
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses, Dissertations, and Graduate Essays

Spring 6-1-2021

Physically Based Rendering Techniques to Visualize Thin-Film Physically Based Rendering Techniques to Visualize Thin-Film

Smoothed Particle Hydrodynamics Fluid Simulations Smoothed Particle Hydrodynamics Fluid Simulations

Aditya H. Prasad
Dartmouth College, aditya.h.prasad.21@dartmouth.edu

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Interdisciplinary Arts and Media Commons, Optics Commons, and the Other Computer

Engineering Commons

Recommended Citation Recommended Citation
Prasad, Aditya H., "Physically Based Rendering Techniques to Visualize Thin-Film Smoothed Particle
Hydrodynamics Fluid Simulations" (2021). Dartmouth College Undergraduate Theses. 228.
https://digitalcommons.dartmouth.edu/senior_theses/228

This Thesis (Undergraduate) is brought to you for free and open access by the Theses, Dissertations, and Graduate
Essays at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate
Theses by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1137?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/228?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Physically Based Rendering Techniques to

Visualize Thin-Film Smoothed Particle

Hydrodynamics Fluid Simulations

Aditya Hans Prasad

Department of Computer Science

Dartmouth College

Supervisor

Professor Bo Zhu

In partial fulfillment of the requirements for the degree of

Bachelor of Arts in Computer Science

June 2021

Two bubbles found they had

rainbows on their curves. They

flickered out saying: ‘It was worth

being a bubble, just to have held

that rainbow thirty seconds.’

Carl Sandburg

American Poet

Abstract

This thesis introduces a methodology and workflow I developed to

visualize smoothed hydrodynamic particle based simulations for the

research paper ’Thin-Film Smoothed Particle Hydrodynamics Fluid’

(2021), that I co-authored. I introduce a physically based rendering

model which allows point cloud simulation data representing thin film

fluids and bubbles to be rendered in a photorealistic manner. This in-

cludes simulating the optic phenomenon of thin-film interference and

rendering the resulting iridescent patterns. The key to the model lies

in the implementation of a physically based surface shader that ac-

counts for the interference of infinitely many internally reflected rays

in its bidirectional surface scattering function. By simulating the ef-

fect of interference on rays reflected off the surface of a thin-film as a

component of a surface shader, I am able to obtain photorealistic ren-

derings of bubbles and thin-films. This enables us to visualize complex

vortical swirls and turbulent surface flows on oscillating and deforming

surfaces in a physically accurate and visually evocative manner.

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Background . 3

1.3 Artistic Process . 4

1.4 Related Works . 5

2 Methods 7

2.1 Physics Background . 7

2.1.1 Derivation of Optical Path Difference 8

2.1.2 Calculation of Intensities of Reflected Ray and Transmitted

Ray . 9

2.1.3 Spectral Sampling and Integration over Ray Energy 10

2.1.4 The Fresnel Equations . 10

2.2 Implementation of Surface Shader 11

2.2.1 Bidirectional Scattering Distribution Function 11

2.2.2 Sampling Wavelengths to Calculate Reflected Ray’s Intensity 13

2.2.3 Conversion of Spectral Energy to Colour 13

2.3 Bubble Geometry . 14

2.3.1 Colour based on Varying Thickness 16

2.4 Houdini Workflow and Rendering 17

2.5 Particle Visualization . 17

2.5.1 Rendering the Point Cloud as Geometry 18

3 Results 19

3.1 Irregular Bubble . 19

iii

CONTENTS

3.2 Catenoid . 20

3.3 Half bubble . 21

3.4 Dripping . 22

3.5 Film . 24

3.6 Bubble Oscillation . 25

3.7 Limitations . 25

References 29

iv

CONTENTS

Figure 1 A render of a bursting bubble

1

Chapter 1

Introduction

1.1 Motivation

Bubbles are among the most beautiful natural phenomena. Their intricate surface

flows, vibrant colour pallete, and unique motion make them fascinating to watch.

In fact, the beauty of bubbles lies in the laws of physics that govern the way they

appear, evolve, and contort. Bubbles are given their distinct shapes and forms

due to surface tension. This also causes constant turbulent flows on their surface,

which are mesmerizing to watch. The vivid colors we see in bubbles are actually

due to an optical phenomenon called tin-film interference. Thin-film interference

gives bubbles a unique appearance as it colours the delicate patterns on their

surface in a rich palette of hues. The unique, evocative appearance of bubbles

has captured human attention for centuries. Throughout human history, artists,

painters, photographers, and scientists have made great efforts to recreate the

visual beauty of bubbles.

The endeavour to capture the beauty of thin-films has been furthered by the

computer graphics community. Research and innovation has brought computer

graphics so far that we can accurately recreate physical phenomena, following

the principles of math, physics, and nature. Harnessing the power of graphics,

researchers are constantly striving to capture more accurately the vast array of

phenomena that give bubbles their distinct appearance, and to recreate them

computationally. There are many previous works that have made significant con-

tributions to capturing the optical phenomena of thin-film interference [1][2][3].

2

1.2 Background

The methods put forth in these works are seminal in computational approaches

to recreating the beauty of bubbles.

In this paper, I present physically based rendering techniques to visualize the

phenomena that govern the distinct beauty of bubbles. I visualize significant

physical simulations of thin-films developed in our SIGGRAPH paper [4]. More

specifically, the methods I propose here allowed the research team to visualize

simulation data, represented by point clouds, as photorealistic bubbles.pip i By

recreating and following the laws of optics, these methods are able to capture

mesmerizing thin-film phenomenon, and create beautiful visualizations of bubble

motion, turbulent flow, and various other physical thin-film phenomenon in order

to computationally create realistic bubbles. The work done for this thesis is intrin-

sically linked to the proposed simulation methods in the larger research project

[4], but can be utilized to accurately visualize related thin-film phenomenon.

1.2 Background

The goal of this paper is to highlight the rendering techniques and workflow I un-

dertook in rendering simulations for ‘Thin-Film Smoothed Particle Hydrodynam-

ics Fluid’ [4]. That paper’s central goal is to computationally simulate thin-films

in a physically accurate manner. As discussed before, the beauty of bubbles lies

in the way they move, evolve, and appear on both a micro and macro scale, and

our research project aims to capture all three of those aspects.

To recreate the optical phenomena of thin-film interference, I used a physi-

cally based rendering approach [5]. There were several reasons for this. Firstly,

raytracing is a fast, well developed technique that has been implemented in a va-

riety of different research and commercial software. Secondly, raytracing allows

for a great degree of physical accuracy and photo-realism. Lastly, the mathe-

matical principles underlying raytracing allow for many different materials to be

represented computationally, in a clean and modular way. In order to recreate

the effect of iridescence, I did not need to modify the entire raytracer, but sim-

ply write a new material representation of a thin-film. In this representation, I

am able to capture the mathematical rules that govern how light interacts with

3

1.3 Artistic Process

thin-film. Therefore, I found that physically based rendering affords a degree of

practical and mathematical freedom that makes it the most viable approach for

photorealistic rendering.

1.3 Artistic Process

The process of rendering is just both a scientific process, as well as an artistic one.

While the focus of this paper is to highlight the development of specific rendering

techniques, a central portion of my research work was the creation and generation

of beautiful imagery and videos. As a result, much of my late stage work required

that I play the role of an artist by choosing appropriate photography techniques,

colour treatments, and lighting in order to get aesthetically pleasing, visually

evocative, and physically accurate rendering results. In pursuit of beautiful results,

I needed visual references and inspiration in order to ground my approach.

Figure 1.1 A photograph from Fabian Oefner’s Iridient

A big source of inspiration for me was the work of Fabian Oefner, in particular

his series ’Iridient’ [6]. The hyper-saturated, high contrast photographs capture

the rich color pallete of iridescence, and highlight the intricate patterns formed by

turbulent flows on the surface of bubbles. I set up render scenes to emulate these

vibrant pictures, while doing so in a physically accurate manner.

While the above figure served as aesthetic inspiration, the underlying methods

in rendering thin-film structures always maintain fidelity to photorealism to the

4

1.4 Related Works

Figure 1.2 A physically based rendering emulating Oefner’s style

best capacity of the raytracer.

1.4 Related Works

Mesh Based Dynamic Thin Film

There are seminal works in representing thin-film geometries, particularly area

minimizing geometries. Several early works have worked on quick techniques to

model the appearance of static bubble geometries [2] and clusters [7]. Other mod-

els provide great physical accuracy when rendering thin-film surfaces [8]. There

are several works that have modelled in greater detail various aspects of thin-film

rendering, such as visualizing non-parallel thin-film interface boundaries [9], or

visualizing thin-film sheets and their evolution [10]. A significant paper which

couples physics of motion with optical modelling of bubble structures is ’Chemo-

mechanical Simulation of Soap Film Flow on Spherical Bubbles’ [11]. There are

other novel approaches to visualizing the evolution of thickness on the bubble sur-

face [12] as well as the visualization of flows of bubble shape and form [13]. These

works exhibit how deeply interlinked the physical simulation and rendering-based

visualization aspects are in capturing the rich beauty of bubbles.

Thin Film Interference Surface Shaders

5

1.4 Related Works

There are several papers highlighting techniques to model thin-film interference

computationally. The earliest work to introduce thin-film interference to Com-

puter Graphics is Smits and Meyer’s seminal paper [14] to recreate iridescent

patterns in image synthesis. Early works model thin-film interference based off

the Fresnel Equations [15] [3]. These works do not consider multiple internal

reflections, and subsequent work has dealt with these limitations. Seminal de-

velopments in computational methods of spectral rendering [16] have also greatly

affected the development of thin-film interference simulation methods. There have

been techniques developed to calculate thin-film interference with fast approxima-

tions, in real time [17]. There are also technical developments in representing wave

phenomena, accounting for reflection off isotropic thin-film material [18], which is

an apparent limitation in my approach. The defining mathematical approach for

the model presented in this thesis is proposed in ’A Practical Extension to Micro-

facet Theory for the Modeling of Varying Iridescence’ [1].

Point Set Thin Film

There are many previous works developing novel techniques for the simulation of

level-set and point-set thin films [19]. While this approach converts the simulation

point cloud to a mesh surface for rendering purposes, previous works are able to

render point-set surfaces [20], and point cloud based SPH simulations [21] with

great detail.

Houdini Rendering

There are various useful implementations of thin-film materials accounting for iri-

descence in several research-oriented and commercial renderers. These have been

done in spectral renderers such as Arnold [22], Blender + LuxRenderer [23]. There

are also high-quality shader implementations in RGB rendering methods, such as

for the Disney BRDF Explorer [24]. Since Houdini’s native Mantra renderer is

not a spectral renderer, there are relevant approaches to implementing spectral

colours in Houdini [25]. There are also implementations of static bubble rendering

following Andrew Glassner’s bubble rendering techniques [2] in Houdini [26] that

produce stunning results, though they are not entirely physically accurate.

6

Chapter 2

Methods

2.1 Physics Background

Thin-film refers to an extremely thin walled layer. For the purposes of this project,

we are focusing on fluid thin-films such as those formed by soap water. Thus, the

thin films here have the refractive index of around 1.34 and thickness in magnitude

of nanometers. When a ray of light hits such a thin film, it is partially reflected,

and partially transmitted through. In fact, some part of the ray undergoes a series

of internal reflections that leads to interference in the reflected rays. Figure 2.1

shows this process. The rays R0, R1, R2 constructively and destructively interfere

with one another, resulting in the phenomenon of thin-film interference [27].

Figure 2.1 Interaction of a ray with air-thin film interface

When considering thin-film interference for a renderer, the goal is to calculate

7

2.1 Physics Background

Symbol Meaning
R0, R1, R2 reflected waves
T0, T1, T2 transmitted waves

h height of soap film
νa refractive index of air = 1.00
νs refractive index of soap film = 1.34
Θi angle of incidence
Θr angle of reflection
D optical path difference

∆φ phase change
λ wavelength of ray
R Reflectance, intensity of reflected wave
T Transmittance, intensity of transmitted wave

ar, at amplitude of reflected and transmitted ray respectively
r complex reflection coefficient
t complex transmittance coefficient

ras, tas air-to-soap film interface coefficients
rsa, tsa soap film-to-air interface coefficients

Table 2.1: A list of symbols used in our thin-film model

the intensities of visible light rays reflected off the thin film, as well as the in-

tensities of transmitted rays. The mathematical approach used in my rendering

workflow is modelled on those presented in ’A Practical Extension to Microfacet

Theory for the Modeling of Varying Iridescence’ [1] and ’Chemomechanical Simu-

lation of Soap Film Flow on Spherical Bubbles’ [11].

2.1.1 Derivation of Optical Path Difference

Consider a light ray I travelling towards a thin-film, in air (νa = 1.00). The thin-

film is represented by a single surface of width h and refractive index νs = 1.34.

Let the angle of incidence of the ray I on the surface with respect to the surface

normal be Θi. Following Snell’s Law, upon entering the thin-film, the angle of

reflectance of the ray I can be calculated by sin Θr = νa sin Θi
νs

. Following Figure

2.1, some waves of the ray reflect back to the air as R0. Additionally, some partial

energy of the ray travels through the medium as T0. Some energy is reflected, and

travels back to the medium as R1. It is important to note the assumption that

on a microscopic scale, the walls of the thin film are parallel. Then, T0 exits the

thin film into air at precisely the same angle as I entered, Θi. Since the film is so

thin, the lateral shift is negligible for results, and its effect on the transmitted ray

8

2.1 Physics Background

is ignored. Each of the reflected light waves undergo a difference in path length

due to reflection within the thin-film. Consider the difference in path length for

R1 vs R0.

For this first order reflection R1, the Optical Path Difference D can be calculated

by

D = 2νsh cos Θi (2.1)

For a kth order reflection, the OPD = kD. This Optical Path Difference is what

causes a phase shift. Let us denote this phase shift as ∆φ.

∆φ =
2πD

λ
(2.2)

where λ is the wavelength of the incident wave [1].

2.1.2 Calculation of Intensities of Reflected Ray and Trans-

mitted Ray

Once we have calculated the phase shift ∆φ, we can calculate the reflectance power

R and transmittance power T at the interface of the thin-film. R is the ratio

between incoming and outgoing reflected light at the medium of interaction, and

T is the ration between incoming and outgoing transmitted light at the medium

of interaction.

R =
|ar|2

|ai|2
= |r|2 (2.3)

where ar is the amplitude of the reflected wave and ai is the amplitude of the

incident wave. r is denoted as the complex reflection coefficient [1]. Similarly,

T =
|at|2

|ai|2
= |t|2 (2.4)

where at is the amplitude of the transmitted wave and ai is the amplitude of the

incident wave. t is denoted as the complex transmission coefficient.

Thus, by calculating r and t, we are able to calculate R and T .

r and t are both determined by the phase difference ∆φ calculated above, as well

9

2.1 Physics Background

as the reflection coefficients ras, rsa, and the transmission coefficients tas, tsa [1].

These coefficients are obtained from the Fresnel Equations.

The reflection coefficient r is calculated by summing up the contributions of all

reflected waves [11]:

r = |ras +
∞∑
k=0

tasrsa(r
2
sae

i∆φ)kei∆φtsa| = |ras +
tasrsatsae

i∆φ

1− r2
sae

i∆φ
| (2.5)

Similarly, the transmission coefficient t is calculated by summing up the contribu-

tions of all transmitted waves [11]:

t = |
∞∑
k=0

tas(r
2
sae

i∆φ)ktsa| = |
tastsa

1− r2
sae

i∆φ
| (2.6)

It is important to note that we calculate ∆φ as a function of λ, the wavelength

of the incident wave. Therefore, R and T are also calculated dependent on λ.

2.1.3 Spectral Sampling and Integration over Ray Energy

Therefore, to calculate the spectral energy of the incident ray I, we must calculate

R and T for every wave constituting the ray. In practice, this is done by sampling

the incident ray for a certain number of wavelengths determined by the parameter

n. n is a parameter inherent to raytracers which determines the number of spectral

samples that define a ray. By calculating R and T as a function of λ, for every λ

in the spectral samples, we are able to calculate the spectral representation of the

reflected ray and the transmitted ray based off the incident ray.

2.1.4 The Fresnel Equations

The Fresnel Equations are key in the calculation of thin film interference, since

they define the aforementioned coefficients, ras, rsa, tas, and tsa. These equations

essentially govern how much light is reflected at a given interface, which is depen-

dent on the angle of incidence of the light ray and the respective refractive indices

of the materials in the interface [27]. It is important to note that the reflection and

10

2.2 Implementation of Surface Shader

transmission coefficients obtained from Fresnel’s equations depend on the polar-

ization components of the incident waves. However, most raytracers assume that

the distribution of s and p polarized waves are equal in a light ray unless specified

otherwise. In this model, we follow that assumption. As a result, we can simply

average the s and p polarized coefficient components obtained from the Fresnel

equations in order to obtain our reflection and transmission coefficients [11].

2.2 Implementation of Surface Shader

The crux of implementing the above model to visualize thin-film optical phenom-

ena no doubt lies in the choice of renderer. I implemented the above model as a

surface shader in three different rendering software: PBRT [5] , Mitsuba Renderer

[28], and finally Houdini’s Mantra Renderer. Each implementation differs slightly

due to software specific parameters, but the underlying model remains the same.

For the purpose of rendering results for my team’s research paper [4], I ulti-

mately chose to work with Houdini and it’s built-in renderer, Mantra. This is

because it provides a straightforward workflow, preexisting methods to handle

geometry and lighting, and extensive technical and artistic power.

2.2.1 Bidirectional Scattering Distribution Function

The key implementation of the mathematical model lies in a function known as

the bidirectional scattering distribution function (BSDF). The BSDF is one of the

principle functions of a physically based surface shader, and is associated to a spe-

cific material. The BSDF calculates the probability that a single ray of light will

reflect, for a given material and given angle of incidence. Essentially, the BSDF

calculates how much light reflects off the interface, and how much light transmits

through. In fact, I specifically had to implement a Bidirectional Reflection Distri-

bution Function (BRDF), a specification of the BSDF which calculates how much

light reflects off the surface of the surface it is applied to [29].

The reflection of rays off the thin-film is perfectly specular since the surface

11

2.2 Implementation of Surface Shader

Algorithm 1 Thin-Film Surface Shader Ray Intersection Function

Input: Θi, νa, νs, h, I
Output: R, intensity of reflected ray and angle of reflection

if cos Θi ≤ 0 then
swap νa and νs

end if
Θr ← arcsin νa sin Θi

νs
D ← 2νsh cos Θi

for λ in SpectralSamples do
∆φ← 2πD

λ

r
||
as ← νa cos Θr−νs∗cos Θi

νa cos Θr+νs cos Θi

r⊥as ← νa cos Θi−νs cos Θr
νa cos Θi+νs cos Θr

t
||
as ← 2νa cos Θi

νa cos Θr+νs cos Θi

t⊥as ← 2νa cos Θi
νs cos Θr+νa cos Θi

r
||
sa ← νs cos Θi−νa cos Θr

νs cos Θi+νa cos Θr

r⊥sa ← νs cos Θr−νa cos Θi
νs cos Θr+νa cos Θi

t
||
sa ← 2νs cos Θr

νs cos Θi+νa cos Θr

t⊥sa ← 2νs cos Θr
νs cos Θr+νa cos Θi

ras = r⊥as+r
||
as

2

tas = t⊥as+t
||
as

2

rsa = r⊥sa+r
||
sa

2

tsa = t⊥sa+t
||
sa

2

r = |ras + tasrsatsaei∆φ

1−r2
sae

i∆φ |
t = | tastsa

1−r2
sae

i∆φ |
R[λ] = r2

T [λ] = t2

end for
Angle of reflection = specular reflect(Θi)
return R, T , angle of reflection

12

2.2 Implementation of Surface Shader

of the bubble is smooth. Thus, in my implementation, I do not anticipate any

scattering of light. As a result, the angle of reflection of any reflected ray is

equivalent to the angle of its incidence [30]. Then, the BSDF simply calculates

the phase difference, the reflection coefficients, and the reflected light intensity is

calculated based off the guiding Equation 2.5.

2.2.2 Sampling Wavelengths to Calculate Reflected Ray’s

Intensity

However, the above Equations 2.5 and 2.6 calculate the reflected and transmitted

intensities of only one wave, with a single associated wavelength λ. To calculate

the reflected intensity of an incident ray, we must calculate the intensities for

all waves that constitute it. Therefore the implementation must sum over the

reflected intensities over the spectrum of visible waves in order to account for all

wavelengths in the ray.

In practice it is not possible to account for every single wave, so we choose to

sample a given number of waves ranging from wavelengths of 300nm to 800nm,

at a fixed increment. This range is a variable, and the upper and lower bounds

can be tweaked. Thus, the parameter nSpectralSamples that defines how many

samples it takes to represent the spectrum of a ray is very important. While the

renderers PBRT and Mitsuba provide this value as a global variable based of their

implementation, Houdini did not have a universal parameter for this as it is not

a spectrally based renderer. Thus, the parameter nSpectralSamples is a user

defined parameter in our implementation. 8 or 16 works best; anything greater is

a bit excessive.

Then, the reflected intensities are calculated for each wave whose associated

wavelength we choose to sample, and we construct the reflected ray’s spectral

energy curve by compounding the reflected intensity at each sampled wavelength.

2.2.3 Conversion of Spectral Energy to Colour

For the representation of spectral energy to be visualized as colour, the resultant

light intensities for all wavelengths are converted to a single RGB color value by

13

2.3 Bubble Geometry

integrating with the CIE matching functions. In practice, this integration leads

the resulting colours to veer from the ground truth. This model assumes such

errors to be a limitation of RGB rendering engines [1].

2.3 Bubble Geometry

The modelled surface shader can be applied to any mesh geometry. However,

a significant aspect of the research paper [4] that this approach contributes to is

that the Smoothed Particle Hydrodynamics based simulations produce data that is

represented and contained within a point cloud. To convert a point cloud to a mesh

surface, I followed the basic workflow as described in ’From Point Cloud to Durface:

The Modeling and Visualization Problem’ [31] that entails pre-processing, global

and localized topology determination, polygon mesh surface generation, and post-

processing. These methods have been encapsulated and packaged into several

existing Houdini functionality.

It is important to convert the point cloud data into mesh geometries for the

purpose of rendering by the above methods.

The conversion of point cloud to mesh is in Houdini, largely due to the pre-

existing functionality to represent volume fields as VDBs [32], which allow for

ease of importing point cloud data into a data format that is convertible to mesh.

VDBs are voxel-based data structures, and are memory efficient in representing

both sparse and dense volume fields [32].

The pipeline for this conversion is as follows:

1. Import point data into Houdini, with points placed at (x, y, z) coordinate in

3d space.

Along with the position vector of the points, we also import the height-

field parameter rh, as well as the direction of the surface normal N . rh

contains the thickness of the thin-film at the given point.

2. Convert point data cloud to Houdini VDB.

This step is key in representing the point cloud as a fluid. On conver-

sion, the points are treated as ’droplets’, and neighbouring points within

14

2.3 Bubble Geometry

Figure 2.2 Point Cloud of a Dripping thin-film

the radius defined by parameter InfluenceRadius are joined to form a fluid

volume.

3. Convert Fluid VDB to a polygon mesh.

Here it is important to implement re-sampling of the vertices, and trans-

fer rh and N from the original point cloud to the newly sampled vertices of

polygons. The mesh surfaces interpolate the transferred data based on the

closest of the original points in the point cloud. Thus, the resolution of the

mesh is key to making sure that no great losses are incurred by interpolating

from too far a point. Otherwise, that will lead to artifacts.

This pipeline converts a point cloud to a infinitesimally thin mesh that em-

ulates fluid, simulating the effects of ’droplets’. The thickness of the fluid is

contained within the imported vertex parameter, rh. It is very important to tune

the parameters as tight as possible, otherwise artifacts will be present in the mesh

representation. The tuning of the governing parameters is different for each input

since it depends on the sparseness of the input cloud, as well as the size of the

cloud, maximal distances between neighbouring points, and also whether there are

any holes present in the structure.

15

2.3 Bubble Geometry

Figure 2.3 Pipeline of Fluid Surface Mesh Generation in Houdini

2.3.1 Colour based on Varying Thickness

The colours of the reflected rays are dependent on the height of the thin-film at the

point of incidence. In the real world, thin-films do not have a uniform thickness.

Instead, the thickness of the thin-film varies. This variation is what leads to

the formation of intricate patterns and turbulent surface flows, as the varying

thickness evolves and develops due to the action of surface tension, among other

forces. Thus, for this model to be able to visualize surface flows, there must be a

way to map variations in thickness to the mesh.

The simulation data produced by the SPH simulation method highlighted in

our paper contains heightfield values rh for every point in the resultant point

cloud. In order to transfer this heightfield value rh from point cloud to mesh, we

import rh as a vertex attribute in Houdini. We then interpolate the attribute from

the closest vertex to every point where a ray collides with the resultant mesh. This

introduction of variation in height per vertex leads to the visualization of surface

16

2.4 Houdini Workflow and Rendering

turbulent flows in physically accurate manner. However, as a result the parameters

controlling the interpolation and resolution of the mesh conversion must be tuned

very finely to avoid artifacts.

2.4 Houdini Workflow and Rendering

For the purpose of rendering the thin-film simulations, I chose to work with Hou-

dini and its native Mantra renderer. Using all the previous discussed methods, I

used the following workflow in Houdini:

1. Import point cloud and convert into mesh

2. Apply bubble material on mesh

3. Setup lighting, camera, and scene geometries.

Tweak lighting to bring out the specific aspects that the render aims to

capture.

4. Setup raytracer and render nodes.

This includes fine tuning camera parameters such as focus, exposure,

contrast, saturation etc.

5. Render animation and export.

2.5 Particle Visualization

For the purposes of scientific visualization, my collaborators Yitong Deng, Xi-

angxin Kong, and I also worked on a surface shader that visualizes the thin film

simulation data as particles. This is particularly valuable in visualizing the sparse-

ness of the point cloud, the surface turbulence, and keeping track of how individual

points in the point cloud move. This is also useful in catching artifacts caused

by the point cloud to mesh conversion method. Finally, we resort to using this

method for simulations where the point cloud to surface mesh conversion method

cannot perform, largely due to sparseness of points causing holes, or temporal

17

2.5 Particle Visualization

artifacts in animation as a result of an inability to properly tune the fluid surface

mesh forming parameters.

2.5.1 Rendering the Point Cloud as Geometry

Either of the following two geometries are used to visualize points in the cloud:

1. 3D spheres.

This method is valuable to show the action and motion of individual

points in the point cloud.

2. 2D circles lying orthogonal to the surface normal N .

This method is especially valuable to detail intricate flow patterns.

18

Chapter 3

Results

The following still images were rendered using the devised model, implemented in

Houdini with Mantra renderer.

3.1 Irregular Bubble

Figure 3.1 An irregular bubble

19

3.2 Catenoid

Figure 3.2 The progression of surface flow on an irregular bubble

3.2 Catenoid

20

3.3 Half bubble

Figure 3.3 Two parallel rings connected by a thin film are pulled apart

3.3 Half bubble

Figure 3.4 Half bubble rendered with environment light and mesh surface

21

3.4 Dripping

Figure 3.5 Half bubble rendered with area light and circle based surface

3.4 Dripping

Figure 3.6 Drip rendered with spherical particle visualization

22

3.4 Dripping

Figure 3.7 A thin film drips, and droplets separate from the film

23

3.5 Film

3.5 Film

Figure 3.8 Square thin film

Figure 3.9 Circle thin film

24

3.6 Bubble Oscillation

3.6 Bubble Oscillation

Figure 3.10 A large bubble oscillates

3.7 Limitations

There are definitely some difficulties when rendering thin films in a photorealistic

way. I found that the surface mesh conversion method is very particular, and

needed to be finely tuned for each instance of the input data. If not tuned, the

renders were prone to a few different types of artifacts. The most prominent

were temporal inconsistencies, where same points on the bubble surface would be

coloured vastly different in adjacent frames, especially if the input point cloud was

sparse. These inconsistencies make the surface appear jittery in rendered videos.

25

3.7 Limitations

Figure 3.11 The same frame tuned with different mesh conversion parameters

As with any image render where there are many reflections, the process of

rendering is quite expensive and time intensive. Thus, the renderer needs to be

finely tuned to balance time, noise, and quality. As expected, the performance

of the render varies significantly depending on the number of lights. For single

area light setups, the method is quick. However for setups with multiple lights it

can be quite expensive. Special care needs to be paid with regards to maximum

reflection limit of the raytracer. The number of samples per pixel also have to be

tuned finely to ensure minimization of noise, especially as the number of internal

26

3.7 Limitations

reflections increase.

Aside from limitations with the general render process, there is room for im-

provement in the mathematical model itself. The mathematical model doesn’t

capture the phenomenon of black spots that evolve on the surface of thin-film

structures [33]. Black spots appear when the film is extremely thin, and addition-

ally varies on the concentration of soap within the film. In fact, this visualization

model doesn’t account for the concentration of soap, and assumes a constant re-

fractive index across the thin-film wall.

In my approach, I also assume equal polarisation of light. The mathematical

model doesn’t account for isotropic thin-film material. There are seminal ap-

proaches to modelling this [18], and the mathematical model could be modified to

account for this when modelling gasoline and similar materials.

This model also assumes that the thin-film interface has perfectly parallel

surfaces. Our mesh conversion model outputs an infinitesimally thin surface with

a heightfield applied onto it. Thus we do not account for small angular changes

due to the surface heightfield gradient. Expanding the model to allow for this

would give us more physically accurate, albeit expensive results [9]. Finally, while

our model is able to capture thin-film interference, it is unable to account for other

wave phenomena such as diffraction. Perhaps expanding the model to account for

other wave phenomena could provide even more realistic results [34].

27

Acknowledgements

I would like to express my greatest thanks to Professor Bo Zhu, who

introduced me to fluid simulations and rendering research at the begin-

ning of my undergraduate career. If not for his guidance, I would have

never been able to explore the wonderful world of fluid simulations and

rendering in such a hands-on manner. His encouragement and mentor-

ship provided me the opportunity to contribute as a co-author to the

paper ’Thin-Film Smoothed Particle Hydrodynamics Fluid’ [4], which

is one of my proudest academic achievements.

I am immensely grateful for the collaboration and support of Yitong

Deng, Mengdi Wang, Xiangxin Kong, and Shiying Xiong, who invited

me into their research team and allowed me to contribute to a valuable

research project.

Finally, I would like to thank all my friends and family, who took an

interest in my work and helped me realize many of my academic goals.

References

[1] L. Belcour and P. Barla, “A practical extension to microfacet theory for the

modeling of varying iridescence”, ACM Transactions on Graphics, vol. 36,

no. 4, Jul. 2017, issn: 0730-0301, 1557-7368. doi: 10 . 1145 / 3072959 .

3073620.

[2] A. Glassner, “Soap bubbles. 2 [computer graphics]”, IEEE Computer Graph-

ics and Applications, vol. 20, no. 6, 2000. doi: 10.1109/38.888023.

[3] F. Almgren and J. Sullivan, “Visualization of soap bubble geometries”,

Leonardo, vol. 25, no. 3/4, 1992, issn: 0024094X. doi: 10.2307/1575849.

[4] M. Wang, Y. Deng, X. Kong, A. H. Prasad, S. Xiong, and B. Zhu, “Thin-film

smoothed particle hydrodynamics fluid”, 2021. eprint: arXiv:2105.07656.

[5] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering: from

theory to implementation, Third edition. Morgan Kaufmann Publishers/Elsevier,

2017, isbn: 9780128006450.

[6] F. Oefner, Iridient, 2012.

[7] R. Ďurikovič, “Animation of soap bubble dynamics, cluster formation and

collision”, Comput. Graph. Forum, vol. 20, Sep. 2001. doi: 10.1111/1467-

8659.00499.

[8] D. Jaszkowski and J. Rzeszut, “Interference colours of soap bubbles”, The

Visual Computer, vol. 19, no. 4, 2003. doi: 10.1007/s00371-002-0195-6.

[9] X. Granier and W. Heidrich, “A simple layered rgb brdf model”, vol. 65,

no. 4, pp. 171–184, Jul. 2003, issn: 1524-0703. doi: 10 . 1016 / S1524 -

0703(03)00042-0.

29

https://doi.org/10.1145/3072959.3073620
https://doi.org/10.1145/3072959.3073620
https://doi.org/10.1109/38.888023
https://doi.org/10.2307/1575849
arXiv:2105.07656
https://doi.org/10.1111/1467-8659.00499
https://doi.org/10.1111/1467-8659.00499
https://doi.org/10.1007/s00371-002-0195-6
https://doi.org/10.1016/S1524-0703(03)00042-0
https://doi.org/10.1016/S1524-0703(03)00042-0

REFERENCES

[10] F. Da, C. Batty, C. Wojtan, and E. Grinspun, “Double bubbles sans toil

and trouble: Discrete circulation-preserving vortex sheets for soap films and

foams”, ACM Trans. on Graphics (SIGGRAPH 2015), 2015.

[11] W. Huang, J. Iseringhausen, T. Kneiphof, Z. Qu, C. Jiang, and M. B. Hullin,

“Chemomechanical simulation of soap film flow on spherical bubbles”, ACM

Transactions on Graphics, vol. 39, no. 4, Jul. 2020, issn: 0730-0301, 1557-

7368. doi: 10.1145/3386569.3392094.

[12] S. Ishida, P. Synak, F. Narita, T. Hachisuka, and C. Wojtan, “A model for

soap film dynamics with evolving thickness”, ACM Trans. Graph., vol. 39,

no. 4, Jul. 2020, issn: 0730-0301. doi: 10.1145/3386569.3392405.

[13] S. Ishida, M. Yamamoto, R. Ando, and T. Hachisuka, “A hyperbolic geomet-

ric flow for evolving films and foams”, ACM Trans. Graph., vol. 36, no. 6,

November 2017, issn: 0730-0301. doi: 10.1145/3130800.3130835.

[14] B. E. Smits and G. W. Meyer, “Newton’s colors: Simulating interference

phenomena in realistic image synthesis”, K. Bouatouch and C. Bouville,

Eds., pp. 185–194, 1992. doi: 10.1007/978-3-662-09287-3_13.

[15] M. Dias, “Ray tracing interference color”, IEEE Computer Graphics and

Applications, vol. 11, no. 2, pp. 54–60, 1991. doi: 10.1109/38.75591.

[16] R. Ďurikovič and R. Kimura, “Spectrum-based rendering using programmable

graphics hardware”, SCCG ’05, pp. 233–236, 2005. doi: 10.1145/1090122.

1090161.

[17] K. Iwasaki, K. Matsuzawa, and T. Nishita, “Real-time rendering of soap

bubbles taking into account light interference”, pp. 344–348, 2004. doi: 10.

1109/CGI.2004.1309231.

[18] I. Icart and D. Arquès, “An illumination model for a system of isotropic

substrate- isotropic thin film with identical rough boundaries”, D. Lischinski

and G. W. Larson, Eds., pp. 261–272, 1999.

[19] W. Zheng, J. Yong, and J. Paul, “Simulation of bubbles”, Graph. Model.,

vol. 71, pp. 229–239, 2006.

30

https://doi.org/10.1145/3386569.3392094
https://doi.org/10.1145/3386569.3392405
https://doi.org/10.1145/3130800.3130835
https://doi.org/10.1007/978-3-662-09287-3_13
https://doi.org/10.1109/38.75591
https://doi.org/10.1145/1090122.1090161
https://doi.org/10.1145/1090122.1090161
https://doi.org/10.1109/CGI.2004.1309231
https://doi.org/10.1109/CGI.2004.1309231

REFERENCES

[20] A. Adamson and M. Alexa, “Ray tracing point set surfaces”, pp. 272–282,

299, January 2003.

[21] X. Xiao, S. Zhang, and X. Yang, “Fast, high-quality rendering of liquids

generated using large scale sph simulation”, Journal of Computer Graphics

Techniques (JCGT), vol. 7, no. 1, pp. 17–39, March 2018, issn: 2331-7418.

[22] Mograph, 104. creating all kinds of bubbles using thin film in arnold for

maya, May 2018. [Online]. Available: http://mographplus.com/104-

creating-all-kinds-of-bubbles-using-thin-film-in-arnold-for-

maya/.

[23] J. Walter, Making bubbles with cycles and luxrender, March 2014. [Online].

Available: https://www.janwalter.org/jekyll/rendering/cycles/

2014/03/28/making-bubbles-cycles-vs-luxrender.html.

[24] Bacterius, Thin film interference for computer graphics, April 2013. [On-

line]. Available: https://www.gamedev.net/tutorials/_/technical/

graphics-programming-and-theory/thin-film-interference-for-

computer-graphics-r2962/.

[25] M. Marengo, Image implementing spectral colours in mantra, May 2008. [On-

line]. Available: https://www.sidefx.com/tutorials/image-implementing-

spectral-colors-in-mantra/.

[26] Moritz, E. Centeno, and N. *, December 2020. [Online]. Available: https:

/ / entagma . com / bubbles - again - simulating - soap - swirls - using -

flip/.

[27] M. Born and E. Wolf, Principles of optics: electromagnetic theory of prop-

agation, interference and diffraction of light, 7th expanded ed. Cambridge

University Press, 1999, isbn: 9780521642224.

[28] W. Jakob, Mitsuba renderer, http://www.mitsuba-renderer.org, 2010.

[29] X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehen-

sive physical model for light reflection”, ACM SIGGRAPH Computer Graph-

ics, vol. 25, no. 4, Jul. 1991, issn: 0097-8930. doi: 10.1145/127719.122738.

31

http://mographplus.com/104-creating-all-kinds-of-bubbles-using-thin-film-in-arnold-for-maya/
http://mographplus.com/104-creating-all-kinds-of-bubbles-using-thin-film-in-arnold-for-maya/
http://mographplus.com/104-creating-all-kinds-of-bubbles-using-thin-film-in-arnold-for-maya/
https://www.janwalter.org/jekyll/rendering/cycles/2014/03/28/making-bubbles-cycles-vs-luxrender.html
https://www.janwalter.org/jekyll/rendering/cycles/2014/03/28/making-bubbles-cycles-vs-luxrender.html
https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/thin-film-interference-for-computer-graphics-r2962/
https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/thin-film-interference-for-computer-graphics-r2962/
https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/thin-film-interference-for-computer-graphics-r2962/
https://www.sidefx.com/tutorials/image-implementing-spectral-colors-in-mantra/
https://www.sidefx.com/tutorials/image-implementing-spectral-colors-in-mantra/
https://entagma.com/bubbles-again-simulating-soap-swirls-using-flip/
https://entagma.com/bubbles-again-simulating-soap-swirls-using-flip/
https://entagma.com/bubbles-again-simulating-soap-swirls-using-flip/
https://doi.org/10.1145/127719.122738

REFERENCES

[30] R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics”,

ACM Transactions on Graphics, vol. 1, no. 1, January 1982, issn: 0730-0301,

1557-7368. doi: 10.1145/357290.357293.

[31] F. Remondino, “From point cloud to surface: The modeling and visualization

problem”, International Archives of Photogrammetry, Remote Sensing and

Spatial Information Sciences, vol. 34, March 2004. doi: 10.3929/ethz-a-

004655782.

[32] [Online]. Available: https://www.sidefx.com/docs/houdini/model/

volumes.html.

[33] A. W. Reinold and A. W. Rücker, “On the thickness of soap films”, Pro-

ceedings of the Royal Society of London, vol. 26, pp. 334–345, 1877, issn:

03701662.

[34] T. Cuypers, T. Haber, P. Bekaert, S. B. Oh, and R. Raskar, “Reflectance

model for diffraction”, ACM Transactions on Graphics, vol. 31, no. 5, August

2012, issn: 0730-0301, 1557-7368. doi: 10.1145/2231816.2231820.

32

https://doi.org/10.1145/357290.357293
https://doi.org/10.3929/ethz-a-004655782
https://doi.org/10.3929/ethz-a-004655782
https://www.sidefx.com/docs/houdini/model/volumes.html
https://www.sidefx.com/docs/houdini/model/volumes.html
https://doi.org/10.1145/2231816.2231820

	Physically Based Rendering Techniques to Visualize Thin-Film Smoothed Particle Hydrodynamics Fluid Simulations
	Recommended Citation

	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Artistic Process
	1.4 Related Works

	2 Methods
	2.1 Physics Background
	2.1.1 Derivation of Optical Path Difference
	2.1.2 Calculation of Intensities of Reflected Ray and Transmitted Ray
	2.1.3 Spectral Sampling and Integration over Ray Energy
	2.1.4 The Fresnel Equations

	2.2 Implementation of Surface Shader
	2.2.1 Bidirectional Scattering Distribution Function
	2.2.2 Sampling Wavelengths to Calculate Reflected Ray's Intensity
	2.2.3 Conversion of Spectral Energy to Colour

	2.3 Bubble Geometry
	2.3.1 Colour based on Varying Thickness

	2.4 Houdini Workflow and Rendering
	2.5 Particle Visualization
	2.5.1 Rendering the Point Cloud as Geometry

	3 Results
	3.1 Irregular Bubble
	3.2 Catenoid
	3.3 Half bubble
	3.4 Dripping
	3.5 Film
	3.6 Bubble Oscillation
	3.7 Limitations

	References

