
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses, Dissertations, and Graduate Essays

Spring 6-1-2021

Fine-Grained Detection of Hate Speech Using BERToxic Fine-Grained Detection of Hate Speech Using BERToxic

Yakoob Khan
Dartmouth College, yakoob.khan.21@dartmouth.edu

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Khan, Yakoob, "Fine-Grained Detection of Hate Speech Using BERToxic" (2021). Dartmouth College
Undergraduate Theses. 221.
https://digitalcommons.dartmouth.edu/senior_theses/221

This Thesis (Undergraduate) is brought to you for free and open access by the Theses, Dissertations, and Graduate
Essays at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate
Theses by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/221?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

FINE-GRAINED DETECTION OF HATE SPEECH USING

BERTOXIC

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Bachelor of Arts

in

Computer Science

by

Yakoob Khan

DARTMOUTH COLLEGE

Hanover, New Hampshire

June 2021

Advised By

Professor Soroush Vosoughi

Department of Computer Science

Preface

A version of the work presented in this thesis has been published in the Proceedings

of the 15th International Workshop on Semantic Evaluation (SemEval) co-located at

the Joint Conference of the 59th Annual Meeting of the Association of Computa-

tional Linguists and the 11th International Joint Conference on Natural Language

Processing (ACL – IJCNLP 2021). I am the first author of the workshop paper [12]

in collaboration with Weicheng Ma and Soroush Vosoughi. Given the nature of this

work, we caution readers that the examples included in this thesis contain explicit

language to illustrate the severity and challenges of hate speech detection.

ii

Abstract

This thesis describes our approach towards the fine-grained detection of hate speech

using deep learning. We leverage the transformer encoder architecture to propose

BERToxic, a system that fine-tunes a pre-trained BERT model to locate toxic text

spans in a given text and utilizes additional post-processing steps to refine the pre-

diction boundaries. The post-processing steps involve (1) labeling character offsets

between consecutive toxic tokens as toxic and (2) assigning a toxic label to words that

have at least one token labeled as toxic. Through experiments, we show that these two

post-processing steps improve the performance of our model by 4.16% on the test set.

We further examined the effect of ensemble models for hate speech detection. The

ensemble neural architectures we studied include late fusion where predictions from

token and sequence classification models are aggregated in the prediction phase and

multi-task learning where the two aforementioned models are trained jointly. Finally,

given the scarcity and costs of obtaining labeled data, we explored data augmentation

strategies such as appending hate speech-related external datasets and token modifica-

tion techniques to generate synthetic training examples. Our system significantly out-

performed the baseline models and achieved an F1-score of 0.683, placing our model

in the 17th place out of 91 teams in a hate speech detection competition. Our code is

made available at https://github.com/Yakoob-Khan/Toxic-Spans-Detection

iii

https://github.com/Yakoob-Khan/Toxic-Spans-Detection

Acknowledgments

This thesis is the culmination of my four years of undergraduate study at Dartmouth

College and I owe a debt of gratitude to many people who helped me along the way.

First and foremost, I would like to express my deepest appreciation to my advisor

Professor Soroush Vosoughi. I first met him during my junior year of college when

I took his Machine Learning course. I was immediately impressed by his easygoing

nature and sought the opportunity to enroll in every course he taught. Despite his

busy schedule, he was willing to supervise my senior thesis and introduced me to the

world of research. I thank him for pointing me towards the problem that this thesis

addresses, which resulted in my first peer-reviewed publication. I am grateful for his

mentorship and will miss our weekly Friday afternoon meetings.

Another person I am deeply indebted towards is Weicheng Ma, a graduate student

pursuing his Ph.D. under Professor Vosoughi. He offered valuable guidance and was

instrumental in the success of this project. Thank you for providing me with coding

pointers to natural language processing libraries and responding to my emails literally

within minutes with helpful suggestions.

Special thanks to Professor Prasad Jayanti and Tim Pierson for serving on my

thesis committee.

I am also extremely grateful to numerous professors who have taught me at Dart-

mouth. I am lucky to have had many great teachers, but I can say without a doubt

that Professor Prasad Jayanti was the best teacher I ever had. He ignited my passion

iv

for Computer Science and encouraged me to keep at it when I questioned my ability

in the subject. Thank you for inspiring my love of learning with your infinite wisdom,

enthusiasm and humor. I am indebted to Professor Deeparnab Chakrabarty for his

excellent course that exposed me to the beauty of algorithms. His raw intellect serves

as a humbling reminder of my limited abilities. I am grateful to have known Professor

Thomas H. Cormen before he retired from Dartmouth. He gave me chance to work

with him as a Teaching Assistant for his Introduction to Computer Science course

and advised me during his time as the undergraduate program director. Many thanks

to Tim Tregubov for being a supportive mentor throughout my time in college. He

taught me Full Stack Web Development and offered me the opportunity to work as

a developer in the DALI Lab building web and mobile applications. Thank you for

indulging my interest to learn beyond the curriculum and supervising my indepen-

dent study courses despite your hectic schedule. Finally, I thank Professor Lorenzo

Torresani for his superb course on Deep Learning, a subject whose ideas I extensively

applied in this work.

Besides my professors, I wish to thank the Stamps Scholars Program at Dartmouth

and the Strive Foundation for the financial support that culminated in this project.

I am indebted to the Department of Computer Science for providing a supportive

learning environment and welcoming students with no prior background.

Last, but certainly not least, I want to thank all my friends that have made my

time at Dartmouth so memorable. Special thanks to my freshman year roommate

Rik Abels for listening to me rant about this thesis and being my workout buddy.

Many thanks to Aadil Islam for being a wonderful friend and giving me a place to

stay in Boston with his family when I needed a change in scenery. Finally, I thank

my parents for their eternal love and encouragement in supporting my dreams despite

living halfway across the world.

v

Contents

Preface . ii

Abstract . iii

Acknowledgments . iv

1 Introduction 1

1.1 Motivation . 1

1.2 What is Hate Speech? . 2

1.3 Problem Formulation . 4

1.4 Contributions . 5

1.5 Organization of Chapters . 6

2 Related Work 7

3 Models 12

3.1 Baselines . 12

3.1.1 Random . 12

3.1.2 SpaCy . 12

3.2 BERToxic . 13

3.2.1 Transformer Architecture . 13

3.2.2 BERT . 16

3.2.3 Toxic Spans Detection . 19

vi

3.3 Ensemble Modeling . 21

3.3.1 Late Fusion . 21

3.3.2 Multi-task Learning . 22

3.4 Data Augmentation . 23

3.4.1 Easy Data Augmentation . 24

3.4.2 External Dataset . 25

4 Experiments 26

4.1 Dataset . 26

4.2 Evaluation Metric . 29

4.3 Implementation Details . 30

5 Results 31

5.1 Model Performances . 31

5.2 Error Analysis . 35

6 Conclusion 37

6.1 Summary . 37

6.2 Limitations . 38

6.3 Future Work . 39

6.4 Broader Impact . 39

References 40

vii

List of Tables

1.1 Selected definitions of hate speech from various sources. 3

1.2 Definition of key terms used for formulating the problem. 4

1.3 A sample example from the dataset to illustrate the problem. 5

4.1 Summary statistics of the span lengths in the data splits. 28

5.1 Summary of the performance of all our models, reporting the precision,

recall and F1 scores on the dev and test sets. 32

5.2 Selected examples obtained from the test set. BERToxic’s predictions

are shown in red while ground truth annotations are italicized. 36

viii

List of Figures

3.1 The transformer architecture. Image credits: Vaswani et al. [28] . . . 14

3.2 The transformer’s attention mechanism. Image credits: Vaswani et al.

[28] . 16

3.3 The pre-training and fine-tuning procedures for BERT. Image credits:

Devlin et al. [5]. 18

3.4 The BERToxic model architecture. Image modified from Devlin et al.

[5]. 19

3.5 The BERT late-fusion model architecture. 22

3.6 The BERT multi-task model architecture. Image modified from Liu et

al. [14]. 23

4.1 Histograms of Span Length in the data splits. 27

4.2 Word Clouds generated from the data splits. 28

5.1 Confusion matrix of the BERToxic model. 33

5.2 Learning curves when training the BERToxic model. 33

5.3 Performance curves when training the BERToxic model. 34

5.4 Comparison of the precision-recall curves of all the models. 34

ix

Chapter 1

Introduction

Section 1.1

Motivation

The promotion of respectful discourse has always been a core tenet of civilized soci-

eties. Unfortunately, the FBI reports that hate incidents are on the rise, with 57.6%

of physical incidents motivated by race and ethnicity [9]. This problem is worsened

in the online space, where the cloak of anonymity enables malicious actors to surrep-

titiously post toxic comments. The wide adoption of social media platforms further

amplifies the spread of offensive content, such as the recent rise of anti-Asian rhetoric

linked to the COVID-19 pandemic [1]. The United Nations Secretary-General Anto-

nio Guterres eloquently remarks that “hate speech is in itself an attack on tolerance,

inclusion, diversity and the very essence of our human rights norms and principles.”

He continues and mentions that “it undermines social cohesion, erodes shared values,

and can lay the foundation for violence, setting back the cause of peace, stability,

sustainable development and the fulfillment of human rights for all.”[20] Given the

negative consequences of hate speech, online platforms have attempted to combat this

problem by building content moderation systems that enable users to flag offensive

1

1.2 What is Hate Speech? Introduction

content for review by human moderators. While this is a step in the right direction,

human moderators are unable to keep pace with the large volume of user-generated

content today and manually verify whether each flagged post violates community

standards. Furthermore, the offensive content might have already spread and caused

considerable damage before it is addressed by a platform. These issues motivate the

research and development of natural language processing systems to automatically

detect hate speech to ensure that online platforms remain healthy and inclusive for

all. Before considering the development of hate speech models, it is crucial that we

first have a nuanced understanding of what constitutes hate speech.

Section 1.2

What is Hate Speech?

Determining whether a piece of text is considered hate speech is by no means a simple

task even by humans, let alone machines. Hate speech is highly subjective in nature

and what construes as offensive to one individual may not be the case for another

depending on one’s background, context, socio-cultural factors and language nuances.

To gain a visceral understanding of hate speech in all its subtleties, it is prudent to

learn how multiple sources chose to define it (Table 1.1).

While the specific definitions of hate speech may vary depending on the source,

they share a number of commonalities, as pointed out by Fortuna and Nunes [10]:

1. Hate speech has specific targets and is based upon specific characteristics of

groups like race, religion, ethnicity etc.

2. Hate speech incites violence and retaliation against such groups.

3. Hate speech attacks or diminishes such groups.

4. Hate speech is complicated by the use of humor and sarcasm.

2

1.2 What is Hate Speech? Introduction

Source Definition

Cambridge Dic-

tionary

“Public speech that expresses hate or encourages violence to-

wards a person or group based on something such as race,

religion, sex, or sexual orientation.” [6]

Facebook “We define hate speech as a direct attack against people on the

basis of what we call protected characteristics: race, ethnicity,

national origin, disability, religious affiliation, caste, sexual ori-

entation, sex, gender identity and serious disease.” [8]

YouTube “We consider content hate speech when it incites hatred or

violence against groups based on protected attributes such as

age, gender, race, caste, religion, sexual orientation, or veteran

status. This policy also includes common forms of online hate

such as dehumanizing members of these groups; characteriz-

ing them as inherently inferior or ill; promoting hateful ide-

ology like Nazism; promoting conspiracy theories about these

groups; or denying that well-documented violent events took

place, like a school shooting.” [32]

Twitter “You may not promote violence against or directly attack or

threaten other people on the basis of race, ethnicity, national

origin, caste, sexual orientation, gender, gender identity, re-

ligious affiliation, age, disability, or serious disease. We also

do not allow accounts whose primary purpose is inciting harm

towards others on the basis of these categories.” [27]

Table 1.1: Selected definitions of hate speech from various sources.

3

1.3 Problem Formulation Introduction

A number of related concepts that often accompany hate speech include: discrim-

ination, flaming, abusive language, profanity, extremism, radicalization [10]. While

by no means an exhaustive list, we are now equipped with a better understanding of

the various kinds of hate speech that could be present on online platforms.

Section 1.3

Problem Formulation

Before technically formulating the hate speech problem that the remainder of this

thesis seeks to address, it is helpful to define some key terminologies that will allow

us to frame the problem (Table 1.2).

Term Definition

Document This refers to any piece of distinct text like an online post,

comment, article etc.

Span An ordered sequence of words extracted from a document, rep-

resented using a list of character offsets (zero-indexed).

Table 1.2: Definition of key terms used for formulating the problem.

A natural question one might ask is whether a given document contains hate

speech? While relevant, this binary classification task does not explain why a given

document is considered toxic by the model. Another question one might be prompted

to ask is the degree of toxicity contained in a given document? Again, merely pro-

viding an unexplained toxicity score in such a regression task does not sufficiently

assist human moderators to address questionable content. The inability of these

course-grained questions to identify the spans that ascribe the offensive sections of

a document motivated the formulation of the Toxic Spans Detection problem by

4

1.4 Contributions Introduction

Pavlopoulos et al. [21].

Formally, given a document D consisting of the sequence of character indexed

[0, 1, · · · , n − 1, n], a system S is tasked to extract the list of character offsets Sd

that maps to the toxic spans contained within D, if present. Consider the following

example:

Document Because he’s a moron and bigot. It’s not any more complicated

than that.

Span [15, 16, 17, 18, 19, 25, 26, 27, 28, 29]

Table 1.3: A sample example from the dataset to illustrate the problem.

As there are two toxic spans in the above text, systems are asked to extract the

character offsets (zero-indexed) corresponding to the sequence of toxic words. This is

a challenging task as classification at the word-level is inherently more difficult than

at the document-level. The intentional obfuscation of toxic words, use of sarcasm

and the subjective nature of hate speech further adds complexity to the problem.

Being able to solve this difficult problem will assist human moderators to efficiently

locate offensive content in long posts and elucidate further insight into hate speech

explainability.

Section 1.4

Contributions

Our contributions to the hate speech problem are threefold:

1. We propose BERToxic, an empirically powerful system that fine-tunes a pre-

trained BERT model with additional post-processing steps to achieve an F1-

score of 0.683, placing our model in the 17th place out of 91 teams in a hate

5

1.5 Organization of Chapters Introduction

speech competition.

2. We examine late fusion and multi-task learning neural architectures and con-

clude that they under-perform compared to the standalone BERT model for

this task.

3. We study the effects of simple data augmentation strategies on our system and

find that they yield no improvement in classification performance.

Section 1.5

Organization of Chapters

The following list provides an overview of how the remainder of this thesis is organized.

• Chapter 2 reviews related work on the automatic detection of hate speech.

• Chapter 3 describes the models we develop for the fine-grained detection of hate

speech.

• Chapter 4 describes the experimental set-up to evaluate the performance of our

models.

• Chapter 5 analyzes the results of our experiments.

• Chapter 6 concludes this thesis by summarizing our findings, highlighting limi-

tations and providing future avenues of work.

6

Chapter 2

Related Work

There has been extensive research on hate speech detection and the literature on

this subject is vast. Rather than providing a systematic literature review that many

excellent survey papers already provide [25, 10], we will highlight the main approaches

used for the automatic detection of hate speech. Our review of the related work seeks

to contextualize readers to some previous approaches to address the hate speech

detection problem and is by no means exhaustive. We summarize the main techniques

from the comprehensive survey conducted by Fortuna and Nunes [10].

We start the exploration by reviewing some feature extraction techniques to cap-

ture salient features related to hate speech.

Dictionaries. One of the simplest strategies to detect offensive language is the use

of dictionaries that consists of a collection of words. The dictionaries could be con-

structed using websites like https://www.noswearing.com that contain pre-compiled

lists of offensive words like profanity, insults, slurs, etc. Hence, this rudimentary dic-

tionary technique essentially creates a hand-crafted “blacklist” of toxic words that

can be used to filter texts that are likely to contain offensive language. Given a piece

of text, the document is tokenized into words and looked up in the dictionary. The

7

https://www.noswearing.com

Related Work Related Work

matched words and their frequencies can either directly be used as features or com-

puted into scores. This is one of the techniques used by Dinakar et al. [7] to detect

cyberbullying on social media. However, the obfuscation of offensive words (such as,

ass 7→ a$$) can easily evade the detection of this simple key-word spotting approach.

Bag-of-words. This is another approach that is similar to dictionaries where words

are used as surface-level features. Unlike dictionaries that use a pre-defined list of

offensive words, bag-of-words techniques utilize a training corpus to collect the list of

words and their associated frequencies. This information is then used as features to

train a classifier for hate speech detection. For instance, Greevy and Smeaton [11]

use this approach to train a Support Vector Machine (SVM) to classify racist texts.

The disadvantage of this technique is that it completely ignores word sequences and

examines words in isolation. This results in a loss of the semantic content of the

training examples. Unable to capture the words in context, misclassifications are

likely to occur as offensive words can be used in neutral contexts.

N-grams. This model builds upon the earlier approaches by collecting sequences of

words, instead of single words. More technically, this technique combines sequential

words into lists with the goal of enumerating all the expressions of size N and com-

puting their associated frequencies. Note that bag-of-words is a special case of this

approach where N = 1 (unigrams). Other common values of N used are 2 (bigrams)

and 3 (trigrams). Using N -grams as features typically improves the classification

performance of hate speech detection as it incorporates some degree of context for

each word. It is also possible to consider character or syllable N -grams as features

as this finer level of granularity is not as susceptible to spelling variations compared

to word-level N -grams. Indeed, one study by Mehdad and Tetreault [17] found that

character N -gram features proved to be more predictive than word N -gram features

8

Related Work Related Work

for abusive language detection. Nevertheless, N -gram techniques suffer drawbacks

when contextual words are distanced further apart from each other. While increas-

ing the value of N may be a way to overcome this problem, this solution increases

computational time.

TF-IDF. The Term Frequency-Inverse Document Frequency is a statistical mea-

sure of the relevance of a word in a document within a corpus by proportionally

increasing the number of times a word appears in the document. This approach is

distinct from bag-of-words and N -grams as the TF-IDF value is offset by the number

of documents in the corpus that contain the word. This adjusts for the fact that some

words appear more frequently than others (e.g stopwords). TF-IDF can be used to

extract features to train a classifier. In the same study, Dinakar et al. [7] applies

the TF-IDF technique to detect cyberbullying on social media. However, TF-IDF

also has limitations as it makes no use of semantic similarities between words and

computes document similarity directly in the word-count space, which may be slow

for large vocabularies.

Word Embeddings. This is a class of methods that learn a real-valued vector rep-

resentation of words for a pre-defined fixed-sized vocabulary from a corpus of text.

Words that have similar meanings have similar representations in the vector space,

thereby capturing the semantic similarity between words. Popular word embedding

algorithms include word2vec developed by Mikolov et al. [18] and GloVe by Penning-

ton et al. [22]. Given a document, such pre-trained word embeddings can be used

to extract semantic features for training a hate speech classifier. For example, Bad-

jatiya et al. [2] reported that word embeddings used in deep learning models for hate

speech detection in tweets improved the F1-score by 18% compared to the character

and word N -gram methods.

9

Related Work Related Work

Classical Machine Learning. Having explored a number of feature extraction

methods, we will briefly mention the classical models that the features could be fed

into for hate speech prediction. These include Logistic Regression, Support Vector

Machines (SVM) and Random Forest Decision Tree, among others. Many authors

report that combining the models into ensembles and aggregating the predictions

often improve the classification performance. Most machine learning solutions on

hate speech detection rely on manually labeled training examples in a supervised

learning setting.

Deep Learning. Rather than relying on feature extraction methods selected man-

ually, deep learning uses feature learning to automatically learn hidden patterns end-

to-end. For instance, Saksesi et al. [23] used recurrent neural networks (RNN) to

process text data for hate speech detection. However, RNNs are known to suffer from

the vanishing gradient problem, making it difficult to learn from long-term dependen-

cies. Long Short-Term Memory (LSTM) / Gated Recurrent Units (GRU) attempt to

overcome this problem by having multiple gates to improve gradient flow. However,

LSTMs are easy to overfit and take longer to train due to the inherent recurrence

structure that prevents parallelization. These issues were overcome with the invention

of the transformer architecture by Vaswani et al. [28], subsequently inspiring the de-

velopment of the BERT model by Devlin et al. [5] that have achieved state-of-the-art

performance in numerous NLP benchmark tasks. The high performance achieved by

BERT-based language models has made it the most popular approach for hate speech

detection in recent times. Typical solutions leverage transfer learning by fine-tuning

a pre-trained deep learning model on a hate speech training dataset. The success of

this approach and capability for end-to-end learning motivated us to leverage deep

learning for the fine-grained detection of hate speech.

10

Related Work Related Work

Datasets. To the best of our knowledge, there is currently no standardized hate

speech benchmark dataset for the fair comparison of various approaches. Many au-

thors have collected their own datasets to study specific aspects of hate speech detec-

tion. Nevertheless, it is worth noting that progress has been made in open-sourcing

hate speech datasets by some researchers. For example, Wulczyn et al. [30] released

a corpus of approximately 100, 000 human-annotated English Wikipedia comments.

This data formed the basis of the Toxic Comments Classification Challenge on Kaggle

and resulted in the release of the Perspective API by Jigsaw/Google that categorizes

hate speech into six categories (severe toxicity, insult, profanity, identity attack, threat

and sexually explicit). Competitions on hate speech detection have further resulted

in the curation of some hate speech datasets. For instance, Zampieri et al. created

the Offensive Language Identification dataset [33, 34] that consists of 14, 200 tweets

that were labeled using a hierarchical three-level annotation model.

Problem Formulation. Prior work has hitherto focused on classification at the

document-level based on various taxonomies, such as whether a given text contains

offensive language, if it is targeted towards an individual or group, and categorizing

the text into a number of pre-defined labels. While these are good questions to

gain a multi-faceted understanding of hate speech, such problem formulations do not

identify the words and phrases that attribute to the text’s toxicity. In other words,

hate speech detection has not yet been formulated as a sequence labeling problem,

which this thesis addresses.

11

Chapter 3

Models

In this chapter, we develop various models for solving the toxic spans detection prob-

lem.

Section 3.1

Baselines

To have a better sense of our final system’s performance, we initially examined two

baseline models to establish lower bounds for classification performance.

3.1.1. Random

First, we created a trivial model that randomly predicts each character offset of a text

as toxic if its probability is greater than half (i.e ρ > 0.5), drawn from a continuous

uniform probability distribution. This dummy model relies purely on randomization

and makes no use of the semantic content of the underlying text.

3.1.2. SpaCy

To have a stronger baseline model, we fine-tuned the off-the-shelf spaCy NER model.

This model consists of a multi-hash embedding layer (feed-forward sub-network) that

12

3.2 BERToxic Models

uses sub-word features and an encoding layer consisting of a CNN and a layer-

normalized max-out activation function. The model uses a transition-based algorithm

that assumes that the “most decisive information” regarding the entities “will be close

to their initial tokens”, with a loss function that optimizes for whole-entity accuracy.

Section 3.2

BERToxic

Having established baseline models for comparison, we are ready to describe our

proposed BERToxic system. Our model builds upon the Transformer architecture

[28], which we describe in the following section.

3.2.1. Transformer Architecture

In the seminal paper “Attention Is All You Need” [28], Vaswani et al. introduced

the Transformer architecture that revolutionized the field of NLP. This architecture

forms the basis of numerous language models today and understanding it is crucial

to appreciate our proposed BERToxic system. To benefit readers who are unfamiliar

with transformers, we will provide a brief overview of the architecture in this section

based on the aforementioned paper.

The transformer architecture is a sequence transduction model that was initially

proposed for the task of machine translation. Its novelty relies on the use of attention

mechanisms, enabling the neural network to effectively learn relationships between

the input and output sequences. Furthermore, the transformer eliminates the use

of recurrence and convolutional structures that used to be prevalent in the past.

Removing the sequential dependency enables the effective use of parallelism, thereby

reducing the time taken to train models.

Having briefly introduced the transformer architecture, we will now describe its

13

3.2 BERToxic Models

Figure 3.1: The transformer architecture. Image credits: Vaswani et al. [28]

14

3.2 BERToxic Models

main components, referencing the visualization provided in Figure 3.1. The trans-

former uses an encoder-decoder architecture, with the encoder and decoder shown

on the left and right sides of Figure 3.1 respectively. The encoder maps a se-

quence of inputs (x1, x2, · · · , xn) to a sequence of continuous representations z =

(z1, z2, · · · , zn). Given z, the decoder then auto-regressively generates the output

sequence (y1, y2, · · · , ym) one token at a time. The overall transformer consists of

multiple encoders and decoders stacked on top of each other, represented as Nx in

Figure 3.1. Let us now delve deeper to study the constituents of the encoder and

decoder blocks.

The encoder consists of a stack of N = 6 identical layers. Each layer consists

of two sub-layers: a multi-head self-attention mechanism and a fully connected feed-

forward network. Residual connections around each of the two sub-layers exist to

improve gradient flow and layer normalization follows subsequently. All the encoding

blocks produce an output of dimension 512, which is the maximum sequence length

allowed by the architecture.

The decoder is similarly composed of a stack of N = 6 identical layers. Besides

the two sub-layers, each decoder block also includes a third multi-head attention sub-

layer. Again, residual connections are featured here and the self-attention sub-layer

in the decoder is modified to ensure that predictions at position i are only attended

by previous positions less than i.

The power of the transformer lies upon its novel self-attention mechanism (Figure

3.2). Based on the intuition that humans pay attention to certain words in a sentence

more so than others, the attention mechanism looks at an input sequence and learns

which parts of the input to attend towards. Technically, the attention function maps

a query (Q) and a set of key (K) value (V) pairs to an output, where the query, key,

value and output are all vectors. Multi-head attention allows the model to jointly

15

3.2 BERToxic Models

Figure 3.2: The transformer’s attention mechanism. Image credits: Vaswani et al.

[28]

attend to information from different representation sub-spaces at different positions,

which is not possible using a single attention head. Unfortunately, this self-attention

mechanism introduces the main efficiency bottleneck in transformers. Each token’s

representation is updated by attending to all other tokens in the previous layer,

incurring a computation complexity of O(n2) time. As such, this quadratic time

complexity increases the training time of transformer-based models.

3.2.2. BERT

Having provided an overview of the transformer architecture, we will now describe

the BERT model on which our namesake BERToxic system is based upon. The

Bidirectional Encoder Representation from Transformers (BERT) model was pro-

posed by Devlin et al. [5] as a general language representation model. As the name

suggests, it utilizes the encoder stack from the transformer architecture and innovates

16

3.2 BERToxic Models

by pre-training deep bidirectional representations from unlabeled text by jointly con-

ditioning on both the left and right context in all layers. The pre-trained BERT

model can be used to approach a wide variety of downstream tasks by having just

one additional task-specific output layer to achieve state-of-the-art results. Given

its high performance and uniform architecture, the BERT model has been a popular

model of choice in recent years. Based on the excellent BERT paper [5], we provide

an overview for readers who are unfamiliar with this model.

A major limitation of language models prior to BERT was the uni-directionality

constraint during pre-training. The inability to incorporate context from both direc-

tions limits the language model’s effectiveness when fine-tuned for downstream tasks.

BERT overcomes the uni-directionality constraint by using a Masked Language Model

(MLM) pre-training objective. The key idea is to randomly mask some of the input

tokens, with the goal of predicting the masked tokens based only on the context.

Besides the MLM objective, BERT also utilizes the Next Sentence Prediction (NSP)

objective that pre-trains text-pair representations. Both these tasks are unsupervised

and do not require the use of labeled data. Figure 3.3 visualizes the two pre-training

tasks used by BERT, which we elaborate on below.

It makes intuitive sense that a deep bidirectional model obtains richer contextual

feature representations than a unidirectional model. In the Masked Language Mod-

eling (MLM) task, 15% of the tokens in each sequence is masked with the [MASK]

token at random. The fill-in-the-blanks exercise enables the model to incorporate the

context in both the left and right sides to predict the missing tokens. Note that since

the input tokens are masked at random and standard cross-entropy loss is used to

train the MLM objective, the task is unsupervised in nature and does not require the

use of labeled data.

Some downstream tasks such as question-answering rely on understanding the

17

3.2 BERToxic Models

Figure 3.3: The pre-training and fine-tuning procedures for BERT. Image credits:

Devlin et al. [5].

relationship between two sentences. Since MLM does not directly capture this re-

lationship, BERT also incorporates the Next Sentence Prediction (NSP) task. The

NSP task is set up by first creating pairs of sentences from the original corpus. For

any given sentence pair A and B, 50% of the time, sentence B directly follows sen-

tence A and 50% of the time, it is a random sentence. The [SEP] token is used

in BERT’s input representation for this purpose while the [CLS] token is used for

sequence classification. Again, note that the NSP task is unsupervised in nature and

does not require the use of any labeled data.

The unsupervised nature of the two pre-training tasks enables BERT to learn

from a large corpus of text. BERT is pre-trained with the BookCorpus (800M words)

and the English Wikipedia (2500M words), enabling it to learn rich language feature

representations. The parameters of the pre-trained BERT model can then be fine-

tuned with just one task-specific output layer for a wide variety of downstream tasks.

BERT traditionally comes in two model sizes - BERTBASE and BERTLARGE. The

former model consists of 12 layers, 768 hidden size and 12 self-attention heads with

18

3.2 BERToxic Models

110M parameters. The latter model consists of 24 layers, 1024 hidden size and 24

self-attention heads with 340M parameters. It is notable that the original BERT

model inspired a whole family of BERT-based model variants such as DistilBERT

[24], RoBERTa [15], ALBERT [13] etc.

3.2.3. Toxic Spans Detection

Having described the preliminary background literature, we are now ready to intro-

duce our proposed BERToxic system (Figure 3.4). We framed the toxic spans detec-

tion task as a sequence labeling problem and leverage the BERT model to extract

rich feature representations from the input texts.

Figure 3.4: The BERToxic model architecture. Image modified from Devlin et al. [5].

The first step in our system’s pipeline was to tokenize the text inputs and generate

the word embeddings using BERT’s WordPiece tokenizer. This sub-word tokeniza-

tion algorithm by Schuster and Nakajima [26] tokenizes a word like "moron" into

19

3.2 BERToxic Models

["mo","##ron"] and we ensured that the ground truth labels were preserved across

all tokens of a word. As BERT uses absolute position embeddings, we padded shorter

sequences with [PAD] tokens on the right side such that all tensor inputs are set to

equal the maximum sequence length observed for batched parallelized training. Long

sequences were truncated to 512 tokens, the maximum sequence length allowed by

BERT. As the data was obtained from online comments that are generally shorter in

nature, the truncation procedure was not needed in this task but nevertheless served

to handle long sequences if present.

We also stored the mapping

M : ti 7→ (starti, endi)

of each token to its relative character offsets in the original string, used for outputting

the toxic span predictions at the post-processing stage.

We performed all of our experiments using the BERTBASE model architecture that

consisted of 12 layers, 768 hidden size, 12 self-attention heads and 109M parameters.

The BERTLARGE model was not explored in this work due to its compute-intensive

nature. Our intuition suggested that letter casing could be helpful for this task as

proper nouns (e.g Muslim) can be used offensively, so we selected the cased model

for our experiments. A token classification head containing a linear layer was applied

on top of the final hidden-states output, with a label prediction of 1 denoting a toxic

token, 0 otherwise. For each token ti labeled as toxic, we utilized M to output all

character indices in the range of (starti, endi) inclusive as the toxic span of this token.

Additionally, our system performed two post-processing steps to refine the bound-

ary predictions. Consider the following tokenized sequence:

t1, · · · , ti, ti+1, ti+2, · · · , tn

20

3.3 Ensemble Modeling Models

First, for any two consecutive tokens ti and ti+1 whose prediction labels are toxic, we

output the character indices in the range of (endi + 1, starti+1 − 1) inclusive as toxic

as well. This had the effect of including the delimiter characters between consecutive

toxic words, thereby detecting toxic phrases. Second, recall that BERT’s WordPiece

tokenizer could split a word into multiple tokens, say ti, ti+1 and ti+2. If at least

one token was predicted toxic by the model, our system assigned a toxic label to all

constituent tokens of this word. This achieved coherence in the prediction of toxic

words and phrases, thus avoiding incomplete word piece issues.

We also attempted to vary the thresholds of the confidence scores before SoftMax

for toxic token predictions but observed no improvement in performance.

Section 3.3

Ensemble Modeling

Ensemble modeling is an approach where multiple different models are trained and

their predictions are aggregated. By adding bias to counter the variance of a single

model, this line of work has been shown to improve the predictive performance of a

system [14]. While numerous ensemble modeling techniques like boosting, bagging,

etc. exist, we investigated two techniques of interest: late fusion and multi-task

learning.

3.3.1. Late Fusion

We reframed the problem as a binary classification task and trained a sequence clas-

sifier to predict whether a given sentence is toxic. In the late fusion approach, we uti-

lized NLTK’s tokenizer to split each document into sentences. If a sentence contained

a ground truth toxic span, we assigned the toxic class label 1, 0 otherwise. In this

way, a binary classification dataset was created to separately fine-tune a pre-trained

21

3.3 Ensemble Modeling Models

BERT sequence classifier. We hypothesized that token labels should be predicted

toxic only if the corresponding sentence was classified as toxic as well. Late fusion

was performed at the prediction phase, where both the sequence and token classifiers

voted in the predictions by having the former model filter toxic sentences on which

the latter model made final toxic span predictions. Figure 3.5 below visualizes the

late-fusion neural architecture.

Figure 3.5: The BERT late-fusion model architecture.

3.3.2. Multi-task Learning

Rather than fine-tuning the two models separately, we also investigated if multi-task

learning (MTL) improved the predictive performance of the ensemble model. We

hypothesized that a training regime where the two classifiers were learned jointly

could be useful as the knowledge gained in learning one task could benefit the other.

To perform MTL, we fine-tuned the Multi-task Deep Neural Network (MT-DNN)

model proposed by Liu et al. [14]. In the MT-DNN model, the text encoding lower

BERT layers are shared across the two tasks while the top layers are task-specific.

During fine-tuning, a mini-batch bt is selected and the model is updated according to

the task-specific objective for the task t. This approximately optimizes the sum of

22

3.4 Data Augmentation Models

all multi-task objectives. Figure 3.6 below visualizes the multi-task learning neural

architecture.

Figure 3.6: The BERT multi-task model architecture. Image modified from Liu et

al. [14].

Section 3.4

Data Augmentation

Data augmentation is widely used to improve the generalization of models by acting

as a regularizer to reduce overfitting. While various sophisticated techniques exist

to artificially enhance the size and quality of the training set without collecting ad-

ditional manually labeled examples, we chose to investigate two data augmentation

techniques of interest: Easy Data Augmentation and using an external dataset.

23

3.4 Data Augmentation Models

3.4.1. Easy Data Augmentation

We chose to apply the set of Easy Data Augmentation (EDA) techniques by Wei

and Zou [29] to generate synthetic training data for this task. As outlined in their

paper, the four operations in EDA are the following:

1. Synonym Replacement (SR): Randomly pick n words from the document

that are not stop words. Replace each of these words with a random synonym

obtained from WordNet [19].

2. Random Insertion (RI): Randomly pick a synonym of a random word in the

document that is not a stop word. Insert this synonym into a random position

in the document. Repeat this procedure n times.

3. Random Swap (RS): Randomly pick two words from the document and swap

their positions. Repeat this procedure n times.

4. Random Deletion (RD):: Randomly remove each word in a document with

probability ρ.

Shorter documents are disproportionately more affected by these operations if a

fixed number of words are modified per document. To ensure that all documents ex-

perienced the augmentation strength proportionately, the number of words n modified

was varied based on the document length l using the formula

n = α · l

where α is a hyper-parameter that indicates the percentage of words changed per

document. Each operation was applied once per document and care was taken to

ensure that the ground truth labels were preserved.

24

3.4 Data Augmentation Models

Our experiments revealed that the recommended value of α = 0.1 was too low

for this task and we observed small but consistent improvements as α increases.

Furthermore, we noted that the SR technique alone leads to better performance than

using all four operations to create the augmented training set for this task.

3.4.2. External Dataset

We also attempted data augmentation using the external HateXplain dataset by

Matthew et al. [16] that contains 20, 148 documents with word-level annotations

that we processed to conform to the toxic span’s detection data format. Each doc-

ument consisted of 2 – 3 annotations and we used their intersection to maximize

the inter-annotator agreement in constructing the ground truth labels. HateXplain’s

annotation strategy appeared to be different and included labeling pronouns, con-

junctions and stop words as toxic when located between offensive words. We removed

such toxic labels so that the external dataset annotation was more similar to this task.

When our task dataset was augmented with the full external dataset, the model ex-

perienced underfitting, while removing all the non-toxic labeled documents from the

external dataset alleviated the issue to some extent.

25

Chapter 4

Experiments

In the following sections, we describe the experimental setup of our work.

Section 4.1

Dataset

The task data was sourced from the Civil Comments dataset by Borkan et al. [3],

which contains public comments made between 2015 – 2017 that appeared on ap-

proximately 50 English-language news sites across the world. As the original dataset

contained only document-level class labels, the task organizers selected a subset of

the data for crowd-sourced toxic spans annotation. For the data split, we chose to

fine-tune our models using the entire provided training dataset (N = 7939) to maxi-

mize performance, validate using the trial dataset (N = 690), and evaluate our model

using the test data (N = 2000). The test labels were withheld during the evaluation

phase of the competition and were only released afterward.

It is useful to perform exploratory data analysis to get a nuanced understanding of

the data. Let us first examine the ground truth annotations. Figure 4.1 visualizes the

distribution of the span lengths in the three data splits. We plot the histograms using

bins of size 150 and only consider span lengths less than 100 as there is a negligible

26

4.1 Dataset Experiments

number of spans beyond this length. As seen from the histogram plots, the span

lengths of all three data sets follow a right-skewed distribution, with the majority of

documents having toxic span annotations that are less than 20 character offsets long.

0 20 40 60 80 100

Span Length

0

200

400

600

800

1000

1200

C
ou

nt

Train Set

0 20 40 60 80 100

Span Length

0

20

40

60

80

100

C
ou

nt

Dev Set

0 20 40 60 80

Span Length

0

50

100

150

200

250

300

350

400

C
ou

nt

Test Set

Figure 4.1: Histograms of Span Length in the data splits.

Table 4.1 provides further insights by showing the summary statistics observed

in the annotations. The statistics reveal that there is significant variation in the

distribution of toxic annotations in various data splits. In particular, note that the

mean span length in the test set is much lower than the other two sets. Furthermore,

the standard deviation in the three data splits varies considerably. We note that these

differences can impact the performance metrics of the models in the data splits.

Finally, we visualized the 100 most frequent offensive words that are not stop

27

4.1 Dataset Experiments

Set Mean Median Mode Standard Deviation

Train 17.5 8.0 6.0 45.7

Dev 14.7 8.0 6.0 25.5

Test 7.2 6.0 6.0 17.7

Table 4.1: Summary statistics of the span lengths in the data splits.

words in Figure 4.2. The word clouds reveal that some of the most common toxic

words found in the data include “idiot”, “stupid” and “moron”.

Figure 4.2: Word Clouds generated from the data splits.

28

4.2 Evaluation Metric Experiments

Section 4.2

Evaluation Metric

To evaluate the performance of the models, the task organizers employed a variant of

the F1-score proposed by Da San Martino et al. [4]. For a document d, define Sd as

the set of toxic character offsets predicted by a system and Gd as the set of ground

truth annotations. Then the F1-score of the system with respect to ground truth G

for d is defined as

F1
d(G) =

2 · P d(G) ·Rd(G)

P d(G) +Rd(G)

where

P d(G) =
|Sd ∩Gd|
|Sd|

Rd(G) =
|Sd ∩Gd|
|Gd|

If a document has no ground truth annotation (Gd = ∅), or the system outputs no

character offset prediction (Sd = ∅), we set

F1
d(G) =

1 Gd = Sd = ∅

0 otherwise

We finally take the arithmetic mean of F1
d(G) over all the documents of an evaluation

dataset to obtain a single F1-score for the system.

29

4.3 Implementation Details Experiments

Section 4.3

Implementation Details

We utilized the PyTorch framework for the development of our system, HuggingFace’s

transformers library for the BERT-based models and Microsoft’s implementation of

the MT-DNN model. All models were trained on Google Colab Pro’s High-RAM

environment using a single NVIDIA P100 GPU. The training policy used the following

hyper-parameters: batch size of 16, sequence length of 512, weight decay of 0.01.

For optimization, we used Adam with a learning rate of 5e-5 and a linear warm-

up schedule over 500 steps. All our models were fine-tuned for approximately 2

epochs and we practiced early stopping by monitoring the dev F1-score to reduce

overfitting. The MT-DNN model was fined-tuned for 3 epochs with a batch size of 8.

The EDA experiment was performed with α = 0.8 using only the SR technique. All

other hyper-parameters were set to their default values according to HuggingFace’s

implementation. We set a random seed for all our experiments and open-sourced the

code for reproducibility.

30

Chapter 5

Results

In this section, we present the results of our experiments and analyze our findings.

Section 5.1

Model Performances

On the following page, Table 5.1 summarizes the performance metrics of all our

models. The BERToxic model outperformed the strong spaCy baseline by 4.16% on

the test set, placing our system in the 17th place out of 91 teams in the SemEval Toxic

Spans Detection competition. In comparison, the top-ranked submission achieved an

F1-score of 0.708. The experiments also revealed that our data augmentation and

ensemble modeling strategies did not outperform the standalone BERT model.

An interesting observation we noted from Table 5.1 was that the F1 scores for

the test set were higher than the dev set for many of the models. We hypothesize

that this is because the models have an inductive bias to predict shorter toxic spans,

evidenced by the average ground truth span length of 7.2 in the test set and 14.7 in

the dev set (Table 4.1).

Figure 5.1 shows the confusion matrix of the BERToxic system at the token level

on the test set, revealing insights about the classification performance in each category

31

5.1 Model Performances Results

Model Dev Test

Precision Recall F1 Precision Recall F1

Random 0.143 0.463 0.175 0.089 0.413 0.122

SpaCy 0.692 0.588 0.595 0.664 0.686 0.656

BERToxic 0.781 0.678 0.681 0.683 0.732 0.683

+ EDA 0.787 0.683 0.684 0.681 0.725 0.678

+ HateXplain 0.792 0.674 0.681 0.683 0.721 0.678

BERT late fusion 0.733 0.636 0.639 0.675 0.709 0.669

BERT multi-task 0.744 0.629 0.634 0.665 0.694 0.656

Table 5.1: Summary of the performance of all our models, reporting the precision,

recall and F1 scores on the dev and test sets.

and highlighting the imbalance of the class labels.

Figure 5.2 displays the learning curves of the BERToxic model during the training

process. It can be seen that the model converges after 2 epochs, with the training loss

curve fluctuating throughout the fine-tuning process while the dev loss curve steadily

plateaus.

Figure 5.3 visualizes the performance metrics of the BERToxic model on the dev

set during the training process. It can be seen that the precision curve is above the

recall and F1-score curves. Along with the loss curve in Figure 5.2, these visualizations

ensure that the model convergence has occurred and overfitting was prevented.

Figure 5.4 compares the precision-recall curves of all the models at the token-

level on the test set. The area under the curve is enclosed within parentheses in the

figure. We note that the curves for the spaCy and BERT multi-task model are less

detailed due to the ambiguity in obtaining the probability scores from their respective

implementations, necessitating the use of their predicted labels instead.

32

5.1 Model Performances Results

Neutral Toxic
Predicted

Ne
ut

ra
l

To
xi

c
Ac

tu
al

93.67% 2.07%

1.04% 3.22%
0.2

0.4

0.6

0.8

Figure 5.1: Confusion matrix of the BERToxic model.

0 250 500 750 1000 1250 1500 1750 2000
Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

Train
Dev

Figure 5.2: Learning curves when training the BERToxic model.

33

5.1 Model Performances Results

0 250 500 750 1000 1250 1500 1750 2000
Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
co

re

Precision
Recall
F1

Figure 5.3: Performance curves when training the BERToxic model.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Random (0.043)
SpaCy (0.645)
BERToxic (0.703)
+ EDA (0.7)
+ HateXplain (0.694)
BERT Late Fusion (0.706)
BERT Multitask (0.652)

Figure 5.4: Comparison of the precision-recall curves of all the models.

34

5.2 Error Analysis Results

Section 5.2

Error Analysis

In this section, we analyze the performance of our best performing BERToxic model.

Table 5.2 on the following page highlights selected predictions that our model made

on the test set. Our proposed system performed well at the toxic spans detection task,

showing strength in identifying profanity and common toxic words like “idiot” and

“stupid”. The model identified the obfuscation of offensive words and successfully

detected hate speech from such adversarial cases (Example 1).

The error analysis revealed that the system lacked nuance as it would sometimes

classify toxic words used in neutral contexts (Example 2). It is also worth mentioning

that there was considerable noise in the ground truth annotations. Our manual

inspections concurred with the model’s predictions that some words and phrases were

used in offensive contexts but the annotators thought they were neutral (Example 3

and 4). Furthermore, we observed some inconsistencies in the labeling scheme as some

annotations spanned entire sentences (Example 5) while others only highlighted a few

words in the sentence. These issues point to the subjective nature of hate speech and

the challenges involved in its fine-grained classification.

We found through our ablation studies of data augmentation that generating

synthetic data using the EDA techniques did not improve the performance of the

system. This suggested that the dataset size does not appear to be the limiting factor

affecting the performance of BERT in this task. Using HateXplain’s external dataset,

we learned that different data sources and annotation guidelines can introduce noise

that hurts the performance of models.

Finally, the ensemble modeling strategies we explored did not outperform the

standalone BERT model. The late fusion technique performed slightly better than

35

5.2 Error Analysis Results

the spaCy baseline, but it seemed that the sequence classifier made errors on similar

parts of the input space as the token classifier. The multi-task learning approach

underperformed compared to late fusion, suggesting that the sequence labeling and

classification tasks are not closely related enough to benefit their joint training.

1. Kill this F’n W*ore on site.

2. .. how I am an ignorant fool ..

3. Nazi boneheads deserve being punched.

4. @ remoore Shut up, racist.

5. Cruz is a piece of garbage a globalist fraud

Table 5.2: Selected examples obtained from the test set. BERToxic’s predictions are

shown in red while ground truth annotations are italicized.

36

Chapter 6

Conclusion

Section 6.1

Summary

In this work, we have proposed BERToxic, an empirically powerful system that per-

formed fine-grained detection of hate speech to address the Toxic Spans Detection

problem. We showed how fine-tuning a pre-trained BERT model with additional

post-processing steps can create a high-performing hate speech classifier that outper-

forms strong baseline models. We found that our exploration of ensembled BERT

models using the techniques of late fusion and multi-task learning did not boost per-

formance. Similarly, we learned that our strategies for data augmentation through the

EDA techniques and using an external dataset did not show any performance gain.

The thorough error analysis we conducted on the predictions made by BERToxic on

the test set revealed that BERT lacked nuance in understanding the use of offensive

words in neutral contexts and encountered boundary detection issues when faced with

noisy ground truth annotations.

37

6.2 Limitations Conclusion

Section 6.2

Limitations

There are a number of limitations that we would like to highlight in this section.

First, our approach solely leverages the BERT model for hate speech detection. While

BERT remains a popular transformer model, there are many other transformer-based

models that could be applied to this problem. These include the BERT inspired model

variants like RoBERTa [15], ALBERT [13], DistilBERT [24] etc. Furthermore, due to

computational restraints, this work did not explore the use of more powerful models

like XLNET [31] that have outperformed the BERT model.

Besides the choice of models, we are unable to conclusively point towards the

specific ensemble modeling and data augmentation techniques that could yield per-

formance gain over the standalone BERT model. It is likely that these techniques

could yield small gains in performance, but one is then led to question if such gains

are significant enough to be of practical importance.

Finally, we recognize that our specific formulation of hate speech classification as

a sequence labeling task does not fully encompass the hate speech problem. While it

is useful to identify the particular words and phrases in a document that is offensive,

this identification does not inform us on the nature or severity of the hate and which

individual or groups the hate might be directed towards. It is also worth mention-

ing that this work only focused on detecting hate speech for the English language in

the textual domain. In reality, hate speech is multi-lingual and multi-modal in na-

ture, thereby requiring a larger-scoped solution to fully address hate speech on online

platforms.

38

6.3 Future Work Conclusion

Section 6.3

Future Work

Future avenues of work could address the limitations we highlighted above and explore

other transformer-based models to compare their relative performance to BERT for

the Toxic Spans Detection problem. This specific formulation of the problem could

also be further expanded to categorize the specific forms of hate identified in the offen-

sive words and phrases as well as identify if the hate is targeted towards a particular

individual or group. Future work could also explore other paradigms of deep learning

such as unsupervised learning, self-supervised learning and reinforcement learning for

hate speech detection. These efforts will make further progress to develop more ro-

bust hate speech detectors. We hope that our findings and suggestions inspire more

creative approaches towards the fine-grained detection of hate speech so that online

discourse can remain healthy and inclusive for all.

Section 6.4

Broader Impact

We recognize that deep learning models exhibit bias from the data they are pre-trained

and fine-tuned on. The lack of careful use of hate speech detection technologies runs

the risk of reinforcing social biases. The ideas we have developed towards fine-grained

detection of hate speech in this thesis serve only to assist online platforms in quickly

identifying user comments that may be potentially hateful. Discussion of ethics and

fairness in content moderation is essential in civic society as online platforms attempt

to strike a delicate balance between the freedom of expression and the restriction of

hate speech.

39

Bibliography

[1] Davey Alba, How Anti-Asian Activity Online Set the Stage for Real-

World Violence, New York Times, March 2021, Retrieved from

https://www.nytimes.com/2021/03/19/technology/how-anti-asian-activity-

online-set-the-stage-for-real-world-violence.html.

[2] Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma, Deep

Learning for Hate Speech Detection in Tweets, Proceedings of the 26th Interna-

tional Conference on World Wide Web Companion (Republic and Canton of

Geneva, CHE), WWW ’17 Companion, International World Wide Web Confer-

ences Steering Committee, 2017, p. 759–760.

[3] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasser-

man, Nuanced Metrics for Measuring Unintended Bias with Real Data for Text

Classification, (2019).

[4] Giovanni Da San Martino, Seunghak Yu, Alberto Barrón-Cedeño, Rostislav

Petrov, and Preslav Nakov, Fine-Grained Analysis of Propaganda in News Arti-

cle, Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural Lan-

guage Processing (EMNLP-IJCNLP) (Hong Kong, China), Association for Com-

putational Linguistics, November 2019, pp. 5636–5646.

40

BIBLIOGRAPHY

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding,

Proceedings of the 2019 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers) (Minneapolis, Minnesota), Association for Computa-

tional Linguistics, June 2019, pp. 4171–4186.

[6] Cambridge Dictionary, Definition of Hate Speech, Retrieved from

https://dictionary.cambridge.org/us/dictionary/english/hate-speech.

[7] Karthik Dinakar, Roi Reichart, and H. Lieberman, Modeling the Detection of

Textual Cyberbullying, The Social Mobile Web, 2011.

[8] Facebook, Community Standards: Hate Speech, Retrieved from

https://www.facebook.com/communitystandards/hate speech.

[9] FBI, 2019 Hate Crime Statistics, November 2020, Retrieved from

https://ucr.fbi.gov/hate-crime/2019.

[10] Paula Fortuna and Sérgio Nunes, A Survey on Automatic Detection of Hate

Speech in Text, ACM Computing Surveys (2018).

[11] Edel Greevy and Alan F. Smeaton, Classifying Racist Texts Using a Support

Vector Machine, Proceedings of the 27th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval (New York, NY,

USA), SIGIR ’04, Association for Computing Machinery, 2004, p. 468–469.

[12] Yakoob Khan, Weicheng Ma, and Soroush Vosoughi, Lone Pine at SemEval-2021

Task 5: Fine-Grained Detection of Hate Speech Using BERToxic, Proceedings of

the 15th International Workshop on Semantic Evaluation, 2021.

41

BIBLIOGRAPHY

[13] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut, ALBERT: A Lite BERT for Self-supervised Learning

of Language Representations, 2020.

[14] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao, Multi-Task Deep

Neural Networks for Natural Language Understanding, Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics (Florence,

Italy), Association for Computational Linguistics, July 2019, pp. 4487–4496.

[15] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov, RoBERTa: A

Robustly Optimized BERT Pretraining Approach, 2019.

[16] Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan

Goyal, and Animesh Mukherjee, HateXplain: A Benchmark Dataset for Ex-

plainable Hate Speech Detection, arXiv preprint arXiv:2012.10289 (2020).

[17] Yashar Mehdad and Joel Tetreault, Do Characters Abuse More Than Words?,

Proceedings of the 17th Annual Meeting of the Special Interest Group on Dis-

course and Dialogue (Los Angeles), Association for Computational Linguistics,

2016, pp. 299–303.

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, Efficient Estimation

of Word Representations in Vector Space, 2013.

[19] George A. Miller, WordNet: A Lexical Database for English, Commun. ACM 38

(1995), no. 11, 39–41.

[20] United Nations, United Nations Strategy and Plan of Action on Hate Speech, May

2019, Retrieved from https://www.un.org/en/genocideprevention/hate-speech-

strategy.shtml.

42

BIBLIOGRAPHY

[21] John Pavlopoulos, Léo Laugier, Jeffrey Sorensen, and Ion Androutsopoulos,

SemEval-2021 Task 5: Toxic Spans Detection, Proceedings of the 15th Inter-

national Workshop on Semantic Evaluation, 2021.

[22] Jeffrey Pennington, Richard Socher, and Christopher Manning, GloVe: Global

Vectors for Word Representation, Proceedings of the 2014 Conference on Empir-

ical Methods in Natural Language Processing (EMNLP) (Doha, Qatar), Associ-

ation for Computational Linguistics, October 2014, pp. 1532–1543.

[23] A. S. Saksesi, M. Nasrun, and C. Setianingsih, Analysis Text of Hate Speech De-

tection Using Recurrent Neural Network, 2018 International Conference on Con-

trol, Electronics, Renewable Energy and Communications (ICCEREC), 2018,

pp. 242–248.

[24] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf, DistilBERT,

a distilled version of BERT: smaller, faster, cheaper and lighter, 2020.

[25] Anna Schmidt and Michael Wiegand, A Survey on Hate Speech Detection using

Natural Language Processing, Proceedings of the Fifth International Workshop

on Natural Language Processing for Social Media (Valencia, Spain), Association

for Computational Linguistics, 2017, pp. 1–10.

[26] M. Schuster and K. Nakajima, Japanese and Korean Voice Search, 2012 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2012, pp. 5149–5152.

[27] Twitter, Hateful Conduct Policy, Retrieved from

https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin, Attention is All You

43

BIBLIOGRAPHY

Need, Proceedings of the 31st International Conference on Neural Information

Processing Systems (Red Hook, NY, USA), NIPS’17, Curran Associates Inc.,

2017, p. 6000–6010.

[29] Jason Wei and Kai Zou, EDA: Easy Data Augmentation Techniques for Boost-

ing Performance on Text Classification Tasks, Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Language Processing and the 9th Inter-

national Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

(Hong Kong, China), Association for Computational Linguistics, November 2019,

pp. 6383–6389.

[30] Ellery Wulczyn, Nithum Thain, and Lucas Dixon, Ex Machina: Personal Attacks

Seen at Scale, Proceedings of the 26th International Conference on World Wide

Web (Republic and Canton of Geneva, CHE), WWW ’17, International World

Wide Web Conferences Steering Committee, 2017, p. 1391–1399.

[31] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le, XLNet: Generalized Autoregressive Pretraining for Language

Understanding, Advances in Neural Information Processing Systems, vol. 32,

Curran Associates, Inc., 2019.

[32] Youtube, How does YouTube protect the community from hate and ha-

rassment?, Retrieved from https://www.youtube.com/howyoutubeworks/our-

commitments/standing-up-to-hate.

[33] Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra,

and Ritesh Kumar, Predicting the Type and Target of Offensive Posts in Social

Media, Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

44

Bibliography

Volume 1 (Long and Short Papers) (Minneapolis, Minnesota), Association for

Computational Linguistics, June 2019, pp. 1415–1420.

[34] Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa Atanasova, Georgi

Karadzhov, Hamdy Mubarak, Leon Derczynski, Zeses Pitenis, and Çağrı

Çöltekin, SemEval-2020 Task 12: Multilingual Offensive Language Identification

in Social Media (OffensEval 2020), Proceedings of the Fourteenth Workshop on

Semantic Evaluation (Barcelona (online)), International Committee for Compu-

tational Linguistics, December 2020, pp. 1425–1447.

45

	Fine-Grained Detection of Hate Speech Using BERToxic
	Recommended Citation

	Preface
	Abstract
	Acknowledgments
	Introduction
	Motivation
	What is Hate Speech?
	Problem Formulation
	Contributions
	Organization of Chapters

	Related Work
	Models
	Baselines
	Random
	SpaCy

	BERToxic
	Transformer Architecture
	BERT
	Toxic Spans Detection

	Ensemble Modeling
	Late Fusion
	Multi-task Learning

	Data Augmentation
	Easy Data Augmentation
	External Dataset

	Experiments
	Dataset
	Evaluation Metric
	Implementation Details

	Results
	Model Performances
	Error Analysis

	Conclusion
	Summary
	Limitations
	Future Work
	Broader Impact

	References

