions for the commutator that can be
found in mathematical litterature, we have chosen to work with the term condition
commutator defined in [37], that we often simply call commutator; recall that, if A
is a member of a congruence–modular variety, then all notions of commutator define
the same commutator operation on A, usually referred to as the modular commuta-
tor on A. Moreover, most of our results can be applied to individual algebras that
satisfy the conditions we enforce on their term condition commutator, even without
investigating the varieties they generate or any variety they belong to, which can
turn out useful in the study of non–equational classes of algebras.

After a preliminaries section in which we remind some notions from universal
algebra and establish several notations, we recall our construction from [27] for the
reticulation in this universal algebra setting in Section 3. A very useful tool for
transferring properties through the reticulation between C and D01 is a reticulation
functor L : C → D01, whose preservation properties can be used for such a transfer.
In [27], we have defined an image through the reticulation for any surjective mor-
phism between algebras satisfying the conditions above for the compact congruences
and the term condition commutator. In Section 4 we introduce the functoriality of
the reticulation, which essentially means, for an arbitrary morphism f : A → B in
C between algebras A and B from C having the commutators with the properties
above, that f admits an image L(f) through the reticulation, that is f induces a 0
and join–preserving function L(f) : L(A)→ L(B). The reticulations of the members
of C along with these images of the morphisms in C through the reticulation give us

1125



Georgescu, Kwuida and Mureşan

a functor from the category C to the category of (bounded) distributive lattices iff all
morphisms in C satisfy the functoriality of the reticulation and their images through
the reticulation also preserve the meet (and the 1); we call such a functor a reticula-
tion functor for the variety C. It turns out that the admissible morphisms we have
studied in [26, 43], that is the morphisms with the property that the inverse images
of prime congruences through those morphisms are again prime congruences, are ex-
actly the morphisms satisfying the functoriality of the reticulation and whose images
through the reticulation are lattice morphisms. Unfortunately, we have not been able
to construct a reticulation functor in the most general case for which we have con-
structed the reticulation, but we have obtained reticulation functors for remarkable
kinds of varieties, such as semi–degenerate congruence–distributive varieties with the
Compact Intersection Property (CIP) and semi–degenerate congruence–modular va-
rieties with compact commutator terms, a notion we have defined by analogy to the
more restrictive one of a congruence–distributive variety with compact intersection
terms. Varieties with stronger properties, such as semi–degenerate congruence–
extensible congruence–distributive varieties with the CIP or semi–degenerate vari-
eties with equationally definable principal congruences (EDPC) and the CIP turn
out to have reticulation functors which preserve the injectivity of morphisms. We
conclude this section by transferring properties Going Up, Going Down and Lying
Over on admissible morphisms through the reticulation, and, as an illustration of
the applicability of the reticulation, using this transfer to derive a result on varieties
with EDPC, which states that admissible morphisms in varieties with EDPC satisfy
Going Up and admissible morphisms in semi–degenerate varieties with EDPC also
satisfy Lying Over, which generalizes the similar results on MV algebras from [11]
and on BL algebras from [47] (see also [16] for MV algebras and [36] for BL alge-
bras); of course, our general result can also be applied to l–groups, BCK algebras,
MTL algebras, Heyting algebras (see [30] for BCK algebras and other algebras of
logic) etc.. In Section 5 we study the functoriality of the reticulation in relation
with another property of morphisms, that we call functoriality of the Boolean cen-
ter, involving the complemented elements of the congruence lattice of an algebra
A, which form a Boolean sublattice of the lattice of congruences of A, called the
Boolean center of this congruence lattice, whenever A satisfies the conditions above
on compact congruences and the term condition commutator and, additionally, has
the property that the term condition commutator of any congruence α of A with the
one–class congruence of A equals α, in particular whenever A is a member of a semi–
degenerate congruence–modular variety and has the set of the compact congruences
closed w.r.t. the modular commutator. The functoriality of the Boolean center on a
morphism f : A → B in C between algebras with the commutators as above essen-
tially means that f induces a Boolean morphism between the Boolean centers of the
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congruence lattices of A and B; if all morphisms in C have this property, then we
can define a functor from the category C to the category of Boolean algebras. We
also study another property related to these Boolean centers, namely the Congru-
ence Boolean Lifting Property (CBLP), which turns out to be transferrable through
the reticulation in the case when C is semi–degenerate and congruence–modular.
We conclude our paper with Section 6, containing examples for the notions in the
previous sections which also prove independence relations between these notions.

2 Preliminaries

We refer the reader to [1, 14, 29, 35] for a further study of the following notions
from universal algebra, to [7, 13, 17, 28, 46] for the lattice–theoretical ones, to
[1, 21, 35, 45] for the results on commutators and to [1, 18, 19, 26, 43, 31] for the
Stone topologies.

All algebras will be non–empty and they will be designated by their underlying
sets; by trivial algebra we mean one–element algebra. For brevity, we denote by
A ∼= B the fact that two algebras A and B of the same type are isomorphic. We
abbreviate by CIP and PIP the Compact Intersection Property and the Principal
Intersection Property, respectively.

N denotes the set of the natural numbers, N∗ = N \ {0}, and, for any a, b ∈ N,
we denote by a, b the interval in the lattice (N,≤) bounded by a and b, where ≤ is
the natural order. Let M , N be sets and S ⊆M . Then P(M) denotes the set of the
subsets of M and (Eq(M),∨,∩,∆M = {(x, x) | x ∈M},∇M = M2) is the bounded
lattice of the equivalences on M . We denote by iS,M : S → M the inclusion map
and by idM = iM,M the identity map ofM . For any function f : M → N , we denote
by Ker(f) the kernel of f , by f∗ the inverse image of f2 = f × f : M2 → N2 and
we use the common notation f for the direct image of f2.

Let L be a lattice. Then Cp(L) denotes the set of the compact elements of L,
and Id(L) and SpecId(L) denote the set of the ideals and that of the prime ideals
of L, respectively. Let U ⊆ L and u ∈ L. Then [U) and [u) denote the filters of
L generated by U and by u, respectively, while (U ] and (u] denote the ideals of L
generated by U and by u, respectively.

We denote by Ln the n–element chain for any n ∈ N∗, byM3 the five–element
modular non–distributive lattice and by N5 the five–element non–modular lattice.
Recall that a frame is a complete lattice with the meet distributive w.r.t. arbitrary
joins.

Throughout this paper, by functor we mean covariant functor. B denotes the
functor from the variety of bounded distributive lattices to the variety of Boolean
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algebras which takes each bounded distributive lattice to its Boolean center and
every morphism in the former variety to its restriction to the Boolean centers. If L
is a bounded lattice, then we denote by B(L) the set of the complemented elements
of L even if L is not distributive.

H© Throughout the rest of this paper, τ will be a universal algebras signature, C an
equational class of τ–algebras and A an arbitrary member of C. Unless mentioned
otherwise, by morphism we mean τ–morphism.

Everywhere in this paper, we will mark global assumptions as above, for better
visibility.

Con(A), Max(A), PCon(A) and K(A) denote the sets of the congruences, max-
imal congruences, principal congruences and finitely generated congruences of A,
respectively; note that K(A) is the set of the compact elements of the lattice
Con(A). Max(A) is called the maximal spectrum of A. For any X ⊆ A2 and
any a, b ∈ A, CgA(X) will be the congruence of A generated by X and we shall
denote by CgA(a, b) = CgA({(a, b)}).

For any θ ∈ Con(A), pθ : A → A/θ will be the canonical surjective morphism;
given any X ∈ A ∪ A2 ∪ P(A) ∪ P(A2), we denote by X/θ = pθ(X). If L is a
distributive lattice, so that we have the canonical lattice embedding ιL : Id(L) →
Con(L), then we will denote, for every I ∈ Id(L), by πI = pιL(I) : L→ L/I.

Recall that, if B is a member of C and f : A → B is a morphism, then, for any
α ∈ Con(A) and any β ∈ Con(B), we have f∗(β) ∈ [Ker(f)) ⊆ Con(A), f(f∗(β)) =
β ∩ f(A2) ⊆ β and α ⊆ f∗(f(α)); if α ∈ [Ker(f)), then f(α) ∈ Con(f(A)) and
f∗(f(α)) = α. Hence θ 7→ f(θ) is a lattice isomorphism from [Ker(f)) to Con(f(A))
and thus it sets an order isomorphism from Max(A)∩[Ker(f)) to Max(f(A)). For the
next lemma, note that Ker(pθ) = θ for any θ ∈ Con(A), and that CgA(CgS(X)) =
CgA(X) for any subalgebra S of A and any X ⊆ S2.

Lemma 2.1. [8, Lemma 1.11], [49, Proposition 1.2] If B is a member of C and
f : A→ B is a morphism, then, for any X ⊆ A2 and any α, θ ∈ Con(A):

• f(CgA(X)∨Ker(f)) = Cgf(A)(f(X)), so CgB(f(CgA(X))) = CgB(f(X)) and
(CgA(X) ∨ θ)/θ = CgA/θ(X/θ);

• in particular, f(α ∨Ker(f)) = Cgf(A)(f(α)), so (α ∨ θ)/θ = CgA/θ(α/θ).

If B is a member of C and f : A → B is a morphism, then, for any non–empty
family (αi)i∈I ⊆ [Ker(f)), we have, in Con(f(A)): f(

∨

i∈I
αi) =

∨

i∈I
f(αi). Indeed, by

1128



Functorial Properties of the Reticulation

Lemma 2.1, f(
∨

i∈I
αi) = f(CgA(

⋃

i∈I
αi)) = Cgf(A)(f(

⋃

i∈I
αi)) = Cgf(A)(

⋃

i∈I
f(αi)) =

∨

i∈I
f(αi).

We use the following definition from [37] for the term condition commutator, that
we simply call commutator from now on. Let α, β ∈ Con(A). For any µ ∈ Con(A),
by C(α, β;µ) we denote the fact that the following condition holds: for all n, k ∈ N
and any term t over τ of arity n + k, if (ai, bi) ∈ α for all i ∈ 1, n and (cj , dj) ∈
β for all j ∈ 1, k, then (tA(a1, . . . , an, c1, . . . , ck), tA(a1, . . . , an, d1, . . . , dk)) ∈ µ iff
(tA(b1, . . . , bn, c1, . . . , ck), tA(b1, . . . , bn, d1, . . . , dk)) ∈ µ. We denote by [α, β]A =⋂{µ ∈ Con(A) | C(α, β;µ)}; we call [α, β]A the commutator of α and β in A. The
operation [·, ·]A : Con(A)× Con(A)→ Con(A) is called the commutator of A.

Recall that C is said to be congruence–modular, respectively congruence–
distributive iff the congruence lattices of all its members are modular, respectively
distributive.

By [21], if C is congruence–modular, then, for each member M of C, [·, ·]M is the
unique binary operation on Con(M) such that, for all α, β ∈ Con(M), [α, β]M =
min{µ ∈ Con(M) | µ ⊆ α ∩ β and, for any member N of C and any surjective
morphism h : M → N in C, µ ∨ Ker(h) = h∗([h(α ∨ Ker(h)), h(β ∨ Ker(h))]N )}.
Therefore, if C is congruence–modular, α, β, θ ∈ Con(A) and f is surjective, then
[f(α∨Ker(f)), f(β ∨Ker(f))]B = f([α, β]A∨Ker(f)), thus [(α∨ θ)/θ, (β ∨ θ)/θ]B =
([α, β]A ∨ θ)/θ, hence, if θ ⊆ α ∩ β, then [α/θ, β/θ]A/θ = ([α, β]A ∨ θ)/θ, and, if,
moreover, θ ⊆ [α, β]A, then [α/θ, β/θ]A/θ = [α, β]A/θ.

By [37, Lemma 4.6, Lemma 4.7, Theorem 8.3], the commutator is smaller than
the intersection and increasing in both arguments. If C is congruence–modular, then
the commutator is also commutative and distributive in both arguments with respect
to arbitrary joins. By [32], if C is congruence–distributive, then, in each member
of C, the commutator coincides with the intersection of congruences. Clearly, if the
commutator of A coincides with the intersection of congruences, then Con(A) is a
frame, in particular it is congruence–distributive. Recall, however, that, since the
lattice Con(A) is complete and algebraic, thus upper continuous, Con(A) is a frame
whenever it is distributive.

By [21, Theorem 8.5, p. 85], if C is congruence–modular, then the following are
equivalent:
• for any algebra M from C, [∇M ,∇M ]M = ∇M ;

• for any algebra M from C and any θ ∈ Con(M), [θ,∇M ]M = θ;

• C has no skew congruences, that is, for any algebrasM andN from C, Con(M×
N) = {θ × ζ | θ ∈ Con(M), ζ ∈ Con(N)}.
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Recall that C is said to be semi–degenerate iff no non–trivial algebra in C has
one–element subalgebras. By [35], C is semi–degenerate iff, for all members M of
C, ∇M ∈ K(M). By [1, Lemma 5.2] and the fact that, in congruence–distributive
varieties, the commutator coincides with the intersection, we have: if C is either
congruence–distributive or both congruence–modular and semi–degenerate, then C
has no skew congruences.

If [·, ·]A is commutative and distributive w.r.t. the join (in particular if C is
congruence–modular), then, if A has principal commutators, that is [PCon(A),
PCon(A)]A ⊆ PCon(A), then [K(A),K(A)]A ⊆ K(A).

We denote the set of the prime congruences of A by Spec(A). As defined in [21],
Spec(A) = {φ ∈ Con(A) \ {∇A} | (∀α, β ∈ Con(A)) ([α, β]A ⊆ φ ⇒ α ⊆ φ or β ⊆
φ)}. Spec(A) is called the (prime) spectrum of A. Recall that Spec(A) is not
necessarily non–empty. However, by [1, Theorem 5.3], if C is congruence–modular
and semi–degenerate, then any proper congruence of A is included in a maximal
congruence of A, and any maximal congruence of A is prime. Recall, also, that, if
C is congruence–modular, B is a member of C and f : A → B is a morphism, then
the map α 7→ f(α) is an order isomorphism from Spec(A)∩ [Ker(f)) to Spec(f(A)),
thus to Spec(B) if f is surjective, case in which its inverse is f∗ |Spec(B): Spec(B)→
Spec(A). In [26, 43], we have called f an admissible morphism iff f∗(Spec(B)) ⊆
Spec(A).

Remark 2.2. By the above, if f is surjective, then f is admissible.

Assume that [·, ·]A is commutative and distributive w.r.t. arbitrary joins and that
Spec(A) is non–empty, which hold if C is congruence–modular and semi–degenerate
and A is non–trivial. For each θ ∈ Con(A), we denote by VA(θ) = Spec(A)∩ [θ) and
by DA(θ) = Spec(A)\VA(θ). Then, by [1, 27], (Spec(A), {DA(θ) | θ ∈ Con(A)}) is a
topological space in which, for all α, β ∈ Con(A) and any family (γi)i∈I ⊆ Con(A),
the following hold:

• VA([α, β]A) = VA(α ∩ β) = VA(α) ∪ VA(β) and VA(
∨

i∈I
γi) =

⋂

i∈I
VA(γi);

• if C is congruence–modular and semi–degenerate, then: VA(α) = ∅ iff α = ∇A.

{DA(θ) | θ ∈ Con(A)} is called the Stone topology on Spec(A) and it has
{DA(CgA(a, b)) | a, b ∈ A} as a basis. In the same way, but replacing congru-
ences with ideals, one defines the Stone topology on the set of prime ideals of a
bounded distributive lattice.
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3 The Construction of the Reticulation of a Universal
Algebra and Related Results

In this section, we recall the construction for the reticulation of A from [27] and
point out its basic properties.

H© Throughout this section, we shall assume that [·, ·]A is commutative and dis-
tributive w.r.t. arbitrary joins and that ∇A ∈ K(A), which hold in the particular
case when C is congruence–modular and semi–degenerate.

For every θ ∈ Con(A), we denote by ρA(θ) the radical of θ: ρA(θ) =
⋂
{φ ∈

Spec(A) | θ ⊆ φ} =
⋂

φ∈VA(θ)
φ. We denote by RCon(A) the set of the radical con-

gruences of A: RCon(A) = {ρA(θ) | θ ∈ Con(A)} = {θ ∈ Con(A) | θ = ρA(θ)} =
{⋂M | M ⊆ Spec(A)}. If the commutator of A equals the intersection (so that A is
congruence–distributive), in particular if C is congruence–distributive, then Spec(A)
is the set of the prime elements of the lattice Con(A), thus its set of meet–irreducible
elements, hence RCon(A) = Con(A) since the lattice Con(A) is algebraic.

Note that, for any α, β, θ ∈ Con(A), the following equivalences hold: α ⊆ ρA(β)
iff ρA(α) ⊆ ρA(β) iff VA(α) ⊇ VA(β); thus ρA(α) = ρA(β) iff VA(α) = VA(β). By
the above and the properties of the Stone topology on Spec(A) recalled in Section
2, we have proven, in [27], that, for any n ∈ N∗, any α, β ∈ Con(A) and any
(γi)i∈I ⊆ Con(A), we have:

• ρA(ρA(α)) = ρA(α); α ⊆ ρA(β) iff ρA(α) ⊆ ρA(β); ρA(α) = α iff α ∈
RCon(A) ⊇ Spec(A);

• ρA(
∨

i∈I
γi) = ρA(

∨

i∈I
ρA(γi)) =

∨

i∈I
ρA(γi); ρA([α, β]nA) = ρA([α, β]A) = ρA(α ∧

β) = ρA(α) ∧ ρA(β);

• ρA(∇A) = ∇A; if C is congruence–modular and semi–degenerate, then:
ρA(α) = ∇A iff α = ∇A;

• ρA/θ((α ∨ θ)/θ) = ρA(α ∨ θ)/θ.

If we define ≡A= {(α, β) ∈ Con(A) × Con(A) | ρA(α) = ρA(β)}, then, by the
above, ≡A is a lattice congruence of Con(A) that preserves arbitrary joins and fulfills
[α, β]A ≡A α∩β for all α, β ∈ Con(A). By the above, if the commutator of A equals
the intersection, in particular if C is congruence–distributive, then ρA(θ) = θ for
all θ ∈ Con(A), hence ≡A= ∆Con(A). Recall that A is called a semiprime algebra
iff ∆A ∈ RCon(A), that is iff ρA(∆A) = ∆A. Therefore, if the commutator of A
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equals the intersection, then A is semiprime, and, if C is congruence–distributive,
then all members of C are semiprime. Of course, θ ⊆ ρA(θ) for all θ ∈ Con(A), so
ρA(θ) = ∆A implies θ = ∆A, hence, if A is semiprime, then ∆A/≡A= {∆A}. By the
above, if C is congruence–modular and semi–degenerate, then ∇A/≡A= {∇A}.

Remark 3.1. Assume that A is semiprime and let α, β ∈ Con(A). Then ρA([α, β]A)
= ρA(α ∩ β), hence, by the above: [α, β]A = ∆A iff α ∩ β = ∆A.

We will often use the remarks in this paper without referencing them.
By the properties of the commutator, the quotient bounded lattice, (Con(A)/≡A,

∨,∧,0,1), is a frame. We denote by λA : Con(A) → Con(A)/≡A the canonical
surjective lattice morphism. The intersection ≡A∩(K(A))2 ∈ Eq(K(A)) will also be
denoted ≡A; L(A) = K(A)/≡A will be its quotient set and we will use the same
notation for the canonical surjection: λA : K(A)→ L(A).

H© Throughout the rest of this section, we shall assume that K(A) is closed w.r.t.
the commutator of A.

Then, by [27, Proposition 9], L(A) is a bounded sublattice of Con(A)/≡A, thus
it is a bounded distributive lattice. Note that, in the particular case when the
commutator of A coincides with the intersection, the fact that K(A) is closed w.r.t.
the commutator means that K(A) is a sublattice of Con(A). So, if C is congruence–
distributive, then: C has the CIP iff K(M) is a sublattice of Con(M) in each member
M of C.

Note from the above that, for any θ ∈ Con(A), we have: λA(θ) = 1 iff θ = ∇A.
Let θ ∈ Con(A). Then we denote by θ∗ = {λA(α) | α ∈ K(A), α ⊆ θ}. Of

course, 0 = λA(∆A) ∈ θ∗. Let α, β ∈ K(A). Then clearly α∨β ∈ K(A), λA(α∨β) =
λA(α)∨λA(β) and, if α ⊆ θ and β ⊆ θ, then α∨β ⊆ θ. Since K(A) is closed w.r.t. the
commutator of A, we have [α, β]A ∈ K(A), and, if α ⊆ θ and λA(β) ≤ λA(α), then
[α, β]A ⊆ α ⊆ θ and λA(β) = λA(α) ∧ λA(β) = λA([α, β]A). Hence θ∗ ∈ Id(L(A)).

Proposition 3.2. [27, Proposition 10, (ii)] The map θ 7→ θ∗ from Con(A) to
Id(L(A)) is surjective.

Proposition 3.3. [27, Proposition 11] If θ ∈ Spec(A), then θ∗ ∈ SpecId(L(A)),
and the map φ 7→ φ∗ is an order isomorphism from Spec(A) to SpecId(L(A)) and a
homeomorphism w.r.t. the Stone topologies.

The previous proposition allows us to define:

Definition 3.4. L(A) is called the reticulation of A.
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By the above, if the commutator of A equals the intersection, in particular if C is
congruence–distributive, then λA : Con(A)→ Con(A)/ ≡A is a lattice isomorphism,
K(A) is a bounded sublattice of Con(A) (recall that we are under the hypotheses
that [K(A),K(A)]A ⊆ K(A) and ∇A ∈ K(A)) and λA : K(A) → L(A) is a lattice
isomorphism, therefore we may take L(A) = K(A), hence, if, additionally, A is finite,
so that K(A) = Con(A), then we may take L(A) = Con(A).

4 Functoriality of the Reticulation
H© Throughout this section, B will be an arbitrary member of C and f : A → B
shall be an arbitrary morphism in C.

We define f• : Con(A) → Con(B) by: f•(α) = CgB(f(α)), so that f•(α) =
f(α ∨ Ker(f)) by Lemma 2.1. Let us note that f• and f∗ are order–preserving
and, of course, so is the direct image of f2. Notice, also, that, for all α ∈ Con(A),
f(α) ⊆ f•(α), and, if f is surjective and α ∈ [Ker(f)), then f(α) = f•(α). Of
course, f•(∆A) = ∆B.

Remarks 4.1. (i) f• is the unique left adjoint of f∗, that is, for all α ∈ Con(A)
and all β ∈ Con(B): f•(α) ⊆ β iff α ⊆ f∗(β).
Indeed, for the direct implication, notice that f(α) ⊆ f•(α) ⊆ β implies α ⊆
f∗(f(α)) ⊆ f∗(β). For the converse, note that α ⊆ f∗(β) implies f(α) ⊆ f(f∗(β)) ⊆
β ∈ Con(B), hence f•(α) = CgB(f(α)) ⊆ β. Therefore f• is a left adjoint of f∗,
and it is unique by the properties of adjoint pairs of morphisms between posets.

(ii) f• preserves arbitrary joins of congruences of A.
This follows from Lemma 2.1, but also from the properties of adjoint pairs of lat-
tice morphisms between complete lattices and the fact that f∗ preserves arbitrary
intersections, since it is the inverse image of f2.

(iii) If C is a member of C and g : B → C is a morphism in C, then (g ◦ f)• =
g• ◦ f•.
It is immediate that g• ◦ f• is the unique left adjoint of (g ◦ f)∗ = f∗ ◦ g∗, so the
equality above follows by (i).

By Lemma 2.1, we may consider the restrictions: f• |PCon(A): PCon(A) →
PCon(B) and f• |K(A): K(A)→ K(B).

We recall the following definition from [6]: C is called a variety with ~0 and ~1 iff
there exists an n ∈ N∗ and constants 01, . . . , 0n, 11, . . . , 1n from τ such that, if we
denote by ~0 = (01, . . . , 0n) and ~1 = (11, . . . , 1n), then C � ~0 ≈ ~1⇒ x ≈ y, that is, for
any member M of C, if 0Mi = 1Mi for all i ∈ 1, n, then M is the trivial algebra. For
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instance, any variety of bounded ordered structures is a variety with ~0 and ~1, with
n = 1. Clearly, any variety with ~0 and ~1 is semi–degenerate.

Remark 4.2. If C is a variety with ~0 and ~1, with n ∈ N∗ as in the definition above,
then, for all i ∈ 1, n, (0Bi , 1Bi ) = (f(0Ai ), f(1Ai )) ∈ f(∇A) ⊆ f•(∇A) = CgB(f(∇A)),
hence B/f•(∇A) � ~0 ≈ ~1, thus f•(∇A) = ∇B.

Remark 4.3. As shown in [43], (f∗)−1({∇B}) = {∇A}, otherwise written f∗(θ) 6=
∇A for all θ ∈ Con(B) \ {∇B}, holds if C is semi–degenerate, in particular it holds
if C is a variety with ~0 and ~1.

H© Throughout the rest of this section, we shall assume that [·, ·]A and [·, ·]B are
commutative and distributive w.r.t. arbitrary joins and that ∇A ∈ K(A) and ∇B ∈
K(B), all of which hold in the particular case when C is congruence–modular and
semi–degenerate. We will also assume that K(A) and K(B) are closed w.r.t. the
commutator.

Definition 4.4. We will say that f satisfies the functoriality of the reticulation
(abbreviated FRet) iff there exists a function L(f) that closes the following diagram
commutatively, that is iff the function L(f) : L(A) → L(B) is well defined by:
L(f)(λA(α)) = λB(f•(α)) for all α ∈ K(A).

K(A) K(B)

L(A) L(B)

-f• |K(A)

-L(f)?
λA

?
λB

Proposition 4.5. There exists at most one function L(f) : L(A) → L(B) that
closes the diagram above commutatively, and such a function preserves the 0 and
the join. Additionally:

(i) if f is surjective or C is a variety with ~0 and ~1, then L(f) preserves the 1;

(ii) if f is surjective and C is congruence–modular, then L(f) is a bounded lattice
morphism.

Proof. Let α, β ∈ K(A). By the surjectivity of λA, if L(f) exists, then it is uniquely
defined by: L(f)(λA(θ)) = λB(f•(θ)) for all θ ∈ K(A). Assume that this function is
well defined. Then L(f)(0) = L(f)(λA(∆A)) = λB(f•(∆A)) = λB(CgB(f(∆A))) =
λB(∆B) = 0 and L(f)(λA(α) ∨ λA(β)) = L(f)(λA(α ∨ β)) = λB(f•(α ∨ β)) =
λB(f•(α) ∨ f•(β)) = λB(f•(α)) ∨ λB(f•(β)) = L(f)(λA(α)) ∨ L(f)(λA(β)).
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(i) If f is surjective or C is a variety with ~0 and ~1, then L(f)(1) = L(f)(λA(∇A)) =
λB(f•(∇A)) = λB(f(∇A)) = λB(∇B) = 1.
(ii) If f is surjective and C is congruence–modular, then, by Lemma 2.1, L(f)(λA(α)∧
λA(β)) = L(f)(λA([α, β]A) = λB(f•([α, β]A)) = λB(CgB(f([α, β]A))) =
λB(f([α, β]A∨Ker(f))) = λB([f(α∨Ker(f)), f(β∨Ker(f))]B) = λB(f(α∨Ker(f)))∧
λB(f(β ∨Ker(f))) = λB(CgB(f(α))) ∧ λB(CgB(f(β))) = λB(f•(α)) ∧ λB(f•(β)) =
L(f)(λA(α)) ∧ L(f)(λA(β)).

Throughout the rest of this paper we keep the notation L(f) for the unique
function associated as in Definition 4.4 to a morphism f that satisfies FRet.

Remark 4.6. Obviously, if f is an isomorphism, then f satisfies FRet and L(f)
is a lattice isomorphism (in particular L(f) preserves the meet and the 1), but the
converse does not hold, as shown by the case of the morphism l : Q→ P in Example
6.4. Note that, in particular, id•A = idCon(A), thus L(idA) = idL(A).

Remark 4.7. As shown by the morphism v : V → V in Example 6.5, f may fail
FRet, while f• preserves the meet and the commutator and f•(∇A) ≡B ∇B.

Lemma 4.8. • If the commutator of A coincides with the intersection, then f
fulfills FRet.

• In particular, if C is congruence–distributive and semi–degenerate and has the
CIP, then all morphisms in C fulfill FRet.

• If the commutators of A and B coincide to the intersection, in particular if C
is congruence–distributive, then f fulfills FRet and the following equivalences
hold: L(f) preserves the meet iff f•(α ∩ β) = f•(α) ∩ f•(β) for all α, β ∈
K(A), L(f) preserves the 1 iff f•(∇A) = ∇B, L(f) is injective or surjective
iff f• |K(A): K(A)→ K(B) is injective or surjective, respectively.

Proof. If the commutator of A coincides with the intersection, then ρA = idCon(A),
so, for all α, β ∈ Con(A), λA(α) = λA(β) iff α = β, thus, trivially, f fulfills FRet.

If, additionally, the commutator of B coincides with the intersection, then both
λA : K(A)→ L(A) and λB : K(B)→ L(B) are lattice isomorphisms, so the equality
L(f)◦λA = λB ◦f• proves the equivalences in the enunciation. In fact, we may take
L(A) = K(A) and L(B) = K(B), so that λA and λB become idK(A) : K(A)→ L(A)
and idK(B) : K(B)→ L(B), respectively, and L(f) = f•.

Remark 4.9. If f fulfills FRet and f• : Con(A) → Con(B) preserves the intersec-
tion, then, clearly, L(f) preserves the meet. As shown by Example 6.5, the converse
does not hold.
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Proposition 4.10. Let C be a member of C such that [·, ·]C is commutative and
distributive w.r.t. arbitrary joins, ∇C ∈ K(C) and K(C) is closed w.r.t. the com-
mutator, and let g : B → C be a morphism. If f and g satisfy FRet, then g ◦ f
satisfies FRet and L(g ◦ f) = L(g) ◦ L(f). Also:

• if, additionally, L(f) and L(g) preserve the 1, then L(g ◦ f) preserves the 1;

• if, additionally, L(f) and L(g) preserve the meet, then L(g ◦ f) preserves the
meet.

Proof. λC ◦ (g ◦f)• = λC ◦ g• ◦f• = L(g)◦λB ◦f• = L(g)◦L(f)◦λA, therefore g ◦f
satisfies FRet and, by the uniqueness stated in Proposition 4.5, L(g◦f) = L(g)◦L(f),
hence the statements on the preservation of the 1 and the meet.

By Propositions 4.5 and 4.10, if all morphisms in C satisfy FRet and are such
that their images through the map L preserve the meet, so that these images are
lattice morphisms, then L becomes a covariant functor from the category C to the
category of distributive lattices, and, if, additionally, these images preserve the 1,
then L is a functor from the category C to the category of bounded distributive
lattices. In either of these cases, we call L the reticulation functor for C.

Lemma 4.11. [26, 43] If φ ∈ Con(A) \ {∇A}, then the following are equivalent:

(i) φ ∈ Spec(A);

(ii) for all α, β ∈ PCon(A), [α, β]A ⊆ φ implies α ⊆ φ or β ⊆ φ;

(iii) for all α, β ∈ K(A), [α, β]A ⊆ φ implies α ⊆ φ or β ⊆ φ.

Lemma 4.12. For all α, β ∈ Con(A), ρB(f•([α, β]A)) ⊆ ρB([f•(α), f•(β)]B).

Proof. Let ψ ∈ Spec(B) such that [f•(α), f•(β)]B ⊆ ψ, so that f•(α) ⊆ ψ or
f•(β) ⊆ ψ, so that f•([α, β]A) ⊆ ψ. Hence VB([f•(α), f•(β)]B) ⊆ VB(f•([α, β]A)),
therefore ρB(f•([α, β]A)) ⊆ ρB([f•(α), f•(β)]B).

Theorem 4.13. The following are equivalent:

(i) f is admissible;

(ii) f satisfies FRet and L(f) preserves the meet (so that L(f) is a lattice mor-
phism);

(iii) for all α, β ∈ K(A), λB(f•([α, β]A)) = λB([f•(α), f•(β)]B);
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(iv) for all α, β ∈ K(A), ρB(f•([α, β]A)) = ρB([f•(α), f•(β)]B);

(v) for all α, β ∈ K(A), ρB(f•([α, β]A)) ⊇ [f•(α), f•(β)]B.

Proof. (iii)⇔(iv): By the definition of ≡B.
(iv)⇔(v): By Lemma 4.12 and the fact that ρB(f•([α, β]A)) ⊇ [f•(α), f•(β)]B iff
ρB(f•([α, β]A)) ⊇ ρB([f•(α), f•(β)]B).
(i)⇒(iii): Let α, β ∈ K(A) and ψ ∈ Spec(B), so that f∗(ψ) ∈ Spec(A) since f is
admissible, thus, since (f•, f∗) is an adjoint pair: f•([α, β]A) ⊆ ψ iff [α, β]A ⊆ f∗(ψ)
iff α ⊆ f∗(ψ) or β ⊆ f∗(ψ) iff f•(α) ⊆ ψ or f•(β) ⊆ ψ iff [f•(α), f•(β)]B ⊆ ψ.
Therefore VB(f•([α, β]A)) = VB([f•(α), f•(β)]B), so ρB(f•([α, β]A)) = ρB([f•(α),
f•(β)]B), thus λB(f•([α, β]A)) = λB([f•(α), f•(β)]B).
(i),(iii)⇒(ii): Let α, β ∈ K(A) such that λA(α) = λA(β), so that ρA(α) = ρA(β),
thus VA(α) = VA(β).

Let ψ ∈ Spec(B), so that f∗(ψ) ∈ Spec(A) since f is admissible, thus, by the
above and the fact that (f•, f∗) is an adjoint pair: f•(α) ⊆ ψ iff α ⊆ f∗(ψ) iff
β ⊆ f∗(ψ) iff f•(β) ⊆ ψ, therefore VB(f•(α)) = VB(f•(β)), so that ρB(f•(α)) =
ρB(f•(β)), thus L(f)(λA(α)) = λB(f•(α)) = λB(f•(β)) = L(f)(λA(β)), hence L(f)
is well defined, that is f fulfills FRet.

Now let γ, δ ∈ K(A), arbitrary. Then L(f)(λA(γ)∧λA(δ)) = L(f)(λA([γ, δ]A)) =
λB(f•([γ, δ]A)) = λB([f•(γ), f•(δ)]B) = λB(f•(γ)) ∧ λB(f•(δ)) = L(f)(λA(γ)) ∧
L(f)(λA(δ)).
(ii)⇒(iii): Let α, β ∈ K(A), so that [α, β]A ∈ K(A) and λB(f•([α, β]A)) =
L(f)(λA([α, β]A)) = L(f)(λA(α) ∧ λA(β)) = L(f)(λA(α)) ∧ L(f)(λA(β)) =
λB(f•(α)) ∧ λB(f•(β)) = λB([f•(α), f•(β)]B).
(iii)⇒(i): Let α, β ∈ K(A) and ψ ∈ Spec(B). Then λB(f•([α, β]A)) = λB([f•(α),
f•(β)]B), thus ρB(f•([α, β]A)) = ρB([f•(α), f•(β)]B), so that VB(f•([α, β]A)) =
VB([f•(α), f•(β)]B), therefore, since (f•, f∗) is an adjoint pair: [α, β]A ⊆ f∗(ψ)
iff f•([α, β]A) ⊆ ψ iff [f•(α), f•(β)]B ⊆ ψ iff f•(α) ⊆ ψ or f•(β) ⊆ ψ iff α ⊆
f∗(ψ) or β ⊆ f∗(ψ). By Lemma 4.11, it follows that f∗(ψ) ∈ Spec(A), hence f is
admissible.

Corollary 4.14. If f•([α, β]A) = [f•(α), f•(β)]B for all α, β ∈ K(A), then f satis-
fies FRet and L(f) is a lattice morphism. The converse does not hold.

Proof. By Theorem 4.13, the direct implication holds. Example 6.5 disproves the
converse.

Lemma 4.15. [26, Corollary 7.4] If C is congruence–distributive and has the CIP,
in particular if C is congruence–distributive and has the PIP, then every morphism
in C is admissible.
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Proposition 4.16. If C is congruence–distributive and has the CIP, in particular if
C is congruence–distributive and has the PIP, then f fulfills FRet and f• : K(A)→
K(B) and L(f) : L(A) → L(B) are lattice morphisms, so that, if C is also semi–
degenerate, then L is a functor from the category C to the category of distributive
lattices.

If, moreover, C is a congruence–distributive variety with ~0 and ~1 and the CIP,
then L is a functor from the category C to the category of bounded distributive lattices.

Proof. By Lemma 4.15 and Theorem 4.13, f fulfills FRet and L(f) : L(A)→ L(B)
is a lattice morphism, so that f• : K(A)→ K(B) is a lattice morphism since, in this
particular case, K(A) and K(B) are sublattices of Con(A) and Con(B), respectively,
and λA : K(A)→ L(A) and λB : K(B)→ L(B) are lattice isomorphisms.

Remark 4.17. If f satisfies FRet and f• |K(A): K(A) → K(B) is surjective, then,
by the surjectivity of λB : K(B) → L(B), it follows that L(f) ◦ λA = λB ◦ f• is
surjective, hence L(f) : L(A)→ L(B) is surjective.

Lemma 4.18. (i) If f is surjective, then f satisfies FRet and L(f) is a bounded
lattice morphism.

(ii) If f is surjective, then f• : Con(A) → Con(B), f• |K(A): K(A) → K(B) and
f• |PCon(A): PCon(A)→ PCon(B) are surjective.

(iii) If f• : Con(A) → Con(B) is surjective, then f• |K(A): K(A) → K(B) is
surjective, so, if, additionally, f satisfies FRet, then L(f) : L(A) → L(B) is
surjective.

(iv) If C is congruence–distributive and f• : Con(A) → Con(B) is surjective, then
f satisfies FRet and L(f) : L(A)→ L(B) is surjective.

Proof. (i) By Proposition 4.5, (i), Theorem 4.13 and the fact that all surjective
morphisms are admissible.
(ii) By Lemma 2.1, for all a, b ∈ A and any β ∈ Con(B), we have f•(CgA(a, b)) =
CgB(f(a), f(b)) and β =

∨

(x,y)∈β
CgB(x, y), which, along with the fact that f• pre-

serves arbitrary joins and the surjectivity of f , proves that f•(Con(A)) = Con(B),
f•(K(A)) = K(B) and f•(PCon(A)) = PCon(B).
(iii) Let β ∈ K(B). Since f• : Con(A)→ Con(B) is surjective, it follows that there
exists an α ∈ Con(A) such that β = f•(α) = f•(

∨

(a,b)∈α
CgA(a, b)) =

∨

(a,b)∈α
f•(CgA(a, b)), hence, for some n ∈ N∗ and some (a1, b1), . . . , (an, bn) ∈ α,
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β =
n∨

i=1
f•(CgA(ai, bi)) = f•(CgA({(a1, b1), . . . , (an, bn)})) ∈ f•(K(A)). Therefore

f• |K(A): K(A)→ K(B) is surjective.
(iv) By (iii) and Lemma 4.8.

Proposition 4.19. f• |K(A): K(A)→ K(B) is surjective iff f• : Con(A)→ Con(B)
is surjective iff f• |[Ker(f)): [Ker(f))→ Con(B) is surjective.

Proof. By Lemma 4.18, (iii), if f• : Con(A) → Con(B) is surjective, then f• |K(A):
K(A) → K(B) is surjective; the converse of this implication follows from the fact
that f• preserves arbitrary joins of congruences.

The fact that f•(α) = f(α ∨Ker(f)) = f•(α ∨Ker(f)) for all α ∈ Con(A) gives
us the second equivalence.

Remark 4.20. By Lemma 4.18, (ii), if f is surjective, then, if K(A) = Con(A) or
PCon(A) = Con(A) or PCon(A) = K(A) or A is simple, then K(B) = Con(B) or
PCon(B) = Con(B) or PCon(B) = K(B) or B is simple, respectively.

Indeed, if K(A) = Con(A), then K(B) = f(K(A)) = f(Con(A)) = Con(B), and
analogously for the next two statements. The fact that f•(∆A) = ∆B and, since f
is surjective, f•(∇A) = ∇B, gives us the last statement.

Remark 4.21. Recall that a complete lattice has all elements compact iff it satis-
fies the Ascending Chain Condition (ACC). Thus K(A) = Con(A) iff Cp(Con(A)) =
Con(A) iff Con(A) satisfies the Ascending Chain Condition, which holds, in partic-
ular, if Con(A) has finite height, in particular if Con(A) is finite, for instance if A
is finite or simple.

If the commutator of A equals the intersection, in particular if C is congruence–
distributive, then K(A) = Cp(Con(A)) is a sublattice of Con(A) with all elements
compact and L(A) ∼= K(A), thus L(A) = Cp(L(A)), i.e. L(A) has all elements
compact, that is L(A) satisfies the ACC, according to the above.

Proposition 4.22. L preserves surjectivity; more precisely, if f is surjective, then
f fulfills FRet and L(f) : L(A)→ L(B) is a surjective lattice morphism.

Proof. By Lemma 4.18, (i), (ii) and (iii).

Remark 4.23. If the commutator of A equals the intersection, Con(A) is a chain
and (f∗)−1({∇B}) = {∇A}, then f satisfies FRet and L(f) is a lattice morphism.

Indeed, this follows from Theorem 4.13 and the fact that, in this case, f is
admissible, since Spec(A) = Con(A) \ {∇A}. See also Lemma 4.8 and [43].
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Let I be a non–empty set and, for each i ∈ I, pi and qi be terms over τ of
arity 4. Recall that (pi, qi)i∈I is a system of congruence intersection terms for
C iff, for any member M of C and any a, b, c, d ∈ M , CgM (a, b) ∩ CgM (c, d) =∨

i∈I
CgM (pMi (a, b, c, d), qMi (a, b, c, d)) [1].

By analogy to the previous definition, let us introduce:

Definition 4.24. (pi, qi)i∈I is a system of congruence commutator terms for C
iff, for any member M of C and any a, b, c, d ∈ M , [CgM (a, b), CgM (c, d)]M =∨

i∈I
CgM (pMi (a, b, c, d), qMi (a, b, c, d)).

Remark 4.25. Clearly, if C is congruence–distributive and admits a finite system of
congruence intersection terms, then, in each member M of C, K(M) is closed w.r.t.
the intersection.

More generally, if C admits a finite system of congruence commutator terms,
then, in each member M of C, K(M) is closed w.r.t. the commutator.

Proposition 4.26. If C admits a system of congruence commutator terms, then
f•([α, β]A) = [f•(α), f•(β)]B for all α, β ∈ Con(A), in particular f fulfills FRet and
L(f) is a lattice morphism.

Proof. Let (pi, qi)i∈I be a system of congruence commutator terms for C.
We first prove that f• preserves the commutator applied to principal congru-

ences. Let a, b, c, d ∈ A. Then, since f• preserves arbitrary joins:

f•([CgA(a, b), CgA(c, d)]A) = f•(
∨

i∈I
CgA(pAi (a, b, c, d), qAi (a, b, c, d))) =

∨

i∈I
f•(CgA(pAi (a, b, c, d), qAi (a, b, c, d))) =

∨

i∈I
CgB(f(pAi (a, b, c, d)), f(qAi (a, b, c, d)))

=
∨

i∈I
CgB(pBi (f(a), f(b), f(c), f(d))), qBi (f(a), f(b), f(c), f(d))))

= [CgB(f(a), f(b)), CgB(f(c), f(d))]B = [f•(CgA(a, b)), f•(CgA(c, d))]B.

Now let α, β ∈ Con(A). Then α =
∨

j∈J
αj and β =

∨

k∈K
βk for some non–empty

families (αj)j∈J ⊆ PCon(A) and (βk)k∈K ⊆ PCon(A). From the above and the fact
that f• preserves arbitrary joins, we obtain:

f•([α, β]A) = f•([
∨

j∈J
αj ,

∨

k∈K
βk]A) = f•(

∨

j∈J

∨

k∈K
[αj , βk]A) =

∨

j∈J

∨

k∈K
f•([αj , βk]A) =
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∨

j∈J

∨

k∈K
[f•(αj), f•(βk)]B = [

∨

j∈J
f•(αj),

∨

k∈K
f•(βk)]B = [f•(

∨

j∈J
αj), f•(

∨

k∈K
βk)]B

= [f•(α), f•(β)]B.

Apply Theorem 4.13 for the last statement.

In view of Remark 4.25, we obtain:

Corollary 4.27. • If C is semi–degenerate and admits a system of congruence
commutator terms, then L is a functor from C to the variety of distributive
lattices.

• If C is a variety with ~0 and ~1 that admits a system of congruence commutator
terms, then L is a functor from C to the variety of bounded distributive lattices.

Corollary 4.28. • If C is semi–degenerate and congruence–distributive and ad-
mits a system of congruence intersection terms, then L is a functor from C to
the variety of distributive lattices.

• If C is a congruence–distributive variety with ~0 and ~1 that admits a system of
congruence intersection terms, then L is a functor from C to the variety of
bounded distributive lattices.

Recall that a join–semilattice with smallest element (L,∨, 0) is said to be dually
Brouwerian iff there exists a binary operation −̇ on L, called dual relative pseudo-
complementation, such that, for all a, b, c ∈ L, a−̇b ≤ c iff a ≤ b ∨ c. In particular,
in a dually Brouwerian join–semilattice (L,∨, 0), we have, for all a, b ∈ L: a−̇b = 0
iff a ≤ b.

Let L and M be dually Brouwerian join–semilattices. We call h : L → M a
dually Brouwerian join–semilattice morphism iff h preserves the 0, the join and the
dual relative pseudocomplementation; if L and M are lattices and h also preserves
the meet, then we call h a dually Brouwerian lattice morphism. Note that, if L is a
lattice, then L is distributive, as one can easily derive from [32, Lemma 4.4].

Following [32], we say that C has equationally definable principal congruences
(abbreviated EDPC) iff there exist an n ∈ N∗ and terms p1, . . . , pn, q1, . . . , qn of
arity 4 over τ such that, for all members M of C and all a, b ∈ M , CgM (a, b) =
{(c, d) ∈M2 | (∀ i ∈ 1, n) (pMi (a, b, c, d) = qMi (a, b, c, d))}.

Theorem 4.29. [12, 34]

(i) If C has EDPC, then C is congruence–distributive.
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(ii) C has EDPC if and only if, for any member M of C, the semilattice
(K(M),∨,∆M ) is dually Browerian. In this case, if n ∈ N∗ and p1, q1, . . . ,
pn, qn are as above, then, for any member M of C, the operation −̇ of the
dually Brouwerian semilattice K(M) is defined on PCon(M) by:

CgM (c, d)−̇CgM (a, b) =
n∨

i=1
CgM (pMi (a, b, c, d), qMi (a, b, c, d))

for any a, b, c, d ∈M .

Lemma 4.30. If C has EDPC, then, for all α, β ∈ PCon(A), f•(α−̇β) =
f•(α)−̇f•(β).

Proof. Let n ∈ N∗ and p1, q1, . . . , pn, qn be as in Theorem 4.29, and a, b, c, d ∈ A.
Then, by Theorem 4.29 and Lemma 2.1:

f•(CgA(c, d)−̇CgA(a, b)) = f•(
n∨

i=1
CgA(pAi (a, b, c, d), qAi (a, b, c, d))) =

n∨

i=1
f•(CgA(pAi (a, b, c, d), qAi (a, b, c, d))) =

n∨

i=1
CgB(f(pAi (a, b, c, d)), f(qAi (a, b, c, d)))

=
n∨

i=1
CgB(pBi (f(a), f(b), f(c), f(d)), qBi (f(a), f(b), f(c), f(d)))

= CgB(f(c), f(d))−̇CgB(f(a), f(b)) = f•(CgA(c, d))−̇f•(CgA(a, b)).

Remark 4.31. [5] If C has EDPC, then, for all α, β, γ ∈ K(A):

• (α ∨ β)−̇γ = (α−̇γ) ∨ (β−̇γ);

• α−̇(β ∨ γ) = (α−̇β)−̇γ.

Proposition 4.32. If C has EDPC, then, for all α, β ∈ K(A), f•(α−̇β) =
f•(α)−̇f•(β).

Proof. Let θ ∈ PCon(A) and α ∈ K(A), so that α =
r∨

i=1
αi for some r ∈ N∗ and

some α1, . . . , αr ∈ PCon(A). Then, by Lemma 4.30, f•(α−̇θ) = f•((
r∨

i=1
αi)−̇θ) =
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f•(
r∨

i=1
(αi−̇θ)) =

r∨

i=1
f•(αi−̇θ) =

r∨

i=1
(f•(αi)−̇f•(θ)) = (

r∨

i=1
f•(αi))−̇f•(θ) =

f•(
r∨

i=1
αi)−̇f•(θ) = f•(α)−̇f•(θ).

Now let β ∈ K(A), so that β =
s∨

j=1
βj for some s ∈ N∗ and some β1, . . . , βs ∈

PCon(A). We apply induction on t ∈ 1, s. By the above, f•(α−̇β1) = f•(α)−̇f•(β1).

Now assume that, for some t ∈ 1, s− 1, f•(α−̇(
t∨

j=1
βj)) = f•(α)−̇f•(

t∨

j=1
βj). Then,

since α−̇(
t∨

j=1
βj) ∈ K(A), f•(α−̇(

t+1∨

j=1
βj)) = f•((α−̇(

t∨

j=1
βj))−̇βt+1) =

f•(α−̇(
t∨

j=1
βj))−̇f•(βt+1) = (f•(α)−̇f•(

t∨

j=1
βj))−̇f•(βt+1) = f•(α)−̇(f•(

t∨

j=1
βj) ∨

f•(βt+1)) = f•(α)−̇f•(
t+1∨

j=1
βj). Thus f•(α−̇β) = f•(α−̇(

s∨

j=1
βj)) =

f•(α)−̇f•(
s∨

j=1
βj) = f•(α)−̇f•(β).

Corollary 4.33. If C has EDPC, then L(f) = f• : L(A) = K(A)→ L(B) = K(B)
is a dually Brouwerian join–semilattice morphism.

Proof. By Remarks 4.1, Proposition 4.32 and Theorem 4.29, (i).

Remark 4.34. If C is a discriminator variety, then, by [32, Theorem 5.5],
PCon(A) = K(A) ∼= L(A) is a relatively complemented sublattice of Con(A); we
set K(A) = L(A), and the same for B. From [32, Lemma 5.3] it follows that
L(f) = f• |PCon(A): PCon(A) → PCon(B) is a relatively complemented lattice
morphism.

Remark 4.35. L reflects neither injectivity, nor surjectivity, as shown by the case
of the morphism l : Q → P from Example 6.4. L does not preserve injectivity and
does not reflect surjectivity even for congruence–distributive varieties, as shown by
the case of the morphism iL2

2,M3 : L2
2 →M3 from Example 6.3.

If the commutators of A and B coincide to the intersection, K(A) = Con(A) and
f is surjective, then f• : Con(A)→ Con(B) is surjective, thus K(B) = Con(B) and
f• : K(A)→ K(B) is surjective, hence L(f) : L(A)→ L(B) is surjective. In partic-
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ular, in congruence–distributive varieties, the functor L preserves the surjectivity of
morphisms defined on finite algebras.

Remark 4.36. If f is injective, then, for all θ ∈ Con(A), we have: f•(θ) = ∆B

iff θ = ∆A. Indeed, f(∆A) ⊆ ∆B, so f•(∆A) = ∆B, while, since f(θ) ⊆ f•(θ),
f•(θ) = ∆B implies f(θ) ⊆ ∆B, which implies θ = ∆A if f is injective.

Proposition 4.37. If C is semi–degenerate and has EDPC and the CIP, then L is
a functor from the category C to the category of distributive lattices which preserves
injectivity.

Proof. Assume that C has EDPC and the CIP, so that every morphism in C satisfies
FRet and L is a functor from C to the variety of distributive lattices by Theorem
4.29, (i), and Proposition 4.16, and also assume that f is injective. Let α, β ∈ K(A).
Then, by Theorem 4.29, (ii), Proposition 4.32 and the injectivity of f : f•(α) ⊆
f•(β) iff f•(α)−̇f•(β) = ∆B iff f•(α−̇β) = ∆B iff α−̇β = ∆A iff α ⊆ β. Hence:
f•(α) = f•(β) iff α = β, therefore f• is injective, thus so is L(f) : L(A) → L(B),
since C is congruence–distributive.

Remark 4.38. Assume that f is injective and the canonical embedding of f(A)
into B satisfies the Congruence Extension Property. Then, for α ∈ Con(A), f•(α)∩
f(A)2 = f(α), hence the map f• : Con(A) → Con(B) is injective, thus so are its
restrictions f• |K(A): K(A)→ K(B) and f• |PCon(A): PCon(A)→ PCon(B).

Thus, if, additionally, the commutators of A and B coincide to the intersection,
so that K(A) and K(B) are sublattices of Con(A) and Con(B), respectively, λA :
K(A) → L(A) and λB : K(B) → L(B) are lattice isomorphisms and, as noted in
Lemma 4.8, f satisfies FRet, it follows that L(f) is injective.

Therefore, in view of Proposition 4.16, we have:

Proposition 4.39. If C is semi–degenerate, congruence–distributive and congruence
–extensible and it has the CIP, then L is a functor from the category C to the category
of distributive lattices which preserves injectivity.

In what follows we apply the functoriality of the reticulation to the study of
properties Going Up, Going Down and Lying Over in algebras whose semilattices of
compact congruences and commutators are as above.

Definitions 4.40. We say that f fulfills property Going Up (abbreviated GU) if
and only if, for any φ, ψ ∈ Spec(A) and any φ1 ∈ Spec(B) such that φ ⊆ ψ and
f∗(φ1) = φ, there exists ψ1 ∈ Spec(B) such that φ1 ⊆ ψ1 and f∗(ψ1) = ψ.
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We say that f fulfills property Going Down (abbreviated GD) if and only if, for
any φ, ψ ∈ Spec(A) and any φ1 ∈ Spec(B) such that φ ⊇ ψ and f∗(φ1) = φ, there
exists ψ1 ∈ Spec(B) such that φ1 ⊇ ψ1 and f∗(ψ1) = ψ.

We say that f fulfills property Lying Over (abbreviated LO) if and only if, for any
φ ∈ Spec(A) such that Ker(f) ⊆ φ, there exists φ1 ∈ Spec(B) such that f∗(φ1) = φ.

Definitions 4.41. Let L, M be bounded lattices and h : L → M be a bounded
lattice morphism.

We say that h fulfills property Id–Going Up (abbreviated Id–GU) if and only if,
for any P,Q ∈ SpecId(L) and any P1 ∈ SpecId(M) such that P ⊆ Q and h−1(P1) =
P , there exists Q1 ∈ SpecId(M) such that P1 ⊆ Q1 and h−1(Q1) = Q.

We say that h fulfills property Id–Going Down (abbreviated Id–GD) if and only
if, for any P,Q ∈ SpecId(L) and any P1 ∈ SpecId(M) such that P ⊇ Q and h−1(P1) =
P , there exists Q1 ∈ SpecId(M) such that P1 ⊇ Q1 and h−1(Q1) = Q.

We say that h fulfills property Id–Lying Over (abbreviated Id–LO) if and only
if, for any P ∈ SpecId(L) such that h−1({0}) ⊆ P , there exists P1 ∈ SpecId(M) such
that h−1(P1) = P .

Remark 4.42. If L and M are bounded distributive lattices and h : L → M is a
bounded lattice morphism, then h−1(SpecId(M)) ⊆ SpecId(L).

For the sake of completeness, we include here a proof for the next lemma:

Lemma 4.43. [27] For any α ∈ K(A) and any φ ∈ Spec(A), we have: λA(α) ∈ φ∗
iff α ⊆ φ.

Proof. If α ⊆ φ, then α ∈ K(A) ∩ (φ], hence λA(α) ∈ λA(K(A) ∩ (φ]) = φ∗.
If λA(α) ∈ φ∗ = λA(K(A) ∩ (φ]), then, for some β ∈ K(A) such that β ⊆ φ,

we have λA(α) = λA(β), that is ρA(α) = ρA(β), so that φ ∈ VA(β) = VA(α), thus
α ⊆ φ.

Lemma 4.44. For any φ ∈ Spec(A), we have: Ker(f) ⊆ φ iff L(f)−1({0}) ⊆ φ∗.

Proof. Note that L(f)−1({0}) = L(f)−1({λB(∆B)}) = {λA(α) | α ∈ K(A),
L(f)(λA(α)) = λB(∆B)} = {λA(α) | α ∈ K(A), λB(f•(α)) = λB(∆B)} = {λA(α) |
α ∈ K(A), λB(f•(α)) = λB(∆B)} = {λA(α) | α ∈ K(A), ρB(f•(α)) = ρB(∆B)} =
{λA(α) | α ∈ K(A), f•(α) ⊆ ρB(∆B)} = {λA(α) | α ∈ K(A), α ⊆ f∗(ρB(∆B))} =
λA(K(A) ∩ (f∗(ρB(∆B))]).

Now let φ ∈ Spec(A), and recall that φ∗ = λA(K(A) ∩ (φ]). Notice that, for
any α ∈ K(A), λA(α) ∈ λA(K(A) ∩ (φ]) implies that, for some β ∈ K(A) ∩ (φ], we
have λA(α) = λA(β), so that α ⊆ ρA(α) = ρA(β) ⊆ ρA(φ) = φ, thus α ⊆ φ; hence:
λA(α) ∈ λA(K(A) ∩ (φ]) iff α ∈ K(A) ∩ (φ].
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Therefore: L(f)−1({0}) ⊆ φ∗ iff λA(K(A) ∩ (f∗(ρB(∆B))]) ⊆ λA(K(A) ∩ (φ]) iff
K(A)∩ (f∗(ρB(∆B))] ⊆ K(A)∩ (φ] iff K(A)∩ (f∗(ρB(∆B))] ⊆ (φ] iff every α ∈ K(A)
such that α ⊆ f∗(ρB(∆B)) satisfies α ⊆ φ iff ∨(K(A) ∩ (f∗(ρB(∆B))]) ⊆ φ, that is
f∗(ρB(∆B)) ⊆ φ.

Since f∗(∆B) ⊆ f∗(ρB(∆B)), by the above L(f)−1({0}) ⊆ φ∗ implies f∗(∆B) ⊆
φ, that is Ker(f) ⊆ φ.

On the other hand, again since ρA(φ) = φ, we have: f∗(∆B) = Ker(f) ⊆ φ iff
ρA(f∗(∆B)) ⊆ φ, that is ⋂(Spec(A) ∩ [f∗(∆B))) ⊆ φ, which, since f∗(Spec(B)) ⊆
Spec(A)∩ [f∗(∆B)), implies that f∗(ρB(∆B)) = f∗(⋂ Spec(B)) = ⋂

f∗(Spec(B)) ⊆⋂(Spec(A) ∩ [f∗(∆B))) ⊆ φ, so that L(f)−1({0}) ⊆ φ∗ by the above.

Proposition 4.45. If f is admissible, then: f satisfies property GU, GD, LO iff
L(f) satisfies Id–GU, Id–GD, Id–LO, respectively.

Proof. By Proposition 3.3, the maps uA : Spec(A) → SpecId(L(A)) and uB :
Spec(B) → SpecId(L(B)) defined by uA(φ) = φ∗ and uB(ψ) = ψ∗ for any φ ∈
Spec(A) and any ψ ∈ Spec(B) are order isomorphisms.

The following diagram is commutative:
Spec(A) SpecId(L(A))

Spec(B) SpecId(L(B))

-uA

-uB

6f∗ 6L(f)∗

Indeed, by Lemma 4.43 and the fact that f•(K(A)) ⊆ K(B), for any ψ ∈
Spec(B), we have: L(f)∗(uB(ψ)) = L(f)∗(ψ∗) = {λA(α) | α ∈ K(A),L(f)(λA(α)) ∈
ψ∗} = {λA(α) | α ∈ K(A), λB(f•(α)) ∈ ψ∗} = {λA(α) | α ∈ K(A), f•(α) ⊆ ψ} =
{λA(α) | α ∈ K(A), α ⊆ f∗(ψ)} = λA(K(A) ∩ (f∗(ψ)]) = f∗(ψ)∗ = uA(f∗(ψ)).

Hence the statements in the enunciation on GU and GD versus Id–GU and Id–
GD, respectively. By Lemma 4.44, we have, for every φ ∈ Spec(A): L(f)−1({0}) ⊆
uA(φ) iff Ker(f) ⊆ φ, which, along with the commutativity of the diagram above,
yields the statement on LO versus Id–LO in the enunciation.

Proposition 4.46. Any dually Brouwerian lattice morphism satisfies Id–GU.

Proof. Let L and M be lattices with smallest element such that (L,∨, 0) and
(M,∨, 0) are dually Brouwerian join–semilattices, and h : L → M be a dually
Brouwerian lattice morphism.

Let P,Q ∈ SpecId(L) and P1 ∈ SpecId(M) such that P ⊆ Q and h−1(P1) = P .
Let us denote by S = L\P and T = L\Q, so that T ⊆ S, so that h−1(P1)∩T =

P ∩T = ∅ and thus P1∩h(T ) = ∅. By Zorn’s Lemma, it follows that there exists an
idealQ1 ofM such thatQ1∩h(T ) = ∅ andQ1 is maximal w.r.t. this property, so that
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P1 ⊆ Q1. Since Q ∈ SpecId(L), it follows that T is closed w.r.t. the meet, thus h(T )
is closed w.r.t. the meet, from which it immediately follows that Q1 ∈ SpecId(M).

h−1(Q1)∩ T ⊆ h−1(Q1)∩ h−1(h(T )) = h−1(Q1 ∩ h(T )) = ∅, thus h−1(Q1) \Q =
h−1(Q1) ∩ (L \Q) = ∅, therefore h−1(Q1) ⊆ Q.

Now let x ∈ Q and assume by absurdum that x /∈ h−1(Q1), that is h(x) /∈ Q1, so
that Q1 ( Q1∨(h(x)] and thus (Q1∨(h(x)])∩h(T ) 6= ∅ by the choice of Q1, so that,
for some t ∈ T and some a ∈ Q1, h(t) ≤ h(x) ∨ a, thus h(t−̇x) = h(t)−̇h(x) ≤ a,
hence h(t−̇x) ∈ Q1, thus t−̇x ∈ h−1(Q1) ⊆ Q, so that, since t−̇x ≤ t−̇x, we have
t ≤ (t−̇x) ∨ x ∈ Q, thus t ∈ Q = L \ T , and we have a contradiction. Hence
Q ⊆ h−1(Q1), therefore h−1(Q1) = Q.

The proof of the proposition above follows the lines of analogous results for
MV algebras and BL algebras from [11] and [47], respectively. The two previous
propositions yield the following result from [26] as a corollary:

Corollary 4.47. If C has EDPC and f is admissible, then f satisfies GU.

According to a result from [26], GU implies LO in semi–degenerate varieties, and,
moreover, if a morphism satisfies GU and the one–class congruence of its codomain
is compact, then that morphism also satisfies LO. Therefore, since we are under the
assumption that ∇B ∈ K(B), we also get:

Corollary 4.48. If C has EDPC and f is admissible, then f satisfies LO.

5 Functoriality of the Boolean Center
H© Throughout this section, B will be a member of C, f : A → B will be a
morphism and we will assume that: ∇A ∈ K(A), ∇B ∈ K(B), the commutators of
A and B are commutative and distributive w.r.t. arbitrary joins, all of which hold
in the particular case when C is congruence–modular and semi–degenerate. We will
also assume that K(A) and K(B) are closed w.r.t. the commutators of A and B,
respectively.

If B(Con(A)) and B(Con(B)) are Boolean sublattices of Con(A) and Con(B),
respectively, then we say that f satisfies the functoriality of the Boolean center
(abbreviated FBC) iff:

(FBC1) f•(B(Con(A))) ⊆ B(Con(B));
(FBC2) f• |B(Con(A)): B(Con(A))→ B(Con(B)) is a Boolean morphism.
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H© Throughout the rest of this section, we will also assume that [α,∇A]A = α
for all α ∈ Con(A) and [β,∇B]B = β for all β ∈ Con(B), which also hold in the
particular case when C is congruence–modular and semi–degenerate.

Under the conditions above, by [27, Lemma 24], B(Con(A)) is a Boolean sub-
lattice of Con(A), on which the commutator coincides with the intersection; more-
over, by [27, Lemma 18, (iv)], for all σ ∈ B(Con(A)) and all θ ∈ Con(A), we
have [σ, θ]A = σ ∩ θ; also, for all α, β ∈ Con(A) such that α ∨ β = ∇A, we
have [α, β]A = α ∩ β. By [27, Proposition 19, (iv)], B(Con(A)) ⊆ K(A), so that
λA(B(Con(A))) ⊆ B(L(A)) and λA |B(Con(A)): B(Con(A)) → B(L(A)) is a Boolean
morphism.

Lemma 5.1. [27, Theorem 5, (i)] If C is congruence–modular and semi–degenerate,
then the Boolean morphism λA |B(L(A)): B(L(A)) → B(L(B)) is injective. If, fur-
thermore, A is semiprime or its commutator is associative, then this restriction of
λA is a Boolean isomorphism.

Lemma 5.2. [27, Lemma 25] If C is congruence–modular and semi–degenerate and
A is semiprime, then, for all α ∈ Con(A): λA(α) ∈ B(L(A)) iff α ∈ B(Con(A)).

Remark 5.3. Since B(Con(A)) ⊆ K(A) ⊆ Con(A), it follows that, if Con(A) is a
Boolean lattice, in particular if A is simple, then B(Con(A)) = K(A) = Con(A).

Since the same holds for B, we may notice that: f satisfies (FBC1) if B(Con(B))
= K(B), in particular if Con(B) is a Boolean lattice, in particular if B is simple.

Remark 5.4. If f satisfies (FBC1), f• |K(A): K(A)→ K(B) preserves the commu-
tator and f•(∇A) = ∇B, the latter holding if f is surjective or C is a variety with
~0 and ~1, then, since the commutators of A and B coincide to the intersection on
B(Con(A)) and B(Con(B)), respectively, it follows that f satisfies FBC.

In particular, f satisfies FBC if f• : Con(A) → Con(B) is a bounded lattice
morphism, that is if:
• f•(∇A) = ∇B, in particular if f is surjective or C is a variety with ~0 and ~1,

and:
• f• preserves the intersection, in particular if f is surjective and the commutators
of A and B coincide to the intersection, in particular if f is surjective and C is
congruence–distributive.

Remark 5.5. If f fulfills FRet and L(f) : L(A) → L(B) is a bounded lattice
morphism, then f fulfills FBC and the image of L(f) through the functor B is
B(L(f)) = L(f) |B(L(A)): B(L(A))→ B(L(B)).
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If all morphisms in C fulfill FRet and L is a functor from C to the variety of
bounded distributive lattices, then B◦L is a functor from C to the variety of Boolean
algebras.

Thus, in view of Proposition 4.16:

Corollary 5.6. If C is a congruence–distributive variety with ~0 and ~1 and the CIP,
then every morphism in C fulfills FBC.

Remark 5.7. B ◦ L does not preserve surjectivity, as shown by the example of
the surjective morphism h : N5 → L2

2 from Example 6.3. Note, also, that the
bounded lattice morphism L(h) is surjective, but the Boolean morphism B(L(h)) is
not surjective.

On the other hand, notice the bounded lattice embedding iL2,N5 from Exam-
ple 6.3, in whose case the Boolean morphism B(L(iL2,N5)) is surjective, while the
bounded lattice morphism L(iL2,N5) is not surjective.

Proposition 5.8. If:

• C is congruence–modular and semi–degenerate,

• f fulfills FRet and L(f) preserves the 1,

• L(f) |B(L(A)) preserves the meet, in particular if L(f) preserves the meet,

• and B is semiprime,

then f fulfills FBC.

Proof. Since f• preserves the join and thus so does L(f), it follows that L(f) |B(L(A)):
B(L(A)) → L(B) is a bounded lattice morphism, hence L(f)(B(L(A))) ⊆ B(L(B))
and so L(f) |B(L(A)): B(L(A)) → B(L(B)) is a bounded lattice morphism, thus a
Boolean morphism.

Let α ∈ B(Con(A)). Then λA(α) ∈ B(L(A)), thus, by the above, λB(f•(α)) =
L(f)(λA(α)) ∈ B(L(B)), so that f•(α) ∈ B(Con(B)) by Lemma 5.2. Hence
f•(B(Con(A))) ⊆ B(Con(B)).

Trivially, f•(∆A) = ∆B. We have λB(f•(∇A)) = L(f)(λA(∇A)) = L(f)(1) =
1 = λB(∇B), thus f•(∇A) = ∇B by Lemma 5.1. Let α, β ∈ B(Con(A)) ⊆ K(A).
Then λB(f•(α ∩ β)) = L(f)(λA(α ∩ β)) = L(f)(λA(α) ∧ λA(β)) = L(f)(λA(α)) ∧
L(f)(λA(β)) = λB(f•(α)) ∧ λB(f•(β)) = λB(f•(α) ∩ f•(β)), so that f•(α ∩ β) =
f•(α) ∩ f•(β) by Lemma 5.1. Therefore f• |B(Con(A)): B(Con(A)) → B(Con(B)) is
a Boolean morphism.
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Corollary 5.9. If:

• C is semi–degenerate,

• f•(∇A) = ∇B and f•(α ∩ β) = f•(α) ∩ f•(β) for all α, β ∈ B(Con(A)),

• C is congruence–modular and the commutators of A and B coincide to the
intersection, in particular if C is congruence–distributive,

then f fulfills FBC.

Proposition 5.10. • FRet does not imply FBC, not even in congruence–
distributive varieties.

• FBC does not imply FRet.

Proof. The lattice morphism g in Example 6.3 fulfills the FRet, but fails the FBC.
The morphism h in Example 6.5 satisfies FBC, but fails the FRet.

Remark 5.11. If f fulfills FBC and f•(∇A) = ∇B, in particular if f fulfills FBC
and FRet, then L(f) preserves the 1, but, as shown by the case of the bounded
lattice morphism k in Example 6.3, L(f) does not necessarily preserve the meet.

Remark 5.12. If the commutators of A and B coincide to the intersection and the
lattices Con(A) and Con(B) are Boolean, then the following are equivalent:

• f fulfills FBC;

• f fulfills FRet and L(f) preserves the meet and the 1.

Remark 5.13. If f fulfills FRet and FBC, then L(f) |B(L(A)): B(L(A))→ B(L(B))
is a Boolean morphism that makes the following diagram commutative:

B(Con(A)) B(Con(B))

B(L(A)) B(L(B))

-
f• |B(Con(A))

-L(f) |B(L(A))?
λA |B(Con(A)) ?

λB |B(Con(B))

Remark 5.14. Obviously, whenever L(f) : L(A) → L(B) is injective, it follows
that L(f) |B(L(A)): B(L(A))→ B(L(B)) is injective, as well.

Corollary 5.15. • If C has EDPC and f is injective, then L(f) |B(L(A)):
B(L(A))→ B(L(B)) is injective.

• If C is a variety with ~0 and ~1, EDPC and the CIP, then the functor B ◦ L
preserves injectivity.
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Proof. By Remark 5.14 and Propositions 4.37 and 4.16.

Proposition 5.16. If f•(∇A) = ∇B and f• |B(Con(A)) preserves the intersection,
in particular if f• preserves the commutator, then f fulfills the FBC.

Proof. Let α ∈ B(Con(A)), so that, for some β ∈ B(Con(A)), α ∨ β = ∇A and
[α, β]A = α ∩ β = ∆A. Then f•(α) ∨ f•(β) = f•(α ∨ β) = f•(∇A) = ∇B and
thus f•(α) ∩ f•(β) = [f•(α), f•(β)]B = f•([α, β]A) = f•(∆A) = ∆B, hence f•(α) ∈
B(Con(B)), so f fulfills (FBC1). Also, f•(∆A) = ∆B, f•(∇A) = ∇B and f•

preserves the join and the commutator, that is the intersection on B(Con(A)).

Corollary 5.17. If C is congruence–modular and f is surjective, then f fulfills the
FBC.

Definition 5.18. We say that a congruence θ of A fulfills the Congruence Boolean
Lifting Property (abbreviated CBLP) iff the map p•θ |B(Con(A))= pθ |B(Con(A)):
B(Con(A)) → B(Con(A/θ)) is surjective. We say that A fulfills the Congruence
Boolean Lifting Property (CBLP) iff all congruences of A satisfy the CBLP.

For instance, if θ ∈ Con(A) such that A/θ is simple, so that B(Con(A/θ)) =
Con(A/θ) ∼= L2, then θ satisfies the CBLP, so, in particular, any maximal congruence
of A has the CBLP.

H© Throughout the rest of this section C will be congruence–modular.

Remark 5.19. Let θ ∈ Con(A). Then, by Lemma 2.1, p•θ : Con(A)→ Con(A/θ) is
defined by p•θ(α) = (α ∨ θ)/θ for all α ∈ Con(A), and, by Corollary 5.17, the map
p•θ |B(Con(A))= pθ |B(Con(A)): B(Con(A)) → B(Con(A/θ)) is well defined and it is a
Boolean morphism.

Lemma 5.20. Let α, β ∈ Con(A) with β ⊆ α.
(i) If β and α/β have the CBLP, then α has the CBLP.

(ii) If α has the CBLP, then α/β has the CBLP.

Proof. By the Second Isomorphism Theorem, the map ϕα,β : A/α→ (A/β)/(α/β),
defined by ϕα,β(a/α) = (a/β)/(α/β) for all a ∈ A, is an isomorphism in C, so
that ϕ•α,β : Con(A/α) → Con((A/β)/(α/β)) is a lattice isomorphism and thus
B(ϕ•α,β) : B(Con(A/α)) → B(Con((A/β)/(α/β))) is a Boolean isomorphism. For
all θ ∈ Con(A), ϕ•α,β(p•α(θ)) = ϕ•α,β((θ ∨ α)/α) = ((θ ∨ α)/β)/(α/β) = ((θ ∨ β ∨
α)/β)/(α/β) = ((θ ∨ β)/β ∨ α/β)/(α/β) = p•α/β((θ ∨ β)/β) = p•α/β(p•β(θ)), hence
the diagram below on the left is commutative, thus so is the diagram below on the
right, hence the implications in the enunciation:
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Con(A) Con(A/α)

Con(A/β) Con((A/α)/(α/β))

-p•α

-
p•α/β?

p•β ?
ϕ•α,β

B(Con(A)) B(Con(A/α))

B(Con(A/β)) B(Con((A/α)/(α/β)))

-
p•α |B(Con(A))

-
p•α/β |B(Con(A/β))?

p•β |B(Con(A)) ?
B(ϕ•α,β)

Proposition 5.21. A has the CBLP iff, for all θ ∈ Con(A), A/θ has the CBLP.

Proof. By Lemma 5.20, (ii), for the direct implication, and the fact that A is iso-
morphic to A/∆A, for the converse.

Proposition 5.22. Let θ ∈ Con(A). Then: A/θ is semiprime iff θ ∈ RCon(A).

Proof. ∆A/θ = (∆A ∨ θ)/θ = θ/θ and ρA/θ(∆A/θ) = ρA(∆A ∨ θ)/θ = ρA(θ)/θ.
Hence A/θ is semiprime iff ρA/θ(∆A/θ) = ∆A/θ iff ρA(θ)/θ = θ/θ iff ρA(θ) = θ iff
θ ∈ RCon(A).

Corollary 5.23.
• A/θ is semiprime for all θ ∈ Con(A) iff RCon(A) = Con(A).

• If the commutator of A equals the intersection, then A/θ is semiprime for all
θ ∈ Con(A).

H© Throughout the rest of this section C will be congruence–modular and semi–
degenerate.

Recall that an ideal I of a bounded distributive lattice L is said to have the
Id–BLP iff the Boolean morphism B(πI) : B(L) → B(L/I) is surjective [15], and L
is said to have the Id–BLP iff all its ideals have the Id–BLP.

Recall from Section 3 that, for any θ ∈ Con(A), we have θ∗ ∈ Id(L(A)).

Theorem 5.24. [27, Theorem 7] For any θ ∈ Con(A), the map ϕθ : L(A/θ) →
L(A)/θ∗ defined by ϕθ(λA/θ((α ∨ θ)/θ)) = λA(α)/θ∗ for all α ∈ K(A), is a lattice
isomorphism.

Lemma 5.25. Let θ ∈ Con(A).

• If λA/θ |B(Con(A/θ)): B(Con(A/θ)) → B(L(A/θ)) is surjective and θ has the
CBLP, then θ∗ has the Id–BLP.
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• If λA |B(Con(A)): B(Con(A)) → B(L(A)) is surjective and λA/θ |B(Con(A/θ)):
B(Con(A/θ)) → B(L(A/θ)) is bijective, then: θ has the CBLP iff θ∗ has the
Id–BLP (in L(A)).

Proof. By the definitions, θ has the CBLP iff the Boolean morphism p•θ |B(Con(A)):
B(Con(A)) → B(Con(A/θ)) is surjective, while θ∗ has the Id–BLP iff the Boolean
morphism B(πθ∗) : B(L(A))→ B(L(A)/θ∗) is surjective.

The definition of the lattice isomorphism ϕθ from Theorem 5.24 shows that the
following diagram on the left is commutative, hence, by considering the restrictions
of the maps in this diagram to the Boolean centers, we obtain the commutative
diagram below on the right:

K(A) K(A/θ)

L(A) L(A/θ)

-p•θ |K(A)

-L(pθ)?
λA

?
λA/θ

L(A)/θ∗
@
@@R

�
�	πθ∗ ϕθ

B(Con(A)) B(Con(A/θ))

B(L(A)) B(L(A/θ))

-
p•θ |B(Con(A))

-L(pθ) |B(L(A))?
λA |B(Con(A)) ?

λA/θ |B(Con(A/θ))

B(L(A)/θ∗)
@
@@R

�
�	B(πθ∗) B(ϕθ)

Thus L(pθ) |B(L(A)) ◦λA |B(Con(A))= λA/θ |B(Con(A/θ)) ◦p•θ |B(Con(A)), hence the state-
ments in the enunciation.

Remark 5.26. By a result in [21] recalled in Section 2, since C is congruence–
modular, if the commutator of A is associative, then, for all θ ∈ Con(A), the com-
mutator of A/θ is associative.

Proposition 5.27. Let θ ∈ Con(A).

• If θ ∈ RCon(A) and θ has CBLP, then θ∗ has the Id–BLP.

• If ∆A, θ ∈ RCon(A), then: θ has CBLP iff θ∗ has the Id–BLP.

• If the commutator of A/θ is associative and θ has CBLP, then θ∗ has the
Id–BLP.

• If the commutator of A is associative, then: θ has CBLP iff θ∗ has the Id–BLP.

Proof. By Lemmas 5.25 and Lemma 5.1, Proposition 5.22 and Remark 5.26.

Theorem 5.28. • If RCon(A) = Con(A), then: A has the CBLP iff L(A) has
the Id–BLP.
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• If the commutator of A is associative, then: A has the CBLP iff L(A) has the
Id–BLP.

Proof. By Propositions 5.27 and 3.2 and Remark 5.26.

Proposition 5.29. Let n ∈ N∗, M1, . . . ,Mn be members of C and θ1 ∈ Con(M1),
. . . , θn ∈ Con(Mn). Then:

(i) θ1 × . . .× θn has the CBLP iff θ1, . . . , θn have the CBLP;

(ii) M1 × . . .×Mn has the CBLP iff M1, . . . ,Mn have the CBLP.

Proof. (i) Let M = M1 × . . .×Mn and θ = θ1 × . . .× θn ∈ Con(M), and note that
M/θ = M1/θ1× . . .×Mn/θn. Since C is congruence–modular and semi–degenerate,
the direct productsM1×. . .×Mn andM1/θ1×. . .×Mn/θn have no skew congruences,
hence B(Con(M)) = B(Con(M1)×. . .×Con(Mn)) = B(Con(M1))×. . .×B(Con(Mn))
and B(Con(M/θ)) = B(Con(M1/θ1)× . . .×Con(Mn/θn)) = B(Con(M1/θ1))× . . .×
B(Con(Mn/θn)). For all α1 ∈ Con(M1), . . . , αn ∈ Con(Mn), if α = α1 × . . . × αn,
then p•θ(α) = (α ∨ θ)/θ = ((α1 ∨ θ1)/θ1, . . . , (αn ∨ θn)/θn) = (p•θ1

(α1), . . . , p•θn(αn)),
thus p•θ = p•θ1

× . . . × p•θn . Hence p•θ |B(Con(M)): B(Con(M)) → B(Con(M/θ)) is
surjective iff p•θ1

|B(Con(M1)): B(Con(M1)) → B(Con(M1/θ1)), . . . , p•θn |B(Con(Mn)):
B(Con(Mn))→ B(Con(Mn/θn)) are surjective.
(ii) By (i).

Remark 5.30. In Proposition 5.29, (i), instead of C being congruence–modular and
semi–degenerate, it suffices for C to be congruence–modular and the direct product
M1 × . . .×Mn to have no skew congruences.

Recall that a bounded distributive lattice L is said to be B–normal iff, for all
x, y ∈ L such that x∨ y = 1, there exist a, b ∈ B(L) such that x∨ a = y ∨ b = 1 and
a ∧ b = 0. L is said to be B–conormal iff its dual is B–normal.

Definition 5.31. We say that the algebra A is congruence B–normal iff, for all
φ, ψ ∈ Con(A) such that φ ∨ ψ = ∇A, there exist α, β ∈ B(Con(A)) such that
φ ∨ α = ψ ∨ β = ∇A and [α, β]A = ∆A.

Remark 5.32. If A is congruence–distributive, then A is congruence B–normal iff
its congruence lattice is B–normal. More generally, if A is semiprime, then A is
congruence B–normal iff its congruence lattice satisfies the B–normality condition
excepting distributivity.

Congruence B–normal algebras generalize commutative exchange rings [44, The-
orem 1.7], quasi–local residuated lattices [23, 41] and congruence–distributive B–
normal algebras [24].
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The following proofs are very similar to those of the analogous statements from
[24, Theorem 4.28], but we introduce them here for the sake of completeness.

Lemma 5.33. The following are equivalent:

(i) A is congruence B–normal;

(ii) for all φ, ψ ∈ K(A) such that φ ∨ ψ = ∇A, there exist α, β ∈ B(Con(A)) such
that φ ∨ α = ψ ∨ β = ∇A and [α, β]A = ∆A.

Proof. (i)⇒(ii): Trivial.
(ii)⇒(i): Let φ, ψ ∈ Con(A) such that φ ∨ ψ = ∇A, that is ∇A = ∨{CgA(a, b) |
(a, b) ∈ φ ∪ ψ}. But ∇A ∈ K(A), thus, for some n, k ∈ N∗, there exist (a1, b1), . . . ,
(an, bn) ∈ φ and (c1, d1), . . . , (ck, dk) ∈ ψ such that ∇A = ε ∨ ξ, where ε =
n∨

i=1
CgA(ai, bi) ∈ K(A) and ξ =

k∨

j=1
CgA(cj , dj) ∈ K(A). Hence there exist α, β ∈

Con(A) such that [α, β]A = ∆A and ε∨α = ξ∨β = ∇A, so that φ∨α = ψ∨β = ∇A
since ε ⊆ φ and ξ ⊆ ψ.

Proposition 5.34. (i) If A is congruence B–normal, then L(A) is B–normal.

(ii) If C is congruence–modular and semi–degenerate and the Boolean morphism
λA |B(Con(A)): B(Con(A)) → B(L(A)) is surjective, then: A is congruence
B–normal iff L(A) is B–normal.

Proof. (i) Assume that A is congruence B–normal and let θ, ζ ∈ K(A) such that
λA(θ)∨λA(ζ) = 1, that is λA(θ∨ζ) = 1, so that θ∨ζ = ∇A, hence there exist α, β ∈
B(Con(A)) such that θ ∨ α = ζ ∨ β = ∇A and [α, β]A = ∆A, thus λA(α), λA(β) ∈
B(L(A)), λA(θ) ∨ λA(α) = λA(θ ∨ α) = 1 = λA(ζ ∨ β) = λA(ζ) ∨ λA(β) and
λA(α) ∧ λA(β) = λA([α, β]A) = 0. Therefore L(A) is B–normal.
(ii) Assume that C is congruence–modular and semi–degenerate and that this
Boolean morphism is surjective, so that it is a Boolean isomorphism by Lemma
5.1. By (i), it suffices to prove the converse implication, so assume that L(A) is
B–normal, and let φ, ψ ∈ K(A) such that φ ∨ ψ = ∇A. Then λA(φ) ∨ λA(ψ) =
λA(φ ∨ ψ) = 1, hence, by the surjectivity of λA restricted to the Boolean centers,
there exist α, β ∈ B(Con(A)) such that λA(φ∨α) = λA(φ)∨λA(α) = 1 = λA(∇A) =
λA(ψ) ∨ λA(β) = λA(ψ ∨ β) and λA([α, β]A) = λA(α) ∧ λA(β) = 0 = λA(∆A),
therefore, by the injectivity of this Boolean morphism, φ ∨ α = ψ ∨ β = ∇A and
[α, β]A = ∆A. By Lemma 5.33, it follows that A is congruence B–normal.
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Theorem 5.35. If the Boolean morphism λA |B(Con(A)): B(Con(A)) → B(L(A)) is
surjective, then the following are equivalent:

(i) A has the CBLP;

(ii) L(A) has the Id–BLP;

(iii) L(A) is B–normal;

(iv) A is congruence B–normal;

(v) the topological space (Spec(A), {DA(θ) | θ ∈ Con(A)}) is strongly zero–
dimensional.

Proof. By Lemma 5.1, λA |B(Con(A)): B(Con(A)) → B(L(A)) is a Boolean isomor-
phism.
(i)⇔(ii): By Lemma 5.25 and Proposition 3.2.
(ii)⇔(iii): By [15, Proposition 13].
(iii)⇔(iv): By Proposition 5.34, (ii).
(iv)⇔(v): Analogously to the proof of the similar equivalence from [24, Theorem
4.28].

Remark 5.36. By [15], L(A) is B–normal iff Id(L(A)) is B–normal iff Filt(L(A))
is B–conormal.

Corollary 5.37. If C is congruence–modular and semi–degenerate and either A is
semiprime or its commutator is associative, then: A has the CBLP iff L(A) has the
Id–BLP iff L(A) is B–normal iff A is congruence B–normal iff the topological space
(Spec(A), {DA(θ) | θ ∈ Con(A)}) is strongly zero–dimensional.

Proof. By Theorem 5.35 and Lemma 5.1.

Remark 5.38. Theorem 5.35 extends results such as: commutative unitary rings
with the lifting property are exactly exchange rings [44], residuated lattices with the
Boolean Lifting Property are exactly quasi–local residuated lattices [25], in semi–
degenerate congruence–distributive varieties, algebras with CBLP are exactly B–
normal algebras [24, Theorem 4.28].
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6 Particular Cases and Examples
Remark 6.1. By [13, Theorem 8.11, p.126], the variety of distributive lattices
has the PIP, thus also the CIP, since it is congruence–distributive. Therefore, by
Proposition 4.16, L is a functor from the variety of distributive lattices to itself, as
well as from the variety of bounded distributive lattices to itself.

Remarks 6.2. • Any Boolean algebra A is isomorphic to its reticulation, since
Id(A) ∼= Con(A) and thus SpecId(A) and Spec(A), endowed with the Stone topolo-
gies, are homeomorphic, A is a bounded distributive lattice and L(A) is unique up
to a lattice isomorphism.
• A finite modular lattice L is isomorphic to its reticulation iff L is a Boolean

algebra. Indeed, the converse implication follows from the above, while, for the
direct implication, we may notice that, since L is congruence–distributive and finite,
we have L(L) ∼= K(L) = Con(L), which is a Boolean algebra [13, 28, 17].
• By Remark 4.21, a lattice without ACC can not be isomorphic to its reticu-

lation.
• If A and B are algebras with the CIP and the commutators equalling the

intersection having Con(A) ∼= Con(B), then K(A) = Cp(Con(A)) and K(B) =
Cp(Con(B)) are sublattices of Con(A) and Con(B), respectively, so we have L(A) ∼=
K(A) ∼= K(B) ∼= L(B).

In particular, any lattice with the CIP, thus any finite or distributive lattice, has
its reticulation isomorphic to the reticulation of its dual.

In the following examples, we have calculated the commutators using the method
from [38]. Note that, in each of these examples, the commutator is distributive w.r.t.
the join, hence, by [1, Proposition 1.2], the prime congruences of A are the meet–
irreducible elements φ of Con(A) with the property that [α, α]A ⊆ φ implies α ⊆ φ
for all α ∈ Con(A).

Example 6.3. By Lemma 4.8, all the algebras in this example are semiprime and
all the morphisms in this example fulfill FRet, since we are in the congruence–
distributive variety of lattices and the following algebras are finite, thus all their
congruences are compact, so these algebras trivially satisfy the CIP. Bounded lat-
tices form a congruence–distributive variety with ~0 and ~1, thus all bounded lattice
morphisms in this example also satisfy the FBC, according to Proposition 5.8. For
the bounded lattice morphisms between bounded distributive lattices we can even
apply Corollary 5.6, since the variety of distributive lattices has the CIP, because it
is filtral [2, Example 2.11]; moreover, the variety of distributive lattices has the PIP
[13, Theorem 8.11].
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Let us consider the congruence–distributive variety of lattices, L2
2 = {0, a, b, 1},

L2 = {0, a} and let us consider the lattice embedding iL2,L2
2

: L2 → L2
2. Then we

may take L(L2) = K(L2) = Con(L2) = {∆L2 ,∇L2} ∼= L2 and L(L2
2) = K(L2

2) =
Con(L2

2) = {∆L2
2
, φ, ψ,∇L2

2
} ∼= L2

2, where L2
2/φ = {{0, a}, {b, 1}} and L2

2/ψ =
{{0, b}, {a, 1}}. Then iL2,L2

2
fulfills FRet, with L(iL2,L2

2
) = i•L2,L2

2
, which preserves

the meet, but does not preserve the 1, since i•L2,L2
2
(∇L2) = CgL2

2
(iL2,L2

2
(∇L2)) = α 6=

∇L2
2
. Recall that, since we are in a congruence–distributive variety, ρL2

2
= idCon(L2

2).
Here is an example of a morphism k in the congruence–distributive semi–

degenerate variety of bounded lattices such that L(k) does not preserve the meet,
or, equivalently, such that k• does not preserve the intersection of congruences. Let
k : N5 → N5 be the bounded lattice morphism defined by the table below:

0

a
b

c

r rr
rr

@
@

�

�
�

@
1N5 : u 0 a b c 1

k(u) 0 a b b 1
h(u) 0 a b b 1

θ ∆N5 α β γ ∇N5

k•(θ) ∆N5 α β ∆N5 ∇N5

h•(θ) ∆L2
2

φ ψ ∆L2
2
∇L2

2

θ ∆L2
2

φ ψ ∇L2
2

i•L2
2,M3

(θ) ∆M3 ∇M3 ∇M3 ∇M3

∆N5

γrr
r rr
@�
�@α β

∇N5

0
a brrr r
@�
�@

1
L2

2 :

∆L2
2

rr rr
@�
�@φ ψ

∇L2
2

0

a b cr rrrr
@

@
�
�

�
�

@
@

1M3 :

N5 has the congruence lattice above, where N5/α = {{0, b, c}, {a, 1}}, N5/β =
{{0, a}, {b, c, 1}} andN5/γ = {{0}, {a}, {b, c}, {1}}. We have k•(α)∩k•(β) = α∩β =
γ 6= ∆N5 = k•(γ) = k•(α ∩ β).

Let us also consider M3 with the elements denoted as above and the bounded
lattice embedding iL2

2,M3 : L2
2 →M3. B(Con(M3)) = Con(M3) = {∆M3 ,∇M3} ∼=

L2. iL2
2,M3 is injective and not surjective, but, as shown by the table above, i•L2

2,M3

is surjective and not injective, hence so is L(iL2
2,M3), since we are in a congruence–

distributive variety.
Let h : N5 → L2

2 be the surjective lattice morphism defined by the table above.
Then h• : Con(N5) = K(N5) → Con(L2

2) = K(L2
2) is surjective, thus so is L(h) :

L(N5) → L(L2
2), and h fulfills the FBC, as announced above, but h• |B(Con(N5)):

B(Con(N5)) = {∆N5 ,∇N5} → B(Con(L2
2)) = Con(L2

2) is not surjective, thus neither
is B(L(h)) : B(L(N5))→ B(L(L2

2)), since we are in a congruence–distributive variety
and N5 and L2

2 are finite, so that we may take L(N5) = K(N5) = Con(N5), L(L2
2) =

K(L2
2) = Con(L2

2) and L(h) = h• : Con(N5)→ Con(L2
2).

The bounded lattice embedding iL2,N5 fulfills the FBC, as announced above, and,
here as well, we may take L(L2) = K(L2) = Con(L2) = {∆L2 ,∇L2} = B(Con(L2))
and L(iL2,N5) = i•L2,N5 : Con(L2) → Con(N5), so that B(L(iL2,N5)) = L(i•L2,N5) =
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i•L2,N5 |B(Con(L2)): B(Con(L2)) → B(Con(N5)). Since i•L2,N5(B(Con(L2))) =
i•L2,N5(Con(L2)) = {∆N5 ,∇N5} = B(Con(N5)) ( Con(N5), it follows that
B(L(iL2,N5)) is surjective, while L(iL2,N5) is not surjective.

Here is a lattice morphism that fails FBC, and, since it is a morphism between
finite lattices, it satisfies FRet, as all morphisms above: let g : L2

2 → N5 be defined
by the following table, so that g• has this definition:

u 0 a b 1
g(u) 0 0 b b

θ ∆L2
2

φ ψ ∇L2
2

g•(θ) ∆N5 ∆N5 α α

We have g•(B(Con(L2
2))) = g•(Con(L2

2)) = {∆N5 , α} * {∆N5 ,∇N5} =
B(Con(N5)), thus g fails (FBC1).

Example 6.4. Let τ = (2) and let us consider the following τ–algebra from [27,
Example 4]: (N,+N ), with N = {a, b, c, x, y} and +N : N2 → N defined by
the following table. Note that some of the congruences of N , as well as of the
algebra M from the same example, have been omitted in [27]; here is the cor-
rect Hasse diagram of Con(N), where: N/δ = {{a, b}, {c}, {x}, {y}}, N/η1 =
{{a}, {b, c}, {x}, {y}}, N/η = {{a, b, c}, {x}, {y}}, N/ω1 = {{a}, {b}, {c}, {x, y}},
N/ω1 = {{a, b}, {c}, {x, y}}, N/ζ1 = {{a}, {b, c}, {x, y}}, N/ζ = {{a, b, c}, {x, y}},
N/ε = {{a, b, c, x}, {y}} and N/ξ = {{a, b, c, y}, {x}}.

+N a b c x y

a a b c a a
b b b c b b
c c c c c c
x x x x x x
y y y y y y r

∆N

�
�

@
@
r r rr rr r
�
�

@
@
�
�

@
@

�
�

@
@@

@
@
@�

�

rrr
η1

η

δ ω1

ξε

ζ1

ζ

ω

∇N

[·, ·]N is given by the following table, so that Spec(N) = {ω}, thus RCon(N) =
{ω,∇N}, hence L(N) = K(N)/≡N= Con(N)/≡N= {(ω], [ω)} = {0,1} ∼= L2. By
Proposition 5.22, since ∆N /∈ RCon(N), while ω ∈ RCon(N), N is not semiprime,
but N/ω is semiprime.
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[·, ·]N ∆N δ η1 η ω1 ω ζ1 ζ ε ξ ∇N
∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N

δ ∆N δ ∆N δ ∆N δ ∆N δ δ δ δ
η1 ∆N ∆N η1 η1 ∆N ∆N η1 η1 η1 η1 η1
η ∆N δ η1 η ∆N δ η1 η η η η
ω1 ∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N ∆N

ω ∆N δ ∆N δ ∆N δ ∆N δ δ δ δ
ζ1 ∆N ∆N η1 η1 ∆N ∆N η1 η1 η1 η1 η1
ζ ∆N δ η1 η ∆N δ η1 η η η η
ε ∆N δ η1 η ∆N δ η1 η η η η
ξ ∆N δ η1 η ∆N δ η1 η η η η
∇N ∆N δ η1 η ∆N δ η1 η η η η

Note that B(Con(N)) = {∆N , ω1, ε, ξ,∇N}, which is not a sublattice of Con(N),
since it is not closed w.r.t. the intersection. Note, also, that {a} is a subalgebra of
N , thus the variety generated by N is not semi–degenerate; the same holds for all
the algebras in this example, as well as those in the following example, because each
of these algebras has trivial subalgebras.

Let (P,+P ) be the following τ–algebra: P = {a, b, x, y}, with +P : P 2 → P
defined by the table that follows:

+P a b x y

a a b y y
b b b y y
x x x x x
y y y y y

r
∆P

�
�

@
@
r r rr r rr
�
�

@
@
�
�

@
@

�
�

@
@

µ χ ν

φ ι ψ

∇P

[·, ·]P ∆P χ φ µ ψ ν ι ∇P
∆P ∆P ∆P ∆P ∆P ∆P ∆P ∆P ∆P

χ ∆P ∆P ∆P ∆P ∆P ∆P ∆P ∆P

φ ∆P ∆P µ µ ∆P ∆P µ µ
µ ∆P ∆P µ µ ∆P ∆P µ µ
ψ ∆P ∆P ∆P ∆P ν ν ν ν
ν ∆P ∆P ∆P ∆P ν ν ν ν
ι ∆P ∆P µ µ ν ν ι ι
∇P ∆P ∆P µ µ ν ν ι ι

Con(P ) = B(Con(P )) = {∆P , χ, φ, ψ, µ, ν, ι,∇P } ∼= L3
2, where P/χ = {{a}, {b},

{x, y}}, P/φ = {{a, b}, {x, y}}, P/ψ = {{a}, {b, x, y}}, P/µ = {{a, b}, {x}, {y}},
P/ν = {{a}, {x}, {b, y}} and Pι = {{a, b, y}, {x}}, as in the diagram above. The
commutator of P has the table above, hence Spec(P ) = {φ, ψ}, thus ∆P /∈
{φ, ψ, χ,∇P } = RCon(P ), so P is not semiprime, and L(P ) = B(L(P )) =
B(K(P )/≡P ) = B(Con(P )/≡P ) = Con(P )/≡P= {{∆P , χ}, {φ, µ}, {ψ, ν}, {ι,∇P }}

1160



Functorial Properties of the Reticulation

∼= L2
2, hence λP |B(Con(P )): B(Con(P )) = Con(P )→ B(L(P )) = L(P ) is a surjective

Boolean morphism.
Let g : P → N and h : N → P be the following τ–morphisms:

u a b x y

g(u) a a y a

u a b c x y

h(u) x x x y x
θ ∆P χ φ µ ψ ν ι ∇P

g•(θ) ∆N ξ ξ ∆N ξ ∆N ∆N ξ
θ ∆N δ η1 η ω1 ω ζ1 ζ ε ξ ∇N

h•(θ) ∆P ∆P ∆P ∆P χ χ χ χ χ ∆P χ

Then g• and h• have the tables above.
We have ∇P ≡P ι, but g•(∇P ) = ξ ≡N/ ∆N = g•(ι), hence g fails FRet. Note that

g• preserves the intersection, but not the commutator, since g•([ψ,ψ]P ) = g•(ν) =
∆N 6= η = [ξ, ξ]N = [g•(ψ), g•(ψ)]N .

Since h•(Con(N)) = {∆P , χ} = λP (∆P ) and [χ, χ]P = ∆P , h satisfies FRet
and h• preserves the commutator. h•(ε) ∩ h•(ζ) = χ ∩ χ = χ 6= ∆P = h•(η) =
h•(ε∩ζ), thus h• does not preserve the intersection, and L(h)(1) = L(h)(λN (∇N )) =
λP (h•(∇N )) = λP (χ) 6= λP (∇P ) = 1.

Let (Q,+Q) be the following τ–algebra: Q = {a, b, x, y}, with +Q : Q2 → Q
defined by the table below:

+Q a b x y

a a b x x
b b b y y
x x x x x
y y y y y ∆Q

γrr
r rr
@�
�@α β

∇Q
[·, ·]Q ∆Q α β γ ∇Q ρQ(·)
∆Q ∆Q ∆Q ∆Q ∆Q ∆Q ∇Q
α ∆Q α γ ∆Q α α
β ∆Q γ β ∆Q β β
γ ∆Q ∆Q ∆Q ∆Q ∆Q γ
∇Q ∆Q α β ∆Q ∇Q γ

Then Q has the congruence lattice represented above, with Q/α = {{a, b},
{x, y}}, Q/β = {{a}, {b, x, y}} and Q/γ = {{a}, {b}, {x, y}}. The commutator of Q
has the table above, hence Spec(Q) = {α, β}, so ρQ is as above and thus L(Q) =
K(Q)/ ≡Q= Con(Q)/ ≡Q= {{∆Q, γ}, {α}, {β}, {∇Q}} = {0, λQ(α), λQ(β),1} ∼=
L2

2. B(Con(Q)) = {∆Q,∇Q} ∼= L2, hence the Boolean morphism λQ |B(Con(Q)):
B(Con(Q))→ B(L(Q)) = L(Q) is injective, but not surjective.

Let k : Q→ N and l : Q→ P be the following τ–morphisms:
u a b x y

k(u) a b c c

l(u) a b y y

θ ∆Q α β γ ∇Q
k•(θ) ∆N ξ1 ψ1 ∆N χ1
l•(θ) ∆P µ ν ∆P ι

Then h• has the table above, so h fulfills FRet and L(h) preserves the 1, although
h•(∇Q) 6= ∇M : L(h)(1) = L(h)(λQ(∇Q)) = λM (h•(∇Q)) = λM (ε) = 1. But L(h)
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does not preserve the meet, because: L(h)(λQ(α) ∧ λQ(β)) = L(h)(λQ([α, β]Q)) =
L(h)(λQ(∆Q)) = L(h)(0) = 0 6= 1 = 1 ∧ 1 = λM (ε) ∧ λM (ε) = λM (h•(α)) ∧
λM (h•(β)) = L(h)(λQ(α)) ∧ L(h)(λQ(β)). h• preserves neither the intersection,
nor the commutator: h•(α ∩ β) = h•(γ) = ∆M 6= ε = ε ∩ ε = h•(α) ∩ h•(β) and
h•([α, β]Q) = h•(∆Q) = ∆M 6= ε = [ε, ε]M = [h•(α), h•(β)]M .

k• has the table above, so k fulfills FRet and L(k) preserves the meet and the 1,
although k•(∇Q) 6= ∇N , and k• preserves both the intersection and the commutator.

l• is defined as above, so l fulfills FRet and L(l) preserves the meet and the 1,
although l•(∇Q) 6= ∇P , and l• preserves both the intersection and the commutator.
Note that l• |B(Con(Q)): B(Con(Q)) = {∆Q,∇Q} → B(Con(P )) = {∆P , µ, ν,∇P } is
an injective Boolean morphism, and that, while l is neither injective, nor surjective,
L(l) : L(Q) = B(L(Q))→ L(P ) = B(L(P )) ∼= L2

2 is a Boolean isomorphism.
Now let (R,+R) be the τ–algebra defined by R = {a, b, c} and the following table

for the operation +R:

+R a b c

a a b b
b b b b
c c c c ∆R

rr rr
@�
�@σ τ

∇R
[·, ·]R ∆R σ τ ∇R
∆R ∆R ∆R ∆R ∆R

σ ∆R σ ∆R σ
τ ∆R ∆R ∆R ∆R

∇R ∆R σ ∆R σ

Then R has the congruence lattice above, with R/σ = {{a, b}, {c}} and R/τ =
{{a}, {b, c}}, and the commutator ofR has the previous definition, so that Spec(R) =
{τ} and thus RCon(R) = {τ,∇R}, so L(R) = K(R)/≡R= Con(R)/≡R= {{∆R, τ},
{σ,∇R}} = {0,1} ∼= L2, hence the Boolean morphism λR |B(Con(R)): B(Con(R)) =
Con(R)→ B(L(R)) = L(R) is surjective, but not injective.

Let d : R → N , e : R → N , j : R → N and m : R → P be the τ–morphisms
defined as follows:

u a b c

d(u) a b b
e(u) a c c
j(u) y y a
m(u) a y x

θ ∆R σ τ ∇R
d•(θ) ∆N δ ∆N δ
e•(θ) ∆N η ∆N η
j•(θ) ∆N ∆N ξ ξ
m•(θ) ∆P ι χ ∇P

Then d•, e•, j• and m• have the definitions above, so d, e and m fulfill FRet,
while j fails FRet, since ∆R ≡R τ , but j•(∆R) = ∆N ≡N/ ξ = j•(τ). Note that L(d)
preserves the meet and the intersection, but not the 1. L(e) and L(m) preserve the
1, m• and e• preserve the intersection and the commutator, while j• preserves the
intersection, but not the commutator, because j•([τ, τ ]R) = j•(∆R) = ∆N 6= η =
[ξ, ξ]N = [j•(τ), j•(τ)]N .
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Example 6.5. Let τ = (2) and let us consider the following τ–algebra from [3,
Example 6.3] and [4, Example 4.2]: (U,+U ), with U = {0, a, b, c, d} and +U : U2 →
U defined by the following table, along with the subalgebra T = {0, a, b, c} of U ,
the τ–embedding iT,U : T → U and the τ–morphism t : U → T defined by the table
below:

+U 0 a b c d

0 0 a b c d
a a 0 c b b
b b c 0 a a
c c b a 0 0
d d b a 0 0
φ ∆T θ ζ ξ ∇T

i•T,U (φ) ∆U α β γ ∇U

∆U

∇U

rr
r r rr
@

@
�
�

�
�

@
@α β γ

δ

[·, ·]U ∆U α β γ δ ∇U
∆U ∆U ∆U ∆U ∆U ∆U ∆U

α ∆U δ δ δ δ δ
β ∆U δ δ δ δ δ
γ ∆U δ δ δ δ δ
δ ∆U δ δ δ ∆U δ
∇U ∆U δ δ δ δ δ

u 0 a b c d

t(u) 0 a a 0 0

φ ∆U α β γ δ ∇U
t•(φ) ∆T θ θ ∆T ∆T θ

∆T

∇T

rr r rr
@

@
�
�

�
�

@
@θ ζ ξ

[·, ·]T ∆T θ ζ ξ ∇T
∆T ∆T ∆T ∆T ∆T ∆T

θ ∆T ∆T ∆T ∆T ∆T

ζ ∆T ∆T ∆T ∆T ∆T

ξ ∆T ∆T ∆T ∆T ∆T

∇T ∆T ∆T ∆T ∆T ∆T

Con(T ) = {∆T , θ, ζ, ξ,∇T } ∼=M3, with the Hasse diagram above, where T/θ =
{{0, a}, {b, c}}, T/ζ = {{0, b}, {a, c}}, T/ξ = {{0, c}, {a, b}}. Note that B(Con(T ))
= Con(T ), which is not a Boolean lattice. The commutator of T has the value
∆T for every pair of congruences of T , so Spec(T ) = ∅, thus L(T ) = {0} ∼= L1,
thus, trivially, t satisfies FRet. As shown by the table of t• above, t• preserves the
commutator, but not the intersection, since t•(α ∩ β) = t•(δ) = ∆T 6= θ = θ ∩ θ =
t•(α) ∩ t•(β).

U has the congruence lattice represented above, where U/α = {{0, a}, {b, c, d}},
U/β = {{0, b}, {a, c, d}}, U/γ = {{0, c, d}, {a, b}} and U/δ = {{0}, {a}, {b}, {c, d}}.
As shown by the table of [·, ·]U above, calculated in [27, Example 3], we have
Spec(U) = ∅, thus ρU (σ) = ∇U for all σ ∈ Con(U), and hence L(U) = {0} ∼= L1,
therefore, trivially, iT,U fulfills FRet. Also, trivially, L(iT,U ) and L(t) are lattice
isomorphisms. [i•T,U (θ), i•T,U (θ)]U = [α, α]U = δ /∈ i•T,U (Con(T )), in particular
[i•T,U (θ), i•T,U (θ)]U 6= i•T,U ([θ, θ]T ). So i•T,U does not preserve the commutator, and,
despite iT,U being injective, i•T,U does not preserve the intersection, either, since
i•T,U (θ ∩ ζ) = i•T,U (∆T ) = ∆U 6= δ = α ∩ β = i•T,U (θ) ∩ i•T,U (ζ).
B(Con(U)) = {∆U ,∇U} ∼= L2, hence the Boolean morphism λU |B(Con(U)):

B(Con(U))→ B(L(U)) = L(U) is surjective, but not injective. Note that [φ,∇U ]U =
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φ for all φ ∈ Con(U), which proves that the stronger assumption that C is
congruence–modular and semi–degenerate is necessary for the properties of
B(Con(U)) and this restriction of λU recalled above.

Let us also consider the τ–algebra (V,+V ), with V = {0, s, t} and +V defined
by the following table:

+V 0 s t

0 0 s t
s s 0 t
t t t 0

[·, ·]V ∆V σ ∇V
∆V ∆V ∆V ∆V

σ ∆V ∆V σ
∇V ∆V σ σ

u 0 a b c d

h(u) 0 0 t t t

φ ∆U α β γ δ ∇U
h•(φ) ∆V ∆V ∇V ∇V ∆V ∇V

Notice that Con(V ) = {∆V , σ,∇V } ∼= L3, with σ = eq({0, s}, {t}), and that
the commutator of V has the table above, so that Spec(V ) = {∆V } and hence
L(V ) = {{∆V }, {σ,∇V }} ∼= L2. The map h : U → V defined by the table above is
a τ–morphism and h• is defined as above, hence h•(B(Con(U))) = h•({∆U ,∇U}) =
{∆V ,∇V } = B(Con(V )) and h• |B(Con(U)) is a Boolean isomorphism between
B(Con(U)) and B(Con(V )), thus h satisfies the FBC, but ∆U ≡U ∇U , while
(h•(∆U ), h•(∇U )) = (∆V ,∇V ) /∈ ≡V , thus h fails FRet.

Now let us consider the map v : V → V defined by the following table. Then
v• has the following definition, thus v fails FRet since σ ≡V ∇V , but v•(σ) =
∆V ≡V/ σ = v•(∇V ), despite the fact that v• preserves the commutator and the
intersection and v•(∇V ) ≡V ∇V .

u 0 s t

v(u) 0 0 s

φ ∆V σ ∇V
v•(φ) ∆V ∆V σ
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