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Preface

This paper serves as my senior thesis for the undergraduate major in Computer Science

at Dartmouth College, as part of the requirements for the departmental Honors Program.

It concludes two semesters of research from Fall 2020 to Winter 2021 in the class COSC

99 (Thesis Research). This paper differs from that published in proceedings of the 15th

International Workshop on Semantic Evaluation (SemEval) (Islam et al., 2021), which was a

system description summarizing my submission to the Lexical Complexity Prediction (LCP)

shared task hosted at SemEval-2021. In contrast, this paper expands on data exploration that

was conducted, describes our system’s underlying feature set in finer detail, and critically

analyzes model performances.
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Abstract

Tuning the complexity of one’s writing is essential to presenting ideas in a logical, intuitive

manner to audiences. This paper describes a system submitted by team BigGreen to LCP

2021 for predicting the lexical complexity of English words in a given context. We assemble

a feature engineering-based model and a deep neural network model with an underlying

Transformer architecture based on BERT. While BERT itself performs competitively, our

feature engineering-based model helps in extreme cases, eg. separating instances of easy

and neutral difficulty. Our handcrafted features comprise a breadth of lexical, semantic,

syntactic, and novel phonetic measures. Visualizations of BERT attention maps offer insight

into potential features that Transformers models may implicitly learn when fine-tuned for

the purposes of lexical complexity prediction. Our assembly technique performs reasonably

well at predicting the complexities of single words, and we demonstrate how such techniques

can be harnessed to perform well when on multi word expressions (MWEs) too.

iv



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

2 Related Work 3

3 Data Collection 5

3.1 CompLex Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 External Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Data Exploration 8

4.1 Assessing Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Examining Challenging Samples . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Character Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 12

5 BigGreen System & Approaches 16

5.1 Feature Engineering-based Approach . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Feature Learning-based Approach . . . . . . . . . . . . . . . . . . . . . . 21

v



5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.2 Lexicon Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.3 Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.4 Task-Specific Prediction . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Ensembling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Results 25

7 Analysis 26

7.1 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2 Feature Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.3 BERT Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Conclusion 32

A Feature Descriptions 33

A.1 Lexical Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.2 Semantic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.3 Phonetic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.4 Word Frequency & N-gram Features . . . . . . . . . . . . . . . . . . . . . 36

A.4.1 Gigaword-based . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.4.2 Google N-gram-based . . . . . . . . . . . . . . . . . . . . . . . . 37

A.4.3 SUBTLEXus-based . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.4.4 BNC-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.5 Syntactic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.6 Readability Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.7 Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



B Model Hyperparameters 42

B.1 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.2 MT-DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.3 Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 45

vii



Chapter 1

Introduction

Lexical simplification (LS) is the task of replacing difficult words in a text with simpler

alternatives. It is relevant in reading comprehension, where early studies have shown

infrequent words to lead to more time a reader spends fixated on it, and that ambiguity in

a word’s meaning further adds to comprehension time (Rayner and Duffy, 1986). Devlin

(1999) demonstrate that a combined approach studying both the syntactic structure of a

context (where certain compositions may be more difficult to understand than others) and the

lexical characteristics of each word (certain words are more frequent in language than other)

can be used to simplify challenging texts for individuals suffering from aphasia. Complex

word identification (CWI) is believed to be a fundamental step in the automation of lexical

simplification (Shardlow, 2014). Early techniques for conducting CWI, however, lack in

robustness at the word level, from initially simplifying all words in given a sentence to

then observe incurred change in meaning (Devlin, 1998), to applying simple thresholds on

discriminative features like word frequency (Zeng et al., 2005).

The recent CWI shared task at SemEval-2016 (Paetzold and Specia, 2016a) studied the

annotations of 400 non-native speakers on English target words, labeled as either simple

or complex. The SemEval-2018 CWI shared task (Yimam et al., 2018) extended their

study to data across four languages, while also introducing a probabilistic component to

1



INTRODUCTION INTRODUCTION

the binary classification task. This year’s Lexical Complexity Prediction (LCP) shared task

(Shardlow et al., 2021) forgoes the treatment of word difficulty as a binary classification

task (Paetzold and Specia, 2016a; Yimam et al., 2018) and instead measures degree of

difficulty on a continuous scale. This choice is intriguing as it mitigates a dilemma with

previous approaches that treat words close to a decision boundary (suppose a threshold

decides whether a word is considered ‘difficult’) identically to those that are far away, ie.

extremely easy or extremely difficult.

Teams are asked to submit predictions on unlabeled test sets for two subtasks: predicting

on English single word and multi word expressions (MWEs). The Pearson correlation

coefficient is used to evaluate how closely submitted predictions associate with ground

truth labels. For each subtask, BigGreen presents a machine learning-based approach

that fuses the predictions of a feature engineering-based regressor with those of a feature

learning-based deep neural network model founded on BERT (Devlin et al., 2018). Our

code is made fully available on GitHub.1

In Sections 2 and 3 of this paper, we overview related work that inspires our experiments

and describe the data used to train BigGreen’s models. For the feature engineering-based

model, Section 4 explains six categories of linguistic features experimented with, in addition

to feature selection techniques; for the feature learning-based model, we describe its training

procedure here instead. Sections 5 and 6 show how our approaches performed in competition,

as well as analysis on worked and what did not.

1https://github.com/Aadil101/BigGreen-at-LCP-2021
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Chapter 2

Related Work

Previous studies have looked at estimating the readability of a given text, though at the

sentence-level rather than word-level. Namely, Mc Laughlin (1969) regresses the number

of polysyllabic words in a given lesson against the mean score for students quizzed on

information pertaining to the lesson, yielding the SMOG Readability Formula. Dale and

Chall (1948) offer a list of 768 (later updated to 3,000) words familiar to grade-school

students, such that passages containing members of this list tend to be reported as having

lesser reading difficulty. Yet, an issue with traditional readability metrics seems to be a loss

of generality at the word-level.

Shardlow (2013) tries a brute force approach where a simplification algorithm is applied

to each word of a given text, deeming a word complex only if it is simplified. However, this

suffers from the assumption that non-complex words do not require further simplification.

The author also tries assigning a familiarity score to the target word, and then determining

whether the word is complex or not through the use of a threshold. We avoid thresholding

our features in this study as we find it unnecessary, since raw familiarity scores can be used

as features in regression-based tasks.

Results for the SemEval-2016 task (Zampieri et al., 2017) suggest vote ensembling

predictions of one’s best performing models to be an effective strategy, while several

3
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top-performing models appear to use linguistic information beyond just word frequency

(Paetzold and Specia, 2016b; Ronzano et al., 2016; Mukherjee et al., 2016); such models

harness a variety of lexical, semantic, syntactic, and psycholinguistic features. This inspires

our use of ensemble techniques, as well us our consideration of phonetic features as a

new area of research. Moreover, Zampieri et al. (2017) emphasize the effectiveness of

Decision Trees and Random Forests across top performing models, perhaps due to the

importance of having features across a variety of categories (eg. lexical, morphological,

syntactic, etc.) as opposed to features exclusive to a certain category. Note that the success

of tree-based approaches is quantified by the G-score (which measures the harmonic mean

between Accuracy and Recall). Interestingly, tree-based approaches tend to be outperformed

by simpler threshold-based strategies based on F1-score; namely, Wróbel (2016) learns a

threshold over word frequencies that maximizes F1-score over the CWI training dataset.

Finally, evident is the underperformance of neural network and/or word embedding-based

models in competition, potentially explained by the limited size of the training data.

Results from the SemEval-2018 task (Yimam et al., 2018) show progress in CWI research

with regards to cross-lingual prediction, demonstrated by successful modeling of lexical

complexity by numerous systems on a per-language basis. Surprisingly, this does not require

models necessarily be trained on data in the language of interest; training upon data available

in one or more foreign languages is sufficient for predicting upon an ‘unseen’ language,

perhaps suggesting the universality of certain predictors of lexical complexity. Feature

engineering-based systems appear to outperform competing deep learning-based systems,

despite the latter having generally better performances since the CWI shared task 2016.
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Chapter 3

Data Collection

Section 3.1

CompLex Dataset

Shardlow et al. (2020) present CompLex, a novel dataset in which each target expression

(a single word or two-token MWE) is assigned a continuous label denoting its lexical

complexity. Each label falls in range 0-1, and represents the (normalized) average score

given by employed crowd workers who report the given expression’s difficulty on a 5-

point Likert scale. Note that all crowd workers originate from English speaking countries

(UK, USA, and Australia). We define a sample’s class as the bin to which its complexity

Corpus Subtask Train Trial Test
Bible Single Word 2574 143 283

Multi Word 505 29 66
Biomed Single Word 2576 135 289

Multi Word 514 33 53
Europarl Single Word 2512 143 345

Multi Word 498 37 65
Total Single Word 7662 421 917

Multi Word 1517 99 184

Table 3.1: LCP train, trial, and test sets.
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3.2 EXTERNAL DATASETS DATA COLLECTION

label belongs, where bins are created using the following mapping of complexity ranges:

[0, 0.2)→ 1, [0.2, 0.4)→ 2, [0.4, 0.6)→ 3, [0.6, 0.8)→ 4, [0.8, 1]→ 5. Target expressions

in CompLex have 0.395 average complexity and 0.115 standard deviation, reflecting an

imbalance in favor of class 2 and 3 samples.

Each target expression is accompanied by the sentence (ie. context) it was extracted

from, where certain target words appear multiple times in the dataset (across different

contexts). A target expression is drawn from one of three sources (Bible, Biomed, and

Europarl) in an effort to motivate study of domain-specific linguistic features. As noted

by Shardlow et al. (2020), Biomed samples appear to be on average 1.7 and 2.2 percent

higher in lexical complexity than Bible and Europarl samples, respectively. This we believe

may reflect the elevated diction exhibited in biomedical research and generally in academic

writing, a style that differs from typical colloquial dialogue used in biblical scripture and

parliamentary debate. Although an annotator’s predisposition to theology, academia, and/or

politics may affect his/her labeling of samples, this aspect is sadly beyond the scope of this

study. Nonetheless, a summary of train, trial,1 and test set samples is given in Table 3.1.

Section 3.2

External Datasets

In this study, we use four additional corpora to extract a breadth of term frequency-based

features for training our feature engineering-based model on:

• English Gigaword Fifth Edition (Gigaword): this comprises articles from seven

prominent international English newswires, acquired by the Linguistic Data Con-

sortium (LDC) (Parker et al., 2011). Newswires include the Agence France Press

English Service (AFE), Associated Press Worldstream English Service (APW), The

1In our study we avoid the trial set as we find it to be less representative of the training data, opting instead
for training set cross-validation (stratified by corpus and complexity label).
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Newswire Files Articles Total Words
AFE 44 656269 170969
APW 91 1477466 539665
NYT 96 1298498 914159
XIE 83 679007 131711
Total 314 4111240 1756504

Table 3.2: Breakdown of Gigaword articles by newswire. Note that for each newswire,
articles are grouped together in certain files. Total Words denotes the total number of
whitespace-separated tokens across all articles of a given newswire.

New York Times Newswire Service (NYT), and The Xinhua News Agency English

Service (XIE). Table 3.2 provides a breakdown of each newswire for reference.

• Google Books Ngrams, version 2 (GBND): this is used to count occurences of

phrases across a corpus of books, accessed via the PhraseFinder API (Trenkmann).

The full corpus spans about 8 million books (ie. about 6% of books ever published),

and is constructed using improved OCR technology and metadata extraction compared

to its prior version (Lin et al., 2012).

• British National Corpus, version 3 (BNC): this is a 100 million word collection

of British written and spoken English text (Consortium et al., 2007). Particularly

intruiging is its consideration of spoken English text, for this may potentially account

for intricacies of language in speech versus in writing.

• SUBTLEXus: this comprises American English movie subtitles totaling 51 million

in words. The creators of SUBTLEXus (Brysbaert and New, 2009) offer multiple

ready-made word frequency lists; one list considers the number of movies containing

a given word, whereas another measures how many times the word occurs specifically

in its lowercase form. Please see Appendix A.4.3 for further details.

7



Chapter 4

Data Exploration

Section 4.1

Assessing Baseline Models

We focus initially on the single word subtask by experimenting with a baseline model

inspired by that of the authors of CompLex (Shardlow et al., 2020). Our goal with this

baseline model is to closely examine successful predictors, and to understand the shortcom-

ings of said feature set, guiding the construction of BigGreen’s own system. The original

baseline model comprises a series of handcrafted features (HC), GloVe word embeddings

(Pennington et al., 2014), GloVe context embeddings (kindly see Section 5.1.1 for more on

Corpus All Handcrafted GloVe word+context InferSent
All 0.1399 0.0964 0.0749 0.1585
Bible 0.1133 0.0986 0.0884 -
Biomed - 0.1094 0.0852 0.2060
Europarl - 0.0762 0.0698 -

Table 4.1: Performances of linear regression models fitted on different baseline feature
subsets. The single word training set is split into smaller training and development subsets
(stratified by corpus and class); all models are fitted and evaluated on the former and latter,
respectively. All scores are reported in terms of mean absolute error (MAE). Note that
GloVe word+context denotes the concatenation of 300-dim GloVe word and 300-dim
GloVe context embeddings. A hyphen ‘-’ denotes an extremely high MAE.

8
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Corpus Class HC Glove word+context InferSent
Bible 1 0.1354 0.0931 -

2 0.0504 0.0690 -
3 0.1605 0.0681 -
4 0.3219 0.2319 -
5 0.5588 0.1693 -

Biomed 1 0.1467 0.0903 0.2341
2 0.0586 0.0619 0.1812
3 0.1473 0.0910 0.1995
4 0.3004 0.1371 0.3437
5 0.4070 0.2334 0.3614

Europarl 1 0.1098 0.0720 -
2 0.0417 0.0523 -
3 0.1564 0.0737 -
4 0.3156 0.2200 -

Table 4.2: Performances (organized by class) of linear regression models fitted on different
baseline feature subsets. Note that we did not try the All feature subset shown in Table 4.1
due to time constraints. All scores are reported in terms of mean absolute error (MAE). A
hyphen ‘-’ denotes an extremely high MAE.

Corpus Class HC Glove word+context InferSent
Bible 1 0.1377 0.0909 0.1449

2 0.0549 0.0845 0.1146
3 0.1528 0.0634 0.1942
4 0.3126 0.1922 0.3348
5 0.5630 0.1420 0.5505

Biomed 1 0.1513 0.0893 -
2 0.0693 0.0718 -
3 0.1275 0.0927 -
4 0.2765 0.1243 -
5 0.3721 0.2184 -

Europarl 1 0.1078 0.0662 0.1556
2 0.0434 0.0610 0.1252
3 0.1483 0.0759 0.1645
4 0.3082 0.1880 0.2344

Table 4.3: Performances (organized by class) of linear regression models fitted on different
baseline feature subsets. This is analogous to Table 4.2, but here models were fitted on a
reduced training set containing only half the available class 2 samples.

9
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this) and InferSent sentence embeddings (Conneau et al., 2017). The handcrafted features

include (1) target word frequency, courtesy of the Wordfreq library (Speer et al., 2018), (2)

word length, and (3) syllable count, via the Syllables library.1

As shown in Table 4.1, performances of variant baseline models (variant denoting

a fitting over a subset of the aforementioned features) show promise in the use of all

handcrafted lexical features, and successes with certain semantic features (eg. GloVe word

embeddings, but not InferSent embeddings). InferSent embeddings appear to not generalize

well for the task at hand, which may suggest a general need for fine-tuning upon whatever

pre-trained models we end up extracting semantic representations of sentences from.

Performances of the variant baseline models can be further examined, namely at the class-

level (ie. how well a given model predicts lexical complexity across specific classes of diffi-

culty). Observe that in Table 4.2, it appears models based on HC and Glove word+context

do best at predicting on class 2 samples, regardless of corpora. This is likely due to there

being more class 1-3 samples available in the CompLex corpus to train on, causing models

to perform better on lower-rating samples. To try and boost scores across higher-rating

samples, we refit our variant baseline models, but this time training upon a reduced training

set containing only half the available class 2 samples. As shown in Table 4.3, models based

on HC and Glove word+context indeed perform slightly better on classes 3-5 than previously,

across all corpora. Performance on class 2 samples is sacrificed, however. Nonetheless, we

hope to reuse this strategy for boosting performance across class 4, 5 samples later.

Section 4.2

Examining Challenging Samples

We manually assess training set samples that multiple variant baseline models struggled

with, samples that are perhaps naturally difficult to predict on; Table 4.4 shows some of these.

1https://github.com/prosegrinder/python-syllables

10
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4.2 EXAMINING CHALLENGING SAMPLES DATA EXPLORATION

ID Corpus Context Complexity
1 Bible Now God made Daniel to find kindness and compassion

in the sight of the prince of the eunuchs.
0.632

2 Bible he sent Hadoram his son to king David, to Greet
him, and to bless him, because he had fought against
Hadadezer and struck him; (for Hadadezer had wars
with Tou;) and he had with him all kinds of vessels of
gold and silver and brass.

0.825

3 Biomed During budding morphogenesis, intersecting signaling
networks from the epithelium and mesenchyme govern
transcriptional, adhesive, polarity, and motility pro-
grams in these select groups of cells.

0.714

4 Biomed Future fine mapping experiments can be designed to
randomize the influences of any contaminating donor
alleles and environmental differences, as well as test
for maternal genotype effects.

0.625

5 Biomed In the development of the mammalian retina, a diverse
range of cell types is generated from a pool of multipo-
tent retinal progenitor cells.

0.050

6 Biomed In the mouse model of RA, small genetic contributions
are also often observed.

0.813

7 Biomed As in our tet-off APP mice, SantaCruz et al. found that
tau neurofibrillary tangles, like amyloid plaques, are
not cleared efficiently following transgene suppression.

0.692

8 Biomed These mice were mated with a strain carrying Cre re-
combinase under the control of the human Keratin 14
(K14) promoter, which is active in basal cells of epider-
mis and other stratified epithelia.

0.783

9 Europarl Once there is a statute based on equality, Madam Presi-
dent, the rules for travel and subsistence expenses can
also be changed.

0.486

10 Europarl Mobilisation of the European Globalisation Adjust-
ment Fund: Ireland - SR Technics (

0.611

Table 4.4: Ten of the top-50 samples predicted with large error margins (MAE) by multiple
variant baseline models. Each sample’s target word is bolded.

11



4.3 CHARACTER TRANSITION PROBABILITIES DATA EXPLORATION

Figure 4.1: Probability density func-
tions for acronym vs. non-acronym target
words in single word training set.

Figure 4.2: Probability density functions
for proper vs. improper noun/adjective
target words in single word training set.

Observe that samples 6 and 7 bear target words that are acronyms, terms like ‘RA’and ‘APP’

whose meanings are perhaps assumed to be common knowledge to academic audiences.

Samples 2, 8, and 10 have target words that are proper nouns and adjectives, usually referring

to domain-specific entities that cannot necessarily be learned from context clues (eg. samples

2 and 8 seem to expect the reader to know what ‘Tou’ and ‘Cre’ are). Figures 4.1 and 4.2

illustrate the effects of acronymity and propriety to perceived target word complexity.

Finally, we notice that target words used rarely in language (eg. Samples 1, 3, 4, and 9)

need to be better considered by future systems. Moreover, we hypothesize that N-grams

comprising a target word affect its perceived complexity; the target word in sample 5 is

often used in the phrase ‘range of,’ whereas the target word in sample 4 rarely ever arises in

a niche noun phrase like ‘contaminating donor alleles.’

Section 4.3

Character Transition Probabilities

While prior top-performing approaches harness a variety of linguistic information across

lexical, semantic, syntactic, and psycholinguistic features (Paetzold and Specia, 2016b;

Ronzano et al., 2016; Mukherjee et al., 2016), there appears to be a lack of consideration of

12
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Figure 4.3: Lowercase ASCII transition probabilities, estimated over Gigaword.

13
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Character Transition Probability

Char. Transition Gigaword
Samples

Class 1
Samples

Class 4, 5
Samples T-Statistic P-Value

i→ d 0.0597 0.0331 0.0588 -7.3532 4.5127e-10
o→ s 0.0402 0.0200 0.0976 -4.4796 2.7255e-05
o→ r 0.1568 0.1233 0.1463 -2.1475 1.6440e-02
y → c 0.0129 0.0500 0.3333 -1.8898 5.8693e-02
p→ h 0.0206 0.0156 0.4500 -1.5407 6.8241e-02
o→ n 0.2079 0.2700 0.1707 -1.4155 7.8776e-02
i→ t 0.1084 0.0783 0.2353 -1.4036 8.1026e-02
e→ s 0.1255 0.2019 0.2143 -1.2893 9.8986e-02

Table 4.5: Character transitions that are more frequent in higher complexity target words
(at 10% significance level).

phonetic features. Hayden (1950) suggests that the relative frequencies of phonemes can

potentially be used to identify important phonemes to tutor foreign language students with

who exhibit numerous phonemic difficulties. While we assume that each crowd annotator

of CompLex understands at least one dialect of English, we also assume that annotators

share similar literacy levels and familiarities with the English language. We hypothesize

that because certain English phonemes (ie. soundable segments or character n-grams) are

evidently more common in usage than others (Hayden, 1950), a target word’s complexity

could be impacted by an annotator’s familiarity with its constituent phonemes.

For a given target word w, consider the transition probability from character w[i] to the

character w[i + 1], that is, the expected probability of the (i + 1)th character succeeding

the ith character in language; we call this a character transition probability. To understand

whether this may be a useful feature for our task, for each target word w of class c, we

define the random variable xTy ∈ N as the number of occurences of character transition

x→ y in the target word, where x, y ∈ {ASCII character set}. For each possible transition

x → y, we ask whether the distribution of xTy over class 1 samples (ie. very easy target

words) is different from that over class 4, 5 samples (ie. difficult target words).2 Let µ1 and

2Here, we combine class 4 and 5 samples together because so few samples exist in each individual class.
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4.3 CHARACTER TRANSITION PROBABILITIES DATA EXPLORATION

µ4,5 be the average number of occurences of the given transition x → y over class 1 and

class 4, 5 target words, respectively. We conduct an unpaired lower-tailed t-test using the

null hypothesis that H0: µ1 = µ4,5, and alternative hypothesis that Ha: µ1 < µ4,5. Table

4.5 presents only the character transitions that yield statistically significant p-values at the

10% confidence level, implying that these character transitions are slightly more common

in higher complexity target words than in lower complexity target words. Note that we

also conducted t-tests with instead the alternative hypothesis Ha: µ1 > µ4,5, finding that no

character transition yields a statistically significant p-value at the 10% confidence level.

We attempt to intuit the statistically significant character transitions shown in Table

4.5. Notice that character transition probabilities estimated over target word classes lie

roughly in the same ballpark as that estimated over Gigaword in Figure 4.3. Deviation from

the Gigaword estimates is somewhat expected, considering the relatively small size of the

CompLex corpus. Seven of the eight character transitions (ie. all except o→ n) bear higher

transition probabilities over class 4, 5 samples than over class 1 samples, perhaps suggesting

that target word complexity is correlated with the existence of transitions between certain

characters. Based on Figure 4.3, observe that y often transitions to an e, s, o, etc. whereas

rather rarely does it transition to c. Yet, we find class 4, 5 samples tending to towards this

rarity nonetheless, often occuring in scientific words with the root ‘cycl,’ such as ‘cycle,’

‘cyclone,’ and ‘doxycycline.’ Other examples of this apparent tendency for higher-difficulty

samples to exhibit rarer transitions include i→ d, o→ s, and p→ h. This subtle pattern

suggests that the transition probabilities between characters (and possibly even phonemes)

in a target word could serve as a discriminative feature for predicting lexical complexity.
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Chapter 5

BigGreen System & Approaches

In this section, we overview information fed to the feature engineering-based model, as well

as training techniques for the feature learning-based model. We describe our features in

finer detail in Appendix A. Note that the fitted models for the single word subtask are later

harnessed for the MWE subtask.

Section 5.1

Feature Engineering-based Approach

5.1.1. Feature Extraction

We aim to capture a breadth of information pertaining to the target word and its context.

The majority of features appear to follow heavily right-skewed distributions, which we

attribute to Zipf’s law manifesting over our plethora of word frequency-based measures.

This prompts us to also consider the log-transformed version of each feature. For the MWE

subtask, features are extracted independently for the head and tail words, with they and their

sums being included in the final feature set.

Lexical Features. These features capture lexical information pertaining to the target word:

• Word length: length of the target word.
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5.1 FEATURE ENGINEERING-BASED APPROACH BIGGREEN SYSTEM & APPROACHES

• Number of syllables: number of syllables in the target word, via the Syllables library.

• Is acronym: whether the target word is a sequence of capital letters.

Semantic Features. These features capture the target word’s meaning:

• WordNet features: the number of hyponyms and hypernyms associated with the

target word in WordNet (Fellbaum, 2010).

• GloVe word embeddings: we extract 300-dimension embeddings trained on Wikipedia-

2014 and Gigaword (Pennington et al., 2014) for each (lowercased) target word.

• ELMo word embeddings: we extract 1024-dimension embeddings trained on the One

Billion Word Benchmark corpus (Peters et al., 2018) for each target word. Observe

that these are contextualized embeddings, unlike our GloVe word embeddings.

• GloVe context embeddings: we obtain the average 300-dimension GloVe word

embedding across all words in the given sentence.

• InferSent context embeddings: we obtain 4096-dimension InferSent embeddings

(Conneau et al., 2017) for each sentence.

Phonetic Features. These features compute the likelihood that soundable portions of

the target word would arise in English language. We estimate ground truth transition

probabilities between any two units (phonemes or characters) using Gigaword:

• Phoneme transition probability: we consider the min/maximum/mean/standard

deviation over the set of transition probabilities for the target word’s phoneme bigrams.

• Character transition probability: analogous to that above, over character bigrams.
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Word Frequency & N-gram Features. These features are expressly included due to their

expected importance as features (Zampieri et al., 2017). Gigaword is the main corpus from

which we extract word frequency measures (for both lemmatized and unlemmatized versions

of the target word), the summed frequency of a target word’s byte pair encodings (BPEs),

as well as summed frequencies of bigrams and trigrams containing the target word. We

complement these features with their IDF-based analogues. Finally, we use the GBND, BNC,

and SUBTLEXus corpora to extract secondary unigram, bigram, and trigram measures.

Syntactic Features. These are features that assess the syntactic structure of the target

word’s context. We construct the constituency parse tree for each sentence using a Stanford

CoreNLP pipeline (Manning et al., 2014).

• Part of speech (POS): predicted via NLTK’s pos tag method (Bird et al., 2009).

• Depth of parse tree: the parse tree’s height.

• Depth of target word: distance (in edges) between the target word and the parse

tree’s root node.

• Number of words at target depth: number of words at the same depth in the parse

tree as the target word.

• Is proper: whether target word is a proper noun/adjective, detected via capitalization.

Readability Metrics. These comprise a variety of tests applied on the target word’s context,

using low-level traits such as total word count and total syllable count. Interestingly, certain

readability metrics count the difficult words in a given sentence by assuming rules for what

makes a given word complex (eg. the Dale-Chall readability formula (Dale and Chall, 1948)

checks a given word against a predetermined list of 3,000 familiar words). This inspires
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Figure 5.1: Performances of linear regression models fitted (with 5-fold cross-validation)
on top-k features by mutual information.

us to try multiple readabililty measures via the Textstat library,1 including Flesch-Kincaid

grade level, Gunning Fog index, and SMOG index.

5.1.2. Feature Selection

For the single word subtask, we select features using a combination of filter and wrapper

methods. Our intention is to leverage successful techniques in the MWE subtask as well,

where we extract head and tail-specific features.

Filter Methods.

• Variance: Features are screened by variance of their distributions, with those lower

than 0.01 deemed quasi-constant and subsequently removed.

• Mutual Information: Features are ranked by mutual dependence with lexical com-

plexity, and only the top-k features are selected. We tune k by fitting linear regression

1https://github.com/shivam5992/textstat
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5.1 FEATURE ENGINEERING-BASED APPROACH BIGGREEN SYSTEM & APPROACHES

models on the top-k features. Figure 5.1 shows diminishing improvement in Pearson

correlation beyond k = 300.

• Variance Inflation Factor (VIF): This is computed for each feature to measure

contributed multicollinearity. Note that we omit this particular filter method for our

submitted model, in order to optimize our model’s Pearson correlation coefficient.

Wrapper Methods.

• Forward Feature Selection (FFS): Beginning with an empty feature set, each subse-

quent iteration appends a feature to the existing feature set offering the best Pearson

correlation. The algorithm exits when no feature sufficiently improves correlation.

Embedded Methods.

• Lasso & Elastic Nets: We consider these linear models during the subsequent training

phase, which use L1 and L1/L2 regularization, respectively, to shrink regression

coefficients of lesser important features during fitting. Lasso (Tibshirani, 1996) is

intriguing due to its ability to reduce the dimensionality of our feature set during

fitting. We try Elastic Net (Zou and Hastie, 2005) as it may succeed particularly in the

presence of highly intercorrelated features.

5.1.3. Training

Prior to training, we Z-score standardize all features to have approximately zero mean

and unit variance. For the single word subtask, we fit Linear, Lasso, Elastic Net, Support

Vector Machine (Platt et al., 1999) (with linear kernel), Support Vector Machine (with radial

basis function kernel), K-Nearest Neighbors (Wikipedia, 2021), and XGBoost (Chen and

Guestrin, 2016) regression models. After identifying the best performing model by Pearson

correlation, we seek to mitigate the imbalanced nature of the target variable, ie. multitude of
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class 1, 2, 3 and lack of class 4, 5 samples: we devise a sister version of our top-performing

model, fit upon a reduced training set. For the reduced set, we tune percentages removed

from classes 1-3 by performing cross-validation on the full training set.

Section 5.2

Feature Learning-based Approach

Our handcrafted feature set provides a cursory analysis of the context surrounding the target

word. We seek an alternative, automated approach using feature learning.

5.2.1. Background

LSTM-based approaches have been used to model contexts of target words in past works

(Hartmann and Dos Santos, 2018; De Hertog and Tack, 2018). An issue with a single LSTM

is its ability to read tokens of an input sentence sequentially only in a single direction (eg.

left-to-right). It inspires us to try a Transformer-based approach (Vaswani et al., 2017),

architectures that process sentences as a whole (instead of word-by-word) by applying

attention mechanisms upon them. Attention weights are useful, even interpretable as learned

relationships between words in a given text. BERT (Devlin et al., 2018) is one such language

representation model used for a variety of natural language understanding (NLU) tasks.

Multi-Task Deep Neural Network (MT-DNN) proposed by Liu et al. (2019) offers

state-of-the-art results for multiple NLU tasks by incorporating benefits of both multi-task

learning and language model pre-training. Multi-task learning (MTL) is the process of

applying knowledge learned from prior, related tasks to help learn to predict on a new

task. Liu et al. (2019) notes an advantage of MTL that is being able to conduct supervised

learning in the presence of relatively few training samples, which is notable considering the

limited size of the CompLex corpus (about 8000 single word training samples). Language

model pre-training leverages universal representations learned by neural network language
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Figure 5.2: Architecture of MT-DNN specifically for a regression-based task like STS-B.
This diagram is inspired by that shown by Liu et al. (2019). Note that we are able to refer
to this architecture for the purposes of lexical complexity prediction because the training
procedures for both tasks are quite similar.
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models that have been fitted on large amounts of unlabeled data; notable examples of such

models include BERT (Devlin et al., 2018) and ELMo (Peters et al., 2018). In this section,

we describe the structure of the general-purpose MT-DNN model when harnessed for

lexical complexity prediction (a regression-based task, mind you). Since lexical complexity

prediction is a regression-based task, we apply a procedure similar to that used by Liu et al.

(2019) to fine-tune MT-DNN for another similar task: STS-B from the General Language

Understanding Evaluation (GLUE) benchmark (Wang et al., 2018). STS-B asks to predict a

continuous value in range 0-1 indicating the semantic similarity between two given sentences.

We will see that the architectures for STS-B (shown in Figure 5.2) and for the task of lexical

complexity prediction are analogous to one another.

5.2.2. Lexicon Encoder

Samples are fed to MT-DNN’s input layer in PremiseAndOneHypothesis format; this means

the model expects each input to be a pair of sentences: premise and hypothesis. We let

hypothesis and premise be the target word/MWE and its context, respectively. Inputs are

preprocessed by a lexicon encoder to convert text to vectorized sequences of BPE tokens;

our lexicon encoder is a BERT Tokenizer, backed by Hugging Face (Wolf et al., 2020).

5.2.3. Transformer Encoder

The BERT base model (cased) is one such Transformer whose weights can be used to

initialize MT-DNN’s shared text encoding layers. We choose the base (rather than large)

model due to limited computational power of our machine, and we use its cased (rather than

uncased) version due to experimentation in Section 4.2 showing a word’s lexical complexity

being affected by whether it is ‘proper’ (which we identify based on capitalization). These

layers comprise what is called a transformer encoder, which maps input representations

vectors (obtained from the lexicon encoder) to contextualized embedding vectors.
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5.2.4. Task-Specific Prediction

Recall that the transformer encoder produces a semantic representation for each training set

sentence pair (X1, X2) (where X1 and X2 are a context and target word/MWE, respectively).

This semantic representation can be used to compute a similarity score Sim(X1, X2) (Liu

et al., 2019). Given the ground truth lexical complexity of the training sample, we propose

using mean squared error as the objective function for propagating error between predicted

and ground truth complexities; note that this procedure is nearly identical to that used for

STS-B, the exceptions being (1) the training data used, and (2) the target word/MWE itself

serves as what would have been the second sentence for semantic similarity prediction. By

fine-tuning MT-DNN, we aim to repurpose its existing output layer to produce predicted

lexical complexity values, ie. continuous values in range 0-1. Note that hyperparameters

used for fine-tuning MT-DNN are listed in Appendix B.2. Additionally, we extract attention

maps across each of the model’s attention heads, for each test set sample; in other words,

(12 layers)× (12 heads per layer) =⇒ 144 attention maps for each test set sample.

Section 5.3

Ensembling

Recall that our best performing feature engineering-based regression model yields two sets

of predictions (from fitting on full and reduced training sets, respectively). We default to

using the full predictions, then tune a threshold, where predictions higher than the threshold

(likely of class 4, 5 samples) are overwritten with the reduced predictions. We compute a

weighted average ensemble of these predictions with those of our MT-DNN model to obtain

a final set of predictions for the single word subtask.

For the MWE subtask, fitted models from the previous subtask are used to predict lexical

complexities for constituent head and tail words. We compute a weighted average ensemble

of the predicted complexities and predictions of an MT-DNN model trained on MWEs.
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Chapter 6

Results
We present performances of BigGreen’s system on each subtask in Tables 6.1 and 6.2.

Model Pearson Rank Spearman MAE
Linear Regression 0.7347 - 0.6993 0.0669
Forward Feature Selection (FFS) 0.7313 - 0.7053 0.0671
Lasso (alpha=0.0001) 0.7352 - 0.7042 0.0667
ElasticNet (alpha=0.001) 0.7396 - 0.7122 0.0662
SVM (kernel=linear, C=0.001) 0.7254 - 0.6970 0.0678
SVM (kernel=rbf, C=1, gamma=0.001) 0.7392 - 0.7066 0.0668
KNN (k=20, weights=distance) 0.7156 - 0.6914 0.0710
XGBoostfull 0.7589 - 0.7220 0.0645
XGBoostreduced 0.7456 - 0.7157 0.0751
XGBoostfull+reduced 0.7576 - 0.7220 0.0646
MT-DNN 0.7484 - 0.7044 0.0664
Ensemble (submission) 0.7749 8 of 54 0.7294 0.0629
Best competition results 0.7886 0.7425 0.0609

Table 6.1: Test set results for single word subtask.

Model Pearson Rank Spearman MAE
XGBoostfull+reduced (head) 0.7164 - 0.7305 0.1281
XGBoostfull+reduced (tail) 0.7188 - 0.7416 0.1306
MT-DNN 0.7890 - 0.7649 0.0766
Ensemble (submission) 0.7898 25 of 37 0.7769 0.0903
Ensemble (post-competition) 0.8290 *14 of 37 0.8120 0.0857
Best competition results 0.8612 0.8548 0.0616

Table 6.2: Test set results for MWE subtask. (* indicates a projection)
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Chapter 7

Analysis

Section 7.1

Performances

For feature selection, we find success in selecting the top-300 features by mutual infor-

mation and removing quasi-constant features. The pruned feature set is passed to both

our wrapper/embedded methods and a variety of regressors for model comparison, where

we find an XGBoost regressor (with hyperparameters tuned using grid search, as listed in

Appendix B.1) to excel consistently for the single word subtask. As shown in Table 6.1, our

system ranks in the top 15% by Pearson correlation.

For the MWE subtask, performances are reported in Table 6.2. Note that our submitted

predictions differ from post-competition predictions. We previously used a training proce-

dure resembling that used for the single word subtask: (1) filter methods for feature selection,

(2) XGBoost for regression, (3) assembly with MT-DNN. We had passed the entire MWE

as input to our XGBoost and MT-DNN models. We hypothesize that the fewer number of

training samples available for the MWE subtask contributed to the previous procedure’s

lackluster performance. This inspired us to incorporate the predictive capabilities of our

fitted single word subtask models by applying them independently on the MWE’s constituent
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Figure 7.1: Feature importances for XGBoostfull. Definitions of features are in Appendix A.

head and tail words. This gives us predicted complexities for each of the head and tail

words, which when ensembled with the predictions of our MT-DNN model (that, mind you,

is trained on the entire MWE) yields superior results to those submitted to competition.

Section 7.2

Feature Contribution

In total we consider 110 features, in addition to multidimensional embedding-based features

and log-transformed features. We inspect the estimated feature importance scores produced

by the XGBoostfull model to find that term frequency-based features (eg. unigrams, bigrams,

trigrams) are of overwhelming importance (see Figure 7.1). This raises concern over whether

the MT-DNN model also relies on term frequencies to make its predictions. Note that of the

remaining features with non-zero feature importances (not seen in Figure 7.1), most appear

to be dimensions of a target word-based semantic feature (ie. GloVe or ELMo embeddings).
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Figure 7.2: Correlation heatmaps before and after fine-tuning MT-DNN, showing strength of
association between between word frequency and total attention received by word (computed
over 100 random test set samples) at each attention head.

Section 7.3

BERT Attention

Attention maps of Transformers have in previous works been assessed to expose linguistic

phenomena learned by specialized attention heads (Voita et al., 2019; Clark et al., 2019),

and to measure the relative contribution of each attention head towards making task-specific

predictions (Voita et al., 2019; Michel et al., 2019). We extract attention maps from our

fine-tuned MT-DNN model’s underlying BERT architecture. For each sample amongst 100

random samples from the single word test set, we obtain an attention map from each of the

fine-tuned MT-DNN model’s shared text encoding layers’ 144 attention heads.

Based on our prior findings on the potential importance of term frequency-based features

towards the performance of the XGBoostfull model, we hypothesize that at certain attention

heads, the average attention given to a word varies relative to the word’s rarity in lexicon.

This follows the findings of Voita et al., 2019, who identify heads at which lesser frequent

tokens are attended to semi-uniformly by all other sentence tokens.

To test this hypothesis, we estimate for each attention head the Pearson correlation
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(a) Test set sample 279

(b) Test set sample 334

(c) Test set sample 244

Figure 7.3: Here, we consider three arbitrary single word test set samples: 279, 334, and
244. For each sample, we compute the word frequency of each word in the sentence, relative
to the GBND corpus. For simplicity, we assume the word frequency of any BPE is identical
to the word frequency of its parent word. We then compute the average attention weight
directed to each token in the context at head 3-9 of our fine-tuned MT-DNN model.
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(a) Test set sample 279 (b) Test set sample 324

(c) Test set sample 244

Figure 7.4: Here, we once again study test set samples 279, 334, and 244. For each sample,
we visualize the head 3-9 attention weight directed between any two tokens in the context.
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between word frequency and the average attention weight directed to each word in the given

context. Note that a cell (i, j) of any attention map contains the attention weight directed

from the ith token to the jth token in the sentence, by the given head.1 As illustrated in Figure

7.2, there appear to be multiple attention heads specializing at directing attention towards

either the most or least (which we disambiguate via the sign of the correlation) frequent

words in language. It seems as though the standalone MT-DNN model (ie. before fine-

tuning) already possesses such specialized heads. Fine-tuning seems to generally improve

correlations for heads in later layers (namely 11th and 12th) by approximately +0.1 points

on average. Both of these findings are a testament to the versatility of MT-DNN’s underlying

Transformer-based architecture. In Figure 7.3, we examine sentences from three arbitrary

single word test set samples, namely by visualizing attention maps for these sentences at

a particularly intruiging head: 3-9. For each token in the given sentence, we compare the

average attention directed by head 3-9 towards the token versus the token’s corresponding

word frequency. One may notice disproportionate attention directed to punctuation (eg.

periods, commas) as well as stopwords (eg. ‘and,’ ‘is,’ ‘of’). Such characters and words are

relatively common in corpora, resulting in exceptionally high word frequencies. In contrast,

little to no attention is directed towards rare nouns (eg. ‘stronghold,’ ‘collection’), obscure

acronyms (eg. ‘AS,’ ‘SA’) and rare past tense verbs (eg. ‘consumed,’ ‘contributed’).

Vertical stripe patterns like that in Figure 7.4 emerge as a result of attention originating

from a spectrum of tokens. A shortcoming of this examination is that the roles played

by tokens responsible for the apparent vertical stripe patterns over particular tokens (such

patterns generally occur over punctuation or stopwords, as discussed previously) remains

unclear. Nonetheless, these findings seem to affirm the fundamental relevancy of word

frequency to lexical complexity prediction, corroborating our intuitions.

1We define attention directed to a word as the sum of attention weights directed to its constituent BPEs.
For example, ‘Howl’ and ‘Tarshish’ from the sentence shown in Figure 7.3a have their total attention weights
broken across multiple BPEs.
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Chapter 8

Conclusion

In this paper, we report inspirations for a system submitted by BigGreen to LCP Shared-

Task 2021, performing reasonably well for the single word subtask by adapting ensemble

methods upon feature engineering and feature learning-based models. We see potential in

future deep learning approaches, acknowledging the need for strong word frequency-based

handcrafted features for the time being. We surpass our submitted results for the MWE

subtask by utilizing the predictive capabilities of our single word subtask models, under the

assumption that MWE complexity is compositional with respect to its constituent tokens.

Avenues for improvement include better data aggregation, as a relative lack of class 4, 5

samples hurts Pearson correlation across samples of especially extreme complexity. Such an

approach may involve synthetic data generation using SMOGN (Branco et al., 2017), for

instance. Although Shardlow et al. (2020) acknowledge that a reader’s familiarity with a

genre may affect his/her perceived complexity of a word, the CompLex corpus unfortunately

lacks details on each annotator’s expertise or background, which may have offered valuable

new insights. Future studies may even consider extracting multidimensional embeddings

from the later layers of deep learning models, potentially feeding these embeddings directly

into one’s feature engineering-based models.
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Appendix A

Feature Descriptions

Here, we describe in greater detail the various features that were experimented with for our

feature engineering-based model. Note that while this discussion regards the single word

subtask, for the MWE subtask we compute the same features but for each of the head and

tail words, respectively.

Section A.1

Lexical Features

Feature Description

word len Character length of the target word.

num syllables Number of syllables in the target word, via the Syllables library.

is acronym Boolean for whether the target word is all capital letters.
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Section A.2

Semantic Features

Feature Description

num hyperyms Number of hyperyms associated with the target word.

The target word is initially disambiguated using

NLTK’s implementation of the Lesk algorithm for

Word Sense Disambiguation (WSD) (Lesk, 1986),

which finds the WordNet Synset with the highest num-

ber of overlapping words between the context and dif-

ferent definitions of each Synset.

num hyponyms Number of hyponyms associated with the target word.

Procedure for finding this is analogous to that for

num hyperyms.

glove word 300-dimension embedding for each target word, pre-

trained on Wikipedia-2014 and Gigaword. The target

word is lowercased for simplicity.

elmo word 1024-dimension embedding for each target word, pre-

trained on the One Billion Word Benchmark corpus.

glove context 300-dimension average of GloVe word embeddings

(see glove word) for each word in the given context.

Each word is lowercased for simplicity.

infersent embeddings 4096-dimension embedding for the context.
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Section A.3

Phonetic Features

Feature Description

char transition min Minimum of the set of character transition

probabilities for each character bigram in the

target word. Ground truth character transition

probabilities between any two English charac-

ters are estimated over Gigaword.

char transition max Maximum of the set described above.

char transition mean Mean of the set described above.

char transition std Standard deviation of the set described above.

phoneme transition min Minimum of the set of phoneme transition

probabilities for each character bigram in the

target word. Ground truth phoneme transi-

tion probabilities between any two phonemes

are estimated over the Gigaword corpus. The

phoneme set considered is that of the CMU

Pronouncing Dictionary.1

phoneme transition max Maximum of the set described above.

phoneme transition mean Mean of the set described above.

phoneme transition std Standard deviation of the set described above.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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A.4 WORD FREQUENCY & N-GRAM FEATURES FEATURE DESCRIPTIONS

Section A.4

Word Frequency & N-gram Features

A.4.1. Gigaword-based

Feature Description

tf Term frequency of the target word. Note that all term frequency-

based features are computed using the Scikit-learn library’s

CountVectorizer (Pedregosa et al., 2011).

tf lemma Term frequency of the lemmatized target word. Lemmatization

is performed using NLTK’s WordNet Lemmatizer.

tf summed bpe Sum of the term frequencies of each BPE of the target word.

BPE tokenization is performed using Hugging Face’s BERT

Tokenizer.

tf ngram 2 Sum of the term frequencies of each bigram in the context con-

taining the target word.

tf ngram 3 Sum of the term frequencies of each trigram in the context con-

taining the target word.

tfidf Term frequency-inverse document frequency.

tfidf ngram 2 Sum of the term frequency-inverse document frequencies of each

bigram in the context containing the target word.

tfidf ngram 3 Sum of the term frequency-inverse document frequencies of each

trigram in the context containing the target word.
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A.4 WORD FREQUENCY & N-GRAM FEATURES FEATURE DESCRIPTIONS

A.4.2. Google N-gram-based

Feature Description

google ngram 1 Term frequency of the target word.

google ngram 2 head Term frequency of leading bigram in context containing

the target word.

google ngram 2 tail Term frequency of trailing bigram in context containing

the target word.

google ngram 2 min Minimum of the set of term frequencies of each bigram

in context containing the target word.

google ngram 2 max Maximum of the set described above.

google ngram 2 mean Average of the set described above.

google ngram 2 std Standard deviation of the set described above.

google ngram 3 head Term frequency of leading trigram in context containing

the target word.

google ngram 3 mid Term frequency of middle trigram in context containing

the target word.

google ngram 3 tail Term frequency of trailing trigram in context containing

the target word.

google ngram 3 min Minimum of the set of term frequencies of each trigram

in context containing the target word.

google ngram 3 max Maximum of the set described above.

google ngram 3 mean Average of the set described above.

google ngrams 3 std Standard deviation of the set described above.
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A.4 WORD FREQUENCY & N-GRAM FEATURES FEATURE DESCRIPTIONS

A.4.3. SUBTLEXus-based

Feature Description

FREQcount Number of times the target word appears in corpus.

CDcount Number of films in which the target word appears.

FREQlow Number of times the lowercased target word appears in corpus.

CDlow Number of films in which the lowercased target word appears.

SUBTLWF Number of times the target word appears per million words.

SUBTLCD Percentage of films in which the target word appears.

A.4.4. BNC-based

Feature Description

bnc frequency Term frequency of the target word.
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A.5 SYNTACTIC FEATURES FEATURE DESCRIPTIONS

Section A.5

Syntactic Features

Feature Description

parse tree depth Height of context’s constituency parse tree. We get

tree using Stanford CoreNLP pipeline.

token depth Depth of the target word with respect to root node

of the context’s constituency parse tree.

num words at depth Number of words at the depth of the target word

(see token depth above) in the context’s con-

stituency parse tree.

is proper Boolean for whether the target word is a proper

noun/adjective, based on capitalization.

POS {CC, CD, DT, EX, FW, IN,

JJ, JJR, JJS, LS, MD, NN,

NNP, NNPS, NNS, PDT, POS,

PRP, PRP$, RB, RBR, RBS,

RP, SYM, TO, UH, VB, VBD,

VBG, VBN, VBP, VBZ, WDT,

WP, WP$, WRB}

Booleans for whether the target word’s part-of-

speech tag is such. Tags considered are those used

in the Penn Treebank Project.2 Tags are estimated

using NLTK’s pos tag method.

2https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_
treebank_pos.html
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A.6 READABILITY FEATURES FEATURE DESCRIPTIONS

Section A.6

Readability Features

Feature Description

automated readability index,

avg character per word,

avg letter per word,

avg syllables per word,

char count, coleman liau index,

crawford, fernandez huerta,

flesch kincaid grade,

flesch reading ease,

gutierrez polini, letter count,

lexicon count,

linsear write formula, lix,

polysyllabcount, reading time,

rix, syllable count,

szigriszt pazos, SMOGIndex,

DaleChallIndex

Algorithms applied using the Text-

stat library implementations, most of

whom are readability metrics.
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A.7 OTHER FEATURES FEATURE DESCRIPTIONS

Section A.7

Other Features

Feature Description

ppl Perplexity metric, as defined by the Hugging Face

library.3 For each token in the context, we use a pre-

trained GPT-2 model to estimate the log-likelihood

of the token occurring given its preceding tokens. A

sliding-window approach is used to handle the large

number of tokens in a context. The log-likelihoods are

averaged, and then exponentiated.

ppl aspect only Similar approach to that described above, where only

log-likelihoods of tokens comprising the target word

are averaged.

num OOV Number of words in the context that do not exist in the

vocabulary of Gigaword.

corpus bible,

corpus biomed,

corpus europarl

Booleans indicating the sample’s domain.

3https://huggingface.co/transformers/perplexity.html
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Appendix B

Model Hyperparameters

Here, we provide optimized hyperparameter settings that may help future developers with

reproducing our results, namely for training our models.

Section B.1

XGBoost

Below are tuned parameters used for all of our XGBoost models. Parameters not listed are

given their default values as specified in XGBoost documentation:1

colsample bytree: 0.7

learning rate: 0.03

max depth: 5

min child weight: 4

n estimators: 225

nthread: 4

objective: ‘reg:linear’

silent: 1

subsample: 0.7
1https://xgboost.readthedocs.io/en/latest/
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B.2 MT-DNN MODEL HYPERPARAMETERS

Section B.2

MT-DNN

MT-DNN uses yaml as its config file format. Below are the contents of our task config file:

data format: PremiseAndOneHypothesis

enable san: false

metric meta:

- Pearson

- Spearman

n class: 1

loss: MseCriterion

kd loss: MseCriterion

adv loss: MseCriterion

task type: Regression

Section B.3

Ensemble

Threshold above which a sample is assigned its reduced prediction (ie. XGBoostreduced

prediction) instead of its full prediction (ie. XGBoostfull prediction): 0.59. Note that this

threshold is used to compute our XGBoostfull+reduced prediction.

Regarding weighted average ensemble (single word subtask):

• Weight for XGBoostfull+reduced prediction: 0.5

• Weight for MT-DNN prediction: 0.5

Regarding weighted average ensemble (MWE subtask):

• Weight for XGBoostfull+reduced(head): 0.28
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B.3 ENSEMBLE MODEL HYPERPARAMETERS

• Weight for XGBoostfull+reduced(tail): 0.17

• Weight for MT-DNN prediction: 0.55
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