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Abstract
Ditylenchus dipsaci is an economically important plant-parasitic nematode affecting European sugar beets. To date, no 
sugar beet cultivars carrying resistance against D. dipsaci are available to farmers. To find potentially resistant sugar beet 
lines restricting reproduction and penetration of D. dipsaci, three consecutive in vivo bioassays were carried out. The first 
experiment determined the penetration rate of D. dipsaci in 79 breeding lines and 14 pre-breeding populations. Based on 
these results, D. dipsaci penetration and reproduction resistance of eight genotypes was intensively investigated. It could be 
demonstrated that none of the genotypes showed resistance towards D. dipsaci. However, a high variation of the penetration 
rate by D. dipsaci was observed among the genotypes. The breeding line ‘DIT_119’ effectively reduced D. dipsaci penetration 
(34.4 ± 8.8 nematodes/plant at 22 days post-planting) compared to the susceptible control (109.0 ± 16.9) while ensuring a 
yield comparable to non-inoculated plants. However, the breeding line ‘DIT_119’ did not reduce D. dipsaci reproduction. 
The paternal line of the cultivar BERETTA KWS, demonstrating a high tolerance to D. dipsaci crown rot symptoms, did not 
reduce penetration and reproduction. Thus, no correlation can be established between reduced penetration rates, reproduction, 
and tolerance to D. dipsaci. This study provides an essential basis for the development of resistant sugar beet cultivars to D. 
dipsaci. The variations observed among genotypes now need to be confirmed with larger-scale screenings.
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Introduction

The stem and bulb nematode Ditylenchus dipsaci (Kühn 
1857) Filipjev 1936 is a migratory endoparasite affecting 
up to 450 plant species worldwide (Duncan and Moens 
2013; Seinhorst 1956). This nematode pest has emerged as 
an economically threatening plant-parasitic nematode in the 

European sugar beet (Beta vulgaris L.) production (Dewar 
and Cook 2006; Leipertz 2007; Subbotin et al. 2005). The 
penetration early in the growing season leads to swollen 
hypocotyls and distorted leaves and cotyledons (Griffin 
1983). Later in the season, bacterial and fungal infection, 
such as Rhizoctonia solani (AG 2–2IIIB) and Verticillium 
albo-atrum, introduced by D. dipsaci leads to the crown’s 
rotting (Hillnhütter et al. 2011; Vrain 1987). Since the with-
drawal of the nematicide aldicarb, no effective direct man-
agement has been available for control of D. dipsaci. The 
broad range of host plants of D. dipsaci hinders crop rota-
tion strategies for successful management of this nematode 
(Jones et al. 2013). The fungicide fluopyram, a succinate 
dehydrogenase inhibitor (SDHI), effectively reduced the fun-
gal and bacterial infection introduced by the stem and bulb 
nematode (Storelli et al. 2020). However, no long-term effect 
on D. dipsaci population development was observed. There-
fore, breeding for sugar beet cultivars’ resistance is a sustain-
able management approach (Schomaker and Been 2013). 
Roberts (2002) described resistance as the plant’s ability 
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to suppress the development and consequently the repro-
duction of nematodes. The latter author further described 
tolerance as the plant’s ability to compensate for nematode 
infection with little or no yield loss. To date, no sugar beet 
cultivar with resistance against D. dipsaci is although avail-
able. Kühnhold (2011) observed variations in D. dipsaci 
penetration and reproduction rates depending on the breed-
ing line or cultivar tested. However, D. dipsaci penetration 
and reproduction rates in less susceptible genotypes were 
still high (Kühnhold 2011). Some sugar beet cultivars are 
tolerant to the fungal and bacterial infection introduced by 
D. dipsaci in the field (Leipertz and Valder 2020). Resist-
ance towards D. dipsaci penetration may prevent nematode 
penetration and, consequently, the introduction of fungal and 
bacterial pathogens. However, resistance towards D. dip-
saci reproduction may reduce nematode population devel-
opment but does not avoid introducing fungal and bacterial 
pathogens. Monogenic or polygenic resistance towards the 
sugar beet cyst nematode Heterodera schachtii (Schmidt) 
is identified since a long time (Blok et al. 2018; Golden 
1959; Savitsky 1975). Resistance towards D. dipsaci has 
been observed in clover (Trifolium spp.), lucerne (Medicago 
sativa L.), faba bean (V. fabaea L.), and oat (Avena spp.) 
cultivars (McDaniel and Barr 1994; Stanton et al. 1984; 
Starr et al. 2013). Ditylenchus dipsaci resistance is mono-
genic on lucerne, and polygenic on faba bean, wild oat (A. 
ludoviciana L.), and red clover (T. pratense L.) (Plowright 
et al. 2002). Resistant oat cultivars successfully reduced the 
reproduction of D. dipsaci but not the penetration of this 
nematode pest (Blake 1962; Griffiths et al. 1957). Plowright 
et al. (2002) reported high resistance against D. dipsaci in 
a faba bean line, which has been used to develop resistant 
cultivars for North Africa. Despite variations in the nema-
tode reproduction rate among onion (Allium cepa L.) cul-
tivars, Yavuzaslanoglu (2019) found no resistance towards 
D. dipsaci. Caubel et al. (1994) demonstrated a positive 
relationship between symptom expression at 3 weeks post-
inoculation and D. dipsaci reproduction at 10 weeks post-
inoculation on red clover. Cook and Evans (1988) reported 
no correlation between leaf size of white clover (T. repens 
L.) and tolerance towards D. dipsaci infection. The devel-
opment of forage crops resistant to D. dipsaci was based 
on the characterization of symptoms on seedlings (Caubel 
et al. 1994). Variations in the resistance levels of lucerne 
species depending on the D. dipsaci population used were 
observed (Leclerq and Caubel 1991; Whitehead 1992). The 
resistance of a host plant to D. dipsaci is highly dependent 
on the geographic origin of the nematode population, which 
hinders any breeding programme. Our study aims were to 
identify among 14 pre-breeding populations and 79 breeding 
lines sugar beets with resistance towards D. dipsaci penetra-
tion and reproduction. A screening of a wide range of geno-
types was first conducted to identify potential candidates 

for resistance towards D. dipsaci penetration. Based on this 
screening, a more in-depth investigation of the genotypes 
with potential resistance was conducted to determine their 
potential resistance to D. dipsaci penetration and reproduc-
tion. The tolerance of the sugar beet genotypes to D. dipsaci 
infection is determined by assessing plant survival and yield.

Materials and methods

Nematode inoculum

The D. dipsaci population used in all experiments was 
derived from three infested sugar beets tubers (cv. SAMU-
ELA KWS) collected in the Seeland region (CH) in 2015 
(47.058154, 7.275107). Nematodes were extracted by Oos-
tenbrink dishes (European and Mediterranean Plant Protec-
tion Organization 2013). Fourth-stage juveniles (J4) and 
adult nematode stages were hand-picked after morphological 
identification of the tail, median bulb, stylet, and lip shape 
using an optical microscope at 40x magnification. After sus-
pending the nematodes in an antibiotic solution containing 
0.1% streptomycin sulphate (w/v) and 0.1% amphotericin-B 
(w/v) for 30 min, 50 nematodes were inoculated per surface 
sterilized (1% NaOCl) carrot disc (2.5 x 5 cm) and incu-
bated for 45 days at 20 °C in the dark (Kühnhold et al. 2006; 
Storelli et al. 2021). The nematodes were extracted from the 
carrot discs, stored in the dark at 6–8 °C, and after 24 hr the 
sugar beet plants were inoculated. On average, D. dipsaci 
suspensions used for inoculation contained 43 ± 1.5% eggs, 
28 ± 0% second- and third-stage juveniles (J2-3), and 29 ± 
1.5% of J4s and adult stages.

Plant material

Investigated plant material included 79 breeding lines and 
14 pre-breeding populations from the KWS gene pool (KWS 
SAAT SE & Co. KGaA, Einbeck, Germany). The pre-breed-
ing populations, compared to breeding lines, were quite het-
erozygous and less advanced (KWS SAAT SE & Co. KGaA, 
personal communication). Currently, limited information on 
genetic variation for resistance or tolerance to D. dipsaci in 
sugar beet has been published (Kühnhold 2011; Leipertz 
and Valder 2020). The cvs. BELLADONNA KWS and 
BERETTA KWS, known to be susceptible and tolerant to 
the fungal and bacterial infection introduced by D. dipsaci 
in the field, respectively, were used in this study (Leipertz 
and Valder 2020). The paternal line ‘DIT_006’ of the cv. 
BELLADONNA KWS and the paternal line ‘DIT_005’ 
of the cv. BERETTA KWS were used as standards for the 
experiments.
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General methods

The sugar beet seeds were sown in 200-ml plastic pots 
filled with a 180-ml non-sterile sieved loess soil: com-
post mixture (1/1) (v/v). The loess soil originated from 
Einbeck (Germany). Per pot, three seeds of pre-breeding 
populations or two seeds of breeding lines were sown to 
compensate for the partially low sugar beet germination 
rate. After the emergence of the first plant, all following 
emerging plants were removed each day to ensure only 
one seedling per pot remained. Due to the large variation 
of growth rates among genotypes, nematode inoculation 
was split into two inoculation time intervals. At 8 and 11 
days post-planting (dpp), approx. 1.5 cm from the centre of 
the pot, 500 nematodes (of mixed life stages) were inocu-
lated in 500 µl into two 1-cm deep holes (diam. 3 mm), 
resulting in 1000 D. dipsaci individuals/plant. The plants 
were regularly watered to maintain a suitable soil moisture 
allowing nematode movement during the entire experi-
ment. The resistance of the genotypes towards D. dipsaci 
penetration was determined by the number of nematodes 
in the whole plant at 22 dpp. The sugar beet seedlings were 
removed from the pots at 22 dpp, gently washed, trans-
ferred to a plastic beaker containing a 0.1% acid fuchsin/
lactic solution, and boiled twice in a microwave oven for 
1 min (Kühnhold et al. 2006). The stained seedlings were 
then rinsed to remove the staining solution. The total num-
ber of nematodes per seedling was counted using a ster-
eomicroscope at 10x magnification after maceration of the 
whole plant (6500 RPM) in 30 ml tap water using an Ultra 
Turrax blender (T25 basic/S25 N - 18 G, IKA Labortech-
nik, Germany). The resistance of the genotypes towards 
D. dipsaci reproduction was determined by the number of 
nematodes in the whole plant at 60 post-inoculation (dpi). 
The sugar beet plants were removed from the pots at 60 
dpi, washed, weighed (whole fresh plant), and the whole 
plants cut into 0.5-cm pieces. Nematodes were extracted 
from the sliced plant material using Oostenbrink dishes 
for 24 h (European and Mediterranean Plant Protection 
Organization 2013). The number of D. dipsaci individu-
als per sugar beet plant was determined by counting 3 × 
1 ml aliquots from 15 ml total volume using an optical 
microscope at x40 magnification. The effect of the geno-
types on the nematode incidence (%) at the harvest time 
point (number of plants containing nematodes/number of 
harvested plants*100) and on the incidence of the symp-
toms (Fig. 1) (number of swollen plants at 14 dpi/number 
of germinated plants at 14 dpi*100) was determined in 
experiments 2 and 3. The number of harvested sugar beet 
at 60 dpi in relation to the number of emerged plants at 22 
dpp determined plant survival (%).

Experiment 1: screening of sugar beet lines 
for Ditylenchus dipsaci penetration

To estimate the genetic variation of genotypes belonging to 
breeding lines (79) or pre-breeding populations (14), they 
were screened for their response concerning D. dipsaci pen-
etration rates. ‘DIT_006’ was used as the susceptible stand-
ard to determine the relative (%) penetration susceptibility 
(number of nematodes in inbred line ‘DIT_xxx’/number of 
nematodes in ‘DIT_006’*100). The experiments were set up 
at 15 max/8 min °C temperature range and a photoperiod of 
18/6 hr day/night and conducted twice in a glasshouse. The 
investigation of breeding lines and pre-breeding populations 
was performed with 10 and 15 replicates, respectively.

Experiment 2—effect of sugar beet genotypes on D. 
dipsaci penetration potential

Genotypes selected for their response after inoculation with 
D. dipsaci in the first screening experiment were investigated 
for their potential to reduce penetration rates of this nema-
tode pest. Only the sugar beet genotypes showing the lowest 
and the highest D. dipsaci penetration values in experiment 
1 were further investigated in experiment 2 with a greater 
replication number. The experiment was set up as described 
above regarding the temperature range and photoperiod and 
conducted twice in a growth chamber (KBWF 720, Binder 
GmbH, Germany), with 20 replicates.

Fig. 1   Ditylenchus dipsaci infected sugar beet seedling at 14 days 
post-inoculation (dpi) showing swollen leaf-axil
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Experiment 3—effect of sugar beet genotypes on D. 
dipsaci reproduction potential

Genotypes selected for their response after inoculation with 
D. dipsaci in the first screening experiment were investigated 
for their potential to reduce reproduction of the species. The 
experiment commenced in a growth chamber (KBWF 720, 
Binder GmbH, Germany) under the same temperature and 
photoperiod conditions as indicated above for experiments 1 
and 2. For optimal growth of the sugar beets, the plants were 
transferred, at 22 dpp, to a glasshouse where a temperature 
range of 22 max/15 min °C and a photoperiod of 18/6 hr 
day/night prevailed. The experiment was performed with 
10 replicates and conducted twice. For each genotype, 2 x 
10 replicates of non-inoculated plants were used as control.

Data analyses

The investigation of the effect of the breeding lines on the 
aggressiveness of D. dipsaci in experiment 1 was performed 
in a randomized complete block design. The investigation 
of pre-breeding populations in experiment 1 and investiga-
tions in experiments 2 and 3 were performed in a complete 
randomized design. In experiment 1, a Friedman rank-sum 
test was performed to determine the effect of the breeding 
lines on D. dipsaci penetration rate in the whole sugar beet 
seedlings. The effect of the pre-breeding populations on D. 
dipsaci penetration rate in experiment 1 was determined 
by using a Kruskal–Wallis rank-sum test. In experiments 
2 and 3, problems with normal distribution led to using a 

Kruskal–Wallis rank-sum test to determine the effect of the 
genotype on D. dipsaci penetration and reproduction rate, 
respectively. Dunn’s multiple comparison tests were per-
formed as post hoc tests. In experiment 3, the effect of D. 
dipsaci inoculation on the fresh biomass of each beet plant 
at 60 dpi was determined by performing a Wilcoxon signed-
rank test to compare data for inoculated and non-inoculated 
plants. Statistical analyses and figures were performed using 
the software R.

Results

Experiment 1: screening of sugar beet lines 
for Ditylenchus dipsaci penetration

No significant difference of D. dipsaci penetration into 
sugar beet seedlings was observed among the breeding 
lines (P > 0.05, Fig. 2). The average number of nematodes 
penetrating sugar beet seedling at 22 dpp varied from 7.5 
to 105.2 nematodes per plant. The standard ‘DIT_006’ 
showed an average of 80.5±19.1 nematodes per plant 
at 22 dpp. ‘DIT_119’ showed the lowest (10.6%) and 
‘DIT_144’ the highest (129.2%) relative susceptibility 
to D. dipsaci penetration. The breeding line ‘DIT_005’ 
showed 60.4±15.3 nematodes per plant at 22 dpp. The 
pre-breeding populations significantly affected D. dipsaci 
penetration into sugar beet seedlings (P < 0.05, Fig.3). 
The pre-breeding populations ‘DIT_207’ showed the low-
est number of nematodes per plant (12.2 ± 20.9) at 22 dpp. 

Fig. 2   Effect of sugar beet breeding lines on Ditylenchus dipsaci 
number per harvested plant at 22 days post-planting (dpp), and their 
relative susceptibility (%) to D. dipsaci (average number of nema-

todes per plant/average number of nematodes in the inbred line 
DIT_006) in a glasshouse trial. No significant differences among 
breeding lines according to Friedman rank-sum test (n = 10)
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In contrast, ‘DIT_213’ contained the highest number of 
nematodes per plant at 22 dpp (56.7 ± 75.6).

Experiment 2—Effect of sugar beet genotypes on D. 
dipsaci penetration potential

In contrast to experiment 1, the genotypes tested signifi-
cantly influenced D. dipsaci penetration into sugar beet 
seedlings (P ≤ 0.0001, Fig. 4). At 22 dpp, the suscepti-
ble line ‘DIT_006’ contained an average of 109 ± 16.9 
nematodes per plant, significantly higher than ‘DIT_207’, 
‘DIT_166’, and ‘DIT_119’ with 11.2±2.8, 19.2±5.3, 
and 34.4±8.8 nematodes per plant, respectively. The 
pre-breeding population ‘DIT_207’ did not significantly 
reduce the number of penetrated nematodes into sugar beet 
seedling at 22 dpp compared to the pre-breeding popula-
tion ‘DIT_213’ (54.1±18.3). All seedlings of the breeding 
lines ‘DIT_005’, ‘DIT_006’, ‘DIT_144’, and ‘DIT_150’ 
contained nematodes at 14 dpi (Table 1). The breeding 
line ‘DIT_166’ showed the lowest incidence, with 74% 
seedlings containing D. dipsaci individuals. Concerning 
the incidence of the symptoms at 14 dpi (Table 1), the 
breeding line ‘DIT_119’ and the pre-breeding popula-
tion ‘DIT_207’ showed the lowest percentage of swollen 
hypocotyls (13%). The pre-breeding population ‘DIT_213’ 
contained the highest percentage of swollen hypocotyls 
(73%).

Experiment 3—effect of sugar beet genotypes on D. 
dipsaci reproduction potential

The genotype tested significantly influenced D. dipsaci 
reproduction in sugar beet (P ≤ 0.001, Fig. 5). ‘DIT_207’, 
‘DIT_150’, and ‘DIT_006’ led to the highest D. dipsaci repro-
duction with 6,097±1,863, 8,255±1,091, and 8,670±3,429 
nematodes per harvested plant at 60 dpi. The effect of 

Fig. 3   Effect of sugar beet pre-breeding lines on Ditylenchus dipsaci 
number per harvested plant at 22 days post-planting (dpp) in a glass-
house trial. Different letters above the bars indicate significant differ-
ences between pre-breeding lines at p < 0.05, according to Dunn’s 
multiple comparison test (n = 15)

Fig. 4   Effect of sugar beet genotypes on Ditylenchus dipsaci number 
per harvested plant at 22 days post-planting (dpp) in a growth cham-
ber trial. Different letters above the bars indicate significant differ-
ences between genotypes at p < 0.05, according to Dunn’s multiple 
comparison test (n = 20)

Table 1   Effect of the genotype on the incidence of the symptoms 
induced by Ditylenchus dipsaci penetration into sugar beet at 14 
days post-inoculation (dpi) (number of swollen plants at 14 dpi/num-
ber of germinated plants at 14 dpi*100) and on the D. dipsaci inci-
dence (number of plants containing nematodes/number of harvested 
plants*100 at 14 and 60 dpi) in experiments 2 (n =20) and 3 (n=10)

Line Symptoms incidence (%) D. dipsaci incidence 
(%)

Experiment 2 Experiment 3 Experiment 
2 (14 dpi)

Experi-
ment 3 (60 
dpi)

‘DIT_005’ 70 50 100 100
‘DIT_006’ 33 58 100 100
‘DIT_119’ 13 30 91 100
‘DIT_144’ 30 80 100 100
‘DIT_150’ 40 70 100 100
‘DIT_166’ 30 40 74 89
‘DIT_207’ 13 90 88 100
‘DIT_213’ 73 100 96 100
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‘DIT_207’, ‘DIT_150’, and ‘DIT_006’ on D. dipsaci repro-
duction significantly differed from ‘DIT_213’, ‘DIT_166’, and 
‘DIT_119’. At 60 dpi, the number of nematodes per harvested 
plant was 1,298.5±985.8, 1,978±895.5, and 2,437.5±687.6 in 
the genotypes ‘DIT_213’, ‘DIT_166’, and ‘DIT_119’, respec-
tively. The breeding line ‘DIT_166’ was the only genotype 
showing plants without nematode at 60 dpi with a nematode 
incidence of 89% (Table 1). Concerning the incidence of the 
symptoms at 14 dpi (Table 1), the breeding lines ‘DIT_119’ 
(30%) and ‘DIT_166’ (40%) showed the lowest percentage of 
swollen hypocotyls. The pre-breeding population ‘DIT_213’ 
contained the highest percentage of swollen hypocotyls 
(100%). For the genotypes ‘DIT_006’, ‘DIT_144’, ‘DIT_207’, 
and ‘DIT_166’, after inoculation with D. dipsaci, the fresh 
plant weight was significantly reduced after 60 days (P ≤ 
0.05, Table 2). Whereas, D. dipsaci inoculation did not signifi-
cantly reduce the sugar beet fresh plant weight of ‘DIT_005’, 
‘DIT_119’, ‘DIT_150’, and ‘DIT_213’ compared to the non-
inoculated plants. The breeding line ‘DIT_119’ showed the 
highest survival rate, with 95% harvestable at 60 dpi (Table 2). 
In contrast, 25% of germinated plants of ‘DIT_213’ were har-
vestable at 60 dpi. All D. dipsaci non-inoculated plants (100%) 
survived until harvest (60 dpi).

Discussion

This study demonstrated the genetic variation of sugar beet 
genotypes at reducing D. dipsaci penetration into seedlings. 
The high variation among the genotypes is encouraging from 

the perspective of finding resistance to D. dipsaci penetra-
tion. A lower D. dipsaci penetration rate in experiment 1 
than in experiment 2 suggests a lower inoculation success. 
Indeed, ‘DIT_119’ seedlings contained 4.5 times less D. 
dipsaci individuals in experiment 1 than in experiment 2. 
The low inoculation success in experiment 1 may explain 
the high variation observed within the genotypes. Despite 
the lack of significant differences among the breeding lines, 
some genotypes, such as ‘DIT_119’ and ‘DIT_166’, were 
superior in terms of their low variance of D. dipsaci number 
penetrating sugar beet seedlings. After considering the 
results from experiment 1, tolerance to H. schachtii does not 
involve resistance to D. dipsaci penetration. Due to cross-
pollination, the pre-breeding populations consist of a mix-
ture of homozygous and heterozygous individuals (Bos and 
Caligari 2008), explaining the high variation observed. The 
second experiment confirms the higher level of resistance of 
‘DIT_207’, ‘DIT_119’, and ‘DIT_166’ towards D. dipsaci 
penetration. In contrast, the susceptible breeding line 
‘DIT_006’ attests to its low resistance to D. dipsaci penetra-
tion. The second experiment suggests that the increase in 
repetitions (n= 20) significantly improves the probability of 
observing differences among the genotypes. In the third 
experiment, nematode reproduction was observed in the 
eight genotypes tested. However, the number of produced 
nematodes varied among the genotypes. ‘DIT_119’ and 
‘DIT_166’ validated their higher resistance level towards D. 
dipsaci infection. Based on the values obtained in the second 
and third experiments (number of nematodes at 22 dpp and 
at 60 dpi), the nematode population in each genotype 
increased up to 100-fold, suggesting that the mechanisms 
responsible for resistance occurred during the penetration. 
Ditylenchus dipsaci proved to have a rapid population 
growth (Abolfazl et al. 2017; Kühnhold et al. 2006; Storelli 
et al. 2020). The few nematodes that penetrated sugar beet 

Fig. 5   Effect of sugar beet genotypes on Ditylenchus dipsaci number 
per harvested plant at 60 days post-inoculation (dpi). Different letters 
above the bars indicate significant differences between genotypes at p 
< 0.05, according to Dunn’s multiple comparison test (n = 10)

Table 2   Effect of Ditylenchus dipsaci inoculation on the sugar beet 
fresh weight (g) at 60 days post-inoculation (dpi) and survival (%) 
(number of harvested plants at 60 dpi/number of germinated plants at 
22 days post-planting) in a glasshouse trial

a Wilcoxon signed-rank test *P < 0.05, **P ≤ 0.01; (mean ±SD)

Line Plant weight (g)a Survival (%)

Inoculated Non-inoculated

‘DIT_005’ 7.6 (± 2.3) 9.3 (± 1.1) 80 (± 14.1)
‘DIT_006’ 6.4 (± 4.3) 12.3 (± 3.3)** 60.7 (± 15.2)
‘DIT_119’ 11.3 (± 4.2) 13 (± 4.6) 95 (± 7.1)
‘DIT_144’ 4.8 (± 3.4) 10.1 (± 0.8)** 50 (± 28.3)
‘DIT_150’ 8.7 (± 3.5) 10.3 (± 3.9) 75 (± 21.2)
‘DIT_166’ 9.5 (± 2.8) 12.5 (± 3.1)* 73.3 (± 9.4)
‘DIT_207’ 7.5 (± 3) 12.7 (± 3.5)** 75 (± 21.2)
‘DIT_213’ 9.6 (± 2.6) 9.3 (± 3.2) 25 (± 0)
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seedling produced a high number of nematodes at 60 dpi. 
The low D. dipsaci number at 60 dpi observed in the pre-
breeding population ‘DIT_213’ was not the effect of resist-
ance towards D. dipsaci reproduction. The remaining plants 
of ‘DIT_213’ presented rotten hypocotyls at harvest. As D. 
dipsaci is an obligate plant parasite (Duncan and Moens 
2013), the rotting of its feeding site led the nematodes to 
leave the plant before the time point of plant harvest. Abol-
fazl et al. (2017) showed the inability of D. dipsaci to repro-
duce on fungi. The low survival and germination of infected 
plants compared to the non-infected plants suggest a high 
sensitivity of the pre-breeding population ‘DIT_213’ to D. 
dipsaci infection. The earlier emergence of ‘DIT_119’ may 
explain the lowest D. dipsaci penetration into sugar beet 
seedlings. Indeed, it has been observed in the present study 
that ‘DIT_119’ emerged earlier compared to the other geno-
types. The period of susceptibility of sugar beets to D. dip-
saci penetration occurs at the emergence of the plant 
(Storelli et al. 2021). The rapid growth of ‘DIT_119’ may 
then reduce this period of susceptibility. It may also explain 
its lowest amount of swollen hypocotyls and its higher sur-
vival rate. Nematode penetration occurs later when the seed-
lings are already better developed to head to swellings of the 
hypocotyl. Griffith et al. (1997) indeed reported that symp-
toms initiation might occur before petioles are fully differ-
entiated. A screening of a large-scale population of early 
emerging sugar beet genotypes to penetration and infection 
by D. dipsaci may help to validate this statement in the 
future. The absence of swollen hypocotyls allowed 
‘DIT_119’ to grow with well-developed leaves until 60 dpi. 
In contrast, a higher proportion of damaged leaf-axils in the 
other genotypes did not allow for a proper development of 
the hypocotyl, which later forms the beet. Similar plant bio-
mass measurements between inoculated and non-inoculated 
plants suggest a higher tolerance of ‘DIT_119’ to D. dipsaci 
at 60 dpi than other genotypes. However, D. dipsaci damages 
may occur later during the beet storage (Schomaker and 
Been 2013). The increased amount of nematodes found in 
the whole plant tissue of ‘DIT_119’ at 60 dpi suggested no 
strong resistance towards D. dipsaci reproduction. Many 
non-swollen hypocotyls contained nematodes at 14 and 60 
dpi. These results suggest that D. dipsaci can survive in 
plant tissue without exhibiting symptoms (Cook and Evans 
1988). However, this statement is not valid for each D. dip-
saci host plant. Caubel et al. (1994) positively correlated the 
lack of symptoms with the absence of nematode in red clover 
tissue. Resistance can be thus determined by characterizing 
the symptoms on seedlings, which facilitates the screening 
of a wide range of plant genotypes (Plowright et al. 2002). 
However, resistance determination based on expressed 
symptoms does not work on sugar beet interacting with D. 
dipsaci. The presence of a low D. dipsaci number is suffi-
cient to trigger abnormal morphogenesis (Griffith et al. 

1997). In contrast, a high amount of D. dipsaci in sugar beet 
seedling does not automatically lead to a swollen hypocotyl. 
Leipertz and Valder (2020) reported tolerance of BERETTA 
KWS towards the fungal and bacterial infection introduced 
by D. dipsaci in the field. The high susceptibility of 
‘DIT_005’, the paternal line of BERETTA KWS, suggests 
no direct relation between the resistance of one hybrid com-
ponent towards D. dipsaci development and tolerance of a 
respective hybrid to the fungal and bacterial infection intro-
duced by D. dipsaci. The nematode inoculation success 
depends on environmental conditions and the viability of the 
inoculated nematode population (Storelli et al. 2021). This 
was also demonstrated by the experiments shown here. Thus, 
nematode aggressiveness towards sugar beet is highly het-
erogeneous across the experiments and within the cultivars 
(Kühnhold 2011; Westphal 2013). When evaluating inocula-
tion experiments, a possible inoculation failure must be 
taken into account in any case. After an inadequate inocula-
tion or if the inoculation fails, the subsequently determined 
infection level may be low, but the plants are not necessarily 
resistant (Francis and Luterbacher 2003). Additionally, the 
existence of a few susceptible plants may bias the resistant 
pre-breeding population’s observation since they were not 
genetically homogeneous (Scholten et al. 2001). This study 
did not succeed to find complete resistance in sugar beet 
genotypes towards D. dipsaci penetration or reproduction 
under glasshouse conditions. However, partial resistance to 
D. dipsaci penetration was observed in some genotypes, 
where a proportion of plants was less or not affected (Bovien 
1955). The lowest incidence of D. dipsaci presence in sugar 
beet seedlings was observed for the breeding line ‘DIT_166’ 
suggesting potential candidates with resistance within this 
line. The pre-breeding population ‘DIT_207’, with its par-
ticular low heterogeneity and low number of D. dipsaci per 
seedling, is a potential candidate for a source of resistance 
towards D. dipsaci penetration, despite the high incidence 
and reproduction rate of the nematode. The initial inoculum 
level used in the experiments was up to 1000-fold higher 
than an initial natural density occurring in the field at sowing 
(Storelli et al. 2020). An initial density of 10 D. dipsaci 
individuals per 500 g soil may cause severe damage to 
onions. The damage was nearly 100% when the initial den-
sity of 25 D. dipsaci individuals per 500 g soil was reached 
(Seinhorst 1956). With an increasing initial density of H. 
schachtii, the yield ofresistant sugar beet cultivars decreased 
(Heijbroek et al. 2002). Further trials under field conditions 
and at lower nematode density may determine the investi-
gated genotypes’ real resistance potential. Khanam et al. 
(2018) reported a similar penetration of D. angustus in the 
resistant and susceptible rice cultivars, suggesting that host 
attraction is not linked to resistance. However, D. dipsaci 
damages to sugar beet seedlings encourage resistance devel-
opment through penetration (Cottage and Urwin 2013). 
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Therefore, screening a large number of pre-breeding popula-
tions is recommended as they represent a source of genes for 
resistance (Tanksley and McCouch 1997). Much of the avail-
able germplasm resources remain to be characterized for 
resistance to nematodes (Starr et al. 2002). Due to the lack 
of resistant cultivars, high-yielding cultivars, tolerant to the 
fungal and bacterial infection introduced by D. dipsaci, are 
now the only measure to avoid economic damage. As differ-
ent fungal and bacterial organisms are introduced by D. dip-
saci, a case-by-case study is recommended to grow specific 
cultivars tolerant to the pathogen introduced by the nema-
tode. In a field infested with R. solani, the use of R. solani 
resistant cultivars will prevent high yield reduction (Hill-
nhütter et al. 2011). The use of resistant crops, such as oat, 
in the rotation to reduce the nematode population has to be 
further investigated. Thus, tolerant sugar beet cultivars and 
resistant crops may probably help to maintain a sustainable 
sugar production in D. dipsaci infested fields while resistant 
cultivars are urgently needed for growers.
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