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Abstract

We are entering an era in which Smart Devices are increasingly integrated into our daily

lives. Everyday objects are gaining computational power to interact with their environments

and communicate with each other and the world via the Internet. While the integration of

such devices offers many potential benefits to their users, it also gives rise to a unique set

of challenges. One of those challenges is to detect whether a device belongs to one’s own

ecosystem, or to a neighbor – or represents an unexpected adversary. An important part of

determining whether a device is friend or adversary is to detect whether a device’s location

is within the physical boundaries of one’s space (e.g. office, classroom, home). In this thesis

we propose a system that is able to decide with 82% accuracy whether the location of an IoT

device is inside or outside of a defined space based on a small number of transmitted Wi-

Fi frames. The classification is achieved by leveraging a machine-learning classifier trained

and tested on RSSI data of Wi-Fi transmissions recorded by three or more observers. In an

initialization phase the classifier is trained by the user on Wi-Fi transmissions of a variety of

locations, inside (and outside). The system can be built with off-the-shelf Wi-Fi observing

devices that do not require any special hardware modifications. With the exception of the

training period, the system can accurately classify the indoor/outdoor state of target devices

without any cooperation from the user or from the target devices.
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1 Introduction

There is a trend to integrate Internet of Things (IoT) devices into our everyday lives. The advent

of these so-called “Smart Devices” offers a variety of benefits and advantages for consumers, but

also poses some critical security challenges.

1.1 Definitions

The goal of this thesis is to develop a system that, for a given ‘target’ device detected by a residen-

tial Wi-Fi system, determines whether it is inside or outside the residence. To clearly understand

this goal we need to first define a few key terms and system components.

Key Terms:

• Smart Things refers to IoT devices [14]. They “typically have the ability to sense their

physical environment (through sensors) and, sometimes, to act on the environment (through

actuators). They may or may not have a human user interface. They may be stationary or

mobile. They may be small (like a remote control) or large (like a refrigerator). They may

be battery powered or line powered.”

• A target is a Wi-Fi device that transmits on any channel. In our scenario, a target is a Smart

Thing, but it may be any Wi-Fi transmitter.

• A residence refers to a single-story multi-room contiguous space, defined by a simple convex

polygon that forms its boundary. This could be an apartment or a stand-alone house.

• Inside describes every location that is inside the boundary.

• Outside describes every location that is not inside.
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System Components:

• Home hub is the central unit of our system. The home hub processes the data and determines

whether a target is inside or outside of the boundary.

• An Observer refers to a Wi-Fi receiver that records RSSI values of Wi-Fi frames transmitted

by the target; it reports these readings to the Home hub.

• The training target is used in the training phase to create sample training data.

1.2 Motivation

A key step in the security of personal IoT networks is to make sure that no unwanted devices can

join the network. One important factor in determining whether a connection request stems from a

friendly device or an adversarial device is the physical location of the device sending the connection

request. A connection request sent from outside of the physical bounds of one’s residential space

is more likely to be an adversarial request than a request sent from the inside. Frames transmitted

from the MAC address of a known device expected to be inside, but that are determined to be

arriving from outside, may indicate an adversarial attempt to spoof the known device. So, it would

be helpful to distinguish the location of a transmitter as being inside or outside the home.

We propose such a system. It determines whether a target device is inside or outside the

boundary of a physical space. Such a system can, for example, determine whether an incoming

connection request is coming from outside of a house or list all the devices whose transmissions

are coming from the inside of an apartment.

A possible use case evolves around preventing adversaries from gaining access to a home

network. This use case is based on the assumption that new connections from devices physically
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inside the apartment are more trustworthy than connection requests originating from the outside.

Obviously, determining whether a device is inside or outside should not be the only method of

authentication – but it is an important additional context when authenticating new devices and new

connections. Whenever a device sends a new connection request to the home system, the Wi-Fi

frames of the request are analyzed and if they are classified as outside, a warning is issued to the

user that the device connecting is outside of their apartment. The user can then decide what to do

with this information. For example, if the request is from the smart garden robot, or other device

known or expected to be outside, they can approve the connection request. However, if the request

stems from an unknown device, or a device known to be indoors but unexpectedly classified as

outside, the user should reject the request and investigate – perhaps permanently banning that

device from their network.

Consider a rental apartment as one possible scenario. It is now a common practice for AirBnB

hosts to install monitoring equipment to ensure that their tenants abide by their stated policies [8].

With AirBnB hosts already deploying such devices, it is likely that renters of long-term rentals

will follow suit and try to protect their property by installing such Smart Things. These networked

devices might include temperature, humidity, sound monitoring devices, or even cameras. The

monitoring devices are owned and operated by the owner, not the renter, and may be positioned in

such a way that makes it hard for the renter to detect them. Further, these devices might be con-

figured to be non-cooperative and thereby not follow common device-discovery communication

protocols.

A failure to detect these devices might have severe security and privacy implications for renters,

as the landlord could potentially gain access to the renter’s private space. A thorough manual

inspection of the apartment by the renter can be tedious and error prone; even with such effort,
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a renter can never be sure that no monitoring devices are hidden. Here, the system developed in

this paper comes into play. The user can train and query our system to display all the devices that

are inside the apartment. The system then proceeds to monitor all Wi-Fi traffic and can display

all the devices whose location is determined to be inside the apartment, based on Wi-Fi frames

transmitted by them. If this list includes an unexpected or unknown device, the user can use other

tools to locate and identify the device. If all the devices in the list are known to the user, the

user has increased confidence there are no other Wi-Fi-based monitoring devices installed by the

landlord or other parties.

These use cases could perhaps be addressed by accurate localization techniques. Although

an extensive amount of research has been done on the problem of indoor localization, many of

these indoor localization methods are either complex and sensitive, require special hardware or

configuration, are insufficiently accurate to distinguish inside from outside, or are impractical to

apply to the IoT space, as described in more detail in the next section. Some of them also re-

quire location-specific, labelled training data to determine the location – data that can be hard to

generate for private homes. To achieve the goal of inside vs. outside classification it is further

necessary to combine these indoor localization methods with a floor plan and the relative positions

of the observing devices. Obtaining this information poses an additional challenge to private users,

increasing the effort that needs to be put into configuring the system to achieve accurate results.

Of course, it is unnecessary to determine the exact location of a transmitter to determine

whether it is located inside or outside of a physical space. In this thesis we propose a system

that is able to determine whether the transmitter of received Wi-Fi frames is inside or outside a

physical space with 82% accuracy, without determining its exact position. It requires brief user ef-

fort in the training phase, and the observer components can be built using commercially available
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hardware that does not require special modifications.

The system can easily be deployed in a variety of different environments. While we were

only able to demonstrate its effectiveness in one private-home setting, we are hoping that similar

results can be achieved in many other environments and building types. To set up the system, the

user places three or more observers at different locations around the residence, and connects them

to the home hub. The user then walks around the inside and outside of the residence with their

smartphone (or other Wi-Fi transmitter device), while the home hub and observers collect Wi-Fi

signal strength and use that data to train a classifier. Notably, our approach does not rely on any

other data than the received Wi-Fi frames and the data collected in the training phase.

1.3 Proposed approach

We propose a system composed of three or more observers and a home hub that processes the

collected data. The system can then classify whether the location of a target is inside or outside.

The basic workflow of the system can be described as follows. The observers are monitor-

ing Wi-Fi traffic and capture all frames they observe. The observers measure the received signal

strength indicator (RSSI) for frames sent by the target device; the observers forward only those

values to the home hub. The home hub collects these RSSI values, aligns the values of correspond-

ing frames, and retains data only for frames for which at least three RSSI readings from different

observers were received.

The information flow of the system is similar during the training and operating phase. During

both phases the Observers forward their readings to the home hub, which then joins the RSSI

values for each frame and further processes them.
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Figure 1: Information flow overview

During training the user transmits frames from the inside and outside using the “training target”.

The transmissions are done in a way such that the frames can be class-labelled by the home hub.

The training transmissions can be sent by any Wi-Fi transmitter; one suitable approach would be

a smartphone running an app co-designed with the system. All the frames that are collected in the

training phase are used to train a machine-learning classifier.

When the training period is completed the system enters operational mode. During operation,

it is only necessary to record one frame that is captured by three or more observers to infer the

inside/outside status of the transmitter. Each frame is classified individually based on the RSSI

values recorded by the observers. Because there can be slight variations between recorded RSSI

values, the technique could be extended to increase accuracy by considering multiple captured

frames.
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1.4 Contributions

The key contribution of this thesis is the development of a system that

• can detect whether a Wi-Fi transmitting Smart Thing is inside or outside of a residence with

82% accuracy,

• only needs training data labelled for two classes (inside and outside), and

• can be built using commercially available hardware that does not require special hardware

modifications.

2 Background

As the system developed in this thesis is tailored to the IoT space, it faces a unique set of constraints

and requirements. To understand these constraints and the general necessity for the system, it is

helpful to have a understanding of the general IoT space, and the smart home subspace to which

the system is tailored.

2.1 IoT space

The Internet of Things (IoT) is transforming our everyday lives by bringing controlling, moni-

toring, and connective capabilities to all sorts of smart devices. Smart Things can be applied to

a variety of contexts like smart homes, cars, wearables, factories, infrastructure, agriculture, and

more [9]. Smart Things can have different sensing and actuating capabilities but all share one

common property: their connection to the Internet. For the purposes of this thesis, the Internet of

Things refers to “a vision in which a wide range of everyday objects become Smart Things through
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the inclusion of digital electronics and a network interface that allows them to communicate with

other Things and, directly or indirectly, through the Internet with remote services” [14].

2.1.1 Smart home

An important subset of the general IoT space are “smart homes”. Smart homes include smart

things like cameras, speakers, door locks, kitchen appliances, thermostats, and lights. Connecting

all these devices to the home network gives the user the ability to control virtually all features

of their house with a finger tap on their phone. The system proposed in this thesis is focused on

indoor vs. outdoor classification of Smart Things in connected homes and buildings.

This integration of Smart Things into a residence – one of the most personal of all spaces –

raises many security and privacy challenges. Many of these Things have the capability to sense

and record private habits, conversations and actions. The ability of Smart Things to record pri-

vate moments and to communicate over the Internet gives adversaries a variety of possible ways

to infringe upon security and privacy. Furthermore, due to hardware limitations on older Smart

Things, Internet-strength security features are sometimes hard to realize on some already deployed

devices [27].

Smart Things also come with a set of constraints. We need to consider four main constraints

when designing our system.

The first constraint is that these devices have limited transmission capabilities. While some

of these devices are able to communicate using protocols like RFID, NFC, Bluetooth, Zigbee,

and Wi-Fi, few Smart Things are able to communicate using all of these protocols. One of the

most commonly used protocol is the 802.11 Wi-Fi protocol that many Smart Things support. The

commonality of Wi-Fi support on Smart Things made us design our system to use only Wi-Fi
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signals, unlike some of the related work on indoor localization that proposes the use of different

protocols and methods.

The second important constraint is the rate of Wi-Fi transmissions Smart Things send. While

a smart camera may be frequently communicating with the home network to send its recordings,

a smart thermostat, for example, might send data only once every half hour. The reason for these

infrequent communications are many: some devices might be battery powered and try to limit their

power consumption while some application domains of Smart Things just do not require frequent

data transmissions. Limited Wi-Fi transmissions also mean limited data to localize a device. The

limited amount of data needed to be considered when designing our system that is able to classify

a device’s location based on only one frame that is captured by three observers (although accuracy

increases the more frames are collected).

The third important constraint is the availability of additional sensors in Smart Things. Some

of the current research on accurate indoor localization requires additional sensors like a gyroscope

or compass to be present in the device that is being localized (e.g., [16, 4]). However, most Smart

Things are not equipped with these additional sensors. Even though some Smart Things might

have additional sensors like a gyroscope, the presence of such a sensor cannot be assumed for all

Smart Things that our system tries to classify. Our system only needs the data that is obtained by

analyzing Wi-Fi frames and does not require additional sensor data to work.

The final constraint is the ability of Smart Things to cooperate for the purpose of localization.

Many indoor localization methods (such as the Return Time of Flight method used in µLocate [18])

require the device to cooperate. Usually this cooperation consists of following a certain response,

time stamping, or channel-switching protocol. However, most, if not all, Smart-Home Things

do not follow these specialized protocols. Some devices are just passive observers that transmit
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their readings and do not even listen for incoming Wi-Fi signals. Furthermore, adversarial devices

cannot be expected to cooperate, or may cooperate adversarially, misleading any attempt to locate

them. Our system classifies targets using only passive observations of Wi-Fi transmissions.

3 Related work

Since GPS localization is unreliable in indoor environments, a different approach is needed. A

substantial amount of research has addressed the problem of indoor localization, with a focus on

exploiting the characteristics of Wi-Fi transmissions. The problem of inside-outside classification

is, in a sense, a coarse version of localization because it needs only to distinguish between two

classes and not among a continuous set of locations. Indeed, for many interesting application

scenarios, a location is not needed – only an indication of whether the device is inside or outside

a defined space. Further, an inside-outside classification system may require less training data,

which is easier to collect as the labels are just drawn from two classes. Still, we can learn a lot

from prior work on indoor localization and may adapt some of those techniques.

3.1 Indoor localization

The goal of indoor localization is to determine the location of a target device, typically on a coor-

dinate system defined by a building floorplan. There are two key factors differentiating proposed

indoor-localization systems: which system computes the location, and which wireless technology

is used for measurements.

The first differentiating factor is whether the location is determined by the device (self-localization)

or by an external system (monitor). In a device-based system the target device determines its own
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position within an indoor space; in a monitor-based system an observer (or multiple observers)

determine the location of the target device. Our approach is the latter.

The second differentiating factor is the wireless technology used to make measurements. Blue-

tooth, ZigBee, ultrasound, LiDar, and Wi-Fi have all been proposed in the literature (e.g., [15,

10, 19, 20]). No one technology is feasible for the entire IoT ecosystem, as not all Smart Things

have the capability to communicate over radios like Ultra-wideband, ZigBee, or ultrasound. The

widespread adoption of Wi-Fi, particularly in Smart Things, make Wi-Fi the most attractive option

for our system. Indeed, the trends point to an increasing emphasis on Wi-Fi for even the smallest

devices. Hence, this analysis of related work will focus on Wi-Fi based systems. In the literature,

several localization systems use Wi-Fi, including SpotFi [13], Chronos [22], ArrayTrack [26] and

a variety of approaches that use RSSI-Fingerprinting [7, 11, 12, 21, for example]. These methods

use properties of Wi-Fi Signals like the return time of arrival, received signal strength indicator

(RSSI), or channel state information (CSI).

All of these approaches, however, come with certain limitations that make it hard to apply them

to the smart home IoT ecosystem. ArrayTrack, for instance, requires a special antenna setup that

consists of multiple antennas aligned in a 40cm long array [26]. The antenna array is then used

to estimate the angle of arrival of Wi-Fi signals emitted by the target. The location of the target

is estimated by multi-angulation using the measurements of multiple antenna arrays. However,

having multiple antenna arrays in a residence for the pure purpose of inside-outside classification

seems hardly practical as they are bulky and likely expensive.

The Chronos system, on the other hand, requires cooperation from the target [22]. The observer

and target both follow a specific channel-hopping protocol to generate transmissions on different

bandwidths, which are then used to estimate the distance between the two. However, it is not fea-
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sible to expect such cooperation from Smart Things as described in the background section. On

paper, the SpotFi system seemed to be a good candidate, yet we were not able to reproduce the

results in our own experiments [13]. In addition, the system also required a special arrangement

of antennas. Finally, the fingerprint-based approaches [7, 11, 12, 21] work without device coop-

eration or specialized hardware, but they require location-labeled training data to create an RSSI

fingerprint of each location in the environment. This labeled training data is complex and time

consuming to collect, which makes it impractical to apply these methods to use cases in private

residences.

We considered building our system on top of one of the above-described indoor localization

systems. Using indoor localization methods for the problem of inside-outside classification, how-

ever, also requires one to have access to a floor plan (or map of the boundary) and knowledge

about the location (and for some systems, the orientation) of the observing devices. The need for

these additional data provides another hurdle to building a private-use, inside-outside classification

system on top of an indoor localization system.

We drew a lot of inspiration for our work from these described indoor localization methods; our

system uses similar ideas, but applies them to the problem of inside-outside classification instead

of localization. Precise indoor localization is not required to achieve our goal.

3.2 Location based access control

Another related area of work tries to accomplish a similar objective, but targeted at a different use

case [5]. This approach tries to determine whether smartphones are within certain physical bounds

of a space, for example a café, to determine whether they should have access to a wireless network.
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The goal is to limit access to a certain qualifying user group, letting customers of the café connect to

the Wi-Fi network while preventing passersby or people working in a nearby office to gain access.

It uses the fact that smartphone users move around the physical space while their smartphones are

constantly transmitting signals over the wireless network. The system then collects the RSSI data

of these measured sequences of Wi-Fi frames. A classifier is trained on those RSSI sequences and

can then determine whether they belong to an inside or outside class. This approach is thereby

heavily geared towards smartphones that are actively used by people and the method is hard to

transfer to the IoT space as most Smart Things remain stationary and it is thereby hard to leverage

the additional information that RSSI sequences provide. Our work, however, still benefits from

some of the observations made in this paper, as will become clear in following sections.

3.3 Wi-Fi characteristics

There are many Wi-Fi signal characteristics and properties used in the literature to estimate loca-

tion. The most prominent are Time of Flight (ToF), Return Time of Flight (RToF), Angle of Arrival

(AoA), Time difference of Arrival (TDoA), and Received Signal Strength indicator (RSSI) [28].

Each of these characteristics has its own set of advantages and disadvantages and different local-

ization systems proposed in research build on different ones.

The ToF method measures the time the signal takes to propagate from the transmitter to the

receiver. Since the propagation speed is known to be the speed of light, this in theory is enough

information to calculate the distance between transmitter and receiver. With the use of multiple

receivers one can perform multilateration to determine the relative position of the transmitter to

the receivers. Since this method requires exact time measurements, the transmitter and receiver
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need to be equipped with high-precision clocks, must be closely synchronized and, depending on

protocol, also transmit timestamps [6]. These requirements poses a challenge for the application of

this method to the IoT space as most Smart Things do not have high-precision clocks, the capacity

to be strictly synchronized with the observers, or are not configured to send timestamps along with

regular communication.

Similarly, the RToF method measures the time it takes for a signal to propagate from the ob-

server to the device and back to the observer [6]. The method requires that the device that is

subject to localization to receive the signal and immediately send a response. The time it takes for

the signal to be returned to the observer heavily depends on the time it takes the device to process

the signal. The time it takes to return signals is not standardized across all Smart Things, posing

a critical challenge for the application of this method to our use case. A proposed new Wi-Fi pro-

tocol may be able to mitigate this problem [24], but this standard has not yet been adopted so this

approach is unfeasible for the current IoT infrastructure.

In contrast, the TDoA method measures the time difference it takes for the signal to reach

different observers. This requires strict synchronization between observers and highly accurate

clocks. The biggest drawback of this method is that location accuracy suffers from multi-path

fading in indoor environments. Otherwise, the system could support the goal of indoor-outdoor

distinction. We chose RSSI, however, due to the complexity of collecting TDoA data.

The AoA method, which is used by ArrayTrack [26], estimates the angle of the Wi-Fi signals

the observers receive from the transmitter. The angle is usually estimated using an antenna array or

exploiting CSI information and therefore often specialized hardware is required to collect accurate

results. And accurate results are important since, as the distance between transmitter and receiver

grows, even small measurement errors can result in big localization errors [16]. In addition, multi-
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path effects, which are common in indoor environments, make it hard to estimate the correct AoA.

After thorough analysis, we decided RSSI was best suited for the purpose of this thesis. The

main advantages are the ease of collection, the low hardware requirements on transmitter and

receiver side, and no need for cooperation from the target. Nearly every off-the-shelf commodity

Wi-Fi card provides RSSI values for received frames. The main drawback of RSSI is its proneness

to multi-path fading and indoor noise [25]. However, for our system these effects are not too much

of an issue as they stay relatively constant for the same location [23].

4 System and implementation

The system proposed in this thesis determines whether the target is inside or outside the boundary

of a residence. The system performs this classification by recording the RSSI values of trans-

missions of the target. These recordings are performed by the observers, which then forward the

readings to the home hub, which runs the computation to classify the target as inside or outside.

As in most related work on indoor localization, we consider the problem of inside-outside

classification only in the two-dimensional plane. It should be feasible to expand our approach to

three dimensions.

4.1 Components

The system consists of three components. These are the home hub, the observers, and the target.

The observers work together with the home hub to classify the location of the target. To understand

how these RSSI values are collected and then processed it is first necessary to understand how each

of the components is implemented.
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4.1.1 Home hub

The home hub is the central computing unit of the system, where all the recorded RSSI values are

aggregated and processed. The home hub can theoretically be any computer. For the implementa-

tion in this thesis we used a 2017 MacBook Pro running MacOS BigSur. In a real home, the home

hub might be an embedded appliance, such as a Wi-Fi router or a “smart hub” like the voice-based

personal assistants now available from several vendors. A sophisticated home hub could act as the

trusted interface to a Smart Home and handle authentication, access management, configuration

and decommission of Smart Things, and allow users to securely manage their Things. We envision

a device that looks somewhat similar to, for example, an Apple HomePod or an Amazon Echo.

We perform the data-processing in Python using the pandas and scikit-learn libraries. In prin-

cipal, any device running Python can perform the processing. It would, for example, be feasible to

run the code on a Raspberry Pi.

4.1.2 Observer

The system is made up of three or more observers. Our implementation used four. As we are

only considering the two-dimensional case, all observers were placed on the same plane, parallel

to the floor. The target device is also located on this plane. Placing the observers and the target

on the same plane also ensured reproducibility and comparability of different experiment runs.

Investigating the effect of not having all devices on the same plane will be left to future research.

Each observer is a MacBook Pro from 2012 running Ubuntu 20.04 Linux and equipped with a

tp-link Archer T2U Plus [1] external USB Wi-Fi antenna (Figure 2). The observers are able to

receive frames on the 2.5 GHz and 5 GHz Wi-Fi bands with the tp-link antennas. For the frame
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Figure 2: Observer (pictured on the ground, was placed on a stool during experiments)

collection we use Python 3 and the scapy packet manipulation and sniffing library.

The antenna is positioned orthogonal to the floor. Since the target is on the same plane as the

observers, the orthogonal placement of the antenna means that, regardless of the target’s position

on the plane, the direct signal propagation path from the target points to the antenna at the same

90 degree angle. Positioning the antenna at a non-orthogonal angle to the floor would mean that

signals originating from different points on the plane would have different angles of arrival at the

antenna. As the angle of arrival affects the measured RSSI [17], angled antennas would create

measurement biases towards certain locations. Therefore, the best orientation for the antenna is

orthogonal to the plane. The antennas we used had a hinge that could be set into fixed positions

and the position we used for the experiments was orthogonal to its USB port. Since we always

placed the observers on flat surfaces, this ensured that the antenna was orthogonal to the floor. For

the sake of this thesis we assumed that minor inaccuracies of the antenna angle (< 2�) would be
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neglible. We placed all the observers at a height of 1m on wooden chairs and stools to reduce

signal attenuation of the floor.

Because the system is operating in an indoor environment, multipath effects occur and reflected

signals will also arrive from angles not orthogonal to the antenna. Multipath effects here refer to

“the reflection, diffraction, and scattering of electromagnetic waves on the propagation path” [23].

These effects are dependent on the location of the target and observer, as well as the surrounding

environment (walls, floors, furniture, people, etc.). This location dependency, however, also means

that multipath signals (at least those caused by stationary objects like walls and furniture) con-

tribute to the uniqueness of the RSSI “fingerprint” for each location and area, likely improving the

accuracy of our system. As these multipath effects are hard to capture and quantify, investigating

the specific impacts of multipath effects on the accuracy of our system was out of the scope of this

thesis.

The system is based on the observers being in the same location during the training and the

operational phase. It was out of the scope of this work to determine how a change in location of

one of the observers would affect the performance of the system.

4.1.3 Target and training target

When our system is operational it determines whether the target is inside or outside. The target

is an IoT device. During the training phase a training target is used to produce training data for

our classifier. For a practical implementation, we envision using a smartphone app to produce the

training data by sending Wi-Fi frames from the user’s smartphone. Writing such a smartphone

app, however, was out of the scope of this thesis.

Therefore, we used a Raspberry Pi (Figure 3) to act as the target and training target during our
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Figure 3: Target and training target: Raspberry Pi 4 model B

experiments. We used the Kali distribution of Linux (version 2021.1) as it comes with versatile

pre-installed wireless drivers and tools. For the frame transmissions we employed Python 3 and

the scapy packet manipulation and sniffing library. We used the Raspberry Pi for the roles of

target and training target because it was easy to record reliable and reproducible measurements.

The Raspberry Pi also supports manipulating the transmission power of its antenna. The ability

to transmit at different power levels allowed us to emulate the use of different devices that might

also transmit at different power levels. The goal of our system is to accurately classify targets

regardless of their respective transmission strength. Hence, being able to experiment with different

transmission powers was essential. For the experiments we connected a simple button to the GPIO

pins of the Raspberry Pi to initiate the transmission of a set amount of frames.

The antenna of the Raspberry is the silver rectangle that can be seen at the top left of Figure 3.

While we were not able to find specifications about the exact build or orientation of the antenna

we found in initial experiments that the orientation around the vertical axis of the Raspberry Pi had

negligible effect on the RSSI.
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The system should be able to classify Wi-Fi frames independent of the device that sent them. A

Wi-Fi signals sent from, for example, a Smartphone or Smart Thing are not different to the signals

sent using the Raspberry Pi. Thereby the classification accuracy should be independent to the type

of transmitter. We leave it to future research to experimentally confirm this claim.

4.2 RSSI collection

Our system uses RSSI data recorded by the observers to classify a target. In operational mode the

system filters frames for the MAC address of the target and processes the recorded RSSI values for

each frame. For our experiments, however, we had more control over the generation of the Wi-Fi

frames and therefore employed slightly different techniques for the frame filtering as described in

the next few sections. For a real deployment only minor changes to the filtering conditions would

be necessary to obtain the same results. Depending on the use-case scenario one could filter for a

single target, a set of targets, or just classify all observed frames.

4.2.1 Frame generation

The frames that are used for the classification could be connection requests or normal data trans-

missions. The target may or may not be connected to the home network at time of classification.

Hence, our system is designed to classify frames regardless of their destination or the network

connection of the target. Therefore, for our implementation of the system we put the wireless

card in “monitor mode,” allowing it to transmit without being associated with a Wi-Fi network

router. Setting the card to monitor mode also allowed us to select the channel on which we send

the frames.

To activate monitor mode on the card we used the aircrack-ng wireless tool suite for Linux.
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Aircrack-ng comes with a tool to activate monitor mode on Wi-Fi cards called airmon-ng. The tool

creates a virtual interface, which is set to monitor mode, on top of the existing Wi-Fi interface. We

used the tool with the following commands. Here the wireless interface is called wlan0 and the

virtual monitor interface is then named wlan0mon.

sudo airmon-ng check kill

sudo airmon-ng start wlan0

The first line kills background processes that might interfere with the monitor mode, like for ex-

ample the Linux network manager. The second line then starts the virtual monitoring interface.

After setting the wireless interface to monitor mode, we only needed to set the desired channel

and the transmission power (Here channel 36, and transmission power 30dbm) with the following

commands.

sudo iwconfig wlan0mon channel 36

sudo iwconifg wlan0mon txpower 30

After the wireless interface is set to monitor mode we can begin transmitting the frames. We

decided to send data frames to an artificial MAC address (01:02:03:04:05:06), which no real device

would use. We chose this address because it simplified the filtering on the receiving side. In a real

deployment, any frame transmitted from the target would suffice. We wanted our experiments to

be as accurate and reproducible as possible. Therefore, we wanted to avoid accidentally using Wi-

Fi traffic, which was not explicitly sent by us, for our data analysis. Reproducibility can only be

achieved if we only train and classify on frames that we transmit specifically for our experiments.

We kept the frame that we are sending as simple as possible. Using the scapy library we can craft

a simple Wi-Fi 802.11 data-frame with a payload using the following line in Python.
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pkt = Dot11(addr2=rx_addr, type=2)/Raw(load=id)

The data we send in each frame is a unique ID. Such a unique ID makes it easy to join the

observations of the different observers. For our experiments we used a script that transmits 50

frames every time the button is pressed. We also implemented a sleep timer (after the button is

pressed and before the frames are sent) to allow some time to walk away from the Raspberry Pi,

so our presence would not interfere with the transmissions. The script we used can be found in

Appendix A; the current id is loaded from a persistent file to prevent duplicate IDs in between

restarts of the script.

4.2.2 Frame sniffing and filtering

Because we are interested in the RSSI of frames sent by devices that might currently not be con-

nected to the home Wi-Fi network we need to consider all frames that are observable at any time.

We do this by setting the Wi-Fi card of the observer into monitor mode. In monitor mode, the card

receives all frames that it can detect, regardless of their origin and destination. Independent of the

mode, the employed Wi-Fi antennas were only able to sniff frames on a single channel at a time.

For the sake of simplicity we conducted all our experiments on channel 36, which has a center

frequency of 5.18 GHz.

We activated the monitor mode and set the channel with the following Linux commands (in

this case, for a wireless interface called wlan0):

sudo ifconfig wlan0 down

sudo iwconfig wlan0 mode monitor

sudo ifconfig wlan0 up
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sudo iwconfig wlan0 channel 36

Note we also needed to turn off the Linux network-manager. (With the network manager still

running the wireless card was only able to sniff management frames but not the data frames sent

by the Raspberry.) The network manager can be turned off with the command:

sudo service network-manager stop

The scapy library provides a sniffing function that takes a callback function, which handles each

received frame, as an argument. The sniffing function can be called as follows. Here the sniff

function is called on the interface wlan0 and the callback function is called PacketHandler.

sniff(iface=wlan0, monitor=True, prn = PacketHandler)

The real filtering work then happens in the callback function. For our experimental implementation

it looked like this:
# type(seen) == set()
# type(count) == int

def PacketHandler(pkt):

global count, seen, output_file

if pkt.haslayer(Dot11): # Wi-Fi 802.11 Frame
if pkt.type == 2: # Data Frame

if pkt.addr1 == target_mac_address and pkt.addr2 == "01:02:03:04:

05:06":

ID = int(pkt[Raw].load)
rssi = int(pkt.dBm_AntSignal)

if ID not in seen:

print(f’received id: {ID} rssi: {rssi} count: {count}’)
output_file.write(f’{ID},{rssi}\n’)
count += 1

seen.add(ID)

Note also that scapy sent each frame multiple times to prevent frames being lost because of colli-

sion. We found that these multiple frames almost always had the exact same RSSI value. There-

fore, we only recorded the RSSI value of the first received frame for each ID. After receiving the
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ID of a frame we add it to the set of seen IDs and we ignore all frames whose ID we had already

seen.

4.2.3 Data transfer

While the data is recorded at each observer, it needs to be transferred to the home hub for pro-

cessing. For the sake of simplicity, we used a USB stick to transfer the data manually from the

observers after the transmissions were completed. There are, however, multiple approaches for

data transfer in a real deployment.

The first option would be to connect all the observers to the home network (and thereby to the

home hub) with an Ethernet cable. The obvious downside of this is the need for additional cables,

unless the home is equipped with an extensive Ethernet or power-line networking capabilities.

The second option is to equip the observers with a second Wi-Fi interface that maintains a

connection to the home network. An added Wi-Fi interface would eliminate additional cabling

and would therefore be more convenient to install. This option also requires additional hardware

(another Wi-Fi interface) for each observer.

The third option is to transfer the data by sending frames on the same Wi-Fi interface the

observer uses for sniffing. For this approach to work, the home hub needs to be equipped with

a Wi-Fi interface that is set to monitor mode and able to sniff the injected frames. Using this

approach would require no additional cabling or network interfaces on the observers. The home

hub, however, would most likely need an (additional) Wi-Fi interface, which is set to monitor

mode.

In any of these approaches, it is possible that some data is lost between the observer and hub,

perhaps due to network collisions. Furthermore, the transmission should use an efficient protocol –
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likely batching multiple observations in a single frame, applying compression techniques to reduce

the bandwidth needed for observer-hub communications.

All aspects of observer-hub communication are left as future work.

4.3 Data processing

The observation data must be pre-processed before it can be used to train a machine-learning

classifier. There are two main processing steps: first merging the readings from the observers, and

then dealing with frames that were only captured by a subset of the observers.

4.3.1 Missing frames

There are two common reasons for some observers not receiving individual frames. The first is

that the observer is simply out of range of the transmitter. Wi-Fi signals can only travel a lim-

ited distance and are attenuated by features of the indoor environment. Furthermore, IoT devices

might have limited transmission power (to preserve battery life), further limiting their signal range.

Another reason some observers do not receive frames is frame collision. In our experiments, we

send the frames in monitor mode (without using request-to-send (RTS/CTS) on the link layer) so

there are no guarantees that frames actually reach their destination. During the experiments we

conducted it was hard to distinguish between the two causes missing frames. On average we saw

around 0.25% of unobserved frames.

We drop frames that are only received by one or two observers, as they do not contain enough

data for localization. For frames that only one of the four observers missed we use a null value of

�100 for the RSSI recorded by that observer.
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Table 1: Format of data-frame with sample values
ID RSSI1 RSSI2 RSSI3 RSSI4
1 -88 -66 -85 -100
2 -86 -65 -86 -90
3 -72 -53 -78 -82

4.3.2 Merging

After the data transfer is concluded the home hub has four different sets of measurements of RSSI

values (since we use four observers). As mentioned in the previous section, if RSSI values are

missing they are replaced by the value �100. Before these measurements can be fed to the classi-

fier, they need to be joined into a single table where each row corresponds to one frame and each

column to the measurements of one observer (Table 1).

The frames that we sent during our experiments have a unique id as their payload, which made

it easy to join the recorded values into a single table after missing data have been handled.

In a real deployment, the transmitted frames will not have an ID as their payload. During

previous experiments we explored the potential for matching frames using their frame checksum

(FCS). In the scapy library the FCS can easily be obtained as follows:

fcs = int(pkt[Dot11FCS].fcs)

We found virtually no duplicated FCS between frames, even for some Wi-Fi management frames.

More work is needed to validate this approach. By combining the FCS with a timestamp produced

at the observer, even with loosely synchronized clocks, we believe it may be possible to uniquely

match frames across observers.
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4.3.3 Data standardization

As stated before, one goal of our system is to classify targets regardless of the transmission power

of their antenna. Our system should be able to be trained using a target with a transmission power

of e.g., 30dBm and then classify transmissions with a send from a target with a transmit power

of 15dBm. As described by Cheng et al. [5] discussed in Section 3.2, the change of RSSI caused

by a different transmission strength stays relatively stable across different positions. If this claim

holds true a X% decrease in transmission power will lead to the same Y % decrease of recorded

RSSI across all observers. Therefore, it should be enough to standardize the training data and then

standardize testing samples by the same factor.

Standardization refers to the process of transforming the data to have a mean of 0 and a standard

deviation of 1 using the formula:

Z =
x� µ

�
(1)

Where µ is the mean and � the standard deviation of the entire dataset. Every single RSSI value

x in the dataset is changed to its standardized value Z. In a real deployment, during operational

mode, every new sample would be standardized using Equation 1, with µ and � calculated from

the training set before classification.

We evaluated this method in our experiments.

4.4 ML model – training and testing

Once the training data is collected and organized as seen in Table 1; the home hub trains a machine-

learning model that classifies measurements during operational mode.
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There are different consideration we had to make when deciding between different machine-

learning models and evaluation methods, which we describe in the next few sections.

4.4.1 Metrics

To evaluate the success of our machine-learning classifier we need to decide how to quantify its

results. The problem at hand can be described as a binary classification problem, distinguishing

between the two classes inside and outside. In binary classification problems the two classes are

referred to as positive and negative. Every sample is labeled either positive (inside) or negative

(outside); we refer to these labels as the ground truth. The classifier classifies every sample to be

either positive or negative.

Therefore, there exist four different possible outcomes of each classification as seen in Table 2.

A true positive (TP) occurs when the classifier correctly infers positive: the ground truth and

inferred class are both positive. A true negative (TN) occurs when the classifier correctly infers

negative: the ground truth and inferred class are both negative. A false positive (FP) occurs when

the classifiers falsely infers positive: the ground truth is negative but the inferred class is positive.

A false negative (FN) occurs when the classifiers falsely infers negative: the ground truth is positive

but the inferred class is negative.

After samples have been classified one can produce a confusion matrix that depicts the degree

to which the classifier ‘confuses’ the two classes. The confusion matrix has the shape of Table 2

and contains the number (or fraction) of each outcome happening.

Binary classifiers are evaluated with one or more of these common metrics.

• Precision, TP/(TP +FP ), the ratio of true positives to all positive predictions. The higher

the precision the fewer false positives occur. A perfect classifier has 1.0 precision.
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Table 2: Overview of classification cases
Ground Truth

Positive Negative

Prediction Positive TP FP
Negative FN TN

• Sensitivity/Recall, TP/(TP + FN), the ratio of true positives to total (ground truth) posi-

tives. A perfect classifier has 1.0 recall.

• Specificity, TN/(TN+FP ), the ratio of true negatives to total negatives. A high specificity

minimizes false positives. A perfect classifier has 1.0 specificity.

• Accuracy, (TP + TN)/(TP + FP + FN + TN), the ratio of correct predictions to total

predictions. A perfect classifier has 1.0 accuracy.

• Balanced Accuracy: can be calculated as (((TP/(TP + FN) + (TN/(TN + FP )))/2 =

(sensitivity + specificity)/2. The metric weights the accuracy based on the size of the

underlying classes and is often used for imbalanced datasets. If, for example, a dataset

consist of 90% positive and 10% negative sample, predicting positive for every single sample

yields an accuracy of 90% but a balanced accuracy of 50%.

• AUROC is the area under receiver operating characteristic curve, which we refer to as just

AUC for area under curve. The ROC curve plots the relation between the sensitivity and

the False Positive Rate (FPR = 1 � specificity) at different prediction probability cutoffs.

The area under the ROC curve then is a measurement of separability of the data. The AUC

ranges from 0�1 where a classifier that predicts everything wrong has 0.0 AUC and a perfect

classifier has 1.0 AUC.

When deciding which metric to use, one needs to look at the specific use case and the desired
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outcome. In related research, the accuracy and the AUC are often used to determine the effective-

ness. As our dataset is unbalanced (more samples outside than inside), we use balanced accuracy

to evaluate the performance of our classifier. There is often a trade-off between high precision

(few false positives) and high recall (few false negatives). For our specific use case we want to

emphasize avoiding false positives and therefore want a high precision.

We prefer false negatives over false positives for security reasons: it is better if a trusted device

is classified as outside (negative) when it is inside, resulting in a false negative, than to classify

an outside adversary as inside (a false positive). In cyber-security this is often referred to as the

fail-safe default principle: when the class of a sample is ambivalent, the class that can do less harm

should be chosen.

Therefore, we evaluate our model based on its precision, balanced accuracy, and AUC.

4.4.2 Candidate models

Many classifiers can distinguish between two classes. As we have access to labelled training data,

we focus on supervised classifiers. We chose three supervised machine-learning classifiers:

• Random Forest

• K-Nearest Neighbors (KNN)

• Support Vector Machine (SVM)

We use SVM as the baseline and compare the other two classifiers to it. The results of this com-

parison can be found in Section 5.2.3.
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4.4.3 One class vs. Binary

A deciding factor in the training phase of a machine-learning classifier is the training data that is

used. While most classifiers only work if they are trained on both positive and negative samples,

SVMs also have the ability to train on only positive examples. Training a binary classifier on only

one class is also known as one vs. rest classification or outlier detection. Such a one-class classifier

could be useful in for our system in the case that the outside of a residence is not accessible.

Inaccessibility is especially a problem in multi-apartment buildings where it can be unfeasible to

access neighboring apartments. In these scenarios a one-class classifier could perform the inside

vs. outside classification with only training data from the inside of the apartment.

We tested such a one-class classifier on our data and present the results in the section 5.2.7.

4.4.4 Evaluation methods

In our evaluation we employ two methods for evaluating our classifier: (1) k-fold cross-validation

and (2) hold-out validation.

A k-fold cross-validation splits the dataset into k different subset of equal size. Usually the

subsets are sampled randomly from the data, but we also use cross validation without random

sampling as described in 5.2.2. After the dataset is split into k subsets, k � 1 subsets are used for

training while the last one is used for testing. The training and testing process is repeated k times

with a different subset used for testing every time as depicted in Table 3. The result of a k-fold

cross-validation tells us how well a classifier performs on a dataset.

We also use hold-out validation, which essentially is a 2-fold cross validation. The dataset is

divided into two subsets, one training and one testing set. Usually the two sets are produced by
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Table 3: Schematic of k-fold cross-validation, code for this table was taken from [2]

1st Iter

2nd Iter

3rd Iter

kth Iter

TrainTest

· · ·

Fold-1

E1

Fold-2

E2

Fold-3

E3

Fold-k

Ek

randomly sampling from the dataset. Usually the training set is chosen to be the larger one.

5 Experimental evaluation

As the culmination of this thesis we tested our system in a real home environment. The results

obtained during these experiments can be seen as a preliminary indicator of our system’s perfor-

mance. Because of the physical properties of Wi-Fi signals, each environment will be different;

further experiments will be needed to confirm whether our approach generalizes.

5.1 Experiment setup

When conducting the experiments our main focus was on reproducibility. As we were repeating

the experiments multiple times to investigate the effects of different variables, it was key that

the produced measurements could be compared between different runs. The following sections

describe how we achieved our methods.
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Figure 4: The house used for our experiments

5.1.1 Experiment site

We conducted all our experiments in a single-floor, single-family, stand-alone home in Hanover,

New Hampshire (Figure 4). The house footprint was about 160m2. We conducted our experiments

on the first floor as this allowed us access to all the outside walls. The first floor was made up of

one large living space on one side, and multiple private bed-rooms on the other side (see floor plan

in Appendix B).

The house had the shape of a rectangle with a little ‘bump’ on one side. The house was built

from wood with relatively thin outside walls. In addition, it had a large window facing the back-

yard. Finally, there was a 2.50m by 0.7m brick chimney near the middle of the living room.

When considering this testing site the most important thing to note is the material composition

of the house. Because wood attenuates Wi-Fi signals less than materials like concrete or stone

(Figure 5), transmissions from the outside will be less attenuated in our test site compared to a

house made of solid stone or concrete.

We were not able to test the system on different types of buildings. The system should work

the same way regardless of whether the residence is an apartment in a multi-apartment building or
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Figure 5: Signal attenuation through different materials, picture taken from [3]

standalone house. Only the collection of sufficient outside data might be an issue in some settings.

We leave it to future research to confirm that the system achieves similar performance in apartment

buildings.

5.1.2 Test execution

To ensure reproducibility, we conducted all experiments following the steps as described below.

We place all the observers on one plane. The target is also on that plane. For our experiments,

we set the height of the plane at about 1m above the floor using wooden furniture to reduce signal

attenuation. The variations of height between the different devices did not exceed 5cm and we

assume their effects to be negligible. The Raspberry Pi was placed on a rolling cart and we used a

mobile battery to power it.

An essential part in ensuring reproducibility was to transmit signals from the same set of loca-

tions on every run of the experiment: we sent a fixed number of transmissions from each location

in a fixed set of locations. The locations inside were distributed in a grid with a margin of 1.5m

between gridpoints. Outside we chose locations located on three separate rings around the house
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at distances of 20cm, 50cm, and 3m respectively. On these rings the transmission locations were

spaced 1.5m apart as well. A sketch of all transmission locations can also be found in Appendix B.

We marked these locations with small strips of tape on the ground so we could reliably position the

cart with the Raspberry Pi on top of it. Unfortunately, we had to leave out some of these gridpoints

because of furniture that was in the way.

To ensure reproducibility, no people were present in the house during the data collection. The

sleep timer in the transmission script allowed the person pushing the button on the Raspberry Pi

to leave the house in time before the transmissions occurred. We leave it to future research to

determine the effects of the presence of people on the performance of the system.

5.1.3 Variables and test runs

Overall, we performed three different runs of the experiment, as shown in Table 4.

1. High transmission power, observers just inside the outside walls.

2. Low transmission power, observers just inside the outside walls.

3. High transmission power, observers moved further inside.

We changed the position of the observers to determine the effect of their location on the perfor-

mance of our classifier. The Outer positions had the observers placed in the four corners of the

house with about 30cm separation to the wall. The Inner positions had the observers placed in

the same formation, but closer to center of the house (approximately 4m away from the corner). A

schematic of these positions is shown in Appendix C.
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Table 4: Different experiment configurations
# Tx power Observer placement Dataset name

Run 1 30dbm Outer positions dataset1
Run 2 15dbm Outer positions dataset2
Run 3 30dbm Inner positions dataset3

Table 5: Standardization factors of each dataset
# µ �

dataset1 68.55 14.41
dataset2 69.71 18.34
dataset3 67.43 13.98

5.2 Measurements and results

When analyzing our datasets and performance of the machine-learning classifiers we use dataset1

for the baseline dataset and compare the results of the other ones to it.

5.2.1 Dataset

The three datasets contain around 8, 000 measurements each. There is an imbalance towards the

outside set of measurements as we took more measurements outside. Before the datasets are further

processed they are standardized as described in 4.3.3; the standardization factors are shown in

Table 5.

It is difficult to visualize the datasets, which are four dimensional; to get a general understand-

ing of the shape we used the t-distributed Stochastic Neighbor Embedding (TSNE) algorithm for

dimensionality reduction. We used the algorithm to reduce the dataset from four to two dimen-

sions, and show the result in Figure 6. TSNE tries to identify similarities and cluster in the higher

dimensional data and transfer them down to lower dimensions. Therefore, the absolute values at

the lower dimension are relatively meaningless. Meaningful are the relative positions and clusters

of the individual datapoints.
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Figure 6: Result of TSNE dimensionality reductions

Interestingly, it is easy to see how the transmissions from the same location, especially on

the inside, are clustered together. The clustered measurements seem to back up the claim from

Section 4.1.2 that each location has its own unique RSSI ‘fingerprint’. It can also be seen right

away that, while there is some overlap between the positive and negative samples, the data is at

least to some degree separable. Just how separable the data is will be determined in the following

sections.

5.2.2 Effects of evaluation methods

As noted above, we use k-fold cross validation and hold-out tests (2-fold cross validation) to evalu-

ate our classifier. After working with our data we realized that the the parameters of the evaluation

method make a substantial difference when using the data we collected. These effects of the eval-
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uation methods are largely due to the nature of the data and how we collected it. We recorded 50

frames per location. Each transmission location has its own RSSI fingerprint, which means that

readings recorded at the same location have similar RSSI values recorded by each observer and

therefore form a cluster in the dataset. There are 160 locations in our dataset, although some of

their ‘fingerprints’ will likely overlap. When looking at Figure 6 it becomes clear that overlaps

were especially common for the inside locations and less so for the outside locations.

In its essence, k-fold cross validation splits the data into a training set and testing set k times.

Now, if the training set includes a sample from each of the location clusters, the classifier should

find it relatively easy to recognize a new sample from one of those clusters – because it will be a

close neighbor to points seen during training. Classifying samples that have essentially been seen

before is not a good indication of how well our system is able to distinguish inside from outside. If

we shuffle the dataset before applying 10-fold cross validation, for example, each of the 10 subsets

will contain a sample from almost every location cluster. Hence, the classifier is only asked to

classify samples for which it has already seen close neighbors, and is therefore extremely effective

(in our case scoring around 99.5% accuracy). The high accuracy is simply the result of the way we

trained and tested the classifier.

This observation begs the question: what evaluation method should we use? To begin, we

arrange the samples in the order they were recorded. Therefore, measurements that were taken at

the same location will be adjacent in the dataset. If we perform a k-fold cross validation without

shuffling the dataset – instead, chopping the sequence of samples into k subsequences – each of

the subsets will largely contain points recorded at different locations. Thereby, in each iteration,

the samples in the test set were recorded (mostly) at locations that are not included in the training

set. Here, the classifier is actually tested on how well it can classify transmissions from locations
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it hasn’t seen before, which is a better indication of how well it may perform in a practical setting.

While such a non-shuffled cross validation is not frequently performed in related research work, it

is an effective way for us to test our classifier on locations that it has not seen before. For future

research we suggest to record the location of each transmitted frame so that they can be separated

more easily during the evaluation.

The question now is, how many folds we should use for the k-fold cross validation. If k is too

small we may leave out large regions of training data (e.g., a whole side of the house), and if k

is too large we run into the same issue that occurs when shuffling the data; nearly every location

cluster is part of the training data. We can see how the choice of k affects the accuracy of the

classifier in Figure 7. The accuracy increases quickly until k = 70, then it begins to stabilize

and only increases slightly. With small k, we are missing rather large patches of locations in our

training data – yet we test on those locations. As we use more folds, we leave out smaller location

patches during training, giving the classifier a more complete training set. In the extreme case of

k = 160, in theory we test on exactly one transmission location and train on the rest. However, due

to some frames dropped in the data processing step (as described in Section 4.3.1) this situation is

unlikely, as the folds will not align with the boundaries of the location clusters within the dataset.

For our evaluations and comparisons we chose k = 80, for two reasons: first, this is the value

where the accuracy starts to level off in Figure 7; second, 80 is half of the number of location

clusters (160) in our dataset. Therefore, with k = 80 we include at least one location cluster in

each training set that had no samples included in the training data. Thereby we mimic a ‘leave

one location out’ approach that should give a better indication of how well our classifier is able to

distinguish inside from outside.
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Figure 7: Accuracy against the number of folds used for non-shuffled k-fold cross validation with
a SVM

5.2.3 Classifier performance

As mentioned in section 4.4.2 we are using a SVM with an rbf kernel as our baseline model. When

running a 80-fold cross validation on dataset1, the SVM produced the following confusion matrix:

TN = 2434 FP = 555

FN = 308 TP = 4839

Therefore, the classifier achieved a precision of 0.894 and a balanced accuracy of 0.74. In

the context of our experiments these values mean that the classifier predicts 74% of the overall

samples, and 89.4% of the inside samples, correctly.

The ROC curve of the classifier produced running a 80-fold cross validation can be seen in Fig-

ure 8. The plot shows each of the 80 runs of the cross validation and the average of all the runs.

The AUC of the ROC graph is a promising 0.97.
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Figure 8: ROC curve produced by testing a SVM with rbf kernel using 10-fold cross validation on
dataset1. The thin colored lines indicate the ROC curve of each fold.

Another interesting property of the classification to look at is the certainty the classifier has for

each prediction. Most classifiers (including the three compared in this thesis) produce a probability

as output. If the probability is above 0.5, the sample is predicted to belong to the positive class and

if it is below 0.5 the sample is predicted to belong to the negative class. Plotting these prediction

probabilities for the entire dataset gives a good idea of how certain the classifier is on predictions.

The plot also provides an insight into the separability of the dataset. We created the prediction

probability plot seen in Figure 9 by performing a 80-fold cross validation. The plot confirms what

the numbers indicate as well. The classifier is more likely to classify a frame that was transmitted

from the inside to belong to the outside class than the other way around. Therefore, we see more

false negatives than false positives (compared to the amount of samples in each class) which is a

desired behavior as described in 4.4.1.
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Figure 9: Prediction probabilities produced by testing a SVM with rbf kernel using a 80 cross
validation

Table 6: Results the different classifiers achieve when running a 80-fold cross validation on
dataset1

Classifier bal. Accuracy Precision AUC
SVM 0.74 0.90 0.97
KNN 0.79 0.98 0.97

Random Forest 0.80 0.97 0.99

5.2.4 Classifier comparison

As mentioned in Section 4.4.2, we are comparing three different classifiers to see which one per-

forms best on our data. We use dataset1 for the comparison and the results can be found in Table 6.

While the differences are subtle, the results show that for this dataset the Random Forest Classifier

performs slightly better than the other two. Comparing the classifiers on the two other datasets gave

similar results. It is hard to find a clear reason for the Random Forest classifier performing best.

We suspect, however, that the Random Forest classifier can capture more complexity. By using an

ensemble of decision trees, it is able to apply more non-linearieties to the data than, for example, a

SVM. Thereby, it is more flexible in fitting to the data and can capture more complicated patterns.
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5.2.5 Varying transmission power

As described in section 4.3.3, one goal of our system is to classify devices regardless of their

transmission power. Ideally the system can be trained using a device with a transmission power

of (for example) 30dBm and then classify a device with a transmission power of (for example)

15dBm. We try to accomplish such a classification by standardizing the data and leveraging the

fact that differences in transmission power have a proportional effect on the RSSI readings of

different locations [5].

To test whether our system is able to accomplish classifying different transmission power levels

we use dataset1 and dataset2 that we recorded using a transmission power of 30dBm and 15dBm

respectively. For this test we are using the Random Forest classifier as we showed that it is the

best performing classifier for our data. We trained the classifier on dataset1 and then tested it on

dataset2, and vice versa. By doing so the classifier only uses measurements of one transmission

power level to classify the transmission done at a different power level. For these results to be

meaningful we also had to adapt the standardization factors; instead of standardizing each dataset

using its own µ and � we used the µ and � from the training set for the testing set as well. Thereby,

we avoided using any prior knowledge about the testing set before classifying it.

The results of these experiments can be seen in the following table:

Training Testing bal. Accuracy Precision AUC

dataset1 dataset2 0.65 0.60 0.77

dataset2 dataset1 0.67 0.65 0.79

Comparing the above results with the results from Table 6 shows us that the system is still
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distinguishing between the two classes, but less successfully than when just using the same trans-

mission strength. It should be noted that these metrics were calculated using a different evaluation

method, than in the previous sections. Here, we train and test on two entirely different datasets

instead of using k-fold cross validation. The different evaluation method might at least partially

explain the drop in performance. Further experiments are needed to confirm that the performance

of the classifier suffers when using a different transmission power.

5.2.6 Different observer placement

The last variable that we changed during our experiments was the location of the observers. In

dataset3 we used the inner positions for the observers as defined in Section 5.1.3. Using a Random

Forest classifier we ran the same 80-fold cross validation on both dataset1 and dataset2, which were

both recorded using the same transmission strength but different observer positions. The results of

these experiments can be seen in the following table:

dataset bal. Accuracy Precision AUC

dataset1 0.80 0.97 0.99

dataset3 0.82 0.98 0.99

As we can see the accuracy and precision improved marginally. It thereby seems that plac-

ing the observers further inwards improves the performance of the classifier. Notably the inner

observer positions were in proximity to the brick fireplace and we theorize that it might have in-

fluenced our measurements. Another possible explanation for these results is that the observers in

the inner positions are closer to all inside measurement locations. Thereby, locations on the inside

might become less ambiguous, while locations close to the boundary stay as ambiguous as before.
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5.2.7 One class vs Binary

As discussed in Section 4.4.3, we also investigated whether we can use a one-class classifier. Such

a classifier would allow us to train using only data collected from the inside. Scikit-learn, the

Python library we use for the machine-learning algorithm, only provides a one-class version of

the SVM. KNN and Random Forest only work for binary classification problems. We evaluated

this SVM on dataset1 using holdout validation with a test set size of 30%. That is, we trained the

SVM only on the positive examples of the training set and tested it on both classes of the test set.

The one-class SVM performed with a balanced accuracy of 0.61 and a precision of 0.56, which

are rather poor; after all, random guessing would lead to an accuracy of 0.50. Unfortunately the

one-class SVM did not support probability predictions and we could therefore not calculate the

AUC. These results, especially the precision, are significantly worse than the ones produced by

binary classifiers. We leave it to further research to find ways to increase this accuracy or develop

techniques on how to work with limited outside training data.

5.2.8 Using three observers

As a final experiment, we wanted to see how the system performs when only data of three ob-

servers is used. We simulated using three observers by dropping the recordings made by one of

the observers. The location of each observer can be seen in Appendix C. The results of dropping

single observers are listed in Table 7.

We can see that the accuracy decreases slightly when using three observers. Leaving out each

of the observers produces different results. Notably, the accuracy and precision almost stay almost

unchanged when leaving out observer 3.
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Table 7: Comparison of classifier performance when leaving out recordings of different observers.
Results obtained using 80-fold cross validation with a Random Forest classifier on dataset1.

Classifier bal. Accuracy Precision AUC
All 4 observers 0.80 0.97 0.99
Without Obs. 1 0.75 0.91 0.99
Without Obs. 2 0.74 0.91 0.98
Without Obs. 3 0.78 0.96 0.99
Without Obs. 3 0.76 0.93 0.98

We can conclude from these observations, that while reducing the number of observers to 3

decreases the performance of the system, a three-observer system may still be feasible because the

decrease is not substantial. Depending on the placement of the observers, just using three observers

only affects the performance slightly.

6 Discussion and Conclusion

Not a lot of research has been done on the problem of indoor vs. outdoor classification. Therefore,

there is no established way to evaluate the performance of such a classification system. In this

thesis, we use non-shuffled 80-fold cross validation to mimic a leave-one-out evaluation method.

While this might be an unconventional way to score a machine-learning classifier it is a better

indicator of the performance of our system than using randomly sampled cross validation. In hind-

sight, we should have also recorded the transmission location, or what cluster each frame belongs

to. Such labels would have allowed us to, for example, perform true leave-one-out evaluation or

other, better suited evaluation methods.

Our results are also dependent on several other factors. One of these factors are the trans-

mission locations. If we had chosen different locations (e.g., outside locations that are further or

closer to the boundary) our results would have likely been different. Just how different results
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would be in other environments will have to be determined by future research. Another factor

that influenced our measurements was the experiment location. As seen in Figure 5 the attenu-

ation of Wi-Fi signals heavily depends on the materials from which a house is built. Different

building materials might produce different results. We theorize that a house made out of concrete

would produce better results as the there should be a greater distinction between inside and outside

signal strengths. While the absolute values of the results might differ in other environments, the

comparisons between different set-ups we drew should be generalizable.

Note also that the our evaluation is based on an attempt to classify the location of a device from

a single transmitted frame. Averaging the values over multiple transmitted frames might increase

the accuracy of the system.

Because of all these factors, our results need to be interpreted in the context of the data collec-

tion and evaluation methods. We leave it to further research to determine how different environ-

ments influence the performance of the system.

For the system to be deployed in the ‘real world’ some further features will need to be de-

veloped and some questions answered. In a real implementation it would be useful to continue

training while in operational mode. For example, transmissions from Smart Things known to be

‘inside’ could be used to refine the model over time. Continuous training may be necessary be-

cause the RSSI readings are affected by, for example, the arrangement of furniture in the residence.

The new training data could be used to account for such changes in the environment. In such an

approach, one could apply a function to give greater weight to newer training examples to ‘update’

the model over time. Future research should conduct long-term experiments to determine how

robust the system is to changes in the environment. Other experiments should determine the effect

of a multichannel environment.
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We aimed to determine whether it is possible to build an ‘inside vs. outside’ RSSI-based clas-

sification system that could be used in private homes. We showed that it is possible to design such

a system, but there is a need to explore several ways to improve the system and to better evaluate

its performance. We hope that future research can answer some of these questions.
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Appendices

A Observer Code

from scapy.all import *

from gpiozero import Button

import time

iface = ’wlan0mon’

curr_id_fp = ’/home/kali/curr_id’

def read_id():

# Load id from text file
with open(curr_id_fp, ’r’) as in_file:

x = in_file.read()

return int(x.strip())

def write_id(new_id):

# Write id to text file
with open(curr_id_fp, ’w’) as out_file:

out_file.write(str(new_id))

curr_id = read_id()

to_send = 50

rx_addr = ’01:02:03:04:05:06’

button = Button(3)

print(’ready to transmit’)

while True:

button.wait_for_press()

button.wait_for_release()

time.sleep(5) # Time to walk away
for i in range(curr_id, curr_id + to_send):

pkt = Dot11(addr2=rx_addr, type=2)/Raw(load=f’{i}’)
sendpkt = RadioTap()/pkt

sendp(sendpkt, iface=iface, verbose=1, inter=0.01)

curr_id += to_send

write_id(curr_id)
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B Floor Plan

Figure 10: Floor Plan

C Observer Positions

Figure 11: Inner and outer observer positions. The observers are numbered clockwise, with Ob-

server No. 1 in the top right corner.
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