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Abstract 

In a world filled with fake news and alternative facts, public trust in science is of utmost im-

portance. Yet scandals like the cases of Diederik Stapel and Ulrich Lichtenthaler have ques-

tioned the integrity of scholars and their research results. To address this issue, several scientists 

investigated academic (mal)practices like plagiarism, HARKing, authorship misuse and data 

flexibility. The results were devastating and ignited a credibility crisis, especially in the social 

sciences. Fortunately, we already can see the light at the end of the tunnel as editors, publishers, 

research societies and universities have started to introduce techniques and infrastructure that 

ensure ethical and responsible scholarly behavior. For example, artificial intelligence has ena-

bled plagiarism detection software to not only check for copy-pasting but also for content and 

reference similarities. Moreover, more and more journals motivate or sometimes even require 

researchers to pre-register their research hypotheses prior to data collection and/or data analysis 

to prevent HARKing. In the life sciences, contribution disclosure statements force authors to 

transparently report the contributions of each researcher involved in a research project. In the 

social sciences, several articles and editorials highlighted that ensuring replicability by means 

of transparent reporting and data sharing allows detecting and overcoming flexible and ques-

tionable data handling practices. 

This thesis builds upon the existing body of literature and provides guidance for those academic 

(mal)practices that have been covered only rudimentarily in the social sciences. Essay 1 ad-

dresses the issues of ghost and honorary authorship, the two most infamous forms of authorship 

misuses. We show that there exists a strong mismatch between actual and hypothetical author-

ship assignments: While most social scientists in our survey assigned authorship correctly in 

three hypothetical scenarios, more than every third paper contained at least one honorary author. 

We conclude that motivational factors like hierarchical pressure force scholars to include low-

contributing supervisors and colleagues in their author lists. To overcome this issue, we call for 

social science journals to follow their counterparts in the life sciences by enforcing contribution 

disclosure and implementing whistleblowing platforms. 

Essay 2 asks whether scientific collaborations and authorship teams differ across academic dis-

ciplines, geographical regions, working experience and job position. The results indicate that 

the distribution of multi-authored papers varies substantially even within the social sciences. 

Furthermore, we highlight that language barriers and infrastructural challenges possess effects 
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on academic collaborations. These findings contain important implications for search and ten-

ure procedures as committees must bear these differences in mind when comparing applicants 

with different backgrounds.  

Essay 3 touches upon the need of promoting replicability and replications. We provide a hands-

on step-by-step guide on how to conduct a rigor and robust replication. More specifically, we 

start by directly replicating the results of Kuhn and Weinberger (2005) showing that, for white 

men, leadership positions in high school correspond to higher wages eleven years later. We then 

assess the causality of this effect by employing propensity-score matching and three different 

forms of instrumental variable techniques. Moreover, we move beyond the original sample and 

investigate the effects for white females and non-whites. We further include data from a follow-

up study conducted 50 years later. Our findings highlight that team captainship combined with 

club presidency induces higher wages eleven and 50 years later for white men, but this effect 

does not appaer consistently for white females or non-whites. Therefore, leadership interven-

tions should recognize the leadership skills that are already developed in individuals and iden-

tify those areas that are in need of further development. In doing so, it is important to be cogni-

zant of diverse aspirations to lead for individuals of different gender and ethnicities. 

The thorough analyses in Essay 3 were only possible because we had access to the data em-

ployed in the original article. Unfortunately, Essay 4 shows that this constitutes rather an ex-

ception than the norm. Investigating data sharing among innovation management researchers, 

we find that only about one third of their datasets are publicly available. We specifically focus 

on innovation management researchers because we originally expected them to be specifically 

prone to open data due to them advocating the advantages of openness to firms and other stake-

holders. Our results indicate that the identified personal incentives to open data sharing might 

not outweigh the burden of open data places on individual researchers. Consequently, we call 

for academic impeti that give more credit to data sharing and for journal policies enforcing data 

sharing as a mandatory requirement for publication. 

Overall, this thesis highlights that scholars, journals, research societies and universities must 

change their habits, incentives and conducts especially in the areas of scientific authorship and 

data practices to secure scientific integrity. Therefore, we outline detailed solutions for guiding 

this change to ensure ethical and responsible behavior in applied empirical research. This is the 

only way we can regain public trust in science.   
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1 Introduction 

Hic in omnibus fere sermonibus […] ita disputant ut nihil affirmet ipse refellat alios, nihil se 

scire dicat nisi id ipsum, eoque praestare ceteris, quod illi quae nescient scire se putent, ipse 

se nihil scire id unum sciat. 

Marcus Terentius Varro – Roman Polymath 

(Cicero, 45 BC) 

The quote above attributes the famous phrase “I know that I do not know”1 to Socrates. While 

there exists no record of Socrates ever using this exact phrase, we find several metaphors refer-

ring to this phrase in Plato´s (399 BC) Apology of Socrates recording Socrates´ trial for cor-

rupting the minds of the Athenian youth. This resulted from the Oracle at Delphi calling Soc-

rates the wisest inhabitant of Athens (Cicero, 45 BC). Socrates himself did not want to believe 

this and tried to find wiser coevals (Plato, 399 BC). However, although discussing with many 

distinguished Athenians, he always found ways of disproving their so-called knowledge (Plato, 

399 BC). This led Socrates to conclude that the Oracle at Delphi “declared him to be the wisest 

of all men because all wisdom consists solely in not thinking that you know what you do not 

know” (Cicero, &  Rackham, 1933: 425-427). Whereas this statement introduced fundamental 

principles for philosophy and science (Vlastos, 1985), it publicly humiliated many notable 

Athenians, most of them also jury members in the trial. As a consequence, this jury found Soc-

rates guilty and sentenced him to death (Fine, 2008). 

 Fortunately, the interest in discussing knowledge and philosophizing about the truth of 

statements and observations did not end with Socrates’ death. Yet scientists challenging well-

established concepts and perceptions still lived dangerous lives. The reaction of the catholic 

church to the (re-)discovery of heliocentrism during Renaissance represents a prime example. 

Scientists promoting Copernicanism (e.g. Johannes Kepler, Galileo Galilei and Giordano 

Bruno) were banned from publishing their writings and faced prison or even death for breaking 

this rule (Becker, 2007; Pedersen, 1983). Nevertheless, researchers continued to strive for new 

findings and new osbervations. 

 

1 The phrase is often wrongly translated as “I know that I know nothing” but Socrates only claimed that he could 

disprove specific knowledge but did not say that he “knows nothing” (Fine, 2008).  
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By doing so, scientists have mainly used three basic forms of inferences to generate new 

results: Abduction, Deduction and Induction (Jensen, 2008). Abduction occurs when people 

refer to the nearest and best fitting justification to explain a new observation (Jensen, 2008). As 

a case in point, ancient Greeks attributed lightnings to Zeus’ anger because without knowing of 

electricity this seemed to be a plausible cause (Dowden, 2006). Deduction refers to the process 

of applying general theorems to specific cases to receive new implications (Jensen, 2008). For 

example, if we knew that all cats are cute, we would then be able to deduct that Johnny (my 

tomcat) is cute. Induction is exactly the opposite of deduction. Hereby, knowledge generation 

comes from inferring from specific cases to general theorems (Jensen, 2008). To invoke the 

same example, if we knew that Johnny is cute, we could induct that all cats are cute. Of course, 

this procedure might lead to erroneous conclusions (Sloman, & Lagnado, 2005) because 

Johnny´s cuteness might (or actually is very likely to) differ from other cats and thus (at least a 

few) other cats might not be cute.  

1.1 Falsifiability 

David Hume (1748) was the first modern scientist to recognize and define this so-called 

Problem of Induction. The question that arose was how often does someone need to observe 

specific cases so that they can induct that there exists an underlying theory (Hume, 1748). To 

overcome the Problem of Induction, Karl Popper (1935) formalized the concept of Falsifiabil-

ity. Hereby, scientists generate a postulation and then try hard to proof it wrong (Popper, 1935). 

If they are successful, they reject the original postulation and instead come up with a new one 

(Popper, 1935). Going back to the example above where we inducted that all cats are cute, we 

now could test this postulation using the concept of Falsifiability. To do so, we would look for 

as many cats as possible and test whether they are cute. In case we find at least one cat that is 

not cute, we can reject the postulation that all cats are cute. Instead, we could, in case we find 

a high share of cute cats, postulate that most cats are cute. This postulation again could then be 

tested using the concept of Falsifiability (although, based on my experience, I personally doubt 

that there exist more grizzled than cute cats). 

1.1.1 An example of falsifiability in today’s research 

The concept of Falsifiability relates back to Socrates because it requires scientists to constantly 

doubt existing theories and results. This paradigm guides especially the physical sciences (Hen-

drick, 1990). The 2017 Nobel Prize for the detection of gravitational waves represents a perfect 
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case in point: More than a century ago, Albert Einstein (1916) postulated the existence of grav-

itational waves based on his theory of relativity. Over the following decades, several mathema-

ticians, physicists and computer scientists proved the algebraic derivation and were also able to 

observe gravitational waves in simulation studies (Arnowitt et al., 1962; Misner, 1960; Hahn, 

& Lindquist, 1964; Smarr, 1979). Yet scientists were unable to observe them in nature and 

therefore (in accordance with the concept of Falsifiability) still questioned their existence 

(Thorne, 2017). To overcome the doubt, Kip Thorne, Ronald Drever and Rainer Wess found 

the Laser Interferometer Gravitational-Wave Observatory (LIGO) consisting of three installa-

tions of L-shaped vacuum tubes with several mirrors worth millions of dollars. Two of them 

were errected in Hanford, Washington and another one was assembled in Livingston, Louisiana 

(Cho, 2017). The efforts paid off: LIGO was most likely able to detect gravitational waves 

stemming from the merger of two black holes on the 14th of September, 2015 (Castelvecchi, & 

Witze, 2016). Yet there still existed doubts on the validity of this detection as “only the LIGO 

detectors were observing at the time of GW150914. The Virgo detector was being upgraded, 

and GEO 600, though not sufficiently sensitive to detect this event, was operating but not in 

observational mode” (Abott et al., 2016: 3). While the data collected by LIGO accorded with 

the results expected from previous simulations, various scientists doubted the results (e.g. 

Hossenfelder, 2017; Creswell et al., 2017; Brooks, 2018). The fog only cleared on the 17th of 

August, 2017, when LIGO as well as VIRGO (the European version of LIGO located next to 

Pisa) simultaneously captured gravitational waves from the inspiral of two neutron stars (Abott 

et al., 2017). This confirmation pathed the way for the LIGO and VIRGO collaborations to 

receive the 2017 Nobel Prize in Physics (Botner et al., 2017). 

Such confirmations do not only constitute a pre-requisite for receiving the Nobel Prize 

in Physics. In fact, “replication by an independent investigator […] has long been considered 

essential in the physical and biological sciences, and findings are typically not accepted until 

they have been duplicated by at least one independent investigator” (Neher, 1967: 261-262). 

Accordingly, replicability represented the most important aspect according to natural scientists 

in a survey among professors employed at an undisclosed Big Ten Úniversity (Chase, 1970). 

However, social scientists ranked replicability only third among ten aspects (Chase, 1970). Un-

surprisingly, replication attempts addressing findings from social scientific research articles did 

not always work out successfully (e.g. Camerer et al., 2016; Duvendack et al., 2015; Federer et 

al., 2018 Open Science Collaboration, 2015). In the light of these findings, several scholars 
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stated that the social sciences find themselves in a credibility crisis. Section 1.2 covers the cred-

ibility crisis in-depth. 

1.1.2 Falsifiability and null hypothesis significance testing 

The concept of Falsifiability builds the basis for null hypothesis significance testing 

(NHST). Hereby, scholars first generate a null hypothesis. Then they employ statistical tests 

aiming at rejecting the null hypothesis. If the statistical tests are significant, the scholars can 

reject the null-hypothesis and instead accept an alternative hypothesis (Gigerenzer, & Murray, 

1987). For example, we could postulate the null hypothesis that winter and summer days do not 

differ in the amount of snowfall. We then observe the snowfall in Kitzbühel for every day in a 

given year. After the year passed, we run a two-tailed two-sample t-test splitting all recorded 

days into summer (e.g. after 15th of April and before 15th of October) and winter (e.g. before 

15th of April and after 15th of October) days. If the t-test is significant, we can reject the null 

hypothesis that winter and summer days do not differ in the amount of snowfall in Kitzbühel 

and accept the alternative hypothesis that they differ.  

NHST can not only be applied to natural phenomena like snowfall but is in fact one of 

the widest spread scholarly approaches in empirical and experimental research in the social 

sciences (Harlow, 2016). However, many scholars from various disciplines have criticized the 

common usage of NHST. Cohen (1994) highlighted the problem of false positives in psycho-

logical tests assessing schizophrenia. While those tests have an accuracy of more than 95% 

(implying significance on the usual threshold of p < 0.05), about 60% of those identified as 

schizophrenic are so called-false positives, people not suffering from schizophrenia whose test 

is positive (Cohen, 1994). This derives from the distribution of schizophrenia in the population. 

Only about 2% of the world population suffer from this syndrome (Cohen, 1994). Conse-

quently, the share of wrongly identified cases among the whole population is 98% ∗ 5% =

4.9% while the share of correctly identified cases among the whole population is 2% ∗ 95% =

1.9% (Cohen, 1994).  

Cumming (2008) also critized NHST. He ran simulations using means and standard de-

viations of children’s verbal abilities in two school districts as well as the number of students 

per district as base data. After 25 runs, the simulations returned p-values for two-tailed two-

sample t-tests ranging from p < 0.001 to p = 0.76 (Cumming, 2008). Based on this, Amrhein et 
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al. (2017) argued that p-values are hardly replicable. In fact, the heavy usage of p-values repre-

sents a core source of the credibility crises in the social sciences (Amrhein et al., 2017). The 

following section elaborates further on this crisis.   

1.2 Credibility Crisis in the Social Sciences 

The events of fall and winter 2011-12 had a long-lasting effect on social scientific research: 

Shortly before that period, Stapel and Lindenberg (2011) published a Science article (presum-

ably) showing that trashy environments induce discriminative and stereotyping traits. Accord-

ing to the paper, Stapel conducted the corresponding experiment at the Utrecht train station at 

a row of six chairs with an Afro-Dutch confederate sitting on the first chair. Stapel and Linden-

berg (2011) reported that if the platform was trashy (as a result of a strike of the cleaning per-

sonnel), the Caucasian participants (random people waiting for their train) took on average a 

seat further away from the Afro-Dutch confederate than if the platform was clean (two weeks 

later after the strike had ended). While this finding was surprising yet intuitive, the problem 

with this study was, as it turned out several months later, that there existed no combinations of 

six chairs at the platforms of the Utrecht train station (Zwart, 2017). In September 2011, PhD 

students of Diederik Stapel contacted multiple department heads at the University of Tilburg 

alleygating him of scientific fraud as he only supplied them the overall data but was not willing 

to supply them with the original interview sheets and questionnaires for their projects 

(Bhattacharjee, 2013). In fact, Diederik Stapel “took over” the experiment conduction in nearly 

all his research projects from 2004 onwards and never supplied his colleagues or subordinates 

with the original data (Bhattacharjee, 2013). The PhD students’ allegation led to a commission 

investigating all of Stapel’s research. Overall, they found evidence for data fabrication in 55 

papers and 10 dissertations (Enserink, 2012). Currently, Diederik Stapel has 58 retractions rank-

ing him 5th in the overall and 1st in the social science ranking of Retraction Watch (Degen, 

2015). 

 Only months after the first public allegations against Diederik Stapel and far before the 

publication of the final report of his fraudulent actions, another scandal hit the social science. 

In early 2012, a group of about 20 business scholars including editors from Research Policy 

and Organization Science started to investigate the works of Ulrich Lichtenthaler, back then 

professor at the WHU Mannheim, because it seemed that he had submitted several papers con-

taining similar research design, analyses, results and implications to multiple journals (Stor-



6 

 

beck, 2012). In addition the self-plagiarism allegations, the group also charged him with statis-

tical irregularities. As a case in point, Lichtenthaler and Ernst (2009) reported significant coef-

ficients despite their standard deviations exceeding their values. As for now, 16 out of 43 pub-

lications from Ulrich Lichtenthaler were retracted (Hermanns, 2014). In addition, the WHU 

Mannheim invoked his habilitation (West, 2013) and he was forced to quit his job in 2014 

(Retraction Watch, 2014). 

 While these two infamous cases raised serious concerns about ethical research conduct 

and the trustworthiness of social scientific results, they only represent the tip of the iceberg 

(Karabag and Berggren, 2012). In fact, Hopp and Hoover (2019) showed that more than a third 

out of 196 editors at management journals have dealt at least once with submissions containing 

fabricated or falsified data and nearly every second of them have dealt at least once with sub-

missions including “changed or omitted data points” (Hopp, & Hoover, 2019: 1554). Unfortu-

nately, data malpractices do not constitute the only form of misconduct. In fact, research design 

flaws (e.g. unreported research design changes to increase funding and publication chances or 

purposely not reporting technical details of the statistical analyses), plagiarism and authorship 

disputes occur even more often than data fabrication or falsification (Martinson et al., 2005)  

 As those instances undermined the trust in scientific results and researchers, it is not 

surprising that many scholars from various backgrounds stated that the social sciences face a 

credibility crisis (e.g. ; Bergh et al., 2017; Byington, & Felps, 2017; Earp, & Trafimow, 2015; 

Firth et al., 2014; Gall et al., 2017). As a case in point, Osherovich (2011) highlighted that even 

venture capitalists do not trust published scientific results when making their investment deci-

sions. Consequently, the credibility crisis represents a serious problem in a world filled with 

polarizing terms like fake news and alternative facts because it undermines public trust in sci-

entists and their results (Hendriks et al., 2016). To overcome this problem, we need to identify 

the most serious and most prevalent forms of academic malpractices. Subsequently, we must 

find and implement adequate solutions to raise scholars’ credibility as well as the credibility of 

the research process (Ioannidis, 2012).  

This thesis contributes to overcoming the credibility crisis in the social sciences by an-

alyzing the existing literature on ethical and responsible behavior focusing specifically on aca-

demic (mal)practices in the social sciences. The following sections highlight which areas have 

already been thoroughly covered and where more attention and action is needed. The four es-

says following the introduction tackle the latter topics. They analyze important but so far only 
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rudimentarily covered forms of (un-)ethical scholarly behaviors and point out solutions to over-

come them. Hereby, we generate important insights on why and how academic misconduct 

occurs and highlight stakeholder action plans that universities, journal editors and publishers 

could follow to overcome the credibility crisis in the social sciences. 

1.2.1 Scholars’ credibility 

To increase public trust in scientific expertise, we first need to clarify who actually those experts 

are. Usually, if we look for scholarly knowledge we go to databases and search engines like 

Google Scholar, SCOPUS or the Web of Science (Jacso, 2005). We then take the most appro-

priate, most cited and/or newest (peer-reviewed) articles and cite them by writing phrases like 

“Hopp and Pruschak (2018) showed…” or “The conclusions from Beck et al. (2020) allow 

us…” (Golden-Biddle et al., 2006). In other words, we specifically name the experts in the 

citations. However, this ideal scenario in which the listed authors are also the experts for that 

topic does not always apply. As a case in point, Martinson et al. (2005) highlighted that author-

ship issues occur about ten times more often than data fabrication or data falsification. Conse-

quently, we might cite sometimes authors who contributed very little to a research project and 

thus might not be experts for the topic in question (Kumar, 2018). This issue emerged with the 

stark increase in multi-authored papers (Fleischman, & Schuele, 2009): Whereas from all pa-

pers published in the American Economic Review in 1950 only 8 percent included more than 

one author, 80 percent of all papers published in the American Economic Review in 2010 in-

cluded more than one author (Hamermesh, 2015; Hudson, 1996). Having multiple authors 

working on the same research paper allows scientists to divide the workload. Hence, Adam 

Smith’s (1776) concept of the division of labor also works in academia: Dividing research pro-

jects into individual tasks allows specialization. Scientists with talents in collecting and/or an-

alyzing data can focus on these affairs while skilled writers might engage more in drafting the 

actual paper (Leahey, & Reikowsky, 2008). Not surprisingly, the increase in co-authored papers 

also came along with a boost in academic productivity resulting in more and more publications 

being published in less and less time (Engels et al., 2012; Lee, & Bozeman, 2005). However, 

we can no longer assume that all authors of a research article are experts in all its aspects due 

to their different specializations (Leahey, & Reikowsky, 2008). 

To identify whose expertise we can rely on, journals like Nature, Science, PLoS ONE 

and PNAS introduced so-called contribution disclosures or authorship statements (Sauermann, 

& Haeussler, 2017). Hereby, each author (and also important contributors) have to describe the 
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tasks they executed for the research project in question (Hwang et al., 2003). Whereas such 

authorship statements represent the norm in life science journals and have become more fre-

quent in the natural sciences (Sauermann, & Haeusler, 2017), we did not find a single example 

of a social science journal requiring this kind of statements. In fact, authorship assignments 

overall have been discussed and investigated to a much smaller degree in the social sciences 

compared to life and natural sciences (Marusic et al., 2011). Notable exceptions are Hamilton 

et a. (1997), Manton and English (2006) and Manton and English (2008). These three studies ad-

dress cases of so-called honorary authorship.2 Especially Manton and English (2008) high-

lighted the need for thorough investigations of authorship practices in the social sciences. They 

showed that nearly 10% of their respondents selected from business faculty members in the 

U.S. gave author credits to a person that did not contribute anything to the research paper. More 

than 35% of their respondents had assigned authorship for “very little work” at least once (Man-

ton, & English, 2008). To understand the underlying forces of such authorship malpractices and 

to establish guidelines to avoid them, Essay 1 addresses honorary authorship as well as its in-

famous sibling ghost authorship.3 The essay investigates motivational and circumstantial fac-

tors that foster authorship malpractices and provides hands-on solutions like authorship contri-

bution forms and whistleblowing platforms. 

Why is authorship such a contested topic? The primary answer to this question is that 

publication and citation credits represent the “currency” in the academic job market (Figa-Tal-

amanca, 2007). The more publications scholars have in top-tier journals and the more often 

those are cited, the higher are their chances of successfully mastering search and tenure proce-

dures (Park, & Gordon, 1996). Yet as already discussed we must be very careful with giving 

all credits to all authors. Indeed, the ongoing trend towards more and more multi-authored re-

search papers has required new measurement techniques for assessing researchers’ productivity 

(Carpenter, Cone, & Sarli, 2014). To cope with the changing sizes of author teams, Cole and 

Cole (1973: 33) introduced a technique called “straight counts” that only awards publication 

and citation credits for the first author with all other authors not receiving those benefits (Cole, 

 

2 Honorary authorship emerges if an author receives authorship despite not contributing substantially to a re-

search paper (da Silva, & Dobranszki, 2016). 

3 Ghost authors are researchers who contribute substantially to a research article but do not receive authorship 

(da Silva, & Dobranszki, 2016). 
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& Cole, 1973). Similar to this approach, Shaw (1967) and Stallings and Singhai (1970) intro-

duced techniques that give the first author a certain ratio of the counts and all other authors 

together the remaining ratio of the counts (e.g. for a paper with three authors the first author 

would receive half of the counts and the other two authors would receive a quarter each). Yet 

these approaches relied on estimates as without contribution disclosures one cannot know the 

involvement of each author in the research process (Lindsey, 1980). In addition, these tech-

niques did not seem reasonable for fields like Accounting or Economics in which authors are 

not ranked by contribution but alphabetically (Chan et al., 2009; Engers et al., 1999). To better 

assess researchers’ impact and productivity, various editorials and articles have followed up on 

the discussions of author order and how to distribute publication and citation counts among co-

authors (e.g. Balkin et al., 2018; Endersby, 1996; Floyd et al. 1994; Macfarlane, 2017; Sauer-

mann, & Haeussler, 2017). Nevertheless, existing research has only rudimentarily covered the 

basic underlying question of who and why actually comes together to form those author teams 

so far. Henriksen (2016), Lariviere et al. (2006) and Ossenblok et al. (2014) represent notable 

exceptions. Two of those studies investigated and compared the average number of authors 

across research fields (Henriksen, 2016; Ossenblock et al., 2014) while the third looked at lan-

guage and regional differences (Lariviere et al., 2006). However, all three articles lacked theo-

retical frameworks explaining their effects and none of them included multivariate analyses. 

Essay 2 extends their findings and interpretations. Hereby, we apply the well-known economic 

concept of transaction costs towards author collaborations and test this application empirically 

addressing research field, regional, working experience and job position effects in a single 

model. The essay offers deep insights into authorship practices in the social sciences and shows 

that search and tenure commissions need to overcome solely authorship-based decision criteria 

like publication and citation credits and focus more on the skill sets of the candidates. 

1.2.2 Research process credibility  

The inevitable first step in overcoming the credibility crisis is increasing public trust in scien-

tific experts. Nevertheless, ensuring the credibility of the research process itself is the ultimate 

goal in order to restore general trust in the social sciences (Byington, & Felps, 2017). Yet before 

digging into the integrity of research processes, we need to clarify what type of research pro-

cesses we refer to. Theory and literature-guided confirmatory research represents the primary 

scientific process in management (Tukey, 1980), economics (Hakim, 1987) and psychology 
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scholarship (Hershey et al., 2006).  Figure 1.1 exemplarily highlights the archetypical experi-

mental and empirical research process in the social sciences.4 In line with Bhattacherjee (2012), 

Saunders et al. (2016) and Tharenau et al. (2012), the research process consists of two phases: 

The research design phase and the research execution phase. During the research design phase, 

scholars first generate a research question and conduct a literature review to assess the corre-

sponding theory. Based on this, they apply deduction (Chapter 1) to generate research hypoth-

eses that postulate specific effects and choose an appropriate research method. After completion 

of the research design phase, the research execution phase starts. Hereby, scientists collect data 

and analyze them with the aim of finding support for the previously established research hy-

potheses. They report the results and interpret them in line with the underlying theory and ex-

isting literature in the discussion (Bhattacherjee, 2012; Saunders et al., 2016; Tharenau et al., 

2012). In the following, this thesis addresses the most prevalent forms of (un-)ethical behavior 

and academic (mal)practices encountered in both phases. 

Figure 1.1: Archetypical experimental and empirical research process in the social sciences 

 
Note: Own figure based on Bhattacherjee (2012), Saunders et al. (2016) and Tharenau et al. (2012) 

 

4 The archetypical research process varies from research approach to research approach. On a general note, the 

social sciences distinguish between theoretical/literary-based research and experimental/empirical data-based 

research (Lancaster, 2005). The research process in Figure 1.1 mainly applies to experimental and empirical 

data-based research because theoretical- and literary-based research do usually not include data collection and 

data analysis (Lancaster, 2005).  
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1.2.1.1 Academic malpractices in research design 

HARKing (Hypothesizing After the Results are Known) represents the most common form of 

unethical research design changes in the social sciences (Hollenbeck, & Wright, 2017). Ac-

cording to the archetypical research process discussed above, scholars should generate research 

hypotheses from the existing theory before they conduct the data collection. Only afterwards, 

they should test the hypotheses using the gathered data. However, researchers face incentives 

to present as many significant statistical tests as possible because of the publication bias. The 

publication bias constitutes the scientific term for the fact that over the last 70 years, economic, 

management and psychology journals have shown a growing tendency towards preferentially 

publishing significant results (Fanelli, 2012; Harrison et al., 2017; Rosenthal, 1979; Sterling, 

1959). Consequently, finding support for more hypotheses increases scholars’ publication 

chances (Fanelli, 2012; Harrison et al., 2017; Rosenthal, 1979; Sterling, 1959). Yet even the 

best a priori defined research hypotheses sometimes do not transfer into significant statistical 

results due to various reasons like noise in the data or inappropriate research designs (Kerr, 

1998). To overcome the “danger” of receiving insignificant results, some scholars reversed the 

research process by first collecting as well as analyzing the data and only afterwards formulat-

ing ex post hypotheses that suit the results, thus engaging in HARKing (Leung, 2011). This 

way they could ensure that their papers contained many significant results, which in turn in-

creased their publication chances (Lipton, 2005). Unsurprisingly, HARKing is very common in 

the social sciences with 27% of surveyed psychologists admitting that they have employed this 

technique in their past research (John et al., 2012). However, HARKing is highly unethical 

because it suggests to editors, reviewers and readers that the scholars conducted a rigor theory 

and literature guided confirmatory research process while in fact they employed the theory that 

best matched the results (Bosco et al., 2016). This is problematic as we lose the valuable insights 

theory deduction might provide. Consequently, we rely solely on induction for both, identifying 

the underlying theory as well as the new implications. It is therefore no wonder that a substantial 

number of research articles, commentaries and editorials in many top-tier social scientific jour-

nals have already raised, addressed and investigated HARKing as well as its consequences and 

have proposed solutions to this problem (e.g. Bekkers, 2012; Cox et al., 2018; Mazzola, & 

Deuling, 2013; Murphy and Aguinis, 2019; Rubin, 2019; Vancouver, 2018). The preferred so-

lution seems to be study preregistration (Burlig, 2018; Gonzales, & Cunningham, 2015; 

Yamada, 2018). Hereby, scholars either register their study at an online registry like AsPre-

dicted (2020), AEA Registry (2020) or Open Science Framework Preregistration (2020) or only 
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submit a registered report outlining in detail the whole research project but not including results 

of the data collection and analysis to journals (e.g. Nature Human Behaviour, 2017; The Lead-

ership Quarterly, 2020; Journal of Development Economics, 2020).  

 Plagiarism constitutes another academic malpractice that can occur in the research de-

sign phase. In fact, “classic” plagiarism, copy-pasting from others, is the best known form of 

scientific misconduct as nearly every undergraduate lecture on scientific paper writing includes 

warnings that students must quote anything that they copy-paste to avoid plagiarism (Jackson, 

2006). However, while “classic” plagiarism appears from time to time in students’ seminar and 

term papers (Selwyn, 2008), it occurs only very rarely in social science journals (Sun, 2013). 

This derives from the fact that most of the journals already have employed plagiarism detection 

software (Luparenko, 2014). Yet two other forms of plagiarism exist more often: Copying and 

rephrasing ideas and results from others without referencing to them as well as the act of self-

plagiarism (Lehman, & Ramanujam, 2009). Honig and Bedi (2012) estimated that more than 

13% out of 279 papers presented at the 2009 Academy of Management copied more than 5% 

of their content from other papers without referencing them. This corresponds to Hopp’s and 

Hoover’s (2017) result that nearly 60% of 165 surveyed management journal editors had to deal 

with at least one case of plagiarism per year. Whereas copying from others without properly 

acknowledging them through citations or quotations constitutes academic misconduct for sure, 

there exists an ongoing debate on whether self-plagiarism, copying from own work, also counts 

as academic misconduct (Bretag, & Mahmud, 2009). For example, Thurman et al. (2016) ar-

gued that using similar backgrounds or methods sections to those already employed in pub-

lished articles could stem from the new paper using the same dataset or the same experimental 

or empirical environment. In addition, Vermuelen (2012) pointed out that scholars developing 

widely recognized concepts and theories might need to publish them in multiple journals to 

spread them across discipline boundaries. Last, Callahan (2018) highlighted that self-citations 

instead of self-plagiarism might torpedo double-blind peer review processes as this could unveil 

easily the identity of the original authors.  

Nevertheless, “there is no doubt that duplicate publication of original data and/or failing 

to reference previous work constitute research misconduct” (Chrousous et al, 2012: 231). As a 

case in point, Martin (2013) discussed the case of an article submitted to Research Policy that 

had more than 1700 words in common with an already published article from the same authors. 

In addition, neither the theoretical framework nor the implications of the newly submitted paper 



13 

 

differed from the already published paper. The editors therefore decided to reject this paper 

(Martin, 2013). Horbach and Halffman (2019) investigated self-plagiarism among Dutch sci-

entists. They showed that about 13% of the investigated economics articles and nearly 5% of 

the investigated psychology articles overlapped contextually at least 10% with papers published 

previously by at least one of the co-authors. 

 The fact that nearly every type of publication can contain some sort of plagiarism ex-

plains why countless research articles and editorials have already dealt with it (e.g. Arce et al., 

2008; Enders, & Hoover, 2006; Pupovac et al., 2008; Shahabuddin, 2009; Stitzel et al., 2018; 

Weber-Wulff, 2014). Fortunately, there exist already solutions to this problem: plagiarism de-

tection softwares like UniCheck (2020) or TurnItIn (2020). In fact, many top-tier social sci-

ence journals like the American Economic Review (2020), The American Sociologist (2020) 

and the Academy of Management Journal (2020) employ plagiarism detection software to 

check all submissions. The enhancing developments of artificial intelligence in those software 

applications already allows checking not only textual similarities but also content similarities 

and even assessing similarities in different languages (Ali et al., 2011; Luparenko, 2014; 

Lykkesfeldt, 2016). 

1.2.1.2 Plagiarism and motivation for this thesis 

Plagiarism played a vital role in the topic search for this PhD thesis. Prof. Dr. Christian Hopp 

lectured the seminar The Economy of Sciences in the winter semester 2017/18. I had the honor 

to support him. Scholarly careers, university incentives and academic misconduct represented 

the major topics of this seminar. Prof. Dr. Hopp covered these aspects thoroughly in the intro-

duction session and the students should dig deeper into these topics for writing their seminar 

papers. The students had to submit their papers until the end of the semester and, as we often 

observe, some of them deregistered from the course before submitting a paper. Therefore, we 

received only a handful of seminar papers. When I read those papers, one of them addressing 

the scientific publication process stood out in the amount of used literature and the quality of 

the inputs. However, this paper used inconsistent reference styles and did not include all refer-

ences mentioned in the text also in the reference section. I forwarded my remarks to Prof. Dr. 

Hopp. Keeping my comments in mind, he spotted several textual similarities between the sem-

inar paper and Hirschauer (2004), a paper that was part of the seminar’s mandatory literature 

list. As we possessed reason for suspecting plagiarism, I went through the seminar paper again 

and checked every paragraph. The result was shocking: Most paragraphs in the seminar paper 
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originally stemmed from published articles and reviews written in English. The student had 

translated these paragraphs one by one into German without citing or any other sort of refer-

encing. We consequently reported the plagiarism case to the competent authority of the RWTH 

Aachen University. Considering that the seminar topic was closely related to academic miscon-

duct, this incident was obviously very ironic. 

 This plagiarism case influenced my topic selection heavily. If even students who were 

explicitly taught about cases of and dangers arising from academic misconduct behave unethi-

cally in the very same seminar, why should not scientists, who face various incentives and 

pressures “to publish or perish” (Teute, 2001: 102), use similar shortcuts to increase their 

productivity and reputation (Ioannidis, 2012). As a case in point, Stürmer et al. (2017) con-

ducted a survey among junior faculty psychologists. They showed that more than 80% of their 

respondents believed that competition for publication spots, tenure positions and funding are 

causes of academic malpractices. Moreover, even scientists focusing on unveiling and over-

coming academic misconduct have been convicted of taking such shortcuts themselves in recent 

years:  

On the one hand, there exists the case of John P. A. Ioannidis. He is one of the most 

influential scholars in meta-research (the academic field of researching science itself) and one 

of the strongest critics of the publish or perish incentives. Ioannidis (co-)authored two studies 

assessing the mortality of COVID-19 (Dirnagl, 2020). Ioannidis (2020) included a meta-analy-

sis of studies investigating the prevalence of antibodies. His goal was to assess the infection 

fatality rate (IFR) (Ioannidis, 2020). Ioannidis (2020) concludes that the fertility rate of 

COVID-19 is low compared to other infectious diseases. The reviewers did not agree with this 

assessment as they assessed this study as showing data that “are useful and add to the emerging 

picture on IFR, however substantial conclusions cannot be drawn” (Hallett, 2020). The second 

study assessed the prevalence of antibodies among residents of Santa Clara County (Bendavid 

et al., 2020) and concluded originally that based on the widespread existence of antibodies, the 

IFR of COVID-19 would be 0.17%. Furthermore, the study stated that “[t]he authors have de-

clared no competing interest” (Bendavid et al., 2020). However, several experts criticized the 

study shortly after its pre-print release for using non-licensed antibody tests and several other 

methodological issues (Ting, 2020). Only few weeks later, a whistleblower reported that the 

study was financed by David Neeleman, the founder of JetBlue, questioning the independence 



15 

 

of the results (Offord, 2020). According to Ting (2020) the authors revised the study highlight-

ing an IFR of 0.33%, a substantially higher number. Yet the article available at medrvix was 

still the unrevised version in September 2020 (Bendavid et al., 2020). Morover, the professional 

websites of the first author and the last author did not include the paper as working paper 

(Bendavid, 2020; Ioannidis, 2020). 

On the other hand, addressing specifically the social sciences, there exists the case of 

Schimke and Ambrose (2011). This editorial in Management and Organization Review outlined 

the major challenges arising from academic misconduct and gave suggestions for authors, re-

viewers and journal editors on how to avoid and overcome them. Yet Schimke (2009) published 

earlier an editorial in the Academy of Management Review addressing (un)ethical behavior 

among members of the Academy of Management. Schimke (2009: 586) started with “Our pro-

fession has no formal audit function. More precisely, our research and publishing activities are 

not monitored by a formal audit process.” Schimke and Ambrose (2011: 398) wrote “Our pro-

fession has no formal, regular, auditing process. In particular, our research and publishing ac-

tivities are not monitored by a formal audit process.” While those two excerpts are nearly iden-

tical, Schimke and Ambrose (2011) did not cite Schimke (2009). In fact, Schimke and Ambrose 

(2011) did not even include Schimke (2009) in their reference list. In November 2013, a reader 

reached out to the editors of Management and Organization Review stating that students in his 

seminar on ethical publishing found several similarities between the two articles. Subsequently, 

the editors reached out to the authors and agreed on retracting the editorial (Tsui et al., 2014). 

Understandably, Schimke felt deeply humiliated but acknowledged the irony of retracting a 

paper aiming at educating scholars on ethical behavior (Tsui et al., 2014). 

These two ironic incidents further highlighted the issues arising from academic miscon-

duct. If even those who research and publish on topics related to the integrity of science use 

questionable research practices, how scientists will act who care much less about ethics in re-

search? 

1.2.1.3 Academic malpractices during research execution 

The cases of Diederik Stapel and Ulrich Lichtenthaler highlighted prime examples of 

academic misconduct occurring during research execution. On the one hand, Stapel’s faking of 

experimental data showed what can go wrong in the data collection. On the other hand, Lichten-

thaler’s stars indicating significance for non-significant coefficients questioned the integrity of 

data analysis and results reporting. However, the red line is not clearly defined for many other 
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instances of questionable research practices. Simmons et al. (2011: 1359) argued that this es-

pecially applies to many data related subjects like ”Should more data be collected? Should some 

observations be excluded? Which conditions should be combined and which ones compared? 

Which control variables should be considered? Should specific measures be combined or trans-

formed or both?“ Scholars usually cannot clarify all of these decisions in advance because some 

of them are very case specific (e.g. the response rate, the number and strength of outliers, the 

validity scores of instruments) (Simmons et al., 2011). Consequently, scholars can use the lee-

way of these decisions to shape the results in a preferential way by reporting only those speci-

fications that lead to significant results (Banks et al., 2016). As a case in point, Brodeur et al. 

(2016) discovered the so-called inflation bias. Based on the already discussed publication bias, 

Brodeur et al. (2016) suspected that smaller p-values increase publication chances. The authors 

tested this assumption by analyzing test statistics from 641 articles published in three top-tier 

economic journals. Their results showed that the actual published p-values did not correspond 

to the postulated constant increase in publication chances. Instead, they observed two humps 

with few articles containing p-values around 12% and a high number of articles containing p-

values that are just below 5% (Figure 1.2).  Brodeur et al. (2016) argued that the humps point 

out that economists played around with model specifications until they reached significant re-

sults.5 In other words, if economists’ initial results indicate p-values just slightly below the 5% 

level, some refrain from running the models with other specifications (e.g. different treatments 

of outliers, N/A answers, …). In turn, if economists’ initial p-values lie just above the 5% level, 

some run the models again with different specifications until they reach “publishable” p-values 

below 5% (Brodeur et al., 2016).  

Figure 1.2: Distribution of z-values among economic papers 

 
Note: Figure from Brodeur et al. (2016: 9) 

 

5 The 5%-threshold, the most common significance threshold in the social sciences, goes back to Fisher (1922).  
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In the worst case, different model specifications can result in two papers addressing the 

same phenomenon and using the same dataset presenting very different findings and implica-

tions (Simmons et al., 2011). Silberzahn and Uhlmann (2013) and Silberzahn et al. (2014) rep-

resent two examples of such contradicting publications. Silberzahn, & Uhlmann (2013) showed 

by using hierarchical linear models that Germans with noble-sounding surnames like “Kaiser” 

worked more often as executive board members. Renowned statistician Prof. Uri Simonsohn 

read this journal article and was very suspicious of the finding. He asked the authors to send 

him the original data and conducted further investigations. He concluded that the highlighted 

effect resulted from different name frequencies and teamed up with the original authors to em-

ploy name matching to derive the actual causal effects (Silberzahn et al., 2014). Silberzahn et 

al. (2014) reported that the effect estimated in the HLM regressions disappeared in the matching 

models.    

Unfortunately, self-corrections as the one in Silberzahn et al. (2014) occur very rarely 

in the social sciences (Rohrer et al., 2020). This derives from the fact that retractions and similar 

incidents reduce scientists’ future citation rates and hence harm their career prospects (Azoulay 

et al., 2017). As researchers are unlikely to retest or reassess their own previous findings (Roh-

rer et al., 2020), many journals have opened calls for replication studies to incentivize scholars 

to validate their own work and the work of others (e.g. Brüggen, 2020; Burman et al., 2010; 

Clapp-Smith et al., 2018; Cousineau, 2014; Experimental Psychology, 2020; Simons et al., 

2014). Essay 3 is a response to the call of Clapp-Smith et al. (2018) for replicating leadership 

studies conveying important implications. The paper provides new insights on the effects of 

high school leadership and contains a hands-on step-by-step guide on how to conduct a thor-

ough and robust replication of quantitative empirical articles. To conduct the replication, we 

were able to use the same dataset as the original study because fortunately the American Insti-

tutes of Research still curates the dataset. 

However, having access to a study’s original data is often the exception than the norm 

in the social sciences: Wicherts et al. (2006) asked 141 corresponding authors of papers pub-

lished in top psychology journals for their data but only received datasets for 38 articles. Kraw-

czyk and Reuben (2012) contacted 200 economists requesting datasets belonging to articles 

stating that the authors would make the data available upon request. In the end, they only re-

ceived datasets from 88 authors. Dr. Jermain Kaminski analyzed the 200 most cited (according 



18 

 

to Google Scholar) open innovation papers in 2018 searching for their data. None of those pa-

pers made the data available via the publication source. To understand the underlying reasons 

of these non-disclosures, Essay 4 analyzes data sharing among innovation researchers and its 

determinants. We specifically addressed innovation management researchers as they regularly 

highlight the benefits of opening science and innovation processes (Bogers et al., 2017; 

Randhawa, Wilden and Hohberger, 2016; von Hippel, 2017; West et al., 2014) and should 

therefore be prone to open science practices like data sharing (Beck et al., 2020).  

1.2.3 Overview of academic practices and the credibility crisis 

Figure 1.3 summarizes section 1.2. It distinguishes the credibility crisis into two aspects: schol-

ars’ credibility and research process credibility. Moreover, we divide the research process into 

research design and research execution phase. Figure 1.3 then lists the above discussed most 

prevalent academic (mal)practices in red and highlights possible solutions for overcoming them 

in green. The figure also includes relevant literature references for the academic (mal)practices. 

Last, Figure 1.3 highlights the literaric context each essay of this thesis is embedded in. Hereby, 

Figure 1.3 shows how all four essays contribute to overcoming the credibility crisis in the social 

sciences by providing guidance for ethical and responsible behavior in applied empirical re-

search. The following chapter outlines the exact contributions of each essay in detail. 

Figure 1.3: Academic practices and the credibility crisis in the social sciences 

Note: Text in red represents problematic academic practices. Text in green highlights solutions to ensure and 

strengthen ethical and responsible behavior in applied empirical research. 
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1.3 Summary of the essays 

All four essays address forms of academic (mal)practices and offer various solutions. The se-

quence of the essays accords to their first mentioning in this thesis. Consequently, Chapter 2 

contains Essay 1 addressing ghost and honorary authorship in the social sciences. Essay 2 in 

Chapter 3 shows how transaction costs influence the size of author teams. Chapter 4 with Essay 

3 represents a step-by-step guide and hands-on example of replication studies. Last, Essay 4 in 

Chapter 5 highlights proliferating and limiting factors for data sharing practices among innova-

tion scholars. 

1.3.1 Chapter 2 

Essay 1 in Chapter 2 begins with showing that nowadays more research articles than ever pos-

sess multiple authors, enhancing better quality and higher productivity. However, the rise of 

multi-author papers also pathed the way for the emergence of authorship malpractices. Because 

incorrect authorship assignments alter academic citation and publication counts, they constitute 

a serious threat to the integrity of science. Existing research from the life sciences indicates that 

ghost and honorary authorship are the most frequent authorship malpractices. As a response, 

many life science journals have started to require contribution disclosures upon paper submis-

sion. However, such a practice does not exist in the social sciences. In fact, they even lack an 

assessment of whether they also face ghost and honorary authorship. Based on a large scaled 

survey, the study shows that both, ghost and honorary authorship occur in the social sciences 

with honorary authorship spreading being substantially more common than ghost authorship. 

Yet while more than every third paper contains wrongly assigned authorship credits, most of 

the participating social scientists assign authorship correctly in three hypothetical scenarios. 

This difference between the correct hypothetical assignments and the incorrect actual assign-

ments indicates that underlying forces like publication incentives and hierarchical pressure in-

duces scholars to assign author credits improperly despite knowing better. Based on these find-

ings we call for journals to implement contribution disclosures, for research institutions and 

publishers to implement authorship-whistleblowing platforms and for employers to move be-

yond authorship-based citation and publication rankings in hiring and tenure processes. 
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1.3.2 Chapter 3 

Essay 2 in Chapter 3 also starts with discussing the unprecedented rise in the size of author 

teams across all academic disciplines. Yet the speed of increase in co-authors varies consider-

ably across research fields, geographical regions, job positions and experience even within the 

social sciences. Unfortunately, existing studies failed to provide conceptional frameworks the-

oretically explaining the differences. Moreover, they focused solely on one aspect each. Essay 

2 overcomes this issue by drawing from transaction-cost theory. We generate a solid concep-

tional model explaining the factors influencing team authorship. We test the model in a multi-

variate analysis employing data from a large-scaled worldwide survey. Our results show that 

psychologists as well as information technologists and operations researchers work on average 

in larger author teams while sociologists and political scientists work in smaller author teams. 

In addition, we find that Eastern European scholars work in smaller author teams and that post-

docs tend to have more single-authored publications. Based on our results we call upon those 

in charge of search and tenure procedures to keep the applicants’ different research fields and 

geographical backgrounds in mind and to move beyond merely counting publications and cita-

tions. Furthermore, we highlight the importance of academic conferences as they allow scholars 

to establish fruitful networks for future collaborations.  

1.3.2 Chapter 4 

Essay 3 in Chapter 4 replicates and extends Kuhn and Weinberger’s (2005) “Leadership Skills 

and Wages”. The original article found that those white males who were club presidents and 

team captains in high school earned significantly more eleven years later. As the empirical re-

lationship between leadership positions and subsequent earnings includes those characteristics 

that predate high school and those that are developed because of leadership activity participa-

tion in high school, the original study cannot differentiate between leadership skills developed 

earlier and those developed in high school. We employ propensity score matching on leadership 

exposure in high school to control for potential endogenous observable selection and provide 

estimates from instrumental variable regressions to assess the robustness of the original effects 

to other omitted causes. To investigate the generalizability of the original findings, we also 

extend the sample by including females and non-white males. Last, we investigate how an ex-

tension of the initial (eleven years) time horizon to almost 50 years affects the coefficient esti-

mates. We can corroborate the original effect that those who occupied leadership positions as 

captains and presidents earn more eleven years after high school and report higher income 50 
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years after high school. We fail, however, to find effects for those who occupied only a role as 

captain or president solely. Moreover, the findings do not generalize to the samples of females 

and non-white males. Our findings provide important insights into later-life benefits of early 

leadership exposure and have implications for those designing leadership training programs and 

those taking on (or refraining from) leadership positions in early life. 

1.3.2 Chapter 5 

Essay 4 in Chapter 5 bases on the fact that many researchers, practitioners, and policy makers 

attest to the benefits of open data. Yet many scholars, even those in the area of innovation 

management and open innovation research, still prefer not to disclose their empirical data. 

Drawing from the resource-based view we generate potential factors that motivate or hinder 

data sharing. We test these stipulations using a survey among management researchers. The 

results show that less than a third of those researchers have made at least one of their datasets 

publicly available. While respondents are aware of the communal benefits of revealing research 

data to other scientists, their perceived costs and risk of open data are consequential in inhibiting 

data sharing. Despite refraining from sharing their own data, paradoxically most respondents 

would like to see journal policies that foster data sharing. Our results therefore call upon editors 

to introduce open data policies for their journals and highlight an overdue need to reshape the 

academic institutions and incentive systems so that not only article publications are rewarded, 

but also data publications. 
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1.4 Publication history 

The four essays in this thesis are theory driven, empirical quantitative research articles. The 

doctoral candidate wrote large parts of the essays and substantially contributed to all aspects 

of the relevant research projects ranging from defining theoretical frameworks to statistical 

data analysis. We submitted all articles to conferences and/or journals and the articles were 

included in conference proceedings and/or sustained at least the first submission round. At the 

time of submission of this doctoral thesis, all essays were either under review or accepted for 

publication. The essays represent the most up-to-date versions of the research articles at the 

thesis submission date.  

1.4.1 Essay 1 – “Ghost and honorary authorship in the social sciences” 

Keywords 

Ethics in science; Meta-research; Scientific authorship; Ghost authorship; Honorary author-

ship; Academic incentives 

Under review at PLoS ONE: 

• Pruschak, G., & Hopp, C. 2020. And the credit goes to … - Ghost and honorary au-

thorship among social scientists. Under review at PLoS ONE. 

Presentations: 

• American Accounting Association Annual Meeting 2018. Washington DC, USA. Au-

gust 7 2018. 

• Academy of Management 2019. Chicago, IL, USA. August 13 2019. 

• Jahrestagung des Bildungsökonomischen Ausschusses 2020. Vienna, AUSTRIA. Feb-

ruary 28 2020. 
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1.4.2 Essay 2 – “Team authorship in the social sciences” 

Keywords 

Science Sociology; Meta-research; Transaction costs; Scientific authorship; Academic incen-

tives; Research collaborations 

Under review at Research Policy: 

• Pruschak, G. 2020. Transaction costs and the size of author teams in the social sci-

ences. Under review at Research Policy. 

Presentations: 

• Academy of Management 2020. Vancouver, BC, CANADA. August 10 2020. 

 

 

1.4.3 Essay 3 – “Replicating the effect of high school leadership on later life earnings” 

Keywords 

Leadership; Earnings; Replication; Causality; Endogeneity 

Published in The Leadership Quarterly: 

• Hopp, C., & Pruschak, G. 2020. Is there such a thing as leadership skill?  – A replica-

tion and extension of the relationship between high school leadership positions and 

later-life earnings. The Leadership Quarterly Forthcoming. 

 

 

 

 

 

 

 



24 

 

1.4.4 Essay 4 – “Open data practices in innovation management research” 

Keywords 

Open data; Research data; Resource-based view; Innovation; Replication 

Under review at Industry & Innovation: 

• Barczak, G., Hopp, C., Kaminski, J., Piller, F., & Pruschak, G. 2020. How Open is In-

novation Research? – An Empirical Analysis of Data Sharing among Innovation 

Scholars. Under review at Industry & Innovation. 

Presentations: 

• 16th Annual Open and User Innovation Conference 2018. New York City, NY, USA. 

August 7 2018. 

• 1st Open Innovation in Science Research Workshop 2019. Vienna, AUSTRIA. May 3 

2019. 
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2 Essay 1 – Ghost and honorary authorship in the so-

cial sciences 

2.1 Introduction 

“Publish or Perish” epitomizes the academic reward system across scientific disciplines nowa-

days better than ever before (Kendall, & Campanario, 2016; McGrail et al., 2006; Miller et al., 

2011; Rawat, & Meena, 2014; Sestak et al., 2018).6 Advances in communication technology as 

well as the continuing growth of English as the dominant scientific language have constantly 

increased the competition for publication spots in top tier journals (Di Bitetti, & Ferreras, 2017; 

Tardy, 2004; van Raan, 2001). To withstand the pressure researchers have increasingly teamed 

up with colleagues to increase their productivity (Glaenzel, & Schubert, 2001; Lee, & Bozeman, 

2015). This has led to a strong increase in the share of published papers written by more than 

one author in almost every discipline (Hsiehschien et al., 2015; Manton, & English, 2007; 

Ossbenblok et al., 2014). While scientific collaborations increase creativity, profoundness and 

replicability (Bergman, & Danheiser, 2016; Busch, & Hattery, 1956; Ductor, 2015), the concept 

of co-authorship also leaves room for pitfalls. Martinson et al. (2005) found that 10% of their 

questioned researchers have assigned authorship inadequately at least once in their career. 

Overall, scientists across disciplines perceive that problems related toauthorship happen ten 

times more likely than data fabrication or falsification (Marusic et al., 2011). Ghost authorship 

and honorary authorship represent two of the most infamous authorship malpractices because 

they falsify citation and publication counts, the “gold standard” (Altbach, 2015: 6) of academic 

productivity. In order to prevent adulterations of academic rankings, certain journals have 

started to demand statements from each co-author in which they disclose their specific contri-

butions to the paper (McDonald et al., 2010). Especially high ranked journals in the nature and 

life sciences have already implemented requirements for so-called contribution disclosures 

upon paper submission (Sauermann, & Haeussler, 2017). However, an extensive literature and 

online search as well as reaching out to scholars from various social sciences indicate that social 

science journals do not require such statements. Two possible scenarios emerge from this: Ei-

ther ghost authorship and honorary authorship do not occur in the social sciences, or social 

 

6 I wish to thank Prof. Christian Hopp for the collaboration and his inputs on this paper. 
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science journals have ignored the threat arising from these authorship issues. To answer the 

question on which of the two scenarios depicts the reality better, we need clear and comprehen-

sive facts on the prevalence, distribution and motivational factors of ghost and honorary author-

ship in the social sciences. 

2.1.1 Defining authorship 

There exists neither a uniform definition nor a standard list of authorship criteria applicable to 

all scientific disciplines (Claxton, 2005). In fact, authorship guidelines vary even within the 

same discipline from journal to journal (Bates et al., 2004). Therefore, a universally valid defi-

nition of authorship can only be broad and imprecise. Such a generalized proposition would 

call researchers authors if they added “substantial contributions” (Osborne, & Holland, 2009: 

4) to the publication. The perception of the term “substantial contribution” distinguishes the 

different definitions. The most common more precise definition of authorship criteria originates 

from the International Committee of Medical Journal Editors (ICMJE) (Wager, 2012). The 

Committee on Publication Ethics (COPE), a multidisciplinary advisory body on moral issues 

to which several large academic institutions, journals and societies subscribe7, advises to use 

these standards (Albert, & Wager, 2004; Ioannidis et al., 2018; Wager, 2012). According to the 

ICMJE “Authorship credit should be based only on 1) substantial contributions to conception 

and design, or acquisition of data, or analysis and interpretation of data; 2) drafting the article 

or revising it critically for important intellectual content; and 3) final approval of the version to 

be published” (Davidoff, 2000: 230). Every researcher fulfilling all three requirements is not 

only eligible for but, in fact, must receive authorship (Davidoff, 2000). 

2.1.2 Ghost authorship 

The phenomeon of a person meeting all authorship criteria but not being awarded authorship is 

called ghost authorship (Kennedy et al., 2014). Clearly, ghost authorship shares similarities 

with plagiarism as both concepts incorporate the attribution of the work of one person to some-

one else (Liddell, 2003). The difference between those two malpractices lies within the attitude 

and knowledge of the creator of the original material. In plagiarism, the authentic writers do 

not have to be aware of the research paper “stealing” their ideas. Ghost authors, though, con-

tribute consciously towards the research paper and (in-)voluntarily accept the decision of not 

 

7 Subscribers include the Academy of Management, the American Chemical Society and the Royal Society. A 

full list of all subscribers is available at https://publicationethics.org/members/publishers  
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receiving authorship (Bosch, & Ross, 2012). As nearly all academic rankings refer to citation 

and publication counts, putting large efforts into conducting research and writing a paper but in 

the end decline to receive author credits for this work does not seem reasonable. However, 

existing literature points towards three possible explanations of such behaviors. First, pressure 

from co-authors, whose citation and publication counts usually benefit from a lower number of 

contributors, can lead to researchers declining authorship. This situation compares to the obser-

vation of Harbring and Irlenbusch (2011) where individuals gained more in tournaments by 

tricking others into losses. Such behaviors can easily occur if the ghostwriter is a subordinate 

of one of the co-authors like it is the case in faculty-student collaborations (Oberlander, & 

Spencer, 2006). Second, scientists can voluntarily decide to reject author credits due to contro-

versial findings that they might perceive as doubtful or weak and might hinder their future 

career (Bennet, & Taylor, 2003; Klein, & Moser-Veillon, 1999). Third, researchers might not 

aspire authorship to disguise potential conflicts of interests. For example, freelancers sponsored 

by pharmaceutical companies regularly approach life scientists asking them to write research 

papers based upon a provided, often biased bundle of articles and study results. The published 

articles should then foster the official approval and/or boost the sales of the drug. As the free-

lancers do not receive authorship (and thus are ghost authors), the monetary commitment of the 

firm stays secret (Brennan, 1994; Moffatt, & Elliott, 2007). 

2.1.3 Honorary authorship 

Honorary authorship refers to researchers who do not or only moderately contribute to a paper 

but receive authorship (Greenland, & Fontanarosa, 2012). Gift authorship and guest authorship 

represent alternative terms for this malpractice (da Silva, & Dobranszki, 2016). Honorary au-

thorship per se is very beneficial to those receiving it because they can add publications to their 

CVs without providing the effort and time usually required to conduct research and write arti-

cles. As with ghost authorship, where individuals can exert pressure to force a contributor to 

withdraw from the authors list, here pressure from an individual to receive authorship can ex-

plain the occurrence of honorary authorship (Feeser, & Simon, 2008). Examples are senior sci-

entists who demand authorship on the grounds of employing the original authors or providing 

financial funding (Drenth, 1998; Moffatt, 2011). This especially applies to faculty-student col-

laborations (Oberlander, & Spencer, 2006). Nevertheless, certain circumstances exist in which 

the original authors even voluntarily include honorary authors. The Matthew effect describes 
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the phenomenon of including well-known researchers into author lists to increase the ac-

ceptance chances (Merton, 1968). This especially occurs in single-blind review processes 

(Blank, 1991). Furthermore, famous co-authors also often boost citations, which is beneficial 

to all authors (Valderas et al., 2007). To receive those benefits authors might ask coryphaei to 

co-author their papers although they did not participate in the research or writing process (da 

Silva, & Dobranszki, 2016). Third, the general increase in co-authored papers enables research-

ers to trade co-authorship. Hereby, a scientist adds only a small contribution towards a research 

project but still receives author credits. In return the original author also receives co-authorship 

when the honorary author from before publishes the next paper. This behavior occurs some-

times within chairs or research groups where, for example, reciprocal proofreading might in-

duce honorary authorship (Padmanabhan, 2015). 

2.1.4 Research Question 

Existing research especially from the life sciences already discussed authorship malpractices 

and points towards the existence of these phenomena. For example, supervisor-subordinate col-

laborations seem to be more susceptible to authorship malpractices than collaborations amongst 

colleagues on eye-level (Bartle et al., 2000; Costa, & Gatz, 1992; Sandler, & Russel, 2005; 

Tryon et al., 2007)). Consequently, journal policies like enforcing contribution statements (Sau-

ermann, & Haeussler, 2017) are unlikely to overcome misguided incentives within the academic 

publishing system, when supervisors can strong-arm their subordinates. We therefore need to 

better understand whether hierarchical power, institutions and norms actually induce authorship 

malpractices and how subordinates might succumb to supervisor influences. Consequently, we 

study authorship assignments in a field where journals do not require contributions statements, 

where the number of authors on average is tractable, and where there is (to the best of our 

knowledge) limited prior work on honorary and ghost authorship: the social sciences. The field 

specificity is of utmost importance as the results from the life sciences might not provide good 

approximations for the social sciences due to different incentives and competition patterns. The 

average acceptance rates of papers submitted to journals provide proof for this argument. In the 

social sciences, journals publish only around 20% of all submissions. In nature and life sciences, 

journals publish approximately 60% of all submission (Pfeffer, 1993). Therefore, we do not 

develop research hypotheses based on existing findings from non-comparable fields but instead 

conduct exploratory research on ghost and honorary authorship in the social sciences. More 

specifically we investigate the circumstances and factors that relate to authorship malpractices 
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by comparing scholars’ actual authorship assignments to their assignments in three hypothetical 

scenarios. 

2.2 Materials and Methods 

2.2.1 Survey Design 

This paper bases on empirical findings derived from a survey consisting of three parts. In the 

first section, respondents answered questions about their demographic and job characteristics. 

The second part of the survey asked about the distribution of authorship and contributor 

acknowledgements in the latest published paper that names the respondents as authors. The 

third section covered three vignettes about research projects and asked respondents to assign 

authorship to the researchers. 

2.2.1.1 Actual prevalence of authorship issues 

To assess the existence of ghost and honorary authors, we asked respondents for the number of 

authors and number of other people (excluding peer reviewers) contributing to their last pub-

lished paper. In the style of Mowatt et al. (2002), they specified for each of the authors and 

contributors (or for the top five in case of more than five authors or contributors) whether that 

person participated in creating the research design, the search for literature, analyzing the liter-

ature, collecting and/or preparing data, describing the results, writing the paper, reviewing and 

remarking the written paper and approving the final version of the paper. Only a person cover-

ing the last task, the antepenultimate and/or penultimate task and at least one of the other tasks 

should receive authorship according to the ICMJE authorship criteria (Davidoff, 2000). Based 

on these we identified ghost authors as contributors fulfilling the requirements and honorary 

authors as authors not fulfilling the requirements. Furthermore, respondents also needed to in-

dicate on a scale from 0 (disagree) to 100 (agree) whether they agree with that for their last 

published paper all researchers making significant contributions also received authorship. We 

employed this question as an indicator for respondents’ perceptions of ghost authors. The last 

question in the second part of the survey asked respondents to indicate on a scale from 0 (disa-

gree) to 100 (agree) if researchers only received authorship if they participated actively in the 

creation process. Hereby, survey recipients stated their perceived degree of honorary authors. 
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2.2.1.2 Hypothetical assignment of ghost and honorary authorship 

The assignment of ghost and honorary authorship in the vignettes should highlight the actual 

knowledge of authorship criteria among social scientists. We therefore developed three scenar-

ios capturing different emergences of research papers. Ideas for these vignettes derived from 

Bartle et al. (2000), Costa, & Gatz (1992), Sandler, & Russel (2005) and Tryon et al. (2007) 

although the research focus and/or context differs from these studies. Before showing the sur-

vey participants the vignettes, Qualtrics randomly split the respondents into two groups. While 

both groups received the same first vignette to detect potential sample bias, each of the two 

groups then received a different version of the second and third vignette. After reading each of 

the vignettes, respondents decided for every person included in the scenario whether to award 

authorship to them.  

The first vignette described a postdoc-professor collaboration on eye-level in which a 

student assistant helped in the data collection process.8 According to the ICMJE authorship 

criteria the professor and the postdoc should receive authorship. The student assistant is not 

eligible for author credits. 

In the second vignette respondents in group A assessed a postdoc/professor collabora-

tion while respondents in group B assessed a professor/professor collaboration. Both versions 

again inlcuded a student assistant helping with the data collection. Hereby, the division of the 

workload shifts heavily towards the postdoc/Professor 1 while the second researcher just 

reaches the minimum threshold of the ICMJE authorship criteria by participating in the con-

ception, reviewing and final approval. Still no author credits should go to the student assistant.   

The third vignette focused on gender differences. Hereby, a professor published a paper 

based on a dissertation. In group A the PhD student was male and in group B the PhD student 

was female. In this case, only the professor fulfills the ICMJE authorship criteria because the 

PhD student does not engage in the paper writing and therefore does not meet the requirement 

of proofreading the paper before the journal submission. However, many large research socie-

ties including the Academy of Management (2018), the American Sociological Association 

(2018) and the American Psychological Association (1983) require PhD students to become 

 

8 The exact vignettes are available in the appendix. 
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even first author when published articles base on their dissertation. Therefore, also the PhD 

student should receive authorship. 

2.2.2 Distribution and Sample 

We designed the survey in spring 2018 using the online survey tool Qualtrics. In May 2018, we 

asked friendly scholars for feedback. After the incorporation of this feedback, a test-run took 

place by sending the survey link to 275 scholars who presented at least one paper at the Euro-

pean Accounting Association Annual Congress 2018. Data and feedback from the test-run 

showed that no further need for adaptions of the questionnaire existed. Therefore, the data gath-

ered in the pilot phase are included in the analysis. 

To ensure a large distribution of the questionnaire among researchers from various so-

cial sciences, we selected corresponding authors from published articles in well reknown expert 

journals as well as from papers presented at conferences organized by large field-specific re-

search societies between January 2010 and June 2018. 9 In total, we gathered 126,480 unique 

email addresses after the deletion of duplicates. A random selection of half of these addresses 

led to an initial sample of 63,240. These scholars received an email containing a brief explana-

tion of the purpose of the study and a Qualtrics URL-link to the questionnaire in late August 

and early September 2018. The link to the survey was the same for everyone to ensure the 

anonymity of respondents. Still, ballot stuffing was not possible because taking the survey was 

limited to once per IP-Address. After sending out the survey, 15,573 emails bounced automat-

ically back due to the email addresses being no longer in use. The contacted sample therefore 

consists of 47,697 valid recipients.  

The distribution of the survey resulted in 2,817 respondents. This is equivalent with a 

response rate of 5.91%, which compares to other recently conducted online surveys among 

scientists investigating academic misconduct (Hopp, & Hoover, 2017; Liao et al., 2018). Out 

of all respondents, 2,223 completed the survey. However, the samples used for the following 

analyses differ because some conference attendees have yet not published in journals or some 

respondents selected the N/A option at one or more questions. Furthermore, we exclude one 

 

9 A full list of the journals and conferences is available upon request from the corresponding author. 
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respondent from the analysis because this person stated to have been working in academia for 

100 years although being only 67 years old. 

2.2.3 Statistical Analysis 

We conducted the whole data analysis using Stata 13. As our data sample largely exceeds the 

requirement of 100 data points for the application of the central limit theorem, we can refer to 

the dependent variables as normally distributed. We therefore employ logistic regressions if the 

dependent variable is dichotomous and OLS regressions if the dependent variable is interval-

scaled. 

2.3 Results 

2.3.1 Actual Prevalence of Authorship Issues 

Out of 1,878 papers with full data on ghost authorship, one ghost author participated in the 

creation of 43 (2.29%) papers and two or more ghost authors participated in the creation of 21 

(1.12%) papers (Figure 2.1A). Honorary authorship occurs much more frequently with 418 pa-

pers (22.22%) containing one honorary author, 234 papers (12.44%) containing two honorary 

authors, 107 papers (5.69%) containing three honorary authors and 57 (3.03%) containing four 

or more honorary authors (Figure 2.1B). Hence, one in about thirty papers suffers from ghost 

authorship and nearly every second paper suffers from honorary authorship.10 

Figure 2.1: Share of ghost (A) and honorary (B) authorship. 

 

Note: N. of obs. are 1,878 for (A) and 1,881 for (B). 

 

10 Descriptive statistics are available in Table 2.4 and Table 2.5 in the appendix. 
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We compare the share of identified ghost authors to respondents’ assessments of the 

share of ghost authors in their last published paper. The histograms in Figure 2.2 show that the 

perceived share of ghost authors (Figure 2.2B) exceeds the identified share of ghost authors 

(Figure 2.2A). In other words, our respondents perceive ghost authors more often than they 

actually exist.11 This difference is significant according to a two-sided t-test (t=-8.0874; df=812; 

p=0.0000). 

Figure 2.2: Histograms of the identified share of ghost (A) and perceive share of ghost authors 

(B) as well as the identified share of honorary (C) and perceived share of honorary authors (D) 

 
Note: N. of obs. are 813 for (A) and (B) and 1,842 for (C) and (D). 

 

11 The number of observations is only 813 because we assess the share of ghost authors among all non-author 

contributors. 
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Figure 2.2 also compares the share of identified honorary authors in each paper to re-

spondents’ assessments of the share of honorary authors in their last published paper. The dif-

ference between the identified (Figure 2.2C) and perceived (Figure 2.2D) occurrences is not as 

stark as before. Nevertheless, using a two-sided t-test we find that the perceived share of hon-

orary authors is significantly lower than the identified share of honorary authors (t=7.5946; 

df=1841; p=0.0000). 

To identify the reasons for the mismatches between scholars’ perception of the preva-

lence of authorship issues and their actual occurrence, we investigate their antecedents and cor-

relates. Table 2.1 depicts the regression results investigating the effects of the exploratory var-

iables. Model 1 and 2 contain logistic regressions on a dummy variable indicating whether re-

searchers’ last papers include at least one ghost author (1) or honorary author (2). Models 3 and 

4 depict linear regressions with the number of ghost and honorary authors in each paper as the 

dependent variables. We find that Anglophone and Continental European scholars exhibit less 

(often) ghost and honorary authors than scholars from other world regions. Furthermore, PhD 

Students indicate increased occurrences of both authorship issues in their last published paper. 

Yet professors indicate less honorary authors. Scholars who published more papers in the past 

three years encounter moderately significantly more (often) honorary authors. Concerning field 

specific differences, we find on the one hand that economics and finance researchers as well as 

political scientists are less likely to have ghost and honorary authors in their last published paper 

than researchers from other fields like business, computer or operations research. On the other 

hand, Model4 highlights that Psychologists include more honorary authors in their published 

papers.  

Models 5 and 6 depict respondents’ assessments of the share of ghost and honorary 

authors in the last published paper as the dependent variables. The results show that scholars 

generally identify ghost and honorary authors correctly; a higher share of ghost and honorary 

authors is associated with a higher perceived share. Nevertheless, the coefficients of 0.142 for 

ghost authors and 0.187 for honorary authors indicate that there exists a mismatch between the 

perceived and the actual inclusion of honorary and ghost authors 
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Table 2.1: Regression Results of Actual and Perceived Prevalence of Ghost and Honorary 

Authorship 

 Model 1 

Ghost Au-

thorship 

Model 2 

Honorary 

Authorship 

Model 3 

# of Ghost 

Authors 

Model 4 

# of Honor-

ary Authors 

Model 5 

Perceived 

Ghost  

Authors 

Model 6 

Perceived 

Honorary 

Authors 

Share of Ghost     0.143**  
Authors     (0.050)  
Share of Honorary      0.187*** 
Authors      (0.023) 
Female -0.324 0.175†  -0.020 0.079 0.024 0.009 
 (0.302) (0.106) (0.017) (0.053) (0.020) (0.015) 
Anglophone -1.619*** -0.964*** -0.118*** -0.520*** -0.095** -0.056†  
 (0.456) (0.206) (0.033) (0.102) (0.036) (0.029) 
Continental -1.227** -0.786*** -0.114*** -0.474*** -0.088* -0.082** 
Europe (0.419) (0.203) (0.032) (0.101) (0.036) (0.028) 
Developing 0.031 0.009 -0.000 0.004 -0.001 -0.001 
Countries (0.020) (0.008) (0.001) (0.004) (0.002) (0.001) 
Age 0.259 0.131 -0.008 -0.100 -0.010 -0.060†  
 (0.405) (0.231) (0.036) (0.114) (0.038) (0.032) 
PhD Student 1.268** 0.513* 0.110*** 0.278** 0.008 0.061* 
 (0.440) (0.204) (0.032) (0.101) (0.035) (0.028) 
Professor -0.201 -0.287* -0.004 -0.171** -0.015 -0.032†  
 (0.343) (0.128) (0.020) (0.063) (0.024) (0.018) 
Editor 0.245 0.067 0.012 0.083 0.002 0.008 
 (0.307) (0.121) (0.019) (0.060) (0.022) (0.017) 
Years in -0.009 -0.011 0.001 -0.007 0.001 -0.001 
Academia (0.021) (0.008) (0.001) (0.004) (0.002) (0.001) 
Published -0.023 0.074†  -0.007 0.047* 0.009 0.004 
Papers (0.108) (0.042) (0.007) (0.021) (0.008) (0.006) 
Written 0.063 -0.010 0.004 -0.018 -0.017** -0.004 
Reviews (0.096) (0.036) (0.006) (0.018) (0.007) (0.005) 
Business -0.397 0.216 -0.037 0.063 0.028 -0.010 
 (0.399) (0.166) (0.026) (0.083) (0.030) (0.023) 
Economics and -0.515 -0.430* -0.055†  -0.251** -0.012 -0.047†  
Finance (0.500) (0.199) (0.031) (0.097) (0.036) (0.027) 
Computer and 0.056 0.319†  0.000 0.134 -0.034 -0.037 
Statistics (0.407) (0.188) (0.030) (0.094) (0.036) (0.026) 
Political Sciences -0.967 -0.625** -0.067* -0.316** 0.019 -0.086** 
 (0.670) (0.222) (0.034) (0.106) (0.041) (0.030) 
Psychology -0.410 0.321 -0.021 0.321** -0.029 0.012 
 (0.676) (0.240) (0.039) (0.121) (0.044) (0.034) 
Sociology -0.334 -0.241 -0.026 -0.096 0.039 -0.023 
 (0.605) (0.226) (0.036) (0.111) (0.042) (0.031) 

Chi-Square 55.30 145.69     
P > Chi-Square 0.00 0.00     

Pseudo R-squared 0.01 0.06     
F-Value   9.51 3.52 2.83 8.92 

P > F-Value   0.00 0.00 0.00 0.00 
R-squared   0.03 0.08 0.06 0.08 

Observations 1854 1857 1854 1857 804 1818 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Models 1 and 2 present marginal effects derived from logistic regressions with standard errors in parenthe-

ses. Models 3, 4, 5 and 6 present coefficients derived from linear regressions with standard errors in parentheses. 
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2.3.2 Hypothetical Assignments of Authorship 

We show above that ghost and honorary authorship exist in the social sciences. However, it is 

unclear whether the occurrences of these authorship issues derive from a lack of knowledge of 

authorship criteria or from conscious practices that are embedded in the reasons outlined in the 

beginning. To answer this question, we split the same respondents who were asked about the 

prevalence of ghost and honorary authorship above, into two groups and presented them three 

vignettes. Table 2.2 depicts respondents’ authorship assignments for the three hypothetical sce-

narios. 

Table 2.2: Authorship Assignments in the Vignettes Split by Treatment Group 

 Group 1 Group 2 

Total Assessments Vignette 1 973 984 

Professor Vignette 1 935  937  

Postdoc Vignette 1 955  968 

Student Assistant Vignette 1 284 292 

Total Assessments Vignette 2 975 986 

Postdoc/Professor Vignette 2 950 963 

Professor Vignette 2 607 700 

Student Assistant Vignette 2 82 87 

Total Assessments Vignette 3 964 987 

Professor Vignette 3 756 732 

PhD Student Vignette 3 919 945 

Note: The numbers correspond to the number of respondents who assigned authorship to the respective figure in 

the respective vignette. 

The first vignette lists the same scenario for both groups: A professor and a postdoc 

collaboratively write a paper and a student assistant supports the data collection. Unsurpris-

ingly, the answers of both groups are nearly identical. As shown in Table 2.2, almost all re-

spondents (917 in the first group and 923 in the second group) award authorship correctly to 

the professor and the postdoc. Still, a substantial number of scholars (284 in the first group and 

292 in the second group) propose a case of honorary authorship by incorrectly awarding author 

credits to the student assistant. Nevertheless, Models 1, 2 and 3 in Table 2.3 show that the 

assessments do not differ significantly between the groups when we control for demographic 

and job-related factors as the coefficient of Group is insignificant. This is important for the 

subsequent analyses when each group judges slightly different scenarios. 
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Table 2.3: Regression Results of Hypothetical Authorship Assignments in the Vignettes 

 Vignette 1 Vignette 2 Vignette 3 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 Prof. Postd. SA Prof./ 

Postd. 

Prof. SA Prof. PhD 

Group -0.268 0.025 0.012 -0.006 0.429**

* 

0.082 0.080 -0.248* 

 (0.233) (0.362) (0.103) (0.302) (0.101) (0.167) (0.223) (0.111) 

Female -0.014 -0.411 0.010 -0.133 -0.060 -0.193 -0.072 -0.009 

 (0.247) (0.390) (0.113) (0.321) (0.110) (0.189) (0.239) (0.120) 

Anglophone 1.081* 2.603**

* 

0.044 0.709 -0.195 -0.017 0.788†  -0.333 

 (0.482) (0.623) (0.225) (0.499) (0.232) (0.352) (0.411) (0.249) 

Continental  0.062 1.705**

* 

0.299 1.052* -0.772*** 0.080 0.637 -0.127 

Europe (0.437) (0.469) (0.220) (0.515) (0.227) (0.341) (0.401) (0.247) 

Developing  -0.350 1.051* 0.631** 0.145 -0.503* 0.513 -0.290 -0.125 

Countries (0.460) (0.509) (0.243) (0.540) (0.255) (0.363) (0.414) (0.279) 

Age -0.064*** -0.027 0.011 0.008 0.001 0.006 -0.016 0.013 

 (0.015) (0.030) (0.009) (0.025) (0.008) (0.014) (0.017) (0.010) 

PhD Student -0.320 -1.036†  0.117 -0.713 0.260 -0.267 -0.376 0.135 

 (0.405) (0.609) (0.199) (0.482) (0.196) (0.359) (0.375) (0.212) 

Professor 0.136 0.197 -0.181 -0.118 -0.194 -0.198 0.026 -0.127 

 (0.294) (0.499) (0.135) (0.412) (0.134) (0.214) (0.293) (0.148) 

Editor -0.945*** -0.597 0.070 -0.337 0.094 0.370†  -0.037 -0.119 

 (0.265) (0.414) (0.129) (0.366) (0.130) (0.196) (0.282) (0.141) 

Years in 0.044** 0.004 0.001 -0.012 0.002 0.002 0.012 -0.011 

Academia (0.016) (0.031) (0.009) (0.026) (0.009) (0.014) (0.018) (0.010) 

Published  -0.009 -0.188 0.083* -0.140 0.136** 0.255*** -0.164†  0.120* 

Papers (0.101) (0.130) (0.042) (0.119) (0.045) (0.064) (0.088) (0.050) 

Written  0.319** 0.036 -0.037 0.236†  0.004 -0.169** 0.211* 0.079†  

Reviews (0.109) (0.133) (0.039) (0.128) (0.038) (0.065) (0.096) (0.043) 

Business 0.339 0.503 -0.804*** -0.325 -0.058 -0.673* -0.056 0.292 

 (0.340) (0.638) (0.171) (0.420) (0.172) (0.281) (0.313) (0.190) 

Economics 

and  

1.461* 0.683 -0.808*** 0.599 -0.089 -0.067 0.429 -0.059 

Finance (0.582) (0.861) (0.210) (0.685) (0.202) (0.309) (0.445) (0.218) 

Computer and 0.813†  -0.830 0.345†  0.732 0.642** 0.595* 0.403 0.815**

* Statistics (0.436) (0.564) (0.183) (0.618) (0.208) (0.266) (0.394) (0.236) 

Political  -0.274 -0.696 -0.514* -0.393 -0.959*** -0.871* 0.101 -0.889*** 

Sciences (0.399) (0.675) (0.218) (0.552) (0.213) (0.425) (0.448) (0.221) 

Psychology 0.791 0.762 -0.637* Perfect 1.044** -1.315* Perfect 1.383**

*  (0.668) (1.127) (0.260) Predictor (0.318) (0.560) Predictor (0.386) 

Sociology 0.076 0.894 -0.225 0.107 -0.506* -0.088 0.049 -0.521* 

 (0.435) (1.120) (0.221) (0.687) (0.221) (0.352) (0.469) (0.234) 

Chi-Square 81.01 47.40 120.42 20.69 169.26 86.48 29.63 129.74 

P > Chi-

Square 

0.000 0.000 0.000 0.241 0.000 0.000 0.029 0.000 

Pseudo R-

squared 

0.117 0.142 0.051 0.048 0.069 0.076 0.042 0.061 

Observations 1931 1931 1931 1935 1935 1935 1926 1926 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Coefficients correspond to marginal effects derived from logistic regressions with standard errors in paren-

theses. 
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The assignments to the primary researcher do not differ substantially between the groups 

in the second vignettes. However, respondents in both groups award authorship less often to 

the secondary researcher. Looking at the exact numbers we find that only 607 researchers in 

Group 1, who assessed a postdoc-professor collaboration, assigned authorship to the second 

researcher (a professor). Meanwhile, 700 researchers in Group 2, who assessed a professor-

professor collaboration, assigned authorship to the second researcher. This difference stays 

highly significant even when we control for various demographic and job-related factors 

(Model 5 in Table 2.3). Continental European social scientists as well as social scientists from 

developing countries are more likely to withhold authorship from the second researchers. In 

turn, scientists that are more prolific more often correctly assign authorship to the second re-

searcher. The same applies to computer, operations and statistics researchers as well as psy-

chologists. In fact, all psychologists in our study correctly assigned authorship to the primary 

researcher. Political scientists and sociologists though are more likely to withhold authorship 

from the second researcher just merely meeting the ICMJE authorship criteria.  

The third vignette differs from the first two as it does not refer to a collaboration on a 

specific research project but instead covers a dissertation that provides the basis for a research 

paper written by the supervisor. According to Table 2.2, 919 (945) respondents in Group 1 

(Group 2) gave author credits to the PhD student and 756 (732) respondents gave author credits 

to the professor. Overall, 231 survey participants in Group 1 and 272 survey participants in 

Group 2 award authorship in a way that includes ghost authorship. Model 7 in Table 2.3 points 

out that respondents in Group 2 award statistically significant less often authorship to the pro-

fessor than respondents in Group 1 although the only difference between the two groups lies in 

the gender of the PhD student with Group 1 reading about a male PhD student and Group 2 

reading about a female PhD student. We again investigate different assessments among the 

exploratory variables. We find that Anglophone researchers moderately significantly more of-

ten award authorship to the PhD student. In addition, more prolific researchers are moderately 

significantly less likely to give author credits to the PhD student and are in turn more likely to 

give author credits to the professor. Scholars who wrote more reviews in the past three years 

assign authorship more often to the PhD student and moderately significantly more often cor-

rectly to the professor. Computer, operations and statistics researchers are highly significantly 

more likely to give author credits to the professor. Yet political scientists and sociologists ex-



39 

 

hibit highly significantly greater chances of suggesting ghost authorship by not awarding au-

thorship to the professor. Like before, all psychologists assign authorship to the PhD student. 

Moreover, they also give highly significantly more often author credits to the professor. 

To detect potential hidden influencing factors, we create interaction terms with the prod-

uct of Group and all exploratory variables for Models 4 through 8 in Table 2.3 and run again 

logistic regressions. The results are available in Table 2.6 in the appendix. Most notably, we 

find that scholars in Developing Countries are less likely to assign authorship to a PhD student 

if she is female. Additional fine-tuning of the analysis by calculating individual regressions by 

regions reveals that respondents from Western Europe are significantly more likely to award 

authorship to the PhD student if she is female. 

2.3.3 Robustness of Results 

We conduct several robustness and endogeneity checks. First, we run all models with robust 

standard errors. This changes no significance levels. Second, we apply firthlogit, a special form 

of a logistic regression that considers rare events, to correct for the relatively low amount of 64 

ghost authorship observations (Williams, 2018). This adaption does not change any significance 

levels. Third, the average team size differs across research fields (Wren et al., 2007). Therefore, 

we run the same regressions with the percentages of honorary and ghost authors in the supple-

mentary material. The only difference is that psychologists do not face more honorary authors 

anymore. Fourth, we test the approximation of six authors and contributors for respondents 

stating that more than five authors and/or contributors participated in their last published paper. 

Hereby, we run all analyses including only respondents of papers with at maximum five authors 

and contributors. The significance levels and implications do not differ from the findings above. 

Last, model (5) might contain sample selection bias since honorary authorship increases the 

number of authors and lowers the number of contributors because a contributor receives au-

thorship. The inclusion of papers with only at least one contributor in the analysis of the rela-

tionship between perception and occurrence of ghost authors may therefore suffer from endoge-

neity. To overcome this issue, we employ a Heckman two-step regression by applying the num-

ber of honorary authors as the selection variable. This returns an insignificant inverse Mills 

ratio. Therefore, our results do not suffer from sample selection bias (Heckman, 2001). 
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2.4 Discussion 

Ghost and honorary authorship occur in the social sciences with the honorary authorship occur-

ing much more frequently than ghost authorship. The different degrees of prevalence might 

have its root cause in the academic incentive system. Individual researchers benefit from re-

ceiving honorary authorship for an additional publication without spending the time and effort 

required to fulfill the authorship criteria. Yet, they squander the time and effort spent on a re-

search project for which they do not receive authorship despite fulfilling the authorship criteria 

if they are ghost authors. In addition, social scientists’ perception of the occurrence of author-

ship malpractices provide grounds to suspect that not everyone might be aware of what consti-

tutes authorship. Our findings from the vignettes support this stipulation as a substantial number 

of respondents assign ghost and/or honorary authorships. For example, fairness considerations 

might lead to some researchers assessing authorship not based on objective authorship criteria 

but instead might become sensitive towards hierarchical pressure. This might explain why re-

spondents assign ghost authorship more often in the Postdoc-Professor case than in the Profes-

sor-Professor case.  

In the third vignette, we show that social scientists assign authorship to PhD students if 

published papers base upon dissertations. This accords to the authorship guidelines of their 

academic societies: Articles based on dissertations should always include the PhD students as 

authors. Contrarily to this assessment we find that actual papers authored by PhD students in-

clude more (often) ghost and honorary authors. This difference between the high share of cor-

rect authorship assessments in the vignettes and the higher likeliness of PhD students to face 

authorship issues, hints towards the existence of questionable practices: Senior scientists incor-

rectly withholding authorship from their junior colleagues despite knowing that they actually 

should receive authorship. Furthermore, the gender differences in the responses to the third 

vignette might also indicate that social scientists themselves are aware of such power abusing 

practices. As the survey was conducted in the aftermath of the Weinstein scandal, respondents 

might have been more aware towards the abuse of power towards females and hence have more 

carefully reviewed the case of a female PhD student than of a male PhD student (Sigurdsson, 

2018).  

Hierarchical pressure might also explain regional differences in the prevalence of ghost 

and honorary authorship. We find that Anglophone and Central European scholars exhibit those 
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authorship malpractices less often. This implies that researchers in the baseline category con-

sisting mainly of Asian researchers more often include ghost and honorary authors in their pa-

pers. The cultural background of these scientists coming from countries with generally stronger 

obedience towards supervisors and the generally higher degree of respect towards experienced 

persons might explain this phenomenon as sometimes department or faculty heads receive au-

thorship even without having read the paper (Salita, 2010). 

Awarding authorship to department or faculty heads might also explain why researchers 

publishing more papers more often exhibit honorary authors in their papers and assign honorary 

authorship more often in the vignettes. For example, if supervisors put pressure on their subor-

dinates to name them as authors despite not fulfilling authorship criteria, their name appears on 

more published papers although they are, in fact, honorary authors. Ioannidis et al. (2018) raised 

this issue by surveying “scientists who publish a paper every five days” which equals 72 or 

more published papers per year. More than 70% of their respondents state that they did not 

conduct at least one of the three required tasks of the ICMJE authorship criteria in at least every 

fourth paper. 

Besides these discussed effects stemming from the academic incentive system and hi-

erarchical pressure, we also show that the prevalence of ghost and honorary authorship varies 

across research fields. Different authorship orders might explain this. Economic, finance and 

political science represent disciplines that usually rank authors alphabetically (Laband, 2002; 

Lake, 2010). Consequently, awarding someone else authorship increases the likeliness of fall-

ing under “et al.” in the citations. The actual contributors seek to avoid too many authors on 

their papers because falling under “et al.” would diminish their author credits. This induces an 

incentive against including honorary authors. At the same time scholars from fields with strong 

preferences for ordering authors by contributions, for example psychologists, sometimes even 

include the individual in charge for financing the research project (e.g. the department head) as 

last-author even if that individual did not participate in the research process itself (Yu-Wei, 

2019). If someone receives authorship just for providing the resources sometimes without even 

reading the paper before submission this constitutes a clear act of honorary authorship. 

2.4.1 Implications for academic practice 

The existence of ghost and honorary authorship in the social sciences highlights the 

necessity of introducing contribution disclosures also for these academic disciplines. Contribu-

tion disclosures allow insights on the workload distributions among author teams. Hence, they 
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might help to reduce honorary authorship by giving editors, neutral individuals outside of the 

author teams, the chance to assess whether all authors also fulfill the authorship criteria. In turn, 

contribution disclosures might also reduce the share of senior scientists that receive authorship 

despite not contributing substantially to manuscripts as they cannot completely free ride on their 

subordinates’ research projects but instead would need to write contribution disclosures. Of 

course, the introduction of contribution disclosures requires editors (and maybe reviewers) to 

be aware of authorship criteria and malpractices. To increase their knowledge, we recommend 

academic societies, research institutions and publishers to provide tutorials and workshops on 

authorship as our results from the vignettes indicate that not all scholars are aware of what tasks 

(do not) qualify for authorship. 

Our results highlight that authorship assignments might suffer from abuse of power as 

PhD students more often have honorary authors in their papers. However, we also show that 

many scholars are aware of this issue. We therefore call upon academic societies, research in-

stitutions and publishers to implement whistleblowing platforms that allow anonymous report-

ing of authorship malpractices. In turn, this creates the need for journal policies to allow author 

changes also after submission, and, in some cases, even after publication.  

Last, we show that there exist discrepancies between authorship and effort in some 

cases. Authorship represents the primary indicator used in citation and publication counts. We 

thus call upon research institutions and other employers to not solely rely on these estimates in 

hiring and tenure processes. Instead, applicants’ capabilities and characteristics should also be 

screened similar to hiring processes in the private sector. This would ensure more comprehen-

sive insights leading to better hiring and tenure decisions. At the same time, this would also 

reduce the importance of receiving authorship and, hence, reduce the incentives to become an 

honorary author. 

2.4.2 Limitations and Future Research 

The strongest limitation of this study lies within the fact that no general applicable au-

thorship criteria exist. Therefore, we applied the ICMJE authorship criteria that derive from the 

life sciences. Although many universities and societies apply them, the ICMJE authorship cri-

teria are not suitable for all social science research fields. For example, authorship criteria might 

differ in less data related disciplines like theoretical sociology or political sciences. Another 

restriction of this study may derive from the relatively low amount of identified ghost authors. 

While the application of firthlogit indicates that the existing findings are robust and valid, the 
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small number of observations might hide further effects. The unequal distribution of researchers 

among geographical regions and research fields might also reduce the studies’ expressiveness 

for less covered groups like Caribbean scholars or law researchers. We also did not ask re-

spondents for qualitative reasoning of their answers in order to keep the questionnaire as anon-

ymous as possible. However, even this quantitative survey contains sensitive questions that 

even with assuring the respondents anonymity might induce understatements of actual wrong-

doings. This represents a common problem of research on questionable research practices and 

academic misconduct (Persoskie, & Nelson, 2013). However, since these understatements ac-

tually indicate less frequent occurrences and assignments of ghost and honorary authorship our 

findings present at least a lower boundary on the existence of and the attitude towards these 

authorship issues. Generally, most of our limitations hinder the study only from gaining more 

expressiveness. Therefore, the presented results are robust and provide meaningful implica-

tions. 

Several areas of future research derive from this study. First, comparing research field 

specific authorship criteria could explain why scholars from different disciplines vary in their 

authorship assessments. Second, examining the authorship assignments of extremely prolific 

social science scholars in-depth could clear up any doubts on whether they really exhibit higher 

productivity levels or just receive honorary authorship more often. Third, a qualitative study 

asking researchers that experienced ghost and/or honorary authorship could return more de-

tailed reasonings. Last, the application of item-sum-techniques could increase respondents’ per-

ceived anonymity. This would allow for more accurate data that might indicate more accurate 

assessments of the actual occurrences of ghost and honorary authorship. 

2.5 Conclusion 

Based on findings from the life sciences we ask the question whether honorary and ghost au-

thorship exist in the social sciences. Our results show that these authorship malpractices occur 

also quite frequently in the social sciences. By investigating correlates of these malpractices, 

we identify that hierarchical pressure might represent a driving force as social scientists are 

generally aware of authorship criteria but do not always accord with them. Several possible 

solutions exist: A widespread introduction of authorship disclosure statements as a pre-require-

ment for publishing would enable editors and reviewers to check authors’ contributions. The 

implementation of whistleblowing platforms would allow scholars to anoumisly report abusive 

authorship behaviors. Last, we call for shifting the focus of hiring and tenure procedures away 
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from merely counting citation and publication towards focusing, assessing and testing the actual 

skill sets of the candidates. 
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2.6 Appendix 

2.6.1 Texts of the vignettes employed in the study 

2.6.1.1 First Vignette 

A Postdoc has a research idea and proposes this to the professor. They together set up the re-

search design. Afterwards the postdoc engages in the search for literature and summarizes the 

findings. Based on this the professor sets up a survey which is conducted and documented by a 

student assistant. The data is afterwards statistically analyzed by the professor who passes the 

results on to the postdoc. The postdoc then writes a journal paper which is reviewed by the 

professor before the submission. 

2.6.1.2 Second Vignette 

A Postdoc/Professor 1 has a research idea and creates the research design. This research design 

is then presented to the professor/Professor 2. The professor/Professor 2 revises the research 

design and suggests that the survey could be conducted in one of his larger classes instead of 

using an internet survey tool. The postdoc/Professor 1 engages in the search for literature and 

summarizes the findings. Based on this the postdoc/Professor 1 sets up a survey and conducts 

it in the professor’s/Professor 2’s lecture together with the help of a student assistant. The post-

doc/Professor 1 then inputs the data into a statistical program and analyzes it. The results are 

presented to the professor/Professor 2 who gives comments about using two additional statisti-

cal tools to test for robustness and sample bias.  The Postdoc/Professor 1 includes these sug-

gestions and writes a journal paper which is proof-read by the professor/Professor 2 before the 

submission. 

2.6.1.3 Third Vignette 

A professor approaches a PhD student with an idea for his/her dissertation. The PhD student 

likes the idea and sets up a research design. He/She presents this to the professor, who suggests 

a different data collection method. The PhD student analyzes the literature and shows the pro-

fessor his/her findings. The professor recommends the inclusion of five additional papers. The 

PhD student includes these papers and conducts the data collection in accordance with the 

professor's suggestions. The PhD student analyzes the collected data using a statistical software 

tool. He/She presents the empirical findings to the professor, who suggests to use two additional 

statistical tests in order to ensure significant and robust findings. The PhD student implements 
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this suggestion and writes up his/her thesis. Before the final submission of the thesis the pro-

fessor reviews the thesis and gives small comments about writing style and grammar use. After 

the successful graduation of the PhD student the professor creates a scientific paper based on 

the empirical results of the thesis and submits it to a journal. 
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2.6.2 Descriptive statistics 

Table 2.4: Descriptive Statistics for Dichotomous Variables 

 Number Share 

All Respondents 2222 100,00% 
Female 738 33,21% 
Anglophone (British Isles, North America, Australia & NZ) 866 38,97% 
Continental Europe 900 40,50% 
Developing Countries (Latin America, Africa, Southeast Asia) 300 13,50% 
PhD Students 204 9,18% 
Professors 1156 52,03% 
Editors 541 24,35% 
Business Researchers 789 35,51% 
Economics and Finance Researchers 291 13,10% 
Computer, Operations and Statistics Researcher 352 15,84% 
Political Scientists 214 9,63% 
Psychologists 136 6,12% 
Sociologists 184 8,28% 

 

Table 2.5: Descriptive Statistics for Integer Variables 

 N Mean SD Minimum Maximum 

Age 2215 46.52 13.03 21 93 
Academic Working Years 2222 17.46 12.49 0 63 
Papers Published 2222 6.40 7.74 0 60 
Reviews Written 2222 6.84 9.37 0 60 
# Authors in Last Paper 2052 2.83 1.25 1 6 
# Contributors in Last Paper 2052 1.16 1.64 0 6 
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2.6.3 Additional regression 

Table 2.6: Regression Results of Hypothetical Authorship Assignments in the Vignettes In-

cluding Interaction Terms 

 Vignette 2 Vignette 3 
 Model 1 Model 2 Model 3 Model 4 Model 5 

 Prof./ 

Postd. 

Prof. SA Prof. PhD 

Group 15.084 -0.602 -2.632* -0.034 -0.195 
 (1262.236) (0.828) (1.308) (1.642) (0.914) 
Female -0.350 -0.203 -0.306 -0.179 -0.136 
 (0.463) (0.159) (0.293) (0.340) (0.181) 
Anglophone 1.545* 0.051 -0.046 1.196* -0.399 
 (0.603) (0.316) (0.470) (0.512) (0.370) 
Continental Europe 1.630** -0.792* -0.475 0.782 -0.020 
 (0.597) (0.309) (0.469) (0.483) (0.369) 
Developing Countries 1.290†  -0.470 0.328 0.645 -0.386 
 (0.755) (0.352) (0.493) (0.577) (0.413) 
Age 0.008 -0.007 -0.035 -0.023 0.026†  
 (0.036) (0.012) (0.022) (0.024) (0.015) 
PhD Student -0.463 0.436 0.046 -0.697 0.158 
 (0.703) (0.279) (0.465) (0.499) (0.307) 
Professor -0.381 -0.111 -0.151 0.150 -0.223 
 (0.599) (0.185) (0.320) (0.419) (0.219) 
Editor -0.619 0.052 0.702* -0.041 -0.300 
 (0.497) (0.181) (0.283) (0.393) (0.205) 
Years in Academia 0.008 -0.008 0.031 0.014 -0.027†  
 (0.038) (0.013) (0.022) (0.026) (0.015) 
Published Papers 0.013 0.143* 0.176†  -0.154 0.158* 
 (0.179) (0.063) (0.097) (0.123) (0.076) 
Written Reviews 0.055 -0.015 -0.143 0.145 0.071 
 (0.161) (0.053) (0.095) (0.128) (0.063) 
Business -0.119 0.009 -0.764†  0.028 0.029 
 (0.586) (0.236) (0.443) (0.428) (0.290) 
Economics and  0.297 -0.337 0.473 0.200 -0.219 
Finance (0.867) (0.276) (0.433) (0.577) (0.333) 
Computer and 0.758 0.823** 0.812* 0.406 0.648†  
Statistics (0.867) (0.290) (0.398) (0.546) (0.362) 
Political Sciences -0.598 -1.342*** -1.066 0.240 -1.265*** 
 (0.711) (0.303) (0.679) (0.622) (0.329) 
Psychology Perfect 1.299** -0.713 Perfect 1.548* 
 Predictor (0.456) (0.692) Predictor (0.649) 
Sociology 14.191 -0.804* 0.000 0.730 -0.818* 
 (1301.751) (0.314) (0.550) (0.803) (0.354) 
Female 0.542 0.256 0.208 0.295 0.210 
X Group (0.657) (0.223) (0.389) (0.487) (0.244) 
Anglophone -15.996 -0.473 0.020 -1.278 0.094 
X Group (1262.235) (0.473) (0.719) (0.942) (0.502) 
Continental Europe -15.408 0.023 1.050 -0.619 -0.205 
X Group (1262.235) (0.463) (0.701) (0.928) (0.498) 
Developing Countries -16.358 -0.022 0.341 -2.067* 0.439 
X Group (1262.235) (0.522) (0.743) (0.966) (0.563) 
Age 0.004 0.015 0.069* 0.015 -0.023 
X Group (0.051) (0.017) (0.028) (0.034) (0.019) 
PhD Student -0.295 -0.394 -0.950 0.815 -0.053 
X Group (0.980) (0.394) (0.794) (0.789) (0.428) 
Professor 0.574 -0.196 -0.067 -0.158 0.157 
X Group (0.839) (0.272) (0.440) (0.595) (0.299) 
Editor 0.609 0.125 -0.525 0.028 0.315 
X Group (0.761) (0.265) (0.398) (0.576) (0.285) 
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Years in Academia -0.036 0.018 -0.048†  -0.004 0.028 
X Group (0.053) (0.018) (0.029) (0.036) (0.020) 
Published Papers  -0.285 0.008 0.168 -0.065 -0.056 
X Group (0.239) (0.091) (0.132) (0.180) (0.101) 
Written Revies  0.373 0.043 -0.054 0.153 0.015 
X Group (0.259) (0.077) (0.132) (0.193) (0.086) 
Business 0.139 -0.157 0.117 0.357 0.481 
X Group (0.857) (0.349) (0.578) (0.638) (0.386) 
Economics and  1.032 0.509 -1.196†  0.855 0.299 
Finance X Group (1.439) (0.413) (0.645) (0.918) (0.444) 
Computer and 0.358 -0.394 -0.402 0.434 0.294 
Statistics X Group (1.251) (0.420) (0.542) (0.797) (0.479) 
Political Sciences 1.018 0.713 0.252 0.183 0.726 
X Group (1.159) (0.435) (0.877) (0.908) (0.449) 
Psychology Perfect -0.507 -1.572 Perfect -0.226 
X Group Predictor (0.639) (1.269) Predictor (0.810) 
Sociology -14.342 0.535 -0.197 -0.749 0.509 
X Group (1301.751) (0.453) (0.723) (1.012) (0.474) 
Chi-Square 40.93 203.39 112.75 42.91 141.08 
P > Chi-Square 0.162 0.000 0.000 0.116 0.000 
Pseudo R-squared 0.095 0.082 0.099 0.062 0.067 
Observations 1877 1935 1935 1868 1926 

† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Coefficients correspond to marginal effects derived from logistic regressions with standard errors in paren-

theses. X Group indicates interaction terms created as the product of the respective variable and Group. 
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3 Essay 2 - Team authorship in the social sciences 

3.1 Introduction 

An article published in the Journal of the American Society for Information Science and Tech-

nology in 2013 showed that the average number of publications of Norwegian scientists be-

tween 2005 and 2008 varied greatly from research field to research field (Piro et al., 2013). The 

authors found that the average natural scientist published more than six articles in this time span 

while the average humanities researcher published less than four papers. Yet these numbers 

changed dramatically when the authors introduced so-called fractionalized counts by dividing 

the total publications by the number of co-authors. This led to the average humanities researcher 

receiving a fractionalized count of more than three papers while the average natural scientist 

receiving a fractionalized count of 1.34 papers.  

To investigate these changes that solely derived from the author team sizes varying 

across research fields, a follow-up study analyzed Flemish author teams using publication-

based data (Ossenblok et al., 2014). As a first result, this study found that the average number 

of authors per journal article had increased strongly in the period from 2005 to 2010 compared 

to the period from 2000 to 2005, a common trend across academic disciplines (O’Brien, 2011). 

Various reasons exist for this. For example, multi-authored papers get more often cited (Val-

derqas et al., 2007). Lariviere et al. (2015) investigated this phenomenon by including more 

than 28 million papers published between 1900 and 2011. They found that the scientific impact 

measured by citations of multi-authored papers exceeded those of single authored papers sub-

stantially. The fact that multi-authored papers were usually more extensive, go more into details 

and cover more topics might explain this phenomenon (Yitzhaki, 1994). In addition to citation 

effects, scholars collaborating with other scholars publish also more papers than those not col-

laborating or those collaborating only with fewer other scholars (Lee, & Bozeman, 2005). How-

ever, Abramo et al. (2009) pointed out that the existence and strength of this relationship varies 

across research fields.  

To investigate such field differences more closely, Ossenblok et al. (2014) specifically 

focused on the social sciences and humanities when assessing the size of author teams. How-

ever, they still found differences in author team sizes even within the social sciences and hu-

manities with author teams in the social sciences being on average larger than author teams in 

the humanities. For example, the study showed that psychology articles contained on average 
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4.44 authors while the average law article only had 3.34 authors. The authors attributed their 

findings to different collaboration patterns as outlined in Lariviere, Gingras and Archambault 

(2006). This study addressed differences in research collaborations by separately investigating 

research field, language and country correlates. Yet the authors did not include all three factors 

in a multivariate model. As a case in point, Piro et al. (2013: 317) highlighted that “the reduced 

productivity in technology may be due to the large number of younger and less advanced re-

searchers (PhD students) and the low share of professors and associate professors.” Although 

this quote addressed productivity differences and not differences in author team sizes, we might 

very well consider that differences in geographical and job position distributions might also 

bias the research field effects on author team sizes highlighted in Lariviere et al. (2006) and 

Ossenblok et al. (2014). 

In addition to the lack of multivariate assessments of author team sizes in the social 

sciences, all so far mentioned studies did not incorporate their findings into an underlying the-

ory. This highlights the need for a profound follow-up study investigating author team sizes in 

the social sciences based on a solid theoretical framework. We therefore build upon a well-

known theory and employ a multivariate investigation of the effects of research fields, geo-

graphic regions and job positions on the size of author teams in the social sciences. The research 

question therefore goes as follows: 

 Research question: What are the research field, geographic location and job position 

effects on the number of authors of a social scientific paper? 

 To answer the research question, we first derive hypotheses about potential author team 

size correlates from the existing literature. Hereby, we base our arguments on one of the most 

well-known theories in the social sciences: Transaction costs. Afterwards, we conduct an em-

pirical study surveying social scientists from various disciplines. Based on the results of the 

statistical analyses, we discuss our findings putting them into context with the existing research 

and elaborate on the implications and future research opportunities. Last, this paper concludes 

with practical recommendations when handling author teams for social scientists, research in-

stitutions, journal editors and academic societies. 

3.2 Theoretical background and research hypotheses 

“Trade can make everyone better off” (Mankiw, 2015: 9). This principle dates way back. Al-

ready the first modern economists (e.g. Smith (1776); Ricardo (1817)) discussed the positive 
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effects of trading. However, (market) trading is often also associated with costs (e.g. fuel for 

driving to the market, opportunity-costs of standing at the market and selling products, …). 

Coase (1937) identified this phenomenon in his groundbreaking paper The Nature of the Firm. 

Building on this work, Oliver E. Williamson (1979) defined the costs connected with a market 

trade as market transaction costs. In turn, there also exist managerial transaction costs. These 

costs are not associated with procuring a product from a market but instead producing this 

product in an organization (Williamson, 1979). Coase (1937) already argued that firms’ very 

right to exist derives from the total market transaction costs exceeding the total managerial 

transaction costs. 

With respect to research collaborations and author teams, we might find something very 

similar: Researchers can decide whether they want to conduct and publish a research project on 

their own (similar to a market transaction) or team up with colleagues to create collaboratively 

a publication (similar to a transaction within an organization) (Mitchell, 1961). In accordance 

to the elaborations above on transaction costs (Coase, 1937; Williamson, 1979), scholars face 

incentives to team up with other researchers if their overall costs for publishing individually 

exceed their overall costs for publishing collaboratively.  

When talking about costs, it is important to keep in mind that we refer to the economic 

cost concept (Pitman, 2009). Consistently, we do not only need to account for the explicit costs 

but also for the implicit costs of a research project (Foster et al., 2007). Examples for explicit 

costs are money spent on experiments, buying datasets as well as research assistants’ salaries 

and, specifically for collaborative research projects, communication resources and travel costs 

for meetings (Kummings, & Kiesler, 2007). Implicit costs include amongst others the time and 

efforts scholars spent on getting theoretical input, on collecting data, on writing the paper and 

on dealing with reviews. Further examples are losing publication opportunities in case a similar 

paper gets published earlier and, specifically for collaborative research projects, reduced merits 

from publications due to fractionalized publication and citation counts (Beck et al., 2020). 

If scholars’ toils for getting theoretical input, collecting data, writing the paper, dealing 

with reviews, etc., exceed their costs of collaborating with other researchers, transaction costs 

predict that they would rather look for research collaborations (Williamson, 1979). Conse-

quently, scholars will be more likely to publish in teams if their costs of teaming up with other 

researchers are small and if their own costs of procuring data and materials are high. This goes 

in line with the historical development of multi-authorship. 
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Back in the 1940s, most papers only had one author. As a case in point, Smith (1958) 

was the first scholar to investigate the phenomenon of co-authorship in a social scientific re-

search discipline. Looking at papers presented at the APA meetings between 1946 and 1957, 

he found that the share of single authored research papers dropped substantially during this 

period with more than 75% of all publications possessing a single author in 1946 compared to 

only 50% of all publications possessing a single author in 1957. Nowadays, 89% of publications 

in the most impactful psychological journals are multi-authored (Piocuda et al., 2015). The 

lightspeed discoveries and advances in information and communication technology partially 

explain this sharp increase in the share of multi-authored papers as telephones, computers and 

especially the internet have eased correspondences substantially (Hiltz, 1982; Walsh, & Malo-

ney, 2003). In other words, the reduction in communication costs led to an increase in scientific 

collaborations. This endorses the application of transaction costs to research collaborations.  

According to Williamson (1979), transaction costs (especially market transaction costs) 

increase with uncertainty and specificity and decreases with the frequency of the transaction. 

Thus, an uncertain transaction for a very specific commodity that occurs only once takes more 

often place inside organizations than on markets (Williamson, 1979). In the following, we as-

sess the uncertainty, specificity and frequency aspects of research projects to assess their effects 

on researchers teaming up to collaboratively publish a paper. 

3.2.1 Uncertainty 

Uncertainty has always played a substantial role in scholarly careers. Today, the “tightening of 

systems of measuring, evaluating and managing researchers’ performance as well as the foster-

ing of competitive dynamics are central aspects of the changes in the organization of research 

work” (Fochler, & Sigl, 2018: 350). At the same time academic competition has increased 

fiercely due to the space-age advances in communication technology and the nearly worldwide 

adaption of English as the primary scientific language (van Raan, 2001; Tardy, 2004; Di Bitetti, 

& Ferreras, 2017). Furthermore, Kim (2001) argued that the transition from paper journals to 

e-journals has increased the number of submissions substantially. Consequently, to avoid over-

whelming amounts of publications, journal acceptance rates have dropped considerably, in-

creasing uncertainty for scholars (Wardle, 2012). Moreover, Aarsen et al. (2008) showed that 

the highest impact journals often hold the lowest acceptance rates. Lower acceptance rates re-

duce scholars’ chances of publishing and increase the risks of spending all the efforts, resources 

and time on a research paper for nothing (Moizer, 2009). Therefore, acceptance rates represent 
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a good proxy for scholars’ perceived uncertainty as they measure the chances of publication 

(and in turn academic) success. 

Acceptance rates are not the same across all disciplines. For example, nature and life 

science journals often have acceptance rates as high as 60% while social science journals’ ac-

ceptance rates are sometimes even as low as 20% (Pfeffer, 1993). The same also applies to the 

different research fields within the social sciences. Sugimoto et al. (2013) conducted a cross-

disciplinary study on acceptance rates. According to them, business journals possess on average 

an acceptance rate of 30.92%, computer science and operations research journals possess on 

average an acceptance rate of 32.27% and psychology journals possess on average an ac-

ceptance rate of 35.46%. These numbers go in line with results from discipline specific data: 

Krueger et al. (2012) reported an average acceptance rate of 29.7% for management journals 

while the American Psychological Association (2018) stated that in 2017 the overall acceptance 

rate for all journals published by the APA was 30%. Considering that the APA primarily pub-

lishes high impact journals which correlates with lower acceptance rates (Aarsen et al., 2008), 

the higher acceptance rate of 35.46% in Sugimoto et al. (2013) seems plausible. Unfortunately, 

there exists no other study to validate the results for computer science and operations research. 

In addition, Sugimoto et al. (2013) leaves out several important social sciences disciplines like 

sociology or political sciences. We therefore refer to other studies in the following. 

Table 3.1: Overview of acceptance rates across disciplines 

Discipline Acceptance Rate 1 Acceptance Rate 2 

Psychology 35.46% (Sugimoto et al., 2013) 29.7% (APA Journals, 2017) 

Computer Science and Operations 

Research 

32.27% (Sugimoto et al., 2013)  

Business 30.92% (Sugimoto et al., 2013) 29.7% (Krueger et al., 2012) 

Economics and Finance 26.20% (Haensly et al., 2009) 26.20% (Cherkashin et al., 2009) 

Sociology 20.32% (American Sociological 

Review, 2019)  

11.35% (Sociological Theory, 

2019) 

Political Sciences 10-14% (Esarey, 2016) 11% (Mc Kee et al., 2020) 

Note: Percentage numbers represent the acceptance rates. Regular brackets indicate the sources for the acceptance 

rates. Italic brackets indicate the journal and the year for which the acceptance rates apply. 

For economic and finance journals, Haensly et al. (2009) reported an average acceptance 

rate of 26.20%. This perfectly aligns with Cherkashin et al. (2009) who reported an average 

acceptance rate of 26.20% for the Journal of International Economics. The acceptance rate of 

the American Sociological Review was 20.32% while Sociological Theory had an acceptance 

rate of 11.35% in 2019 (American Sociological Association, 2020). Esarey (2016) collected 

data from various political science journals. He showed that acceptance rates at political science 



56 

 

journals are very low ranging between 10 to 14% (Esarey, 2016). As a case in point, Political 

Research Quarterly had in 2019 an acceptance rate of 11% (McKee et al., 2020). Table 3.1 

summarizes this small literature review on acceptance rates. 

Based on Table 3.1, we apply these acceptance rates to identify research fields associ-

ated with higher/lower degree of uncertainty. More specifically, we expect scholars to face 

higher uncertainty when the acceptance rates are lower. In accordance with transaction costs, 

higher uncertainty should increase the likeliness of research collaboration as organizations 

trump the market mechanism in situations with high uncertainty (Langlois, 1998). Hence, those 

fields associated with the highest acceptance rates should favor single and/or smaller author 

teams because there exists lower uncertainty while those fields associated with the lowest ac-

ceptance rates should favor author teams. The following set of hypotheses summarizes this 

concept. 

Hypothesis 1a: Psychologists work on average in smaller author teams.  

Hypothesis 1b: Computer science and operations researchers work on average in 

smaller author teams. 

Hypothesis 1c: Sociologists work on average in larger author teams. 

Hypothesis 1d: Political scientists work on average in larger author teams. 

3.2.2 Specificity 

Specificity addresses whether the assets are idiosyncratic and can take on various forms (Wil-

liamson, 1979). The same applies to research papers as they can also vary in nearly countless 

characteristics. One example would be language. While English represents the dominant lan-

guage in today’s science, there still exist many journals publishing research in other languages 

(Tardy, 2004). However, journals publishing in another language than English often have lower 

citation rates and thus lower impact factors (Di Bitetti, & Ferreras, 2017).  

Addressing specifically research collaborations, Lariviere et al. (2006) investigated lan-

guage-based differences between francophone and anglophone scholars. They showed that an-

glophone scholars are more likely to collaborate with other scholars because their pool of po-

tential co-authors speaking English is substantially greater than the pool of potential co-authors 

speaking French. While this finding is primary applicable to anglophone researchers, also na-

tives in languages other than English might possess an advantage if their language is spoken by 



57 

 

many other people. Consequently, Chinese, Hindi and Spanish natives might also profit from 

facing less language specificity (Ethnologue, 2020).12 

 In transaction costs economics, languages are part of the so-called location specificity 

that increasingly has gained popularity due to the growing trends of outsourcing and gig econ-

omy (Aubert et al., 2004 Heeks, 2017; Henten, & Windekilde, 2015; Selmier, & Oh, 2012). 

The primary characteristic of location specificity is the geographical location (Anand, & Delios, 

1997). This also applies to research collaborations. As a case in point, academic collaborations 

between scientists from different research institutions increase with the introduction of low-

cost carrier non-stop flights between the locations of the research institutions (Catalini et al., 

2016). Hence, we might find larger author teams in North America, Western Europe and Asia, 

the three leading regions for low-cost airlines (Wall, & Carey, 2017).  

Furthermore, cultural norms also influence the location specificity (Wood, & Parr, 

2005). Consequently, they might also explain why research processes and collaborations differ 

between countries or continents (Hochreiter, & Waldhauser, 2014; Smith et al., 1989). This 

could especially play a role when looking at the size of author teams for Asian researchers as 

their obedience towards and respect for their supervisors exceed Western standards (Salita, 

2010). In fact, Asian researchers tend to give authorship to their supervisor even if they did not 

contribute to the research project (Yukawa et al., 2014). Based on these considerations on lo-

cation specificity we formulate the following research hypotheses: 

Hypothesis 2a: Asian researchers work on average in larger author teams. 

Hypothesis 2b: Anglophone researchers work on average in larger author teams. 

Hypothesis 2c: Western European researchers work on average in larger author teams. 

3.2.3 Frequency 

According to Williamson (1979), frequency represents the last characteristic when assessing 

transaction costs. He states that if the same or quite similar transactions occur more often, the 

transaction costs per transaction are lower than if the transaction happens only once. Applying 

this to research collaborations, this would imply that those scholars, who know the “publishing 

game” (Broad, 1981: 1137) well, those scholars who have already collaboratively published in 

 

12 We set the cut-off at Spanish as there are globally about 538 million Spanish speakers. The next language, 

French, is only spoken by 277 million people (Ethnologue, 2020). 



58 

 

the past and those scholars who are in frequent exchanges with their colleagues, publish more 

often in teams. In other words, transaction costs tell us that more experienced faculty members 

should have more often co-authors than junior faculty members. 

Existing research highlights that more relationships with other scholars induce larger 

networks and in turn lead to more collaboration (Gersik et al., 2000). Using data from interdis-

ciplinary research projects, Cummings and Kiesler (2008) showed that the more collaborations 

individuals had in past projects, the more likely they were to also collaborate in future projects. 

This provides proof for our frequency assessment. Consequently, we expect scholars who have 

already spent more time in academia to be more often part of larger author teams.  

In addition to time spent in academia, also job position can act as a proxy for working 

and collaborative publishing experience. As a case in point, (full) professors publish more arti-

cles than other researchers (Long, 1978). Amongst other things, this derives from professors 

mentoring several doctoral students at the same time (Long, 1978). Consequently, they receive 

more often co-authorship than researchers who do not mentor doctoral students. As a result, 

professors should have a higher frequency of publishing multi-authored papers. Taking addi-

tionally into account that postdocs collaborate on average on about 40% of their publications 

with their former PhD-supervisor (Borrego et al., 2008), we find ground for suspecting also a 

positive relationship between professors and multi-authored publications.  

Besides looking at working years in academia and job positions separately, we also need 

to reflect on them together. Common sense, as discussed above, would say that professors rep-

resent those individuals who have worked for a substantial amount of years in academia. Yet 

there exist also exceptions to this rule. As a case in point, Akerlind (2005: 30) classified several 

Australian researchers as “Postdoctoral research positions as a career in their own right”. These 

individuals were scholars who had either failed or were not interested in reaching a tenured 

position. However, other researchers have good reasons to avoid academic relations that might 

prove harmful (e.g. by lowering their productivity) (Gersik et al., 2000). This might make it 

more difficult for non-tenured but experienced scholars to collaborate with other researchers as 

many researchers view not achieving tenure as a big career blow (Schwenk, 1993). Conse-

quently, experienced professors might work together with more co-authors than experienced 

non-tenured faculty members. The following hypotheses capture the job position and experi-

ence related stipulations. 

Hypothesis 3a: Experienced scholars work on average in larger author teams. 
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Hypothesis 3b: Professors work on average in larger author teams. 

Hypothesis 3c: Experienced professors work on average in larger author teams than 

experienced non-tenured faculty members. 

3.2 Research methods 

3.2.1 Survey design and distribution 

We used the online survey administration tool Qualtrics to set up the questionnaire. The first 

section of the survey covered demographic and job-related characteristics to enable the identi-

fication of scholars’ research fields, geographical regions, job positions and experience. Subse-

quently, the questionnaire asked respondents to state the number of authors of their last pub-

lished paper. In line with Ossenblok et al. (2014) we capped the maximum of authors by in-

cluding the option “more than five authors” to allow respondents with large author teams to 

answer the question easily and at the same time reduce the impact of outliers. This should not 

shift our results dramatically as only about 3% of the social scientific publications contain more 

than five authors (Ossenblok et al., 2014). Nevertheless, we specifically address this assumption 

in the robustness checks. The questionnaire contained additional questions in the second section 

focusing on the contribution of the individual authors. Furthermore, there existed also a third 

section. Yet the last two sets of questions are not relevant for this research project. 

 We generated the survey in spring 2018. After its completion we sent it to friendly col-

leagues and asked them for feedback. We received only a minor amount of (mainly grammati-

cal) improvement suggestions and incorporated all of them. In July 2018, we sent e-mails in-

cluding a description and a link to the survey for testing purpose to 275 scholars who presented 

at least one paper at the 2018 European Accounting Association Annual Congress. The re-

sponses showed that the survey worked smoothly and did not need any further update. There-

fore, we include these responses in the analysis. 

 After the conclusion of the successful survey testing, we distributed the questionnaire 

by sending e-mails containing a description and hyperlink to 63,240 unique e-mail addresses in 

late summer 2018. The e-mail addresses comprised corresponding authors of papers presented 

at meetings of large academic societies between January 2010 and June 2018 as well as papers 
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published in impactful field-relevant journals between January 2010 and June 2018.13 We re-

ceived 15,573 bounce back e-mails and processed all of them manually. Following the update 

of our contact address inventory, we sent a reminder e-mail ten days after the first e-mail. We 

again manually processed bounce backs. This allowed us to conclude that 48,015 researchers 

received either the first or the reminder e-mail. 

 Overall, our survey counts 2,817 respondents implying a response rate of 5.87%. 

Hereby, the response rate lies in the same range as other research employing large scaled studies 

addressing ethics in social scientific research (Hopp, & Hoover, 2017; Liao et al., 2018). Our 

final sample differs from the 2,817 respondents as we only include respondents who have al-

ready published a paper and who did not skip questions employed in the study or chose at least 

one N/A option for such a question. Hence, we only include 2,046 respondents in our analysis. 

3.2.2 Variables and Statistical Methods 

 We employ two dependent variables stemming from the same question. First, Number 

of Authors indicates the response to the question “How many authors does this [last published] 

paper possess (including you)?” As this question only contained the answer option “>5” for 

papers with six or more authors, we approximate this option with the value 6. Second, Multi-

Authored Paper represents a dummy variable that takes the value 1 if Number of Authors ex-

ceeds one and 0 otherwise. 

 The explanatory variables capture uncertainty (as respondents’ research fields), speci-

ficity (as respondents’ location) and frequency (as respondents’ Academic Working Years and 

job positions). For uncertainty we specify Psychology (1 if respondents conduct primarily psy-

chological research; 0 otherwise), IT and OR (1 if respondents primarily conduct research on 

computer science or operations research; 0 otherwise), Business (1 if respondents primarily 

conduct accounting, business, management or marketing research; 0 otherwise), Economics (1 

if respondents conduct primarily economic or financial research; 0 otherwise), Sociology (1 if 

respondents primarily conduct sociological research; 0 otherwise) and Political Sciences (1 if 

respondents primarily conduct research on politics or international affairs; 0 otherwise) with all 

other social scientific disciplines and general social scientists assembling the baseline category. 

 

13 A full list of societies and journals is available upon request from the corresponding author. 
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The second set of independent dummy variables identifies the specificity. Hereby, we differen-

tiate between Asia (1 if respondents live in Asia excluding Russia; 0 otherwise), Anglophone 

(1 if respondents live in the US, Canada, United Kingdom, Ireland, Australia or New Zealand; 

0 otherwise), Continental Western Europe (1 if respondents live in the continental European 

Union, Iceland, Switzerland or Norway; 0 otherwise) and Latin America and Africa (1 if re-

spondents live in Latin America or Africa; 0 otherwise) with scholars from all other regions 

(mainly Eastern Europe) assembling the baseline category. Third, we employ frequency as Ac-

ademic Working Years consisting of the responses to the question “Please indicate your working 

years as scientific staff member (excluding Bachelor and Master studies):”. Furthermore, we 

assess the following job positions: Postdoc (1 if respondents hold a postdoc position; 0 other-

wise), Junior Professor (1 if respondents hold a not-tenured professorship; 0 otherwise) and 

Professor (1 if respondents hold a tenured professorship; 0 otherwise) with the remaining re-

spondents (mainly PhD students) assembling the baseline category. 

 Besides the explanatory variables, we also include several controls. Several studies have 

shown that gender might influence academic productivity and collaboration (e.g. Borsuk et al., 

2009; Leahey, 2006; Reed et al., 2011; West et al., 2013). We therefore include Female (1 if 

respondent is female; 0 otherwise). Furthermore, whether papers are single- or multi-authored 

might also relate to productivity (Abramo et al., 2009; Lee, & Bozeman, 2005). To control for 

such effects we include Published Papers (0 = 1-2; 1 = 3-5; 2 = 6-9; 3 = 10-14; 4 = 15-19; 5 > 

19 papers published in the last three years leading up to the survey) and Written Reviews (0 = 

0; 1 = 1-2; 2 = 3-5; 3 = 4 = 10-14; 5 = > 14 journal reviews written in last year leading up to 

the survey). Last, we also control for Editor (1 if respondents are editors of at least one peer-

reviewed journal; 0 otherwise) to capture the effect that scholars heavily engaged in their aca-

demic community know more colleagues and therefore might possess more opportunities for 

collaborating on research projects (Long, & McGinnis 1982). 

 Due to the nature of our dependent variables, we employ two different types of regres-

sions in the statistical analysis. On the one hand, we use logit models to address the question of 

what differentiates single-authored from multi-authored papers by including Multi-Authored 

Paper as dependent variable. On the other hand, we apply standard OLS regressions to inves-

tigate the effects on Number of Authors. 
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3.3 Results 

3.3.1 Descriptive statistics 

Table 3.2 shows the descriptive statistics for all dichotomous variables. Overall, we find that 

87.10% out of our sample of 2,046 papers possess more than one author. Regarding research 

field affiliation, nearly one third of the respondents identify themselves as Business researchers. 

Economics and IT and OR represent the second strongest disciplines with each constituting 

15.59% of our sample. Political Sciences, Sociology and Psychology each comprise more than 

100 observations although they only have a single digit share among all research fields. Fur-

thermore, more than two thirds of our respondents live in Anglophone or Continental Western 

European countries. Scholars from Asia or Latin America and Africa form about 10% of our 

sample each. The majority of our respondents are Professors. Additionally, about every fifth 

respondent possesses a Junior Professorship. Postdocs only constitute about 8% of our sample 

while the remaining share of nearly 20% consists mainly of PhD students. Concerning the con-

trols, females represent about one third of our sample and approximately every fourth respond-

ent possesses an editorial role at a peer-reviewed journal. 

Table 3.2: Descriptive statistics for dichotomous variables 

Total Respondents: 2,046 100,00% 

Multi-Authored Paper 1,782 87.10% 

Psychology 128 6.26% 

IT and OR 319 15.59% 

Economics 319 15.59% 

Business 672 32.84% 

Sociology 168 8.21% 

Political Sciences 198 9.68% 

Asia 215 10.51% 

Anglophone 793 38.76% 

Continental Western Europe 715 34.95% 

Latin America and Africa 203 9.92% 

Postdoc 170 8.31% 

Junior Professor  414 20.23% 

Professor 1,109 54.20% 

Female 668 32.65% 

Editor 530 25.90% 

 Table 3.3 lists the descriptive statistics for the integer variable Number of Authors and 

the two ordinal variables Papers Published and Written Reviews. We find that most papers in 

the social sciences either have two or three authors with each category containing more than 

30% of the papers. About 15% of the papers possess four authors while papers with five or even 
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six or more authors exist considerably less often. For productivity, we find that many scholars 

published between three to five papers in the three years leading up to the survey. A substantial 

number of scholars seem to be less productive as they only published one or two papers in the 

same time horizon. Approximately a similar share of scholars seems to be more productive as 

they published between six to nine papers. Interestingly, our sample includes 90 very prolific 

scholars who have published 20 or more papers in the three years leading up to the survey which 

transform into at least 6 papers published each year. Table 3.3 shows that scholars write much 

more reviews than they publish papers. About 30% of the scholars have written between three 

to five reviews in the year leading up to the survey. In addition, more scholars have written 

fifteen or more reviews in the last year than published fifteen or more papers in the past three 

years. 

Table 3.3: Descriptive statistics for categorical and restricted integer variables 

 1 2 3 4 5 > 5 Total 

Number of 

Authors 

264 

(12.90%) 

627 

(30.65%) 

636 

(31.09%) 

318 

(15.54%) 

110 

(5.38%) 

91 

(4.45%) 
2,046 

 1-2 3-5 6-9 10-14 15-19 > 19 Total 

Published 

Papers 

464 

(22.68%) 

793 

(38.76%) 

424 

(20.72%) 

191 

(9.34%) 

84 

(4.11%) 

90 

(4.40%) 
2,046 

 0 1-2 3-5 6-9 10-14 > 14 Total 

Written Re-

views 

169 

(8.26%) 

475 

(23.22%) 

610 

(29.81%) 

348 

(17.01%) 

227 

(11.09%) 

217 

(10.61%) 
2,046 

 Academic Working Years represents the only non-restricted integer variable. On aver-

age, the respondents have been in academia for 17.79 years with a standard deviation of 12.34 

years. Our study includes 23 scholars who have not worked scientifically for more than one 

year. At the same time, our sample also contains an 86 years old scholar who has been in aca-

demia for 63 years.  

We do not include a correlation table as many of our dummy variables are exclusive 

(e.g. researchers cannot possess two primary research disciplines). Instead we discuss the Var-

iance Inflation Factors for every model in the robustness section to address potential problems 

that could arise from multicollinearity.  

3.3.2 Regression results 

Table 4 presents the results from logistic regressions with Multi-Authored Paper as the depend-

ent variable. Model 1 allows assessing Hypotheses 1a, 1b, 1c and 1d by including the research 

fields and the control variables. We do not find support for any of our hypotheses. In fact, we 

find the exact reverse effects. Multi-Authored Paper exist highly significantly more often in 
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Psychology and IT and OR. Moreover, Sociologists and Political Scientists publish significantly 

less often in teams. In addition to our hypotheses, we find that Business researchers also col-

laborate significantly more often with colleagues. Yet we do not find any effects for Economics. 

 Model 2 in Table 4 includes location and the controls. We find support for Hypotheses 

2a, 2b and 2c as scholars living in Asia as well as in Anglophone or Continental Western Euro-

pean countries more often collaborate with co-authors. This also applies to scholars from Latin 

America and Africa implying that single-authorship spreads especially across Eastern Europe.  

Model 3 investigates possible frequency effects stemming from job position and expe-

rience and allows us to assess Hypotheses 3a and 3b. As the only significant effect in the ex-

planatory variables presents that Postdocs highly significantly less often work in author teams, 

we cannot confirm Hypotheses 3a and 3b. Model 4 contains the same variables as Model 3 but 

additionally includes an interaction term between Professor and Academic Working Years to 

specifically address Hypothesis 3c. However, the inclusion of the interaction term does not alter 

any significance levels and its coefficient is also not significant. We therefore do not find sup-

port for Hypotheses 3c. 

 The last two models in Table 4 include all variables with Model 6 additionally including 

the interaction term between Professor and Academic Working Years. Overall, there appears 

only a single adulteration in the interpretation of the results: Sociology does not longer corre-

spond to a lower chance of team authorship. 

Looking at the controls of Model 6, we see that scholars with more Published Papers in 

the last three years have highly significantly more often co-authors. Yet papers written by Edi-

tors are marginally significantly less often multi-authored.  

We also apply z-tests using the coefficients from Model 6 to test whether the strength 

of the significant effects differ. However, we do not find any significant differences between 

the positive effects of Psychology, IT and OR and Business as well as the positive effects of 

Asia, Anglophone, Continental Western Europe and Latin America and Africa. 
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Table 3.4: Effects of research field, geographical region, job position and experience on multi-

authored papers 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 Multi-Au-

thored 

Paper 

Multi-Au-

thored 

Paper 

Multi-Au-

thored 

Paper 

Multi-Au-

thored 

Paper 

Multi-Au-

thored 

Paper 

Multi-Au-

thored 

Paper 

Psychology 1.112**    1.057* 1.059* 

 (0.429)    (0.433) (0.433) 

IT and OR 0.863**    0.827** 0.831** 

 (0.274)    (0.277) (0.278) 

Economics 0.249    0.228 0.232 

 (0.241)    (0.244) (0.245) 

Business 1.120***    1.088*** 1.094*** 

 (0.239)    (0.247) (0.247) 

Sociology -0.479†     -0.317 -0.314 

 (0.252)    (0.260) (0.261) 

Political Sciences -0.755**    -0.742** -0.736** 

 (0.237)    (0.242) (0.243) 

Asia  1.236***   0.842** 0.840** 

  (0.295)   (0.310) (0.310) 

Anglophone  1.261***   0.819** 0.818** 

  (0.236)   (0.256) (0.256) 

Continental Western   1.027***   0.830*** 0.828*** 

Europe  (0.232)   (0.248) (0.248) 

Latin America and Africa  1.299***   1.004** 0.996** 

  (0.302)   (0.318) (0.319) 

Postdoc   -0.700** -0.691** -0.478†  -0.470†  

   (0.249) (0.250) (0.263) (0.264) 

Junior Professor   -0.220 -0.215 -0.313 -0.309 

   (0.215) (0.216) (0.227) (0.228) 

Professor   0.060 0.142 -0.099 -0.023 

   (0.219) (0.319) (0.230) (0.335) 

Academic Working Years   -0.009 -0.005 -0.006 -0.003 

   (0.007) (0.011) (0.007) (0.012) 

Academic Working Years    -0.005  -0.005 

X Professor    (0.014)  (0.015) 

Female 0.076 0.075 0.048 0.047 0.068 0.068 

 (0.148) (0.144) (0.144) (0.144) (0.151) (0.151) 

Published Papers 0.292*** 0.301*** 0.282*** 0.281*** 0.301*** 0.302*** 

 (0.073) (0.071) (0.070) (0.070) (0.074) (0.074) 

Written Reviews 0.100†  0.113†  0.133* 0.131* 0.096 0.094 

 (0.059) (0.059) (0.059) (0.059) (0.064) (0.064) 

Editor -0.373* -0.323* -0.400* -0.402* -0.325†  -0.326†  

 (0.166) (0.163) (0.164) (0.164) (0.171) (0.171) 

Chi2 146.13 68.71 50.80 50.93 164.70 164.79 

p > Chi2 0.000 0.000 0.000 0.000 0.000 0.000 

Pseudo R2 0.093 0.044 0.032 0.032 0.105 0.105 

Observations 2046 2046 2046 2046 2046 2046 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Coefficients correspond to the marginal effects for the independent variables calculated at the mean levels 

of the remaining variables derived from logistic regressions with standard errors in parentheses. 
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Table 3.5 shows the results from OLS regressions with the Number of Authors as the dependent 

variable. For the sake of simplicity and readability, we only cover Model 6 containing all vari-

ables and the interaction term in the text. Like before, papers published in Psychology and in 

IT and OR possess highly significant more authors and papers published in Political Sciences 

possess highly significantly less authors, thus again we find evidence contradicting Hypotheses 

1a, 1b and 1d. In addition, researchers in Sociology have highly significantly less co-authors. 

Contrary to the findings above, Business scholars do not seem to differ in author team sizes 

from the remaining and not specifically included social sciences while author team sizes in 

Economics are significantly smaller. In turn, the effects of Asia, Anglophone, Continental West-

ern Europe and Latin America and Africa mirror the findings from above with scientists living 

in those regions collaborating highly significantly with more co-authors. Regarding frequency 

effects on the Number of Authors, we do not find that any differences exist for any job position 

(including Postdocs). In the controls, we find, similar to Table 4 that scholars with more Pub-

lished Papers in the last three years collaborate with more co-authors. Yet there exists no sig-

nificant effect anymore for Editors.  

We also compare the strength of the significant effects pointing into the same direction 

by applying z-tests on the coefficients in Model 6. We find that Psychology papers contain 

highly significantly more authors than IT and OR papers, thus making it the field with highest 

number of co-authors. Researchers in Sociology collaborate with significantly less co-authors 

than researchers in Economics. Researchers in Political Sciences collaborate highly signifi-

cantly with less co-authors than researchers in Sociology and researchers in Economics, thus 

making it the field with the lowest number of co-authors. Concerning regional effects, scholars 

living in Anglophone countries share their papers with marginally significantly more co-authors 

than scholars living in Asia or in Latin America and Africa. 
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Table 3.5: Effects of research field, geographical region, job position and experience on the 

number of authors 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 Number of 

Authors 

Number of 

Authors 

Number of 

Authors 

Number of 

Authors 

Number of 

Authors 

Number of 

Authors 

Psychology 0.830***    0.772*** 0.776*** 

 (0.130)    (0.130) (0.130) 

IT and OR 0.294**    0.299** 0.304** 

 (0.101)    (0.101) (0.101) 

Economics -0.205*    -0.214* -0.210* 

 (0.102)    (0.101) (0.101) 

Business 0.137    0.089 0.095 

 (0.090)    (0.091) (0.091) 

Sociology -0.505***    -0.445*** -0.442*** 

 (0.119)    (0.120) (0.120) 

Political Sciences -0.700***    -0.719*** -0.712*** 

 (0.114)    (0.114) (0.114) 

Asia  0.608***   0.390** 0.387** 

  (0.140)   (0.136) (0.136) 

Anglophone  0.737***   0.568*** 0.566*** 

  (0.121)   (0.120) (0.120) 

Continental Western   0.623***   0.491*** 0.488*** 

Europe  (0.122)   (0.119) (0.119) 

Latin America and Africa  0.577***   0.389** 0.381** 

  (0.142)   (0.139) (0.139) 

Postdoc   -0.308** -0.296* -0.172 -0.162 

   (0.116) (0.117) (0.112) (0.113) 

Junior Professor   -0.124 -0.117 -0.079 -0.074 

   (0.091) (0.091) (0.088) (0.088) 

Professor   -0.183* -0.078 -0.168†  -0.078 

   (0.089) (0.128) (0.086) (0.123) 

Academic Working Years   -0.006* -0.001 -0.007* -0.003 

   (0.003) (0.005) (0.003) (0.005) 

Academic Working Years    -0.007  -0.006 

X Professor    (0.006)  (0.006) 

Female 0.101†  0.141* 0.112†  0.111†  0.075 0.075 

 (0.057) (0.058) (0.059) (0.059) (0.057) (0.057) 

Published Papers 0.120*** 0.158*** 0.158*** 0.158*** 0.137*** 0.137*** 

 (0.024) (0.025) (0.025) (0.025) (0.024) (0.024) 

Written Reviews -0.018 -0.030 0.005 0.002 -0.018 -0.021 

 (0.022) (0.023) (0.023) (0.023) (0.023) (0.023) 

Editor -0.047 -0.013 -0.007 -0.007 0.012 0.012 

 (0.064) (0.066) (0.067) (0.067) (0.064) (0.064) 

F 24.93 10.65 8.00 7.26 16.37 15.56 

p > F 0.000 0.000 0.000 0.000 0.000 0.000 

R2 0.109 0.040 0.030 0.031 0.127 0.127 

Observations 2046 2046 2046 2046 2046 2046 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Coefficients derived from OLS regressions with standard errors in parentheses. 
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3.3.3 Robustness of results 

Assessing the robustness of the results in Table 3.5, we must consider that we approximated the 

statement that a paper possesses six or more authors by setting Number of Authors to six. To 

test whether we would receive the same results if we exclude those cases where we do not know 

the exact number of authors, Table 3.6 depicts the same OLS regressions but with the dependent 

variable Number of Authors < 6 that only possesses non-missing values for papers with one to 

five authors. Two differences in significance levels arise from this. Economics paper possess 

no longer significantly less authors. Instead, Business papers contain significantly more authors. 

Hence, we must be careful with the implications for those two fields as the findings are some-

what ambivalent. 

 Besides investigating our assumption of capping the Number of Authors at six we con-

duct a series of additional robustness checks. First, we run all models with robust standard er-

rors. This does not alter any implication. Second, we calculate variance inflation factors 

(VIFs) to identify potential problems arising from multicollinearity. Only the VIFs for Anglo-

phone, Written Reviews, Professor, Experience and the interaction term exceed the “conserva-

tive threshold of 5” (Alauddin, & Nghiemb, 2010: 351). However, only the interaction term 

(VIF=10.75 as highest value) exceeds the threshold of 10 with all other VIFs lying below six 

(Alauddin and Nghiemb, 2010; O’Brien, 2007). As the interaction term is the product of Pro-

fessor times Experience, we should expect it to correlate highly with those variables. O’Brien 

(2007) argues that in such cases any VIF below 40 can be sufficient. Third, we run all models 

excluding the control variables. This does not alter any implication. Last, we run separate 

models for each research field, geographical area and job position. Again, our results do not 

change. 
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Table 3.6: Effects of research field, geographical region, job position and experience on the 

number of authors for papers with less than six authors 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 Number of 

Authors  

< 6 

Number of 

Authors  

< 6 

Number of 

Authors 

< 6 

Number of 

Authors 

< 6 

Number of 

Authors 

< 6 

Number of 

Authors 

< 6 

Psychology 0.712***    0.667*** 0.670*** 

 (0.118)    (0.117) (0.117) 

IT and OR 0.312***    0.309*** 0.314*** 

 (0.089)    (0.089) (0.089) 

Economics -0.123    -0.135 -0.131 

 (0.089)    (0.088) (0.088) 

Business 0.214**    0.170* 0.175* 

 (0.079)    (0.080) (0.080) 

Sociology -0.377***    -0.308** -0.305** 

 (0.104)    (0.104) (0.104) 

Political Sciences -0.668***    -0.682*** -0.676*** 

 (0.100)    (0.100) (0.100) 

Asia  0.628***   0.421*** 0.418*** 

  (0.123)   (0.119) (0.119) 

Anglophone  0.734***   0.571*** 0.568*** 

  (0.107)   (0.105) (0.105) 

Continental Western   0.622***   0.503*** 0.500*** 

Europe  (0.107)   (0.104) (0.104) 

Latin America and Africa  0.654***   0.468*** 0.461*** 

  (0.124)   (0.121) (0.121) 

Postdoc   -0.277** -0.265** -0.157 -0.147 

   (0.102) (0.103) (0.098) (0.098) 

Junior Professor   -0.083 -0.077 -0.072 -0.067 

   (0.080) (0.080) (0.077) (0.077) 

Professor   -0.106 -0.003 -0.128†  -0.038 

   (0.079) (0.113) (0.075) (0.107) 

Academic Working Years   -0.007** -0.002 -0.007** -0.003 

   (0.002) (0.004) (0.002) (0.004) 

Academic Working Years    -0.007  -0.006 

X Professor    (0.005)  (0.005) 

Female 0.036 0.065 0.031 0.031 0.014 0.014 

 (0.050) (0.052) (0.052) (0.052) (0.050) (0.050) 

Published Papers 0.082*** 0.108*** 0.108*** 0.107*** 0.098*** 0.098*** 

 (0.021) (0.022) (0.022) (0.022) (0.021) (0.021) 

Written Reviews -0.007 -0.011 0.016 0.013 -0.007 -0.009 

 (0.019) (0.020) (0.020) (0.021) (0.020) (0.020) 

Editor -0.066 -0.031 -0.028 -0.028 -0.009 -0.009 

 (0.056) (0.058) (0.059) (0.059) (0.056) (0.056) 

F 24.73 9.46 5.89 5.42 16.92 16.10 

p > F 0.000 0.000 0.000 0.000 0.000 0.000 

R2 0.113 0.037 0.024 0.024 0.136 0.137 

Observations 1955 1955 1955 1955 1955 1955 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Coefficients derived from OLS regressions with standard errors in parentheses. 
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3.4 Discussion 

3.4.1 Summary of Results 

In general, we find support for Hypotheses 2a, 2b and 2c (location specificity). Yet we find the 

exact inverse effect than stipulated in Hypotheses 1a, 1b, 1c and 1d (uncertainty). Additionally, 

we cannot confirm Hypotheses 3a, 3b and 3c (frequency). Several implications arise from these 

results. 

 We show that the share of multi-authored papers has substantially increased compared 

to previous research (Ossenblok et al., 2014). Our findings indicate that research fields in the 

social sciences differ in the ratio between single-authored and multi-authored papers as well as 

in the average number of authors per paper. This does not represent a novel result as Ossenblok 

et al. (2014) as well as Henriksen (2016) already highlighted the existence of such differences. 

Yet we find that these research field differences uphold even when we include additional de-

mographic and job-related characteristics. However, we cannot confirm that researchers facing 

increased uncertainty (as measured in journal acceptance rates) more often collaborate with co-

authors. Instead, we find that psychologists, who have comparatively high acceptance, more 

often publish multi-authored papers than researchers from many other social scientific disci-

plines. We even show that papers in psychology possess the highest number of authors per 

paper in the social sciences. Moving beyond transaction costs, the following considerations 

might explain this result. Many psychological research projects include expensive experiments 

(Martin, 2008). As those experiments require substantial amounts of funding, there exists a 

tendency in psychology to also include the person financing the project (e.g. the faculty dean) 

as the last author (Duch et al., 2012; Tichy, 1997).  This obviously induces a higher likeliness 

for psychological papers to have more authors. Moreover, conducting profound experimental 

studies usually requires solid knowledge to build a valid theoretical basis and experience in the 

actual conduction of experiments (Lych, 1966). Consequently, experts in psychological theory 

have to team up with experts conducting the experiments to write good research papers (Martin, 

2008). 

Second, information technologists and operations researchers publish more multi-au-

thored papers and collaborate with more co-authors. This contradicts Hypothesis 1b. Yet Se-

renko et al. (2010) discussed that especially knowledge management and information technol-
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ogy are fast developing and changing fields. As such, scholars in these fields face high uncer-

tainty despite their higher acceptance rates compared to other social science disciplines because 

of the quickly changing environment. This might explain the positive effect of IT and OR on 

multi-authored papers and the number of authors per paper.   

Third, economists seem to mirror the average social scientists when addressing the share 

of single-authored papers. Yet we show that they work on average in smaller author teams. This 

might derive from the special author order economists employ: While most social sciences sort 

authors by contribution with the individual contributing most receiving the first author position, 

most economic journal list authors strictly alphabetically (Laband, 2002). Hence, including 

other authors raises the risk for the main contributor(s) to fall under “et al.” in the references. 

As falling under “et al.” often reduces publication and citation credits, scholars publishing in 

disciplines that order authors alphabetically face a strong incentive to include as few authors as 

possible (Laband, 2002). This gives a valid reason why economists publish in smaller teams 

compared to psychologists, information technologists and operations researchers as well as 

business researchers and other general social scientists.  

Fourth, we point out that business researchers publish more multi-authored papers than 

other social scientists. Yet these papers might not possess more authors. However, the robust-

ness checks show that business researchers collaborate with more co-authors when we exclude 

papers with six or more authors. This implies that large author teams with more than five au-

thors are not common in business research. Nevertheless, papers in business research possess 

more often two to five authors than papers published in other social science disciplines (exclud-

ing psychology as well as information technology and operations research). 

Fifth, our results show that sociologists do not differ robustly from the remaining not 

specifically included social sciences in their ratio of multi-authored to single-authored papers. 

This result again contradicts our uncertainty-based hypothesis. However, our finding is in line 

with Thanuskodi (2010) as well as Ossenblok et al. (2014) who show, without controlling for 

demographic, job-related and other factors, that the share of multi-authored papers in sociology 

corresponds to the average share of multi-authored papers across all social sciences. 

Last, we find that political scientists publish much less multi-authored papers and pos-

sess on average much less co-authors than any other group of social scientists. We originally 

expected the exact opposite result based on transaction costs. However, Henriksen (2016: 464) 

stated that “Political Science have similarities with research fields in the humanities.” In turn, 
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publications in the humanities possess a much lower share of multi-authored papers (Piro et al., 

2013). This derives from the circumstance that the dominating research approaches in the hu-

manities, theoretical research and literature analysis, require a more comprehensive view of the 

whole topic and therefore allow often only few collaborations (Katz, & Martin, 1997; 

Tymoczko, 2001). Besides this explanation already covered in the existing literature, the appli-

cation of alphabetical author orders by many political science journals might further induce 

tendencies to single-authored publications for the same reasons as discussed above with eco-

nomics (Lake, 2010). 

The second set of our hypotheses addresses the geographical regions. We find that re-

searchers from all other regions publish more multi-authored papers than researchers from East-

ern Europe. Furthermore, papers published by researchers from all other regions contain on 

average more authors than papers published by researchers from Eastern Europe. Several ex-

planations based on location specificity exist for these findings. First, travelling between East-

ern European cities requires usually more time and efforts due to the lack of high-speed rail-

ways, less well-developed highway networks and a low market share of low-cost carriers (Mi-

lan 1997; Stelder, 2016; Wall, & Carey, 2017).  Second, especially elderly Eastern European 

citizens often lack proficient English skills due to them growing up in Russian dominated 

spheres (Kryuchkova, 2001). Yet the average level of English skills in Eastern Europe is not 

worse than in Latin America, where more co-authorship exists (EF Education GmbH, 2019). 

However, except for Brazil which is quite a large country by itself, most Latin American pos-

sess Spanish as mother tongue. Hence, there exists no language barrier for collaborating with 

colleagues from countries nearby for Latin American scholars while scholars from Eastern Eu-

rope face language barriers very well as many of the smaller Eastern European countries have 

their own languages (Marshakova-Shaikevich, 2006). Third, collaboration might not always 

pay off for Eastern European scholars as their papers do not receive a citation boost by having 

more co-authors on it (Glänzel, 2001). Unfortunately, Glänzel (2001) did not explain potential 

reasons for this phenomenon. Therefore, Nagy (2016) investigated Eastern European research 

collaborations more closely. She found that Eastern European scholars tended to collaborate 

more with scholars from Western Europe and North America than with scholars from Eastern 

Europe. As such collaborations suffer from long travel distances and time zone differences, this 

might explain why Eastern European scholars less often publish multi-authored papers and 

work together with fewer co-authors. 
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Looking at the specific number of authors per paper, we find that Anglophone scholars 

might have on average more co-authors than scholars from other regions. With English as the 

dominant language in nowadays science and a great network of (low-cost) flights in North 

America and high-speed train connections in Great Britain, this finding is not surprising (Gra-

ham, & Melo, 2011; Wall, & Carey, 2017). Nevertheless, we need to ask why Asian scholars, 

who have access to low-cost flights and in certain regions to high-speed trains too, might col-

laborate with less co-authors although their cultural norms induce them to include even their 

supervisors as co-authors (Yukawa et al., 2014). Salita (2010) highlighted that sometimes even 

not the researchers conducting the experiments and writing the paper receive authorship but 

just the chairholder and/or the department head (Salita, 2010). Such a practice shrinks author 

team sizes and hence provides a plausible explanation why Asian publications possess on av-

erage less authors than Anglophone publications. 

The last three hypotheses address the frequency by including experience and job posi-

tions. However, we do not find any (consistent) effects for professors nor experience. As for 

job position, our baseline category was PhD students. As they often publish together with their 

supervisors (who usually are professors), this explains why the share of multi-authored papers 

does not differ much between those two groups (Long, 1978). However, our results indicate 

that postdocs publish more single-authored papers. We can think of two possible explanations 

for this finding. On the one hand, scholars who fail in achieving tenure might take on postdoc 

positions afterwards (Akerlind, 2005). These researchers might find it harder to find other re-

searchers who are willing to collaborate with them as Gersik et al. (2000) showed that scholars 

try to avoid harmful academic relations. On the other hand, junior researchers looking for a 

tenure-track position also take up a substantial share of the postdoc positions (Akerlind, 2005). 

These scholars might need to polish their CVs and publication counts in order to find a decent 

job and therefore might tend to publish more papers on their own as this gives them more credit. 

As a case in point, Rotgheb and Burger (2009) discuss that single-authored publications are 

essential in the academic job market. 

Last, we also discuss the results from the controls. While gender as well as review writ-

ing do not relate to the size of the author team, editors might more often publish single authored 

papers. This could derive from the fact that many editors write and publish editorials as well as 

cover letters on their own (Rousseau, 2009). Furthermore, we show that scholars who published 

more papers in the last three years publish more often multi-authored papers and work in larger 
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author teams. This goes in line with the findings of Lee and Bozeman (2005) who showed that 

academic collaboration measured by co-authorship correlates with productivity. Going back to 

transaction costs, these findings confirm the effect of frequency on research collaborations: 

Those who published more in the past had higher chances to collaborate with others and there-

fore chose also to collaborate with others on the research project in question.  

3.4.2 Impact on Academia 

This study possesses wide-ranging implications on the academic community as it represents the 

first interdisciplinary and international multivariate analysis of author team sizes in the social 

sciences. First, based on our findings we call for the application of advanced techniques when 

assessing academic productivity instead of the currently widespread practices of simply count-

ing citations and/or (first-authorship) publications (Carpenter et al., 2014). Especially when as-

sessing job or funding applications from different research fields and different geographical 

regions, one should keep in mind that scholars’ differences in productivity might not only derive 

from individual capabilities but also include discipline specific norms as well as infrastructural 

and cultural influences.  

Second, we show that interdisciplinary research as well as research conducted across 

geographical regions might suffer from different perceptions of author team sizes and author-

ship even within the social sciences. Hence, we would advise scientists engaging in such pro-

jects to set authorship parameter as early as possible to avoid possible conflicts in later stages.  

Third, our results indicate that there exists a link between author team size and produc-

tivity. Based on this we recommend scholars to build academic networks as early as possible to 

foster relationships that prove not only helpful in the job searching phase but even during reg-

ular academic life. Hereby, we also highlight the importance of academic conferences as they 

provide great opportunities to network and find potential co-authors. Therefore, research insti-

tutions should support scholars of all ages in attending such meetings by giving them time off 

and paying for travel costs. In addition, we believe that these physical meetings should also 

persist in future and should not be fully substituted by the emerging trend of online academic 

conferences (Thatcher, 2006).   

Last, we highlight that the share of single-authored papers continues to drop. This results 

from more and more scientists experiencing the benefits of research collaborations (Piocuda et 
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al., 2015). Consequenlty, we call upon universities and other research institutions to forfeit sin-

gle-authorship requirements in search and tenure procedures. In turn, they should view multi-

authored papers as a signal that shows that scholars work well in teams, have an established 

network, know their strength and their weaknesses and team up with others who level those. 

3.4.3 Limitations and Future Research 

  Although we try to address as many aspects influencing the generalizability and robust-

ness of this study as possible, one can never overcome all disputable issues. Hence, as every 

study also this study needs to be viewed within its setting. We rely on self-reporting data from 

an online survey. On the one hand, this enables us to include more demographic and job-related 

variables than if we use data from journal websites or databases like the Web of Science. On 

the other hand, several authors discuss that socially desirable responding might bias results of 

surveys asking sensitive questions (Krumpal, 2013). The awarding of authorship as well as the 

number of co-authors represent such sensitive questions as they provide the basis for publica-

tions and citation counts, the top two measures in the current academic incentive system (Alt-

bach, 2015). In addition, the respondents self-selected them into the sample by voluntarily re-

sponding to the survey. This might imply that our sample might overrepresent scholars inter-

ested in authorship issues and other questionable research practices. Nevertheless, socially de-

sirable responding and self-selection only bias our results in the direction of social scientists’ 

perceived optimum. So even if our study did not perfectly assess the actual size of author teams, 

we would at least assess social scientists’ desirable size of author teams. 

 Katz and Martin (1995: 1) showed that “co-authorship is no more than a partial indicator 

of collaboration.” This is the reason why we cannot directly interfere from our findings of the 

size of author teams on actual research collaboration processes. Research collaboration goes 

beyond co-authorship as also reviewers, conference attendees as well as mentors and assistants 

might provide fruitful contributions to a research project (Katz, & Martin, 1995). This might 

also explain partially why especially the research field findings deviate from the hypotheses. 

Collaboration patterns differ across disciplines (Zheng et al., 2016). The same applies also to 

authorship patterns (Pruschak, & Hopp, 2019). Consequently, contributing something to a re-

search project might qualify an individual for authorship in one research field but not in another. 

Thus, our authorship-based measure might also cover discipline specific authorship assignment 

effects. However, for assessing academic productivity, mainly authorship counts. Hence, our 
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findings provide a good starting ground for assessing effects on and correlates of research col-

laborations. 

Another limitation of our study derives from capping the variable Number of Authors at 

a maximum of six. While more than 95% of our respondents stated that their last published 

paper had not more than five authors, our study does not assess the mechanics and correlates 

for large author teams. With Open Science collaborations on the rise also in the social sciences, 

this might become a fruitful area for future research (Dutton, & Jeffreys, 2010). 

Future research could also aim at replicating our findings using data from the Web of 

Sciences, Google Scholar and/or institutional websites. By including multiple papers per schol-

ars, one could employ fixed-effects regressions that would at least partially substitute the con-

trol variables like editorial position(s) or number of reviews written. This would allow a sub-

stantial increase in coverage inducing a much higher sample size. Especially for including more 

scholars from second and third world countries, this could prove worthy. 

Of course, one might also conduct a similar but translated survey among researchers 

from specific regions. It would be interesting to see whether the inclusion of more Latin Amer-

ican but also Chinese, Indian and Japanese researchers would confirm our results. To overcome 

issues arising from socially desirable responding, future research could include item-sum tech-

niques that allows respondents to completely anonymously respond to sensitive questions 

(Trappmann et al., 2013). Additionally, forthcoming surveys might not only cover co-author-

ship but also other forms of research like contributors, reviewers and other feedback givers. 

Last, we believe that investigating potential connections between differences in aca-

demic incentives and the size of author teams might reveal some underlying reasons for our 

findings that go beyond transaction costs. This is of special importance as assessment tools for 

scholars’ productivity vary across research institutions, countries and disciplines (Carayol, 

2004; Ossenblok et al., 2012). For example, if some research fields employ whole counts as 

publication and/or citation counts, papers published in those fields might contain more co-au-

thors than in research fields employing fractionalized counts. Based on this, future research 

projects might then address the issue of which incentives work best and give meaningful impli-

cations to those in charge of hiring and tenure processes. 
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3.4.4 Conclusion 

The aim of this research project was to clarify whether findings from existing literature 

on the correlates of the size of author teams withstand the application of transaction costs and 

multivariate analyses. Using data from a large scaled worldwide and interdisciplinary survey 

among social scientists, we show that research field differences persist. For geographical re-

gion, we find that Eastern European scholars publish in smaller author teams and for job posi-

tions, we find that postdocs tend to have more single-authored publications. With Eastern Eu-

ropean scholars facing language barriers and infrastructural challenges and the job search of 

postdocs incentivizing them to publish single-authored papers, we derive fruitful improvement 

suggestions from our findings. First, those in charge of search and tenure procedures as well as 

funding grants need to be aware that productivity measures vary across research fields and ge-

ographical regions especially when comparing applicants with different backgrounds. Second, 

scholars in interdisciplinary research projects should agree on authorship as early as possible to 

avoid conflicts. Third, we highlight that academic productivity correlates with larger author 

teams. We therefore call upon research institutions to stop requiring a certain number of single-

authored publications in application and tenure procedures because multi-authored publications 

work as a signal for higher productivity, teamwork ability and good networking skills. To foster 

such academic networks and to boost productivity, participation in academic conferences is 

essential. Consequently, such (physical) scientific meetings enhance academia substantially and 

should not be completely replaced by online gatherings.  
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4 Essay 3 – Replicating the effect of high school lead-

ership on later life earnings 

4.1 Introduction 

In a 2005 article, Kuhn and Weinberger (2005: 396) asked a short yet impactful question: “Is 

there such a thing as leadership skill?”.14 Their research studies the value of an unobserved 

bundle of leadership skills that correlates with the granting of leadership opportunities in high 

school. To answer the research question empirically, Kuhn and Weinberger (2005) conducted 

a variety of tests to determine whether leadership is “a distinct skill that is related to the man-

agement of people” (Kuhn, & Weinberger, 2005: 397). Using several behavioral measures of 

leadership positions granted to individuals during high school, they found that those individuals 

who were club presidents and team captains earned significantly more eleven years later. Given 

the findings, the study has been quite influential.  It showed that leadership skills (including 

those that might predate high school and/or those that might be developed through leadership 

positions in high school) are financially rewarded in subsequent working life, and, importantly, 

are distinct from analytical and cognitive skills. Not surprisingly, Kuhn and Weinberger (2005) 

is among the top 100 published articles in the Journal of Labor Economics, with 405 citations 

(September 2020), according to Google Scholar. This amounts to an average of around 25 ci-

tations per year. 

The study of processes that develop leaders is among the core research fields in the 

leadership literature (Day et al., 2014). Many studies have shown that for hiring decisions em-

ployers focus more on soft skills, including presentation skills, social communication, and 

teamwork, than on grades achieved in high school or college (Andrews, & Higson, 2008; 

Palmer et al., 2001; Robles, 2012; Weinberger, 2014a). In addition, more and more companies 

are sending their employees to leadership training seminars and workshops (Kaiser, & DeVries, 

2000; Manolis et al., 2009; Breuer, & Kampkötter, 2013). Having occupied leadership roles 

during high school provides an advantage in the admission processes of top colleges in the 

United States (Morse, 2000). This implies that the possession of leadership skills might also 

provide advantages in the labor market.  

 

14 I wish to thank Christian Hopp for the collaboration and his inputs on this paper. 
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It is important to note that Kuhn and Weinberger (2005) only noted positive correla-

tional evidence between being granted leadership opportunities in high school and later working 

life earnings but refrained from making causal inferences. This raises the question as to when 

and for whom these leadership skills emerge. While they point out “at least some component 

of leadership skill is fostered by occupying leadership positions during high school,” they also 

acknowledge that their analysis cannot differentiate between leadership skills developed earlier 

and those developed in high school (Kuhn, & Weinberger, 2005: 430). The relationship between 

high school leadership positions and subsequent earnings captures the value of both, those char-

acteristics that predate high school and those that are developed because of leadership activity 

participation in high school. Under the right circumstances, correlation can mean causation in 

non-experimental studies (Niles, 1922). Yet one needs to overcome a major problem in empir-

ically analyzing non-experimental data: endogeneity, where “the effect of x on y cannot be in-

terpreted because it includes omitted causes” (Antonakis et al., 2010: 1087). 

Endogeneity problems arise when variables included in the estimation specification 

(e.g. the leadership position in high school) are not exogenous but, for a variety of reasons, 

correlate with the error term of the estimated model (the residuals of the subsequent earnings 

regression). To make inferences on the relationship between earnings and the leadership skills 

that are developed through leadership positions in high school, it is important to ensure that the 

estimation is consistent and that the sample coefficient converges to the true population mean 

(Antonakis et al., 2010). The treatment group and the control group need to be interchangeable 

so that each can provide the counterfactual, what would have happened to the other group 

(Lechner, 2002; Caliendo, & Kopeinig, 2008). This is complicated in the presence of endoge-

neity (Hamilton, & Nickerson, 2003; Bascle, 2008).  Omitted selection – in this case, a non-

modelled or non-included variable related to leadership positions in high school and subsequent 

income – invites the risk of comparing a non-equivalent control group to the treatment group. 

Similarly, the treatment and control groups might be different because of other omitted causes, 

such as omitted variables, simultaneity, common-method variance, or measurement error (An-

tonakis et al., 2010; Antonakis et al., 2014).  

We therefore replicated and extended the research in Kuhn and Weinberger (2005). 

Our work uses quasi-experimental methods (propensity score matching and instrumental vari-

able regression) that statistically randomize the granting of leadership opportunities, and, after 

ensuring that a certain set of assumptions are met, allow for making causal claims (Rouse, 2012; 
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Andersen, & Lu, 2016). Whereas prior work using similar models focused on the effects of 

leadership experiences in high school on the probability to attend college (Rouse, 2012), we 

follow Kuhn and Weinberger (2005) in employing later life wages as the dependent variable.  

In our view, using models to distinguish between the component of leadership skill 

that is developed because of the granting of leadership opportunities in high school and the 

component that predates the granting of the leadership increases the explanatory power of the 

original study’s findings. Against this background, we also reflect on the representativeness of 

the underlying original study to justify practical and policy recommendations. When making 

recommendations based on the correlational evidence in Kuhn and Weinberger (2005), it is 

important to bear in mind that the study focusses on white males only. Notwithstanding the 

implications the study has for white male leadership, we believe it to be of equal importance to 

establish the link between leadership roles and earnings among females, especially in light of 

prior work on the role of female leadership styles in explaining the gender wage gap (Cohen, 

& Huffman, 2007) and the likely role incongruity that female leaders face (Eagly, & Karau, 

2002). Additionally, given the sole focus on white males, it also is important to extend the 

findings to non-white individuals to test for the generalizability of the leadership role-earnings 

effect across ethnicity (Ospina, & Foldy, 2009). Especially because Weinberger (2014b) 

showed that the earnings effects of high school activities for black males differ from the earn-

ings effects found for white males, we believe that an extension to this sample provides inter-

esting insights on the effect of leadership skills on income across race.  

Furthermore, Kuhn and Weinberger (2005) base their analysis on income data up to 

eleven years after high school graduation.  Expanding the time horizon could help to distinguish 

between the signaling value of leadership skills upon job market entry and long-term career and 

income influences. Therefore, the interpretation of Kuhn and Weinberger’s (2005) results 

would benefit from including income data from the 2011-2012 Project Study covering later life 

stages. 

We do not aim at disconfirming the association initially discovered by Kuhn and Wein-

berger (2005).  Instead we want to increase the understanding of the conceptual relationship 

between what makes individuals become leaders in early life, and how in turn early life leader-

ship positions affect subsequent occupational income.  
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4.2 Summary and contribution of the original article 

Kuhn and Weinberger’s (2005) article “Leadership Skills and Wages” pointed out the im-

portance of leadership skills. The article empirically showed a positive correlative relationship 

between leadership positions in high school and individual income in later working life, as well 

as the probability of obtaining a managerial position (Kuhn, & Weinberger, 2005). 

Kuhn and Weinberger (2005) did not include a specific research hypothesis, but asked 

a simple yet impactful research question: “Is there such a thing as leadership skill?” (Kuhn, & 

Weinberger, 2005: 396). The study empirically analyzes whether the holding of a leadership 

position, as president of a club or captain of a team, in high school, is related to increased 

remuneration in later life. Practical recommendations on interventions depend on whether the 

relationship is causal: if leadership experience pays, and positively affects career advancement, 

then the development of leadership skills should be fostered as early as high school to groom 

potential future managers. 

In their study, Kuhn and Weinberger (2005) expected the groups of club presidents 

and team captains to possess a higher share of leadership skills than the group of those who 

were not leaders during high school. The behavioral measure of leadership skills includes both 

characteristics that predate high school and those that are developed through leadership in high 

school.  

While existing research showed that active participation in athletic teams leads, on 

average, to higher earnings in later working life (Barron et al., 2000), the study by Kuhn and 

Weinberger (2005) included both athletic teams and non-sport-related high school clubs and 

their leaders. The study focused on white males only, to investigate leadership consequences 

“without the confounding effects of race or gender discrimination or of the changing roles and 

expectations of women during this time period” (Kuhn, & Weinberger, 2005: 399). 

Kuhn and Weinberger (2005) used data from three longitudinal studies: Project TAL-

ENT from 1960, the National Longitudinal Study of the Class of 1972 (NLS72), and the High 

School and Beyond survey (HSB 1982). All of the studies interviewed high school students and 

followed the respondents in up to three additional waves that took place up to 11 years after the 

first interview. Overall, their sample sizes were 24,041 for data gathered from Project TAL-

ENT, 3,083 for data gathered from the NLS72 and 2,383 for data gathered from the HSB 1982. 

While Project TALENT provided information about both hourly and annual earnings, the 
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HSB1982 only provided information about annual earnings, and the NLS72 only provided in-

formation about hourly earnings. Therefore, the original paper used two different dependent 

variables. Analyses conducted with data from Project TALENT used the log of hourly and the 

log of annual earnings as the dependent variable. Analyses conducted with data from the HSB 

1982 and the NLS72 used the log of annual earnings or the log of hourly earnings as the de-

pendent variable, respectively. Kuhn and Weinberger (2005) employed a dummy variable in-

dicating whether individuals had held a leadership role as a team captain and/or club president 

during the past three years leading up to the interview date as a measure for leadership positions 

in high school for the Project TALENT data. Analyses based on data from the HSB 1982 and 

the NLS72 included a dummy variable indicating whether individuals were team captains 

and/or club presidents in the last year leading up to the interview date. 

In their main empirical analyses, they controlled for school (or state) fixed effects, a 

small number of control variables including math scores, parents’ education, and the respond-

ents’ education after high school. Subsequently, the authors expanded the analysis using self-

assessed psychological characteristics and weight and height measures. The psychological char-

acteristics included “sociability,” “tidiness” (the degree to which respondents are neat and or-

ganized), “vigor” (the degree to which respondents are physically energetic), “self-confidence”, 

and “mature personality” (the degree to which respondents are hardworking and reliable). 

The OLS regressions from the original article showed that being engaged in a leader-

ship position during high school positively relates to 4% to 33% higher subsequent earnings in 

later working life, depending on the dataset used and the time horizon applied. The wage pre-

mium was significantly higher for those white men who had been both team captains and club 

presidents than for those who were either team captains or presidents only. After including 

cognitive skills, physical attractiveness, and psychological characteristics available in the Pro-

ject TALENT data, Kuhn and Weinberger (2005) still found significant differences with respect 

to an effect of high school leadership positions on earnings. The authors also investigated 

whether team captains and/or club presidents were more likely to hold a managerial position at 

the time of the last Project TALENT follow-up interview, 11 years after the initial interview. 

The analysis showed that a significantly higher percentage of interviewees who had been in a 

leadership role in high school were in a managerial position at their subsequent job compared 

to those who had not been in a leadership role in high school.  
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Furthermore, Kuhn and Weinberger (2005) also separated the effect of the exposure 

to leadership opportunities in high school from students’ personal characteristics. Hereby, they 

included the number of leadership positions that were available per high school as an independ-

ent variable. Their results indicated that at least a portion of the leadership-earnings relationship 

derived from being granted leadership opportunities in high school. The original article also 

showed that this relationship becomes stronger for students who assess themselves as good 

leaders.  This essentially suggests that leadership opportunities are relevant especially for those 

”who had previously demonstrated a propensity to leadership” (Kuhn, & Weinberger, 2005: 

429). 

4.3 High-school leadership effect and causality 

In summary, Kuhn and Weinberger (2005: 395) showed “that leadership skills may be fostered 

by exposure to high school leadership opportunities”. Their analysis augmented traditional hu-

man capital models, by showing that there exist correlates to earnings that go beyond human 

capital and work experience, that were ubiquitously studied.  Yet it is important to note that the 

original study only stipulated correlative evidence, and that the leadership skills measure em-

ployed comprises both a component of leadership skills that predate high school and a compo-

nent that is developed because of leadership in high school. In this respect, the original study 

did not aim to assess causality. Hence, it did not include tests for observable and unobservable 

confounders that lead to selection into leadership opportunities nor did it aim to delineate the 

extent to which leadership experience causes the development of leadership skills that subse-

quently lead to higher earnings.  

In the following, we therefore revisit the question whether leadership positions in high 

school have an effect on later life earnings of individuals, conditional on the leadership skills 

that predate the attainment of a leadership position in high school.  

We are specifically interested in contrasting the earnings of individuals who were 

granted leadership opportunities to the counterfactual, the earnings for those who were not 

granted such opportunities. In non-experimental data, however, the groups are unlikely to be 

interchangeable due to observable and unobservable causes that determine whether certain in-

dividuals are granted leadership opportunities (Antonakis et al., 2010). Leadership opportuni-

ties are potentially endogenous. Observable omitted selection and other unobservable omitted 
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causes invite the risk of comparing non-equivalent control groups to the treatment group. Con-

sequently, it is difficult to distinguish the component of leadership skills that is developed be-

cause leadership opportunities were granted in high school from the component that predates 

the granting of leadership opportunities.  

4.3.1 Endogeneity as a result of observable omitted selection 

Observable omitted selection in model explanatory variables has been widely discussed as in-

validating coefficient estimates and hypothesis tests (Antonakis et al., 2010). Antonakis, et al. 

(2010: 1091) emphasize that observable omitted selection may cause inconsistent estimates 

when assessing the causal effect of high school leadership experience on earnings when “Com-

paring entities that are grouped nominally where selection to group is endogenous (e.g., com-

paring men and women leaders on leadership effectiveness where the selection process to lead-

ership is not equivalent)”. In the presence of a correlation between the error term of the earnings 

regression and the leadership dummy regressors, the estimates from an OLS regression might 

not reflect the true causal effect of leadership experience on earnings; they are, statistically 

speaking, biased.  These differences in estimates might derive from different characteristics 

among those who were granted leadership opportunities and those who were not (Hamilton, & 

Nickerson, 2003; Shaver, 1998). Consequently, the OLS estimates do not provide evidence on 

the extent to which leadership experience translates into leadership skill development, as the 

measure of leadership experience might still comprise a component of individual characteristics 

that determines leadership selection.   

In the data studied in Kuhn and Weinberger (2005), there might well be factors that 

determine whether or not individuals find themselves in leadership positions, and these factors 

might predate high school. Murphy and Johnson (2011) listed characteristics that are beneficial 

for becoming a leader.  A person with superior skills in a specific field of study or sport would 

be more likely to be elected president or captain of the respective school club or team. Further-

more, Kuhn and Weinberger (2005: 398) report that the effect of the leadership opportunities 

that they measured captures “some sort of social skill”. Sociability (which is a self-assessed 

measure indicating whether people like to be around other people) influences whether individ-

uals are granted leadership opportunities in high school, with less-social individuals being less 

likely to be granted leadership opportunities (Heckman et al., 2006).  

The factors that determine the granting of leadership positions might simultaneously 

also affect the performance of individuals in later working life. Math skills obviously have a 
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positive impact on how individuals perform after high school. Students who were “less social 

or are bookworms” might not become leaders yet might still achieve higher outcomes subse-

quently through studying (Rouse, 2012: 115). Because observable omitted selection into the 

granting of leadership opportunities might subsequently predict income, the measurement of 

the leadership opportunities correlates with the error term of the income regression.15 Hence, 

the influences of math and social skills on leadership selection are consequential for the inter-

pretation: the OLS estimates will not reveal the causal effect of leadership experience on the 

development of leadership skills. Leadership selection based on math skills might overstate the 

effect of being granted leadership opportunities on the development of leadership skills, while 

leadership selection based on social skills might understate the effect of being granted leader-

ship opportunities on the development of leadership skills. Therefore, it is important to recog-

nize and explicitly model the omitted selection that influences whether or not high school stu-

dents are granted leadership opportunities to estimate the true causal effect of leadership posi-

tions on earnings. To overcome this type of selection, we explicitly investigate and model the 

type of observable omitted selection in the Kuhn and Weinberger (2005) leadership data and 

empirically make the treatment and control groups comparable using propensity score match-

ing. 

4.3.2 Endogeneity as a result of other (unobservable) omitted causes 

The treatment and control groups might also differ because of other unobservable omitted 

causes like omitted variables, simultaneity, common-method variance, or measurement error 

(Antonakis et al., 2010; Antonakis et al., 2014). Again, these types of unobservable distortions 

make it difficult to compare the outcome for the treated group with the control group: the other 

group is unlikely to be counterfactual due to inherent differences in unobservable characteristics 

(and/or measurement). For example, in the Kuhn and Weinberger (2005) study, personal char-

acteristics are measured at the same time as questions about leadership opportunities are elic-

ited, inviting the risk of simultaneity bias. Similarly, many years after the original data collec-

tion, leadership research has identified important dispositional and behavioral variables such as 

the need for cognitive closure that affect leadership effectiveness (Pierro et al., 2005). Hence, 

 
15 Related work has shown the interrelatedness of leadership effectiveness and the antecedents for being granted those leadership opportuni-

ties. Exhibiting personal maturity and tenacity (Yukl, & Van Fleet, 1992) as well as being sociable and self-confident (Northouse, 1997) 

have an impact on leadership effectiveness (Judge et al., 2002) and are antecedents to the granting of leadership opportunities (Shamir, 2007; 

Shondrick et al., 2010). 
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important variables that affect earnings in real life and the effectiveness of leadership opportu-

nities were not elicited; an omission that could invalidate causal interpretations of correlational 

findings (Antonakis et al., 2010). Thus, the coefficients that Kuhn and Weinberger (2005) de-

rived could include effects from other omitted causes, resulting in a correlation between the 

leadership opportunities measured and the error term of the earnings regression. This prevents 

Kuhn and Weinberger (2005) from interpreting the regression effects found as causal, as the 

presumed correlational relationship might not converge to the true population parameter (Ham-

ilton, & Nickerson, 2003; Antonakis, et al., 2014). We therefore additionally employ instru-

mental variable estimations to overcome the potential existence of unobserved causes that sim-

ultaneously affect whether or not individuals were granted leadership opportunities and their 

subsequent earnings.  

We begin by discussing how observable omitted selection may influence the leadership posi-

tions estimates on earnings and subsequently address how we plan to deal with it. We then 

proceed to explain how we deal with other unobservable omitted causes, in particular instru-

mental variable techniques. 

4.4 Data and methods 

The replication of an existing empirical study can generally follow three different approaches 

(Schmidt, 2009). First, a direct replication uses original data, or, if original data is not available 

or accessible, data collected identically. In the latter case, the data collection is based upon the 

same questionnaire and sample group. The analysis of the data then applies the same theoretical 

model and statistical techniques to the same hypotheses as the original study. Second, a follow-

up study (sometimes called an extension) starts with a direct replication and then extends the 

original analyses, applying new models or new data to the same underlying theoretical question. 

Third, a conceptual replication addresses the same research question, but uses a completely 

different approach and design; data, model and method differ from the original study (Schmidt, 

2009).   

We conduct a follow-up study, a direct replication and extension, of Kuhn and Wein-

berger (2005) by including additional data and implementing new statistical techniques. We 

structure this follow-up study as follows. We begin by exactly replicating the findings from 

Kuhn and Weinberger (2005) using the original dataset. We then describe the proposed appli-

cation of additional quasi-experimental statistical techniques to the original data for the follow-
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up study. We address endogeneity concerns arising from omitted selection influencing both the 

granting of leadership opportunities in high school and later life earnings using propensity score 

matching (Rouse, 2012; Li, 2013). We assess the susceptibility of these findings to the omission 

of confounding variables and simultaneity using sensitivity bounds. In addition, we apply in-

strumental variable regressions to deal with other omitted causes. The Appendix contains de-

tailed equations and in-depth explanations of the statistical methods employed. We also extend 

the original sample, which uses white males only, to white females and non-white students, and 

apply the quasi-experimental methods to these sample extensions. Last, we expand the original 

time horizon using data from the 2011-2012 Project Study. 

4.4.1 Data for replication 

We focus our replication and extension on the data originating from the Project TALENT, for 

which also a Pilot Study from 2011 and 2012 (with 4,879 of the original respondents) is avail-

able to test for long-term effects beyond the initial 11-year time window (Stone et al., 2014). 

Project TALENT was the first and most comprehensive study that surveyed high school stu-

dents in the US. Initial data collection began in 1960; follow-up interviews took place until 11 

years after graduation.16 The cohort is remarkable in many respects. First, it included more than 

400,000 students from almost 1,400 schools across the US. Second, the participants were 

around 15 years of age, reached their top-level positions around the year 2000, and left the work 

force around 2015. This made it possible to re-approach them for subsequent surveying regard-

ing the outcomes of work-related experience and stress on medical and health outcomes, a pro-

ject that was pilot-tested in 2011 and 2012, and is currently underway at the University of Mich-

igan’s Survey Research Center (Stone, et al. 2014). Third, the sample is reflective of many 

trends and effects found in subsequent leadership studies. Arguably, the sample respondents 

are representative of all US high school students in 1960, and the implications therefore offer 

foundational insight for subsequent empirical work. Project TALENT data has been investi-

gated across many different disciplines, including economics, psychology and mathematics 

(Kenny et al., 1979; Austin, & Hanisch, 1990; Wise, 1985).   

4.4.2 Direct replication 

In a first effort, we directly replicate the findings from Kuhn and Weinberger (2005), to provide 

 
16 The data that underlies this study stems from the Project Talent. The American Institutes for Research curates this dataset. Interested re-

searchers can obtain the data by contacting the American Institutes for Research via ProjectTalent50@air.org 

mailto:ProjectTalent50@air.org
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a solid understanding of the scope of the original study and of the relevant data. We therefore 

replicate the original results (see Kuhn, & Weinberger, 2005: 405; Table 2) using OLS models 

with the log of hourly earnings as our dependent variable. We also employ school fixed effects 

to control for potentially omitted factors associated with the high school each responded at-

tended. Following Kuhn and Weinberger (2005), we restrict our sample to white males who 

earn between $1 and $50 per hour.  

4.4.3 Propensity-score matching 

To address endogeneity concerns arising from observable omitted selection, we need to ask two 

questions: What factors influence whether an individual is granted leadership opportunities? 

And what is the impact of these leadership opportunities (conditional on the influencing factors) 

on subsequent earnings? 

We employ propensity score matching as a non-experimental way of isolating the ef-

fects of a treatment variable on an outcome based on observable confounders. Propensity score 

matching controls for a set of available variables that are likely to influence the propensity of 

being granted leadership opportunities and later-life earnings at the same time. Controlling for 

all potential variables is, of course, infeasible as some of them might not be observable, but we 

try to include as many variables as possible.  

The matched control group is found by estimating the individual conditional predicted 

probabilities (a single variable summarizing how likely each individual is to be granted leader-

ship opportunities conditional on observable variables). Individuals in the treatment group are 

matched with individuals who did not have a leadership position, but have similar predicted 

probabilities to form the control group. These matched individuals are considered statistically 

equal, and thus, each provides the counterfactual outcome for each other. By focusing on this 

predicted probability, we derive the counterfactual based on several antecedents to leadership 

opportunities granted simultaneously.  

Our work follows prior related empirical literature in the leadership and human re-

source domain to overcome endogeneity concerns stemming from observable omitted selection 

through matching (Jez, 2014; Dale, & Krueger, 2002). Rouse (2012), especially, shares simi-

larities with our approach. She addressed confounding variables (both observable variables us-

ing matching techniques but also unobservable variables using other approaches) and studied 

the effect of leadership positions in high school on subsequent educational attainment. As in 
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experimental studies, such as Andersen and Lu (2016), we would like to get as close as possible 

to a randomization of leadership opportunities in our propensity score matching procedure 

within the bounds of the observed variables available. Our procedure follows Rouse (2012) in 

spirit, but we employ hourly earnings eleven years after high school instead of academic 

achievements. 

We estimate a probit model with an individual’s probability of being granted leader-

ship opportunities high school as the dependent variable. This so-called propensity score is 

equal to the conditional probability of receiving the treatment (being granted a leadership op-

portunity in high school) (Rosenbaum, & Rubin, 1983).  

After calculating the propensity score, we match individual subjects based on their 

respective propensity score, essentially re-weighting the sample. As a consequence, subjects 

with the same probability of being granted leadership opportunities are treated as statistical 

twins. After matching, given a set of observable variables in the dataset, subjects are identical 

in all observable aspects except for receiving the treatment. The basic idea behind making 

causal inferences based on the propensity score matching procedure is that if two subjects have 

the same probability of receiving treatment (the same propensity score), yet are in different 

groups (leaders or non-leaders), we are, statistically speaking, comparing two individuals who 

might have been exogenously assigned to the leadership and non-leadership groups. Hence, 

after matching, we can directly infer the differences between the matched groups. This allows 

us to estimate the net effect of the treatment on outcomes, much like in experiments that ran-

domize the treatment assignment (Andersen, & Lu, 2016).  

4.4.3.1 Empirical matching procedure 

In carrying out our empirical investigation, we follow Li (2013). First, we establish the (theo-

rized) notion of endogeneity based on observable confounders in leadership opportunities. We 

report the estimates of the regressions (probit and OLS, respectively) using high school leader-

ship positions and earnings eleven years later as the dependent variable. We augment the per-

sonal data variables included in Kuhn and Weinberger (2005) and include additionally the num-

ber of Dates per week and the financial situation of the family of the respondent in our matching 

equation. Addressing personal characteristics, we further employ standardized grade-relative 

measures for all available test scores (Table 11 in the Appendix contains a list of all variables 

employed). To proxy for recognitions of achievement, we also include different awards that 
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students won in the three years leading up to the interview date. Last, we include personal in-

terests in our matching equation to identify those who (at the interview date) were striving to 

become leaders in later working life. Because we cannot control for all possible factors influ-

encing the leadership selection, we will assess the susceptibility of our results to omitted vari-

ables and other omitted causes subsequently.  

Nevertheless, if at least some of these variables are related to both leadership opportu-

nities in high school and earnings eleven years later, we have established grounds to suspect an 

endogenous relationship between predictor variables, observable confounders, and the granting 

of leadership opportunities. This might cause differences between the true causal effect and the 

expected value of the OLS estimates provided in Kuhn and Weinberger (2005). Being able to 

overcome observable omitted selection can therefore help to make causal inferences regarding 

the effect of high school leadership experience on earnings.  

We calculate the propensity score following Becker and Ichino (2002) and carry out 

the matching procedure using psmatch2 in Stata 13 (Leuven, & Sianesi, 2018). The most crucial 

part here is to assess the balance of the sample after matching. This involves testing whether 

differences in the mean values for predictor variables persist after matching, or whether these 

can be successfully removed through matching. If matching removes statistical differences, en-

dogeneity concerns based on observable selection are alleviated, and the procedure has created 

statistical twins. Kuhn and Weinberger (2005) include all leadership position variables into the 

same regression, so their interpretation is always against the omitted “no leadership” group.  

Our PSM analysis differs slightly here in terms of comparison group and sample com-

position: We individually estimated the effects of each leadership category. In doing so, we 

compared those who were presidents and captains to all other respondents. In this way, our 

results regarding president and captain would have a stronger interpretation regarding the rela-

tionship between leadership and earnings in later-life than the original findings (we report a 

direct OLS comparison in Table 2B in the online appendix). We did, however, compare those 

were presidents or captains against those who were not granted leadership opportunities making 

the results directly comparable with the corresponding OLS findings.  

We therefore employ different matching models to infer leadership coefficient esti-

mates vis-à-vis the respective control group. After balancing, we estimate the samples’ average 

treatment effects on the treated. These effects provide evidence as to what would have happened 
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had the leader not led (conditional on the included observable variables). Would earnings have 

been higher, lower, or unaffected? 

4.4.3.2 Sensitivity analysis for omitted variables in the PSM estimation 

The PSM adjusts for omitted selection based on observable variables that correlate with a sus-

pected endogenous regressor, but is, of course, limited to those variables available in the Project 

TALENT dataset. The results would still not unveil the actual causal leadership effect if there 

were selection on other unobservable variables or other omitted causes, which correlate with 

the disturbance in the outcome regression. We tackle this problem using two additional 

measures: calculating PSM sensitivity bounds and using instrumental variables.  

Matching estimators are susceptible to the omission of variables that predict both the 

selection into treatment and the subsequent earnings (Guo, & Fraser, 2014; Dehejia, & Wahba, 

2002). In response, we estimate Rosenbaum bounds to test for potential unobservable confound-

ing variables (Rosenbaum, 2002). Rosenbaum bounds help to determine how strongly an un-

observable confounding variable must influence the leadership variable to undermine the con-

clusions about the causal impact of leadership positions on subsequent earnings derived from 

the PSM estimates (DiPrete, & Gangl, 2004). Hence, Rosenbaum bounds check how sensitive 

the treatment effect estimates are to the inclusion of new variables that would affect both the 

probability of receiving the treatment and the outcome variable. Rosenbaum bounds do not rely 

on the search for variables that satisfy the assumptions for instrumental variables. Rather, they 

work on the assumption that there are unobservable confounding variables, and they can thus 

be applied to derive the sensitivity of the PSM estimates (Peel, & Makepeace, 2012).  The 

bounds indicate how the confidence interval for the estimated treatment effects would change 

if unobservable confounding variables exist. For example, for the positive leadership position 

coefficient under investigation, the confidence intervals would widen (and include zero) if there 

are unobserved variables that can cause the odds ratio of being granted leadership opportunities 

in high school to differ between the treatment and comparison groups by the calculated value 

of the test statistic. Only variables that greatly increase the odds of treatment and outcome sim-

ultaneously are considered problematic. The Rosenbaum bounds convey worst-case infor-

mation regarding the uncertainty inherent in matching estimators. They show how influential a 

potential confounding variable must be, in order to completely undermine the causal conclu-

sions drawn from the matching analysis (DiPrete, & Gangl, 2004; Peel, & Makepeace, 2012). 

We report the sensitivity of each significant treatment effect using Rosenbaum bounds. 
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4.4.4 Overcoming endogeneity as a result of other (unobservable) omitted causes 

through instrumental variables 

To overcome the problem of endogeneity arising from unobserved causes, we follow Antonakis 

et al. (2010: 1100), who suggest that “the coefficient of x could be interpreted causally if an 

exogenous source of variance, say z, were found that strongly predicts x and is related to y via 

x only, and unrelated to e (the combined term).” We therefore exploit instrumental variable 

techniques, where instruments are strongly related to the suspected endogenous leadership var-

iable but only indirectly connected with the earnings measure via the instrumented variables. 

We isolate the variance in the error term of the outcome equation that the control variables and 

the instruments predict in the suspected endogenous leadership variable to recover the causal 

effect of leadership opportunities on earnings (Schaffer et al., 2013). Employing instrumental 

variable techniques is an additional strategy for the consistent estimation of causal effects be-

tween leadership opportunities in high school and later-life earnings. Importantly, because the 

uncertainty embedded in the instrumental variable estimation is different from the uncertainty 

underlying the preceding matching approach both approaches increase the information about 

the causal effect of the variable of interest on the outcome (Antonakis et al., 2010; DiPrete, & 

Gangl, 2004). In the corresponding first stage, the endogenous regressor (leadership variable) 

is regressed on the instruments and covariates (Bascle, 2008). The first stage therefore isolates 

the variation in the endogenous variable that is not correlated with the error term of the outcome 

regression. The corresponding instrumented (fitted) value of the endogenous variable is used in 

the second stage in lieu of the endogenous regressor (Bascle, 2008).  

More specifically, we rely on information about parental behavior as instrumental var-

iables. According to social learning theory, socialization occurs via observational (vicarious) 

learning from role models (Bandura, 1977). As such, the social context in which children find 

themselves in has a tremendous impact on how they form their own self-image (Bandura, 1977). 

Especially in early adolescence, children develop self-concepts about who they are and 

who they would like to be. In this respect, parents can act as reflective modelling agents (Wiese, 

& Freund, 2011). Hence, children will engage in a process of cognitive evaluations about be-

haviors they have seen (or heard of) by their parents or may react positively to suggestions 

made by their parents about certain types of behavior. We would therefore suggest that if par-

ents were members of clubs or teams, children would engage in similar behaviors and also join 



94 

 

clubs or teams, which in turn, might increase their chances of being granted leadership oppor-

tunities in similar teams or clubs. As a case in point, Seppänen (1982) showed that parents 

(sports) club membership links to the type of sports club their children join.  

We therefore employ the information provided about whether each parent was a mem-

ber of a club or a team during the child’s adolescence as instrumental variables.  We test for 

each effect (President and Captain, Captain only, and President only) separately. In order to 

conduct this analysis, parental team/club membership must not influence children’s subsequent 

earning directly when conditioning on the endogenous regressor children team/club member-

ship. As such, theoretically the team or club membership of the parents should only affect the 

selection of children into activities through parental role modelling but does not allow an infer-

ence where team or club membership of the parents predicts earnings of the children some 11 

years later.  

We think that prior research supports this notion. Eime et al. (2013) showed that only 

a very limited number of types of child sport memberships (e.g. golf or tennis) were associated 

with higher socioeconomic status of the parents while many other types of sport memberships 

(e.g. gym or martial arts) are unrelated to parental socioeconomic status. Also, extracurricular 

involvement (such as club membership) among adolescents is strongly associated with per-

ceived parental support which in turn is uncorrelated with socio-economic status (Anderson et 

al., 2003; Marcen et al., 2013).  

Our analysis does not specifically differentiate between different types of club or team 

memberships but rather subsumes very many possible types of club membership (comprising 

religious groups, charity work, school boards, unions,) and team membership (sports, arts, 

crafts, music) for the parents that span very many socioeconomic groups. We capture all differ-

ent types of leisure-time sport team or community club membership of the parents (for example, 

the dummy variables Mother Team possesses the value of 1 if the mother is member in any type 

of team). Hence, we do not suspect that there are effects between parents’ club and team mem-

bership and children’s subsequent wages eleven years later.  

Furthermore, we employ the control variables Wealthy and Comfortable in our main 

analyses. These variables capture whether respondents’ families currently can afford a comfort-

able or wealthy lifestyle. These variables derive from the question “Which of the following best 

describes your family’s finances?” and the answer options ranged from “A – Barely able to 

make a living” to “F – Extremely Wealthy”.  
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Of course, we also provide empirical evidence consistent with the validity of the in-

struments by, for example, testing the overidentifying restrictions in all IV regressions (Bascle, 

2008; Moreira, 2003). In testing for weak instruments, we follow the work of Stock and Yogo 

(2005). The presence of instrument weakness may cause IV coefficient estimates that are biased 

towards OLS coefficients and to understate confidence intervals (Becker et al., 2011). For a 

model using a single endogenous variable, the first-stage F-statistic can be used to assess the 

weakness of instruments. The corresponding weakness is expressed as the size of the bias of 

our IV estimator relative to that of the corresponding OLS estimator. 

Last, we also address an extension to deal with potentially weak instruments where the 

exclusion restrictions are potentially violated. We therefore employ the estimator suggested in 

Lewbel (2012) to identify the parameters of interest. The approach generates additional instru-

ments and ensures identification through heteroskedastic covariance restrictions (Lewbel, 

2012). In the case of Lewbel (2012), identification is achieved by introducing regressors that 

are uncorrelated with the product of the heteroskedastic errors.  This is often the case if error 

correlations stem from unobserved common factors (as is hypothesized in our case). This ex-

tension supplements external instruments and subsequently helps to improve the efficiency of 

the standard IV estimator (Baum, & Lewbel, 2019; Lewbel, 2012). 

4.4.5 Extension to white females, non-whites, and a follow-up study  

Kuhn and Weinberger (2005: 399) noted that they “[…] study the labor market valuation of 

leaders without the confounding effects of race or gender discrimination or of the changing 

roles and expectations of women during this time period.” The data which Kuhn and Wein-

berger (2005) drew upon includes many females, for which limits in their career advancement 

have been scientifically investigated subsequently (Matsa, & Miller, 2011; Ragins et al., 1998). 

The exclusion of females hence severely limits the generalizability of the results. As far as 

female leadership is concerned, studies, using instrumental variables to control for endogeneity, 

have shown positive effects of leadership opportunities in high school on women’s later perfor-

mance. Athletic participation increased both college attendance and labor force participation 

among women (Stevenson, 2010). This finding is similar to that of Eide and Ronan (2001), who 

found that athletic participation is associated with educational outcomes positively for white 

females but negatively for white males. In light of these findings, we study if the positive lead-

ership effects reported for males in the Project TALENT sample also materialize in the white 

female subgroup. 
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Kuhn and Weinberger’s (2005) explicit exclusion of non-whites might also affect the 

generalizability of the results. Among other things, the focus on white males limited the impli-

cations that could be drawn regarding relationship between leadership positions in high school 

and subsequent occupational earnings for a wider population, and thus for policy implications 

regarding leadership training initiatives. Using data from the Project TALENT and the NCES 

studies, Weinberger (2014b) explored the leadership activities of black students and analyzed 

the link between leadership engagement and subsequent occupational earnings. First, and in 

contrast to other work focusing on minorities (Lozano, 2008), Weinberger (2014b) found that 

black high school students engage at the same rate in extracurricular activities as white high 

school students, yet the earnings premium generally associated with leadership opportunities in 

high school was absent for black males. Importantly, Project TALENT was initiated in 1960, 

four years before the Civil Rights Act of 1964, which, in its Title VII, legally mandated equal 

pay for equal work, irrespective of the race of the employee. After 1964, the pay gap between 

Whites and Blacks decreased, but remained substantial (Brown, 1984). Investigations using 

quasi-experimental methods can help to better understand the distinctive relationships between 

leadership opportunities and wages for different ethnicities.  

As a starting point, we provide the OLS regressions for white females, non-white 

males, and non-white females using the same format and employing the same control variables 

as the direct replication from Model 4 in Table 2. We then extend these OLS estimates by 

employing propensity score matching for white females and both non-white genders. To do so, 

we first calculate the Matching Models 1, 2 and 3 as well as the Outcome Assessment Model 1 

for white females, non-white males, and non-white females to assess whether there are variables 

that simultaneously affect treatment and outcome. Subsequently, we estimate the propensity 

score and carry out the matching procedure for white females, non-white males and non-white 

females. This allows us to assess potential causal relationships between being granted leader-

ship opportunities in high school and wages in later working life for groups not covered in Kuhn 

and Weinberger (2005). Again, we estimate the sensitivity of the treatment effects using Ros-

enbaum bounds for each sample. Additionally, we employ the instrumental variable regressions 

to control for other omitted causes.  

We also investigate the long-term effect that leadership opportunities in high school 

have on later life income. Toward this end, we extend the original time horizon by including 

data from the 2011-12 Pilot Study for a subsample of the original data. This should provide a 
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more detailed and robust understanding of whether being granted leadership opportunities in 

high school is a mere signal for subsequent job market performance (and for which group of 

leaders), or whether it equips individuals with skills that provide useful beyond the initially-

studied 11-year window. The 2011-12 Pilot Study documents household income, which can be 

used to assess whether the effect of leadership opportunities in high school on later life income 

is consistent in strength and direction with the individual earnings results reported in Kuhn and 

Weinberger (2005). As the household income is reported on a five-scale ordinal variable, we 

employ an ordered logistic regression using the same independent variables as in the direct 

replication.  

4.5 Results 

Table 4.1 reports the descriptive statistics and the correlations of the variables em-

ployed in Table 2 in Kuhn and Weinberger (2005).17 

4.5.1 Direct replication 

We begin our replication and extension by exactly replicating the results from Kuhn and Wein-

berger (2005). Results are tabulated in Table 4.2. Model 1 represents the baseline model inves-

tigating the effects of leadership positions and controlling for mere club and team memberships 

on hourly wages. Like Kuhn and Weinberger (2005), we then add the math score in Model 2 to 

control for cognitive skills. Models 3 and 4 also include variables for lack of education on the 

part of the respondent’s parents and on the part of the respondent, respectively. Furthermore, 

all models include grade and school attainment control variables, as well as (unreported) school 

dummies. Table 4.2 reports the findings for those four models for a sample size of 24,041 white 

males. This equals the sample size of Table 2 in Kuhn and Weinberger (2005).  

 
17 Correlations for all variables employed in the subsequent analyses and for the new samples are available as Tables 1A, 1B, 1C and 1D in 

the appendix. 
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Table 4.1: Descriptive statistics and correlations for KW sample 

Variable Name M SD 1 2 3 4 5 6 7 8 9 10 11 

Log (Hourly Earnings) 1.58 0.45            

Both Captain and President 0.21 0.41 0.07***           

Captain Only 0.13 0.33 0.01 -0.20***          

President Only 0.24 0.42 0.02* -0.29*** -0.21***         

Both on Team and in Club 0.76 0.42 0.09*** 0.17*** 0.11*** 0.05***        

On Team Only 0.02 0.15 -0.01 -0.04*** 0.01† -0.05*** -0.29***       

In Club Only 0.19 0.39 -0.08*** -0.15*** -0.11*** -0.01* -0.88*** -0.08      

Math Score 53.15 28.53 0.22*** 0.02** -0.03*** 0.10*** 0.08*** -0.04*** -0.05***     

High School 0.50 0.50 0.03*** 0.02** 0.00 0.00 0.03*** 0.00 -0.02*** 0.04***    

College Degree 0.20 0.40 0.06*** 0.03** -0.01* 0.09*** 0.10*** -0.04*** -0.04*** 0.23*** -0.50***   

Some College 0.23 0.42 -0.04*** 0.00 0.00 -0.01* -0.01† 0.01† 0.01 -0.08*** 0.06*** -0.75***  

College Degree or Higher 0.40 0.49 0.19*** 0.06*** -0.01 0.09*** 0.10*** -0.05*** -0.06*** 0.47*** 0.00 0.23*** -0.45*** 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Pairwise correlation coefficients derived from Pearson-correlations. N. of obs. is 24,041. 
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Table 4.2: Direct Replication – OLS of KW Table 2 

 Model 1 Model 2 Model 3 Model 4 

 Log (Hourly 

Earnings) 

Log (Hourly 

Earnings) 

Log (Hourly 

Earnings) 

Log (Hourly 

Earnings) 

Leader     

Both Captain and President 0.054*** 0.049*** 0.049*** 0.038** 

 (0.012) (0.012) (0.012) (0.012) 

Captain Only 0.036** 0.036** 0.036** 0.035** 

 (0.013) (0.013) (0.013) (0.013) 

President Only 0.036*** 0.020† 0.019† 0.010 

 (0.011) (0.011) (0.011) (0.011) 

Member     

Both on Team and in Club 0.107*** 0.073** 0.070** 0.055* 

 (0.025) (0.024) (0.025) (0.025) 

On Team only 0.083* 0.062† 0.060† 0.059† 

 (0.035) (0.034) (0.034) (0.034) 

In Club Only 0.036 0.008 0.005 -0.006 

 (0.026) (0.026) (0.026) (0.026) 

Controls     

Math Score  0.002*** 0.002*** 0.001*** 

  (0.000) (0.000) (0.000) 

Parent´s Education     

High School   0.020† 0.011 

   (0.011) (0.011) 

College Degree   0.015 -0.008 

   (0.014) (0.014) 

Educational Attainment     

Some College    0.051*** 

    (0.012) 

College Degree or Higher    0.136*** 

    (0.013) 

School-fixed Effects Yes Yes Yes Yes 

F-Value 23.58 45.63 34.87 39.30 

p > F 0.000 0.000 0.000 0.000 

Adjusted R2 0.160 0.177 0.178 0.189 

Observations 24,041 24,041 24,041 24,041 

† p<0.1, * p<.05, ** p<.01, *** p<0.01 

Note: Table 4.2 directly replicates the results depicted in Kuhn and Weinberger (2005: 405 (columns 5-8). The 

coefficients are derived from OLS regressions with standard errors in parentheses. All models include (unreported) 

grade and school attainment control variables as well as school dummies. Models 3 and 4 include an unreported 

dummy variable for lack of parent’s education. Model 4 includes an unreported dummy variable for lack of edu-

cational attainment.  
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Importantly, we are able to derive almost the exact coefficients as in the original work; 

visible differences only exist in the third digit. The coefficient associated with being both, cap-

tain and president, is significant in all regressions (at the 1 percent level), and ranges between 

0.038 and 0.54. Similarly, the coefficient for those who gained experience as captain only is 

also positive (ranging between 0.035 and 0.036) and significant at the 1 percent level through-

out all specifications. Last, we find that the coefficient associated with those who act as presi-

dent only is positive and significant in three out of four regression specifications (ranging be-

tween 0.019 and 0.036) and significant at least at the 10 percent level. To summarize, we can 

corroborate the original findings in Kuhn and Weinberger (2005) in significance and direction, 

and are almost exact in our coefficient and standard error estimations.18  

4.5.2 Grounds for endogeneity concerns based on observable omitted selection 

Regarding omitted selection based on observable variables, Table 4.3 depicts the results of Out-

come Assessment Model 1 as well as the Matching Model 1, 2 and 3 based on a sample size of 

22,095 white males.19 Among the variables that affect both, the log of the hourly earnings and 

either of the three dichotomous leadership variables, we find several variables with a significant 

(positive and negative) influence on both the outcome variable and the three individual predic-

tor variables. Among others, we find that those who are overweight are earning less and are less 

likely to act as both, president and captain. Wealthier students, those with a higher business 

score, and those more interested into businesses are more likely to earn more and are more 

likely to act as club president. A higher military score is associated with higher later life earn-

ings and the likelihood of acting as captain and president. A higher English score is interestingly 

related to lower earnings, but a higher likelihood of acting as captain and president, as well as 

acting as a president only. Fine arts awards are associated with lower later life earnings, but a 

higher chance to act as a president and a lower chance to act as a captain of a team. Reading 

skills are related to higher earnings, but also induce a lower likelihood of acting as both, presi-

 
18 Table 2A in the appendix reports the same models as Table 2 but with robust standard errors. Table 2B in the appendix reports effects for 

each leadership category individually (with the no leadership category as the reference group). The interpretation of both tables does not 

differ from the interpretation of Table 2. 

19 This sample size is slightly smaller compared to the sample size of 24,041 in Table 2 of Kuhn and Weinberger (2005), as we employ addi-

tional variables with more missing information and thus more missing observations. The slightly smaller sample size does not affect the in-
terpretations and conclusions drawn from our matching analysis.  We tested the susceptibility of the previous estimates to the sample reduc-

tion. In summary, we find no material differences in our estimations.  
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dent and captain. All in all, we find that there exist several variables that affect both, the out-

come variable and the three predictor variables simultaneously which provides grounds to sus-

pect an endogenous relation between the predictor variables and the outcome of interest.   

4.5.3 Endogeneity adjustments based on observable omitted selection 

We report how well the matching procedure balances the treatment and control sample in Bal-

ancing Model 1, 2 and 3 in Table 4.4.20 Balancing Model 1, with a sample of 22,095 white 

males, provides the basis for comparing students who were team captains and club presidents 

during high school to all other students.  When investigating those who were only president or 

captain it is important not to include non-leaders and those that were presidents and captains 

(those that were the main focus of the analysis in model 1) simultaneously in the control group 

as the effects of president and captain and non-leadership might cancel each other out. We 

therefore prune the analysis of those who were captain and president in the two subsequent 

analyses. Balancing Model 2, with a sample of 12,223 white males, provides the basis for com-

paring all students who were only team captains but not club presidents to those that were not 

leaders. Balancing Model 3, with a sample of 14,653, provides the basis for comparing all stu-

dents who were only club presidents but not team captains to those that were not leaders. We 

also report the reduction in bias for each matching covariate that the procedure resulted in.  

  

 

20 The propensity-score matching approach does not include school dummies. 



102 

 

Table 4.3: Conceptual replication - Endogeneity susceptibility of KW Table 2 estimates 

 Outcome As-

sessment 

Model 1 

Matching 

Model 1 

Matching 

Model 2 

Matching 

Model 3 

 Log (Hourly 

Earnings) 

President and 

Captain 

Captain Only President Only 

Leader (for Model 1 only)     

Both Captain and President 0.046**    

 (0.015)    

Captain Only 0.034*    

 (0.017)    

President Only -0.005    

 (0.013)    

Member     

Both on Team and in Club 0.012 1.573*** 1.161* 0.901 

 (0.027) (0.299) (0.463) (0.635) 

On Team only 0.042 0.971* 1.019* 0.258 

 (0.039) (0.382) (0.517) (0.688) 

In Club Only -0.024 0.707* 0.089 0.788 

 (0.028) (0.317) (0.477) (0.638) 

Personal Data     

Overweight -0.122* -0.611† 0.455 -0.138 

 (0.048) (0.332) (0.462) (0.279) 

Underweight -0.033 -0.388 -0.162 0.309 

 (0.037) (0.281) (0.270) (0.233) 

Tall -0.022* -0.032 -0.020 -0.027 

 (0.011) (0.077) (0.089) (0.070) 

Short 0.024 0.098 -0.259† 0.017 

 (0.021) (0.119) (0.140) (0.116) 

Dates -0.001 0.135*** -0.072* 0.041 

 (0.004) (0.029) (0.033) (0.028) 

Comfortable 0.012 0.013 -0.096 0.115 

 (0.016) (0.104) (0.115) (0.094) 

Wealthy 0.073*** 0.042 -0.153 0.198† 

 (0.019) (0.124) (0.136) (0.113) 

Personal Characteristics     

Sociability 0.021*** 0.044 -0.045 0.085* 

 (0.006) (0.043) (0.048) (0.036) 

Vigor 0.002 0.228*** 0.164** -0.134*** 

 (0.007) (0.045) (0.051) (0.040) 

Mature -0.002 0.079† -0.180*** 0.126** 

 (0.008) (0.046) (0.053) (0.045) 

Self-Confidence 0.008 0.023 0.019 0.113*** 

 (0.005) (0.039) (0.044) (0.033) 

Tidiness 0.007 -0.034 0.027 0.006 

 (0.006) (0.041) (0.048) (0.038) 

Test Scores     

Math Score 0.002*** 0.002 0.004† 0.001 

 (0.000) (0.002) (0.002) (0.002) 

Vocabulary Score -0.008 -0.067 -0.003 -0.227 

 (0.029) (0.191) (0.224) (0.179) 

Social Studies Score -0.024 -0.370* 0.143 0.103 

 (0.027) (0.167) (0.204) (0.167) 

Science Score -0.006 -0.274 -0.710*** 0.451** 

 (0.027) (0.188) (0.212) (0.163) 

Scientific Attitude Score 0.088*** -0.020 -0.155 0.134 

 (0.020) (0.131) (0.166) (0.129) 

Law Score 0.013 -0.218 -0.253 0.069 

 (0.022) (0.145) (0.177) (0.137) 

Military Score 0.058** 0.278* -0.192 0.069 
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 (0.022) (0.135) (0.168) (0.125) 

Business Score 0.081*** -0.248 0.064 0.272* 

 (0.021) (0.154) (0.178) (0.135) 

Etiquette Score 0.010 0.010 -0.170 0.062 

 (0.018) (0.125) (0.148) (0.114) 

English Score -0.056* 0.343† -0.009 0.370* 

 (0.025) (0.180) (0.205) (0.174) 

Awards     

Science Awards -0.001 0.014 0.020 -0.020 

 (0.007) (0.039) (0.054) (0.037) 

Fine Arts Awards -0.006† 0.005 -0.088* 0.042* 

 (0.003) (0.021) (0.035) (0.020) 

Sports Awards 0.001 0.109*** 0.027 0.018 

 (0.002) (0.013) (0.018) (0.013) 

Cognitive Skills     

Arithmetic Skills -0.007 -0.004 -0.047 -0.210† 

 (0.020) (0.131) (0.147) (0.111) 

Reading Skills 0.039* -0.226† 0.097 0.096 

 (0.018) (0.120) (0.145) (0.109) 

Clerical Skills 0.009 0.067 -0.076 -0.048 

 (0.019) (0.126) (0.142) (0.118) 

Identification Skills -0.002 -0.280* -0.034 0.052 

 (0.019) (0.128) (0.144) (0.112) 

Personal Interests     

Public Service Interest 0.007 0.111* -0.086† 0.076† 

 (0.007) (0.048) (0.050) (0.040) 

Business Management Interest 0.012† 0.014 0.139** 0.035 

 (0.007) (0.047) (0.053) (0.038) 

School-fixed Effects No No No No 

F / Chi2 13.83 457.81 141.42 226.56 

p > F /Chi2 0.000 0.000 0.000 0.000 

R2 / Pseudo R2 0.067 0.080 0.038 0.034 

Observations 22,095 22,095 22,095 22,095 

† p<0.1, * p<.05, ** p<.01, *** p<0.01 

Note: Table 4.3 assesses the need for a potential endogeneity adjustment of the results depicted in Kuhn and 

Weinberger (2005). The coefficients for Outcome Assessment Model (1) are derived from OLS regressions, coef-

ficients for Matching Model 1, 2 and 3 are derived from logit regression with standard errors in parentheses. The 

dependent variable in (1) is the natural logarithm of hourly earnings, the dependent variable in the matching models 

1,2, and 3 correspond to a dichotomous indicator variable whether individuals acted as captain and president, 

captain only, or president only. Table 4.3 does not include school dummies as the propensity-score matching ap-

proach does not include school dummies. Table 3A in the online Appendix shows the same models with school 

dummies.
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Table 4.4: Conceptual replication - PSM Efficiency for KW sample  
 Balancing Model 1 

Treatment: President and Captain 

Balancing Model 2 

Treatment: Captain Only 

Balancing Model 3 

Treatment: President Only 

 Mean Bias Reduc-

tion 

Mean Bias Reduc-

tion 

Mean Bias Reduction 

 Treated Controls in % Treated Controls in % Treated Controls in % 

Member          

Both on Team and in Club 0.906 0.899 95.9 0.888 0.885 98.6 0.804 0.798 96.6 

On Team only 0.012 0.012 98.4 0.029 0.028 76.3 0.010 0.011 96.8 

In Club Only 0.077 0.083 96.3 0.077 0.081 97.8 0.181 0.185 96.0 

Personal Data          

Overweight 0.008 0.008 98.8 0.014 0.016 0.9 0.013 0.013 90.0 

Underweight 0.013 0.013 93.8 0.019 0.020 83.4 0.019 0.020 79.4 

Tall 0.275 0.274 86.4 0.287 0.290 92.2 0.277 0.279 93.7 

Short 0.089 0.087 85.6 0.083 0.0870 82.5 0.084 0.084 99.4 

Dates 1.346 1.359 95.3 1.182 1.1860 98.3 1.172 1.194 89.2 

Comfortable 0.686 0.685 86.3 0.674 0.670 82.2 0.697 0.693 -690.7 

Wealthy 0.195 0.196 94.5 0.183 0.190 79.0 0.184 0.186 94.1 

Personal Characteristics          

Sociability 0.272 0.274 99.3 0.108 0.113 98.6 0.155 0.154 99.6 

Vigor 0.338 0.339 99.6 0.161 0.165 98.9 0.117 0.110 97.9 

Mature 0.246 0.251 98.4 -0.013 0.007 85.1 0.238 0.232 98.5 

Self-Confidence 0.181 0.167 93.0 0.000 0.011 92.3 0.200 0.183 95.0 

Tidiness 0.188 0.201 92.8 0.037 0.035 98.9 0.171 0.176 98.2 

Test Scores          

Math Score 54.698 54.788 93.3 51.561 51.957 42.8 58.778 58.340 94.5 

Vocabulary Score 0.513 0.516 67.0 0.484 0.490 71.3 0.571 0.569 96.2 

Social Studies Score 0.518 0.521 67.4 0.501 0.508 20.6 0.568 0.566 96.6 

Science Score 0.512 0.516 64.9 0.480 0.487 77.1 0.572 0.568 92.4 

Scientific Attitude Score 0.517 0.521 -206.6 0.497 0.504 -17.7 0.551 0.549 96.0 

Law Score 0.514 0.514 89.1 0.492 0.497 67.2 0.552 0.548 90.7 

Military Score 0.523 0.524 95.1 0.493 0.497 -371.0 0.541 0.542 98.5 

Business Score 0.513 0.513 97.8 0.487 0.487 98.7 0.557 0.555 96.3 

Etiquette Score 0.512 0.514 69.3 0.484 0.487 79.4 0.526 0.524 91.1 
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English Score 0.528 0.530 89.5 0.494 0.495 -65.1 0.573 0.571 97.4 

Awards          

Science Awards 0.388 0.404 88.5 0.242 0.241 97.8 0.324 0.350 79.9 

Fine Arts Awards 0.833 0.890 80.2 0.5059 0.5277 69.2 0.758 0.808 85.0 

Sports Awards 2.725 2.762 97.1 2.1040 2.1693 94.0 1.837 1.901 92.2 

Cognitive Skills          

Arithmetic Skills 0.509 0.509 99.3 0.5064 0.5034 26.1 0.528 0.530 90.2 

Reading Skills 0.501 0.498 70.9 0.5048 0.5027 68.4 0.512 0.511 -186.1 

Clerical Skills 0.520 0.520 97.2 0.5078 0.5055 74.7 0.534 0.536 92.0 

Identification Skills 0.496 0.492 72.3 0.4973 0.4906 59.2 0.510 0.512 50.2 

Personal Interests          

Public Service Interest 0.170 0.168 98.8 0.0147 0.0063 95.2 0.130 0.124 97.9 

Business Management Interest 0.167 0.151 92.2 0.0586 0.0381 89.7 0.091 0.093 99.1 

 LR Chi2 p > Chi2 Mean Bias LR Chi2 p > Chi2 Mean Bias LR Chi2 p > Chi2 Mean Bias 

Unmatched 1821.64 0.000 13.5 1315.21 0.000 13.1 1708.29 0.000 18.9 

Matched 8.82 1.000 0.8 8.48 1.000 1.3 8.81 1.000 1.0 

Note: Table 4.4 depicts the mean values and bias reduction derived from Propensity Score Matching. The balancing models are based on a dichotomous treatment indicator variable 

that equals one if individuals acted as captain and president (balancing model 1), captain only (balancing model 2), or president only (balancing model 3), and zero otherwise. 
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Table 4.4 reports that the mean bias for the unmatched sample ranges from 13.5 per-

cent (for the effect of presidents and team captain on earnings) to 13.1 percent (for those who 

are only captains) and 18.9 percent (for those who are presidents only). In summary, the esti-

mates derived for the effect of leadership opportunities on earnings may still include the extent 

to which leadership experience reflects prior characteristics that determine leadership selection. 

The true causal effects that reflect the extent to which leadership opportunities induce the de-

velopment of leadership skills that lead to higher earnings could be smaller or larger. Given the 

size of the coefficient estimates, this might result in overestimating its statistical significance. 

Importantly, the matching procedure reduces the bias to between 0.8 and 1.3 percent, which 

indicates that treatment effects derived from such an estimation would be close to the true pa-

rameter estimate when selection based on observable characteristics is taken into account. The 

model achieves substantial bias reductions in almost all variables. Large differences in model 

accuracy are reported for variables that are very close in values before matching, such as the 

scientific attitude score in balancing model 1, the military and English score in balancing model 

2, and reading skills and comfortable assessment in balancing model 3. Importantly, none of 

the Chi2 tests indicates that there are variables that affect the predictor variables of leadership 

positions significantly after matching has been applied. Consequently, we are confident that 

balance has been achieved through propensity score matching.  

4.5.4 Treatment effect estimation 

The treatment effect results are tabulated in Table 5.21 We report the coefficient estimate and 

standard errors and also report the corresponding Rosenbaum bounds for the susceptibility of 

the derived estimates to potential unobserved confounders. We report the average treatment 

effect on treated (ATT). This measures the average effect of the treatment on the group of in-

dividuals that received treatment. Thus, the ATT informs us how much an individual that was 

granted a leadership opportunity in high school gained (or lost) in earnings as a consequence of 

having acted as president, captain, or both. 

 

21 Li (2013) pointed out that the choice of matching estimators might affect the estimates derived. We provide estimates from different 

matching estimators, kernel and radius matching, to supplement the propensity score matching results. The positive effects for those who 

were president and captain remain invariant. The results for those who were only president remain insignificant. The results also suggest a 

significant ATT for those who were only captain. In addition, we also employ a multinominal treatment regression to assess the validity of 
our matching results. Hereby, we create a four-point scaled treatment variable that is 0 for those who were neither team captains nor club 

presidents in high school, 1 for those who were only team captains, 2 for those who were only club presidents, and 3 for those who were 

team captains and club presidents. We conduct this analysis using the mtreatreg package for Stata (Deb, 2009). We find positive and signifi-
cant coefficients for those who were president and captain and those who were only captain while those who were only president do not seem 

to have higher wages in later working life. 
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To begin with, we find that the treatment effect estimate (ATT=0.044) for those that 

acted as presidents and captains is similar to the OLS estimate reported in table 2 (ß=0.038) and 

the coefficient is still significant at the one-percent level.22 Consequently, the original direction 

and interpretation remains invariant. Moreover, the coefficient is only slightly susceptible to a 

potential omitted confounder because only variables that increase the log of the odds of being 

president and captain by 1.2 and that simultaneously affect the log of the hourly earnings would 

render the treatment effect insignificant. Given the large number of variables included in the 

matching procedure and the original bias being only 13 percent, we consider this scenario un-

likely.  

For those who acted as captain only, we also find a smaller coefficient estimate 

(ATT=0.017) that is only significant at the 10 percent level. Moreover, the coefficient estimate 

is highly susceptible to a potential omitted confounder, as already small effects from confound-

ing variables would render the treatment effect insignificant. Last, we did not find a significant 

treatment effect for those that acted as presidents only. The coefficient does not attain statistical 

significance. As such, we can corroborate the earnings effect for those acting as captains and 

presidents, but we did not find supportive evidence for those acting as presidents or captains 

only. 

Table 5: Conceptual replication – PSM Treatment Effect Assessment for KW sample  
 Average Treatment Effect on the 

Treated 

Sensitivity of Estimate (Rosenbaum 

Bounds) 

Treatment   

President and Captain 

(N=22,095) 

0.044*** 

(0.008) 

1.21 

Captain Only 

(N=12,223) 
0.017† 

(0.010) 

1.04 

President Only  

(N=14,653) 

0.001 

(0.008) 

1.00 

† p<0.1, * p<.05, ** p<.01, *** p<0.01. 

Note: Table 5 reports the Average Treatment Effect on the Treated derived from Propensity Score Matching with 

standard errors in parentheses. Rosenbaum bounds are estimated for the respective Average Treatment Effect on 

the Treated for p = 0.05. The sample for the treatment analysis is based on the sample of white males employed in 

Kuhn and Weinberger (2005).   

  

 

22 The coefficient estimate for those who are president and captain derived from a model that uses each leadership category in separate re-

gressions (with the category “no leadership” as the baseline) is 0.027. Results are reported in Table 2B in the appendix.    
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4.5.5 Endogeneity adjustments based on other omitted causes 

To identify whether we need to test for the susceptibility of our estimates to potential other 

omitted causes by applying instrumental variable regressions, we investigated whether the es-

timates obtained by the least squares approach in Kuhn and Weinberger (2005) are consistent. 

Hereby, we employ the model specifications underlying Table 4.6 and estimate several aug-

mented OLS regressions on the leadership and earnings measures. We treat each leadership 

categorization variable as dependent variable in separate regressions, respectively; each model 

tested includes all control variables and the instruments. We therefore first estimate a regression 

with the leadership categorization variable as dependent variable and the control variables and 

instruments as explanatory variables. We then store the residuals from each regression and in-

clude the residuals as predictors in the original OLS model (with the controls but without the 

instruments) (Davidson, & MacKinnon, 1993). The p-values derived for captain and president 

were small and suggest that the OLS estimates are not consistent. The p-values for captain or 

president only suggest no endogeneity concerns with respect to the leadership categories subject 

to our chosen instruments. Similar implications derive from using the endog option when em-

ploying an extended instrumental variables/2SLS framework using ivreg2 in Stata. We there-

fore subsequently report IV model extensions using conditional IV estimations (that allow for 

robust inference in the presence of weak instruments) and heteroskedasticity-based IV estima-

tions that make use of generated instruments to supplement the chosen instruments.  

Table 4.6 contains the results from instrumental variable regression. The samples for 

the IV-regressions correspond to the samples from the PSM to make the results comparable. 23 

We therefore employ a sample size of 22,093 when instrumenting those who were team captains 

and club presidents, 12,221 when instrumenting those who were only team captains, and 14,847 

when instrumenting those who were only club presidents. 24 

To begin with, we first checked the suitability of our instruments. In Model 1 of Table 

4.6, the weak instrument test based on the first stage F-statistic (F(4, 22054)=6.90; p<0.001) 

indicates very little potential for weak instruments. The Cragg-Donald Wald statistic (31.31) in 

comparison with the critical values provided in Stock and Yogo (2005) reveals that a potential 

 
23 The corresponding OLS estimates using the leadership groups and the non-leadership category as the reference group are reported in Table 

2B in the appendix.   

24 The instruments are derived from the self-reports of the questionnaire respondents and cannot be corroborated by the parents. This might 

invite the risk of common source bias. However, because we rely on the concept of vicarious learning here, perception of the children is of 
importance. As such, if the children do not know about their parent’s prior behavior or erroneously believe that their parents might have done 

something they factually did not do, this could theoretically still impact on children’s behavior.  
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bias is relatively small (less than 5% of OLS) and also that the potential size distortion is seem-

ingly small (less than 10% of the maximal IV size).  

As it relates to Model 2, the first stage F value (F(4, 12183)=3.09; p<0.05) suggests 

potentially weak instruments. Correspondingly, the weak instrument test based on the F-statistic 

(Cragg-Donald Wald=13.06) reports a moderate potential bias (10% of OLS) and also a larger 

potential size distortion (more than 15% of the maximal IV size). As for model 3, the first stage 

F-statistic (F(4, 14613)=3.77; p<0.01) again suggests some warranted caution about instrument 

weakness. The tests for Model 3 reveal a small potential bias (Cragg-Donald Wald=11.27; less 

than 10% of OLS) but a moderate potential size distortions (more than 15% of the maximal IV 

size). Given the potential susceptibility of the findings to the presence of weak instruments, we 

therefore provide estimates also on the basis of the conditional instrumental variable regression 

suggested in Moreira (2003) and recommended in Andrews et al. (2019).25 

We also examine the exclusion restriction. In assessing the exclusion restriction, we 

rely on the Sargan-Hansen test to see whether we find evidence for the validity of at least one 

of the instruments tested. To begin with, the joint null hypothesis is that the instruments are 

valid instruments, uncorrelated with the error term, and that the excluded instruments are cor-

rectly excluded from the estimated equation. A rejection would cast doubt on the validity of the 

instruments.  Sargan's statistic provides evidence consistent with the validity of the instruments 

in all three models, under the assumption that at least one of the instruments is valid in the first 

place.  

Regarding the coefficient estimates, we find that the coefficient for those individuals 

that served as president in captain is significant in Model 1 of Table 4.6 when using the con-

ventional IV estimates and when employing the conditional IV estimator that adjusts for the 

presence of weak instruments. However, both coefficients for those who are presidents or cap-

tains only, turn insignificant when we compare each leadership category with the corresponding 

non-leader sample and instrument both variables separately in the first stage regressions. As 

 
25 We also follow the advice in Andrews et al. (2019) who suggest the use of the effective F-statistic based on Olea and Pflueger (2013) for 

errors that are potentially non-homoscedastic.  The test finds sufficient support against the presence of weak instruments (Model 1: Effective 
F-statistic= 31.45; TSLS critical value 10%=10.52; Model 2: Effective F-statistic= 12.89; TSLS critical value 10%=10.46; Model 3: Effec-

tive F-statistic= 11.88; TSLS critical value 10%=10.19). 
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such, we can corroborate the earnings effect for those students that act as presidents and cap-

tains, but again find only weak (at best) evidence that having experience as either president or 

captain affects the log of hourly earnings. 26 

In addition, Table 4.6 includes the estimators estimator suggested in Lewbel (2012). 

The coefficient for those who were team captains and club presidents remains significantly 

positive but is considerably smaller than the one reported in the conventional IV-regression 

while the coefficients for captain or president only remain insignificant. We discuss the inter-

pretation of these coefficient estimates in light of the original findings and the replication find-

ings in the discussion section. 

4.5.6 Assessing the generalizability of findings through sample extensions 

To assess the generalizability of our findings from the white male sample, we extend our anal-

yses using white females, non-white females, and non-white males. Results are shown in Table 

4.7. We report the coefficient estimates for all three samples following the format of Model 4 

in Table 4.2 to allow for a better comparison with the original findings. The large difference 

between the sample size for white males and white females derives from the fact that many 

white females were not in the workforce eleven years after the initial Project TALENT inter-

view. The even higher discrepancies between the white and the non-white samples stem from 

the fact that the base year questionnaire did not ask students to reveal their ethnicity (Wein-

berger, 2014b). Nevertheless, we try to include as many non-whites as possible by also as-

sessing the ethnicity data from the three follow-up waves.  

We find that only the coefficient associated with being a captain on a team is positive 

and significant for non-white males (ß=0.135, p<0.05). None of the other leadership variables 

attains statistical significance in any model. Hence, broadly speaking we cannot find evidence 

to generalize the main findings from the white male sample to the other three samples.  

 

26 Furthermore, Table 6C in the appendix incorporates school-dummies for the conventional IV-regression. This also reduces the size of the 

still significantly positive coefficient of Both President and Captain. 



111 

 

Table 4.6: Conceptual replication - Conventional IV Regression for KW sample 
 Conventional IV- Estimation Conditional IV- Estimation Heteroskedasticity-based IV 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

Instrumented Variables          

President and Captain 0.412*   0.321*   0.163*   

 (0.181)   (0.110)   (0.0685)   

Captain Only  0.008   0.114   0.058  

  (0.236)   (0.154)   (0.112)  

President Only   0.073   -0.038   0.293† 

   (0.227)   (0.115)   (0.165) 

School-fixed effects No No No No No No No No No 

First stage (Kleibergen-Paap) F-Statistic 6.90 3.09 3.77 66.89 7.73 49.13 15.26 5.78 3.71 

p-value (F-Statistic) 0.000 0.015 0.005 0.000 0.000 0.000 - - - 

Cragg-Donald-Wald F-Statistic 31.31 13.06 11.27 - - - 117.51 37.60 15.70 

Effective F-Statistics 31.45 12.90 11.88 - - - - - - 

Sargan-Hansen statistic 0.933 3.87 2.69 - - - 7.54 4.74 8.44 

p-value (Sargan-Hansen statistic)  0.812 0.276 0.442 - - - 0.375 0.692 0.295 

Andersen-Rubin Confidence Set - - - [.06, .65]   [-.1, .38] [-.33, .23] - - - 

p-value  (Andersen-Rubin) - - - 0.013 0.080 0.320 - - - 

Observations 22,093 12,222 14,652 22,093 12,222 14,652 22,093 12,222 14,652 

† p<0.1, * p<.05, ** p<.01, *** p<0.01 

Note: Table 4.6 reports the coefficient estimates for the dichotomous indicator variables whether individuals acted as captain and president, captain only, or president only derived 

from a conventional IV estimator (Stata; ivreg2). President and Captain, Captain Only and President Only are the instrumented variables. Information whether each parent was a 

member of a club or a team represents the (unreported) instrumental variables. Instrumented coefficients derived from instrumental variable regressions with standard errors in 

parentheses. Estimations for the conventional IV-regressions are derived using the ivreg2 command in Stata13, estimations for the conditional IV-regressions are based on Moreira 

(2003), estimations for the heteroskedasticity-based IV-regressions are based on Lewbel (2012). All models include the variables listed in Table 11 in the Appendix as (unreported) 

controls. The sample for the treatment analysis is based on the sample of white males employed in Kuhn and Weinberger (2005). The models do not include school-fixed effects 

as this would reduce the sample size. Table 6A in the online appendix contains the full first-stage model for the conventional IV-estimations. Table 6B in the online appendix 

contains all full second-stage models. Table 6C in the online appendix contains the conventional IV-estimations with school-fixed effects.  

† p<0.1, * p<.05, ** p<.01, *** p<0.01
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Table 4.7: Extension – OLS effects of High School Leadership Activities on Hourly Earnings 

for expanded samples 
 Model 1 Model 2 Model 3 

 White Females Non-White Males Non-White Fe-

males 

Leader    

Both Captain and President 0.010 0.110 0.050 

 (0.016) (0.086) (0.075) 

Captain Only 0.023 0.135* 0.173 

 (0.016) (0.069) (0.107) 

President Only 0.009 -0.012 0.047 

 (0.015) (0.075) (0.064) 

Member    

Both on Team and in Club 0.110*** 0.126 -0.313* 

 (0.031) (0.160) (0.145) 

On Team only 0.012 0.199 -0.267† 

 (0.076) (0.195) (0.146) 

In Club Only 0.086** 0.173 -0.285† 

 (0.031) (0.170) (0.149) 

Controls    

Math Score 0.002*** 0.002* 0.004*** 

 (0.000) (0.001) (0.001) 

Parents’ Education    

High School 0.018 0.031 0.050 

 (0.013) (0.072) (0.055) 

College Degree 0.024 0.160† -0.047 

 (0.017) (0.086) (0.106) 

Educational Attainment    

Some College 0.079*** -0.014 0.152* 

 (0.015) (0.073) (0.062) 

College Degree or Higher 0.321*** 0.198** 0.445*** 

 (0.016) (0.075) (0.078) 

School-fixed Effects Yes Yes Yes 

F-Value 67.87 3.33 7.91 

p > F 0.000 0.000 0.000 

Adjusted R2 0.337 0.319 0.496 

Observations 11,824 747 816 

† p<0.1, * p<.05, ** p<.01, *** p<0.01 

Note: Table 4.7 extends the results depicted in Kuhn and Weinberger (2005: 405 (columns 5-8). The coefficients 

are derived from OLS regressions with standard errors in parentheses. All models include (unreported) grade and 

school attainment control variables as well as school dummies. Models 3 and 4 include an unreported dummy 

variable for lack of parent’s education. Model 4 includes an unreported dummy variable for lack of educational 

attainment. The sample for the models labelled 1, 2, and 3 are based on the sample of white females, non-white 

males, and non-white females that were excluded in the original Kuhn and Weinberger (2005) study.   
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Subsequently, we estimate the propensity score and carry out the matching procedure 

for white females, non-white males and non-white females. Table 4.8 thus provides evidence 

on the susceptibility to endogeneity due to observed variables. Noteworthy, all three leadership 

variables become statistically significant in the white females sample yet the ATTs are strongly 

susceptible to omitted confounding variables (Rosenbaum bound values derived range from 

1.02 to 1.13). Hence, while there is some evidence that leadership may affect earnings for white  

females, the results might be impounded strongly by unobservable confounders. Additionally, 

we find that none of the leadership opportunities variables is significant after matching for non-

white males and only the variable indicating presidency only is significant (and fairly robust to 

omitted confounders) for non-white females. 

Given the potential susceptibility to other omitted causes, we also report the results 

from instrumental variable regressions for the three different samples and the three different 

leadership variables in Table 4.9. Noteworthy, none of the leadership variables is statistically 

significant for the sample of white females. Despite some evidence for leadership effects on 

earnings reported previously, the coefficient estimates for the white female sample is highly 

susceptible to omitted confounding variables and other omitted causes. However, we do find 

evidence for a potential leadership effect for those who were president and captain for the sam-

ple of non-white males. Yet this effect is not robust to the correction for potentially weak in-

struments in the conditional and the heteroskedasticity-based instrumental variable regression 

(results are reported in Table 9C in the online appendix). While we find some statistically sig-

nificant effects in the non-white female sample, these effects are not robust to the corrections 

(reported in Table 9D in the online appendix). In summary, we do not find enough evidence to 

consider the leadership relation with later life earnings derived from the white male sample 

generalizable to white females, non-white males, or non-white females.  
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Table 4.8: Extension - PSM Treatment Effect Assessment for expanded samples  
 Average Treatment Effect on the 

Treated 

Sensitivity of Esti-

mate (Rosenbaum 

Bounds) 

Sample: White Females   

Treatment   

President and Captain  

(N=11,210) 

0.022† 

(0.012) 

1.02 

Captain Only  

(N=6,102) 

0.034** 

(0.014) 

1.06 

President Only  

(N=6,431) 

0.045*** 

(0.013) 

1.13 

Sample: Non-White Males   

Treatment   

President and Captain  

(N=666) 

0.065 

(0.046) 

1.11 

Captain Only  

(N=314) 

-0.001 

(0.065) 

1.00 

President Only  

(N=420) 

-0.027 

(0.052) 

1.00 

Sample: Non-White Females   

Treatment   

President and Captain  

(N=742) 

0.074 

(0.046) 

1.04 

Captain Only  

(N=306) 

-0.015 

(0.086) 

1.00 

President Only  

(N=438) 

0.135* 

(0.057) 

1.32 

† p<0.1, * p<.05, ** p<.01, *** p<0.01 

Note: Table 4.8 reports the Average Treatment Effect on the Treated derived from Propensity Score Matching 

with standard errors in parentheses. Rosenbaum bounds are estimated for the respective Average Treatment Effect 

on the Treated for p = 0.05. The models are based on the sample of white females, non-white males, and non-white 

females that were excluded in the original Kuhn and Weinberger (2005) study.  
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Table 4.9: Extension - Conventional IV Regression for new samples 
 Conventional IV- Estimation 

 Sample: White Females Sample: Non-White Males Sample: Non-White Females 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

Instrumented Variables          

President and Captain -0.046   0.860*   0.588†   

 (0.337)   (0.361)   (0.352)   

Captain Only  0.455   -2.543   0.276  

  (0.453)   (4.348)   (0.440)  

President Only   0.032   -0.392   0.404 

   (0.249)   (0.311)   (0.305) 

First stage (Kleibergen-Paap) F-Statistic 7.77 0.91 2.94 1.92 0.10 1.86 1.76 2.06 3.86 

p-value (F-Statistic) 0.10 0.46 0.02 0.10 0.98 0.12 0.14 0.09 0.01 

Cragg-Donald-Wald F-Statistic 7.44 3.51 7.01 3.76 0.16 3.98 3.95 2.32 6.15 

Effective F-Statistics 7.50 3.54 7.57 3.70 0.16 3.91 3.70 2.42 6.14 

Sargan-Hansen statistic 4.98 0.44 0.28 0.34 0.31 3.22 0.35 7.74 2.39 

p-value (Sargan-Hansen statistic)  0.174 0.930 0.964 0.953 0.956 0.359 0.951 0.05 0.50 

Observations 11,210 6,102 6,431 680 325 420 745 309 442 

† p<0.1, * p<.05, ** p<.01, *** p<0.01 

Note: Table 4.9 reports the coefficient estimates for the dichotomous indicator variables whether individuals acted as captain and president, captain only, or president only derived 

from a conventional IV estimator (Stata; ivreg2). President and Captain, Captain Only and President Only are the instrumented variables. Information whether each parent was a 

member of a club or a team represents the (unreported) instrumental variables. Instrumented coefficients derived from instrumental variable regressions with standard errors in 

parentheses. All models include the confounder variables listed in Table 11 in the Appendix as (unreported) controls. A full list of first stage coefficients is available in Table 9A 

in the online appendix. The sample for the treatment analysis is based on the sample of white females, non-white males, and non-white females that were excluded in the original 

Kuhn and Weinberger (2005) study.  The models do not include school-fixed effects as this would reduce the sample size. Table 9A in the online appendix contains the full first-

stage model for the Conventional IV-estimations for all three samples. Tables 9B, 9C and 9D in the online appendix contain the full second-stage models for all three IV-regression 

types (conventional, conditional, heteroskedasticity-based). Table 9E in the online appendix contains the same models as reported here with school-fixed effects.  
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4.5.7 Assessing long-term effects using the Pilot study temporal extension 

Table 10 reports on how the results from the original study change after employing data from 

the pilot study. As the original study reported income effects for white males only, we only 

include white males in this analysis. Our total sample size for this analysis is only 251 obser-

vations. The following findings should therefore not be used to judge on the replicability of the 

original effect, but rather to provide information about the temporal generalizability of the orig-

inal effects and the replicated effects reported previously. 

Table 10: Extension– OLS-Regression effects of High School Leadership Activities on 

2011/2012 Household Income for White Males  
 Model 1 Model 2 Model 3 Model 4 

 Household In-

come 

Household In-

come 

Household In-

come 

Household 

Income 

Leader     

Both Captain and President 0.478* 0.487* 0.498* 0.371† 

 (0.201) (0.195) (0.195) (0.203) 

Captain Only -0.171 -0.139 -0.170 -0.192 

 (0.255) (0.256) (0.266) (0.270) 

President Only 0.016 -0.053 -0.062 -0.114 

 (0.176) (0.177) (0.178) (0.181) 

Member     

Both on Team and in Club 0.155 -0.098 -0.070 -0.095 

 (0.260) (0.285) (0.287) (0.286) 

On Team only 0.033 -0.150 -0.153 -0.325 

 (0.324) (0.333) (0.306) (0.302) 

In Club Only 0.067 -0.118 -0.101 -0.151 

 (0.278) (0.297) (0.304) (0.300) 

Controls     

Math Score  0.008** 0.008** 0.005* 

  (0.003) (0.003) (0.003) 

Parent´s Education     

High School   0.025 0.070 

   (0.187) (0.185) 

College Degree   0.350 0.313 

   (0.237) (0.234) 

Educational Attainment     

Some College    0.172 

    (0.251) 

College Degree or Higher    0.514* 

    (0.250) 

School-fixed Effects Yes Yes Yes Yes 

F-statistic 1.37 2.10 1.67 1.71 

p > F 0.211 0.031 0.078 0.053 

Observations 251 251 251 251 

Adjusted R2 0.083 0.117 0.119 0.132 

† p<0.1, * p<.05, ** p<.01, *** p<0.01 

Note: Table 10 extends the results from Kuhn and Weinberger (2005) Table 2 by employing household income as 

the dependent variable. The sample is based on the 2011-12 Pilot Study and only includes white males. Coeffi-

cients are derived from OLS regressions with standard errors in parentheses. All models include (unreported) grade 

and school attainment control variables. Models 3 and 4 include an unreported dummy variable for lack of parent’s 

education. Model 4 includes an unreported dummy variable for lack of educational attainment. Results using an 

ordered logit approach and using the female sample are reported in the online appendix.  
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We find that the main effects for those who were granted leadership opportunities as 

both, president and captain is significantly positive (at least at the 10 percent level). Yet the 

effects reported for those individuals that reported to have acted as either president or captain 

only  are insignificant. While we would not argue that this generally attests to the robustness of 

the original findings (given the small sample size), we certainly think that it attests to the gen-

eralizability of the main findings derived from the extended analyses. Having leadership expe-

rience as captain and president is beneficial and not only affects the log of the earnings some 

11 years after high-school but also aligns with household income as reported in the 2011-2012 

Pilot Study.27 

4.6 Discussion 

Is there such a thing as leadership skill? Do some individuals have the attributes that determine 

whether or not they are granted leadership opportunities, and are leadership skills developed 

because of the granting of leadership opportunities and because leaders practice leadership very 

early in life? To delineate the answers to these questions, we replicated and extended a seminal 

study by Kuhn and Weinberger (2005) using data from project TALENT. To begin with, we 

are able to exactly replicate the original findings by Kuhn and Weinberger (2005) up to the third 

digit, which is rare in replication studies (Ebersole et al., 2016; Klein et al., 2018).  Our results 

support the notion that for white males a component of leadership skills is developed through 

the granting of leadership positions in high school.  

Subsequently, we extended the analyses controlling for observable omitted selection 

and other unobservable omitted causes into leadership opportunities using propensity score 

matching and instrumental variable techniques. Our PSM results document that the original 

effects, reported for those who were captains and presidents, are robust to the presence of en-

dogeneity. Subsequently, we also report in our instrumental variable regressions that these very 

coefficient estimates are also not susceptible to selection on unobservable factors. Yet the cred-

ibility of the IV results relies on the assumption that the instruments are valid; even though 

various tests corroborate this assumption, we cannot completely exclude the possibility that the 

large effects estimated by the IV regressions might be caused by an exclusion restriction failure. 

Noticeably, the coefficient estimates for the IV estimator are larger than the estimates derived 

 
27 Ordered-logistic regressions estimated on only the sample of white males for the 2011-2012 Pilot Study data return the same results (Table 

10A in the appendix). Tables 10B and 10C in the appendix show that we cannot corroborate these implications for white females. Tables 
10D and 10E show that the implications stay the same when we include Living Alone, a dummy variable capturing whether respondents lived 

alone at the time of the pilot study.  
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from the matching analysis and the results from the OLS regressions. Yet the inclusion of 

school-fixed effects in the IV-regressions and employing heteroskedasticity-based instruments 

to supplement the standard IV estimator reduce the size of the coefficients.  

While the findings of our extended analyses provide support for the notion that being 

granted both team captaincy and club presidency increases subsequent wages for white males, 

we do not find evidence that having served as captain or president solely, affects subsequent 

wages. Therefore, we show that only a multiplicity of leadership positions held (as both team 

captain and president of a club) is associated with higher wages in later working life. Im-

portantly, we report that the leadership skills developed due to the experience of being granted 

team captaincy and club presidency serve as a signal for later life earnings using an extended 

50-year time horizon. As such, early life leadership skills are predictive of later life earnings. 

Noteworthy, we find that these effects only materialize for white males and are not robustly 

present in our analyses focusing on females and non-whites males.  

4.6.1 Implications for future research 

Our results have several implications for leadership theory and practice. First, our findings 

highlight the need for a life-course analysis of leadership skills development. Leadership biog-

raphies offer numerous accounts of early life leadership opportunities (Cunha et al., 2017). Fol-

lowing Reitan and Stenberg (2019), learning experiences and leadership opportunities granted 

materialize differently depending on when they occur. Understanding why and how leaders 

emerge might be better explained when a longer time horizon is applied to gain an understand-

ing of when leadership skills are developed. This is especially important because exposure to 

leadership opportunities and the timing of these vary across individuals, in particular along 

gender and ethnicities (Fitzsimmons et al., 2017). Hence, future research on leadership skill 

development should investigate traits and behaviors that affect leadership exposure and selec-

tion as early as possible. In fact, being granted leadership roles might not only start in high 

school but already in primary school or even kindergarten (Bennett, & Derevensky, 1995). 

Second, our results also emphasize the skill variety that makes for successful leaders. 

Lazear (2012) argued that effective leaders must solve a wide variety of technical, financial, 

organizational, and inter-personal problems that require diverse experience and skills. Freder-

iksen and Kato (2017) found that those individuals that occupied different roles in their careers 

were more likely to be appointed to top management positions. Our findings corroborate these 

notions and show that the granting of leadership opportunities in sports combined with another 



119 

 

more cognitive-oriented domain is related to higher earnings subsequently, but neither leader-

ship opportunity alone affects earnings. Hence, effective leadership skills developed in early 

life rests upon a variety of leadership experiences, and not a single source of leadership experi-

ence gained. It would therefore be very interesting to differentiate between different types of 

clubs and sports teams to assess whether there exist differences in the extent of leadership skill 

development. 

Third, our findings also attest to the long-lasting impact of leadership selection in early 

life. Hambrick and Wowak (2012) addressed how changes in institutions bring about the fun-

damental characteristics of individuals who subsequently lead companies. They document a 

shift towards more individualistic and materialistic leaders chosen over the course of the 80s 

and 90s. Research along these lines could further illumine how early life leader selection affects 

the type of leaders (in management) that emerge subsequently. Future studies could investigate 

further to what extent selection processes in early life lead to a systematic favoritism of certain 

types of potential leaders (i.e., those individuals that possess the perceived features that are 

typically associated with leadership ability). This is especially important because potential fu-

ture followers decide on whom they choose as prospective leaders (Bastardoz, & van Vugt, 

2019). As it pertains to the school program participants granting other students an opportunity 

to lead, some of the variables included in the matching model (military or business scores, 

sociability, or overweight) influence whether individuals lead as team captains and/or club pres-

idents and these variables simultaneously affect their earnings. This certainly provides grounds 

to better understand the type of managers that was ushered in because certain individuals that 

do not possess the corresponding traits drop out of the leader selection tournaments as early as 

in high school (if not earlier, e.g. Reitan, & Stenberg, 2019). Evidently, longitudinal and multi-

country analyses could help to understand how the perception of leader prototypicality has 

changed and resulted in certain archetypes of leaders being developed over the different dec-

ades.  

Fourth, it is important to note that we fail to generalize the effect of early life leadership 

experience on earnings for females and non-white males. While there is some evidence that 

(certain) leadership skills might relate to higher earnings for females, the effects vanish once 

we control for selection based on other omitted causes. Along these lines, it is important to be 

cognizant of the fact that developing a leader identity is important for the development of lead-

ership skills. Individuals become aware of the fact that leaders exist and develop aspirations to 

become leaders themselves. In childhood and adolescence, individuals recognize that certain 
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individuals have authority and leadership skills and might start to follow into their footsteps by 

experimenting with leadership positions (Reitan, & Stenberg, 2019). Along the development 

trajectory of leadership skills, mentors play a significant role. They act as role models and im-

pact on the self-confidence of potential leaders (Fitzsimmons et al., 2017). Yet the number of 

potential female and non-white role models and mentors might be limited in the early life phase 

studied in our sample (Fitzsimmons et al., 2017; Hayes, 2008; Harper, 2018; Thomas, 2001). It 

would therefore be worthwhile to investigate further, how leadership experience translates into 

leadership skills conditional on mentoring and role modelling relations. Furthermore, engaging 

in new cohort studies that are similar to the Project TALENT could increase our understanding 

of leadership skill development and income effects for females and non-white males. This could 

help to further contextualize our findings as the share of female and non-white leaders has sub-

stantially increased since the 1980s (Heckman et al., 2017). Likewise, employing cohort study 

data from countries with smaller gender pay gaps like Scandinavia might unveil whether the 

leadership effects for males also apply to females if social policies reduce gender-based differ-

ences not only in labor markets but also in early child education (Polachek, & Xiang, 2009). 

4.6.2 Implications for leadership development 

Developing a leader identity and fostering leadership aspirations early is important as it has 

very long-lasting impact on the career prospects of high school students. White male leaders 

often equate their leadership training with integrity, courage, and self-efficacy (Fitzsimmons 

et al., 2017). As such, girls should be encouraged to lead early in life to increase exposure to 

leadership experience and the individual perceptions and ascriptions thereof. This is espe-

cially important, as earnings effects of leadership opportunities for males carry value beyond 

the initial 11-year horizon and are evident over the extended time horizon studied.  

Initiatives in companies that aim to develop leadership skills might be more effective 

and lead to a more inclusive environment if they focus on early career females and non-white 

males and help to overcome the absence of leadership experiences in early life. This essentially 

could create confidence and willingness to take on subsequent leadership opportunities through-

out their careers. For companies, it is important to recognize the leadership skills that are al-

ready developed and to identify those areas that are in need of development. This is important, 

because leadership ascriptions for males, females, and non-white males take place in different 

contexts and at different points in life. Simultaneously, talented females and non-white males 

need to be given access to mentors and role models early in their careers and possibly as early 
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as high school, so that respective students could relate and develop their leadership self-image 

(Johnson, & Eby, 2011; Dougherty et al., 2013).  

As it concerns women in particular, gender stereotypes might also be among the un-

observed factors that explain why leadership opportunities in high school might not transpire 

into higher earnings subsequently. As a case in point, male CEOs predominantly report stay-at-

homes wives with domestic responsibility while female CEOs report dual roles of working and 

shouldering domestic responsibility. Problematically, Stertz et al. (2017) emphasize the im-

portance of couple dynamics for female careers. Men's gender-role attitudes explain women's 

work-involvement decisions after childbirth. If women are married to men with less egalitarian 

attitudes, they are less likely to increase their working hours after childbirth. For women aspir-

ing careers and leadership roles, discussing and planning around domestic responsibility is im-

portant. Beyond the personal nature of these discussions, companies can disburden women of 

the dual role by facilitating childcare and facilitating workplace returns after maternity leaves 

(Wiese, & Ritter, 2012). This essentially might groom and increase the pool of potential female 

leaders.  

Last, our results regarding the development of leadership skills through multiple 

sources of leadership experience also possess implications for school administrators and inten-

dents to not only develop athletic programs but also rather complement these programs with 

other more cognitive-oriented programs in which students can strive (and vice versa). Arguably, 

developing future leaders along a multitude of dimensions is becoming more and more crucial. 

For employers and employees, the importance of non-cognitive skills associated with leader-

ship skills (e.g. conflict resolution, communication, and the ability to integrate oneself into a 

team (Bacolod et al., 2010; Borghans et al., 2014)) is increasing with the economy-wide digit-

ization of work (Deming, 2017). As a case in point, Bartel et al. (2007) show how technological 

changes induce adjustments of human resource policies in firms and the required skill profiles 

of employees. As such, equipping students with leadership skills drawn from a variety of expe-

riences (including for example IT leadership, not covered in our data) to master these challenges 

becomes paramount. 

4.6.3 Limitations 

The results and implications of our replication and extension of “Leadership Skills and Wages” 

specifically have to be considered within the bounds of the limitations of our study. Besides the 

fact, that the Project TALENT represents “the largest and most comprehensive study of high 
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school students in the history of the United States.” (American Institutes for Research, 2016) 

many institutional settings have changed quite significantly over the recent decades. The base 

year in 1960 allows making life-course analyses of the initial respondents, but it would clearly 

be worthwhile to explore other cohorts that underwent early-life leadership training in subse-

quent decades. Curricula shifts and technological advancements might have granted leadership 

opportunities in areas such programing or desktop publishing; leadership skills in these areas 

might have gained in relevance with a focus on computerized work and the rise of the Internet.  

 As it concerns the generalizability of our findings, our samples for the analyses of 

non-whites are considerably smaller than for whites. This derives from the fact that the base 

year Project TALENT questionnaire did not ask respondents to reveal their ethnicity. Racial 

data can therefore only be drawn from the three follow-up waves. In these follow-up waves, 

whites represent an overwhelming majority (about 90%) causing some concerns of sample trun-

cation, due to non-whites responding less often in the follow-up surveys (Weinberger 2014b). 

To deal with this issue, we employed Project TALENT weights considering the non-response 

bias for the 11-years follow up survey. Still, some selection effects exist as also the wage data 

contains missing observations among slightly more than 10% of the 11-years follow up study 

respondents. If, for some reason, there is selection on other unobservable variables (motivations 

or statistical discrimination), which correlates with the disturbance in the outcome, this would 

necessitate the use of sample selection models that can overcome the truncation in the depend-

ent variable (Heckman, 1979; Killingsworth, & Heckman, 1986). 

Furthermore, large demographic and societal shifts have occurred since the conduction 

of Project TALENT. As a case in point, the Civil Rights Act prohibiting racial segregation and 

ensuring same pay for same work came into effect in 1964 (Brown, 1984). Weinberger (2014b) 

points out that a substantial number of the high schools participating in the Project TALENT 

were segregated, which essentially could limit access to leadership opportunities. For non-

whites, leadership opportunities as well as job development chances have substantially im-

proved over the course of the past sixty years, which again would call for additional analyses 

using subsequent cohorts to further document the generalizability of leadership effects found in 

the original work and our replication (Hayes, 2008). These societal changes also apply to gender 

differences with the gender pay gap shrinking considerably (Bowler, 1999). Similarly, since 

female leadership in sports, but also in many other fields, has become more common, it could 

be possible that we might also find effects for women when investigating recent data (e.g. 

Yiamouyiannis, & Osborne, 2012; Chao, & Tian, 2011; Dormody, & Seevers, 1994). All in all, 
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we currently miss a recent large scaled high school student cohort study that would allow us to 

test whether the implications derived from data gathered up to sixty years ago for white males 

also applies to non-white and female students attending high school nowadays. Along these 

lines, it is important to note that a new follow-up survey is currently underway that could be 

explored (Stone, et al. 2014). 

4.7 Conclusion 

Leadership is “a developmental journey that is a lifelong process” (Fitzsimmons et al., 2014: 

245). Our study shows that adolescence is a foundational time of critical leadership develop-

ment that equips individuals with leadership skills that provides benefits throughout an indi-

vidual’s career. Being granted a leadership position as both team captain and club president in 

high school increases individual earnings and even transpires into higher household income 

50 years later. The effects however, only materialize for a large sample of white males, but 

not for females and non-white males. Similarly, certain characteristics of leader selection are 

already present as early as high school, lending support to the notion that potential future fol-

lowers decide on whom they choose as prospective leaders and accept their influence and ini-

tiative taking already in early life (Bastardoz, & van Vugt, 2019; Antonakis et al., 2016; 

Reitan, & Stenberg, 2019). Our results support a life-course analysis of leadership develop-

ment that highlights when leadership skills are developed. Leadership interventions should 

recognize the leadership skills that are already developed in individuals and identify those ar-

eas that are in need of further development. In doing so, it is important to be cognizant of di-

verse experiences with leadership and thus different aspirations to lead for individuals of dif-

ferent gender and ethnicities. 
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4.8 Appendix 

The labelling (number followed by a letter) of all tables in the Appendix corresponds to the 

number of the related tables in the manuscript (e.g. Table 2A shows the same results as Table 

4.2 but with robust standard errors). The corresponding letter denotes the different tables that 

were created. The only exception is Table 11 which stands on its own. 

4.8.1 Technical appendix with model specifications 

4.8.1.1 Exact Replication 

We replicate the original results (see Kuhn, & Weinberger, 2005: 405; Table 2) using the log 

of hourly earnings as our dependent variable. Our sample size consists of 24,041 white men. 

This equals the sample size of Kuhn and Weinberger (2005). We begin our replication analysis 

by estimating an OLS model of the following form:  

(1) Yi= α  + ßXi +µi  

In (1), the index i (i=1,…N) denotes all individual students, X denotes all explanatory 

variables used, α is the intercept, and µi is the error term. We employ a model using school fixed 

effects. As in Kuhn and Weinberger (2005), the model is restricted to white males who earn 

between $1 and $50 per hour. 

4.8.1.2 Observable Omitted Selection 

Following the logic in Kuhn and Weinberger (2005), we assume that there is a binary set of 

options: either individuals are granted leadership opportunities, or they are not. Following Ab-

adie et al. (2004) and Rubin (1974), let the two options denote D=1 for leaders and D=0 for 

non-leaders. Students with D=1 are considered “treated.” The hourly earnings in subsequent 

occupations eleven years after high school is denoted Yi for each individual. Hence, for an 

individual i, the earnings Yi(1) would be observed if D=1 was observed in high school. Alter-

natively, the earnings Yi(0) would be observed if D=0 was observed in high school. Based on 

these considerations, we want to estimate the average treatment effect on the treated, as shown 

in (2). 

(2) τATT = E[Y(1) |D=1] - E[Y(0) |D=1] 

However, we cannot observe the counterfactual of the hourly earnings for the treated 

individuals E[Y(0) |D=1], as the same individual cannot be both leader and non-leader in high 

school. Therefore, the counterfactual needs to be replaced by an estimate. A common estimate 
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is the propensity score (the conditional predicted probability summarizing how likely each in-

dividual is to receive the treatment) (Rubin, 1974; Li, 2013). On a more general note, prior work 

(Rosenbaum, & Rubin, 1983) showed that one-to-one matching in large data sets is infeasible. 

Yet dimensionality problems can be overcome by conditioning on balancing scores such as the 

propensity score.  

To compute the propensity score, P̂(x), we estimate a probit model with an individual’s 

probability of being granted leadership opportunities high school as the dependent variable 

(Rosenbaum and Rubin, 1983). These equations should condition on all potential observable 

variables that could affect hourly earnings and leadership selection. Controlling for all variables 

is, of course, infeasible, but we try to include as many variables (observable in the dataset) as 

possible. The propensity score is equal to the conditional probability of receiving the treatment 

(being a leader). We estimate the propensity score as shown in (3). Hereby, P̂[D=1|x] denotes 

the probability of being a leader in high-school, Φ is the cumulative distribution function of a 

standard normal distribution, α is the intercept, and x and ß represent the input variables and the 

corresponding coefficients (Li, 2013). 

(3) P̂[D=1|x] = Φ (α+ x ß)  

After calculating the propensity score, subjects with the same probability of being 

granted leadership opportunities are treated as statistical twins. After matching, given a set of 

observable characteristics, subjects are identical in all observable aspects except for receiving 

the treatment. The basic idea behind making causal inferences based on the propensity score 

matching procedure is that if two subjects have the same probability of receiving treatment (the 

same propensity score), yet are in different groups (leaders or non-leaders), we are, statistically 

speaking, comparing two individuals who were exogenously assigned to the leadership and 

non-leadership groups. Hence, after matching, we can directly infer the differences between the 

matched groups, as (4) shows. This allows us to estimate the net effect of the treatment on 

outcomes, much like in experiments that randomize the treatment assignment (Andersen and 

Lu, 2016).  

(4) τPSM = EP̂(x)D=1{E[Y(1) |D=1, P̂(x)] - E[Y(0) |D=0, P̂(x)]  

with P̂(x) denoting the predicted probability of treatment using the variables in x.  
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4.8.1.3 Other unobservable omitted causes 

Employing instrumental variable techniques is a strategy for the consistent estimation of causal 

effects between leadership positions and later-life earnings. In the corresponding first stage de-

picted in (5), the endogenous regressor (leadership variable) is regressed on the instruments and 

covariates (Bascle, 2008).  

(5) Xi =  γ0 + γ1Zi + γ2Wi + υi  

In (5), Xi is the ith observation of the endogenous explanatory variable and Wi repre-

sents the ith observation for each of the exogenous regressors (control variables). In comparison 

to the previous regression estimates employed in the exact replication above, we employ a set 

of variables Zi that are correlated with the endogenous component of the leadership variables 

Xi but not with the error term of the outcome equation µi. The first stage therefore isolates the 

variation in Xi that is not correlated with ui (error term of the outcome regression). The corre-

sponding instrumented (fitted) value of the endogenous variable Xi is used in the second stage 

(X
^

i) in lieu of the endogenous regressor, as (6) shows. 

(6) Yi= α + ß1 X
^

i + ß2Wi +… +µi  

As instruments, we rely on information about prior parental behavior. We suggest that 

if parents were members of clubs or teams, children would engage in similar behaviors, which 

in turn, might increase their chances of being granted leadership opportunities in similar teams 

or clubs. We therefore employ the information provided about whether each parent was a mem-

ber of a club or a team as the four instrumental variables Z1 to Z4.   
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4.8.2 Information on variables 

Table 11: Variables for the Propensity Score Matching and IV-regressions 
Outcome Variable  

Natural Logarithm of Hourly Earnings Average hourly pay of respondents; data from the 11-year 

follow-up study 

  

Treatment Variables  

Captain and President Dummy variable indicating whether respondents were team 

captains and club presidents in the three years leading up to 

the survey date 

Captain only Dummy variable indicating whether respondents were team 

captains but not club presidents in the three years leading up 

to the survey date 

President only Dummy variable indicating whether respondents were club 

presidents but not team captains in the three years leading 

up to the survey date 

Confounder Variables  

Personal Data  

Team and Club Member Dummy variable indicating whether respondents were team 

and club members in the three years leading up to the survey 

date 

On Team only Dummy variable indicating whether respondents were team 

members but not club members in the three years leading up 

to the survey date 

In Club only Dummy variable indicating whether respondents were club 

members but not team members in the three years leading 

up to the survey date 

Overweight Dummy variable indicating whether respondents possess a 

BMI above 31 

Underweight Dummy variable indicating whether respondents possess a 

BMI below or equal to 17 

Tall Dummy variable indicating whether respondents are 72 

inches or more tall 

Short Dummy variable indicating whether respondents are 65 

inches tall or less 

Dates 

 

Respondents’ average number of dates per week 

Comfortable Dummy variable indicating whether the finances of respond-

ents’ families afford comfortable lifestyles 

Wealthy Dummy variable indicating whether the finances of respond-

ents’ families afford wealthy lifestyles 

Personal Characteristics  

Sociability Standardized score of the degree to which respondents enjoy 

socializing 

Vigor Standardized score of the degree to which respondents are 

physically energetic 

Mature personality Standardized score of the degree to which respondents are 

hardworking and reliable 

Self-Confidence Standardized score of the degree of self-confidence respond-

ents possess 

Tidiness Standardized score of the degree to which respondents are 

neat and organized 

Test Scores  

Math Score 

 

Relative score in math test within same grade 

Vocabulary Score 

 

Relative score in vocabulary test within same grade 

Social Studies Score Relative score in social studies test within same grade 
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Science Score 

 

Relative score in science test within same grade 

Scientific Attitude Score Relative score in scientific problem-solving test within same 

grade 

Law Score 

 

Relative score in law test within same grade 

Military Score 

 

Relative score in military test within same grade 

Business Score 

 

Relative score in business test within same grade 

Etiquette Score 

 

Relative score in etiquette test within same grade 

English Score 

 

Relative score in English test within same grade 

Awards  

Science Awards Number of science awards respondents won in the last three 

years 

Fine Arts Awards Number of fine arts awards respondents won in the last three 

years 

Sports Awards Number of sports awards respondents won in the last three 

years 

Cognitive Skills  

Arithmetic Skills 

 

Relative scoring in calculation test under time pressure 

Reading Skills 

 

Relative scoring in reading test under time pressure 

Clerical Skills Relative scoring in identifying spelling mistakes under time 

pressure 

Identification Skills Relative scoring in identifying differences in objects under 

time pressure 

Personal Interests  

Public Service Interest Standardized score of the degree to which respondents are 

interested in gaining a job in public services (e.g. mayor, 

governor, …) 

Business Management Interest Standardized score of the degree to which respondents are 

interested in gaining a job in business management (e.g. ex-

ecutive, foreman,…) 

  

Note: Grey background indicates variables included in Kuhn and Weinberger (2005), either as dependent, inde-

pendent, or control variables.  
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Table 1A: Full correlation matrix for KW sample 

 Log (Hourly 

Earnings) 

Both Captain and 

President 
Captain Only President Only 

Both on Team 

and in Club 
On Team Only In Club Only Math Score 

Log (Hourly 

Earnings) 
1.0000        

Both Captain 

and President 
0.0703*** 1.0000       

Captain Only 0.0079 -0.1965*** 1.0000      

President Only 0.0162* -0.2872*** -0.2121*** 1.0000     

Both on Team 

and in Club 
0.0866*** 0.1707*** 0.1102*** 0.0504*** 1.0000    

On Team Only -0.0067 -0.0423*** 0.0124† -0.0511*** -0.2850*** 1.0000   

In Club Only -0.0791*** -0.1485*** -0.1102*** -0.0134* -0.8764*** -0.0765*** 1.0000  

Math Score 0.2197*** 0.0193** -0.0278*** 0.1009*** 0.0840*** -0.0382*** -0.0497*** 1.0000 

Parent High 

School 
0.0300*** 0.0175** -0.0023 0.0043 0.0297*** -0.0029 -0.0226*** 0.0387*** 

Parent College 0.0646*** 0.0315*** -0.0132* 0.0578*** 0.0717*** -0.0409*** -0.0442*** 0.2300*** 

Some College -0.0437*** -0.0014 -0.0026 -0.0144* -0.0123† 0.0116† 0.0074 -0.0765*** 

Degree or 

Higher 
0.1927*** 0.0579*** -0.0105 0.0906*** 0.1022*** -0.0486*** -0.0634*** 0.4731*** 

Overweight -0.0318*** -0.0258*** 0.0025 -0.0026 -0.0212** 0.0070 0.0141* -0.0479*** 

Underweight -0.0144* -0.0260*** -0.0045 -0.0059 -0.0548*** -0.0059 0.0589*** -0.0165* 

Tall -0.0008 0.0061 0.0154* 0.0098 0.0405*** -0.0010 -0.0364*** 0.0352*** 

Short -0.0173* -0.0112† -0.0161* -0.0208** -0.0494*** 0.0021 0.0475*** -0.0611*** 

Dates 0.0029 0.1018*** 0.0196** 0.0239*** 0.1199*** -0.0392*** -0.0996*** -0.1450*** 

Comfortable -0.0057 -0.0067 -0.0150* 0.0061 0.0050 -0.0057 0.0015 0.0522*** 

Wealthy 0.0663*** 0.0330*** 0.0125† 0.0199** 0.0480*** -0.0238*** -0.0353*** 0.0235*** 

Sociability 0.0864*** 0.1312*** 0.0342*** 0.0768*** 0.1900*** -0.0487*** -0.1533*** -0.0081 

Vigor 0.0779*** 0.1583*** 0.0498*** 0.0484*** 0.2185*** -0.0305*** -0.1918*** 0.0872*** 

Mature 0.0993*** 0.1038*** -0.0218** 0.1083*** 0.0739*** -0.0601*** -0.0323*** 0.2192*** 

Self-Confi-

dence 
0.0831*** 0.0816*** -0.0081 0.0997*** 0.1002*** -0.0417*** -0.0720*** 0.1474*** 

Tidiness 0.0832*** 0.0762*** -0.0008 0.0737*** 0.0718*** -0.0497*** -0.0356*** 0.0951*** 

Vocabulary 

Score 
0.1656*** -0.0142* -0.0497*** 0.0998*** 0.0233*** -0.0405*** 0.0060 0.6710*** 

Social Studies 0.1534*** -0.0108 -0.0310*** 0.0858*** 0.0478*** -0.0206** -0.0287*** 0.6151*** 
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Score 

Science Score 0.1485*** -0.0185** -0.0562*** 0.0993*** 0.0163* -0.0373*** 0.0119† 0.6923*** 

Scientific Atti-

tude Score 
0.1414*** 0.0017 -0.0261*** 0.0681*** 0.0372*** -0.0092 -0.0219** 0.4653*** 

Law Score 0.1331*** -0.0066 -0.0340*** 0.0685*** 0.0239*** -0.0336*** -0.0025 0.4719*** 

Military Score 0.1142*** 0.0227*** -0.0246*** 0.0594*** 0.0817*** -0.0300*** -0.0619*** 0.3585*** 

Business 

Score 
0.1476*** -0.0073 -0.0409*** 0.0785*** 0.0061 -0.0346*** 0.0191** 0.4537*** 

Etiquette 

Score 
0.0580*** 0.0109 -0.0304*** 0.0399*** 0.0027 -0.0196** 0.0113† 0.2283*** 

English Score 0.1487*** 0.0158* -0.0346*** 0.1050*** 0.0459*** -0.0266*** -0.0185** 0.6989*** 

Science 

Awards 
0.0249*** 0.0587*** -0.0134* 0.0293*** 0.0386*** -0.0275*** -0.0250*** 0.0675*** 

Fine Arts 

Awards 
0.0032 0.0628*** -0.0205** 0.0478*** 0.0462*** -0.0341*** -0.0258*** 0.0037 

Sports Awards 0.0553*** 0.2185*** 0.0630*** 0.0308*** 0.2619*** -0.0384*** -0.2350*** 0.0592*** 

Arithmetic 

Skills 
0.0765*** -0.0094 -0.0098 0.0282*** 0.0197** -0.0014 -0.0130† 0.3598*** 

Reading Skills 0.0040 -0.0148* -0.0049 0.0070 -0.0148* 0.0119† 0.0101 -0.0037 

Clerical Skills 0.0762*** 0.0133* -0.0062 0.0408*** 0.0419*** -0.0075 -0.0355*** 0.2544*** 

Identification 

Skills 
0.0351*** -0.0213** -0.0136* 0.0068 -0.0148* 0.0063 0.0101 0.1438*** 

Public Service 

Interest 
0.1068*** 0.0882*** 0.0058 0.0729*** 0.1298*** -0.0546*** -0.0918*** 0.1525*** 

Business Man-

agement Inter-

est 

0.0891*** 0.0847*** 0.0210** 0.0489*** 0.1247*** -0.0524*** -0.0881*** 0.0555*** 

         

 
Parent High 

School 
Parent College Some College Degree or Higher Overweight Underweight Tall Short 

Parent High 

School 
1.0000        

Parent College -0.5014*** 1.0000       

Some College 0.0560*** -0.0747*** 1.0000      

Degree or 

Higher 
0.0010 0.2309*** -0.4465*** 1.0000     

Overweight 0.0004 -0.0236*** 0.0035 -0.0285*** 1.0000    
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Underweight -0.0022 0.0033 -0.0058 -0.0072 -0.0168* 1.0000   

Tall -0.0011 0.0431*** -0.0023 0.0272*** -0.0712*** 0.0547*** 1.0000  

Short -0.0263*** -0.0129† 0.0075 -0.0392*** 0.1211*** 0.0555*** -0.1967*** 1.0000 

Dates -0.0015 -0.0089 0.0147* -0.1030*** -0.0272*** -0.0494*** 0.0401*** -0.0819*** 

Comfortable 0.0634*** -0.0793*** 0.0109 0.0233*** -0.0169* -0.0051 0.0080 -0.0222*** 

Wealthy -0.0613*** 0.1840*** -0.0123† 0.0609*** 0.0042 0.0041 0.0191** 0.0023 

Sociability 0.0128† 0.0362*** 0.0017 0.0560*** -0.0205** -0.0407*** 0.0014 -0.0262*** 

Vigor 0.0225*** 0.0504*** -0.0120† 0.1002*** -0.0469*** -0.0296*** 0.0437*** -0.0540*** 

Mature 0.0064 0.0888*** -0.0699*** 0.1930*** -0.0188** -0.0181** 0.0250*** -0.0474*** 

Self-Confi-

dence 
0.0032 0.0785*** -0.0174** 0.1159*** -0.0152* -0.0284*** 0.0366*** -0.0486*** 

Tidiness 0.0169* 0.0438*** -0.0208** 0.1227*** -0.0279*** -0.0041 0.0070 -0.0328*** 

Vocabulary 

Score 
0.0426*** 0.2209*** -0.0434*** 0.3871*** -0.0364*** -0.0060 0.0519*** -0.0595*** 

Social Studies 

Score 
0.0475*** 0.1884*** -0.0619*** 0.4025*** -0.0287*** -0.0163* 0.0462*** -0.0555*** 

Science Score 0.0342*** 0.2020*** -0.0401*** 0.3716*** -0.0319*** -0.0080 0.0387*** -0.0496*** 

Scientific Atti-

tude Score 
0.0272*** 0.1422*** -0.0345*** 0.2637*** -0.0308*** -0.0143* 0.0467*** -0.0573*** 

Law Score 0.0263*** 0.1593*** -0.0269*** 0.2899*** -0.0249*** -0.0138* 0.0462*** -0.0544*** 

Military Score 0.0311*** 0.1504*** -0.0062 0.2491*** -0.0097 -0.0116† 0.0390*** -0.0539*** 

Business 

Score 
0.0382*** 0.1336*** -0.0334*** 0.2731*** -0.0165* -0.0047 0.0399*** -0.0402*** 

Etiquette 

Score 
0.0120† 0.0670*** -0.0144* 0.1192*** -0.0086 -0.0030 0.0097 -0.0007 

English Score 0.0251*** 0.2021*** -0.0803*** 0.4242*** -0.0436*** -0.0152* 0.0206** -0.0542*** 

Science 

Awards 
-0.0007 0.0327*** -0.0274*** 0.0500*** 0.0105 0.0129† 0.0139* 0.0166* 

Fine Arts 

Awards 
-0.0040 0.0519*** -0.0148* 0.0355*** 0.0172* 0.0124† 0.0124† 0.0098 

Sports Awards 0.0279*** 0.0989*** -0.0092 0.1020*** -0.0070 -0.0255*** 0.0657*** -0.0543*** 

Arithmetic 

Skills 
0.0135* 0.0696*** -0.0413*** 0.1880*** -0.0318*** -0.0098 0.0114† -0.0340*** 

Reading Skills 0.0153* -0.0077 0.0213** -0.0117† -0.0152* -0.0052 -0.0020 -0.0227*** 

Clerical Skills 0.0204** 0.0462*** -0.0194** 0.1445*** -0.0192** -0.0132† 0.0092 -0.0170* 

Identification 

Skills 
0.0180** 0.0142* 0.0004 0.0463*** -0.0209** 0.0000 0.0085 -0.0185** 
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Public Service 

Interest 
0.0070 0.0675*** -0.0298*** 0.1879*** -0.0074 -0.0080 0.0176** -0.0071 

Business Man-

agement Inter-

est 

0.0197** 0.0139* -0.0050 0.0996*** -0.0140* -0.0142* 0.0069 -0.0143* 

         

 Dates Comfortable Wealthy Sociability Vigor Mature Self-Confidence Tidiness 

Dates 1.0000        

Comfortable -0.0172* 1.0000       

Wealthy 0.0551*** -0.6797*** 1.0000      

Sociability 0.2121*** -0.0102 0.0748*** 1.0000     

Vigor 0.1130*** -0.0017 0.0563*** 0.4873*** 1.0000    

Mature 0.0571*** -0.0055 0.0570*** 0.3687*** 0.5291*** 1.0000   

Self-Confi-

dence 
0.1084*** 0.0116† 0.0545*** 0.3519*** 0.3132*** 0.4093*** 1.0000  

Tidiness 0.0875*** -0.0063 0.0843*** 0.3651*** 0.4121*** 0.6123*** 0.2825*** 1.0000 

Vocabulary 

Score 
-0.1263*** 0.0692*** 0.0235*** -0.0340*** 0.0525*** 0.1692*** 0.1443*** 0.0729*** 

Social Studies 

Score 
-0.1545*** 0.0709*** -0.0006 -0.0400*** 0.0576*** 0.1504*** 0.1165*** 0.0564*** 

Science Score -0.1550*** 0.0608*** 0.0117† -0.0729*** 0.0441*** 0.1573*** 0.1211*** 0.0426*** 

Scientific Atti-

tude Score 
-0.0691*** 0.0508*** -0.0010 -0.0077 0.0439*** 0.1105*** 0.1046*** 0.0166* 

Law Score -0.0906*** 0.0673*** 0.0024 -0.0114† 0.0375*** 0.1269*** 0.1217*** 0.0440*** 

Military Score -0.0477*** 0.0503*** 0.0157* 0.0134* 0.0555*** 0.0986*** 0.1117*** 0.0441*** 

Business 

Score 
-0.0783*** 0.0595*** 0.0005 0.0017 0.0317*** 0.1472*** 0.1094*** 0.0698*** 

Etiquette 

Score 
-0.0225*** 0.0143* 0.0170* 0.0207** 0.0212** 0.0664*** 0.0539*** 0.0531*** 

English Score -0.1300*** 0.0606*** 0.0038 0.0147* 0.0786*** 0.2005*** 0.1435*** 0.1364*** 

Science 

Awards 
0.0255*** -0.0273*** 0.0524*** 0.0198** 0.0428*** 0.0817*** 0.0542*** 0.0390*** 

Fine Arts 

Awards 
0.0530*** -0.0246*** 0.0496*** 0.0568*** 0.0518*** 0.0712*** 0.0594*** 0.0486*** 

Sports Awards 0.1329*** -0.0130† 0.0598*** 0.1731*** 0.2356*** 0.1282*** 0.1328*** 0.1039*** 

Arithmetic 

Skills 
-0.0589*** 0.0352*** -0.0111† 0.0077 0.0250*** 0.0777*** 0.0553*** 0.0565*** 
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Reading Skills 0.0085 0.0140* -0.0058 0.0032 -0.0124† -0.0177** 0.0029 0.0281*** 

Clerical Skills -0.0221** 0.0351*** -0.0012 0.0392*** 0.0546*** 0.0758*** 0.0770*** 0.0779*** 

Identification 

Skills 
-0.0116† 0.0233*** -0.0148* -0.0376*** -0.0306*** -0.0111† 0.0125† -0.0010 

Public Service 

Interest 
0.0282*** -0.0091 0.0487*** 0.1758*** 0.1258*** 0.1631*** 0.1270*** 0.1212*** 

Business Man-

agement Inter-

est 

0.0972*** -0.0197** 0.0424*** 0.2275*** 0.1259*** 0.1485*** 0.0866*** 0.1385*** 

         

 Vocabulary Score 
Social Studies 

Score 
Science Score 

Scientific Atti-

tude Score 
Law Score Military Score Business Score Etiquette Score 

Vocabulary 

Score 
1.0000        

Social Studies 

Score 
0.6466*** 1.0000       

Science Score 0.6860*** 0.6286*** 1.0000      

Scientific Atti-

tude Score 
0.4641*** 0.4139*** 0.4246*** 1.0000     

Law Score 0.5312*** 0.5262*** 0.4744*** 0.3652*** 1.0000    

Military Score 0.4381*** 0.4705*** 0.3722*** 0.2574*** 0.3991*** 1.0000   

Business 

Score 
0.5135*** 0.4745*** 0.4217*** 0.3522*** 0.4483*** 0.3521*** 1.0000  

Etiquette 

Score 
0.2402*** 0.2062*** 0.2100*** 0.1269*** 0.1640*** 0.1370*** 0.1823*** 1.0000 

English Score 0.6126*** 0.5642*** 0.5500*** 0.4177*** 0.4344*** 0.3358*** 0.4173*** 0.2483*** 

Science 

Awards 
0.0435*** 0.0330*** 0.0679*** 0.0214** 0.0236*** 0.0222*** 0.0264*** 0.0293*** 

Fine Arts 

Awards 
0.0101 0.0037 0.0072 0.0001 -0.0028 0.0049 -0.0112† 0.0383*** 

Sports Awards 0.0212** 0.0403*** 0.0274*** 0.0184** 0.0192** 0.0769*** 0.0037 0.0050 

Arithmetic 

Skills 
0.2373*** 0.2464*** 0.2295*** 0.1786*** 0.1707*** 0.1263*** 0.1662*** 0.0790*** 

Reading Skills 0.0056 -0.0073 -0.0183** 0.0003 0.0062 0.0205** 0.0043 0.0056 

Clerical Skills 0.2193*** 0.2010*** 0.1826*** 0.1463*** 0.1579*** 0.1317*** 0.1556*** 0.1141*** 

Identification 

Skills 
0.1190*** 0.0926*** 0.1024*** 0.0920*** 0.0788*** 0.0683*** 0.0767*** 0.0542*** 
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Public Service 

Interest 
0.1364*** 0.2077*** 0.0946*** 0.0927*** 0.1641*** 0.1588*** 0.1609*** 0.0508*** 

Business Man-

agement Inter-

est 

0.0148* 0.0426*** -0.0293*** 0.0264*** 0.0469*** 0.0464*** 0.0863*** 0.0181** 

         

 English Score Science Awards Fine Arts Awards Sports Awards Arithmetic Skills Reading Skills Clerical Skills 
Identification 

Skills 

English Score 1.0000        

Science 

Awards 
0.0231*** 1.0000       

Fine Arts 

Awards 
0.0179** 0.6072*** 1.0000      

Sports Awards 0.0205** 0.2271*** 0.2813*** 1.0000     

Arithmetic 

Skills 
0.3492*** -0.0064 -0.0253*** 0.0074 1.0000    

Reading Skills 0.0293*** -0.0350*** -0.0317*** -0.0091 0.0614*** 1.0000   

Clerical Skills 0.3270*** -0.0060 -0.0026 0.0213** 0.2117*** 0.1778*** 1.0000  

Identification 

Skills 
0.1528*** -0.0131† -0.0235*** -0.0062 0.1542*** 0.1235*** 0.1704*** 1.0000 

Public Service 

Interest 
0.1287*** 0.0374*** 0.0385*** 0.0955*** 0.0526*** -0.0114† 0.0604*** -0.0220** 

Business Man-

agement Inter-

est 

0.0479*** 0.0122† 0.0189** 0.0787*** 0.0276*** 0.0046 0.0316*** -0.0216** 

         

 
Public Service 

Interest 

Business Man-

agement Interest 
      

Public Service 

Interest 
1.0000        

Business Man-

agement Inter-

est 

0.6355*** 1.0000       

† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Pairwise correlation coefficients derived from Pearson-correlations. N. of obs. is 20,095. 
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Table 1B: Correlation matrix for white females 

 Log (Hourly 

Earnings) 

Both Captain and 

President 
Captain Only President Only 

Both on Team 

and in Club 
On Team Only In Club Only Math Score 

Log (Hourly 

Earnings) 
1.0000        

Both Captain 

and President 
0.0481*** 1.0000       

Captain Only -0.0043 -0.2693*** 1.0000      

President Only 0.0417*** -0.2948*** -0.2555*** 1.0000     

Both on Team 

and in Club 
0.0651*** 0.2244*** 0.1575*** -0.0873*** 1.0000    

On Team Only -0.0143 -0.0190* 0.0315*** -0.0336*** -0.0919*** 1.0000   

In Club Only -0.0544*** -0.2140*** -0.1612*** 0.1018*** -0.9629*** -0.0583*** 1.0000  

Math Score 0.3233*** 0.0208* -0.0155 0.0651*** 0.0650*** -0.0327*** -0.0378*** 1.0000 

Parent High 

School 
0.0160† 0.0266** 0.0162† 0.0174† 0.0251** -0.0116 -0.0173† 0.0664*** 

Parent College 0.1468*** 0.0354*** -0.0199* 0.0234* 0.0537*** -0.0115 -0.0429*** 0.1948*** 

Some College -0.0512*** 0.0283** -0.0005 0.0067 0.0337*** -0.0107 -0.0254** 0.0055 

Degree or 

Higher 
0.3960*** 0.0343*** -0.0297** 0.0700*** 0.0224* -0.0267** -0.0054 0.4615*** 

Overweight -0.0242* -0.0212* -0.0128 -0.0160† -0.0327*** 0.0096 0.0216* -0.0242* 

Underweight 0.0059 -0.0183† -0.0164† 0.0034 -0.0213* -0.0063 0.0183† -0.0086 

Tall 0.0094 0.0017 -0.0033 0.0043 0.0203* -0.0042 -0.0184† -0.0079 

Short -0.0115 -0.0122 -0.0136 0.0092 -0.0290** 0.0071 0.0276** -0.0364*** 

Dates -0.1365*** 0.0848*** -0.0001 0.0315*** 0.0711*** -0.0246** -0.0609*** -0.1640*** 

Comfortable 0.0197* -0.0057 -0.0080 0.0182† -0.0128 -0.0026 0.0157† 0.0524*** 

Wealthy 0.0552*** 0.0408*** 0.0046 0.0050 0.0529*** -0.0004 -0.0499*** 0.0104 

Sociability 0.0190* 0.1288*** 0.0149 0.0525*** 0.1455*** -0.0320*** -0.1271*** -0.0580*** 

Vigor 0.0526*** 0.1744*** 0.0490*** 0.0225* 0.2295*** -0.0325*** -0.2058*** 0.0609*** 

Mature 0.1408*** 0.0926*** -0.0227* 0.0806*** 0.0737*** -0.0327*** -0.0575*** 0.2626*** 

Self-Confi-

dence 
0.0731*** 0.1173*** -0.0145 0.0734*** 0.1199*** -0.0257** -0.1026*** 0.1107*** 

Tidiness 0.0359*** 0.0405*** -0.0033 0.0490*** 0.0248** -0.0105 -0.0160† 0.0305** 

Vocabulary 

Score 
0.2792*** 0.0128 -0.0329*** 0.0593*** 0.0271** -0.0229* -0.0059 0.6512*** 

Social Studies 0.2703*** 0.0151 -0.0316*** 0.0429*** 0.0179† -0.0198* 0.0011 0.6021*** 
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Score 

Science Score 0.2389*** 0.0183† -0.0140 0.0514*** 0.0446*** -0.0202* -0.0251** 0.6319*** 

Scientific Atti-

tude Score 
0.1795*** 0.0167† 0.0019 0.0214* 0.0103 -0.0200* 0.0064 0.4451*** 

Law Score 0.1606*** -0.0012 0.0006 0.0158† 0.0075 -0.0002 0.0026 0.3994*** 

Military Score 0.1337*** 0.0059 -0.0176† 0.0328*** 0.0162† -0.0259** -0.0031 0.3202*** 

Business 

Score 
0.1951*** 0.0046 -0.0132 0.0259** 0.0240* -0.0056 -0.0113 0.4105*** 

Etiquette 

Score 
0.1457*** 0.0280** -0.0198* 0.0350*** 0.0108 -0.0339*** 0.0012 0.3310*** 

English Score 0.2405*** 0.0080 -0.0368*** 0.0680*** 0.0116 -0.0395*** 0.0137 0.6408*** 

Science 

Awards 
0.0271** 0.0280** -0.0137 0.0050 0.0163† 0.0044 -0.0181† 0.0495*** 

Fine Arts 

Awards 
0.0293** 0.0844*** -0.0317*** 0.0462*** 0.0366*** -0.0116 -0.0301** 0.0733*** 

Sports Awards 0.0356*** 0.1753*** 0.0280** -0.0132 0.1982*** -0.0219* -0.1859*** 0.0364*** 

Arithmetic 

Skills 
0.0861*** -0.0286** 0.0056 0.0122 -0.0064 -0.0124 0.0146 0.3165*** 

Reading Skills -0.0300** -0.0285** -0.0066 -0.0127 -0.0248** 0.0082 0.0189* -0.0748*** 

Clerical Skills 0.0847*** 0.0096 -0.0124 0.0013 0.0134 -0.0098 -0.0086 0.1891*** 

Identification 

Skills 
0.0504*** -0.0092 0.0065 -0.0003 0.0137 0.0046 -0.0113 0.1548*** 

Public Service 

Interest 
0.1535*** 0.0599*** -0.0282** 0.0449*** 0.0853*** -0.0276** -0.0708*** 0.1875*** 

Business Man-

agement Inter-

est 

0.0733*** 0.0478*** -0.0016 0.0469*** 0.0775*** -0.0403*** -0.0614*** 0.0871*** 

         

 
Parent High 

School 
Parent College Some College Degree or Higher Overweight Underweight Tall Short 

Parent High 

School 
1.0000        

Parent College -0.4651*** 1.0000       

Some College 0.0311*** -0.0028 1.0000      

Degree or 

Higher 
-0.0025 0.2460*** -0.3532*** 1.0000     

Overweight -0.0079 -0.0363*** 0.0044 -0.0276** 1.0000    
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Underweight -0.0034 -0.0092 -0.0036 -0.0032 -0.0296** 1.0000   

Tall -0.0042 -0.0033 0.0067 -0.0029 -0.0073 0.0586*** 1.0000  

Short -0.0090 -0.0264** -0.0118 -0.0290** 0.0401*** 0.0771*** -0.0831*** 1.0000 

Dates 0.0159† -0.0514*** -0.0076 -0.1850*** -0.0714*** -0.0136 -0.0098 0.0593*** 

Comfortable 0.0511*** -0.0223* -0.0080 0.0249** -0.0216* -0.0032 -0.0075 -0.0059 

Wealthy -0.0375*** 0.1377*** 0.0284** 0.0584*** -0.0137 0.0030 -0.0080 -0.0101 

Sociability 0.0342*** 0.0099 0.0292** -0.0338*** -0.0445*** -0.0226* -0.0025 0.0129 

Vigor 0.0392*** 0.0518*** 0.0168† 0.0537*** -0.0556*** -0.0212* 0.0064 -0.0342*** 

Mature 0.0369*** 0.0633*** -0.0270** 0.1913*** -0.0252** -0.0137 0.0082 -0.0323*** 

Self-Confi-

dence 
0.0132 0.0682*** 0.0053 0.0902*** -0.0144 -0.0253** 0.0012 -0.0126 

Tidiness 0.0449*** -0.0108 0.0064 0.0226* -0.0505*** 0.0109 0.0090 -0.0039 

Vocabulary 

Score 
0.0776*** 0.1884*** 0.0269** 0.3900*** -0.0226* -0.0165† -0.0183† -0.0423*** 

Social Studies 

Score 
0.0593*** 0.1693*** 0.0175† 0.3850*** -0.0101 -0.0264** -0.0124 -0.0437*** 

Science Score 0.0645*** 0.1684*** 0.0113 0.3571*** -0.0123 -0.0029 -0.0061 -0.0400*** 

Scientific Atti-

tude Score 
0.0506*** 0.1230*** 0.0180† 0.2530*** -0.0343*** -0.0056 -0.0195* -0.0231* 

Law Score 0.0406*** 0.1191*** 0.0141 0.2452*** -0.0135 0.0004 -0.0206* -0.0379*** 

Military Score 0.0503*** 0.1134*** 0.0247** 0.2039*** -0.0129 -0.0210* 0.0003 -0.0371*** 

Business 

Score 
0.0554*** 0.0850*** 0.0027 0.2260*** -0.0164† -0.0166† -0.0163† -0.0219* 

Etiquette 

Score 
0.0575*** 0.0988*** 0.0094 0.2000*** -0.0505*** -0.0059 -0.0124 -0.0120 

English Score 0.0503*** 0.1635*** -0.0006 0.3573*** -0.0479*** 0.0010 -0.0236* -0.0419*** 

Science 

Awards 
-0.0079 0.0225* -0.0227* 0.0496*** -0.0074 0.0205* 0.0358*** -0.0068 

Fine Arts 

Awards 
0.0207* 0.0630*** -0.0048 0.0865*** -0.0103 0.0101 0.0240* -0.0203* 

Sports Awards 0.0356*** 0.0566*** 0.0311*** 0.0444*** -0.0186* -0.0055 0.0167† -0.0304** 

Arithmetic 

Skills 
0.0258** 0.0233* -0.0101 0.1355*** -0.0003 0.0089 -0.0052 -0.0071 

Reading Skills 0.0022 -0.0220* 0.0188* -0.0666*** -0.0078 0.0223* -0.0062 0.0045 

Clerical Skills 0.0202* 0.0267** 0.0017 0.0937*** -0.0269** 0.0118 -0.0177† -0.0056 

Identification 

Skills 
0.0269** 0.0258** 0.0019 0.0550*** -0.0175† -0.0089 -0.0117 -0.0131 
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Public Service 

Interest 
0.0167† 0.0604*** 0.0056 0.1881*** -0.0199* -0.0120 -0.0110 -0.0025 

Business Man-

agement Inter-

est 

0.0096 -0.0012 -0.0052 0.0713*** -0.0237* 0.0001 -0.0043 0.0071 

         

 Dates Comfortable Wealthy Sociability Vigor Mature Self-Confidence Tidiness 

Dates 1.0000        

Comfortable -0.0056 1.0000       

Wealthy 0.0344*** -0.6302*** 1.0000      

Sociability 0.2234*** 0.0137 0.0580*** 1.0000     

Vigor 0.1260*** -0.0029 0.0621*** 0.5002*** 1.0000    

Mature 0.0181† 0.0167† 0.0373*** 0.2994*** 0.4350*** 1.0000   

Self-Confi-

dence 
0.1182*** 0.0207* 0.0536*** 0.4074*** 0.3447*** 0.3997*** 1.0000  

Tidiness 0.0982*** 0.0205* 0.0523*** 0.2943*** 0.3064*** 0.5679*** 0.2297*** 1.0000 

Vocabulary 

Score 
-0.1504*** 0.0660*** 0.0002 -0.1003*** 0.0149 0.2038*** 0.1005*** -0.0059 

Social Studies 

Score 
-0.1930*** 0.0569*** -0.0000 -0.1221*** -0.0017 0.1866*** 0.0777*** -0.0173† 

Science Score -0.1577*** 0.0488*** -0.0048 -0.0960*** 0.0361*** 0.1996*** 0.0873*** -0.0170† 

Scientific Atti-

tude Score 
-0.0622*** 0.0407*** -0.0030 -0.0511*** 0.0156† 0.1260*** 0.0726*** -0.0258** 

Law Score -0.1039*** 0.0583*** -0.0254** -0.0918*** -0.0152 0.1157*** 0.0695*** -0.0492*** 

Military Score -0.0746*** 0.0371*** 0.0053 -0.0516*** 0.0020 0.1006*** 0.0638*** -0.0148 

Business 

Score 
-0.0804*** 0.0525*** -0.0139 -0.0557*** -0.0249** 0.1384*** 0.0685*** -0.0044 

Etiquette 

Score 
-0.0352*** 0.0308** 0.0166† -0.0081 0.0076 0.1128*** 0.0625*** 0.0434*** 

English Score -0.1064*** 0.0634*** -0.0167† -0.0490*** 0.0235* 0.2219*** 0.0848*** 0.0580*** 

Science 

Awards 
0.0013 -0.0078 0.0211* 0.0132 0.0225* 0.0601*** 0.0322*** 0.0161† 

Fine Arts 

Awards 
0.0539*** -0.0031 0.0428*** 0.0647*** 0.0977*** 0.1338*** 0.0996*** 0.0598*** 

Sports Awards 0.0796*** -0.0076 0.0542*** 0.1203*** 0.1957*** 0.1194*** 0.1091*** 0.0626*** 

Arithmetic 

Skills 
-0.0528*** 0.0291** -0.0268** -0.0254** -0.0120 0.0888*** 0.0335*** 0.0229* 
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Reading Skills 0.0179† 0.0101 -0.0111 -0.0181† -0.0267** -0.0669*** -0.0315*** -0.0058 

Clerical Skills -0.0095 0.0093 0.0094 0.0077 0.0189* 0.0720*** 0.0402*** 0.0392*** 

Identification 

Skills 
-0.0130 0.0145 -0.0163† -0.0373*** -0.0330*** -0.0107 -0.0173† -0.0145 

Public Service 

Interest 
-0.0415*** 0.0052 0.0354*** 0.0790*** 0.1164*** 0.1659*** 0.1397*** 0.0367*** 

Business Man-

agement Inter-

est 

0.0602*** 0.0045 0.0131 0.1510*** 0.1220*** 0.1651*** 0.1295*** 0.0898*** 

         

 Vocabulary Score 
Social Studies 

Score 
Science Score 

Scientific Atti-

tude Score 
Law Score Military Score Business Score Etiquette Score 

Vocabulary 

Score 
1.0000        

Social Studies 

Score 
0.6625*** 1.0000       

Science Score 0.6539*** 0.6047*** 1.0000      

Scientific Atti-

tude Score 
0.4623*** 0.3999*** 0.3842*** 1.0000     

Law Score 0.4922*** 0.4787*** 0.4066*** 0.3138*** 1.0000    

Military Score 0.3860*** 0.3848*** 0.3232*** 0.2087*** 0.3249*** 1.0000   

Business 

Score 
0.4923*** 0.4503*** 0.3719*** 0.3149*** 0.3753*** 0.2940*** 1.0000  

Etiquette 

Score 
0.3973*** 0.3216*** 0.3093*** 0.2286*** 0.2516*** 0.2200*** 0.2711*** 1.0000 

English Score 0.6109*** 0.5337*** 0.4953*** 0.4021*** 0.3799*** 0.2863*** 0.3918*** 0.3795*** 

Science 

Awards 
0.0439*** 0.0314*** 0.0595*** 0.0295** 0.0281** 0.0133 0.0263** 0.0285** 

Fine Arts 

Awards 
0.0716*** 0.0600*** 0.0882*** 0.0557*** 0.0487*** 0.0345*** 0.0392*** 0.0699*** 

Sports Awards 0.0197* 0.0264** 0.0451*** 0.0036 -0.0014 0.0055 0.0118 0.0021 

Arithmetic 

Skills 
0.2297*** 0.2109*** 0.1932*** 0.1524*** 0.1302*** 0.0927*** 0.1665*** 0.1336*** 

Reading Skills -0.0406*** -0.0558*** -0.0490*** -0.0229* -0.0056 -0.0305** -0.0178† -0.0092 

Clerical Skills 0.1830*** 0.1524*** 0.1192*** 0.1244*** 0.1144*** 0.0876*** 0.1274*** 0.1350*** 

Identification 

Skills 
0.1404*** 0.1103*** 0.1117*** 0.1229*** 0.0786*** 0.0601*** 0.0882*** 0.0977*** 



140 

 

Public Service 

Interest 
0.1815*** 0.2164*** 0.1598*** 0.1016*** 0.1652*** 0.1439*** 0.1597*** 0.0803*** 

Business Man-

agement Inter-

est 

0.0578*** 0.0785*** 0.0462*** 0.0583*** 0.0743*** 0.0535*** 0.1086*** 0.0268** 

         

 English Score Science Awards Fine Arts Awards Sports Awards Arithmetic Skills Reading Skills Clerical Skills 
Identification 

Skills 

English Score 1.0000        

Science 

Awards 
0.0183† 1.0000       

Fine Arts 

Awards 
0.0742*** 0.5925*** 1.0000      

Sports Awards -0.0262** 0.2845*** 0.3562*** 1.0000     

Arithmetic 

Skills 
0.3029*** 0.0030 0.0023 -0.0260** 1.0000    

Reading Skills -0.0239* -0.0359*** -0.0446*** -0.0319*** 0.0302** 1.0000   

Clerical Skills 0.2700*** -0.0127 -0.0005 -0.0089 0.1681*** 0.1204*** 1.0000  

Identification 

Skills 
0.1769*** -0.0055 -0.0105 -0.0244** 0.1440*** 0.0839*** 0.1355*** 1.0000 

Public Service 

Interest 
0.1182*** 0.0298** 0.0639*** 0.0634*** 0.0247** -0.0333*** 0.0295** 0.0037 

Business Man-

agement Inter-

est 

0.0697*** -0.0075 0.0195* 0.0408*** 0.0164† -0.0215* 0.0326*** -0.0081 

         

 
Public Service 

Interest 

Business Man-

agement Interest 
      

Public Service 

Interest 
1.0000        

Business Man-

agement Inter-

est 

0.6049*** 1.0000       

† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Pairwise correlation coefficients derived from Pearson-correlations. N. of obs. is 11,210. 
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Table 1C: Correlation matrix for non-white males 

 Log (Hourly 

Earnings) 

Both Captain and 

President 
Captain Only President Only 

Both on Team 

and in Club 
On Team Only In Club Only Math Score 

Log (Hourly 

Earnings) 
1.0000        

Both Captain 

and President 
0.0539 1.0000       

Captain Only 0.0578 -0.2266*** 1.0000      

President Only -0.0286 -0.3528*** -0.2436*** 1.0000     

Both on Team 

and in Club 
0.1009** 0.1947*** 0.0940* -0.0184 1.0000    

On Team Only 0.0180 -0.0831* 0.0638† -0.0197 -0.2749*** 1.0000   

In Club Only -0.1078** -0.1557*** -0.1089** 0.0247 -0.8954*** -0.0685† 1.0000  

Math Score 0.3490*** -0.0558 0.0123 0.0339 0.1028** 0.0381 -0.1228** 1.0000 

Parent High 

School 
0.1098** 0.0682† -0.0264 0.0257 0.1106** -0.0017 -0.1183** 0.1177** 

Parent College 0.1400*** 0.1065** -0.0463 -0.0272 0.0460 0.0019 -0.0347 0.1897*** 

Some College 0.0101 0.0968* 0.0453 -0.0112 0.0257 0.0304 -0.0416 0.0120 

Degree or 

Higher 
0.2417*** -0.0081 -0.0518 0.0618 0.0737† -0.0556 -0.0484 0.3910*** 

Overweight 0.0270 -0.0628 -0.0301 0.0420 -0.0421 -0.0218 0.0587 -0.0299 

Underweight 0.0019 0.0149 -0.0773* 0.0022 0.0462 -0.0283 -0.0315 0.0057 

Tall -0.0042 0.1212** -0.0170 -0.0581 0.1268*** -0.0598 -0.0978* -0.0447 

Short -0.0161 -0.0672† 0.0326 -0.0779* -0.0532 0.0850* 0.0032 0.0323 

Dates -0.0630 0.0867* -0.0107 0.0560 0.1129** -0.0819* -0.0651† -0.2337*** 

Comfortable 0.0921* -0.0438 0.0060 -0.0090 -0.0018 0.0186 -0.0065 0.1392*** 

Wealthy 0.0184 0.0254 0.0055 -0.0305 0.0144 -0.0138 -0.0124 -0.1182** 

Sociability 0.0933* 0.0426 0.0673† -0.0028 0.1526*** -0.1383*** -0.0844* 0.0543 

Vigor 0.0883* 0.1940*** 0.0235 -0.0364 0.1923*** -0.0678† -0.1617*** 0.0262 

Mature 0.0694† 0.1165** 0.0216 0.0978* 0.0959* -0.0682† -0.0517 0.0569 

Self-Confi-

dence 
0.1186** 0.0222 -0.0047 0.1108** 0.0533 -0.0882* -0.0180 0.1309*** 

Tidiness 0.1165** 0.0827* -0.0075 0.0962* 0.0769* -0.1065** -0.0262 0.0704† 

Vocabulary 

Score 
0.3088*** -0.0583 0.0281 0.0280 0.0446 -0.0065 -0.0398 0.6751*** 

Social Studies 0.3215*** -0.0596 0.0489 0.0356 0.0766* 0.0164 -0.0780* 0.6523*** 
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Score 

Science Score 0.2748*** -0.0439 0.0233 0.0187 0.0177 0.0503 -0.0225 0.6862*** 

Scientific Atti-

tude Score 
0.2154*** -0.0508 0.0014 0.0207 0.0240 -0.0337 -0.0195 0.5270*** 

Law Score 0.2758*** -0.0526 0.0529 0.0079 0.0753* 0.0032 -0.0736† 0.5486*** 

Military Score 0.2271*** 0.0021 0.0188 -0.0132 0.0314 -0.0193 -0.0199 0.4226*** 

Business 

Score 
0.2089*** 0.0375 0.0016 0.0244 0.0815* 0.0175 -0.0822* 0.4900*** 

Etiquette 

Score 
0.0480 0.0214 0.0483 0.0114 -0.0137 0.0303 0.0127 0.1233** 

English Score 0.2714*** -0.0858* 0.0032 0.0812* 0.0341 0.0753* -0.0649† 0.6973*** 

Science 

Awards 
-0.0151 0.1321*** -0.0294 0.0118 0.0300 -0.0131 -0.0243 -0.0809* 

Fine Arts 

Awards 
-0.0639† 0.1522*** -0.0662† -0.0243 0.0826* -0.0485 -0.0562 -0.1352*** 

Sports Awards 0.0532 0.2572*** 0.1070** -0.0691† 0.2598*** -0.0650† -0.2254*** 0.1005** 

Arithmetic 

Skills 
0.1008** -0.1074** 0.0143 0.0247 0.0542 -0.0141 -0.0758* 0.4297*** 

Reading Skills 0.1058** -0.0353 0.0175 0.0045 0.0496 -0.0532 -0.0402 0.1856*** 

Clerical Skills 0.0816* 0.0642† -0.0319 -0.0196 0.0243 0.0043 -0.0211 0.2284*** 

Identification 

Skills 
0.1162** -0.0198 -0.0264 -0.0239 0.0759* 0.0141 -0.1035** 0.2220*** 

Public Service 

Interest 
-0.0299 0.0997** -0.0809* 0.0500 0.0918* -0.0533 -0.0629 -0.0864* 

Business Man-

agement Inter-

est 

-0.0941* 0.1200** -0.0337 0.0431 0.1265*** -0.0516 -0.0966* -0.1866*** 

         

 
Parent High 

School 
Parent College Some College Degree or Higher Overweight Underweight Tall Short 

Parent High 

School 
1.0000        

Parent College -0.2567*** 1.0000       

Some College 0.0483 -0.0665† 1.0000      

Degree or 

Higher 
0.1125** 0.2346*** -0.4135*** 1.0000     

Overweight 0.0580 0.0269 0.0007 0.0036 1.0000    
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Underweight 0.0296 0.0350 0.0245 -0.0343 -0.0293 1.0000   

Tall -0.0351 0.0884* 0.0075 0.0278 -0.0620 0.0080 1.0000  

Short -0.0144 -0.0220 -0.0423 0.0138 0.1461*** 0.0330 -0.2365*** 1.0000 

Dates -0.0273 -0.0650† 0.0145 -0.1812*** -0.0072 0.0023 0.0779* -0.1703*** 

Comfortable 0.0739† 0.0219 -0.0020 0.0708† 0.0063 0.0398 -0.0031 -0.0369 

Wealthy 0.0125 0.0681† 0.0409 -0.0270 0.0342 -0.0099 0.0352 -0.0101 

Sociability 0.0449 0.0512 0.0148 0.0460 -0.0147 0.0291 0.0594 -0.1222** 

Vigor 0.0649† -0.0322 0.0727† 0.0114 -0.0034 -0.0452 0.0999** -0.1394*** 

Mature 0.0002 0.0465 -0.0284 0.0714† -0.0024 -0.0235 0.1127** -0.1549*** 

Self-Confi-

dence 
0.0363 0.1063** -0.0290 0.1418*** -0.0388 0.0066 0.0825* -0.1243** 

Tidiness 0.0005 0.0800* -0.0037 0.1014** 0.0152 -0.0347 0.0884* -0.1301*** 

Vocabulary 

Score 
0.1409*** 0.1800*** 0.0520 0.3784*** -0.0274 -0.0426 -0.0734† 0.0529 

Social Studies 

Score 
0.1088** 0.1236** 0.0162 0.3878*** -0.0245 -0.0347 -0.0874* 0.0671† 

Science Score 0.0721† 0.1821*** 0.0209 0.3738*** -0.0191 -0.0607 -0.1043** 0.0816* 

Scientific Atti-

tude Score 
0.1145** 0.1141** 0.0481 0.2499*** -0.0053 0.0298 -0.0753* 0.0072 

Law Score 0.0649† 0.1681*** 0.0118 0.3320*** -0.0557 -0.0240 -0.0471 0.0187 

Military Score 0.1034** 0.1498*** 0.0436 0.2708*** -0.0314 -0.0370 -0.0696† 0.0499 

Business 

Score 
0.1004** 0.1344*** 0.0029 0.2903*** -0.0103 0.0050 -0.0544 -0.0689† 

Etiquette 

Score 
-0.0118 0.1046** -0.0265 0.1355*** 0.0342 0.0086 -0.0088 0.0055 

English Score 0.1439*** 0.1607*** 0.0287 0.4008*** -0.0704† -0.0348 -0.0971* 0.0410 

Science 

Awards 
-0.0230 0.0125 -0.0091 -0.0503 0.0623 0.0154 0.1539*** -0.0281 

Fine Arts 

Awards 
0.0204 0.0069 -0.0124 -0.0475 -0.0088 0.0294 0.1428*** -0.0794* 

Sports Awards 0.1140** 0.0360 0.0527 0.0877* -0.0287 -0.0352 0.0769* -0.0587 

Arithmetic 

Skills 
0.0481 0.0752* 0.0362 0.2084*** 0.0337 -0.0107 -0.1056** 0.0865* 

Reading Skills 0.0541 0.0489 0.0234 0.0326 -0.0160 -0.0475 0.0053 -0.0076 

Clerical Skills 0.0948* 0.0540 0.0626 0.1744*** -0.0134 -0.0459 -0.0265 -0.0058 

Identification 

Skills 
0.0086 0.0448 0.0354 0.0909* -0.0276 0.0462 0.0359 -0.0531 
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Public Service 

Interest 
-0.0435 0.0307 -0.0498 0.0203 0.0294 -0.0219 0.0617 -0.0657† 

Business Man-

agement Inter-

est 

-0.0496 -0.0513 0.0324 -0.0882* -0.0088 0.0011 0.0637† -0.0861* 

         

 Dates Comfortable Wealthy Sociability Vigor Mature Self-Confidence Tidiness 

Dates 1.0000        

Comfortable -0.0930* 1.0000       

Wealthy 0.1403*** -0.5488*** 1.0000      

Sociability 0.1416*** 0.0791* -0.0412 1.0000     

Vigor 0.1467*** -0.0268 0.0502 0.4774*** 1.0000    

Mature 0.0997** -0.0504 0.0021 0.4209*** 0.5407*** 1.0000   

Self-Confi-

dence 
0.1207** 0.0597 -0.0471 0.3407*** 0.2243*** 0.3398*** 1.0000  

Tidiness 0.1136** -0.0035 -0.0069 0.4287*** 0.4447*** 0.6323*** 0.3081*** 1.0000 

Vocabulary 

Score 
-0.2283*** 0.1767*** -0.1224** 0.0777* 0.0623 0.1049** 0.1750*** 0.1345*** 

Social Studies 

Score 
-0.2542*** 0.2005*** -0.1297*** 0.0495 0.0232 0.0569 0.1076** 0.0797* 

Science Score -0.2306*** 0.1316*** -0.0993** 0.0071 0.0092 0.0350 0.0585 0.0538 

Scientific Atti-

tude Score 
-0.1692*** 0.1686*** -0.1375*** 0.0794* 0.0464 0.0616 0.1101** 0.0923* 

Law Score -0.1841*** 0.1345*** -0.1184** 0.0205 0.0522 0.0336 0.1026** 0.0363 

Military Score -0.1886*** 0.0860* -0.0155 0.0577 0.0128 0.0250 0.0645† 0.0307 

Business 

Score 
-0.1477*** 0.1086** -0.0884* 0.0924* 0.0819* 0.0887* 0.1118** 0.0706† 

Etiquette 

Score 
-0.0334 0.0462 -0.0415 0.0763* 0.0800* 0.0878* 0.0608 0.0980* 

English Score -0.2705*** 0.1519*** -0.1309*** 0.0936* 0.0055 0.0729† 0.1716*** 0.1113** 

Science 

Awards 
0.1013** -0.1336*** 0.1149** -0.0219 0.0845* 0.0900* 0.0196 0.0215 

Fine Arts 

Awards 
0.0810* -0.0816* 0.0964* 0.0327 0.1128** 0.0449 0.0239 0.0231 

Sports Awards 0.0703† -0.0209 0.0177 0.2084*** 0.2228*** 0.1651*** 0.0969* 0.1121** 

Arithmetic 

Skills 
-0.2103*** 0.1073** -0.1007** 0.1071** 0.0254 -0.0195 0.0444 0.0124 
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Reading Skills -0.0568 0.0340 -0.0016 -0.0282 -0.0094 -0.0457 0.0325 -0.0088 

Clerical Skills -0.0437 0.0643† -0.0037 0.0329 0.0161 -0.0709† 0.0710† 0.0612 

Identification 

Skills 
0.0245 0.0531 -0.1094** 0.0190 -0.0245 0.0032 0.1332*** 0.0535 

Public Service 

Interest 
0.1104** -0.0145 -0.0094 0.1355*** 0.1071** 0.1636*** 0.0350 0.0949* 

Business Man-

agement Inter-

est 

0.2015*** -0.0560 0.0086 0.1954*** 0.1539*** 0.1846*** 0.0520 0.1459*** 

         

 Vocabulary Score 
Social Studies 

Score 
Science Score 

Scientific Atti-

tude Score 
Law Score Military Score Business Score Etiquette Score 

Vocabulary 

Score 
1.0000        

Social Studies 

Score 
0.7228*** 1.0000       

Science Score 0.7284*** 0.7227*** 1.0000      

Scientific Atti-

tude Score 
0.6101*** 0.5543*** 0.5320*** 1.0000     

Law Score 0.5889*** 0.6165*** 0.5498*** 0.4502*** 1.0000    

Military Score 0.4808*** 0.5333*** 0.4886*** 0.3561*** 0.4321*** 1.0000   

Business 

Score 
0.5624*** 0.5159*** 0.4983*** 0.4508*** 0.5106*** 0.3331*** 1.0000  

Etiquette 

Score 
0.1731*** 0.1468*** 0.1513*** 0.1337*** 0.1560*** 0.1350*** 0.1065** 1.0000 

English Score 0.7032*** 0.6713*** 0.6268*** 0.5517*** 0.5171*** 0.3990*** 0.5120*** 0.1596*** 

Science 

Awards 
-0.0840* -0.0619 -0.0471 -0.0999** -0.0712† -0.0657† -0.0389 0.0297 

Fine Arts 

Awards 
-0.1358*** -0.1178** -0.1133** -0.1500*** -0.1084** -0.0338 -0.0573 -0.0193 

Sports Awards 0.0834* 0.1082** 0.0846* -0.0088 0.0753* 0.1363*** 0.0857* 0.0008 

Arithmetic 

Skills 
0.3754*** 0.3697*** 0.3410*** 0.3094*** 0.2724*** 0.1959*** 0.2960*** 0.0957* 

Reading Skills 0.1916*** 0.1819*** 0.1416*** 0.1680*** 0.1951*** 0.0874* 0.1376*** 0.0662† 

Clerical Skills 0.2868*** 0.2700*** 0.2195*** 0.2167*** 0.1762*** 0.1683*** 0.1912*** 0.1083** 

Identification 

Skills 
0.2213*** 0.1766*** 0.1855*** 0.1913*** 0.1632*** 0.0760* 0.1458*** 0.0139 
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Public Service 

Interest 
-0.1203** -0.1142** -0.1553*** -0.0878* -0.0349 -0.0695† -0.0580 -0.0178 

Business Man-

agement Inter-

est 

-0.2113*** -0.2068*** -0.2591*** -0.1295*** -0.1297*** -0.1151** -0.0752† -0.0365 

         

 English Score Science Awards Fine Arts Awards Sports Awards Arithmetic Skills Reading Skills Clerical Skills 
Identification 

Skills 

English Score 1.0000        

Science 

Awards 
-0.1537*** 1.0000       

Fine Arts 

Awards 
-0.1687*** 0.5893*** 1.0000      

Sports Awards 0.0417 0.2539*** 0.2893*** 1.0000     

Arithmetic 

Skills 
0.4910*** -0.1325*** -0.1525*** -0.0167 1.0000    

Reading Skills 0.2243*** -0.0762* -0.0435 -0.0057 0.2440*** 1.0000   

Clerical Skills 0.3177*** -0.0950* -0.0503 0.0291 0.2679*** 0.2373*** 1.0000  

Identification 

Skills 
0.2621*** -0.0900* -0.0782* -0.0347 0.2713*** 0.1959*** 0.2699*** 1.0000 

Public Service 

Interest 
-0.1161** 0.0349 0.0587 0.0378 -0.0442 -0.0443 0.0180 -0.0512 

Business Man-

agement Inter-

est 

-0.1857*** 0.0442 0.0661† 0.0357 -0.0845* -0.0703† -0.0345 -0.0530 

         

 
Public Service 

Interest 

Business Man-

agement Interest 
      

Public Service 

Interest 
1.0000        

Business Man-

agement Inter-

est 

0.6942*** 1.0000       

† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Pairwise correlation coefficients derived from Pearson-correlations. N. of obs. is 680. 
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Table 1D: Correlation matrix for non-white females 

 Log (Hourly 

Earnings) 

Both Captain and 

President 
Captain Only President Only 

Both on Team 

and in Club 
On Team Only In Club Only Math Score 

Log (Hourly 

Earnings) 
1.0000        

Both Captain 

and President 
0.0477 1.0000       

Captain Only 0.0029 -0.2456*** 1.0000      

President Only 0.0326 -0.4116*** -0.2871*** 1.0000     

Both on Team 

and in Club 
-0.0133 0.1862*** 0.1267*** -0.0178 1.0000    

On Team Only -0.0260 -0.0377 0.0336 0.0464 -0.0834* 1.0000   

In Club Only 0.0213 -0.1741*** -0.1341*** 0.0215 -0.9770*** -0.0474 1.0000  

Math Score 0.3849*** -0.0037 0.0319 -0.0331 -0.0362 -0.0117 0.0469 1.0000 

Parent High 

School 
0.1556*** 0.0210 0.0490 0.0037 0.0673† 0.0503 -0.0713† 0.1718*** 

Parent College 0.1539*** 0.0455 -0.0120 0.0185 0.0578 -0.0234 -0.0499 0.1646*** 

Some College -0.0211 0.0718† -0.0300 0.0005 0.1208*** 0.0169 -0.1230*** 0.0140 

Degree or 

Higher 
0.4833*** 0.0219 -0.0698† 0.0481 -0.0989** -0.0364 0.1124** 0.3305*** 

Overweight -0.0811* -0.0161 -0.0381 -0.0321 -0.0806* -0.0141 0.0861* -0.0440 

Underweight 0.0407 -0.0089 0.0277 -0.0398 0.0334 -0.0145 -0.0285 0.0638† 

Tall -0.0270 0.0401 -0.0304 -0.0510 0.0179 -0.0047 -0.0164 -0.0441 

Short 0.0385 -0.0028 -0.0483 -0.0234 -0.0778* -0.0194 0.0737* 0.0422 

Dates -0.1867*** 0.0587 0.0378 0.0393 0.0938* 0.0817* -0.1103** -0.2024*** 

Comfortable 0.0641† 0.0407 -0.0012 -0.0124 0.0333 0.0066 -0.0281 0.1186** 

Wealthy -0.0427 -0.0033 0.0006 0.0129 0.0401 -0.0263 -0.0469 -0.1601*** 

Sociability -0.0160 0.1209*** -0.0354 0.0311 0.1409*** -0.0236 -0.1283*** 0.0148 

Vigor 0.0472 0.1131** -0.0046 0.0756* 0.1866*** -0.0047 -0.1747*** -0.0204 

Mature 0.1238*** 0.1035** -0.0562 0.0698† 0.1000** -0.0131 -0.0915* 0.0705† 

Self-Confi-

dence 
0.0605† 0.0895* 0.0139 -0.0161 0.1304*** 0.0384 -0.1368*** 0.0697† 

Tidiness 0.0204 0.1063** 0.0200 0.0426 0.1486*** 0.0145 -0.1493*** -0.0241 

Vocabulary 

Score 
0.3494*** -0.0217 0.0550 -0.0376 -0.0127 -0.0168 0.0234 0.6506*** 

Social Studies 0.3766*** 0.0010 0.0559 -0.0453 -0.0052 -0.0395 0.0289 0.6453*** 
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Score 

Science Score 0.3238*** -0.0067 0.0111 -0.0170 -0.0261 -0.0790* 0.0494 0.6086*** 

Scientific Atti-

tude Score 
0.2748*** 0.0189 0.0330 -0.0358 -0.0641† 0.0331 0.0681† 0.4152*** 

Law Score 0.2877*** 0.0363 0.0192 -0.0818* -0.0394 -0.0166 0.0512 0.4631*** 

Military Score 0.1406*** -0.0447 0.0547 -0.0237 -0.0165 0.0139 0.0198 0.3121*** 

Business 

Score 
0.2256*** 0.0197 0.0869* -0.0839* 0.0505 -0.0076 -0.0485 0.4064*** 

Etiquette 

Score 
0.2005*** -0.0030 0.0448 -0.0647† 0.0094 0.0251 0.0002 0.3922*** 

English Score 0.3817*** -0.0342 0.0341 -0.0470 -0.0484 0.0037 0.0503 0.6692*** 

Science 

Awards 
0.0208 0.0570 -0.0089 -0.0075 0.0476 -0.0162 -0.0422 -0.0317 

Fine Arts 

Awards 
-0.0025 0.1068** -0.0020 -0.0142 0.0360 -0.0215 -0.0339 -0.0356 

Sports Awards 0.0512 0.1129** 0.0215 0.0060 0.1618*** -0.0293 -0.1525*** 0.0025 

Arithmetic 

Skills 
0.1821*** -0.0249 0.0963** -0.1192** -0.0956** 0.0433 0.0847* 0.3674*** 

Reading Skills 0.0456 -0.0178 0.0469 -0.0239 0.0604† 0.0130 -0.0684† 0.0703† 

Clerical Skills 0.1397*** 0.0063 0.0633† -0.0072 -0.0183 0.0674† 0.0173 0.2640*** 

Identification 

Skills 
0.2112*** 0.0143 -0.0563 -0.0093 -0.0289 -0.0259 0.0501 0.2725*** 

Public Service 

Interest 
0.0241 0.0412 -0.0532 0.0968** 0.0440 -0.0421 -0.0374 -0.0436 

Business Man-

agement Inter-

est 

-0.0274 0.0847* -0.0354 0.0296 0.0845* 0.0860* -0.1061** -0.1827*** 

         

 
Parent High 

School 
Parent College Some College Degree or Higher Overweight Underweight Tall Short 

Parent High 

School 
1.0000        

Parent College -0.2431*** 1.0000       

Some College 0.0115 0.0116 1.0000      

Degree or 

Higher 
0.1163** 0.1729*** -0.3066*** 1.0000     

Overweight -0.0499 0.0551 -0.0732* -0.0389 1.0000    
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Underweight 0.0104 0.0491 -0.0185 0.0410 -0.0508 1.0000   

Tall -0.0085 -0.0271 -0.0393 0.0005 -0.0163 0.1523*** 1.0000  

Short -0.0049 -0.0139 0.0457 -0.0113 0.0519 -0.0342 -0.1428*** 1.0000 

Dates 0.0156 -0.0605† -0.0232 -0.2492*** -0.0933* -0.0023 -0.0110 -0.0707† 

Comfortable 0.0766* 0.0950** -0.0482 0.0745* 0.0448 0.0026 -0.0553 -0.0467 

Wealthy -0.0088 -0.0354 0.0156 -0.0786* -0.0022 0.0103 0.0216 0.0730* 

Sociability 0.0775* 0.0045 0.0450 -0.0108 0.0396 -0.0467 -0.0532 0.0471 

Vigor 0.0892* 0.0142 0.0644† 0.0550 -0.0692† -0.0528 -0.0601 -0.0114 

Mature 0.0444 0.0640† -0.0065 0.1212*** 0.0244 -0.0222 -0.0595 -0.0094 

Self-Confi-

dence 
0.0510 -0.0129 0.0398 0.0722* 0.0199 -0.0591 -0.0534 -0.0194 

Tidiness 0.0496 0.0029 0.0354 -0.0106 0.0019 0.0094 -0.0894* -0.0071 

Vocabulary 

Score 
0.2306*** 0.1171** 0.0118 0.3360*** -0.0373 -0.0090 -0.0671† 0.0725* 

Social Studies 

Score 
0.2012*** 0.1017** 0.0489 0.2907*** -0.0612† -0.0181 -0.0798* 0.0528 

Science Score 0.1971*** 0.1470*** 0.0095 0.2667*** -0.0716† 0.0247 -0.0784* 0.0602 

Scientific Atti-

tude Score 
0.1651*** 0.0885* -0.0032 0.2634*** -0.0382 -0.0403 -0.0352 -0.0416 

Law Score 0.1742*** 0.0878* 0.0428 0.2088*** -0.0814* 0.0069 -0.0083 0.0352 

Military Score 0.1271*** 0.0411 -0.0092 0.1163** 0.0336 0.0266 -0.0550 0.0785* 

Business 

Score 
0.1912*** 0.0663† 0.0057 0.1786*** -0.0368 -0.0615† -0.0207 0.0045 

Etiquette 

Score 
0.1218*** 0.1252*** -0.0231 0.1623*** -0.0343 -0.0103 -0.0245 0.0022 

English Score 0.1930*** 0.1078** 0.0157 0.3152*** -0.0803* 0.0663† -0.1151** 0.0408 

Science 

Awards 
-0.0513 0.0863* -0.0075 0.0349 0.0413 0.0538 0.0811* 0.0172 

Fine Arts 

Awards 
-0.0014 0.0825* 0.0152 0.0839* -0.0362 0.0072 0.1225*** -0.0299 

Sports Awards -0.0237 0.0841* -0.0272 0.0537 -0.0444 -0.0227 0.0331 -0.0314 

Arithmetic 

Skills 
0.0756* 0.0619† 0.0119 0.1364*** -0.0657† -0.0009 -0.0976** 0.0735* 

Reading Skills -0.0023 -0.0547 -0.0118 0.0276 -0.0120 0.0416 0.0315 -0.0225 

Clerical Skills 0.1093** 0.0093 0.0366 0.0854* -0.0112 0.0563 -0.0590 0.0374 

Identification 

Skills 
0.0757* 0.0283 0.0364 0.1114** -0.0038 0.0405 -0.0682† 0.0001 
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Public Service 

Interest 
-0.0020 -0.0475 0.0237 0.0870* -0.0214 -0.0321 -0.0474 -0.0309 

Business Man-

agement Inter-

est 

0.0084 -0.0464 -0.0122 0.0017 -0.0345 -0.0277 -0.0081 -0.0483 

         

 Dates Comfortable Wealthy Sociability Vigor Mature Self-Confidence Tidiness 

Dates 1.0000        

Comfortable 0.0255 1.0000       

Wealthy 0.0231 -0.5245*** 1.0000      

Sociability 0.0755* -0.0166 0.1129** 1.0000     

Vigor 0.0700† -0.0110 0.0776* 0.5156*** 1.0000    

Mature 0.0128 -0.0245 0.0400 0.3626*** 0.5354*** 1.0000   

Self-Confi-

dence 
0.1063** 0.0336 0.0015 0.3664*** 0.3073*** 0.4177*** 1.0000  

Tidiness 0.1093** -0.0103 0.0347 0.4396*** 0.4798*** 0.6139*** 0.3017*** 1.0000 

Vocabulary 

Score 
-0.1875*** 0.1596*** -0.1697*** 0.0895* 0.0770* 0.1254*** 0.1318*** 0.0224 

Social Studies 

Score 
-0.2048*** 0.1795*** -0.1995*** 0.0349 0.0528 0.0791* 0.0771* -0.0192 

Science Score -0.1543*** 0.1381*** -0.1146** 0.0119 0.0603 0.1031** 0.0170 0.0074 

Scientific Atti-

tude Score 
-0.1255*** 0.0262 -0.0879* 0.0313 0.0260 0.0680† 0.1274*** -0.0169 

Law Score -0.1941*** 0.0922* -0.0890* 0.0541 0.0534 0.0824* 0.1163** -0.0267 

Military Score -0.1088** 0.0630† -0.0535 0.0439 0.0517 0.0621† 0.0602 0.0290 

Business 

Score 
-0.0909* 0.1102** -0.0624† 0.0179 0.0459 0.0490 0.1150** -0.0355 

Etiquette 

Score 
-0.0983** 0.0300 0.0026 0.0341 0.0452 0.0700† 0.0569 -0.0088 

English Score -0.1563*** 0.1581*** -0.1718*** 0.0825* 0.0319 0.0946** 0.1532*** 0.0522 

Science 

Awards 
-0.0501 -0.0469 0.0771* 0.0206 0.0133 0.0728* 0.0695† -0.0038 

Fine Arts 

Awards 
-0.0212 -0.0182 0.0446 0.0227 0.0172 0.0699† 0.0665† 0.0066 

Sports Awards -0.0096 -0.0119 0.0837* 0.1198** 0.1196** 0.1006** 0.1051** 0.0484 

Arithmetic 

Skills 
-0.1033** 0.0939* -0.0839* 0.0491 -0.0347 0.0178 0.0407 0.0440 
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Reading Skills 0.0544 0.0758* -0.0569 0.0915* 0.0552 -0.0094 0.0610† 0.0827* 

Clerical Skills -0.0395 0.0707† -0.0563 0.0821* 0.0852* 0.0063 0.1030** 0.0135 

Identification 

Skills 
-0.0667† 0.0897* -0.0616† -0.0323 -0.0705† 0.0029 0.0635† -0.0235 

Public Service 

Interest 
0.0811* -0.0200 0.0042 0.0750* 0.1525*** 0.1561*** 0.1314*** 0.0673† 

Business Man-

agement Inter-

est 

0.1359*** -0.0962** 0.0684† 0.1104** 0.1873*** 0.1837*** 0.0873* 0.1052** 

         

 Vocabulary Score 
Social Studies 

Score 
Science Score 

Scientific Atti-

tude Score 
Law Score Military Score Business Score Etiquette Score 

Vocabulary 

Score 
1.0000        

Social Studies 

Score 
0.6623*** 1.0000       

Science Score 0.5894*** 0.6247*** 1.0000      

Scientific Atti-

tude Score 
0.4181*** 0.4144*** 0.3060*** 1.0000     

Law Score 0.5323*** 0.5019*** 0.4019*** 0.3763*** 1.0000    

Military Score 0.3431*** 0.3500*** 0.2909*** 0.2142*** 0.2919*** 1.0000   

Business 

Score 
0.4511*** 0.4782*** 0.3559*** 0.3836*** 0.4378*** 0.2730*** 1.0000  

Etiquette 

Score 
0.4175*** 0.3526*** 0.3574*** 0.2915*** 0.2799*** 0.2311*** 0.2670*** 1.0000 

English Score 0.6821*** 0.6144*** 0.5535*** 0.4794*** 0.4779*** 0.2887*** 0.3987*** 0.3911*** 

Science 

Awards 
-0.0707† -0.0848* -0.0543 -0.0315 -0.0717† -0.0618† -0.0353 -0.0272 

Fine Arts 

Awards 
-0.0565 -0.0884* -0.0959** -0.0262 -0.0551 -0.0813* -0.0389 -0.0251 

Sports Awards 0.0258 0.0050 -0.0268 0.0506 0.0403 0.0125 0.0836* -0.0125 

Arithmetic 

Skills 
0.3367*** 0.3352*** 0.2787*** 0.2483*** 0.2230*** 0.1178** 0.1805*** 0.2056*** 

Reading Skills 0.1068** 0.0408 0.0472 0.0345 0.0417 0.0434 0.0771* 0.0545 

Clerical Skills 0.2712*** 0.2733*** 0.2110*** 0.2313*** 0.2556*** 0.1346*** 0.1690*** 0.1451*** 

Identification 

Skills 
0.2710*** 0.2596*** 0.2416*** 0.1883*** 0.1817*** 0.0382 0.1828*** 0.1764*** 
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Public Service 

Interest 
-0.0663† -0.0446 -0.0655† -0.0371 -0.0404 0.0038 -0.0479 -0.0641† 

Business Man-

agement Inter-

est 

-0.1780*** -0.1490*** -0.1571*** -0.0628† -0.1155** -0.0218 -0.1352*** -0.0810* 

         

 English Score Science Awards Fine Arts Awards Sports Awards Arithmetic Skills Reading Skills Clerical Skills 
Identification 

Skills 

English Score 1.0000        

Science 

Awards 
-0.0786* 1.0000       

Fine Arts 

Awards 
-0.0777* 0.6560*** 1.0000      

Sports Awards -0.0084 0.4546*** 0.5351*** 1.0000     

Arithmetic 

Skills 
0.4882*** -0.0558 -0.0786* -0.0635† 1.0000    

Reading Skills 0.1057** -0.1357*** -0.1513*** -0.1006** 0.1625*** 1.0000   

Clerical Skills 0.3688*** -0.1080** -0.1025** 0.0092 0.2826*** 0.2011*** 1.0000  

Identification 

Skills 
0.3244*** -0.0596 -0.0681† 0.0080 0.2476*** 0.1196** 0.2042*** 1.0000 

Public Service 

Interest 
-0.0884* 0.0063 -0.0018 0.0283 -0.1047** -0.0364 -0.0654† -0.0441 

Business Man-

agement Inter-

est 

-0.1668*** 0.0367 0.0329 -0.0105 -0.0996** -0.0881* -0.0674† -0.0617† 

         

 
Public Service 

Interest 

Business Man-

agement Interest 
      

Public Service 

Interest 
1.0000        

Business Man-

agement Inter-

est 

0.6237*** 1.0000       

† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Pairwise correlation coefficients derived from Pearson-correlations. N. of obs. is 745. 
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4.8.3 Additional models 

Table 2A: Direct Replication of KW – (robust standard errors) 

 Model 1 Model 2 Model 3 Model 4 

 Log (Hourly 

Earnings) 

Log (Hourly 

Earnings) 

Log (Hourly 

Earnings) 

Log (Hourly 

Earnings) 

Leader     

Both Captain and President 0.054*** 0.049*** 0.049*** 0.038** 

 (0.012) (0.012) (0.012) (0.012) 

Captain Only 0.036** 0.036** 0.036** 0.035** 

 (0.013) (0.013) (0.013) (0.013) 

President Only 0.036*** 0.020† 0.019† 0.010 

 (0.011) (0.011) (0.011) (0.011) 

Member     

Both on Team and in Club 0.107*** 0.073** 0.070** 0.055* 

 (0.025) (0.024) (0.025) (0.025) 

On Team only 0.083* 0.062† 0.060† 0.059† 

 (0.035) (0.034) (0.034) (0.034) 

In Club Only 0.036 0.008 0.005 -0.006 

 (0.026) (0.026) (0.026) (0.026) 

Controls     

Math Score  0.002*** 0.002*** 0.001*** 

  (0.000) (0.000) (0.000) 

Parent´s Education     

High School   0.020† 0.011 

   (0.011) (0.011) 

College Degree   0.015 -0.008 

   (0.014) (0.014) 

Educational Attainment     

Some College    0.051*** 

    (0.012) 

College Degree or Higher    0.136*** 

    (0.013) 

School-fixed Effects Yes Yes Yes Yes 

F-Value 23.58 45.63 34.87 39.30 

p > F 0.000 0.000 0.000 0.000 

Adjusted R2 0.160 0.177 0.178 0.189 

Observations 24041 24041 24041 24041 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 2A directly replicates the results depicted in Kuhn and Weinberger (2005: 405 (columns 5-8)). The 

coefficients are derived from OLS regressions. This table differs from Table 4.2 reported in the essay due to the 

inclusion of robust standard errors (reported in parentheses). All models include (unreported) grade and school 

attainment control variables as well as school dummies. Models 3 and 4 include an unreported dummy variable 

for lack of parent’s education. Model 4 includes an unreported dummy variable for lack of educational attainment.  
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Table 2B: Direct Replication of KW - (Individual Leadership Categorization) 
 Model 1 Model 2 Model 3 

 Log (Hourly 

Earnings) 

Log (Hourly 

Earnings) 

Log (Hourly 

Earnings) 

Leader    

Both Captain and President 0.027*   

 (0.011)   

Captain Only  0.035**  

  (0.012)  

President Only   0.009 

   (0.011) 

Member    

Both on Team and in Club 0.062* 0.070** 0.065** 

 (0.024) (0.023) (0.023) 

On Team only 0.063†  0.041 0.062†  

 (0.034) (0.031) (0.033) 

In Club Only -0.004 -0.002 0.003 

 (0.026) (0.025) (0.024) 

Controls    

Math Score 0.001*** 0.002*** 0.001*** 

 (0.000) (0.000) (0.000) 

Parent´s Education    

High School 0.011 0.002 0.005 

 (0.011) (0.014) (0.013) 

College Degree -0.008 -0.020 -0.010 

 (0.014) (0.018) (0.016) 

Educational Attainment    

Some College 0.051*** 0.040** 0.033* 

 (0.012) (0.014) (0.013) 

College Degree or Higher 0.136*** 0.115*** 0.131*** 

 (0.013) (0.016) (0.015) 

School-fixed Effects Yes Yes Yes 

F-Value 44.08 32.25 35.44 

p > F 0.000 0.000 0.000 

Adjusted R2 0.189 0.255 0.200 

Observations 24041 13315 15924 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 2B directly replicates the results depicted in Kuhn and Weinberger (2005: 405 (column 8)). The 

coefficients are derived from OLS regressions. This table differs from Table 4.2 reported in the paper due to the 

separation of estimation models: Each leadership category is individually included in separate regressions with the 

category “no leadership” as the baseline. All models include (unreported) grade and school attainment control 

variables as well as school dummies, unreported dummy variables for lack of parents’ education and unreported 

dummy variables for lack of educational attainment.  
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Table 3A: Conceptual replication - Endogeneity susceptibility of KW Table 2 estimates with 

school-dummies 
 Outcome As-

sessment 

Model 1 

Matching 

Model 1 

Matching 

Model 2 

Matching 

Model 3 

 Log (Hourly 

Earnings) 

President and 

Captain 

Captain Only President Only 

Leader (for Model 1 only)     

Both Captain and President 0.041**    

 (0.013)    

Captain Only 0.036**    

 (0.014)    

President Only 0.004    

 (0.012)    

Member     

Both on Team and in Club 0.042† 1.563*** 1.176** 1.842*** 

 (0.025) (0.255) (0.447) (0.269) 

On Team only 0.047 0.869* 0.855† 1.240** 

 (0.034) (0.341) (0.491) (0.379) 

In Club Only -0.010 0.620* 0.088 1.666*** 

 (0.026) (0.273) (0.459) (0.272) 

Personal Data     

Overweight -0.139** -0.446 0.072 -0.030 

 (0.048) (0.329) (0.378) (0.239) 

Underweight -0.035 -0.453 -0.203 0.296 

 (0.034) (0.287) (0.281) (0.229) 

Tall -0.012 -0.037 0.056 -0.096 

 (0.010) (0.074) (0.085) (0.065) 

Short 0.015 0.075 -0.194 0.040 

 (0.016) (0.120) (0.133) (0.109) 

Dates -0.002 0.161*** -0.008 0.042 

 (0.004) (0.029) (0.032) (0.029) 

Comfortable -0.002 0.094 -0.165 0.104 

 (0.012) (0.094) (0.106) (0.090) 

Wealthy 0.053** 0.087 -0.242† 0.295** 

 (0.017) (0.115) (0.132) (0.109) 

Personal Characteristics     

Sociability 0.020*** 0.051 -0.016 0.095** 

 (0.005) (0.041) (0.046) (0.036) 

Vigor 0.003 0.254*** 0.189*** -0.145*** 

 (0.006) (0.042) (0.049) (0.037) 

Mature -0.000 0.100* -0.230*** 0.111** 

 (0.006) (0.044) (0.053) (0.040) 

Self-Confidence 0.007 0.016 0.016 0.122*** 

 (0.005) (0.037) (0.043) (0.032) 

Tidiness 0.001 -0.035 0.026 0.042 

 (0.005) (0.041) (0.046) (0.037) 

Test Scores     

Math Score 0.002*** 0.001 0.004† 0.002 

 (0.000) (0.002) (0.002) (0.002) 

Vocabulary Score -0.046† -0.152 -0.070 0.171 

 (0.026) (0.201) (0.221) (0.180) 

Social Studies Score -0.036 -0.275 0.055 -0.002 

 (0.026) (0.172) (0.212) (0.167) 

Science Score 0.025 -0.235 -0.651** 0.437** 

 (0.025) (0.184) (0.207) (0.168) 

Scientific Attitude Score 0.080*** 0.053 -0.159 0.120 

 (0.018) (0.128) (0.159) (0.128) 
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Law Score 0.016 -0.361* -0.251 0.043 

 (0.021) (0.146) (0.170) (0.138) 

Military Score 0.025 0.206 -0.223 0.125 

 (0.019) (0.136) (0.162) (0.129) 

Business Score 0.080*** -0.234 0.071 0.250† 

 (0.019) (0.145) (0.162) (0.133) 

Etiquette Score -0.013 0.010 -0.149 0.097 

 (0.016) (0.121) (0.147) (0.114) 

English Score -0.002 0.593** -0.123 0.320†  

 (0.024) (0.181) (0.199) (0.166) 

Awards     

Science Awards -0.003 0.006 0.041 -0.030 

 (0.006) (0.039) (0.055) (0.035) 

Fine Arts Awards -0.004 0.013 -0.089** 0.043* 

 (0.003) (0.021) (0.033) (0.018) 

Sports Awards 0.001 0.127*** 0.022 0.021 

 (0.002) (0.013) (0.017) (0.013) 

Cognitive Skills     

Arithmetic Skills 0.010 -0.014 0.045 -0.209†  

 (0.017) (0.119) (0.143) (0.110) 

Reading Skills 0.035* -0.215†  0.053 0.104 

 (0.017) (0.121) (0.141) (0.111) 

Clerical Skills -0.019 -0.006 -0.188 0.049 

 (0.018) (0.122) (0.137) (0.114) 

Identification Skills -0.005 -0.235†  -0.111 -0.094 

 (0.016) (0.124) (0.141) (0.112) 

Personal Interests     

Public Service Interest 0.002 0.106* -0.113* 0.099* 

 (0.006) (0.045) (0.051) (0.039) 

Business Management Interest 0.011†  0.017 0.129* 0.004 

 (0.006) (0.045) (0.051) (0.039) 

School-fixed Effects Yes Yes Yes Yes 

F / Chi2 13.08 1934.03 1242.90 1615.37 

p > F /Chi2 0.000 0.000 0.000 0.000 

R2 / Pseudo R2 0.183 0.1846 0.1427 0.1272 

Observations 22095 21658 20710 21735 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 3A assesses the need for a potential endogeneity adjustment of the results depicted in Kuhn and 

Weinberger (2005). The coefficients for Outcome Assessment Model (1) are derived from OLS regressions, coef-

ficients for Matching Model 1, 2 and 3 are derived from logit regression with standard errors in parentheses. The 

dependent variable in (1) is the natural logarithm of hourly earnings, the dependent variable in the matching models 

1,2, and 3 correspond to a dichotomous indicator variable whether individuals acted as captain and president, 

captain only, or president only. Table 3A differs from Table 4.3 reported in the paper as it includes school dum-

mies.  
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Table 6A: Conceptual replication – First stage results for the Conventional IV regressions 

for KW sample in Table 6 
 (1) (2) (3) 

 First-stage regression: 

Both Captain and President 

First-stage regression:  

Captain Only 

First-stage regression: 

President Only 

Instruments    

Father in Club 0.007 -0.010 -0.034 

 (0.016) (0.021) (0.022) 

Mother in Club 0.023 0.011 0.054* 

 (0.015) (0.021) (0.021) 

Father in Team 0.042** 0.055** 0.044* 

 (0.013) (0.019) (0.017) 

Mother in Team 0.039* 0.018 -0.024 

 (0.018) (0.024) (0.022) 

Covariates    

Both on Team and in Club 0.103*** 0.160*** 0.156** 

 (0.016) (0.029) (0.048) 

On Team only 0.042 0.086†  0.022 

 (0.028) (0.046) (0.059) 

In Club Only 0.017 -0.006 0.063 

 (0.017) (0.028) (0.048) 

Overweight -0.083* 0.034 -0.049 

 (0.036) (0.083) (0.047) 

Underweight -0.044 -0.018 0.048 

 (0.032) (0.035) (0.048) 

Tall -0.006 -0.010 -0.013 

 (0.012) (0.017) (0.016) 

Short 0.011 -0.048* -0.010 

 (0.018) (0.023) (0.025) 

Dates 0.021*** -0.001 0.018** 

 (0.005) (0.006) (0.007) 

Comfortable -0.003 -0.017 0.020 

 (0.015) (0.020) (0.019) 

Wealthy -0.004 -0.022 0.039 

 (0.020) (0.025) (0.025) 

Sociability 0.005 -0.001 0.019* 

 (0.007) (0.009) (0.008) 

Vigor 0.033*** 0.040*** -0.003 

 (0.007) (0.009) (0.009) 

Mature 0.014†  -0.017 0.035*** 

 (0.007) (0.010) (0.011) 

Self-Confidence 0.004 0.017* 0.032*** 

 (0.006) (0.008) (0.008) 

Tidiness -0.006 -0.001 -0.006 

 (0.007) (0.009) (0.009) 

Math Score 0.000 0.001* 0.001 

 (0.000) (0.000) (0.000) 

Vocabulary Score -0.008 -0.022 -0.058 

 (0.030) (0.042) (0.040) 

Social Studies Score -0.056* -0.007 -0.007 

 (0.026) (0.037) (0.037) 

Science Score -0.040 -0.119** 0.037 

 (0.029) (0.039) (0.038) 

Scientific Attitude Score -0.002 -0.028 0.026 

 (0.021) (0.031) (0.030) 

Law Score -0.030 -0.060†  -0.016 

 (0.023) (0.033) (0.031) 

Military Score 0.047* -0.004 0.036 

 (0.021) (0.031) (0.029) 

Business Score -0.037 0.020 0.043 
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 (0.024) (0.032) (0.030) 

Etiquette Score -0.000 -0.027 0.004 

 (0.020) (0.028) (0.026) 

English Score 0.064* 0.069†  0.133*** 

 (0.028) (0.039) (0.040) 

Science Awards 0.002 0.006 -0.006 

 (0.007) (0.011) (0.010) 

Fine Arts Awards 0.000 -0.014* 0.005 

 (0.004) (0.006) (0.005) 

Sports Awards 0.020*** 0.026*** 0.025*** 

 (0.003) (0.004) (0.004) 

Arithmetic Skills 0.001 -0.027 -0.062* 

 (0.020) (0.027) (0.025) 

Reading Skills -0.033†  0.012 0.003 

 (0.019) (0.027) (0.024) 

Clerical Skills 0.008 -0.005 -0.007 

 (0.019) (0.026) (0.026) 

Identification Skills -0.041* -0.033 -0.004 

 (0.020) (0.027) (0.025) 

Public Service Interest 0.017* -0.003 0.028** 

 (0.008) (0.010) (0.009) 

Business Management Interest 0.000 0.029** 0.018* 

 (0.007) (0.009) (0.009) 

School-fixed effects No No No 

F 6.90 3.09 3.77 

p > F 0.000 0.015 0.005 

Observations 22093 12222 14652 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 
Note: Table 6A reports the first stage coefficient estimates for the dichotomous indicator variables whether indi-

viduals acted as captain and president, captain only, or president only derived from a conventional IV estimator 

(Stata; ivreg2). Abbreviated second stage results were reported in Table 4.6 in the paper. Information whether each 

parent was a member of a club of a team represents the instrumental variables. The sample for the treatment 

analysis is based on the sample of white males employed in Kuhn and Weinberger (2005).   
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Table 6B: Conceptual replication – Full Second stage results for the IV regressions (conventional, conditional and heteroskedasticity-based) for 

KW sample 
 (1) 

Conventional 

(2) 

Conventional 

(3) 

Conventional 

(4) 

Conditional 

(5) 

Conditional 

(6) 

Conditional 

(7) 

Heteroske-

dasticity 

(8) 

Heteroske-

dasticity 

(9) 

Heteroske-

dasticity 

 Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Instrumented Variable          

President and Captain 0.412*   0.321**   0.163*   

 (0.181)   (0.110)   (0.068)   

Captain Only  0.008   0.114   0.058  

  (0.236)   (0.154)   (0.112)  

President Only   0.073   -0.038   0.293†  

   (0.227)   (0.115)   (0.165) 

Covariates          

Both on Team and in 

Club 

-0.028 0.023 0.022 -0.006 0.005 0.027 -0.002 0.009 -0.003 

 (0.035) (0.051) (0.047) (0.022) (0.032) (0.031) (0.028) (0.035) (0.043) 

On Team only 0.030 0.019 0.067†  0.042 0.022 0.049†  0.037 0.017 0.073†  

 (0.039) (0.044) (0.036) (0.026) (0.031) (0.027) (0.038) (0.040) (0.042) 

In Club Only -0.033 -0.033 -0.008 -0.029 -0.034 -0.025 -0.029 -0.036 -0.013 

 (0.029) (0.030) (0.032) (0.020) (0.021) (0.024) (0.028) (0.029) (0.036) 

Overweight -0.092†  -0.120†  -0.090 -0.048†  -0.067* -0.075** -0.119* -0.127†  -0.078 

 (0.053) (0.064) (0.056) (0.025) (0.028) (0.026) (0.048) (0.065) (0.058) 

Underweight -0.018 -0.071 -0.036 -0.001 -0.032 -0.013 -0.025 -0.070 -0.045 

 (0.041) (0.046) (0.044) (0.020) (0.023) (0.022) (0.037) (0.045) (0.043) 

Tall -0.020†  -0.017 -0.015 -0.013* -0.019* -0.016* -0.023* -0.015 -0.012 

 (0.012) (0.015) (0.013) (0.006) (0.008) (0.007) (0.011) (0.014) (0.014) 

Short 0.018 0.028 0.031 0.001 0.007 0.012 0.021 0.031 0.028 

 (0.023) (0.031) (0.028) (0.010) (0.012) (0.011) (0.022) (0.029) (0.029) 

Dates -0.009 -0.001 0.001 -0.004 0.002 0.004 -0.003 -0.001 -0.003 

 (0.006) (0.005) (0.006) (0.003) (0.003) (0.004) (0.004) (0.005) (0.006) 

Comfortable 0.011 0.030 0.006 0.024** 0.021* 0.020* 0.015 0.035†  0.007 

 (0.016) (0.020) (0.020) (0.008) (0.010) (0.009) (0.016) (0.019) (0.020) 

Wealthy 0.070*** 0.087*** 0.066* 0.073*** 0.061*** 0.069*** 0.076*** 0.092*** 0.061* 

 (0.021) (0.025) (0.026) (0.010) (0.013) (0.012) (0.019) (0.024) (0.026) 
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Sociability 0.018** 0.021** 0.021* 0.016*** 0.018*** 0.023*** 0.020** 0.020** 0.017* 

 (0.007) (0.008) (0.008) (0.004) (0.005) (0.005) (0.006) (0.008) (0.008) 

Vigor -0.010 -0.002 0.003 -0.009* -0.006 -0.005 -0.001 -0.003 0.003 

 (0.010) (0.014) (0.008) (0.005) (0.007) (0.004) (0.007) (0.010) (0.009) 

Mature -0.008 0.009 0.003 -0.005 0.004 0.003 -0.006 0.008 -0.007 

 (0.009) (0.012) (0.013) (0.004) (0.005) (0.006) (0.008) (0.012) (0.012) 

Self-Confidence 0.007 0.009 -0.000 0.003 0.002 0.000 0.009 0.008 -0.007 

 (0.006) (0.008) (0.009) (0.003) (0.004) (0.005) (0.005) (0.008) (0.008) 

Tidiness 0.009 -0.007 0.010 0.014*** 0.008†  0.015*** 0.007 -0.005 0.012 

 (0.007) (0.008) (0.007) (0.004) (0.005) (0.004) (0.006) (0.007) (0.008) 

Math Score 0.002*** 0.002*** 0.002*** 0.002*** 0.003*** 0.003*** 0.002*** 0.002*** 0.002*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Vocabulary Score -0.005 -0.036 0.011 0.029†  0.036†  0.047* -0.005 -0.037 0.019 

 (0.031) (0.035) (0.036) (0.016) (0.021) (0.019) (0.029) (0.033) (0.037) 

Social Studies Score -0.002 -0.001 -0.007 0.018 0.011 -0.000 -0.012 -0.000 -0.014 

 (0.030) (0.032) (0.033) (0.015) (0.019) (0.017) (0.027) (0.031) (0.035) 

Science Score 0.006 0.036 -0.008 -0.013 -0.012 -0.020 -0.004 0.045 -0.010 

 (0.031) (0.043) (0.032) (0.016) (0.023) (0.019) (0.027) (0.035) (0.035) 

Scientific Attitude Score 0.088*** 0.094*** 0.062* 0.061*** 0.066*** 0.063*** 0.082*** 0.091*** 0.060* 

 (0.021) (0.027) (0.025) (0.011) (0.015) (0.013) (0.020) (0.026) (0.027) 

Law Score 0.025 0.006 0.026 0.023†  0.022 0.009 0.014 0.016 0.032 

 (0.025) (0.032) (0.027) (0.012) (0.016) (0.015) (0.022) (0.028) (0.027) 

Military Score 0.040†  0.028 0.047†  0.016 0.005 0.023†  0.051* 0.028 0.041 

 (0.024) (0.028) (0.028) (0.012) (0.015) (0.013) (0.022) (0.027) (0.028) 

Business Score 0.095*** 0.104*** 0.069* 0.066*** 0.043** 0.061*** 0.088*** 0.103*** 0.052†  

 (0.023) (0.028) (0.028) (0.012) (0.015) (0.014) (0.021) (0.026) (0.027) 

Etiquette Score 0.009 0.021 -0.005 -0.002 0.003 0.004 0.012 0.023 -0.005 

 (0.020) (0.025) (0.023) (0.011) (0.014) (0.012) (0.018) (0.025) (0.024) 

English Score -0.077* -0.070†  -0.090* -0.077*** -0.055** -0.055* -0.066* -0.080* -0.128*** 

 (0.030) (0.037) (0.043) (0.016) (0.019) (0.022) (0.026) (0.033) (0.039) 

Science Awards -0.002 0.002 0.006 0.003 0.002 0.007 -0.001 0.003 0.007 

 (0.007) (0.009) (0.007) (0.004) (0.005) (0.004) (0.007) (0.008) (0.008) 

Fine Arts Awards -0.006 -0.002 -0.008* -0.003 0.001 -0.003 -0.006†  -0.002 -0.009* 

 (0.004) (0.006) (0.004) (0.002) (0.003) (0.002) (0.004) (0.005) (0.004) 

Sports Awards -0.007 -0.002 -0.002 -0.007* -0.004 0.002 -0.002 -0.004 -0.008 

 (0.005) (0.007) (0.007) (0.003) (0.005) (0.003) (0.003) (0.004) (0.005) 

Arithmetic Skills -0.006 0.007 -0.007 0.003 0.002 -0.009 -0.005 0.007 0.012 
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 (0.021) (0.025) (0.027) (0.011) (0.014) (0.013) (0.020) (0.024) (0.026) 

Reading Skills 0.052** 0.032 0.036†  0.006 0.001 0.005 0.042* 0.032 0.032 

 (0.020) (0.024) (0.021) (0.010) (0.013) (0.012) (0.018) (0.023) (0.023) 

Clerical Skills 0.005 0.017 0.027 0.021* 0.026* 0.026* 0.008 0.023 0.029 

 (0.020) (0.024) (0.023) (0.010) (0.013) (0.012) (0.019) (0.024) (0.024) 

Identification Skills 0.014 -0.013 -0.019 0.017 0.011 0.004 0.002 -0.009 -0.018 

 (0.022) (0.025) (0.021) (0.010) (0.013) (0.012) (0.019) (0.023) (0.023) 

Public Service Interest -0.000 -0.006 -0.011 0.005 0.006 0.002 0.005 -0.004 -0.015 

 (0.008) (0.009) (0.010) (0.004) (0.005) (0.006) (0.007) (0.009) (0.010) 

Business Management In-

terest 

0.012 0.013 0.016†  0.013*** 0.009†  0.016*** 0.011 0.010 0.009 

 (0.008) (0.011) (0.009) (0.004) (0.005) (0.004) (0.007) (0.009) (0.009) 

School-fixed effects No No No No No No No No No 

Second Stage F-Statistic 12.64 9.20 9.65 46.66 29.74 34.70 14.27 9.41 8.70 

p > F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Observations 22,093 12,222 14,652 22,093 12,222 14,652 22,093 12,222 14,652 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 6B reports the second stage coefficients and standard deviations from a conventional, a conditional and a heteroskedasticity-based IV estimation. Abbreviated second 

stage results were reported in Table 4.6 in the paper. The instrumented variables are whether individuals acted as captain and president, captain only, or president. Information 

whether each parent was a member of a club of a team represents the instrumental variables. The sample for the treatment analysis is based on the sample of white males employed 

in Kuhn and Weinberger (2005).   
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Table 6C: Conceptual replication – Full Second stage results for the IV regressions for KW 

sample with school dummies 
 Conventional IV- Estimation 

 Model 1 Model 2 Model 3 

Instrumented Variable    

President and Captain 0.412*   

 (0.181)   

Captain Only  0.008  

  (0.236)  

President Only   0.073 

   (0.227) 

Covariates    

Both on Team and in Club -0.028 0.023 0.022 

 (0.035) (0.051) (0.047) 

On Team only 0.030 0.019 0.067†  

 (0.039) (0.044) (0.036) 

In Club Only -0.033 -0.033 -0.008 

 (0.029) (0.030) (0.032) 

Overweight -0.092†  -0.120†  -0.090 

 (0.053) (0.064) (0.056) 

Underweight -0.018 -0.071 -0.036 

 (0.041) (0.046) (0.044) 

Tall -0.020†  -0.017 -0.015 

 (0.012) (0.015) (0.013) 

Short 0.018 0.028 0.031 

 (0.023) (0.031) (0.028) 

Dates -0.009 -0.001 0.001 

 (0.006) (0.005) (0.006) 

Comfortable 0.011 0.030 0.006 

 (0.016) (0.020) (0.020) 

Wealthy 0.070*** 0.087*** 0.066* 

 (0.021) (0.025) (0.026) 

Sociability 0.018** 0.021** 0.021* 

 (0.007) (0.008) (0.008) 

Vigor -0.010 -0.002 0.003 

 (0.010) (0.014) (0.008) 

Mature -0.008 0.009 0.003 

 (0.009) (0.012) (0.013) 

Self-Confidence 0.007 0.009 -0.000 

 (0.006) (0.008) (0.009) 

Tidiness 0.009 -0.007 0.010 

 (0.007) (0.008) (0.007) 

Math Score 0.002*** 0.002*** 0.002*** 

 (0.000) (0.000) (0.000) 

Vocabulary Score -0.005 -0.036 0.011 

 (0.031) (0.035) (0.036) 

Social Studies Score -0.002 -0.001 -0.007 

 (0.030) (0.032) (0.033) 

Science Score 0.006 0.036 -0.008 

 (0.031) (0.043) (0.032) 

Scientific Attitude Score 0.088*** 0.094*** 0.062* 

 (0.021) (0.027) (0.025) 

Law Score 0.025 0.006 0.026 

 (0.025) (0.032) (0.027) 

Military Score 0.040†  0.028 0.047†  
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 (0.024) (0.028) (0.028) 

Business Score 0.095*** 0.104*** 0.069* 

 (0.023) (0.028) (0.028) 

Etiquette Score 0.009 0.021 -0.005 

 (0.020) (0.025) (0.023) 

English Score -0.077* -0.070†  -0.090* 

 (0.030) (0.037) (0.043) 

Science Awards -0.002 0.002 0.006 

 (0.007) (0.009) (0.007) 

Fine Arts Awards -0.006 -0.002 -0.008* 

 (0.004) (0.006) (0.004) 

Sports Awards -0.007 -0.002 -0.002 

 (0.005) (0.007) (0.007) 

Arithmetic Skills -0.006 0.007 -0.007 

 (0.021) (0.025) (0.027) 

Reading Skills 0.052** 0.032 0.036†  

 (0.020) (0.024) (0.021) 

Clerical Skills 0.005 0.017 0.027 

 (0.020) (0.024) (0.023) 

Identification Skills 0.014 -0.013 -0.019 

 (0.022) (0.025) (0.021) 

Public Service Interest -0.000 -0.006 -0.011 

 (0.008) (0.009) (0.010) 

Business Management Interest 0.012 0.013 0.016†  

 (0.008) (0.011) (0.009) 

School-fixed effects Yes Yes Yes 

First stage (Kleibergen-Paap) F-Statistic 11.95 6.14 6.44 

p-value (F-Statistic) 0.000 0.000 0.000 

Cragg-Donald-Wald F-Statistic 37.01 19.02 13.88 

Sargan-Hansen statistic 1.891 5.896 3.666 

p-value (Sargan-Hansen statistic)  0.595 0.118 0.299 

Observations 22048 12158 14587 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 6C reports the second stage coefficients and standard deviations from conventional IV estimations. 

The instrumented variables are whether individuals acted as captain and president, captain only, or president. In-

formation whether each parent was a member of a club of a team represents the instrumental variables. The sample 

for the treatment analysis is based on the sample of white males employed in Kuhn and Weinberger (2005).  This 

table differs from Table 4.6 reported in the paper, as it additionally includes school-fixed effects. The sample for 

the treatment analysis is based on the sample of white males employed in Kuhn and Weinberger (2005).  
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Table 6D: Conceptual replication – Full Second stage results for the IV regressions for KW 

sample with robust standard errors 
 Conventional IV- Estimation 

 Model 1 Model 2 Model 3 

Instrumented Variable    

President and Captain 0.284*   

 (0.141)   

Captain Only  -0.004  

  (0.157)  

President Only   0.190 

   (0.172) 

Covariates    

Both on Team and in Club 0.022 0.075* 0.019 

 (0.029) (0.035) (0.043) 

On Team only 0.043 0.032 0.045 

 (0.034) (0.031) (0.034) 

In Club Only -0.011 -0.003 -0.007 

 (0.027) (0.026) (0.030) 

Overweight -0.127* -0.118†  -0.137* 

 (0.050) (0.064) (0.053) 

Underweight -0.025 -0.051 -0.071†  

 (0.036) (0.045) (0.041) 

Tall -0.011 -0.006 -0.011 

 (0.010) (0.012) (0.012) 

Short 0.012 0.023 0.024 

 (0.017) (0.018) (0.019) 

Dates -0.008†  -0.002 -0.002 

 (0.005) (0.004) (0.006) 

Comfortable -0.006 -0.001 -0.015 

 (0.013) (0.014) (0.015) 

Wealthy 0.050** 0.056** 0.036 

 (0.017) (0.019) (0.022) 

Sociability 0.019*** 0.018** 0.023** 

 (0.006) (0.006) (0.007) 

Vigor -0.005 0.000 0.004 

 (0.008) (0.009) (0.007) 

Mature -0.005 0.007 -0.004 

 (0.007) (0.008) (0.009) 

Self-Confidence 0.007 0.008 -0.005 

 (0.005) (0.007) (0.008) 

Tidiness 0.003 -0.007 0.001 

 (0.006) (0.006) (0.006) 

Math Score 0.002*** 0.002*** 0.002*** 

 (0.000) (0.000) (0.000) 

Vocabulary Score -0.040 -0.044 -0.063* 

 (0.027) (0.030) (0.030) 

Social Studies Score -0.026 -0.029 -0.014 

 (0.026) (0.028) (0.031) 

Science Score 0.029 0.038 0.019 

 (0.026) (0.034) (0.028) 

Scientific Attitude Score 0.078*** 0.066** 0.059** 

 (0.018) (0.022) (0.022) 

Law Score 0.027 0.025 0.042†  

 (0.022) (0.026) (0.024) 

Military Score 0.017 -0.026 0.012 
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 (0.020) (0.023) (0.024) 

Business Score 0.089*** 0.101*** 0.079*** 

 (0.020) (0.024) (0.023) 

Etiquette Score -0.014 -0.016 -0.030 

 (0.016) (0.021) (0.020) 

English Score -0.022 -0.032 -0.061†  

 (0.028) (0.030) (0.034) 

Science Awards -0.003 0.005 0.008 

 (0.006) (0.008) (0.007) 

Fine Arts Awards -0.005 -0.002 -0.004 

 (0.004) (0.005) (0.003) 

Sports Awards -0.004 -0.003 -0.007 

 (0.004) (0.005) (0.005) 

Arithmetic Skills 0.011 0.025 0.013 

 (0.017) (0.020) (0.021) 

Reading Skills 0.042* 0.021 0.022 

 (0.018) (0.019) (0.019) 

Clerical Skills -0.019 -0.012 0.011 

 (0.018) (0.021) (0.020) 

Identification Skills 0.003 -0.010 -0.009 

 (0.018) (0.021) (0.021) 

Public Service Interest -0.002 -0.011 -0.020* 

 (0.007) (0.007) (0.009) 

Business Management Interest 0.011†  0.016* 0.016* 

 (0.006) (0.008) (0.007) 

School-fixed effects Yes Yes Yes 

First stage (Kleibergen-Paap) F-Statistic 6.90 3.09 3.77 

p-value (F-Statistic) 0.000 0.015 0.005 

Cragg-Donald-Wald F-Statistic 31.31 13.06 11.27 

Sargan-Hansen statistic 0.933 3.87 2.69 

p-value (Sargan-Hansen statistic)  0.812 0.276 0.442 

Observations 22,093 12,222 14,652 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 6D reports the second stage coefficients and standard deviations from conventional IV estimations. 

The instrumented variables are whether individuals acted as captain and president, captain only, or president. In-

formation whether each parent was a member of a club of a team represents the instrumental variables. The sample 

for the treatment analysis is based on the sample of white males employed in Kuhn and Weinberger (2005).  This 

table differs from Table 4.6 reported in the paper, as it includes robust standard errors. The sample for the treatment 

analysis is based on the sample of white males employed in Kuhn and Weinberger (2005).   
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Table 7A: Extension – OLS effects of High School Leadership Activities on Hourly Earnings 

for expanded samples with robust standard errors 
 Model 1 Model 2 Model 3 

 White Females Non-White Males Non-White Fe-

males 

Leader    

Both Captain and President 0.010 0.110 0.050 

 (0.016) (0.086) (0.075) 

Captain Only 0.023 0.135* 0.173 

 (0.016) (0.069) (0.107) 

President Only 0.009 -0.012 0.047 

 (0.015) (0.075) (0.064) 

Member    

Both on Team and in Club 0.110*** 0.126 -0.313* 

 (0.031) (0.160) (0.145) 

On Team only 0.012 0.199 -0.267†  

 (0.076) (0.195) (0.146) 

In Club Only 0.086** 0.173 -0.285†  

 (0.031) (0.170) (0.149) 

Controls    

Math Score 0.002*** 0.002* 0.004*** 

 (0.000) (0.001) (0.001) 

Parents’ Education    

High School 0.018 0.031 0.050 

 (0.013) (0.072) (0.055) 

College Degree 0.024 0.160†  -0.047 

 (0.017) (0.086) (0.106) 

Educational Attainment    

Some College 0.079*** -0.014 0.152* 

 (0.015) (0.073) (0.062) 

College Degree or Higher 0.321*** 0.198** 0.445*** 

 (0.016) (0.075) (0.078) 

School-fixed Effects Yes Yes Yes 

F-Value 67.87 3.33 7.91 

p > F 0.000 0.000 0.000 

Adjusted R2 0.337 0.319 0.496 

Observations 11824 747 816 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 7A extends the results depicted in Kuhn and Weinberger (2005: 405 (columns 5-8). This table differs 

from Table 4.7 reported in the paper due to the inclusion of robust standard errors (reported in parentheses). All 

models include (unreported) grade and school attainment control variables as well as school dummies. Models 3 

and 4 include an unreported dummy variable for lack of parent’s education. Model 4 includes an unreported 

dummy variable for lack of educational attainment. The sample for the models labelled 1, 2 and 3 are based on the 

sample of white females, non-white males, and non-white females that were excluded in the original Kuhn and 

Weinberger (2005) study. 
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Table 7B: Extension – OLS effects of High School Leadership Activities on Hourly Earnings 

for expanded samples with school average income 
 Model 1 Model 2 Model 3 

 White Females Non-White Males Non-White Fe-

males 

Leader    

Both Captain and President -0.005 0.083 0.166** 

 (0.017) (0.060) (0.064) 

Captain Only 0.020 0.052 0.140 

 (0.018) (0.069) (0.099) 

President Only 0.000 -0.076 0.150* 

 (0.017) (0.057) (0.066) 

Member    

Both on Team and in Club 0.065* 0.013 -0.416*** 

 (0.032) (0.086) (0.101) 

On Team only 0.006 0.086 -0.460*** 

 (0.066) (0.108) (0.113) 

In Club Only 0.034 0.071 -0.309** 

 (0.032) (0.102) (0.101) 

Controls    

Math Score 0.002*** 0.002†  0.003** 

 (0.000) (0.001) (0.001) 

Parents’ Education    

High School 0.022 0.003 0.058 

 (0.015) (0.057) (0.055) 

College Degree 0.015 0.184** 0.061 

 (0.020) (0.068) (0.077) 

Educational Attainment    

Some College 0.066*** 0.036 0.188*** 

 (0.017) (0.058) (0.056) 

College Degree or Higher 0.318*** 0.224*** 0.483*** 

 (0.017) (0.062) (0.069) 

School Controls    

School Average Income 0.825*** 0.395*** 0.537*** 

 (0.041) (0.105) (0.107) 

School-fixed Effects No No No 

F-Value 97.63 6.23 16.82 

p > F 0.000 0.000 0.000 

R2 0.260 0.245 0.396 

Observations 11824 747 816 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 7B extends the results depicted in Kuhn and Weinberger (2005: 405 (columns 5-8). This table differs 

from Table 4.7 reported in the paper due to the inclusion of school mean wages instead of school dummies to avoid 

problems arising from the small sample sizes for non-whites. All models include (unreported) grade and school 

attainment control variables. Models 3 and 4 include an unreported dummy variable for lack of parent’s education. 

Model 4 includes an unreported dummy variable for lack of educational attainment. The sample for the models 

labelled 1,2, and 3 are based on the sample of white females, non-white males, and non-white females that were 

excluded in the original Kuhn and Weinberger (2005) study. 
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Table 9A: Instrumental Variable Regressions for new Samples – First Stage Estimates 
 Sample: White Females Sample: Non-White Males Sample: Non-White Females 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 First-stage 

regression: 

Both Cap-

tain and 

President 

First-stage 

regression:  

Captain 

Only 

First-stage 

regression: 

President 

Only 

First-stage 

regression: 

Both Cap-

tain and 

President 

First-stage 

regression:  

Captain 

Only 

First-stage 

regression: 

President 

Only 

First-stage 

regression: 

Both Cap-

tain and 

President 

First-stage 

regression:  

Captain 

Only 

First-stage 

regression: 

President 

Only 

Instruments          

Father in Club 0.006 -0.011 0.057* 0.151* -0.044 -0.181* -0.059 0.026 0.145 

 (0.022) (0.032) (0.028) (0.068) (0.085) (0.091) (0.076) (0.086) (0.092) 

Mother in Club -0.004 0.003 0.060* -0.093 0.001 -0.026 -0.039 -0.201** -0.090 

 (0.024) (0.031) (0.031) (0.090) (0.077) (0.096) (0.069) (0.076) (0.084) 

Father in Team 0.039* 0.029 -0.012 0.061 0.019 0.094 0.153* -0.033 0.183* 

 (0.019) (0.027) (0.026) (0.070) (0.083) (0.077) (0.067) (0.080) (0.073) 

Mother in Team 0.025 0.048 0.020 -0.003 -0.031 -0.170†  0.038 0.018 0.099 

 (0.026) (0.038) (0.034) (0.079) (0.104) (0.088) (0.091) (0.101) (0.099) 

Covariates          

Both on Team and in Club 0.155*** 0.231*** 0.083 0.182 0.116 -0.209 0.028 0.018 0.431* 

 (0.027) (0.044) (0.068) (0.132) (0.160) (0.190) (0.140) (0.175) (0.167) 

On Team only -0.002 0.044 -0.145* -0.110 -0.140 -0.513* -0.293* 0.380†  0.946*** 

 (0.068) (0.097) (0.074) (0.138) (0.215) (0.238) (0.144) (0.213) (0.221) 

In Club Only 0.014 -0.011 0.058 0.015 0.003 -0.328 -0.091 -0.312†  0.244 

 (0.025) (0.041) (0.067) (0.121) (0.164) (0.208) (0.134) (0.163) (0.162) 

Overweight -0.021 0.009 -0.135* 0.042 -0.116 0.453†  -0.149†  -0.046 -0.178 

 (0.041) (0.063) (0.056) (0.162) (0.225) (0.232) (0.078) (0.091) (0.120) 

Underweight -0.033 -0.039 0.029 0.128 -0.284** 0.232 -0.163†  0.040 -0.151 

 (0.027) (0.044) (0.046) (0.157) (0.102) (0.149) (0.093) (0.121) (0.136) 

Tall 0.113 -0.102 0.013 -0.017 -0.073 -0.157* 0.245 -0.407* -0.180 

 (0.115) (0.108) (0.101) (0.081) (0.082) (0.078) (0.240) (0.169) (0.200) 

Short 0.008 -0.028 0.022 -0.004 0.107 -0.108 -0.015 -0.123 -0.045 

 (0.016) (0.024) (0.022) (0.066) (0.083) (0.071) (0.069) (0.083) (0.089) 

Dates 0.016** 0.011 0.028*** 0.014 -0.034 -0.016 0.021 0.006 0.050 

 (0.006) (0.009) (0.008) (0.019) (0.026) (0.026) (0.024) (0.026) (0.031) 

Comfortable 0.030 -0.017 0.037 -0.041 -0.008 0.055 0.062 0.112 -0.019 

 (0.019) (0.028) (0.026) (0.080) (0.075) (0.076) (0.065) (0.077) (0.071) 

Wealthy 0.029 0.001 0.016 -0.116 -0.008 -0.111 0.011 0.050 -0.293** 
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 (0.027) (0.043) (0.040) (0.084) (0.101) (0.090) (0.084) (0.092) (0.095) 

Sociability 0.014†  0.020†  0.034** -0.055†  0.035 0.041 0.052 -0.049 0.029 

 (0.008) (0.012) (0.013) (0.032) (0.036) (0.042) (0.034) (0.031) (0.036) 

Vigor 0.042*** 0.033* 0.004 0.056†  -0.052 -0.088* 0.016 0.049 0.073†  

 (0.009) (0.014) (0.013) (0.032) (0.036) (0.041) (0.037) (0.041) (0.039) 

Mature 0.004 -0.009 0.024†  0.017 0.078* 0.097* 0.038 -0.113* -0.029 

 (0.010) (0.014) (0.014) (0.037) (0.038) (0.042) (0.037) (0.045) (0.050) 

Self-Confidence 0.016†  0.010 0.039** 0.018 0.043 0.015 0.014 0.003 -0.008 

 (0.008) (0.014) (0.012) (0.028) (0.035) (0.033) (0.030) (0.038) (0.039) 

Tidiness -0.019* 0.010 -0.010 -0.006 -0.104* 0.010 -0.049 0.103* 0.088†  

 (0.009) (0.013) (0.012) (0.037) (0.040) (0.042) (0.035) (0.041) (0.048) 

Math Score -0.000 0.000 0.002** 0.000 -0.005* -0.005* -0.001 0.001 0.000 

 (0.000) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001) (0.002) 

Vocabulary Score -0.020 -0.117†  0.002 0.030 -0.048 -0.575** -0.030 0.300†  0.163 

 (0.041) (0.062) (0.059) (0.181) (0.212) (0.186) (0.142) (0.169) (0.188) 

Social Studies Score 0.037 0.015 -0.009 -0.312†  0.220 0.324†  0.170 0.137 0.086 

 (0.036) (0.055) (0.053) (0.183) (0.189) (0.194) (0.160) (0.165) (0.187) 

Science Score -0.005 0.068 0.005 0.147 0.173 0.257 -0.100 -0.220 -0.111 

 (0.035) (0.053) (0.054) (0.162) (0.223) (0.214) (0.127) (0.149) (0.159) 

Scientific Attitude Score -0.003 0.064 -0.045 -0.020 0.105 0.018 -0.060 0.063 0.151 

 (0.029) (0.045) (0.043) (0.144) (0.154) (0.166) (0.105) (0.121) (0.124) 

Law Score 0.035 0.074†  0.006 -0.259* -0.193 -0.027 0.051 -0.030 0.007 

 (0.033) (0.045) (0.045) (0.129) (0.147) (0.150) (0.120) (0.124) (0.145) 

Military Score -0.049†  -0.039 0.010 0.154 -0.096 -0.185 0.059 0.058 -0.012 

 (0.028) (0.040) (0.040) (0.117) (0.140) (0.121) (0.101) (0.114) (0.133) 

Business Score -0.025 -0.018 -0.026 0.364** 0.276* 0.041 -0.154 0.170 -0.138 

 (0.030) (0.043) (0.044) (0.131) (0.140) (0.151) (0.109) (0.116) (0.127) 

Etiquette Score 0.033 0.056 0.016 0.060 0.271†  -0.001 0.035 0.059 -0.127 

 (0.031) (0.044) (0.041) (0.102) (0.148) (0.113) (0.110) (0.131) (0.134) 

English Score 0.069†  -0.083 0.004 -0.114 0.020 0.491** 0.305†  -0.440* -0.301†  

 (0.038) (0.052) (0.054) (0.168) (0.200) (0.183) (0.157) (0.181) (0.182) 

Science Awards -0.033** -0.033* -0.042* -0.007 0.086* 0.044 0.025 -0.017 0.029 

 (0.010) (0.016) (0.017) (0.021) (0.037) (0.035) (0.027) (0.033) (0.040) 

Fine Arts Awards 0.011* -0.002 0.016* 0.029* -0.041†  -0.024 0.018 0.045* 0.022 

 (0.005) (0.008) (0.008) (0.012) (0.025) (0.025) (0.017) (0.018) (0.020) 

Sports Awards 0.022*** 0.023** 0.029*** 0.029†  0.069*** 0.066*** -0.023 0.057†  0.015 

 (0.005) (0.007) (0.008) (0.015) (0.016) (0.016) (0.019) (0.029) (0.020) 
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Arithmetic Skills -0.026 0.100* -0.030 -0.146 -0.167 -0.027 -0.010 0.332* -0.001 

 (0.028) (0.040) (0.039) (0.118) (0.124) (0.144) (0.123) (0.131) (0.135) 

Reading Skills -0.004 0.007 -0.016 0.084 0.219†  0.099 -0.085 0.121 -0.185 

 (0.025) (0.037) (0.037) (0.097) (0.116) (0.120) (0.105) (0.114) (0.123) 

Clerical Skills -0.024 -0.005 -0.007 0.233* -0.115 0.096 -0.019 0.132 0.105 

 (0.027) (0.039) (0.037) (0.100) (0.127) (0.117) (0.102) (0.111) (0.131) 

Identification Skills -0.017 0.005 0.009 -0.076 -0.131 -0.287* 0.035 -0.073 -0.002 

 (0.027) (0.040) (0.038) (0.103) (0.117) (0.125) (0.116) (0.120) (0.107) 

Public Service Interest 0.001 -0.006 0.006 0.013 -0.020 0.003 -0.044 -0.006 0.092* 

 (0.009) (0.013) (0.013) (0.034) (0.038) (0.041) (0.034) (0.040) (0.039) 

Business Management Interest 0.002 0.015 0.024†  -0.013 -0.005 0.026 -0.030 0.047 -0.069 

 (0.010) (0.013) (0.013) (0.035) (0.036) (0.043) (0.036) (0.039) (0.046) 

School-fixed Effects No No No No No No No No No 

F 1.95 0.91 2.94 1.92 0.1 1.86 1.76 2.06 3.86 

p > F 0.09 0.45 0.02 0.10 0.98 0.12 0.13 0.09 0.00 

Observations 11210 6102 6431 680 325 420 745 309 442 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 9A reports the first stage coefficient estimates for the dichotomous indicator variables whether individuals acted as captain and president, captain only, or president 

only derived from a conventional IV estimator (Stata; ivreg2). Abbreviated second stage results for the conventional IV estimates were reported in Table 4.9 in the paper.  Infor-

mation whether each parent was a member of a club of a team represents the instrumental variables. The sample for the treatment analysis is based on the sample of white females, 

non-white males and non-white females respectively. 
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Table 9B: Extension – Full Second stage results for the IV regressions (conventional, conditional and heteroskedasticity-based) for white females 
 (1) 

Conventional 

(2) 

Conventional 

(3) 

Conventional 

(4) 

Conditional 

(5) 

Conditional 

(6) 

Conditional 

(7) 

Heteroske-

dasticity 

(8) 

Heteroske-

dasticity 

(9) 

Heteroske-

dasticity 

 Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Instrumented Variable          

President and Captain -0.046   0.355   -0.172   

 (0.337)   (0.268)   (0.130)   

Captain Only  0.456   0.164   0.231  

  (0.453)   (0.373)   (0.233)  

President Only   0.032   0.036   -0.033 

   (0.249)   (0.113)   (0.115) 

Covariates          

Both on Team and in 

Club 

0.033 -0.117 -0.003 -0.025 -0.054 0.023 0.050 -0.068 0.010 

 (0.068) (0.118) (0.055) (0.053) (0.092) (0.045) (0.045) (0.072) (0.046) 

On Team only -0.073 -0.126 -0.105 -0.014 -0.083 -0.045 -0.075 -0.106 -0.104 

 (0.088) (0.095) (0.122) (0.067) (0.106) (0.082) (0.090) (0.089) (0.121) 

In Club Only -0.022 -0.042 -0.039 -0.006 -0.039 -0.006 -0.020 -0.042 -0.033 

 (0.041) (0.050) (0.051) (0.038) (0.042) (0.043) (0.040) (0.046) (0.045) 

Overweight -0.003 0.009 -0.063 -0.049 -0.013 -0.056 -0.014 0.008 -0.074 

 (0.049) (0.043) (0.055) (0.033) (0.042) (0.038) (0.050) (0.042) (0.046) 

Underweight 0.016 0.057 0.008 0.027 0.020 0.021 0.009 0.031 0.009 

 (0.032) (0.046) (0.033) (0.019) (0.031) (0.022) (0.030) (0.040) (0.032) 

Tall 0.178†  0.166†  0.058 0.115 0.157 0.061 0.200†  0.140 0.051 

 (0.104) (0.101) (0.083) (0.073) (0.103) (0.089) (0.107) (0.091) (0.084) 

Short 0.017 0.030 0.033 0.011 0.009 0.017 0.016 0.015 0.031 

 (0.015) (0.025) (0.021) (0.009) (0.012) (0.011) (0.015) (0.021) (0.019) 

Dates -0.027** -0.035*** -0.034*** -0.038*** -0.035*** -0.039*** -0.026*** -0.036*** -0.033*** 

 (0.008) (0.009) (0.010) (0.005) (0.005) (0.005) (0.006) (0.007) (0.007) 

Comfortable -0.015 0.036 -0.024 0.045*** 0.074*** 0.041** -0.011 0.028 -0.020 

 (0.022) (0.029) (0.025) (0.012) (0.015) (0.015) (0.021) (0.026) (0.024) 

Wealthy 0.059* 0.114** 0.065†  0.095*** 0.131*** 0.090*** 0.061* 0.131*** 0.074* 

 (0.029) (0.041) (0.034) (0.017) (0.023) (0.020) (0.027) (0.037) (0.032) 

Sociability 0.020†  -0.001 0.017 0.014* 0.015* 0.021** 0.021* 0.002 0.019†  

 (0.010) (0.014) (0.014) (0.006) (0.007) (0.007) (0.009) (0.012) (0.011) 
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Vigor -0.001 -0.018 0.001 -0.014 -0.012 -0.008 0.006 -0.012 -0.000 

 (0.017) (0.020) (0.010) (0.010) (0.019) (0.007) (0.010) (0.014) (0.010) 

Mature 0.020* 0.030* 0.014 0.012* 0.016* 0.018* 0.021* 0.035** 0.019†  

 (0.010) (0.014) (0.012) (0.006) (0.008) (0.008) (0.010) (0.013) (0.011) 

Self-Confidence -0.000 -0.001 -0.001 -0.004 0.000 -0.002 0.001 0.001 0.003 

 (0.009) (0.013) (0.014) (0.006) (0.007) (0.007) (0.008) (0.011) (0.011) 

Tidiness -0.001 -0.009 0.001 0.004 0.006 0.004 -0.004 -0.009 -0.002 

 (0.011) (0.013) (0.011) (0.006) (0.007) (0.006) (0.009) (0.012) (0.011) 

Math Score 0.002*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.002*** 0.003*** 0.003*** 

 (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Vocabulary Score 0.150*** 0.168* 0.129* 0.101*** 0.101** 0.068* 0.147*** 0.142* 0.119* 

 (0.038) (0.078) (0.050) (0.025) (0.036) (0.031) (0.038) (0.061) (0.049) 

Social Studies Score 0.120*** 0.136** 0.110* 0.089*** 0.123*** 0.104*** 0.122*** 0.123** 0.115** 

 (0.036) (0.050) (0.046) (0.023) (0.032) (0.027) (0.036) (0.047) (0.045) 

Science Score -0.032 -0.105†  -0.009 -0.015 -0.032 -0.022 -0.037 -0.062 -0.002 

 (0.036) (0.062) (0.047) (0.021) (0.029) (0.026) (0.036) (0.051) (0.045) 

Scientific Attitude Score 0.030 0.000 0.006 0.022 0.007 0.028 0.027 0.005 0.006 

 (0.029) (0.051) (0.039) (0.018) (0.028) (0.021) (0.029) (0.041) (0.036) 

Law Score -0.010 -0.083 -0.031 -0.022 -0.030 -0.030 -0.009 -0.060 -0.034 

 (0.033) (0.056) (0.040) (0.018) (0.030) (0.023) (0.030) (0.044) (0.039) 

Military Score -0.005 0.038 0.030 -0.009 -0.004 0.004 -0.010 0.041 0.033 

 (0.032) (0.045) (0.035) (0.017) (0.021) (0.020) (0.029) (0.039) (0.035) 

Business Score 0.008 0.018 -0.026 0.059*** 0.051* 0.048* 0.000 -0.002 -0.030 

 (0.033) (0.047) (0.038) (0.018) (0.022) (0.022) (0.031) (0.041) (0.037) 

Etiquette Score 0.006 -0.027 -0.014 0.010 0.008 0.017 0.005 -0.001 -0.009 

 (0.031) (0.049) (0.040) (0.020) (0.025) (0.021) (0.030) (0.042) (0.038) 

English Score 0.018 0.082 0.046 0.019 0.051 0.016 0.040 0.061 0.045 

 (0.041) (0.060) (0.044) (0.021) (0.034) (0.027) (0.036) (0.048) (0.042) 

Science Awards 0.017 0.020 0.030 0.013 0.011 0.013 0.014 0.016 0.029 

 (0.017) (0.025) (0.020) (0.008) (0.013) (0.009) (0.013) (0.019) (0.018) 

Fine Arts Awards -0.009 -0.012 -0.010 -0.008* -0.008†  -0.004 -0.007 -0.014†  -0.010 

 (0.006) (0.009) (0.008) (0.004) (0.004) (0.005) (0.005) (0.008) (0.007) 

Sports Awards 0.004 -0.004 -0.006 -0.006 0.001 -0.002 0.007 0.002 -0.002 

 (0.009) (0.013) (0.011) (0.007) (0.011) (0.004) (0.006) (0.009) (0.008) 

Arithmetic Skills -0.028 -0.087 -0.054†  -0.019 -0.045* -0.053** -0.035 -0.083* -0.050 

 (0.028) (0.059) (0.033) (0.019) (0.023) (0.020) (0.026) (0.039) (0.031) 

Reading Skills 0.014 -0.008 0.020 0.004 -0.009 0.031†  0.007 -0.016 0.017 
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 (0.025) (0.037) (0.031) (0.016) (0.023) (0.019) (0.025) (0.034) (0.031) 

Clerical Skills 0.004 0.024 0.013 0.022 0.023 0.035†  0.002 0.028 0.003 

 (0.026) (0.037) (0.032) (0.016) (0.022) (0.019) (0.026) (0.034) (0.031) 

Identification Skills 0.013 0.029 -0.009 0.003 0.027 -0.010 0.007 0.039 -0.006 

 (0.026) (0.038) (0.032) (0.016) (0.021) (0.019) (0.026) (0.034) (0.032) 

Public Service Interest 0.029*** 0.023†  0.041*** 0.031*** 0.036** 0.039*** 0.026** 0.019†  0.040*** 

 (0.009) (0.013) (0.011) (0.006) (0.011) (0.007) (0.009) (0.011) (0.011) 

Business Management In-

terest 

0.002 -0.000 0.005 -0.005 -0.009 -0.006 0.005 0.005 0.006 

 (0.009) (0.014) (0.013) (0.005) (0.010) (0.007) (0.009) (0.011) (0.011) 

School-fixed effects No No No No No No No No No 

Second Stage F-Statistic 18.53 9.39 13.87 47.87 31.52 35.27 18.25 12.08 14.87 

p > F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Observations 11210 6102 6431 11210 6102 6431 11210 6102 6431 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 
Note: Table 9B reports the second stage coefficients and standard deviations from a conventional, a conditional and a heteroskedasticity-based IV estimation. Abbreviated second 

stage results for the conventional IV estimates were reported in Table 4.9 in the paper.  The instrumented variables are whether individuals acted as captain and president, captain 

only, or president. Information whether each parent was a member of a club of a team represents the instrumental variables. The sample for the treatment analysis is based on the 

sample of white females.   
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Table 9C: Extension – Full Second stage results for the IV regressions (conventional, conditional and heteroskedasticity-based) for non-white 

males 
 (1) 

Conventional 

(2) 

Conventional 

(3) 

Conventional 

(4) 

Conditional 

(5) 

Conditional 

(6) 

Conditional 

(7) 

Heteroske-

dasticity 

(8) 

Heteroske-

dasticity 

(9) 

Heteroske-

dasticity 

 Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Instrumented Variable          

President and Captain 0.860*   -0.158   0.189†    

 (0.361)   (1.466)   (0.098)   

Captain Only  -2.543   0.159   0.021  

  (4.348)   (0.486)   (0.197)  

President Only   -0.392   -0.203   -0.206 

   (0.311)   (0.558)   (0.204) 

Covariates          

Both on Team and in Club -0.142 0.122 -0.028 0.078 -0.083 0.034 0.023 -0.149 0.015 

 (0.179) (0.621) (0.158) (0.248) (0.191) (0.137) (0.161) (0.115) (0.129) 

On Team only 0.235 -0.390 0.071 0.103 -0.013 0.076 0.244 0.007 0.089 

 (0.189) (0.865) (0.273) (0.220) (0.247) (0.195) (0.191) (0.137) (0.208) 

In Club Only -0.007 -0.192 -0.135 -0.013 -0.131 -0.059 0.037 -0.206 -0.084 

 (0.164) (0.467) (0.201) (0.143) (0.155) (0.151) (0.171) (0.130) (0.156) 

Overweight 0.092 -0.522 0.089 0.100 -0.053 0.169 0.174 -0.184 -0.011 

 (0.139) (0.741) (0.191) (0.275) (0.164) (0.127) (0.190) (0.161) (0.167) 

Underweight -0.339* -0.650 -0.150 0.023 0.166 0.055 -0.241** 0.077 -0.194 

 (0.133) (1.283) (0.131) (0.112) (0.177) (0.102) (0.089) (0.133) (0.119) 

Tall 0.105 -0.003 0.068 -0.002 0.016 -0.052 0.098†  0.135* 0.099 

 (0.078) (0.371) (0.084) (0.117) (0.067) (0.099) (0.052) (0.064) (0.077) 

Short -0.015 0.369 -0.014 -0.018 -0.004 -0.047 -0.022 0.064 0.012 

 (0.065) (0.518) (0.061) (0.043) (0.053) (0.089) (0.046) (0.055) (0.056) 

Dates -0.035†  -0.089 0.003 -0.002 -0.017 0.029 -0.020 -0.013 0.006 

 (0.020) (0.187) (0.029) (0.014) (0.021) (0.028) (0.014) (0.017) (0.026) 

Comfortable 0.031 -0.054 0.067 0.069†  0.067 0.064 0.061 0.001 0.036 

 (0.065) (0.199) (0.068) (0.040) (0.059) (0.071) (0.047) (0.049) (0.062) 

Wealthy 0.226** 0.031 0.079 0.116†  0.075 0.114 0.220*** 0.063 0.087 

 (0.081) (0.251) (0.094) (0.062) (0.074) (0.099) (0.053) (0.065) (0.083) 

Sociability 0.069* 0.128 0.026 0.012 0.042 -0.001 0.042†  0.048* 0.007 
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 (0.035) (0.158) (0.036) (0.073) (0.030) (0.042) (0.023) (0.024) (0.031) 

Vigor -0.025 -0.101 -0.042 0.027 0.006 -0.030 0.004 0.010 -0.035 

 (0.036) (0.216) (0.047) (0.092) (0.029) (0.029) (0.028) (0.026) (0.035) 

Mature -0.067* 0.144 0.030 -0.021 -0.011 0.030 -0.049†  -0.040 0.033 

 (0.034) (0.349) (0.054) (0.025) (0.038) (0.051) (0.027) (0.029) (0.044) 

Self-Confidence 0.009 0.102 -0.017 0.015 -0.022 0.025 0.006 -0.010 -0.018 

 (0.030) (0.199) (0.032) (0.019) (0.025) (0.040) (0.023) (0.026) (0.029) 

Tidiness 0.029 -0.238 0.050 0.034 0.023 0.066†  0.021 0.017 0.042 

 (0.032) (0.471) (0.033) (0.021) (0.028) (0.039) (0.024) (0.030) (0.030) 

Math Score 0.001 -0.008 0.001 0.003** 0.004* 0.003* 0.002†  0.004** 0.002 

 (0.002) (0.020) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) 

Vocabulary Score 0.248 -0.214 0.055 0.083 -0.195 0.020 0.269** -0.134 0.114 

 (0.155) (0.544) (0.247) (0.184) (0.153) (0.157) (0.101) (0.123) (0.202) 

Social Studies Score 0.353†  0.580 0.227 0.170 0.079 0.217 0.177 -0.017 0.156 

 (0.181) (1.038) (0.215) (0.177) (0.158) (0.147) (0.120) (0.140) (0.190) 

Science Score -0.233 0.186 0.003 -0.057 -0.083 -0.017 -0.146 -0.241 0.018 

 (0.169) (0.775) (0.189) (0.158) (0.135) (0.139) (0.102) (0.147) (0.164) 

Scientific Attitude Score -0.017 0.235 -0.059 -0.035 -0.084 -0.040 -0.076 -0.058 -0.065 

 (0.141) (0.617) (0.159) (0.079) (0.107) (0.106) (0.087) (0.109) (0.141) 

Law Score 0.386* -0.371 0.230†  0.077 0.120 0.201* 0.179* 0.182†  0.182†  

 (0.163) (0.828) (0.119) (0.176) (0.110) (0.101) (0.078) (0.104) (0.103) 

Military Score 0.021 0.085 0.026 0.090 0.228* 0.046 0.166* 0.298*** 0.064 

 (0.116) (0.496) (0.121) (0.103) (0.093) (0.098) (0.074) (0.090) (0.107) 

Business Score -0.324†  0.905 -0.129 0.010 0.153 -0.129 -0.081 0.203†  -0.115 

 (0.174) (1.313) (0.145) (0.261) (0.101) (0.095) (0.088) (0.113) (0.129) 

Etiquette Score -0.138 0.574 -0.127 -0.025 -0.113 -0.023 -0.101 -0.141 -0.114 

 (0.102) (1.348) (0.110) (0.096) (0.104) (0.079) (0.076) (0.092) (0.098) 

English Score 0.108 0.081 0.022 -0.019 0.057 0.058 0.037 -0.017 -0.064 

 (0.175) (0.496) (0.250) (0.119) (0.137) (0.183) (0.131) (0.133) (0.201) 

Science Awards 0.046 0.318 0.036 0.019 0.061†  0.012 0.060** 0.104*** 0.038 

 (0.031) (0.368) (0.031) (0.025) (0.033) (0.030) (0.023) (0.029) (0.028) 

Fine Arts Awards -0.044* -0.152 -0.036†  -0.011 -0.028 -0.016 -0.029* -0.053** -0.043* 

 (0.021) (0.188) (0.021) (0.012) (0.026) (0.018) (0.014) (0.019) (0.018) 

Sports Awards -0.044** 0.179 -0.004 0.001 -0.005 -0.007 -0.025** 0.005 -0.017 

 (0.017) (0.298) (0.025) (0.051) (0.030) (0.021) (0.009) (0.017) (0.019) 

Arithmetic Skills -0.073 -0.805 -0.132 -0.160 -0.289** -0.032 -0.209* -0.364*** -0.129 

 (0.133) (0.816) (0.127) (0.188) (0.093) (0.089) (0.084) (0.093) (0.108) 
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Reading Skills -0.024 0.635 0.100 0.063 0.006 -0.005 0.067 0.009 0.027 

 (0.109) (1.073) (0.116) (0.082) (0.086) (0.080) (0.075) (0.086) (0.100) 

Clerical Skills -0.166 -0.241 0.012 -0.032 -0.055 -0.107 -0.078 0.066 0.019 

 (0.122) (0.620) (0.103) (0.260) (0.088) (0.085) (0.072) (0.074) (0.091) 

Identification Skills 0.107 -0.233 -0.008 0.079 0.105 0.017 0.080 0.094 0.015 

 (0.108) (0.611) (0.147) (0.063) (0.102) (0.149) (0.070) (0.086) (0.116) 

Public Service Interest 0.021 -0.016 0.035 0.022 0.031 0.013 0.020 0.043 0.047 

 (0.033) (0.160) (0.035) (0.031) (0.042) (0.030) (0.023) (0.026) (0.032) 

Business Management In-

terest 

-0.018 -0.130 -0.063 -0.028 -0.066†  -0.038 -0.034 -0.103*** -0.064†  

 (0.034) (0.094) (0.038) (0.036) (0.035) (0.037) (0.025) (0.027) (0.034) 

School-fixed effects No No No No No No No No No 

Second Stage F-Statistic 3.44 0.48 3.51 4.01 2.20 2.79 5.78 7.11 3.93 

p > F 0.000 0.995 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Observations 680 325 420 680 325 420 680 325 420 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 9C reports the second stage coefficients and standard deviations from a conventional, a conditional and a heteroskedasticity-based IV estimation. Abbreviated second 

stage results for the conventional IV estimates were reported in Table 4.9 in the paper.  The instrumented variables are whether individuals acted as captain and president, captain 

only, or president. Information whether each parent was a member of a club of a team represents the instrumental variables. The sample for the treatment analysis is based on the 

sample of non-white males.  
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Table 9D: Extension – Full Second stage results for the IV regressions (conventional, conditional and heteroskedasticity-based) for non-white 

females 
 (1) 

Conventional 

(2) 

Conventional 

(3) 

Conventional 

(4) 

Conditional 

(5) 

Conditional 

(6) 

Conditional 

(7) 

Heteroske-

dasticity 

(8) 

Heteroske-

dasticity 

(9) 

Heteroske-

dasticity 

 Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Log(Hourly 

Earnings) 

Instrumented Variable          

President and Captain 0.588†    0.113   0.369†    

 (0.352)   (0.322)   (0.208)   

Captain Only  0.276   0.053   0.197  

  (0.440)   (0.375)   (0.343)  

President Only   0.404   0.030   0.435* 

   (0.305)   (0.319)   (0.194) 

Covariates          

Both on Team and in 

Club 

-0.355** -0.332†  -0.354†  -0.089 -0.119 -0.018 -0.375*** -0.390* -0.340* 

 (0.118) (0.173) (0.182) (0.217) (0.241) (0.282) (0.104) (0.171) (0.166) 

On Team only -0.102 -0.539* -0.373 -0.097 -0.201 -0.029 -0.227†  -0.411†  -0.522* 

 (0.169) (0.244) (0.283) (0.322) (0.544) (0.490) (0.129) (0.232) (0.257) 

In Club Only -0.195 -0.186 -0.159 -0.068 -0.101 0.023 -0.234* -0.193 -0.218 

 (0.126) (0.229) (0.156) (0.205) (0.205) (0.262) (0.106) (0.158) (0.188) 

Overweight 0.115 0.148 0.077 -0.130†  -0.243* -0.181 0.053 0.088 0.148 

 (0.125) (0.112) (0.133) (0.078) (0.109) (0.113) (0.111) (0.124) (0.112) 

Underweight 0.173†  -0.153 0.102 0.045 -0.141 0.001 0.124†  0.094 -0.152 

 (0.091) (0.097) (0.097) (0.076) (0.107) (0.114) (0.070) (0.086) (0.096) 

Tall -0.277 0.189 -0.188 0.041 0.055 0.003 -0.178 -0.120 0.152 

 (0.219) (0.308) (0.180) (0.240) (0.337) (0.354) (0.154) (0.166) (0.275) 

Short 0.010 0.153 0.006 0.028 0.046 0.053 0.007 -0.003 0.143†  

 (0.058) (0.100) (0.061) (0.042) (0.075) (0.058) (0.046) (0.062) (0.084) 

Dates -0.031 0.014 -0.058* -0.043** -0.041 -0.082*** -0.040* -0.069** 0.013 

 (0.023) (0.032) (0.028) (0.015) (0.027) (0.024) (0.019) (0.026) (0.032) 

Comfortable 0.042 -0.021 0.038 0.031 0.045 0.069 0.041 0.072 -0.011 

 (0.077) (0.107) (0.086) (0.041) (0.060) (0.053) (0.062) (0.076) (0.115) 

Wealthy 0.083 -0.003 0.254 0.080 0.054 0.158* 0.031 0.238†  0.000 

 (0.094) (0.139) (0.167) (0.055) (0.085) (0.075) (0.073) (0.128) (0.139) 

Sociability -0.088* -0.148** -0.079†  -0.043†  -0.033 -0.065* -0.079* -0.077* -0.152*** 
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 (0.040) (0.051) (0.041) (0.022) (0.034) (0.028) (0.033) (0.039) (0.046) 

Vigor -0.000 0.107†  -0.036 0.009 0.007 -0.001 0.007 -0.042 0.109†  

 (0.031) (0.060) (0.053) (0.021) (0.033) (0.033) (0.026) (0.037) (0.057) 

Mature 0.073†  0.083 0.080†  0.043†  -0.002 0.038 0.086* 0.069 0.074 

 (0.041) (0.071) (0.046) (0.023) (0.040) (0.032) (0.035) (0.049) (0.060) 

Self-Confidence -0.032 0.025 -0.016 -0.005 0.035 -0.005 -0.019 -0.020 0.024 

 (0.035) (0.040) (0.034) (0.019) (0.031) (0.029) (0.027) (0.031) (0.040) 

Tidiness 0.020 -0.091 -0.014 -0.004 -0.002 0.011 0.007 0.003 -0.081 

 (0.040) (0.056) (0.042) (0.023) (0.041) (0.033) (0.033) (0.038) (0.054) 

Math Score 0.002 -0.002 0.000 0.002* -0.001 0.002 0.002 0.000 -0.002 

 (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) 

Vocabulary Score 0.189 -0.243 -0.030 0.032 -0.024 -0.127 0.168 -0.141 -0.216 

 (0.155) (0.224) (0.158) (0.097) (0.161) (0.128) (0.130) (0.152) (0.195) 

Social Studies Score 0.014 0.485** 0.108 0.222* 0.407** 0.278* 0.039 0.134 0.493** 

 (0.180) (0.186) (0.161) (0.092) (0.143) (0.126) (0.145) (0.151) (0.183) 

Science Score 0.130 0.137 0.049 0.049 -0.083 -0.106 0.100 -0.007 0.123 

 (0.122) (0.182) (0.147) (0.081) (0.124) (0.112) (0.098) (0.144) (0.177) 

Scientific Attitude Score 0.304** 0.159 0.245* 0.116 0.157 0.132 0.278** 0.210†  0.163 

 (0.098) (0.132) (0.108) (0.072) (0.112) (0.094) (0.088) (0.108) (0.134) 

Law Score 0.113 0.265* 0.237* 0.064 0.134 0.048 0.086 0.242* 0.262* 

 (0.109) (0.124) (0.103) (0.083) (0.117) (0.113) (0.084) (0.108) (0.125) 

Military Score 0.015 0.015 0.080 -0.044 0.081 0.011 0.039 0.078 0.017 

 (0.104) (0.136) (0.119) (0.069) (0.097) (0.088) (0.088) (0.112) (0.137) 

Business Score 0.050 -0.085 0.038 -0.023 -0.021 -0.031 0.026 -0.016 -0.072 

 (0.124) (0.151) (0.120) (0.069) (0.127) (0.096) (0.101) (0.117) (0.138) 

Etiquette Score 0.089 0.229†  0.082 -0.007 0.037 -0.056 0.128 0.097 0.234†  

 (0.103) (0.131) (0.109) (0.065) (0.102) (0.095) (0.086) (0.105) (0.133) 

English Score -0.068 0.485 0.292 0.254* 0.360†  0.394** 0.018 0.393†  0.442 

 (0.186) (0.300) (0.252) (0.107) (0.185) (0.139) (0.146) (0.222) (0.269) 

Science Awards 0.022 0.065 0.047 0.021 0.025 0.022 0.034 0.044 0.062 

 (0.028) (0.047) (0.044) (0.020) (0.035) (0.029) (0.023) (0.036) (0.049) 

Fine Arts Awards -0.018 -0.054 -0.060* -0.008 0.012 -0.029 -0.016 -0.067** -0.051 

 (0.016) (0.035) (0.027) (0.012) (0.022) (0.018) (0.013) (0.024) (0.035) 

Sports Awards 0.008 -0.010 0.017 0.009 -0.007 0.047* -0.001 0.028 -0.004 

 (0.020) (0.039) (0.023) (0.013) (0.024) (0.020) (0.017) (0.021) (0.039) 

Arithmetic Skills -0.126 -0.336 -0.069 -0.052 -0.228†  -0.048 -0.126 -0.053 -0.308 

 (0.104) (0.217) (0.139) (0.070) (0.128) (0.119) (0.091) (0.122) (0.195) 



179 

 

Reading Skills 0.171†  0.152 0.136 0.067 0.046 0.037 0.169* 0.126 0.157 

 (0.098) (0.116) (0.118) (0.065) (0.102) (0.088) (0.083) (0.104) (0.116) 

Clerical Skills 0.070 -0.065 -0.124 -0.033 -0.072 0.046 0.100 -0.071 -0.054 

 (0.106) (0.128) (0.120) (0.064) (0.124) (0.112) (0.090) (0.105) (0.132) 

Identification Skills 0.076 0.196 0.188 0.125†  0.115 0.135 0.074 0.183†  0.190 

 (0.099) (0.137) (0.116) (0.065) (0.123) (0.086) (0.083) (0.108) (0.137) 

Public Service Interest 0.090* -0.038 -0.015 0.015 -0.007 -0.007 0.071* 0.007 -0.040 

 (0.044) (0.065) (0.040) (0.022) (0.038) (0.037) (0.036) (0.037) (0.062) 

Business Management In-

terest 

-0.024 0.051 0.023 0.017 -0.001 0.022 -0.025 0.010 0.057 

 (0.038) (0.058) (0.041) (0.025) (0.035) (0.033) (0.031) (0.040) (0.047) 

School-fixed effects No No No No No No No No No 

Second Stage F-Statistic 5.11 6.37 7.49 6.33 2.89 4.00 8.76 6.27 6.56 

p > F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Observations 745 309 442 745 309 442 745 309 442 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 9D reports the second stage coefficients and standard deviations from a conventional, a conditional and a heteroskedasticity-based IV estimation. Abbreviated second 

stage results for the conventional IV estimates were reported in Table 4.9 in the paper.  The instrumented variables are whether individuals acted as captain and president, captain 

only, or president. Information whether each parent was a member of a club of a team represents the instrumental variables. The sample for the treatment analysis is based on the 

sample of non-white females.   
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Table 9E: Extension – Full Second stage results for conventional IV-regressions with school dummies for new samples 

 Sample: White Females Sample: Non-White Males Sample: Non-White Females 

 Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Instrumented Variable          

President and Captain -0.039   1.072   0.194   

 (0.253)   (0.712)   (0.213)   

Captain Only  0.183   0.170   0.524  

  (0.285)   (0.212)   (1.394)  

President Only   -0.039   -0.023   0.258 

   (0.207)   (0.205)   (0.236) 

Covariates          

Both on Team and in Club 0.092†  0.022 0.073 -0.150 0.234 0.263** -0.306** -0.028 -0.137 

 (0.048) (0.081) (0.056) (0.354) (0.206) (0.098) (0.107) (0.373) (0.321) 

On Team only -0.057 -0.006 0.017 0.360 0.448* 0.386* -0.100 -0.755 0.006 

 (0.101) (0.090) (0.096) (0.227) (0.204) (0.195) (0.223) (1.721) (0.355) 

In Club Only 0.057 0.044 0.050 0.002 0.096 0.218†  -0.250* 0.007 0.030 

 (0.036) (0.041) (0.047) (0.284) (0.192) (0.125) (0.105) (0.717) (0.321) 

Overweight 0.011 0.031 -0.045 0.174 -0.005 0.087 -0.184* -0.127 -0.142 

 (0.048) (0.041) (0.040) (0.171) (0.162) (0.134) (0.086) (0.338) (0.117) 

Underweight 0.021 0.064* 0.037 -0.325* 0.012 -0.095 0.105 -0.205 0.022 

 (0.027) (0.031) (0.026) (0.157) (0.196) (0.165) (0.084) (0.136) (0.145) 

Tall 0.124†  0.152 0.089 -0.071 0.170* 0.111 -0.125  -0.092 

 (0.065) (0.104) (0.095) (0.109) (0.077) (0.119) (0.178)  (0.282) 

Short 0.014 0.022 0.022 -0.028 -0.017 0.024 0.052 0.125 0.021 

 (0.013) (0.017) (0.016) (0.079) (0.069) (0.061) (0.058) (0.399) (0.066) 

Dates -0.023*** -0.027*** -0.027*** -0.056 0.022 0.046* -0.065*** -0.087 -0.108*** 

 (0.006) (0.006) (0.007) (0.034) (0.032) (0.020) (0.019) (0.130) (0.026) 

Comfortable -0.017 0.032†  -0.007 0.144 0.012 0.123†  0.010 0.091 -0.001 

 (0.018) (0.019) (0.018) (0.115) (0.058) (0.063) (0.054) (0.217) (0.069) 

Wealthy 0.046†  0.097** 0.060* 0.332* 0.067 0.218** 0.103 0.293 0.288** 

 (0.025) (0.036) (0.028) (0.164) (0.076) (0.083) (0.070) (0.215) (0.097) 

Sociability 0.021* 0.006 0.020 0.109†  0.034 0.000 -0.054†  -0.032 -0.070†  

 (0.009) (0.010) (0.013) (0.060) (0.030) (0.029) (0.032) (0.049) (0.039) 
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Vigor 0.011 0.004 0.003 -0.027 -0.045 -0.009 0.043†  0.034 0.041 

 (0.013) (0.015) (0.010) (0.050) (0.035) (0.028) (0.023) (0.059) (0.036) 

Mature 0.015†  0.022* 0.012 -0.070†  -0.073* 0.012 0.022 0.084 0.013 

 (0.008) (0.011) (0.009) (0.042) (0.032) (0.036) (0.025) (0.116) (0.043) 

Self-Confidence -0.004 -0.005 0.002 0.032 -0.010 -0.019 0.017 0.036 0.014 

 (0.007) (0.010) (0.010) (0.031) (0.024) (0.022) (0.028) (0.069) (0.031) 

Tidiness -0.001 -0.005 -0.001 0.036 0.090** 0.030 0.010 -0.087 0.002 

 (0.008) (0.009) (0.010) (0.038) (0.035) (0.030) (0.031) (0.121) (0.039) 

Math Score 0.002*** 0.003*** 0.003*** 0.001 0.005** 0.003* 0.002†  0.000 0.001 

 (0.000) (0.000) (0.001) (0.002) (0.002) (0.001) (0.001) (0.005) (0.002) 

Vocabulary Score 0.053 0.031 0.022 0.037 -0.202 0.162 0.318* 0.159 0.148 

 (0.033) (0.051) (0.044) (0.196) (0.193) (0.189) (0.129) (0.203) (0.179) 

Social Studies Score 0.099** 0.133*** 0.070†  0.428 0.063 0.122 0.226†  0.395 0.218 

 (0.031) (0.039) (0.041) (0.320) (0.206) (0.179) (0.125) (0.274) (0.177) 

Science Score 0.023 -0.013 0.039 -0.271 -0.263 -0.104 0.144 0.077 0.016 

 (0.032) (0.040) (0.037) (0.182) (0.173) (0.156) (0.099) (0.301) (0.156) 

Scientific Attitude Score 0.036 0.018 0.005 0.065 0.104 -0.012 0.206** 0.089 0.098 

 (0.022) (0.035) (0.028) (0.146) (0.110) (0.113) (0.080) (0.322) (0.120) 

Law Score 0.008 -0.048 -0.005 0.400* 0.174 0.205†  0.097 -0.232 0.122 

 (0.027) (0.036) (0.033) (0.189) (0.106) (0.108) (0.090) (0.178) (0.119) 

Military Score 0.001 0.023 0.033 -0.085 0.116 0.023 0.021 0.186 0.093 

 (0.028) (0.035) (0.030) (0.164) (0.135) (0.110) (0.091) (0.223) (0.120) 

Business Score -0.009 0.024 -0.004 -0.091 0.316* -0.037 -0.108 -0.050 -0.076 

 (0.026) (0.032) (0.030) (0.181) (0.148) (0.103) (0.094) (0.178) (0.117) 

Etiquette Score -0.002 -0.013 0.010 -0.165 -0.081 -0.164†  0.022 -0.041 0.070 

 (0.025) (0.032) (0.031) (0.130) (0.121) (0.086) (0.080) (0.197) (0.111) 

English Score 0.058†  0.078†  0.069†  0.095 -0.258†  -0.054 0.053 0.791 0.273 

 (0.034) (0.040) (0.035) (0.221) (0.140) (0.151) (0.139) (0.917) (0.198) 

Science Awards -0.004 0.001 0.007 0.025 0.087** 0.006 0.025 -0.013 0.030 

 (0.013) (0.021) (0.017) (0.032) (0.033) (0.034) (0.019) (0.111) (0.033) 

Fine Arts Awards 0.004 -0.003 0.000 -0.007 -0.050** -0.034†  -0.017 0.006 -0.014 

 (0.005) (0.007) (0.008) (0.022) (0.017) (0.019) (0.011) (0.062) (0.021) 

Sports Awards 0.001 -0.003 0.002 -0.055 0.002 -0.001 0.006 -0.032 0.000 

 (0.007) (0.010) (0.008) (0.035) (0.015) (0.015) (0.015) (0.050) (0.024) 

Arithmetic Skills -0.011 -0.043 -0.030 -0.179 -0.217* -0.040 -0.149†  -0.353* -0.177 

 (0.022) (0.044) (0.027) (0.151) (0.092) (0.108) (0.081) (0.159) (0.124) 

Reading Skills 0.001 -0.020 0.008 -0.163 -0.202* -0.096 0.105 -0.054 0.147 
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 (0.022) (0.033) (0.027) (0.124) (0.093) (0.083) (0.081) (0.150) (0.118) 

Clerical Skills -0.010 0.044†  0.033 -0.113 0.018 0.011 0.017 -0.244 -0.203 

 (0.021) (0.027) (0.027) (0.124) (0.104) (0.087) (0.088) (0.306) (0.131) 

Identification Skills -0.013 0.014 -0.023 0.187 0.094 0.061 0.064 0.127 0.235†  

 (0.022) (0.026) (0.026) (0.124) (0.083) (0.099) (0.089) (0.177) (0.134) 

Public Service Interest 0.018* 0.016†  0.031** 0.010 0.002 0.032 -0.010 -0.124 -0.025 

 (0.007) (0.009) (0.010) (0.041) (0.038) (0.032) (0.030) (0.103) (0.040) 

Business Management In-

terest 

0.003 0.008 0.010 -0.011 -0.108** -0.080* 0.055†  0.121 0.050 

 (0.007) (0.010) (0.010) (0.050) (0.038) (0.032) (0.032) (0.101) (0.046) 

School-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

First stage (Kleibergen-

Paap) F-Statistic 

3.44 2.05 5.30 0.69 3.37 2.57 3.46 0.18 4.30 

p-value (F-Statistic) 0.008 0.085 0.000 0.597 0.011 0.038 0.008 0.946 0.000 

Cragg-Donald-Wald F-Sta-

tistic 

8.81 4.66 7.77 1.09 3.26 3.04 4.54 0.15 4.52 

Sargan-Hansen statistic 6.01 4.42 0.55 1.34 12.26 13.14 3.49 n/a n/a 

p-value (Sargan-Hansen 

statistic)  

0.11 0.22 0.91 0.72 0.01 0.00 0.32 n/a n/a 

Observations 11147 6005 6346 596 247 342 649 221 351 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 9E reports the second stage coefficients and standard deviations from IV estimations. The instrumented variables are whether individuals acted as captain and president, 

captain only, or president. Information whether each parent was a member of a club of a team represents the instrumental variables. The sample for the treatment analysis are white 

females, non-white males and non-white females respectively. For the last two columns of the non-white female sample, due to the large number of variables the Sargan-Hansen 

statistic cannot be directly estimated, as the covariance matrix of moment conditions is not of full rank. This table differs from Table 4.9 as it includes school dummies.   
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Table 9F: Extension – Full Second stage results for conventional IV-regressions with robust standard errors for new samples 

 Sample: White Females Sample: Non-White Males Sample: Non-White Females 

 Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Second Stage 

Regression: 

Log(Hourly 

Earnings) 

Instrumented Variable          

President and Captain -0.046   0.860*   0.588†    

 (0.337)   (0.361)   (0.352)   

Captain Only  0.456   -2.543   0.276  

  (0.453)   (4.348)   (0.440)  

President Only   0.032   -0.392   0.404 

   (0.249)   (0.311)   (0.305) 

Covariates          

Both on Team and in Club 0.033 -0.117 -0.003 -0.142 0.122 -0.028 -0.355** -0.332†  -0.354†  

 (0.068) (0.118) (0.055) (0.179) (0.621) (0.158) (0.118) (0.173) (0.182) 

On Team only -0.073 -0.126 -0.105 0.235 -0.390 0.071 -0.102 -0.539* -0.373 

 (0.088) (0.095) (0.122) (0.189) (0.865) (0.273) (0.169) (0.244) (0.283) 

In Club Only -0.022 -0.042 -0.039 -0.007 -0.192 -0.135 -0.195 -0.186 -0.159 

 (0.041) (0.050) (0.051) (0.164) (0.467) (0.201) (0.126) (0.229) (0.156) 

Overweight -0.003 0.009 -0.063 0.092 -0.522 0.089 0.115 0.148 0.077 

 (0.049) (0.043) (0.055) (0.139) (0.741) (0.191) (0.125) (0.112) (0.133) 

Underweight 0.016 0.057 0.008 -0.339* -0.650 -0.150 0.173†  -0.153 0.102 

 (0.032) (0.046) (0.033) (0.133) (1.283) (0.131) (0.091) (0.097) (0.097) 

Tall 0.178†  0.166†  0.058 0.105 -0.003 0.068 -0.277 0.189 -0.188 

 (0.104) (0.101) (0.083) (0.078) (0.371) (0.084) (0.219) (0.308) (0.180) 

Short 0.017 0.030 0.033 -0.015 0.369 -0.014 0.010 0.153 0.006 

 (0.015) (0.025) (0.021) (0.065) (0.518) (0.061) (0.058) (0.100) (0.061) 

Dates -0.027** -0.035*** -0.034*** -0.035†  -0.089 0.003 -0.031 0.014 -0.058* 

 (0.008) (0.009) (0.010) (0.020) (0.187) (0.029) (0.023) (0.032) (0.028) 

Comfortable -0.015 0.036 -0.024 0.031 -0.054 0.067 0.042 -0.021 0.038 

 (0.022) (0.029) (0.025) (0.065) (0.199) (0.068) (0.077) (0.107) (0.086) 

Wealthy 0.059* 0.114** 0.065†  0.226** 0.031 0.079 0.083 -0.003 0.254 

 (0.029) (0.041) (0.034) (0.081) (0.251) (0.094) (0.094) (0.139) (0.167) 

Sociability 0.020†  -0.001 0.017 0.069* 0.128 0.026 -0.088* -0.148** -0.079†  

 (0.010) (0.014) (0.014) (0.035) (0.158) (0.036) (0.040) (0.051) (0.041) 

Vigor -0.001 -0.018 0.001 -0.025 -0.101 -0.042 -0.000 0.107†  -0.036 
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 (0.017) (0.020) (0.010) (0.036) (0.216) (0.047) (0.031) (0.060) (0.053) 

Mature 0.020* 0.030* 0.014 -0.067* 0.144 0.030 0.073†  0.083 0.080†  

 (0.010) (0.014) (0.012) (0.034) (0.349) (0.054) (0.041) (0.071) (0.046) 

Self-Confidence -0.000 -0.001 -0.001 0.009 0.102 -0.017 -0.032 0.025 -0.016 

 (0.009) (0.013) (0.014) (0.030) (0.199) (0.032) (0.035) (0.040) (0.034) 

Tidiness -0.001 -0.009 0.001 0.029 -0.238 0.050 0.020 -0.091 -0.014 

 (0.011) (0.013) (0.011) (0.032) (0.471) (0.033) (0.040) (0.056) (0.042) 

Math Score 0.002*** 0.003*** 0.003*** 0.001 -0.008 0.001 0.002 -0.002 0.000 

 (0.000) (0.001) (0.001) (0.002) (0.020) (0.002) (0.002) (0.002) (0.002) 

Vocabulary Score 0.150*** 0.168* 0.129* 0.248 -0.214 0.055 0.189 -0.243 -0.030 

 (0.038) (0.078) (0.050) (0.155) (0.544) (0.247) (0.155) (0.224) (0.158) 

Social Studies Score 0.120*** 0.136** 0.110* 0.353†  0.580 0.227 0.014 0.485** 0.108 

 (0.036) (0.050) (0.046) (0.181) (1.038) (0.215) (0.180) (0.186) (0.161) 

Science Score -0.032 -0.105†  -0.009 -0.233 0.186 0.003 0.130 0.137 0.049 

 (0.036) (0.062) (0.047) (0.169) (0.775) (0.189) (0.122) (0.182) (0.147) 

Scientific Attitude Score 0.030 0.000 0.006 -0.017 0.235 -0.059 0.304** 0.159 0.245* 

 (0.029) (0.051) (0.039) (0.141) (0.617) (0.159) (0.098) (0.132) (0.108) 

Law Score -0.010 -0.083 -0.031 0.386* -0.371 0.230†  0.113 0.265* 0.237* 

 (0.033) (0.056) (0.040) (0.163) (0.828) (0.119) (0.109) (0.124) (0.103) 

Military Score -0.005 0.038 0.030 0.021 0.085 0.026 0.015 0.015 0.080 

 (0.032) (0.045) (0.035) (0.116) (0.496) (0.121) (0.104) (0.136) (0.119) 

Business Score 0.008 0.018 -0.026 -0.324†  0.905 -0.129 0.050 -0.085 0.038 

 (0.033) (0.047) (0.038) (0.174) (1.313) (0.145) (0.124) (0.151) (0.120) 

Etiquette Score 0.006 -0.027 -0.014 -0.138 0.574 -0.127 0.089 0.229†  0.082 

 (0.031) (0.049) (0.040) (0.102) (1.348) (0.110) (0.103) (0.131) (0.109) 

English Score 0.018 0.082 0.046 0.108 0.081 0.022 -0.068 0.485 0.292 

 (0.041) (0.060) (0.044) (0.175) (0.496) (0.250) (0.186) (0.300) (0.252) 

Science Awards 0.017 0.020 0.030 0.046 0.318 0.036 0.022 0.065 0.047 

 (0.017) (0.025) (0.020) (0.031) (0.368) (0.031) (0.028) (0.047) (0.044) 

Fine Arts Awards -0.009 -0.012 -0.010 -0.044* -0.152 -0.036†  -0.018 -0.054 -0.060* 

 (0.006) (0.009) (0.008) (0.021) (0.188) (0.021) (0.016) (0.035) (0.027) 

Sports Awards 0.004 -0.004 -0.006 -0.044** 0.179 -0.004 0.008 -0.010 0.017 

 (0.009) (0.013) (0.011) (0.017) (0.298) (0.025) (0.020) (0.039) (0.023) 

Arithmetic Skills -0.028 -0.087 -0.054†  -0.073 -0.805 -0.132 -0.126 -0.336 -0.069 

 (0.028) (0.059) (0.033) (0.133) (0.816) (0.127) (0.104) (0.217) (0.139) 

Reading Skills 0.014 -0.008 0.020 -0.024 0.635 0.100 0.171†  0.152 0.136 

 (0.025) (0.037) (0.031) (0.109) (1.073) (0.116) (0.098) (0.116) (0.118) 
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Clerical Skills 0.004 0.024 0.013 -0.166 -0.241 0.012 0.070 -0.065 -0.124 

 (0.026) (0.037) (0.032) (0.122) (0.620) (0.103) (0.106) (0.128) (0.120) 

Identification Skills 0.013 0.029 -0.009 0.107 -0.233 -0.008 0.076 0.196 0.188 

 (0.026) (0.038) (0.032) (0.108) (0.611) (0.147) (0.099) (0.137) (0.116) 

Public Service Interest 0.029*** 0.023†  0.041*** 0.021 -0.016 0.035 0.090* -0.038 -0.015 

 (0.009) (0.013) (0.011) (0.033) (0.160) (0.035) (0.044) (0.065) (0.040) 

Business Management In-

terest 

0.002 -0.000 0.005 -0.018 -0.130 -0.063 -0.024 0.051 0.023 

 (0.009) (0.014) (0.013) (0.034) (0.094) (0.038) (0.038) (0.058) (0.041) 

School-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

First stage (Kleibergen-

Paap) F-Statistic 

7.77 0.91 2.94 1.92 0.10 1.86 1.76 2.06 3.86 

p-value (F-Statistic) 0.10 0.46 0.02 0.10 0.98 0.12 0.14 0.09 0.01 

Cragg-Donald-Wald F-Sta-

tistic 

7.44 3.51 7.01 3.76 0.16 3.98 3.95 2.32 6.15 

Sargan-Hansen statistic 4.98 0.44 0.28 0.34 0.31 3.22 0.35 7.74 2.39 

p-value (Sargan-Hansen 

statistic)  

0.174 0.930 0.964 0.953 0.956 0.359 0.951 0.05 0.50 

Observations 11,210 6,102 6,431 680 325 420 745 309 442 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 9F reports the second stage coefficients and standard deviations from IV estimations. The instrumented variables are whether individuals acted as captain and president, 

captain only, or president. Information whether each parent was a member of a club of a team represents the instrumental variables. The sample for the treatment analysis are white 

females, non-white males and non-white females respectively. For the last two columns of the non-white female sample, due to the large number of variables the Sargan-Hansen 

statistic cannot be directly estimated, as the covariance matrix of moment conditions is not of full rank. This table differs from Table 4.9 as it includes robust standard errors.   
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Table 10A: Extension – Ordered-Logistic-Regression: Effects of High School Leadership Ac-

tivities on 2011/2012 Household Income for White Males  
 Model 1 Model 2 Model 3 Model 4 

 Household In-

come 

Household In-

come 

Household In-

come 

Household 

Income 

Leader     

Both Captain and President 1.049** 1.020** 1.145*** 0.961** 

 (0.353) (0.343) (0.344) (0.354) 

Captain Only 0.027 -0.029 -0.096 -0.124 

 (0.396) (0.414) (0.430) (0.435) 

President Only 0.252 0.097 0.095 0.035 

 (0.328) (0.344) (0.331) (0.349) 

Member     

Both on Team and in Club 0.240 -0.137 -0.144 -0.149 

 (0.457) (0.501) (0.572) (0.573) 

On Team only -0.047 -0.450 -0.523 -0.718 

 (0.694) (0.648) (0.669) (0.701) 

In Club Only 0.094 -0.177 -0.070 -0.130 

 (0.479) (0.528) (0.599) (0.594) 

Controls     

Math Score  0.016*** 0.015** 0.011* 

  (0.005) (0.005) (0.005) 

Parent´s Education     

High School   0.100 0.096 

   (0.306) (0.314) 

College Degree   0.862* 0.717†  

   (0.375) (0.383) 

Educational Attainment     

Some College    0.489 

    (0.474) 

College Degree or Higher    0.824* 

    (0.406) 

School-fixed Effects No No No No 

Wald Chi2 15.40 26.01 30.48 38.93 

p > Chi2 0.052 0.002 0.002 0.001 

Pseudo R2 0.022 0.041 0.051 0.059 

Observations 251 251 251 251 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 10A contains the same variables and sample as Table 4.10 reported in the paper but employs ordered-

logistic regressions instead of OLS regressions. As fixed effects frequently cause issues with ordered-logistic re-

gressions Table 10A does not include school dummies. The first line for each variable corresponds to marginal 

effects with standard errors in parentheses. All models include (unreported) grade attainment control variables. 

Models 3 and 4 include an unreported dummy variable for lack of parent’s education. Model 4 includes an unre-

ported dummy variable for lack of educational attainment. The sample is based on the 2011-12 Pilot Study. 
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Table 10B: Extension – OLS-Regression: Effects of High School Leadership Activities on 

2011/2012 Household Income for White Females  
 Model 1 Model 2 Model 3 Model 4 

 Household In-

come 

Household In-

come 

Household In-

come 

Household 

Income 

Leader     

Both Captain and President 0.042 0.013 0.014 -0.025 

 (0.174) (0.161) (0.161) (0.161) 

Captain Only -0.086 -0.098 -0.073 -0.098 

 (0.181) (0.161) (0.160) (0.156) 

President Only 0.239 0.208 0.218 0.169 

 (0.173) (0.169) (0.166) (0.163) 

Member     

Both on Team and in Club 0.797** 0.580* 0.429 0.348 

 (0.241) (0.267) (0.277) (0.290) 

On Team only -0.102 0.173 -0.399 -0.436 

 (0.356) (0.366) (0.430) (0.432) 

In Club Only 0.631** 0.445†  0.292 0.200 

 (0.226) (0.257) (0.268) (0.281) 

Controls     

Math Score  0.011*** 0.011*** 0.009*** 

  (0.002) (0.002) (0.002) 

Parent´s Education     

High School   0.227 0.233†  

   (0.144) (0.139) 

College Degree   0.327 0.275 

   (0.199) (0.192) 

Educational Attainment     

Some College    0.384†  

    (0.212) 

College Degree or Higher    0.280 

    (0.196) 

School-fixed Effects Yes Yes Yes Yes 

F 3.92 6.26 5.09 4.67 

p > F 0.000 0.000 0.000 0.000 

Adjusted R2 0.044 0.148 0.171 0.195 

Observations 302 302 302 302 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 10B differs from Table 4.10 reported in the paper by using only white females as the underlying 

sample. All models include (unreported) grade and school attainment control variables. Models 3 and 4 include an 

unreported dummy variable for lack of parent’s education. Model 4 includes an unreported dummy variable for 

lack of educational attainment. The sample is based on the 2011-12 Pilot Study.  
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Table 10C: Extension – Ordered-Logistic-Regression: Effects of High School Leadership Ac-

tivities on 2011/2012 Household Income for White Females  
 Model 1 Model 2 Model 3 Model 4 

 Household In-

come 

Household In-

come 

Household In-

come 

Household 

Income 

Leader     

Both Captain and President 0.115 0.084 0.089 0.044 

 (0.308) (0.316) (0.336) (0.342) 

Captain Only -0.151 -0.169 -0.167 -0.214 

 (0.348) (0.347) (0.361) (0.354) 

President Only 0.390 0.241 0.253 0.200 

 (0.314) (0.318) (0.333) (0.335) 

Member     

Both on Team and in Club 1.933*** 1.691*** 1.362*** 1.276** 

 (0.259) (0.335) (0.387) (0.397) 

On Team only 0.015 0.543 -0.823 -0.574 

 (0.405) (0.478) (0.657) (0.649) 

In Club Only 1.578*** 1.314*** 0.958* 0.844* 

 (0.300) (0.374) (0.421) (0.429) 

Controls     

Math Score  0.018*** 0.019*** 0.019*** 

  (0.004) (0.004) (0.004) 

Parent´s Education     

High School   0.522†  0.550†  

   (0.309) (0.307) 

College Degree   0.817* 0.821* 

   (0.400) (0.412) 

Educational Attainment     

Some College    0.620 

    (0.410) 

College Degree or Higher    0.119 

    (0.404) 

School-fixed Effects No No No No 

Wald Chi2 11.18 35.67 48.38 56.06 

p > Chi2 0.192 0.000 0.000 0.000 

Pseudo R2 0.019 0.047 0.065 0.077 

Observations 302 302 302 302 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 10C differs from Table 4.10 reported in the paper by using only white females as the underlying 

sample. This table differs from Table 10B as coefficients derive from ordered-logistic regressions with standard 

errors in parentheses. As fixed effects frequently cause issues with ordered-logistic regressions Table 10C does 

not include school dummies. All models include (unreported) grade attainment control variables. Models 3 and 4 

include an unreported dummy variable for lack of parent’s education. Model 4 includes an unreported dummy 

variable for lack of educational attainment. The sample is based on the 2011-12 Pilot Study.  
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Table 10D: Extension – OLS-Regression: Effects of High School Leadership Activities on 

2011/2012 Household Income for White Males including Living Alone Dummy 
 Model 1 Model 2 Model 3 Model 4 

 Household In-

come 

Household In-

come 

Household In-

come 

Household 

Income 

Leader     

Both Captain and President 0.436* 0.452* 0.460* 0.358†  

 (0.191) (0.187) (0.188) (0.199) 

Captain Only -0.173 -0.138 -0.162 -0.181 

 (0.240) (0.243) (0.249) (0.254) 

President Only 0.031 -0.026 -0.041 -0.091 

 (0.168) (0.171) (0.170) (0.175) 

Member     

Both on Team and in Club 0.219 0.006 0.030 0.000 

 (0.249) (0.279) (0.289) (0.293) 

On Team only 0.178 0.011 -0.007 -0.160 

 (0.308) (0.330) (0.306) (0.310) 

In Club Only 0.149 -0.012 0.003 -0.051 

 (0.278) (0.298) (0.311) (0.312) 

Controls     

Math Score  0.006* 0.006* 0.004 

  (0.003) (0.003) (0.003) 

Parent´s Education     

High School   0.045 0.077 

   (0.186) (0.184) 

College Degree   0.413†  0.382†  

   (0.234) (0.230) 

Educational Attainment     

Some College    0.202 

    (0.245) 

College Degree or Higher    0.450†  

    (0.239) 

Demographics     

Living Alone -0.697*** -0.601** -0.596*** -0.532** 

 (0.184) (0.184) (0.176) (0.178) 

School-fixed Effects Yes Yes Yes Yes 

F 3.18 3.12 2.69 2.50 

p > F 0.001 0.001 0.002 0.002 

Adjusted R2 0.137 0.156 0.162 0.166 

Observations 249 249 249 249 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 10D extends the results from Table 4.10 reported in the paper by including the additional variable 

Living Alone which captures whether respondents lived alone at the time of the 2011-2012 Pilot Study interview. 

All models include (unreported) grade and school attainment control variables. Models 3 and 4 include an unre-

ported dummy variable for lack of parent’s education. Model 4 includes an unreported dummy variable for lack 

of educational attainment. The sample is based on white males from the 2011-12 Pilot Study. 
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Table 10E: Extension – OLS-Regression: Effects of High School Leadership Activities on 

2011/2012 Household Income for White Females including Living Alone Dummy 
 Model 1 Model 2 Model 3 Model 4 

 Household In-

come 

Household In-

come 

Household In-

come 

Household 

Income 

Leader     

Both Captain and President 0.104 0.075 0.072 0.039 

 (0.164) (0.150) (0.150) (0.149) 

Captain Only -0.022 -0.035 -0.024 -0.061 

 (0.168) (0.149) (0.150) (0.147) 

President Only 0.230 0.200 0.200 0.154 

 (0.166) (0.162) (0.160) (0.158) 

Member     

Both on Team and in Club 0.805*** 0.585* 0.458* 0.391 

 (0.239) (0.228) (0.225) (0.245) 

On Team only 0.377 0.669* 0.219 0.181 

 (0.347) (0.329) (0.394) (0.391) 

In Club Only 0.705** 0.514* 0.384†  0.300 

 (0.225) (0.215) (0.208) (0.230) 

Controls     

Math Score  0.011*** 0.011*** 0.009*** 

  (0.002) (0.002) (0.002) 

Parent´s Education     

High School   0.207 0.205 

   (0.132) (0.128) 

College Degree   0.324†  0.249 

   (0.184) (0.178) 

Educational Attainment     

Some College    0.270 

    (0.203) 

College Degree or Higher    0.382* 

    (0.178) 

Demographics     

Living Alone -0.703*** -0.715*** -0.689*** -0.698*** 

 (0.109) (0.103) (0.102) (0.104) 

School-fixed Effects Yes Yes Yes Yes 

F 7.37 10.12 8.56 7.93 

p > F 0.000 0.000 0.000 0.000 

Adjusted R2 0.171 0.280 0.293 0.318 

Observations 301 301 301 301 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 
Note: Table 10E differs from Table 4.10 reported in the paper by using only white females as the underlying 

sample and the additional variable Living Alone as an additional explanatory variable which captures whether 

respondents lived alone at the time of the 2011-2012 Pilot Study interview. All models include (unreported) grade 

and school attainment control variables. Models 3 and 4 include an unreported dummy variable for lack of parent’s 

education. Model 4 includes an unreported dummy variable for lack of educational attainment. The sample is based 

on white females from the 2011-12 Pilot Study. 
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Table 10F: Extension – OLS-Regression: Effects of High School Leadership Activities on 

2011/2012 Household Income for White Males (robust standard errors) 
 Model 1 Model 2 Model 3 Model 4 

 Household In-

come 

Household In-

come 

Household In-

come 

Household 

Income 

Leader     

Both Captain and President 0.478* 0.487* 0.498* 0.371†  

 (0.201) (0.195) (0.195) (0.203) 

Captain Only -0.171 -0.139 -0.170 -0.192 

 (0.255) (0.256) (0.266) (0.270) 

President Only 0.016 -0.053 -0.062 -0.114 

 (0.176) (0.177) (0.178) (0.181) 

Member     

Both on Team and in Club 0.155 -0.098 -0.070 -0.095 

 (0.260) (0.285) (0.287) (0.286) 

On Team only 0.033 -0.150 -0.153 -0.325 

 (0.324) (0.333) (0.306) (0.302) 

In Club Only 0.067 -0.118 -0.101 -0.151 

 (0.278) (0.297) (0.304) (0.300) 

Controls     

Math Score  0.008** 0.008** 0.005* 

  (0.003) (0.003) (0.003) 

Parent´s Education     

High School   0.025 0.070 

   (0.187) (0.185) 

College Degree   0.350 0.313 

   (0.237) (0.234) 

Educational Attainment     

Some College    0.172 

    (0.251) 

College Degree or Higher    0.514* 

    (0.250) 

School-fixed Effects Yes Yes Yes Yes 

F 1.37 2.10 1.67 1.71 

p > F 0.211 0.031 0.078 0.053 

Adjusted R2 0.083 0.117 0.119 0.132 

Observations 251 251 251 251 

† p<0.1 * p<0.05, ** p<.01, *** p<.001 

Note: Table 10F differs from Table 4.10 reported in the paper by including robust standard errors. All models 

include (unreported) grade attainment control variables. Models 3 and 4 include an unreported dummy variable 

for lack of parent’s education. Model 4 includes an unreported dummy variable for lack of educational attainment. 

The sample is based on the 2011-12 Pilot Study. 
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5 Essay 4 – Open data practices in innovation man-

agement research 

5.1 Introduction 

In 2015, Carlos Moedas (2015), the European Commissioner for Research, Science and Inno-

vation at this time, introduced the three Os – open innovation, open science, and open to the 

world – as goals for research and innovation policies in the EU.28 Open innovation focuses on 

firms collaborating with their environment to gather and supply new approaches and technolo-

gies (Chesbrough, 2003). Open science concentrates on improving the input and impact to and 

from research (Nosek et al., 2015). Open to the world highlights the need for partnerships across 

country or disciplinary borders (Moedas, 2015). In this article, our focus is on open science, a 

concept often connoted with transparency, accessibility, collaboration, and above all, sharing: 

“Open science is transparent and accessible knowledge that is shared and developed through 

collaborative networks” (Vicente-Saez, & Martinez-Fuentes, 2018: 428). Corresponding prac-

tices aim to expand the ethos of scientific inquiries by publicly, freely revealing results and 

their underlying empirical data (Vicente-Saez et al., 2020). 

Regarding the sharing of results, ever since ancient Greece, scientists have worked to 

share their generated insights with colleagues, peers, and a broader audience. In contrast to the 

scale and scope of the sharing of results, the data that underlie academic research are shared to 

a much smaller extent. In fact, many scientists prefer to keep their data private (Tenopir et al., 

2011), despite the advantages data sharing could offer for subsequent research and society 

(Molloy, 2011). If open science is the future of scientific research, then it is important to un-

derstand the drivers and obstacles of sharing research data publicly and to explain why we see 

so little open data policies in practice.  

Being management scholars (and writing for management scholars), we analyse data 

sharing by studying management researchers’ perceptions about the perceived trade-off be-

tween the costs and benefits of data sharing and how amenable they would be to institutional 

arrangements that balance the corresponding trade-offs to provide more incentives for data 

sharing. Within management, we picked a research field that should – by definition – be more 

 

28 I wish to thank Gloria Barczak, Jermain Kaminski, Christian Hopp and Frank Piller for the collaboration, their 

valuable comments and their inputs on this paper. 
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open: innovation research, where researchers have strongly advocated the importance of open-

ness for all types of innovation outcomes (e.g. Bogers et al., 2017; von Hippel, 2017). Numer-

ous studies in the innovation literature argue for the benefits of knowledge sharing and collab-

oration for more innovative outcomes (Randhawa et al., 2016; West et al., 2014). However, 

only recently have researchers in the innovation community started to make their research data 

accessible to a broader audience. Examples of open data are, for instance,  Reynolds (2007), 

sharing panel data in Entrepreneurial Dynamics (PSED); Marx, & Fuegi, (2020a, 2020b), 

providing a dataset with citations from worldwide patents to scientific articles, or authors like 

Sorenson et al. (2016), and Yu et al. (2017) with data on household innovation or crowdfunding 

research, who share their data through the repository DataVerse (King, 2007). As an important 

case in point, DataVerse features more than 98,000 open analysable datasets (as of July 2020), 

of which 41,813 are attributed to the social sciences in general, but only 582 to Business and 

Management.  

The last numbers indicate that the previously cited innovation scholars sharing their 

research data are a rare exception. This led us to our research question: When and why do 

innovation management scholars engage in open data sharing and what factors increase or 

reduce the likelihood of data sharing? Using the Resource Based View (RBV) of the firm, we 

argue that researchers’ proprietary data are resources that can provide a competitive advantage 

to individuals or research teams as these data are valuable, rare, imperfectly imitable, and not 

substitutable (Barney, 2001; Wade, & Hulland, 2004). As a result, we investigate through an 

exploratory study, individual and institutional factors that can be perceived as barriers or ena-

blers to the likelihood of one’s publicly sharing their data.  By doing so, this research makes 

two important contributions. First, it extends the RBV to the emerging field of open science 

with a focus on open data. In viewing data as a critical resource for researchers, we examine 

the trade-offs between the individual level barriers and the public benefit of open data sharing 

among (innovation) management scholars. Second, by investigating open data within the realm 

of innovation management scholars, the findings lead to suggestions that individuals and insti-

tutions can implement to encourage more data sharing and help to initiate a discussion on open 

(research) data in our own discipline.  

In the following, we outline existing research on data sharing and open data and build a 

set of hypotheses. We then explore the perceptions and practices of data sharing in the manage-

ment sciences with a survey among 173 innovation researchers. Subsequently, we present the 

results of our statistical analyses and discuss our findings. The article concludes by presenting 
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a set of advice for journal editors, maintainers of bibliographic databases, and academic socie-

ties. We also indicate potential improvements for research policy and highlight future research 

opportunities. 

5.2 Context: Evidence and practices of sharing research data in 

different disciplines 

Researchers across different disciplines are restrictive in providing access to their data. As a 

case in point, Wicherts et al. (2006) contacted corresponding authors of 141 published articles 

in four major journals of the American Psychological Association (all of which require authors 

to share their data upon request), attempting to replicate their studies. After six months (and 

more than 400 e-mail correspondences), they received data from only 38 papers (~27%). These 

results are not singular but confirmed by other studies. Krawczyk and Reuben (2012) received 

data from 44% of the corresponding authors of two hundred economics articles. Only 25% of 

surveyed pharmaceutical researchers shared their data upon request (Kirwan, 1997), and only 

one out of 29 corresponding authors from articles in the British Medical Journal provided data 

upon request (Reidpath, & Allotey, 2001). Savage and Vickers (2009) received one data set out 

of ten for articles published in PLoS Medicine and PLoS Clinical Trials, journals with require-

ments to share data upon request. Evidently, many scholars from different scientific disciplines 

do not engage in open data practices, despite calls for data sharing and policies of funding 

organisations (in Europe at least) implying that scientists should make the empirical data behind 

their research publicly accessible (Muscio et al., 2013).  

To corroborate evidence from these article-based studies, Tenopir et al. (2011) found 

that one third of respondents in a survey of 1,329 scientists skipped questions entirely regarding 

the amount of data shared, whereas 46% of those answering the questions stated that they have 

never shared any data and only less than 6% indicated that they shared all their data. Paradoxi-

cally, Fecher et al. (2017) found that 76% (out of 1,564 respondents) agreed that other research-

ers should share their data. Yet, only 35% of these very same respondents acknowledged that 

data sharing is common in their research field and only 13% had shared data publicly at least 

once. Social science researchers were the most averse to share data (Fecher et al., 2017). Alas, 

data sharing in management research brings us into surprisingly uncharted territory. There is 

sparse theoretical work that highlights factors that may explain data sharing in the management 

sciences, and there is even less empirical work on the antecedents to data sharing practices in 

our own discipline of innovation management (Kim, & Stanton, 2016; Kim, & Adler, 2015; 
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Kim, & Stanton, 2012). As Friesike et al. (2015: 581) conclude, “while academic studies on 

open innovation are burgeoning, most research on the topic focuses on the later phases of the 

innovation process. So far, the impact and implications of the general tendency towards more 

openness in academic and industrial science at the very front-end of the innovation process have 

been mostly neglected”. 

In the following, we pick up this torch and develop a theoretical framework to better 

understand the potential benefits and caveats that come with open data. Based on this frame-

work, we develop a set of hypotheses that link individual incentives, costs, and trade-offs with 

the institutional environment in which academic data collection efforts, research, and publish-

ing, are embedded.  

5.3 Theory and hypotheses development 

In a famous quote, Thomas Jefferson described in 1813 a core tension of sharing information: 

“If nature has made any one thing less susceptible than all others of exclusive property, it is the 

action of the thinking power called an idea, which an individual may exclusively possess as 

long as he keeps it to himself; but the moment it is divulged, it forces itself into the possession 

of every one, and the receiver cannot dispossess himself of it” (Jefferson, 1813). 

Researchers deliberating whether or not to reveal their research data are at the very 

junction that Thomas Jefferson so vividly described. Going back to Merton (1969), there are 

strong arguments that scientists should have a right to priority for an eventually made discovery 

so to provide them incentives to engage in the process of risky and uncertain discovery in the 

first place. In economics and management research, the “property” (in the words of Jefferson) 

that drives research is often data: “The goal of empirical economics is to learn from data” 

(Heckman, & Singer (2017: 299). Data, and technology to analyse this data, represent the key 

resources on which empirical researchers draw to advance science – and their individual ca-

reers. Researchers do not only decide about research questions, but also on research strategies. 

Evidently, different methods can answer the same question and consequently the same data can 

be employed to answer multiple research questions (Partha, & David, 1994).  

High quality (proprietary) datasets allow scientists to address various research questions 

and thus publish a number of articles without facing the need to collect data for every single 

individual publication (Kirkman, & Chen, 2011). With publications being the “gold standard” 

(Altbach, 2015: 6) of academic productivity, non-public datasets give their owner a significant 

competitive advantage over their fellow researchers with whom they compete for publication 
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spots, job and tenure positions as well as grant funding (Kwiek, 2015). This is especially im-

portant as prior studies have identified path and state-dependencies in research productivity 

with accumulative patterns of discovery and research status (Merton, 1969).  

5.3.1 A resource-based view on the resistance to open data 

To start with, we need to understand the extent to which researchers are amenable to collaborate 

and share their knowledge (and data). Empirical scientists are ambivalent between intermediate 

(data sharing) vs. final disclosure of their research (publications of all associated studies based 

on underlying data). Intermediate disclosure is the more piecemeal provision of knowledge, 

methods, data, or progress, whereas final disclosure involves a standardized (for example 

through peer reviewed publications) provision of uncovered final solutions (Boudreau, & 

Lakhani, 2015).  

Hence, there is evidently a trade-off between providing incentives for researchers to 

make costly investments into the research effort, while at the same time encouraging follow-up 

knowledge reuse (through disclosure, among others). Problematically, mechanisms that enforce 

and govern the reuse of knowledge (and ideas) are hardly contractible and rewards for interme-

diate disclosure (before a researcher has concluded his research agenda with a given dataset) 

reduces incentives and limits the pioneer´s ability to control the reuse of his data collected 

(Boudreau, & Lakhani, 2015). A potential sharing of data may therefore be at odds with the 

academics’ self-interest, the protection of the main resource for their scientific lead, leading to 

ambiguity as to when and how the norm should be followed (Defazio et al., 2020). 

As a case in point, Fecher et al. (2015, 4) discussed the “fear of competitive misuse” 

that prevents individuals from sharing data. The discovery of the helix structure of the DNA 

represents one famous example of this. Watson and Cricks (1953) had unsuccessfully worked 

with different theoretical models suggesting various structures of DNA, without ever touching 

or looking at fibres of DNA. Yet, on January 30, 1953, Watson paid a visit to Cambridge’s 

King's College, where Franklin had carried out an X-ray crystallography that showed the helical 

structure of DNA (Tobin, 2003). Eventually, Watson got access to Franklin´s X-ray photo-

graphs (through Wilkins) without Franklin’s permission. The access to the data laid the ground-

work for the model developed by Watson and Crick (1953), for which Watson, Crick and Wil-

kins, but not Franklin, were awarded the Nobel Prize in 1962. 

Consequently, we can very well think of research data as one of scholars’ key resources 

that enables them to outperform their competitors (Barney, 2001), a premise of the resource‐
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based view (RBV), which posits that firms should control valuable, rare, and inimitable re-

sources to achieve a competitive advantage. Proprietary research data are exactly a resource of 

such character. Sharing gathered data publicly makes it accessible to colleagues who did not 

have to struggle their way through designing questionnaires, managing surveys, administrating 

ethical committees, and the like. As researchers compete for a limited number of publication 

spots (and tenured positions), "free riders" could submit (and hence publish) more papers in 

shorter periods than the scholars who also engage in data collection (van Raan, 2001; Longo, 

& Drazen, 2016). As a consequence, academics are “incentivised to withhold information as 

they are in a winner takes-all publishing competition” (Defazio et al., 2020: 5). 

5.3.1.1 Perceived opportunity costs of data sharing 

The incentives to keep research data proprietary echoes a prominent debate in the New England 

Journal of Medicine, where Longo and Drazen (2016) feared that having access to original 

authors' data might open the door to "research parasites", i.e. researchers gaining unearned ben-

efits from the data collection efforts of others, which may, at worst, undermine the original 

publication. As the case of Watson and Cricks so vividly illustrates, this may at times even 

involve researchers that publish without approval from the original authors for using their data 

(Wilbanks, & Friend, 2016). The most extreme form is data thievery which occurs when schol-

ars share their data while still writing their paper (da Silva, & Dobranszki, 2015). Other re-

searchers take the data and publish an article with the same research question before the scholars 

who conducted the data collection can publish their article. In turn, the original authors lose out 

on the publication opportunity, but are still stuck with the direct costs of the data collection (da 

Silva, & Dobranzski, 2015). 

Clearly, researchers perceive this as unfair and therefore tend to keep gathered data as 

their “trade secrets” (Pfenninger et al., 2017, 212), objecting the idea of data sharing, as the 

Stanford economist David already proposed in an early essay about the open science paradigm: 

“Priority creates a privately-owned asset from the very act of relinquishing exclusive possession 

of the new knowledge.” (David, 1995: 19). As such, data is a key resource for scientists and in 

line with the resource based view this provides strong incentives for academics to privatize their 

knowledge. Consequently, researchers might simply not share their data because they may be 

able to publish subsequent articles out of their initial data collection effort. This creates a situ-

ation where individual researchers who collected the data regards the data as proprietary be-

cause they bore the time and efforts to collect the data in the first place and do not want to give 
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up on the opportunity to publish multiple papers based on the same dataset. We therefore for-

mulate the following hypothesis: 

Hypothesis 1a: The stronger researchers perceive that possessing non-public datasets 

provide them with an advantage over other researchers, the lower the likelihood of data 

sharing. 

5.3.1.2 Perceived direct costs of data sharing 

Our previous argument can be seen as opportunity costs related to foregone potential publica-

tions. In addition to these opportunity costs associated with data sharing, there exist also direct 

costs associated with open data. As a case in point, existing research discussed that firms incur-

ring high costs for resource sharing engage in strategic networks and other collaborative ap-

proaches less frequently (Das, & Teng, 2000; Silverman, 1999).  

Engaging in the process of data collection, curation, and preparation activities relies on 

scarce resources (Defazio et al., 2020), that can be influenced by research, teaching and com-

mercialization activities, or the individual family situation. Especially data curation and prepa-

ration involve great efforts and bind critical time and resources that are generally not awarded 

(though often asked for) by funding agencies. In fact, Kim and Stanton (2016) already pointed 

towards a negative association between the incurred costs and subsequent data sharing inten-

tions. Hence, we expect a similar relationship between the direct costs associated with data 

collection, curation and publication and actual data sharing behavior. This leads us to the fol-

lowing hypothesis:  

Hypothesis 1b: The larger researchers perceive the direct costs of data sharing, the 

lower the likelihood of data sharing. 

5.3.1.3 Perceived reputational costs of data sharing 

At the same, data sharing could also harm scholars’ reputations. If researchers share their data, 

they face the danger of revealing flaws in their research and may get unwanted public exposure. 

While ‘disagreement likely facilitates the development of new ideas, contributing to creativity 

and innovation’ (Wang, & Noe, 2010: 124), failed replication attempts using the shared data 

might defile scholars’ reputation (Barry, & Bannister, 2014). Doctoral student Thomas Herndon 

found a spreadsheet mistake in Reinhart and Rogoff´s (2010) work on austerity (Herndon et al., 

2014). The subsequent quagmire brought publicity and unwanted media scrutiny for all in-

volved researchers (Cassidy, 2013).  
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Unintended typos or similar minor errors in a data set could render results insignificant 

and turn implications upside-down. This might even result in corrections or even retractions 

(Molckovsky et al., 2011). At worst, it might ruin researchers’ careers because “[t]here is a 

fundamental misconception that retractions are ‘bad’ without pausing to ask why the retraction 

took place” (Barbour et al., 2017: 1964). As a case in point, Lu et al. (2013) showed that re-

searchers receive 6.9% less citations for publications published after a retraction of one of their 

prior publications. These considerations may prevent scholars to share their data, perceiving 

that their voluntary activity creates risks and challenges that can be easily prevented by just not 

making the effort. This leads to the following hypothesis on reputational costs impeding data 

sharing: 

Hypothesis 1c: The larger researchers perceive the reputational costs of data sharing 

related, the lower the likelihood of data sharing. 

5.3.2 Perceived (im-)balance of costs and rewards of open data 

Existing research on the resource-based view highlights that individuals and organiza-

tions will only engage in resource sharing if their overall perceived benefits outweigh their 

overall perceived costs (Bogers, 2011a). Following this argument, researchers might view the 

opportunity cost, direct cost, and reputational costs associated with data sharing as misplaced 

energy, especially when sufficiently tailored individual incentives for them to encourage data 

sharing are not in place. As such, in the absence of additional incentives, it stands to reason that 

an unbalanced trade-off between incentives and costs lowers the likelihood of data sharing by 

individual researchers. Of course, one could argue that receiving citations for shared datasets 

might represent such additional incentives. Yet even if the datasets are shared, Wallis, Rolando, 

and Borgman (2013) showed that such publicly available datasets (that took many weeks to 

prepare) are requested infrequently and rarely reused. In management research, the dominant 

scientific approach is theory and literature-guided confirmatory research, requiring authors to 

use datasets specifically tailored to assess pre-determined research hypotheses (Tukey, 1980). 

This methodological paradigm might explain the low reuse of data as publications based on 

primary data possess citation advantages over articles based on secondary data (Piwowar, & 

Vision, 2013). As a consequence, "the effort to make data discoverable is difficult to justify, 

given the infrequency with which investigators are asked to release their data" (Wallis et al., 

2013: 14).  
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If scholars not only perceive high costs for procuring external data but also perceive that 

they are rewarded disproportionately for their provided open data, they might consider to not 

share their data and thus save on time, risk and efforts. In summary, we formulate the following 

hypothesis. 

Hypothesis 2: The stronger researchers perceive that the costs associated with open 

data outweigh the rewards, the lower their likelihood of data sharing. 

5.3.3 An open innovation perspective for the support of open data 

Our previous arguments addressed factors that reduce resource sharing. However, prior litera-

ture on open innovation in the context of the resource-based view also outlines various cases 

where resource sharing in the presence of proprietary resources actually works (e.g. Das, & 

Teng, 2000; Mowery et al., 1998). 

5.3.3.1 Community benefits of data sharing 

Arya and Lin (2007) showed that organizations sharing their own resources might gain reputa-

tion through this process. This could also apply to academia, as Fecher et al. (2017) conclude. 

For example, Piwowar et al. (2007) investigated 85 publications in the field of clinical cancer 

treatment and found that papers with shared data received 69% more citations than those with-

out shared data. In management research, work by La Porta et al. (2002) or Bloom and van 

Reenen (2007) provides anecdotal evidence, as both author collectives made the underlying 

data accessible to a broader audience. These publications collected more than 10,000 and 2,000 

citations, respectively, and are considered ground-breaking in their fields. 

 In addition to the expectation of positive individual reputational effects through the in-

crease in transparency and reproducibility, resource sharing can also induce several other ben-

efits (Arya, & Lynn, 2007). As a case in point, Vanhaverbeke and Cloodt (2014: 265) argue 

that in today’s rapidly changing economy, “firms—even the largest one—cannot develop all 

required resources internally and have to team up with innovation partners enabling resource 

flows between firms.” Similarly, in academic research, advances in information technology and 

the nearly worldwide dissemination of English as the language of sciences have fiercely in-

creased competition for publication spots (Di Bitetti, & Ferreras, 2017). To withstand this pres-

sure, more and more scientists (including the author collective of this article) have teamed-up 

to collectively conduct and publish research (Lee, & Bozeman, 2005). Task division and spe-

cialization have enabled those teams to produce more creative and more profound articles at 

higher rates (Ductor, 2015; Manton, & English, 2007). In this context, publishing research data 
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allows other interested scientists (e.g. those working on similar topics) to receive a better picture 

of what research is currently underway (Ross, & Krumholz, 2013). This might lead to research-

ers from different areas with different skills and knowledge offering to join the research team, 

thus further amplifying its investigations and profoundness (Edwards et al., 2011). As a work-

ing example, Walport and Brest (2011) argue that open data strongly enhances collaborations 

between scientists. 

Open data also reduces the need for individual data collection. Open innovation is cen-

tred on the idea of purposively managing in and outflows of knowledge to speed up both, ex-

ternal as well as management of innovation (Tucci et al., 2016; Vicente-Saez, Gustafsson, & 

Van den Brande, 2020). Similar to open innovation inducing “that companies need not to rein-

vent the wheel, since they can rely on external sources” (Chesborough, 2003: 49), open data 

induces that researchers can skip the often costly and resource intensive steps of data collection 

(Uhlir, & Schröder, 2007). Hence, scholars can publish related studies quicker and therefore 

spend more time on other discoveries (Fischer, & Zigmond, 2010). The accelerated research 

process is not only beneficial for scholars, as they can publish more papers in a shorter period, 

but also for society as problem solving and technology development take less time (Kaye et al., 

2009). We propose:  

Hypothesis 3a: The more affirmative scientists are to the community-wide benefits of 

data sharing, the higher the likelihood of data sharing. 

5.3.3.2 Institutional policies enforcing data sharing 

Following prior research, resource sharing collaborations can emerge if all participants agree 

on an appropriate governance structure that facilitates and oversees the resource exchanges by 

aiming at avoiding one-sided exploitations and opportunism (Madhok, & Tallman, 1998; Bou-

dreau, & Lakhani, 2015). A similar approach could be applied to academia as scientists are 

embedded into the wider academic community and as such are amenable to institutional logics 

(Defazio et al., 2020), meaning that their individual behavior is also affected by the behavior of 

others around them and the expectations the community holds about them. Institutional norms 

are crucial ways in which a scientific community affects peers and individual academics. These 

norms may equally attest to appropriate behavior or sanction inappropriate behavior, thus, 

providing guidance (Azoulay et al., 2015). 

As a case in point, Nature’s author policy encourages the citation of datasets, thus in-

creasing the citation counts of authors who share their datasets. In fact, more and more journal 



203 

 

policies require authors to make their data available to the public (Federer et al., 2018; Andreoli-

Versbach, & Mueller-Langer, 2014; Borgman, 2012), and there is a rather high prevalence of 

authors’ statements indicating that data would be available upon request (Piwowar, & Chap-

man, 2008; Whitlock, 2011). Still, many journals do not have a data policy at all (Stodden et 

al., 2018). Stodden, Guo and Ma (2013) report that among 170 multidisciplinary journals, 62% 

did not have a data policy. Nevertheless, some scholars reported that they would like to see the 

introduction of more data policies and data citation opportunities (Savage, & Vickers, 2009). 

As the efforts to comply with such new policies are lower for scholars who already share their 

datasets, as compared to those who do not engage in open data, we propose that scholars, who 

are in favour of such new policies, are those who already share more data: 

Hypothesis 3b: The more affirmative scientists are to institutional pressure to in-

crease data sharing, the higher the likelihood of data sharing. 

5.3.3.3 Proliferation of replication studies to enforce data sharing 

Beccera, Lunnan and Huemer (2008) highlight that firms tend to share their knowledge and 

resources with other firms only if they perceive them to be trustworthy. This way they can 

ensure that they and their partners can benefit from the fruits of cooperation, but at the same 

time they can reduce the risk that their valuable resources are diluted. Firms’ perceived trust-

worthiness’s depends on various factors, including past business relations (Möllering, 2002), 

social ties (Wang et al., 2006), and cultural backgrounds (Özer et al., 2014). 

Similarly, scholars’ trustworthiness depends on various factors, too (Dilger et al., 2015). 

Recently, various disciplines have been plagued by research scandals and questions about the 

reproducibility of research findings (e.g. Hopp, & Hoover, 2017; 2019). Consequently, various 

management journals have begun to institutionalize replication studies that rely on the presence 

of open data (Bettis et al., 2016; Clapp-Smith et al., 2017). In fact, data sharing is the only way 

to enable direct replications, because they require the availability of the primary dataset 

(Schmidt, 2009). Hence, data sharing increases the credibility of existing research (Freese, 

2007; Gerwin, 2016).  

As a prime example of how these principles can be applied, researchers at the CERN 

and the Tevatron at Fermi Labs both undertook a simultaneous search for the Higgs Boson in 

2012. Both were involved in replications of each other’s findings using the very same data. 

Research that has an impact needs to be replicated to avoid misconceptions (Aaltonen, et al., 
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2012a; Aaltonen, et al. 2012b). Initial data from CERN was subsequently repeated and corrob-

orated by other institutions and the consensus among involved scientists was, that only if signals 

obtained from each institution were statistically significant, evidence in favour of the missing 

piece in the particle physics standard model would be announced (Reich, 2012). This eventually 

led to the Nobel Prize for Francois Englert and Peter Higgs in 2013 and triggered further re-

search as the data sharing enabled open experimentation (Adam-Bourdarios et al., 2015). 

In management research, data access and exact replications might have worked to un-

cover the fraudulent asterisks that appeared for insignificant coefficients in Lichtenthaler and 

Ernst (2012), and it may have clarified the methodological irregularities in Avolio, Rotundo, 

and Walumbwa (2009). Data sharing, at the very least with reviewers, gives journals the chance 

to detect erroneous data or analyses prior to publishing (Morey, et al. 2016). Using data in peer 

review can act as the “the first line of defense” (Honig et al., 2014: 16) against potential aca-

demic misconduct. Hence, if scholars believe that replications increase the trustworthiness of 

existing research and ensure the continued credibility and sustainability of their academic field, 

they should also be more inclined to share data more openly. This leads us to formulate the 

following hypothesis: 

Hypothesis 3c: The more affirmative scientists are to the proliferation of replication 

studies, the higher the likelihood of data sharing. 

Figure 1 graphically depicts our conceptual model and the corresponding hypotheses. Hypoth-

eses 1a through 1c and 2 capture individual factors that reduce the likelihood of data sharing. 

Hypotheses 3a through 3c capture institutional factors that increase the likelihood of data 

sharing. We test this model empirically in the following chapters. 

Figure 5.1: Conceptual model of Essay 4 

 

H1a

Individual Factors

Data as proprietary source

H1b Direct costs of data sharing

H1c Reputational costs of data sharing

+

Likelihood of data sharing

-

H2

Cost-Reward Trade-off

Imbalance of costs and rewards

H3a

Institutional Factors

Perceived community benefits

H3b Institutional pressure

H3c Proliferation of replication studies

-
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5.4 Data and methodology 

5.4.1 Survey distribution 

To explore the factors driving and impeding data sharing among (innovation) management 

scholars, we conducted two empirical surveys using Qualtrics. To identify respondents, we used 

the participant lists of the World Open Innovation Conferences (WOIC) from 2013 to 2017 and 

the Druid conferences from 2011 to 2018. On the one hand, WOIC states at its website that at 

their conferences “world leading organizations share their open innovation challenges with ex-

pert academic colleagues to foster stronger connections between business practice and aca-

demia.” The Druid website, on the other hand, refers to its conference series as “one of the 

world's premier academic conferences on innovation.” Hence, we selected those two confer-

ences to capture insights on innovation scholars with academic, but also with practitioners’ 

backgrounds. As it follows from the contact data base deriving from those two conferences, 

participation in one of the two conference series represents a prerequisite of having a chance to 

participate in the survey. This might induce selection biases. However, both conferences  attract 

not only eminent scholars of innovation management, but also give junior scholars chances for 

participation and presentation. It is therefore not surprising, that the share of PhD students that 

replied to the survey (23.12%) nearly mirrors the share of PhD students (26.07% on April 18, 

2020) in the Technology and Innovation Management (TIM) division of the Academy of Man-

agement. 

In 2018, we sent e-mails containing the survey link and a short description of the aim 

and scope of the research project to the 736 participants of the WOIC conferences between 

2013 and 2017. After updating our contact directory from information contained in bounce-

back emails that indicated changes of email addresses, we sent out a reminder email two weeks 

later. Overall, the first survey distribution wave generated 141 replies.  

As the data received from this pre-test seemed plausible, we sent the same questionnaire 

also to the 2,429 participants of the Druid conferences between 2011 and 2018. We only in-

cluded email addresses that were not already included in the WOIC contact directory. In addi-

tion, we prohibited ballot-boxing by allowing each IP-address to only take the survey once. We 

updated the email addresses based on bounce-backs and sent a reminder email two weeks later. 
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In total, we received 242 responses. The final sample consists of 173 respondents.29 The num-

bers of observations vary slightly in the succeeding tables, due to respondents answering “N/A” 

at times or omitting answers entirely. 

Comparing the answers from WOIC participants to Druid participants to assess whether 

they account for our relevant population of innovation management scholars, we find that the 

share of scientists with industry affiliations is higher for WOIC participants. This derives from 

the mere fact that WOIC focuses more on practitioners’ work and problems than Druid. The 

only large other differences in characteristics occur for qualitative researchers. While about half 

of the WOIC participants conduct qualitative research, only about one-third of the Druid par-

ticipants conduct qualitative research. The remainder of the characteristics (e.g. gender, review-

ers for FT-50, …) differ only slightly between the two groups.  

Furthermore, due to the anonymous responses, we cannot identify who participated and 

who did not participate in the study. Nevertheless, we assessed the potential implications of 

non-respondent analysis by comparing the characteristics of early respondents (those that re-

plied before we sent the reminder e-mail) to late respondents (those that replied after we sent 

the reminder e-mail). The largest difference lies within non-European researchers, as they con-

stitute about 20% of the early respondents, but only about 10% of the late respondents. Never-

theless, the actual models in the following section include controls for all characteristics.30   

5.4.2 Variables 

The survey asked for sociodemographic and job-related information as well as respondents’ 

experiences with and attitudes towards open data. Furthermore, we asked respondents to indi-

cate their opinions about costs and benefits associated with open data on five-point Likert-scales 

ranging from “strongly disagree” to “strongly agree”. Separate questions focused on respond-

ents’ attitudes towards institutional pressure and replications. 

5.4.2.1 Dependent variables 

We conceptualize Data Shared as the dependent variable to capture the public data sharing 

behavior of innovation scholars. We derive this variable from respondents’ answers on a scale 

 

29 We exclude 27 respondents due to them indicating their occupation as ‘member or founder of a company ("in-

dustry")’ or ‘Other’. Furthermore, 42 respondents who did not answer all sociodemographic and job-related 

questions located at the first page of the questionnaire as well as those that neither conducted qualitative nor 

quantitative data were pruned from the sample. 

30 Full results of the WOIC vs. Druid analyses and the early vs. late respondents analyses are available from the 

corresponding author upon requests. 
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ranging from 0 to 100 to the statement “In my estimation, the following percentage of my data 

is openly available for everyone”. This extends previous research (Kim, & Stanton, 2015; Kim 

& Zhang, 2015) as prior work used scholars’ intentions to share data as the dependent variable. 

Yet already Ajzen (1985) highlighted that while, in general, intentions induce behavior, this is 

not always the case. This might especially apply for questions inducing socially desirable re-

sponding. As a case in point, Persoskie and Nelson (2013) showed that while two thirds of their 

respondents wanted to quit smoking, only half of them stated that they attempted to quit smok-

ing. As the goal of this study is to highlight the state of the art of data sharing among innovation 

management scholars, we employ the actual amount of shared data. In addition, by asking re-

spondents to indicate the percentage of scholars’ shared data we reduce common method bias 

as we employ two different scales for the dependent and the independent variables (Podsakoff 

et al., 2003). Following Podsakoff et al., (2003), we further aimed to reduce common method 

bias by implicitly and explicitly assuring respondents that all responses are anonymous. We 

sent out the same questionnaire link to all respondents individually instead of sending individual 

links to individual respondents which implicitly ensures anonymity. Also, we  included the 

following statement in the first paragraph of the first page of the questionnaire which explicitly 

was aimed to ensure anonymity: ”We are aware that we touch upon a potentially sensitive area 

and will therefore ensure that all responses and participant information will be anonymized.” 

5.4.2.2 Explanatory Variables 

We operationalize our hypotheses as follows. We employ scholars’ standardized agreements 

with several statements anchored on a five-point Likert scale ranging from strongly disagree to 

strongly agree. For analysing Hypotheses 1a through 1c and Hypothesis 2, we use single item 

statements addressing respondents' opinions towards data as Proprietary Source, the Direct 

Costs of data sharing, the fear of Reputational Costs arising from data sharing as well as the 

Cost-Reward Imbalance as the independent variables. 

For addressing the set of Hypotheses 3, we employ common factor analysis (principal 

axis factoring option in Stata 15) to generate three reflective latent composite variables, Com-

munity Benefits, Institutional Pressure and Replications, out of four statements each. In line 

with our theoretical reasoning for Hypothesis 3a, Community Benefits composite standardized 

statements address transparency in research, reducing fraud opportunities and increasing col-

laboration opportunities. Researchers’ opinions on whether journals should implement policies 

enforcing data sharing (for review, at publication or after a twelve months grace period) as well 

as whether publishers should establish licensing policies for the free reuse of data represent the 
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underlying statements for Institutional Pressure (Savage, & Vickers, 2009). Replications cap-

ture innovation scholars’ attitudes towards both, direct and conceptual replications as well as 

on replications of their own work and the work of others (Schmidt, 2009; Jasny et al., 2011; 

Hopp, & Hoover, 2019). The items used to measure each construct as well as reliability and 

validity statistics are provided in Table 5.2. 

5.4.2.3 Control variables 

We control for sociodemographic and job-related factors for each respondent. Leahay (2006) 

shows that gender differences exist in regard to academic productivity. Hence, we include re-

spondents’ gender (Female = 1, 0 otherwise). Furthermore, we control for the location of the 

university at which respondents work (Europe = 1, 0 otherwise) as cultural habits affect research 

and publishing processes (Salita, 2010). We also control for the professional level (Full Profes-

sor = 1, 0 otherwise) (Carayol, & Matt, 2006). In addition, we consider the number of peer-

reviewed articles (0 = no articles, 1 = 1 to 5 articles, 2 = 6 to 10 articles, 3 = 10 to 20 articles, 4 

= more than 20 articles) and the number of FT-50 articles (0 = no articles, 1 = 1 to 5 articles, 2 

= 6 to 10 articles, 3 = 10 to 20 articles, 4 = more than 20 articles)31 published from 2013 to 

2018. In addition, we consider whether respondents acted as reviewer for an FT-50 journal in 

the year leading up to the survey (Reviewed for FT-50 = 1, 0 otherwise) and whether or not 

they have held editorships at an FT-50 journal since 2013 (Editor at FT-50 = 1, 0 otherwise). 

Last, existing literature highlights that sharing qualitative data might in fact be less common 

than sharing quantitative data (van den Berg, 2005; Aguinis, & Solarino, 2019). Therefore, we 

control for respondents’ research approaches (Quantitative = 1, 0 otherwise; Qualitative = 1, 0 

otherwise, Theoretical = 1, 0 otherwise). 32 

5.5. Results 

5.5.1 Descriptive statistics 

For the dependent variable, Figure 5.2 depicts the Data Shared by respondents. We find that 

scholars in our sample indicate to have shared on average 28.95% of their data (red line) with 

a standard deviation of 28.67%. This implies that an overwhelming majority of the respondents 

have shared only a quarter or even less of their data, with 24 respondents having never shared 

 

31 To help respondents identify which journals are FT-50 journals, the survey included a link to the website of 

the Financial Times listing the FT-50 journals as of the 12th of September 2016. 

32 The variable coding is not exclusive. For example, scholars can engage in quantitative and theoretical research 

(Quantitative = 1; Qualitative = 0; Theoretical = 1). 
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any of their data. The spike in the middle of the histogram indicates 12 respondents who have 

shared half of their data. Interestingly, five respondents indicate to have shared all their data. 

Table 5.1 depicts the descriptive statistics of the control variables. Nearly one-third of 

our respondents are Female, and more than 80% of them work at a European university. Full 

Professors constitute approximately one quarter of the sample, and nearly fifty percent have 

Reviewed for FT-50 journals at least once. 24 respondents have been Editors at FT-50 journals 

since 2013. Most of the respondents conduct Quantitative research (157) and have published 

between one to ten papers from 2013 to 2018, with a lower number of articles in FT-50 journals.  

Figure 5.2: Histogram of the percentage data shared by scholars 

 

Note: Bars show the frequency of respondents stating that the respective percentage of their data is openly avail-

able for everyone. The red line indicates the mean at 28.95%. 

Table 5.1: Descriptive statistics of control variables 

Total Respondents: 173  

Female 52 30.06% 

Europe 143 82.66% 

Full Professor 44 25.43% 

Reviewed for FT-50 93 53.76% 

Editor at FT-50 24 13.87% 

Quantitative 157 90.75% 

Qualitative 72 41.62% 

Theoretical 60 34.64% 

Number of… 0 1-5 6-10 10-20 >20 

… Articles 31 63 38 30 11 

… FT-50 Articles 80 76 9 6 2 
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Table 5.2 provides information on the explanatory variables. For the statements address-

ing the costs of data sharing, we find that innovation management scholars’ opinions on whether 

data should remain a Proprietary Source differ, as about 45% of them agree with this statement 

while more than 25% of them disagree with it. The same applies to the Direct Costs of open 

data. Interestingly, more than two thirds of the survey participants agree that data sharing might 

bring along Reputational Costs. Assessing the Cost-Reward Imbalance, nearly every second 

scholar disagrees that the efforts outweigh the rewards. Addressing the Community Benefits, 

more than three quarters of the respondents (strongly) agree with each of the listed statements 

except for the positive effects of data sharing on collaboration and productivity, which are sup-

ported by less than two thirds of the respondents. 

Concerning Institutional Pressure, respondents are undecided about whether journals 

should require public data sharing upon publication. Yet, two thirds of the survey participants 

are in favour of journal policies that force authors to share their data after a twelve-month grace 

period. Unsurprisingly, an even higher majority of scholars (strongly) agree that data and source 

code should be available at the time of submission to allow for a transparent review process. In 

addition, many respondents also would like to see licensing policies that allow the free reuse of 

author-submitted data. Last, respondents indicated their opinions on the benefits of Replications 

of the work of others and on replications of their own work. The majority of the innovation 

management scholars (strongly) agree on the importance of exact and conceptual replications 

for the work of others and their own work.33 

5.5.2 Validity and reliability 

Assessing empirically the validity of the explanatory variables, we find that all composite var-

iables possess Eigenvalues greater than 1 and therefore fulfil the Kaiser criterion (Kaiser 1960). 

Furthermore, all component loadings are higher than 0.65, indicating the high relevance of the 

observed individual variables for the composite variables (DeCoster, 1998). Regarding the re-

liability of the composite variables, Cronbach’s Alphas corresponds to 0.70 for Community 

Benefits, 0.83 for Institutional Pressure, and 0.72 for Replications.34    

 

33 We investigate whether opinions towards the replication of other´s work differ from the opinions towards the 

replication of own work using Wilcoxon signed-rank tests. We find that scholars’ preferences do not differ nei-

ther for exact (z=0.495, p>0.1) nor for conceptual replications (z=-0.142, p>0.1). 

34 As our sample consists of innovation scholars only, and as the observed variables only contain about 150 ob-

servations, Communal Benefits and Individual Costs and Risk just exceed the ubiquitous thresholds for 

Cronbach’s alpha of 0.7. Bernardi (1994) empirically showed that small homogenous samples often tend to have 

lower Cronbach’s alphas. Following Nunnally and Bernstein (1994), we conclude to have reliable variables. 
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Table 5.2: Descriptive statistics of the explanatory variables 

 Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 
Total 

Proprietary Source       

Empirical models and datasets are large personal investments for researchers and should remain 

“trade secrets”.  

25 40 39 27 11 142 

17.61% 28.17% 27.46% 19.01% 7.75%  

        

Direct Costs       

The time and effort it takes for the curation, documentation, standardization, normalization, and 

metadata association for research data are too large to make the data publicly available.  

10 43 38 38 13 142 

7.04% 30.28% 26.76% 26.76% 9.15%  

        

Reputational Costs       

Releasing flawed code or data can discredit research results and cause embarrassment to the re-

leasing authors. 

2 18 18 79 25 142 

1.41% 12.68% 12.68% 55.63% 17.61%  

        

Imbalance of Costs and Rewards       

The effort of anonymizing data is too high, the reward too low. 
18 51 27 33 13 142 

12.68% 35.92% 19.01% 23.24% 9.15%  

       

Community Benefits (µ=0; δ=0.8155; α=0.70) 
Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 
Total 

Transparency, reproducibility and traceability in scientific research are almost impossible to im-

plement without access to original data. 

3 19 15 66 53 156 

1.92% 12.18% 9.62% 42.31% 33.97%  

        

Releasing data could help to expose cases of fraud and scientific misrepresentation. 
2 4 10 61 79 156 

1.28% 2.56% 6.41% 39.10% 50.64%  

        

Public disclosure of research data helps to manage conflicts of interest and discourage miscon-

duct. 

1 9 21 74 51 156 

0.64% 5.77% 13.46% 47.44% 32.69%  

        

Releasing data could increase collaboration among scientists and increase academic productivity. 
5 19 31 55 46 156 

3.21% 12.18% 19.87% 35.26% 29.49%  
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Institutional Pressure (µ=0; δ=0.9219; α=0.83) 
Strongly 

Disagree 

Disagree Neutral Agree Strongly 

Agree 

Total 

Journals should require authors to make their original materials and data publicly available (at 

publication). 

14 37 34 43 16 144 

9.72% 25.69% 23.61% 29.86% 11.11%  

        

Journals should require authors to make their original materials and data publicly available (after 

a 12-months period, the latest). 

12 23 28 57 24 144 

8.33% 15.97% 19.44% 39.58% 16.67%  

        

Data and source code should be available at the time of submission to allow for a transparent re-

view process and the verifiability of data. 

9 22 24 55 34 144 

6.25% 15.28% 16.67% 38.19% 23.61%  

       

Publishers should implement licensing policies that allow the free reuse of author-submitted data. 
9 22 29 51 33 144 

6.25% 15.28% 20.14% 35.42% 22.92%  

       

Replications (µ=0; δ=0.8574; α=0.72) 
Strongly 

Disagree 
Disagree Neutral Agree 

Strongly 

Agree 
Total 

It is important to exactly replicate (e.g. using the same material, manipulations, methods, depend-

ent variable, etc. as the original study) research others have already conducted and published. 

2 17 41 52 34 146 

1.37% 11.64% 28.08% 35.62% 23.29%  

        

It is important to conceptually replicate (e. g. using the same fundamental hypothesis, but differ-

ent designs, and variables) research others have already conducted and published 

1 9 15 70 51 146 

0.68% 6.16% 10.27% 47.95% 34.93%  

        

I would be glad if other researchers would exactly replicate (e.g. using the same materials, manip-

ulations, methods, dependent variable, etc. as the original study) my published studies 

4 11 38 65 28 146 

2.74% 7.53% 26.03% 44.52% 19.18%  

        

I would be glad if other researcher would conceptually replicate (e.g. using the same fundamental 

hypothesis, but different designs, and variables) my published studies 

1 4 20 71 50 146 

0.68% 2.74% 13.70% 48.63% 34.25%  
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 Table 5.3 shows the correlation matrix for all variables. The absolute highest pairwise 

correlation exists between Direct Costs and Cost-Reward Imbalance with a correlation coeffi-

cient corresponding to 0.67. As this value is far below the problematic cases of 0.8 to 0.9, our 

analysis does not seem to suffer from multicollinearity (Mansfield and Helms, 1982). In addi-

tion, all variance inflation factors are smaller than two and hence we do not face any multicol-

linearity issues (Dormann et al., 2010). 

We further employ the correlation matrix to check for common method bias by using 

the K*=1/r rule (Siemsen et al., 2010). The smallest bivariate correlation between our explana-

tory variables and the dependent variables amounts to 0.1080 between Data Shared and Com-

munal Benefits. Hence, we need to include at least 10 independent variables (explanatory and 

control variables) in the regression to fulfil the K*=1/r rule. As our full model contains in total 

14 explanatory variables, our regression estimates are not very likely to suffer from common 

method bias. As common-method variance equates to an omitted variable problem, we also 

address the implications of omitted variables and endogeneity in our limitation section. 

5.5.2 Regression analysis 

Table 5.4 presents the regression results of the effect of scholars’ opinions on their own data 

sharing. We report coefficients from negative binominal regressions to account for the over-

dispersed count variable distribution of the dependent variable. Model 1 solely contains the 

sociodemographic and job-related control variables. We find that those who have Reviewed for 

FT-50 journals share less data, and Quantitative researchers share more data, though both co-

efficients are only marginally significant at the ten percent level. Model 2 includes data as Pro-

prietary Source. As stipulated in Hypothesis 1a, the coefficient is significantly negative. Model 

3 assesses the effects of the Direct Costs of data sharing. We find evidence in favour of Hy-

pothesis 1b: Researchers believing that open data carries direct costs share significantly less 

data. Model 4 includes the Reputational Costs, but does not provide support for Hypothesis 1c; 

the coefficient is not significant at conventional levels.  
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Table 5.3: Correlation matrix 

 Data Shared Advantage Direct Costs 
Reputational 

Costs 

Costs-Re-

wards Imbal-

ance 

Community 

Benefits 

Institutional 

Pressure 
Replications Female 

Data Shared 1.0000 
     

   

Proprietary Source -0.3511*** 1.0000 
    

   

Direct Costs -0.3071*** 0.3871*** 1.0000 
   

   

Reputational Costs -0.1779†  0.0186 0.1279 1.0000      

Cost-Reward Imbal. -0.1170 0.2729** 0.6726*** 0.1920* 1.0000     

Community Benefits 0.2225* -0.4076*** -0.4837*** -0.0166 -0.3184*** 1.0000    

Institutional Pressure 0.3012*** -0.4468*** -0.2382** 0.0076 -0.1022 0.4598*** 1.0000 
 

 

Replications 0.3464*** -0.5109*** -0.3607*** -0.0245 -0.1128 0.5413*** 0.5033*** 1.0000  

Female 0.0078 0.0979 -0.1206 0.0428 -0.1723†  -0.0086 -0.1675†  -0.1295 1.0000 

Europe -0.1183 0.0551 0.0365 -0.0843 -0.0041 -0.0646 0.0031 0.0365 0.1231 

Full Professor -0.0641 0.0428 0.1002 0.0343 -0.0352 -0.1536†  -0.1486 -0.3031*** -0.0935 

Articles -0.0845 -0.0632 0.0709 -0.0212 0.0137 -0.0795 -0.1043 -0.1064 -0.0709 

FT-50 Articles -0.1289 0.1572†  0.1100 -0.1463 0.0505 -0.2982** -0.2344* -0.1819* -0.0132 

Reviewed for FT-50 -0.2025* 0.0287 0.0414 0.1839* -0.0546 -0.2081* -0.1657†  -0.1066 -0.0032 

Editor for FT-50 -0.0578 0.1257 -0.0673 -0.0129 -0.0294 -0.0830 -0.0459 -0.0377 0.0368 

Quantitative 0.1274 0.1758†  -0.0170 0.0184 0.0298 -0.0070 0.0226 0.0203 -0.0667 

Qualitative -0.0840 0.1394 -0.0005 -0.1688†  -0.0993 0.0039 -0.1463 -0.2779** 0.1327 

Theory 0.0434 -0.1250 -0.1295 0.0366 -0.0691 -0.0205 -0.0244 -0.0589 0.0313 

          

 Europe Full Professor Articles FT-50 Articles 
Reviewed for 

FT-50 

Editor for FT-

50 
Quantitative Qualitative Theory 

Europe 1.0000 
     

   

Full Professor 0.0044 1.0000        

Articles -0.0846 0.3842*** 1.0000       

FT-50 Articles -0.0605 0.2630** 0.3129*** 1.0000 
  

   

Reviewed for FT-50 -0.0146 0.1944* 0.2593** 0.3369*** 1.0000 
 

   

Editor for FT-50 -0.3489*** 0.2235* 0.1024 0.4647*** 0.2708** 1.0000 
 

  

Quantitative -0.0672 -0.0806 0.0250 0.1979* 0.2263* 0.1270 1.0000   

Qualitative -0.0240 0.0901 0.0264 -0.0832 -0.2302* 0.1613†  -0.2559** 1.0000  

Theory -0.1103 0.0625 -0.0960 -0.1993* -0.1758†  0.0458 -0.2283* 0.3860*** 1.0000 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Pairwise correlation coefficients derived from Pearson-correlations. 



215 

 

Table 5.4: Regression antecedents to data shared 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

 Data 

shared 

Data 

shared 

Data 

shared 

Data 

shared 

Data 

shared 

Data 

shared 

Data 

shared 

Data 

shared 

Data 

shared 

Explanatory Variables          

Proprietary Source  -0.28***       -0.21†  

  (0.08)       (0.11) 

Direct Costs   -0.28**      -0.37* 

   (0.09)      (0.16) 

Reputational Costs    -0.13     -0.18†  

    (0.11)     (0.11) 

Cost-Reward Imbalance     -0.17†     0.22 

     (0.09)    (0.14) 

Community Benefits      0.22*   -0.38* 

      (0.10)   (0.18) 

Institutional Pressure       0.39***  0.36* 

       (0.10)  (0.14) 

Replications        0.32** 0.10 

        (0.12) (0.15) 

Sociodemographics          

Female -0.01 -0.07 0.01 0.09 -0.08 0.07 0.20 0.15 0.30 

 (0.18) (0.18) (0.18) (0.21) (0.18) (0.18) (0.19) (0.18) (0.22) 

Europe -0.14 -0.11 -0.16 -0.27 -0.12 -0.07 -0.20 -0.07 -0.44 

 (0.24) (0.25) (0.24) (0.26) (0.25) (0.23) (0.28) (0.24) (0.34) 

Full Professor -0.15 -0.15 -0.26 -0.06 -0.24 -0.05 0.11 -0.04 0.34 

 (0.21) (0.21) (0.21) (0.23) (0.22) (0.20) (0.22) (0.21) (0.26) 

Academic Commitment          

Articles 0.01 -0.01 0.00 0.01 -0.00 0.00 -0.00 0.00 -0.01 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

FT-50 Articles  -0.02 -0.00 -0.00 -0.03 -0.01 -0.00 -0.02 -0.00 -0.03 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03) 

Reviewed for FT-50 -0.31†  -0.28 -0.26 -0.28 -0.37†  -0.30†  -0.18 -0.22 -0.15 

 (0.18) (0.18) (0.19) (0.19) (0.20) (0.18) (0.19) (0.18) (0.24) 

Editor at FT-50 -0.04 -0.11 -0.25 0.01 -0.10 -0.11 -0.25 -0.21 -0.30 

 (0.30) (0.30) (0.30) (0.30) (0.29) (0.28) (0.34) (0.27) (0.34) 
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Approach          

Quantitative 0.59†  0.56 0.54 0.50 0.55†  0.48†  0.78* 0.63†  0.87* 

 (0.30) (0.34) (0.34) (0.34) (0.32) (0.28) (0.31) (0.33) (0.37) 

Qualitative -0.10 0.05 -0.02 -0.16 -0.10 -0.22 0.07 -0.04 0.18 

 (0.20) (0.20) (0.21) (0.20) (0.21) (0.20) (0.23) (0.20) (0.29) 

Theoretical 0.27 0.16 0.20 0.30†  0.17 0.29†  0.20 0.17 -0.08 

 (0.17) (0.19) (0.18) (0.18) (0.18) (0.17) (0.19) (0.17) (0.23) 

Chi-Square 16.98 31.39 30.03 20.11 22.08 23.54 37.10 26.44 73.57 

p > Chi-Square 0.075 0.001 0.002 0.044 0.024 0.015 0.000 0.006 0.000 

Observations 142 139 136 138 133 139 134 136 118 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Coefficients derived from negative binominal regressions with robust standard errors in parentheses. 
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Model 5 in Table 5.4 highlights that a perceived Cost-Reward Imbalance significantly 

reduces scholars’ data sharing behavior, thus providing support for Hypothesis 2. Model 6 con-

tains Community Benefits as the explanatory variable. We find support for Hypothesis 3a, as 

the coefficient for Community Benefits is significantly positive. Model 7 incorporates Institu-

tional Pressure and finds support for Hypothesis 2b: Scholars envisioning Institutional Pres-

sure share more of their data. Model 8 includes the perceived benefits of Replications and finds 

that this significantly positively relates to data sharing, thus supporting Hypothesis 2c.  

The final Model 9 employs the full set of explanatory variables in one full model. While 

we still find support for Hypothesis 1a and 1b, the coefficient of the Cost-Reward Imbalance 

turns insignificant. Yet the coefficient of Reputational Costs is now significantly negative, thus 

providing support for Hypothesis 1c. Furthermore, the positive coefficient of Community Ben-

efits turns negative. This exactly contradicts Hypothesis 3a. Institutional Pressure (H3b) still 

positively relates to data sharing, whereas the Replications coefficient is not significant any-

more (H3c). Summing up, we find consistent support for Hypothesis 1a, 1b and 1c as well as 

Hypothesis 3b in the full models. In addition, we find evidence in the opposite direction of 

Hypothesis 3a when including all variables. We do not find consistent support for Hypotheses 

2 and 3c. 

5.3 Robustness tests 

We conduct a series of robustness tests. First, we employ a different, yet similar dependent 

variable measuring respondents’ willingness to share research data upon paper acceptance (re-

fer to Table 5.6 in the Appendix). Table 5.7 in the Appendix shows the marginal effects stem-

ming from ordered logistic regressions. The results from the models including each independent 

variable separately align with our original results. Yet, several significance levels change when 

we include all variables into the same regression in Model (18). For the sake of simplicity, 

Table 5.5 contains an overview including the hypotheses, the corresponding variables and 

whether we find support in the original models and/or in the robustness test models. 

Throughout both full models, we can only corroborate the significantly negative effect 

of Reputational Costs (H1c) and the positive effect of Institutional Pressure (H3b), while sup-

port for all other effects is mixed. Overall, Table 5 shows that more variables possess significant 

coefficients when including past data sharing behavior than when including data sharing inten-

tion. We address and explore these differences in the discussion.  
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Table 5.5: Overview of hypotheses, variables and support 

Hypothesis Variable 
Support in Table 4  

(Partial / Full Model) 

Support in Table 7  

(Partial / Full Model) 

Hypothesis 1a: The stronger researchers believe that 

possessing non-public datasets provide them with an ad-

vantage over other researchers, the lower the likelihood 

of data sharing. 

Proprietary Source Yes / Yes Yes / No 

Hypothesis 1b: The larger researchers perceive the di-

rect costs of data sharing, the lower the likelihood of 

data sharing. 

Direct Costs Yes / Yes Yes / No 

Hypothesis 1c: The larger researchers perceive the repu-

tational costs of data sharing related, the lower the like-

lihood of data sharing. 

Reputational Costs No / Yes Yes / Yes 

Hypothesis 2: The stronger researchers believe that the 

costs associated with open data outweigh the rewards, 

the lower their likelihood of data sharing. 

Cost-Reward Imbalance Yes / No Yes / No 

Hypothesis 3a: The more affirmative scientists are to the 

community-wide benefits of data sharing, the higher the 

likelihood of data sharing. 

Community Benefits Yes / No* Yes / No 

Hypothesis 3b: The more affirmative scientists are to in-

stitutional pressure to increase data sharing, the higher 

the likelihood of data sharing. 

Institutional Pressure Yes / Yes Yes / Yes 

Hypothesis 3c: The more affirmative scientists are to the 

proliferation of replication studies, the higher the likeli-

hood of data sharing. 

Replications Yes / No Yes / No 

Note: * indicates significant effect into the opposite direction of the hypothesis 
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Second, estimating all models with non-robust standard errors does not affect any sig-

nificance level. Third, running standard OLS regressions instead of negative binominal regres-

sions does not qualitatively affect the results. Sixth, not standardizing the variables and taking 

the mean instead of employing principal component analysis to generate the four composite 

variables do not change any directions and implications. Seventh, we exclude the control vari-

ables and estimated separate models. Results are again invariant. Last, we estimated all models 

using only the 113 observations for which we have full data (no N/A answers). This, again, 

does not alter the findings.  

5.6 Discussion 

The importance of open data for science and society is unquestionable. Yet achieving commu-

nal benefits is conditional on how individual researchers perceive the advantages and disad-

vantages of open data sharing. As it relates to the costs of data sharing, we find that those 

researchers, who believe that their datasets are trade secrets less often shared their data publicly. 

This corresponds to existing research on resource sharing (Das, & Teng, 2000; Silverman, 

1999) and implies that researchers, in fact, view data as a proprietary source. Our research 

therefore contributes to prior work with the empirical observation that it is important to over-

come the potential loss in future publication opportunities to encourage follow-up knowledge 

reuse through data disclosure. 

Along these lines, our results also attest to the important role of individual borne costs 

of data collection. In line with our hypotheses, we find that the larger the direct and reputational 

costs, the lower is the likelihood of data sharing. This extends prior research by not only em-

phasizing that data collection, curation, and preparation bind critical time and resources which 

hinder data sharing subsequently but also by showing that researchers pay attention to potential 

reputational costs associated with data sharing. We extend prior findings by showing that a fear 

of embarrassment and a loss of reputation from flawed code or data also hinders researchers 

from sharing their datasets publicly. This goes in line Barbour et al. (2017) and Lu et al. (2013), 

highlighting the strong negative impact of corrections and retractions on researchers’ careers. 

When it comes to potential ramifications that could ensure more future data sharing, we 

find evidence in favour of our hypotheses regarding the beneficial effects of institutional pres-

sure. Institutional pressure with respect to open data might therefore be necessary to facilitate 

data sharing (Stodden et al., 2018). Our data reveals that innovation scholars that positively 
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attest to journal policies for data sharing also made their data publicly accessible and also intend 

to engage in open data sharing more often. This supports the results from Savage and Vickers 

(2009) that highlight that scholars across disciplines are in favour of stricter journal guidelines. 

Essentially, this would increase the pressure to release data for everyone and would not single 

out researchers that need to weigh the costs and benefits individually.  

Last, we find mixed evidence regarding the role of replication studies. Although many 

of our respondents are in favour of exact and conceptual replications, we find mixed evidence 

that an increased emphasis on replication studies leads to an increased willingness to share data. 

Given the fragility of our estimates, that could stem from the somewhat small sample studied, 

we would urge researchers to explore this notion further. As it results from our study, the find-

ings regarding replications are fairly ironic: If researchers want others to replicate their research, 

they also need to share their data so that others can conduct the replication. 

We conclude that the existing benefits and incentives do not provide sufficient motiva-

tion to encourage researchers to share their own data as only few innovation scholars, who 

might be even more prone to openness compared to other researchers, made their datasets pub-

licly available. That is, while most of the innovation scholars responding to our survey strongly 

attest to the communal benefits of open data, they do not share their data subsequently. We 

conclude that this low prevalence (that is similar to other disciplines nonetheless; e.g. Fecher et 

al., 2017; Tenopir et al., 2015) highlights that individual incentives for academics in innovation 

management are not sufficiently developed to induce researchers to share data, despite good 

intentions. 

5.6.1 Implications 

Our analysis confirmed a paradoxical tension perceived by scholars in the (innovation) man-

agement sciences: While the communal benefits from open data are seen as manifold, the over-

all costs and risks and the limited prevailing individual benefits of data sharing demotivate 

individual researchers to open their data. Open data, hence, is a perfect illustration of the chal-

lenges of governance in the sciences, as outlined by Merton (1942), who reflected that science 

occurs in accordance with individualistic values and views, but is also always embedded into 

an organizational and institutional context. Evidently, the root causes for not sharing data lie in 

the academic incentive system. Considering data from a resource-based perspective provides a 
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comprehensive explanation for the reluctance to share data upon publication. Researchers per-

ceive of research data as a private strategic resource, which exclusive possession provides com-

petitive advantage in the academic system.  

Or, in other words, sharing this resource openly is perceived as inducing a comparative 

disadvantage for those who share data vis-a-vis those who exploit the data collection of others 

(Wilbanks, & Friend, 2016).  Researchers might “free ride” in using an existing data set for 

answering further research questions, and by submitting and/or publishing similar papers faster 

than the collectors (Murray, 2016). Hence, data sharing is perceived by the originators of the 

data as a counterproductive strategy to enable other researchers to "win the publication race". 

Further, the effort associated with data preparation, curation, and publication is perceived as an 

additional opportunity cost, reducing the time and capacity available for publishing another 

paper.  

This situation is unlikely to be overcome by an individual researcher alone, despite good 

intentions and knowledge of the public benefits for the scientific system of data sharing. Our 

research has revealed that even scholars in the innovation management discipline, whose core 

theories and academic discourses promote an open approach to science and innovation (Bogers 

et al., 2017; Randhawa et al., 2016; von Hippel, 2017; West et al., 2014), do not share data 

openly. Alas, researchers are, after all, amenable to weighing of costs and incentives.  

As Bogers (2011b:110) concludes, “the use of a knowledge exchange strategy in general 

and licensing in particular is the way in which firms shape the dimensions in the tension field 

to balance the sharing and protection of knowledge.” We therefore envision two different ap-

proaches to overcome this open innovation paradox (Bogers, 2011b): (i) on the institutional 

level, changing the incentive system for researchers to stimulate data sharing; and (ii) on the 

individual level, educating researchers in practices of "strategic openness" (Alexy et al., 2018), 

which allows them to freely reveal their data and still profit from this behavior individually, 

even under unchanged incentive regimes on the institutional level. We will elaborate on both 

directions in more detail in the following.  

On the institutional level, we need to amend the academic incentive system. To increase 

scientists’ willingness to share their data, we echo Wilbanks and Friend (2016) who call for an 

academic performance measure system that does not only reward the publication of an article, 

but also the publication of its data. As we all know, researchers are receptive to publication 
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incentives, with all shortcomings. As such, they should react favourably to open data incentives. 

Realizing those requires several concrete measures:  

First, datasets need to be “publishable and citable” (Reichman et al., 2011: 704) so that 

we can include them in scholars’ publication and citation counts. This demands a clear standard 

and syntax for the reference of a data set, which also needs to be searchable in the same litera-

ture databases used to find research results (papers), e.g., GoogleScholar or ScienceDirect. Pub-

lishers (such as Wiley or Elsevier) and open source repositories such as DataVerse already 

provide researchers with the opportunity to publish a dataset with a unique digital object iden-

tifier (DOI). A general approach in this area is the FAIR Principles, a multinational initiative to 

provide guidelines for the publication of research datasets or code in a manner that makes them 

"Findable, Accessible, Interoperable, and Reusable (FAIR)" (Wilkinson et al., 2016). On the 

national level, currently large-scale schemes are taking place to build (national) research data 

infrastructures. In Germany, for example, the aim of its National Research Data Infrastructure 

(NFDI) consortium is to systematically manage scientific and research data, provide long-term 

data storage, backup and accessibility, and network the data both nationally and internationally 

(Grunzke et al., 2017). Similarly, in Australia, the Research Data Infrastructure initiative by the 

Australian Department of Health funds the creation of data infrastructure with a focus on data 

registries, biobanks, and data linkage platforms in the area of medical research. On a multina-

tional scale, EUDAT, the European Data e-Infrastructure Initiative, is working to construct and 

realize a global research data infrastructure. In short, these infrastructures are important sup-

porting institutions so that research data made open can be stored and accessed by other scien-

tists (Mons et al., 2017). In the management sciences, these initiatives, however, are largely 

unknown or, at least, not high on the awareness level, as compared to the medical or natural 

sciences. Professional education and awareness building for these initiatives, for example by 

professional organizations like PDMA or ISPIM for the field of innovation management, or 

AACSB and AOM for management research in general, would be an important element to fos-

ter open data sharing by management scholars. 

Second, obviously sufficient data needs to be supplied into these infrastructures. For 

this, data sharing by a scientist has to become visible. Impact indicators in databases like Sco-

pus, GoogleScholar, or SSCI should not only measure how often a publication has been cited, 

but also could indicate how often data provided by a certain author has been reused and cited. 
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This would allow the users of academic impact measures (like recruitment or tenure commit-

tees, academic associations, or grant-giving institutions) to recognize not only how often a re-

searcher has published in prestigious journals, but also whether her or his results have been 

confirmed and replicated by others or not. In addition to incentivizing researchers (who are, as 

our data indicates, by and large open to replication studies) to share data more openly when 

they themselves receive credit for replicated studies, the central outcome would be the overall 

benefit from replication studies for the scientific process. For the individual researcher, a system 

that honours high citation counts of revealed data sets would foster good "citizen behavior" of 

scientists, making their service of data sharing to the academic community measurable. Plat-

forms like Publons follow a similar approach: They recognize and incentivize peer review en-

gagements of scholars and make them visible for academic performance measures (Ortega, 

2017; da Silva, & Al-Khatib, 2019).  

As a potential ramification, grace periods could give the data collectors a short ad-

vantage over potential research parasites in case they want to answer multiple research ques-

tions in multiple papers with the same dataset (Kirkman, & Chen, 2011). Indeed, the innovation 

scholars surveyed in our study aspire journal policies enforcing data sharing only twelve months 

after publication.  

Third, there are also short-term measures that can be implemented immediately by edi-

tors of management journals. Kidwell et al. (2016) show that low-cost nudging can already 

increase the level of data that is shared. The journal Psychological Science, for example, intro-

duced badges that visually signalled that data and material were available for interested readers 

of said articles. Data sharing increased from less than three percent to almost 40 percent within 

a two-year timespan (Kidwell et al., 2016). In biomedical research, the existence of data sharing 

policies correlates positively with the impact factor of the journal (Vasilevsky et al, 2017). This 

mirrors prior findings in the information science community (Sturges et al., 2015). However, 

we are currently not aware of any similar practices in a management journal. 

Fourth, university and research institutions should support scientists in the data curation 

and publication process. As a case in point, some university library scientists believe that cura-

tion, preparation, and publication of data should be taken over by university librarians who 

could focus on this task (Heidorn, 2011; Tenopir et al., 2015; Koltay, 2019). Especially as the 

actual job of collecting books, etc. gets reduced substantially. This could help researchers to 
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publish their datasets without requiring them to make large individual efforts and might also 

counter potential job losses on the administrative front. 

All these measures, however, demand that other academics make use of the published 

data sets. After all, Peters et al. (2016) show that about 85% of the citable available datasets 

remain uncited. While one can argue that this ratio is not worse than the citation records of 

many journal articles (Judge, et al. 2007), we consider building more demand for open data as 

a core measure. This is a fruitful area for future research, investigating the adoption and usage 

drivers (and barriers) of freely revealed research data. Corresponding open data policies can 

target the creation of incentives for authors conducting replication studies, i.e. by dedicating a 

section in a journal to such studies or by creating publication awards in this category. Also, 

frequently asking for replication and meta studies in editor's comments may foster more con-

sumption of open data – stimulating in turn its supply. 

In addition, there are also several measures related to the individual level that could help 

to foster data sharing, addressing a proactive strategic behavior of scientists beyond their reac-

tion to institutional incentives. Here, transferring the concept of strategic openness to the con-

text of open data could provide a fresh perspective. Alexy et al. (2018) proposed strategic open-

ness in the context of open innovation, suggesting that organizations should voluntarily forfeit 

the control over strategically relevant resources. While such behaviors intuitively would hurt 

the organization, Alexy et al. (2018) show that companies can still maximize profitability by 

such behaviors, if, for example, they open parts of their resource base or use openness to 

find/create complementary services. The concept of strategic openness can be transferred to 

researchers considering sharing their data.  

According to this perspective, research data is just part of a larger bundle of (research) 

resources, like data acquisition instruments, code for their analysis, data storage and manage-

ment, or reporting tools helping to navigate the data. Hence, researchers openly sharing their 

data (i.e. giving away their strategic resource according to the RBV) could actually increase 

the value of the entire bundle of research resources connected with this data, if they only offer 

controlled access to the other resources. Having access to data as the open resource part of a 

bundle of research infrastructure hence can still provide control (without exclusive ownership) 

to the researcher (Alexy et al., 2018). Yet, to be able to fully understand how researchers ar-

rived at prior conclusions might involve access to data coding and analysis files as well 

(Campbell, & Mau, 2019; Hopp et al., 2018). 
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Researchers further can derive "competitive advantage" from open data if the data has 

idiosyncratic features, that is, if the original researcher has superior information about and/or 

superior complementarities with the open resource a priori: The open data source may be avail-

able to everyone, but because the original researcher created it prior to release, he or she should 

hold superior information about what can be done with the data and superior complementarities 

on how to leverage it with other proprietary resources. Consequently, the original researcher 

can publish much faster than anyone trying to “free-ride” on the data collection.  

Further, users of open data may be willing to "pay" for complementary services (pay-

ments in terms of references, acknowledgements, co-authorships, but also perhaps monetary 

payments for service provides) such as data integration or analysis in a specific context. We 

currently observe such a shift of competition in digitized industries, where commoditization of 

once‐valuable (hardware) technology rewards organizations that have strong integration and 

services capabilities. Some scholars, for example, build a successful career, for example, by 

offering seminars and consulting on statistical methods they developed and explored first with 

own data. In light of the increasing economic relevancy of algorithms, the demand for open 

data access for the evaluation of the impact of digital platforms such as Google, Uber or Lyft is 

increasing as well (Barber, 2019; Scheiber, 2020). We might witness similar behavior among 

academics. 

Concluding, our previous arguments indicate that researchers can be both "pulled" into 

sharing their data openly by institutional actors (like journals or academic societies) setting new 

incentives motivating this behavior and actively "push" data sharing by developing strategic 

openness as their own strategy to strive in the academic system. We see many opportunities for 

further research in studying these approaches in more details, either in experimental studies or 

by observing behavior of researchers in the field.  

5.6.2 Limitations and future research 

No study is perfect, and ours is no exception. We contacted 2,716 innovation researchers with 

valid contact details. This number is only a bit smaller than the 3,468 active members of the 

Technology and Innovation Management (TIM) division of the Academy of Management listed 

on its website as of September 2019. Considering that our final sample consists of 173 respond-

ents, the approximate response rate is 6.40%. This compares to other recently conducted online 

surveys among scientists investigating research practices and academic misconduct (Hopp, & 
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Hoover, 2017; Liao et al., 2018). Yet, respondents selected themselves voluntarily into the sam-

ple by clicking on the link and conducting the survey. With regard to non-responses, out of 241 

total responses, 68 were deemed insufficient for our sample. About 80% of incomplete re-

sponses had a progress of 3%, 24%, and 48%, respectively. 3% progress corresponds to the 

very first question, 24% progress corresponds to a drop-out at the question “How many scien-

tific papers did you (co-)publish in peer-reviewed scientific journals (2013-2018)?”, whereas 

48% progress corresponds to a drop-out at “Views on journal data policies”. As those innova-

tion scholars highly interested in open science might more often be intrinsically motivated to 

take their time and efforts to complete the questionnaire, our results might suffer from sample 

bias. However, those innovation scholars highly interested in open science are also those who 

might more often engage in open practices like data sharing. Hence, our results at least provide 

an upper boundary for the level of data sharing among all innovation scholars.  

This article only provides insights into the topic of open data eliciting opinions of inno-

vation scholars. While this certainly limits the generalizability of the findings and makes them 

context-specific, it is important to bear in mind that this community explicitly studies the merits 

of openness. It therefore stands to reason that other fields of management research might em-

phasize even more pronounced costs of data sharing and place a lower emphasis on the benefits 

that it might provide. As such, a follow-up study could extend the research question beyond 

innovation scholars. Hereby, the focus could lie on increasing the sample by investigating dif-

ferences in data sharing between various management fields or even between various social 

science disciplines. 

Our research only elicited personal viewpoints, and individuals may certainly state that 

they share research data when in fact they never do so in real-life. A substantial number of 

innovation scholars indicates that they share their research data upon request. However, as 

noted in the literature review, existing empirical research points out that many scientists do not 

provide data upon request even if they included such data sharing statements in their articles 

(Wicherts et al., 2006; Krawczyk, & Reuben, 2012; Reidpath, & Allotey, 2001; Savage, & 

Vickers, 2009). Evidently, this may introduce a common-method variance bias, an omitted var-

iable problem that potential invites the risk of endogeneity. There could be other non-measured 

variables that prevent those that indicate their willingness to share their datasets from actually 

sharing them; or they indicate willingness to comply with journal requirements without actually 

having the intention to share.  This in turn, may open up room for future analyses that explicitly 
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take stock of potential omitted variables due to common-method variance. Prior research has 

pointed out that ubiquitous tests are insufficient here (Richardson et al., 2009; Antonakis et al., 

2010). Future studies might therefore rely on instrumental variable techniques to recover true 

parameter estimates. 

This is important, as in our survey, we did not ask respondents for evidence on their 

actual sharing behavior or qualitative reasoning of their answers to keep the survey as anony-

mous as possible. To overcome this problem, we included respondents’ willingness to share 

their data in the robustness section. We find that the implications differ between the two models 

as several coefficients, especially those capturing the costs of data sharing, turn insignificant. 

Yet researchers who have not shared data publicly so far might under- or overestimate the costs 

of data sharing due to their lack of experience. At times, there might even be institutional re-

strictions (data protection or confidentiality agreements) that prevent data sharing, despite good 

intentions.  

Furthermore, they might also overstate their willingness to share their data due to so-

cially desirable responding. This represents a common problem of research on questionable 

research practices and academic misconduct (Spaulding, 2009). A follow-up study could com-

pare the survey results to the actual amount of shared data available on journal websites and 

data repositories. This would allow a more comprehensive and detailed understanding and 

would allow the assessment of sample and response biases among innovation scholars. In ad-

dition, it would also be interesting to run a similar survey using techniques that would increase 

respondents’ perceived anonymity and in turn decrease socially desirable responding.  

Last, our study revealed that qualitative researchers struggle more with making their 

data public (Pratt et al., 2020). Especially in light of the growing interest in replicating qualita-

tive research, this seems to be a promising area for further research (e.g. King, 1995; Aguinis, 

& Solarino, 2019). It would be very interesting to see whether new technologies and processes 

exist that could help researchers to share qualitative data – and assist others in using this data 

(Antes et al., 2018). 

5.7 Conclusion 

Our research was sparked by the observations that, despite the proclaimed benefits of openness, 

top ranked innovation publications do not openly share the research data behind their articles. 

Consequently, we analysed this conundrum and elicited innovation scholars’ attitudes towards 
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open data and assessed their data sharing behaviors. The responses indicate that most scholars 

would be open to share their data upon request. Yet, data sharing is generally not very prevalent. 

Despite the generally acclaimed societal benefits, researchers refrain from putting their data 

into the public space. We identify antecedents and more importantly, inhibitors to data sharing 

behavior that could potentially provide policy implications. First, researcher behavior is sus-

ceptible to potential costs and threats that open data might provide. Essentially, when consid-

ering the “social dilemma” of open data (Linek et al., 2017: 1), the identified personal incentives 

to open data sharing might not outweigh the burden open data places on individual researchers. 

In summary, if open data sharing is to catch up, the burden for data preparation cannot be put 

on the individual researcher. Rather, institutional mechanisms on the level of the academic 

community need to be put into place: That could either be incentives that give more credit to 

data sharing, or journal policies that make data sharing a mandatory requirement for all publi-

cation.  Yet, even with increased incentives the effort for data preparation rests upon the indi-

vidual researcher. As an institutional remedy one might consider more administrative help for 

individual researchers. 
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5.8 Appendix 

Table 5.6: Data sharing upon acceptance 

  Strongly 

Disagree 

Disagree Neutral Agree Strongly 

Agree 

N 

Upon acceptance of a research article, I voluntarily make my original research material and data 

publicly available. 

19 51 36 32 6 144 

13.19% 35.42% 25.00% 22.22% 4.17%  

 

Table 5.7: Regression antecedents to the willingness of data sharing upon acceptance of a research article (Table 5.6) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7  Model 8  Model 9 

 Acceptance 

data sharing 

Acceptance 

data sharing 

Acceptance 

data sharing 

Acceptance 

data sharing 

Acceptance 

data sharing 

Acceptance 

data sharing 

Acceptance 

data sharing 

Acceptance 

data sharing 

Acceptance 

data sharing 

Proprietary Source  -1.03***       -0.44 

  (0.23)       (0.30) 

Direct Costs   -0.68**      -0.15 

   (0.23)      (0.32) 

Reputational Costs    -0.45*     -0.61* 

    (0.21)     (0.25) 

Cost-Reward Imbalance     -0.51**    -0.04 

     (0.20)    (0.25) 

Community Benefits      0.77**   -0.38 

      (0.26)   (0.39) 

Institutional Pressure       1.50***  1.31*** 

       (0.27)  (0.38) 

Replications        0.94*** 0.39 

        (0.22) (0.29) 

Sociodemographics          

Female -0.34 -0.14 -0.41 -0.21 -0.58 -0.15 0.25 0.06 0.45 

 (0.36) (0.37) (0.38) (0.39) (0.37) (0.34) (0.36) (0.37) (0.44) 

Europe 0.11 0.16 0.18 -0.02 0.23 0.16 -0.02 -0.05 -0.58 

 (0.46) (0.45) (0.48) (0.49) (0.51) (0.45) (0.48) (0.47) (0.61) 

Full Professor -0.75†  -0.50 -0.74†  -0.63 -0.96* -0.66 0.07 -0.62 0.15 

 (0.40) (0.40) (0.43) (0.46) (0.46) (0.45) (0.49) (0.44) (0.66) 
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Academic Commitment          

Articles 0.04 0.00 0.04 0.04 0.03 0.03 0.01 0.03 -0.01 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) 

FT-50 Articles -0.13* -0.10†  -0.10†  -0.15** -0.11* -0.08 -0.07 -0.06 -0.09†  

 (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.05) (0.07) (0.05) 

Reviewed for FT-50 -0.74†  -0.68 -0.73†  -0.65 -0.67 -0.71 -0.72 -0.51 -0.62 

 (0.43) (0.42) (0.43) (0.42) (0.43) (0.45) (0.45) (0.43) (0.50) 

Editor at FT-50 0.64 0.34 0.30 0.78 0.63 0.47 -0.59 0.02 -0.54 

 (0.73) (0.71) (0.72) (0.78) (0.72) (0.76) (0.69) (0.80) (0.74) 

Approach          

Quantitative 1.27* 1.94*** 1.25* 1.10†  1.14* 1.21* 1.65** 0.87 1.48* 

 (0.54) (0.59) (0.55) (0.58) (0.56) (0.57) (0.61) (0.53) (0.65) 

Qualitative -0.22 0.35 -0.17 -0.39 -0.19 -0.32 0.52 0.14 0.61 

 (0.40) (0.48) (0.43) (0.41) (0.41) (0.38) (0.44) (0.42) (0.53) 

Theoretical 0.28 -0.14 0.08 0.37 0.19 0.31 0.21 0.29 -0.18 

 (0.36) (0.43) (0.40) (0.39) (0.37) (0.38) (0.43) (0.38) (0.52) 

Chi-Square 15.75 49.60 24.52 21.00 24.02 29.97 55.86 41.58 67.97 

P > Chi-Square 0.107 0.000 0.011 0.033 0.013 0.002 0.000 0.000 0.000 

Observations 136 133 131 132 128 133 130 132 115 
† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001 

Note: Marginal effects derived from ordered logistic regressions with robust standard errors in parentheses. 
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6 Conclusion 

The disruptive advancements in information and communication technologies heavily affected 

the social sciences. Thanks to the implementation of emails, conference calls and project man-

agement platforms, researchers from many different places can easily collaborate with each 

other (van Raan, 2001). Thanks to the introduction of online journals and publication databases, 

scholars can quickly search, identify and cite relevant literature (Emrouznejad et al., 2008). 

Thanks to the development of statistics software and machine learning scientists can process 

and analyze enormous amounts of data nearly instantly (Müller, & Guido, 2016). Overall, the 

improved infrastructure has substantially sped up research processes and has raised social sci-

entific productivity significantly. As a result, social scientists publish today more articles in 

shorter time than ever before (Ossenblok et al., 2014).  

In addition, journal databases eased the assessments of journals’ impact factors and 

scholars’ total number of publications and citations (Callaham et al., 2002). This substiantially 

changed researchers’ achievements and merits assessments. Some authors stated that search 

and tenure commissions rely solely on impact factors, publications and citations in their deci-

sion making processes (e.g. McGrail et al., 2006; Park, & Gordon, 1996; Sestak et al., 2018). 

While such stark statements are at least debatable, there exists little doubt that “publish or per-

ish” has become the motto of most disciplines (Kendall, & Campanario, 2016; Miller et al., 

2011; Rawat, & Meena, 2014). Of course, publishing at all costs puts quantitiy over quality. 

The infamous misconduct cases of psychologist Dideriek Staple fabricating experimental data 

as well as business researcher Ulrich Lichtenthaler altering statistical results represented prime 

examples of how these incentives ended up inducing unethical behavior. However, those two 

cases revealed only the tip of the iceberg. In fact, journal editors and reviewers reported that 

they exhibit academic misconduct quite frequently (Hopp, & Hoover, 2017; Hopp, & Hoover, 

2019). This has substantially reduced trust in social scientific results, creating a credibility cri-

sis. 

To reinsitute public trust in the social sciences, this thesis addressed the most pressing 

forms of unethical behaviors. Based on the existing literature, we discussed the dangers arising 

from HARKing and plagiarism and pointed towards existing and already implemented solu-

tions. We moved on by analyzing authorship distributions and malpractices and showed that 

authorship problems, especially honorary authorship, occur frequently in the social sciences. 
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Consequently, we called for introducing existing policies from life and nature science journals 

enhancing merit-based authorship assignments in social science journals. Moving beyond 

scholars’ credibility, we addressed the reliability of social scientific research. We highlighted 

how replication studies can help in assuring the credibility of scientific work. Consequently, we 

gave hands-on guidance on how to conduct thorough, rigor and extensive replications by suc-

cessfully replicating and extending Kuhn and Weinberger (2005), an impactful leadership study 

that showed that team captainship and club presidency in high school relate to higher wages in 

later working life. Last, we investigated data availability, the pre-requiste for replication. By 

applying management theory, we showed that only few innovation management scholars make 

their data publicly available and that this might well stem from a mismatch between societal 

benefits and individuals’ disadvantages that come along with open data. 

So far, this thesis discussed the results and conclusions of each essay independently. 

While the introduction laid out the overall topic and showed how the essays relate to each other, 

we also elaborate on the implications arising from this thesis as a whole. The next section there-

fore covers the theoretical implications. This is followed by the practical recommendations. 

Last, we discuss areas and opportunities for future research. 

6.1 Theoretical implications 

This thesis adds to the existing literature stream on ethical behavior in the social sciences by 

returning several new insights. Using data from the social sciences, we reveal novel mecha-

nisms influencing multiple forms of academic (mal)practices. In the following, we show that 

our findings do not only advance research on academic misconduct, but also add to the under-

standing of existing economic and management theories and how they apply to scholars’ be-

haviors. 

 First, our results indicate that scholarly behavior often mirrors employee behavior. As a 

case in point, (Holmstrom, & Milgrom, 1991) highlighted that if employees’ wages depend 

upon their piece rates, the quantitiy of their output increases whereas the quality decreases. 

Social scientists find themselves in a very similar scenario: The strong incentive focus on pub-

lications induces scholars to write, submit and resubmit papers as fast as possible (Kendall, & 

Campanario, 2016; Miller et al., 2011; Rawat, & Meena, 2014). In short, researchers only re-

ceive academic rewards for their output, not their efforts. This compares to output-based piece 

rate salaries. Lazear (1995) discussed that piece rate regimes incentivize employees to choose 
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quantity becomes more important than quality. To overcome this problem, personnel econo-

mists pointed out that the loss of quality can be prohibited if there exist (often randomized) 

quality checks of the produced goods (Guiteras, & Jack, 2018). If such checks detect inferior 

quality, the employee(s) in charge for producing that product usually get(s) fine(s) dededucted 

from their wages (Heywood et al., 2013). In scientific research, we employ a very similar 

method. Editors and reviewers act as gatekeepers to ensure quality standards (Hojat et al., 

2003). Obviously, if they perceive submissions to be of inferior quality, chances are high that 

they will reject this submission. Journal rejections represent fines for scholars because they 

require scientists to spend more time and efforts on looking for another suitable journal and 

adapting the manuscript for the new outlet. In fact, most social science journals already employ 

plagiarism check software and many editors and reviewers in the field already enforce high 

levels of rigorness especially in the data analysis (Shashok, & Handjani, 2010). Yet this thesis 

showed that numerous published research articles still lack authorship and data transparency. 

To improve this situation, we suggest to look at existing personnel economics solutions to qual-

ity loss in pay-for-performance systems and introducing similar techniques in academia. 

 Second, the lack of authorship transparency and more specifically the high prevalence 

of honorary authorship imply that freeriding is a contested topic in the social sciences. In gen-

eral, Kandel and Lazear (1992) discussed that partnerships frequently induces freeriding. 

Hereby, partnerships refers to situations in which multiple individuals work together on a pro-

ject, a perfect description of multiple researchers collaboratively working on a research article. 

After the finalization of the project, the whole team gets a reward (e.g. publications and cita-

tions) and distributes the reward among its members (e.g. first author, last author, …) (Kandel, 

& Lazear, 1992). If the team decides to split the reward equally among its members, it incen-

tivizes each member to reduce his or her individual input (Kandel, & Lazera, 1992). This re-

duction in input also reduces the overall output and thus also the reward. Yet the reward reduc-

tion is split equally among all team members. Consequently, whereas the member reducing his 

or her input suffers only from the shared reduction in reward, he or she benfits completly from 

the withheld input (Backes-Gellner et al., 2004). Such freeriding is beneficial for team members 

as long as there exists at least one other team member whose input level exceeds zero (Backes-

Gellner et al., 2004). We found that most social scientific publications possess multiple authors. 

It is therefore not surprising that this thesis showed that social scientists quite often exhibit 

freeriding, for example in the form of honorary authorship. Existing management research high-

lighted that peer-pressure as well as unequal reward distributions can reduce freeriding (Kandel, 
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& Lazear, 1992). This might also explain why academic freeriding occurs to a much lower 

degree than freeriding in for-profit organizations (Scalzini, 2015). A reason for this is the fact 

that social scientists tend to collaborate frequently with close colleagues and good friends 

(Colussi, 2018). Towry (2003) pointed out that closer social ties among team members substan-

tially increase peer pressure and in turn reduce freeriding. Moreover, Wong et al. (2017) dis-

cussed that higher chances of future collaborations also reduce the likeliness of freeriding. This 

also applies to social scientists because Cummings and Kiesler (2008) pointed out that the more 

collaborations individuals had in past projects, the more likely they were to collaborate also in 

future projects. 

 Third, freeriding does not only apply to teamwork on collaborative research articles. 

According to our results, freeriding represents also one of the main reasons why most scholars 

do not share their data publicly. In fact, open data constitutes a prime example of a prisoners’ 

dilemma. If all researchers shared their data, society and all scholars would be better off because 

this would enable faster, more accurate, more transparent and more reliable results (Vicente-

Saez, & Martinez-Fuentes, 2018). Yet if all scholars except one shared their data, this scholar 

would still profit from the availability of an unimageinable high number of datasets but would 

still possess some proprietary data that he or she could exclusively use for new publications. 

Consequently, the optimal individual solution in which all scholars except the individual 

him/herself share their data outperforms the optimal societal solution of everyone sharing their 

data. This situation corresponds to a prisoners’ dilemma (Colman, 1995). While there exists no 

game theoretical solution to the prisoners’ dilemma, previous research has identified several 

practical solutions (e.g. omerta, cartel agreements, break-up fees) (Brembs, 1996). Indeed, this 

thesis highlighted that changing journal policies can alter the game theoretical settings of data 

sharing and thus can help us to overcome the open data prisoners’ dilemma. In fact, we found 

that several management scholars would like to see more data sharing and stricter journal poli-

cies.  

6.2 Practical Implications 

This thesis contains manifold practical implications for various stakeholders. We start by ad-

dressing scholars per se. Then we discuss the effects on editors, reviewers, and journal publish-

ers. Further we elaborate on the potentials we see for research societies. Afterwards, we address 

universities and research instiutions. Last, we highlight implications for everyone’s daily life. 
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 First, while this thesis indicated that academic malpractices are quite common in the 

social sciences, we neither found evidence that all scholarly behavior is unethical, nor did we 

suggest that all social scientists try to trick the system by cheating or taking shortcuts. In fact, 

addressing authorship problems, we showed that the majority of the investigated papers as-

signed authorship and contributorship correctly. Furthermore, our replication study successfully 

returned the same results and implications as the original study. Even for data sharing we found 

evidence that some scholars made all their data publicly available. Therefore, we need to praise 

those scholars upholding the high standards of ethical and responsible behavior in applied em-

pirical research. They act as role models for their colleagues and students. In return, they posi-

tively enhance current and future academic conduct by showing that academic success and eth-

ical behavior can go hand in hand. In addition, we reach especially out to junior faculty mem-

bers. They live under the constant pressure of having to publish to increase their job application 

and tenure chances. Taking shortcuts or even behaving irresponsibly might increase those 

chances in the short term. Yet in the long term there always exists the possibility that other 

scholars could detect these irregularities. Such a detection would then compromise scholars’ 

reputations and could lead, in the worst case, to job losses and the revoking of doctoral and/or 

habilitational titles. 

 Second, we address editors, reviewers and journal publishers. Those are the main gate-

keepers deciding which research papers get published. Therefore, we call upon journal publish-

ers to provide editors and reviewers with trainings on what constitutes (un)ethical behavior and 

on how to detect academic fraud, questionable research practices and authorship misconduct. 

Overall, social science journals should introduce increased transparency requirements for sub-

missions. For example, journal guidelines should enforce at least transparency statements for 

author contributions and data disclosure. Hereby, authors should be forced to disclose their task 

distribution and whether the dataset(s) underlying the research article is publicly available and 

if not state reasons why not. Moreover, we urge editors to request the original data at least for 

the review process. This would enable reviewers to detect fabrication or falsification attempts. 

Last, we suggest that journals should introduce transparency badges for papers with high levels 

of rigor and transparency. 

 Third, research societies can also take actions to overcome the credibility crisis in the 

social sciences. Large societies like the American Sociological Association, the American Psy-
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chological Association and the Academy of Management could reduce the occurences of ques-

tionable research practices by clearly defining the borders of responsible and ethical behavior 

in research. The current code of ethics of these societies possess too many vague and ambigous 

paragraphs (Academiy of Management, 2018; American Psychological Association, 1983; 

American Sociological Association, 2018). This thesis highlighted that we urgently need new 

guidelines in specifically two areas: Authorship and data sharing. In both cases the largest social 

scientific research societies should work together to come up with uniform definitions and re-

quirements applicable to all social scientific research fields. Standardized authorship criteria 

and data sharing protocols would substantially increase transparency in social scientific re-

search. Furthermore, the societies should also generate uniform templates for authorship and 

data disclosure statements that journals could require upon submission. Last, large societies 

might not only set-up pre-registration platforms like the AEA Registry (2020) but also reposi-

tories for authorship disclosure statements and datasets. This would ease scholars’ efforts to 

disclose this information even if the respective journal does not provide such opportunities. 

 Fourth, this thesis also contains important implications for universities and research in-

stitions, the main employers for social scientists. To receive jobs at such organizations, re-

searchers must successfully master search procedures. Nowadays, search procedures heavily 

focus on publication and citation counts (McGrail et al., 2006; Park, & Gordon, 1996). The 

same also applies to tenure procedures (Sestak et al., 2018). As tenured positions are among the 

top goals of many social scientists, it is not surprising that scholars often aim at maximizing 

their publications, sometimes by choosing quantiy over quality (Corley, 2005). Consequently, 

to ensure that researchers behave ethically and responsibly, universities and research institu-

tions need to adapt their hiring and tenure decision criteria. As a case in point, instead of pri-

marly looking at publications and citations, universities and research institutions could foster 

scientific credibility by including criteria capturing research rigorness and transparency in the 

evaluation processes. More specifically, search and tenure commissions could assess higher 

importance to publications that include technical appendices explaining all analyses in detail, 

that clearly indicate each authors’ contribution and that make their data publicly available. This 

would motivate social scientists to overcome academic malpractices and focus on transparent 

analyses and reporting. In addition, universities and research institutions should introduce om-

budsmen and whistleblowing platforms that would allow their employees to report suspicious 

behaviors, results and/or publications anonymously. These installations would enable earlier 
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detections of fraudulent, unethical or irresponsible behavior. Universities and research institu-

tions themselves would profit from ombudsmen and whistleblowing platforms because the 

early identification of scientific wrong doings empowers them to react quickly, probably even 

before the submission or publication of the work in question. Consequently, the organizations 

could handle misconduct cases internally without facing retractions and/or unwanted news cov-

erage. This way, universities and research institutions could counter academic malpractices 

without having to fear reputation losses. 

 Last, this thesis addresses the general public. The emergence of terms like fake news 

and alternative facts symptomatically highlights the growing concerns on which information 

we can rely on. Nowadays, people can access more information than ever before via social 

media, internet media coverage, TV news, newspapers, etc. (Peters, 2018). However, the rapid 

growth in available information has not eased the identification of what is correct and what is 

wrong but instead has made it even more difficult (De Keersmaecker, & Roets, 2017). To over-

come this issue, Rose-Wiles (2018) showed that students perceived peer-reviewed journals to 

provide reliable facts and results. Yet this thesis showed that we cannot even trust all infor-

mation published in scientific journals. We therefore urge the public to not simply rely on sto-

ries and reports based on academic publications but instead to read the original publications and 

make up their own mind of the reliability and transparency of the information provided. Espe-

cially in economics and management, practitioners and policy makers should not blindly follow 

scholars’ recommendations but instead critically question and scrutinize them first. This is the 

only way we can assure that we make profound decisions based on reliable information. 

6.3 Implications for Future Research 

Extensive research has covered the credibility crisis in the social sciences. Yet this thesis re-

vealed several areas that require further investigations and provides opportunities for future 

research. In the following we elaborate on these areas. 

 First, our results show that we still have a long way to go to overcome the credibility 

crisis in the social science. Yet the assessment of academic malpractices in this thesis stems 

largely from self-reporting survey data and might therefore suffer from social desirabel re-

sponding. Consequently, this thesis pictures only a best-case scenario of how prevalent author-

ship misconduct and data sharing is. To reveal the actual current state of (un)ethical and (ir)re-
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sponsible behavior in applied empirical research, future research should overcome social desir-

ability in responding. This can be achieved in two ways: On the one hand, instead of directly 

asking respondents to indicate their amount of shared data, their contributions to a research 

article, etc. one could employ item-count and/or item-sum techniques to identify the actual oc-

curences of certain academic malpractices. Hereby, respondents are randomly split into two 

groups and receive a set of question containing also a sensitive question. One group answers 

each question individually including the sensitive question whereas the other group returns a 

single answer for all questions together. The difference between the total count of non-sensitive 

questions in the first group and the answers in the second group then reveals the second groups’ 

average response to the sensitive question (given that the composition does not differ between 

the two groups) (Trappmann et al., 2014). As a case in point, Hopp and Speil (2020) showed 

that students were much more likely to admit plagiarism in a survey using item-count tech-

niques than in a survey asking them directly whether they engaged in plagiarism. Consequently, 

future research should be able to reveal higher (and more accurate) levels of academic malprac-

tices using item-count and/or item-sum techniques. On the other hand, further investigations of 

(un)ethical and (ir)responsible scholarly behavior should work with secondary data. For exam-

ple, researchers could combine data from research articles, Google Scholar, SCOPUS, WoS, 

journal websites and data repositories to investigate data sharing rates, authorship teams, trans-

parency reporting standards and much more. 

 Second, this thesis points out that the credibility crisis in the social sciences does not 

solely derive from implausible research results but also from misconduct related to other aspects 

of scholarly work. We pointed out that, in addition to data related questionable research prac-

tices, the social sciences also face issues when it comes to research design, plagiarism and credit 

distribution. While identifying and overcoming academic malpractices occurring in the data 

collection, analysis and reporting constitutes valueable work, it is of utmost importance to also 

address and investigate less studied forms of (un)ethical and (ir)responsible behavior. As a case 

in point, we identified a surprisingly large share of honorary authors across the social sciences 

despite prior research on social science (mal)practices largely neglecting the topic of author-

ship. Consequently, future research on ethical and responsible behavior should look among 

others into topics like journal and reviewer coercion, open access policies, article processing 

charges, requirements arising from fundings and university-industry collaborations. Journal co-

ercion occurs if journals request authors to cite work published in their journals to increase their 
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impact factors (Wilhite, & Fong, 2012). Reviewer coercion occurs if reviewers suggest or re-

quire authors to cite work published by the reviewers to increase their citation counts (Baas, & 

Fennell, 2019). Both, journal and reviewer coercions alter citation counts but have so far not 

been investigated in the social sciences. Open access allows everyone to access publications 

without having to pay for publisher subscriptions (Suber, 2007). This becomes more and more 

important in the dissemination process of scientific results not only within academia but also to 

practitioners. To finance themselves, many open access journals introduced article processing 

charges (Morrison et al., 2015). Article processing charges usually represent fees that authors 

must pay in case their paper is accepted for publication (Marincola, 2003). Yet there exist sev-

eral arguments against article processing charges. On the one hand, from an incentive perspec-

tive, article processing charges motivate journals to accept as many papers as possible as this 

generates more cash for them (Björk, & Solomon, 2015). On the other hand, article processing 

charges make it difficult for doctoral students and junior faculty members to publish in those 

journals because they often do not have access to extensive funding (Beall, 2013). Funding, in 

turn, might also represent a factor driving academic malpractices. Sismondo (2007) discussed 

that if clinical trials are funded by pharmaceutical companies, chances are higher that those 

clinical trials are successful. This leads to the last example, university-industry collaborations. 

Because companies usually want to keep their trade secrets to themselves, scholars collaborat-

ing with them on research projects often cannot transparently report on research processes and 

results (Rodriguez, 2005). Future research needs to address those academic (mal)practices also 

from a social science perspective as literature from the life and nature sciences showed that they 

substantially impact research rigorness and transparency.  

 Third, the vast majority of literature on scientific misconduct has focused on addressing 

and raising the problem. Now that we are aware that there exists a credibility crisis in the social 

sciences, we need to move beyond stating the problem and find adequate solutions. This thesis 

adds to this by providing hands on guidance on how to conduct a rigor and in-depth replication 

study. Future research should continue this stream by looking at opportunities and pathways 

helping us in overcoming the various forms of academic malpractices. Further investigations 

should therefore assess and outline the implementation of processes and tools that could help 

us in prohibiting scientific misconduct (e.g. requesting data for reviewers, introducing author-

ship statements, whistleblowing platforms). Moreover, future research articles and editorials 

should evaluate academic incentive systems that do not solely rely on publications and citations. 

If scholars do no longer have to publish more and more papers in less and less time, they can 
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focus more on scientific rigorness, transparency and research ethics. The ultimate goal should 

be to dispose “publish or perish” as the motto of social scientists’ faculty lifes and substitute it 

with a phrase like the old but still valid expression “I know that I do not know”. This would 

better characterize the social sciences as we will never be able to unveil all interactions, mech-

anisms and drivers of social phenomena.  
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