
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses, Dissertations, and Graduate Essays

Summer 6-6-2021

Counting and Sampling Small Structures in Graph and Hypergraph Counting and Sampling Small Structures in Graph and Hypergraph

Data Streams Data Streams

Themistoklis Haris
Themistoklis.Haris.21@Dartmouth.edu

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Databases and Information Systems Commons, Data Science Commons, OS and Networks

Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Haris, Themistoklis, "Counting and Sampling Small Structures in Graph and Hypergraph Data Streams"
(2021). Dartmouth College Undergraduate Theses. 230.
https://digitalcommons.dartmouth.edu/senior_theses/230

This Thesis (Undergraduate) is brought to you for free and open access by the Theses, Dissertations, and Graduate
Essays at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate
Theses by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/230?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Counting and Sampling Small Structures in
Graph and Hypergraph Data Streams

Themistoklis Haris

Advisor: Amit Chakrabarti
May 31, 2021

An Undergraduate Thesis
Dartmouth College, Department of Computer Science

2

Abstract

In this thesis, we explore the problem of approximating the number of elementary substruc-
tures called simplices in large k-uniform hypergraphs. The hypergraphs are assumed to be
too large to be stored in memory, so we adopt a data stream model, where the hypergraph
is defined by a sequence of hyperedges.

First we propose an algorithm that (ε, δ)-estimates the number of simplices using Õ
(
m1+ 1

k

T

)
bits of space. In addition, we prove that no constant-pass streaming algorithm can (ε, δ)-
approximate the number of simplices using less than O

(
m1+ 1

k

T

)
bits of space. Thus we

resolve the space complexity of the simplex counting problem by providing an algorithm
that matches the lower bound.

Second, we examine the triangle counting question –a hypergraph where k = 2. We
develop and analyze an almost optimal Õ

(
n+ m3/2

T

)
triangle-counting algorithm based on

ideas introduced in [KMPT12]. The proposed algorithm is subsequently used to establish
a method for uniformly sampling triangles in a graph stream using Õ

(
m3/2

T

)
bits of space,

which beats the state-of-the-art Õ
(
mn
T

)
algorithm given by [PTTW13].

3

Acknowledgements

I would not have been able to complete this thesis in its present form if it wasn’t for the
help of many people around me. I want to extend my sincerest gratitude to everyone who
helped me make this thesis possible. Professor Amit, for his tireless support and incredibly
helpful feedback as this work went on. Professors Deeparnab Chakrabarty and Hsien-Chih
Chang for being in my thesis committee and providing me with a lot of valuable advice and
mentorship. My mom, for encouraging me to be resilient in times when problems appear
overwhelming. My dad, for patiently and happily listening to my thought process throughout
various stages of this work. Linda, for supporting and encouraging me since the beginning
and for reminding me to set daily thesis goals. Finally, all the friends and family that I have
not mentioned: thank you all for caring so much about me.

4

Contents

1 Introduction 1
1.1 Problem Formulation . 2

1.1.1 Streaming Algorithms . 2
1.1.2 Hypergraphs and Generalized Networks 4
1.1.3 Main Problem Statement . 4
1.1.4 Other problems studied . 5

1.2 Related work . 5
1.3 Main Results . 7
1.4 Thesis Outline . 8

2 Preliminaries 9
2.1 Graphs and Hypergraphs . 9
2.2 Data Stream Algorithms . 11

2.2.1 `0 sampling . 12
2.2.2 Reservoir Sampling . 13
2.2.3 F0 estimation . 13

2.3 Communication Complexity . 13
2.4 Notation Appendix . 16

3 Mathematical Insights 17
3.1 Hyper-forest packing . 17
3.2 Hyper-arboricity upper bound on 3-graphs 19

3.2.1 Generalizing to k-graphs . 20
3.3 Bounding the simplex-count in uniform hypergraphs 21

4 Sampling and Counting Triangles 24
4.1 Counting Triangles in the Streaming Model 24

4.1.1 Analysis . 25
4.2 Triangle Sampling . 27

5 Simplex Counting Algorithms 29
5.1 A first attempt at simplex counting . 29

i

ii CONTENTS

5.1.1 The Algorithm . 30
5.1.2 Analysis . 31
5.1.3 Generalizing to k-graphs . 33

5.2 A codegree-based approach . 35
5.2.1 Simplifying the sampling . 35
5.2.2 An optimal algorithm for simplex counting 36
5.2.3 Analysis . 37

5.3 Importance-sampling and oracles revisited 41
5.3.1 Analysis . 42

5.4 Other algorithms for simplex counting . 44
5.4.1 A reduction based algorithm . 44
5.4.2 Another sampling approach . 45

6 Lower Bounds for Simplex Counting 46
6.1 General approach . 46
6.2 A lower bound in terms of n . 47
6.3 Lower bounds dependent on ε . 48

6.3.1 o(ε−1) is impossible . 48
6.3.2 o(ε−2) is impossible . 50

6.4 Lower Bounds Dependent on m and S . 52
6.4.1 Weaker results . 52
6.4.2 Optimal lower bounds . 54

7 Conclusion 57

Chapter 1

Introduction

Networks appear everywhere around us. From metabolic networks, which describe biological
chemical reactions, to economic networks, which outline the interactions taking place within
a closed market. An incredible amount of mathematical and empirical knowledge has been
generated for the purpose of understanding the structure of networks, and yet there are still
many mysteries that remain unsolved.

With the advent of the Digital Revolution, computers been used extensively in the anal-
ysis and generation of massive networks which facilitate the storage and exchange of in-
formation. However, as humanity dives deeper into the era of Big Data, even the fastest
supercomputers in the world seem incapable of processing such large networks. Hence, a con-
siderable amount of academic and industrial research today is focused on designing efficient
and practical methods for network analysis.

This thesis explores a very specific but also recurring problem in network analysis - the
problem of detecting and counting small patterns in networks. Network patterns are specific
substructures which repeat themselves inside the network. For example, the simplest pattern
in a network is the triangle, which describes three interconnected agents. Other examples of
particularly interesting and well-studied patterns in networks are cycles and cliques.

The study of network patterns finds numerous applications in real-world situations. In a
2009 study, Christakis and Fowler [CF10] analyzed the spread of a flu epidemic at Harvard
College, and proposed a simple, yet surprisingly effective method for identifying individuals
that are central to the spread of the virus. They surveyed students at random and groups of
their friends, and discovered that, on average, friend groups were infected by the virus much
earlier than the general population, indicating that they played a more central role in the
development of that epidemic. This phenomenon is an example of the friendship paradox in
human social networks; that one’s friends typically have more friends than they do.

The aforementioned study also surveyed a number of network metrics and their associa-
tion to early contagion. One of those metrics was the transitivity metric, which represents
the probability that two of one’s friends are also friends. Transitivity in a network is equal to
the ratio between the number of triangles and the number of length-two paths. The authors
in [CF10] found that transitivity is negatively associated to early contagion. Intuitively, an
individual that participates in few triangles is a part of many independent communities, and
so they have a higher chance of contracting and spreading the virus.

Indeed, fast and efficient pattern analysis is an integral part of problem solving techniques

1

2 CHAPTER 1. INTRODUCTION

across many different fields. Triangles have been extensively used as a network topological
feature to detect product review spamming in websites such as Amazon or eBay [WCW+18,
KMPT12]. In the field of Computer-Aided Design (CAD), pattern counting is an important
subroutine to solving systems of geometric constraints [KMPT12, FH97].

But perhaps most prominently of all, the study of network patterns is featured in a lot of
recent scientific work on social networks. Concepts like “the friend of my friend is my friend”
or “the enemy of my friend is my enemy” give rise to theories of balance and status that
explain many collective phenomena observed in society, in online social networks, and in the
animal kingdom [KMPT12, LHK10]. Knowledge about the structure and properties of these
social networks can have a profound effect on policy design, advertising, online privacy and
security.

In the remainder of this introduction, an informal outline is provided for the main tech-
nical problem this thesis attempts to tackle. Furthermore, an exposition is given on the
preceding work and research that motivated, inspired and guided this thesis. Finally, the
main results of this thesis are accumulated at the end of the chapter for the convenience of
the reader.

1.1 Problem Formulation

1.1.1 Streaming Algorithms

Information is typically communicated between computers or databases in a sequential fash-
ion. Packets of information are encrypted by servers, sent through secure channels, and
decrypted by clients. As the world of computing is taken over by the Big Data trend,
datasets are observed to grow in size exponentially fast. Indeed, 18 zettabytes of informa-
tion were created, stored and consumed overall in 2016, 41 in 2019 and (projected) 118 in
2023. Thus, there is an increasing demand for algorithms that operate with very low memory
requirements.

The streaming model is a design model for algorithms whose input is a sequence of
data, or a stream. The goal of a streaming algorithm is to infer a target statistic about
its input stream, while avoiding to store the entire stream in memory. This model captures
both the sequential nature of information exchange in the digital world and the necessity for
memory efficiency in the age of Big Data. Overall, the streaming model is very well studied,
with representative problems such as frequency estimation, frequency-moment estimation
and dimensionality reduction enjoying elegant and highly efficient solutions.

Streaming algorithms for networks are very relevant to the efficient processing of huge
network datasets. For example, social networks such as Facebook or Twitter, with billions
of vertices and trillions of edges, are often mined using Machine Learning algorithms for
the inference of social trends. These Machine Learning algorithms make extensive use of
various features of the network, like its number of connected components, or its diameter.
Due to the immense size of the datasets, any feasible algorithm for computing such network
statistics must use as little memory as possible. Further, information about the network is
usually provided as a data stream from some server, which makes the streaming model ideal
as a context of studying network analysis.

1.1. PROBLEM FORMULATION 3

Figure 1.1: A standard data processing framework involving the data stream model. A cloud
server provides a stream of information describing a network.

Figure 1.2: Some applications of network pattern counting

4 CHAPTER 1. INTRODUCTION

1.1.2 Hypergraphs and Generalized Networks

Typically, a network is mathematically abstracted into a graph. In a graph, each edge
connects two vertices, representing a relationship/interaction between two entities in the
network environment.

However, there are situations in which this two-sided relationship is not general enough
of an abstraction. Consider, for example, a Computer Science conference [Bre13], in which
multiple papers are presented. Each paper is the collective work of one or more computer
scientists. To model the interactions in this network, it may not be enough to connect
just two scientists when they participate in the same paper, because they may participate in
many common projects with other, different scientists. To capture the network configuration
fully, we have to connect all the scientists who are writing a paper together simultaneously.

As a result, the notion of a hypergraph or set-system is born. Before the 1990s,
the term “set-system” appears more often in the mathematical literature, stemming from
the viewpoint of edges as subsets of the network vertex universe. Hypergraphs consist
of hyperedges that connect one or more vertices simultaneously, instead of strictly two.
They have been the focus of considerable research in mathematics, although many of their
structural properties have not yet been fully understood. Beyond theory, hypergraphs find
numerous applications in Database Systems, Image Processing, Telecommunications, and
Computational Chemistry, rendering them a powerful and valuable construct in many fields.

1.1.3 Main Problem Statement

Patterns in hypergraphs are more complicated and diverse than typical patterns in graphs.
This thesis will be primarily focused on the problem of counting and detecting a specific
set of patterns in k-uniform hypergraphs; that is hypergraphs whose hyperedges connect
exactly k vertices.

The patterns of interest are known as simplices. In a k-uniform hypergraph, a sim-
plex is a set of (k + 1) vertices in which every possible hyperedge exists. For example,
if k = 2, a simplex is a triangle, and if k = 3, vertices {a, b, c, d} are a simplex when
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} are all hyperedges of the hypergraph. For the case k = 3,
a simplex could be thought of as a tetrahedron in space, where each face is a hyperedge.
The primary design problem this thesis will address can be summarized as follows:

Problem Statement: Given a k-uniform hypergraph H = (V, E), design a stream-
ing algorithm to calculate or estimate with high accuracy and confidence the number of
simplices in H, using as little memory as possible.

In the effort to design the most memory-efficient algorithm possible, it is natural for one
to wonder how efficient such an algorithm can be. This brings one to the following problem:

Problem Statement: Let H = (V, E) be a k-uniform hypergraph with n vertices,
m hyperedges and T simplices. Asymptotically, how many bits of memory must any
algorithm use at least, to determine or estimate T in the worst case? The answer should
be a function of n,m, k and potentially T .

1.2. RELATED WORK 5

Figure 1.3: A coauthor network can be modeled as a hypergraph: the scientists who worked
together are joined by a single connection. In a hypergraph, the type of pattern where every
3 nodes are connected to each other is called a simplex.

1.1.4 Other problems studied

A few other related problems are also considered throughout this thesis, but occupy consid-
erably less space in the final exposition. Those are listed below:

1. Triangle Counting in graphs: The problem of counting triangle patterns in graphs
is central in the field of streaming algorithms for networks. This thesis makes a small
contribution to this big collective work by proposing a slightly different method for
solving this important problem.

2. Triangle Sampling in graphs: Sampling a triangle uniformly from a graph stream
is a problem which has apparently only been addressed directly by [PTTW13] in the
literature. This thesis proposes a more efficient method to solve this problem.

1.2 Related work

Triangle counting has received a lot of attention in the streaming literature.
In field of streaming algorithms, the seminal paper by Bar-Yossef et al [BYKS02] initiated

the study of this problem. The authors discovered a very clever reduction of the triangle
counting problem to frequency-moment estimation, thus giving a Õ

((
mn
T

)2
)
-space1 algo-

rithm which uses only one pass over the input stream. The main idea behind their technique
is to construct a virtual stream of vertex triples {u, v, w} for every edge {u, v} that arrives
in the stream. Then, the triangle count of the graph can be found by solving a linear system
of equations, in terms of the frequency moments of the virtual stream. The downside of this

1ε, δ factors will be hidden inside the Õ notation

6 CHAPTER 1. INTRODUCTION

algorithm is that it blows up the length of the stream - which is already very large - by a
factor of n, which leads to a considerable memory overhead.

Buriol et al [BFL+06] produced a single-pass Õ
(
mn
T

)
streaming algorithm for counting

triangles by using sampling techniques. Their work initiates a relatively long line of research
in which algorithms attempt to count patterns in graph streams by sampling certain “charac-
teristic” structures that are embedded in the pattern of interest. In [BFL+06], this structure
is a random edge-vertex pair. The paradigm is very close to importance sampling, where
the algorithms are designed to “narrow down” the universe of vertex triples in which the
triangles are contained in. Indeed, this is what the main algorithms presented in this thesis
will also attempt to do. The success and efficiency of an algorithm designed like this is intu-
itively determined by how “narrow” the universe is made to be. In the example of [BFL+06],
edge-vertex pairs are not the strictest structure that could possibly label a triangle, and so
there is still room for improvement to this algorithm.

Subsequent work resulted in more efficient algorithms for triangle counting through sam-
pling. McGregor et al [MVV16] use a degree-ordering idea to label triangles with “ordered
wedges” that can be sampled easily through `2-sampling and a degree oracle. This leads to
a Õ

(
n+ m3/2

T

)
algorithm, which is very close to the theoretical optimum (more on lower

bounds to follow). Chakrabarti and Bera [BC17] manage to remove the need for a degree
oracle by first sampling the wedge and then checking if it is degree consistent. This yields
an optimal Õ

(
m3/2

T

)
-space algorithm, but adds an additional pass over the input stream.

Their algorithm also has the advantage that it can be generalized to counting constant size
cliques or even general subgraphs.

Another line of attack to the triangle counting problem has been through sparsification
techniques. In their highly influencial paper [TKMF09], Tsourakakis and Faloutsos propose
“Doulion”, an algorithm framework that first sparsifies a graph before counting its triangles.
The authors prove that if each edge is kept with probability p and p3 = Ω̃

(
∆ logn
T

)
, where ∆

is the highest degree, then the triangle count of the sparsified graph is highly concentrated
around T/p3. This framework complements most triangle counting algorithms, streaming
and non-streaming, and works very well in practice. The interested reader can refer to
[Her20] for a survey on sparsification techniques in triangle counting.

The concept of “heavy” - “light” graph structures has also found useful applications in this
problem, and this thesis will also use it on occasion. Kolountzakis et al [KMPT12] split the
vertex set into heavy and light vertices based on their degree, which allows them to sample
triples in a very efficient way. They outline a Õ

(
n+ m3/2

T

)
-space algorithm for counting

triangles in the streaming model, but assuming that the edges incident to a vertex come in
order.

Cormode et al [CJ17] distinguish between heavy and light edges, based on how many
triangles an edge participates in. Also seen in [TKMF09], the key insight is that heavy edges
increase the variance of the triangle-count estimator. So, the algorithm tries to remove them
and treat them separately. To this end, [CJ17] uses a heavy-light oracle, which is a data
structure that allows an algorithm, with high probability, to predict the heaviness of an edge.
This idea has also been used by McGregor and Vorotnikova [MV20, Vor20] to count 4-cycles
in a graph.

Other work on triangle counting streaming algorithms includes working on dynamic

1.3. MAIN RESULTS 7

streams [SOK+20, BFKP16], degeneracy-based techniques [BS20], triangle sampling algo-
rithms [PTTW13] and coloring-based algorithms [PT12].

Through the use of communication complexity, lower bounds for the triangle counting
problem have also been discovered. Most of the related arguments are made by reducing
from the disjointness communication problem. The optimal lower bounds, which also have
matching algorithms up to (ε, δ) factors, are Ω

(
m3/2

T

)
and Ω

(
m√
T

)
in the worst case. T

here is a lower bound to the triangle-count of a graph. It is important to note that the most
general lower bound is of the form Ω(n2), even for an (ε, δ)-approximation. For detailed
expositions on these arguments, please refer to [BC17, MVV16, CJ17, Vor20, BOV13].

For the problem of directed triangle and substructure counting (or motif counting), there
has not been a lot of work in the streaming literature, with a few isolated exceptions like
[BDGL08] and [SJHS15]. One possible reason for this lack of work on this problem might
be that the algorithms for counting undirected patterns can easily be generalized to count
directed motifs. Nevertheless, directed graph motifs are important in network analysis, so
carefully outlined streaming algorithms for counting, detecting and enumerating directed
patterns also have value in both academic and industrial settings.

Finally, hypergraph networks have been studied in the streaming literature, although
nowhere near as extensively as triangles or other mainstream patterns. Guha and McGregor
[GMT15] use the power of linear sketches to test for connectivity in hypergraph streams.
Kallaugher et al [KKP18] study the sketching complexity of subhypergraph counting, giving
upper and lower bounds to the general problem in terms of the vertex cover size of the
queried subhypergraph.

Sun [Sun13] gives a general algorithm counting for hypergraph patterns with k edges
in the turnstile streaming model using Õ

(
mk

T 2

)
-bits of space. This algorithm is based on

complex-valued random variables and graph polynomials and has the advantage that it
works on dynamic graph streams. However, at least for the purposes of the simplex-counting
problem, this algorithm is suboptimal, and overly complicated to implement.

1.3 Main Results

The main contribution of this thesis is the resolution of the Simplex Counting problem. The
main, overarching theorem is given below:

Theorem 1.3.1 (Main Theorem). Let H = (G, E) be a k-uniform hypergraph with
m hyperedges and S simplices. Let ε, δ be positive constants. There exists a 4-pass
streaming algorithm that can (ε, δ)-approximate S using Õ

(
m1+ 1

k

S

)
bits of space. Further,

no streaming algorithm can produce such an estimate of S using o
(
m1+ 1

k

S

)
bits of space

in the worst case.

This theorem combines an upper bound and a lower bound result, so it will be shown in
two separate chapters later on in this thesis. An interesting observation one can make right
after seeing this result is that as k →∞, the memory required to solve the simplex counting
problem converges to m

S
. Intuitively, this can be explained by the fact that increasing k

8 CHAPTER 1. INTRODUCTION

while keeping m constant makes simplices far more restrictive hypergraph substructures.
Therefore one is able to detect, reject and count them more easily. This idea will become
formalized later on in the design of an algorithm to justify Theorem 1.3.1.

Another small caveat to notice with the previous theorem is the assumption that k is
a constant. The algorithm designed later on hides factor of 2k in its memory usage, but
k is considered a constant, so it is left out. Therefore, we implicitly make the reasonable
assumption that k � m for the simplex-counting algorithm to work reasonably well in
practice.

A secondary contribution of this thesis is an efficient triangle counting algorithm and
uniform triangle sampling method.

Theorem 1.3.2. Let G = (V,E) be an undirected graph with m edges and T triangles.
Algorithm 1, designed in Chapter 4, (ε, δ)-approximates T using Õ

(
n+ m3/2

T

)
bits of

space in the worst case.

Theorem 1.3.3. Let G = (V,E) be an undirected graph with m edges and T triangles.
There is a 3-pass, Õ

(
n+ m3/2

T

)
-space, streaming algorithm which can sample a triangle

from G uniformly at random.

The algorithm of Theorem 1.3.3 is, to our knowledge, one of the few algorithms in the
streaming literature which solve the problem of uniform triangle sampling, and potentially
the most efficient one to date to do so.

1.4 Thesis Outline

This thesis is organizes as follows:

1. Chapter 2 will be devoted on presenting some of the prerequisite knowledge needed for
reading and comprehending the material to follow. Also the notation used throughout
this thesis is presented there.

2. Chapter 3 will present some novel mathematical results which have been derived to
assist in the analysis of the algorithms presented later on.

3. Chapter 4 is focused on the triangle counting and sampling results stated above.

4. Chapter 5 provides algorithms for simplex counting in hypergraphs.

5. Chapter 6 uses communication theory techniques to show lower bounds to the simplex
counting problem in hypergraphs

6. Chapter 7 provides a few concluding remarks and future lines of related research

Chapter 2

Preliminaries

2.1 Graphs and Hypergraphs

Given a non-empty, finite set V and a non-empty subset E of 2V , the pair H = (V, E) is
called a hypergraph. The elements of V are called vertices and the subsets in E are called
hyperedges. If |E| = k ≥ 1 for all E ∈ E , then H is said to be k-uniform.

For X ⊆ E , let V(X) be the set of all vertices in V that belong to some hyperedge in X.
For S ⊆ V , let E(S) be the set of hyperedges contained completely within S. We call E(S)
the set of induced hyperedges of S.

Let S ⊆ V be some subset of the vertex set, where |S| < k. Then the degree of S is
defined to be the number of edges containing S. If S = ∅, then deg(S) = |E| by default. We
write:

deg(S) := |{e ∈ E | S ⊆ e}| (2.1)

The neighborhood NS of S is the set of vertices who share some edge with S:

NS := {v ∈ V | ∃e ∈ E : S ∪ {v} ⊆ e} (2.2)

It is important to note that in general, |NS| 6= deg(S). If, for example, S = {u}, then every
edge containing u adds at most k − 1 new neighbors, so we have that |Nv| ≤ (k − 1)deg(u).

Figure 2.1: Left : A 3-uniform hypergraph, Right : Vertex A has degree 3 but NA = 6.

9

10 CHAPTER 2. PRELIMINARIES

For a subset R ⊆ V , the S-codegree of R is defined to be degree of the set S ∪R:

deg(S,R) = deg(S ∪R) (2.3)

We can also define the S-hypergraph of H, GS = (V \ S, ES) to be the (k− |S|)-uniform
hypergraph where

e = {u1, ..., uk−|S|} ∈ ES iff e ∪ S ∈ E (2.4)

It is straightforward to see that the S-codegree of a subset R ⊆ V is equal to its degree in
GS. We will write that deg(S,R) = degGS

(R). When S = ∅, we have that GS = H, so we
will write, for convenience, that

deg(S,R) = degGS
(R) = deg(S ∪R) (2.5)

Furthermore, the number of edges in GS is the equal to the degree of S, so we have that

|ES| = deg(S) (2.6)

Figure 2.2: Left : k = 5 and S = {A,B,C} Right : GS

We can now impose an ordering on the vertices in V \ S based on their S-codegree. If
u, v ∈ V \ S, then we write that u ≺S v iff

degGS
(u) < degGS

(v) or
(
degGS

(u) = degGS
(v) and id(u) < id(v)

)
(2.7)

This will become a very relevant definition in Chapter 5.
It is important to remark that the handshake lemma holds for codegrees in a uniform

hypergraphs:

Lemma 2.1.1 (Generalized Handshake Lemma (GHL)). Let r ∈ [k − 1]. Then

∑
S∈(V

r)

deg(S) =

(
k

r

)
m = O(m) (2.8)

2.2. DATA STREAM ALGORITHMS 11

Proof. Each edge is counted
(
k
r

)
times.

Using this lemma for r = 1, we can generalize a simple lemma by Eden [ELRS15] about
the number of vertices which come after a vertex in the previously defined ordering:

Lemma 2.1.2. Let Su := {w ∈ Nu | u ≺∅ w} be the set of neighbors of u that are after it in
the total ordering of vertices based on degree (S = ∅). It is then true that

|Su| = O
(
m

1
2

)
.

Proof. Using Lemma 2.1.1, we have for each w ∈ Su that dw ≥ du ≥ |Nu|
k−1
≥ |Su|

k−1
, so

km
GHL
≥

∑
w∈Su

dw ≥ |Su|
(
|Su|
k − 1

)
=⇒ |Su| = O(

√
m)

Hypergraphs generalize graphs, but are also special cases of them. A 2-uniform hypergraph
is a graph, and every hypergraph can be represented by a bipartite graph:

Definition 2.1.1. If H is a hypergraph, then we define the bipartite representation of H
as the bipartite graph GH = (V ; E , R), where the edge r = {v, E} ∈ R exists between a vertex
v and a hyperedge E of H if v ∈ E.

GH will be a very important tool in how we study and understand hypergraphs.

Figure 2.3: Left : A 3-uniform hypergraph, Right : Its bipartite representation.

2.2 Data Stream Algorithms

The streaming model dictates that the input to a streaming algorithm is a sequence of data
points σ. The data points are drawn from some universe with N elements, with N being
typically very large. The length of the stream is denoted by |σ| and can be arbitrarily large
as well.

12 CHAPTER 2. PRELIMINARIES

In the streaming model, efficiency is measured in terms of the worst-case space complexity
of the algorithm in question, which in turn is measured in terms of N and maybe |σ|. It
is important to note that we do not regard the time it takes for the algorithm to
process each element in the stream as part of its complexity, even though this is a
very reasonable thing to consider when building algorithms in practice.

Within the streaming model itself, there are a few sub-models that are often considered.
Typically, one encounters insertion-only streams, where data points cannot be deleted or
altered. Indeed, this is the type of stream that this thesis will mostly deal with. However,
many algorithms deal with dynamic datasets, where data points could be deleted or altered
at any time. This streaming model is called the turnstile model and it is particularly
useful in large networks where edges and vertices are created or deleted.

Streaming algorithms for graphs and hypergraphs assume a few more things about the
input stream. The data points in the stream are hyperedges. We assume that no duplicate
hyperedges are given, which means that |σ| < |V|k for a k-uniform hypergraph. The com-
plexity of the algorithms can be expressed using various possible hypergraph characteristics,
such as the number of vertices, edges, cycles, paths of length-2 etc... The algorithms that
will be covered in this thesis assume that the hypergraphs streamed are all uniform.

We will be making extensive use of the following boosting theorem from the field of
Randomized Algorithms:

Theorem 2.2.1 (Median-of-Means improvement).

If êst is an unbiased estimator of some statistic, then one can obtain an (ε, δ)-multiplicative
estimate of that statistic using K independent samples of êst, where:

K =
CVar[êst](
Exp[êst]

)2 ·
1

ε2
· ln
(

2

δ

)

where C is some constant.

We will also be needing the very useful and powerful Chernoff bounds to restrain the error
probabilities in our algorithms:

Theorem 2.2.2 (Chernoff bounds). Let X1, ...Xn be n independent Bernoulli random
variables. Let X =

∑n
i=1Xi and let ε ∈ (0, 1). Then

Pr [X ≥ (1 + ε)Exp[X]] ≤ e−
ε2 Exp[X]

3

Pr [X ≤ (1− ε)Exp[X]] ≤ e−
ε2 Exp[X]

2

2.2.1 `0 sampling

Some of the algorithms that follow make use of `0 sampling as a streaming primitive. This
section covers the necessary definitions and theorems that will be used.

2.3. COMMUNICATION COMPLEXITY 13

Suppose that a stream σ was drawing elements from universe U = [N]. Let f0 be the
`0-norm of σ, i.e. the number of distict elements of σ. The goal is to uniformly sample an
element of σ with probability 1

f0
, or with probability as close to uniform as possible. We can

tolerate a small probability of failure, but we would like our sampling, when successful, to
be perfect (zero relative error)1

Very efficient algorithms have been proposed to solve the `0 sampling problem in the
turnstile streaming model. Here we make use of the following result by Jowhari et al [JST11]:

Theorem 2.2.3 (Theorem 2 in [JST11]). There exists a zero relative error `0 sampler
which uses O

(
log2 n log

(
1
δ

))
bits of space and outputs a coordinate i ∈ [N] uniformly

from the support of σ with probability of success at least 1− δ.

2.2.2 Reservoir Sampling

Reservoir sampling is a widely-used method for sampling in one pass and uniformly at
random an element from a data stream. The method is very simple: “the i-th item is
sampled with probability 1

i
. If it is not sampled, the previously sampled item is retained.”

Under this scheme, the probability that any single element is ultimately sampled is 1
|σ| , where

|σ| is the length of the stream.

2.2.3 F0 estimation

Estimating the number of distinct elements (or F0 frequency moment) is a very important
problem in the theory of data streams. It has been proven by Kane, Nelson and Woodruff
[KNW10] that an (1± ε)-approximation to F0 can be found in O(ε−2 + log n) bits of space
in the streaming setting. We shall briefly use this result in Chapter 5.

2.3 Communication Complexity

Communication Complexity studies how efficiently certain functions can be communicated
between one or more parties. Theorems and definitions from this beautiful field of Computer
Science will be used later on when we establish lower bounds for some streaming algorithms.

Succinctly, according to the basic model of communication proposed by Andrew Yao,
two players, Alice and Bob, possess two n-bit strings, x and y respectively. They wish to
compute a function f(x, y) by exchanging information. They both have access to unlimited
computing resources, and their goal is to minimize the total amount of communication, in
terms of bits, that they exchange.

Remark: The classic communication model involves two parties, but many generaliza-
tions exist to involve more parties. The multi-party model that this thesis will use is called
the number-in-hand (NOH) model. Alice, Bob and Charlie each hold an input string
that is private to them. They communicate by writing messages on a blackboard that

1There are efficient samplers that approximate uniformity very closely

14 CHAPTER 2. PRELIMINARIES

everyone can see. The goal is for some party to produce a function of the three inputs.
Another very popular multi-party communication model is the Number-In-Forehead
(NIF) model, where every party can see all the inputs except their own.

A scheme for communicating a function f is called a communication protocol. A
protocol can be deterministic, or randomized, and its randomness can be either public or
private. The cost of a protocol is the number of bits exchanged between Alice and Bob in
the worst case, taken over all inputs and all instances of the randomness that is possibly
there2. Randomized communication protocols may also err with some probability. We say
that a protocol has error ε if its error probability over its randomness for any input pair
(x, y) is at most ε. We refer the interested reader to two textbooks ([KN96], [RY20]) on
Communication Complexity for an in-depth exposition on the matter. We can now fully
state the following definition.

Definition 2.3.1. The communication complexity Rε(f) of a function f : {0, 1}n ×
{0, 1}n → {0, 1} is the worst-case cost of any protocol P that evaluates f with error probability
at most ε ≤ 1

3
.

Remark: The definitions of cost, error and complexity can be easily generalized for the
multi-party model mentioned earlier.

The Disjointness Communication Problem The disjointness function is arguably the
most important one in the theory of communication complexity.

Definition 2.3.2. Let X, Y ⊆ [n] be two subsets of [n], and let x, y ∈ {0, 1}n be their
characteristic bitstrings. The disjointness function DISJn : {0, 1}n×{0, 1}n → {0, 1} tells
whether X and Y are disjoint:

DISJn(x, y) =

{
1, if X ∩ Y = ∅
0, otherwise

Remark: The DISJn function can be easily generalized for t parties:

tDISJ (x1, ..., xt) = 1 iff
t⋂
i=1

Xi = ∅

Recall that we are exclusively operating in the number-in-hand, blackboard model.

Communicating disjointness is hard, as reflected in the following theorem. This hardness
result is a cornerstone of Communication Complexity theory and implies many hardness
results in the field of streaming algorithms.

2Other measures of cost, such as the expected amount of communication also exist, but will not be of
interest in this thesis

2.3. COMMUNICATION COMPLEXITY 15

Theorem 2.3.1 (Hardness of Set-Disjointness [HW07]). The communication complexity
of set-disjointness is large:

Rε(DISJn) = Ω(n)

There are a few variants to the classic set-disjoinness problem we saw above which will
be of much use later on. All of the variants are hard communication problems, as can be
easily shown through a reduction to Theorem 2.3.1:

1. The tUDISJn problem [CKS03]: we are promised that the sets are either non-
intersecting or their intersection has size 1.

2. The DISJr,Tn problem [BOV13]: we are promised that the sets have size r, and that
if they have an intersection, its size will be at least T .

Theorem 2.3.2. For the communication complexity of the above variants of the dis-
jointness problem, it is known that:

1. Rε(tUDISJn) = Ω
(
n
t

)
[CKS03]

2. For r < n/2, we have that Rε(DISJ r,T
n) = Ω

(
r
T

)
[BOV13]

The Gap-Hamming Communication Problem

Definition 2.3.3. Alice and Bob are given two n-bit strings x, y ∈ {0, 1}n, under the promise
that the Hamming distance3 ∆(x, y) between x and y satisfies either

• ∆(x, y) ≤ n
2
−
√
n, or

• ∆(x, y) ≥ n
2

+
√
n

Their goal is to figure out which is the case.

This problem is another example of a hardness result in communication complexity, as
shown below [RY20]

Theorem 2.3.3. Any randomized protocol that solves the Gap-Hamming problem must
have communication cost of Ω(n).

It will be useful to generalize this problem to the multi-party model, something that, to
our knowledge, has not yet been studied in the literature:

Definition 2.3.4. When multiple parties are involved, the Hamming Distance of strings
x1, ..., xt can be defined as the number of positions in which all t strings differ.

3The Hamming distance is the number of places in which x and y differ: ∆(x, y) = |{i ∈ [n] | xi 6= yi}|

16 CHAPTER 2. PRELIMINARIES

Theorem 2.3.4. The communication cost of any randomized protocol solving the multi-
party version of the Gap-Hamming problem is Ω(n).

Proof. If a protocol existed to solve the problem in o(n) communication, then that protocol
could be used to solve the Gap-Hamming problem for 2 players in o(n) communication. Alice
would simply “play the part” of the first t − 1 players, with all their inputs being equal to
her input.

2.4 Notation Appendix

This is a table of the most important symbols and notation that this thesis uses:

Symbol Meaning
H = (V, E) A hypergraph

n Number of vertices
m Number of edges
E(S) Hyperedges within set S ⊆ V
V(S) Vertices inside a set S of hyperedges
deg(S) Degree of a vertex subset
NS Neighborhood of a vertex subset

deg(S,R) S-codegree of R
GS S-hypergraph of H

degGS
(R) Degree of R in GS

u ≺S v S-codegree ordering of vertices
GH bipartite representation of H
Rε(f) the randomized CC of f with error ε
S The number of simplices of H.

Chapter 3

Mathematical Insights

In this chapter, we extend tools from hypergraph theory and extremal graph theory, even-
tually developing certain novel mathematical results that will assist in the analysis of the
algorithms to follow.

First, we use the concept of “hyper-forest decomposition” as explored by Frank and
Kiraly [FKK03] to develop a natural generalization to the arboricity notion in graphs. We
call this generalized arboricity notion the hyper-arboricity of a uniform hypergraph. This
in turn leads to a sharp upper bound on a degree-related quantity in uniform hypergraphs.
The methodology and definitions could be of independent interest and usefulness in other
hypergraph applications.

Second, we generalize the folklore S = O(m
3
2) upper bound on the number of triangles

in a graph to a O(m
k+1
k) upper bound for the number of simplices in a k-uniform hyper-

graphs. The basis of our technique is an inductive argument along with degree-based vertex
partitioning, and is a method that we will use often for the remainder of this thesis.

3.1 Hyper-forest packing

In graphs a forest is an acyclic graph. Equivalently, forests are exactly the graphs in which
for every subset X of the edge set, the number of incident vertices is strictly greater than
|X|. In general hypergraphs we refer to this property as the Strong Hall Property.

Lemma 3.1.1 (The Strong Hall property). A hypergraph H = (V, E) satisfies the Strong
Hall property if and only if for any non-empty subset X ⊆ E, we have that |V(X)| > |X|.
Equivalently, for any S ⊆ V , |E(S)| < |S|.

Acyclicity and the Strong Hall property coincide for regular graphs, but not for hyper-
graphs in general. In this work, we will use the Strong Hall property to characterize a family
of hypergraphs which we will call hyperforests ([FKK03], [Lov68], [Lov70]):

Definition 3.1.1. A hypergraph H is a hyperforest if and only if it satisfies the Strong
Hall property.

Seeking a generalization of the classic forest-packing theorems of Tutte and Nash-Williams
([?]), Frank and Kiraly [FKK03] use matroids to give a necessary and sufficient condition
for the decomposition of a hypergraph into edge-independent sub-hyperforests.

17

18 CHAPTER 3. MATHEMATICAL INSIGHTS

Theorem 3.1.1. The edge-set E of a hypergraph H = (V, E) can be decomposed into k
hyperforests if and only if we have

E(X) ≤ k(|X| − 1) (3.1)

for all non-empty subsets X ⊆ V

Figure 3.1: This 3-uniform hypergraph can be decomposed into 2 hyperforests. Its hyperar-
boricity is 1, so the hypergraph itself is hyperforest

Corollary 3.1.1. Let ρ(H) be the minimum number of edge-disjoint hyperforests that
H can be decomposed into. We will call ρ(H) the hyperarboricity of H. Then:

ρ(H) = max
H′=(V ′,E ′)<H

⌈
|E ′|
|V ′| − 1

⌉
(3.2)

where < denotes the sub-hypergraph relation.

Proof. Let V ′ ⊆ V and consider an arbitrary sub-hypergraph H′ = (V ′, E ′) of the induced
(by V ′) sub-hypergraph H′′ = (V ′, E ′′) < H. Then, |E ′| ≤ |E ′′|, so by (3.1)

ρ(H) ≥ |E ′′|
|V ′′| − 1

≥ |E ′|
|V ′| − 1

Since ρ(H) is an integer we arrive at our conclusion.

3.2. HYPER-ARBORICITY UPPER BOUND ON 3-GRAPHS 19

3.2 Hyper-arboricity upper bound on 3-graphs

We follow the approach of Chiba and Nishizeki [CN85] to arrive at two upper bounds for
the hyperarboricity of 3-uniform hypergraphs.

Theorem 3.2.1. If H = (V, E) is a 3-uniform hypergraph with n = |V |,m = |E| and
n = O(m), then we have the following upper bound for the hyperarboricity of H

ρ(H) = O(m2/3) (3.3)

Proof. Let H′ < H be such that ρ(H) =
⌈
|E(H′)|
|V (H′)|−1

⌉
. Such a sub-hypergraph H′ must exist

by Corollary 3.1.1. Let p = |V (H′)|, q = |E(H′)| and let k =
(
p
3

)
be the number of edges on

a complete 3-uniform hypergraph with p vertices. Observe that

6k = (p− 1)3 − (p− 1) (3.4)

We can distinguish between two cases:

• k ≤ m. We have:

ρ(H) =

⌈
q

p− 1

⌉
≤
⌈

k

p− 1

⌉
≤
⌈
p(p− 2)

6

⌉
≤
⌈
p2

6

⌉
By 3.4, we have that p− 1 = [(6k + p− 1)]1/3, giving

ρ(H) ≤ O(6k + p− 1)2/3 = O(6m+ n− 1)2/3 = O(m2/3) (3.5)

because k ≤ m, p ≤ n and n = O(m).

• k ≥ m. By 3.4, we have that 6k ≤ (p− 1)3, so:

ρ(H) =

⌈
q

p− 1

⌉
≤
⌈

m

p− 1

⌉
(3.6)

m≤k
≤
⌈

mk1/2

(p− 1)3/2

⌉2/3

(3.7)

= O

[(
m(p− 1)3/2

(p− 1)3/2

)2/3
]

= O(m3/2) (3.8)

Using Theorem 3.2.1 we can arrive at the following upper bound:

Theorem 3.2.2. Let H = (V, E) be a 3-uniform hypergraph with |E| = m and |V | =

20 CHAPTER 3. MATHEMATICAL INSIGHTS

n = O(m). Then: ∑
{u,v,w}∈E

min{du, dv, dw} ≤ 3mρ(H) = O(m5/3) (3.9)

Proof. Consider a decomposition of H into ρ(H) hyperforests Fi = (Vi, Ei) for i ∈ [ρ(H)].
In each hyperforest Fi, we will associate each hyperedge E ∈ Ei with a representative vertex
v(i)(E) ∈ E such that no two hyperedges in Ei share a representative. We can find such a
mapping from Ei to Vi if and only if GFi

has a perfect matching that saturates Ei. Since Fi
is a hyperforest, Lemma 3.1.1 and Hall’s Matching Theorem ensure that a perfect matching
saturating Ei exists. Using equation 3.10 and the handshake lemma, we get:∑

{u,v,w}∈E

min{du, dv, dw} =
∑

1≤i≤ρ(H)

∑
{u,v,w}∈Ei

min{du, dv, dw}

≤
∑

1≤i≤ρ(H)

∑
E∈Ei

dv(i)(E)

≤
∑

1≤i≤ρ(H)

∑
v∈V

dv = 3mρ(H) = O(m5/3)

Remark: This upper bound is tight, and realized by the case of the 3-uniform hypergraph

3.2.1 Generalizing to k-graphs

The previous findings can be generalized to k-uniform hypergraphs:

Theorem 3.2.3. If H = (V, E) is a k-uniform hypergraph with n = |V |,m = |E| and
n = O(m), then we have the following upper bound for the hyperarboricity of H

ρ(H) = O(m
k−1
k) (3.10)

Proof. The proof follows along similar lines to Theorem 3.2.1. We let H′ < H be such that
ρ(H) =

⌈
|E(H′)|
|V (H′)|−1

⌉
. Let p = |V (H′)|, q = |E(H′)| and let s =

(
p
k

)
be the number of edges on

a complete k-uniform hypergraph with p vertices. We make two algebraic observations:

1. p = O
(
(s + p)1/k

)
. We know that s ≥ Cpk ≥ Cpk − p for some constant C, which

implies that s+ p = Ω(pk).

2. k! · s = O((p− 1)k). We have: k! · s = p(p − 1) · · · (p − k + 1) ≤ p(p − 1)k−1 =
(p− 1)k + (p− 1)k−1 = O((p− 1)k)

Now, as before, we can distinguish between two cases:

3.3. BOUNDING THE SIMPLEX-COUNT IN UNIFORM HYPERGRAPHS 21

• s ≤ m. We have:

ρ(H) =

⌈
q

p− 1

⌉
≤
⌈

s

p− 1

⌉
≤
⌈
p(p− 2) · · · (p− k + 1)

k!

⌉
≤
⌈
pk−1

k!

⌉
= O(pk−1)

But we have that p = O
(
(s+ p)1/k

)
, giving

ρ(H) = O
(

(s+ p)
k−1
k

)
= O

(
(m+ n)

k−1
k

)
= O(m

k−1
k)

because s ≤ m, p ≤ n and n = O(m).

• s ≥ m. By the second observation above, we get:

ρ(H) =

⌈
q

p− 1

⌉
≤
⌈

m

p− 1

⌉
m≤s
≤

⌈
ms

1
k−1

(p− 1)
k

k−1

⌉ k−1
k

= O

(m(p− 1)
k

k−1

(p− 1)
k

k−1

) k−1
k

 = O(m
k−1
k)

As an immediate corollary to this generalized bound, we can get the following general-
ization of Theorem 3.2.2:

Theorem 3.2.4. Let H = (V, E) be a k-uniform hypergraph with |E| = m and |V | =
n = O(m). Then:∑

{u1,...,uk}∈E

min{deg(u1), ..., deg(uk)} ≤ kmρ(H) = O
(
m2− 1

k

)
(3.11)

Proof. We omit the proof because it is almost identical to the proof of theorem 3.2.2.

Remark: As before, this bound is tight. Equality holds for complete k-graphs.

3.3 Bounding the simplex-count in uniform hypergraphs

In a graph G with m edges and T triangles, it is always true that T = O(m3/2). We can
generalize this inequality to k-uniform hypergraphs, starting with k = 3.

22 CHAPTER 3. MATHEMATICAL INSIGHTS

Theorem 3.3.1. Let H = (V, E) be a 3-graph with S simplices and m edges. Then

S = O
(
m

4
3

)

Proof. Let v ∈ V . We distinguish between two cases:

1. v is heavy: deg(v) > m2/3. By the handshake lemma we have that
∑
v

degv = 3m,

so there are at most (3m)1/3 heavy vertices. Each vertex can participate in at most
m simplices, so the number of simplices with at least one heavy vertex is at most
(3m)1/3 ·m = O(m4/3).

2. v is light: deg(v) ≤ m2/3. We take out from H all the heavy vertices, forming the
hypergraph H′ = (V ′, E ′). This can only decrease the degree of any light vertex. Let S ′
be the total number of simplices in H′. Then, the number of simplices in H consisting
of only light vertices is equal to S ′.

If {v, x, y, z} is a simplex inH′, then the collection of edges {{v, x, y}, {v, y, z}, {v, x, z}}
is called a 3-wedge centered at v. Let Wv be the number of 3-wedges centered at
vertex v. We have that

S ′ ≤ 1

4

∑
v∈V ′

Wv

because each simplex is counted 4 times. The key observation to make is that:

Observation 3.3.2. In the graph Gv, a 3-wedge centered at v is a triangle, so Wv

is equal to the number of triangles in Gv

This implies that Wv = O(deg(v)3/2), because |E(Gv)| = deg(u). Since deg(v) ≤ m2/3

for each v ∈ V ′, we have:

S ′ = O

(∑
v∈V ′

deg(v)3/2

)
= O

(∑
v∈V ′

deg(v)1/2 · deg(v)

)

= O

(
m1/3

∑
v∈V ′

deg(v)

)
= O(m4/3)

Remark: This upper bound is tight: On a complete 3-uniform hypergraph with n ver-
tices, there are Θ(n4) simplices and Θ(n3) edges.

From here, we can use an inductive argument to show a generalized upper bound on the
number of simplices for k-uniform hypergraphs:

3.3. BOUNDING THE SIMPLEX-COUNT IN UNIFORM HYPERGRAPHS 23

Theorem 3.3.3. Let H = (V, E) be a k-uniform hypergraph with S simplices and |E| =
m. Then

S = O
(
m

k+1
k

)

Proof. We induct on k. For k = 3 we have already proven our claim with Theorem 3.3.3.
Now we let k > 3. For v ∈ V , we again distinguish between two cases:

• deg(v) >m
k−1
k (heavy vertices): As before, due to the handshake lemma, there are

O(m1/k) heavy vertices, each of which can be in at most m simplices, which gives the
desired bound.

• deg(v) ≤m
k−1
k (light vertices): Let H′ = (V ′, E ′) be H with all light vertices removed.

Let H′ contain S ′ simplices (composed only of heavy vertices in H). Finally, let S ′v is
the number of simplices in H′ in which a heavy vertex v is involved. Each such simplex
corresponds to a simplex in Gv. By the inductive hypothesis, |S ′v| = O

(
deg(v)

k
k−1

)
because |Ev| = deg(v), so we get that:

S ′ = O

(∑
v∈V ′

deg(v)
k

k−1

)
= O

(∑
v∈V ′

deg(v)
1

k−1 · deg(v)

)

= O

(
m

1
k

∑
v∈V ′

deg(v)

)
= O(m

k+1
k)

Remark: As before, this is a tight bound. On a complete k-uniform hypergraph with n
vertices there are Θ(nk+1) simplices and Θ(nk) edges.

Chapter 4

Sampling and Counting Triangles

This chapter is devoted to counting and sampling triangles from streams of undirected
graphs. Although this problem has been widely studied (see the Introduction), the algo-
rithms we present in this section are almost-optimal and not yet, to our knowledge, fully
described in the literature.

First, we will be using the idea of degree-based vertex partitioning outlined in [KMPT12]
to develop an “importance-sampling”-like technique for counting triangles. This technique
was first conceived and used for triangle counting in [KMPT12], but the authors of that
paper do not use it to develop an explicit algorithm that works in the general, arbitrary
order, graph stream model. We complete that body of work by giving a Õ

(
n+ m3/2

T

)
algorithm for counting triangles in the streaming model.

Second, we use, almost without no additional work, the previously mentioned triangle-
counting algorithm to uniformly sample triangles from a graph stream using Õ

(
n+ m3/2

T

)
bits of space in the worst case. This algorithm beats, to our knowledge, the best so far
triangle sampling algorithm given by [PTTW13] which runs in Õ

(
mn
T

)
-space in the worst

case.

4.1 Counting Triangles in the Streaming Model

Our algorithm essentially tries to sample triples {u, v, w} from a “small" set U which contains
all possible triangles. If any triple were allowed to be sampled, then we would need to perform
O(n3) samples in the worst case, so we use an “importance-sampling” method to narrow down
our search space. Instead of traditional triples {u, v, w}, the triples in U are labeled by a
vertex, so the elements of U are of the form (u, {v, w}) ∈ V ×

(
V
2

)
.

We construct U implicitly, using the degree-based partitioning idea introduced in [KMPT12].
U is made up of two disjoint sets of labeled triples: triples where the label is a high-degree
(heavy) vertex and triples where it is low-degree. Formally:

UL = {(u, {v, w}) | deg(u) <
√
m and {v, w} ⊆ Nu} (4.1)

UR = {(u, {v, w}) | deg(u) ≥
√
m and {v, w} ∈ E} (4.2)

U = UL ∪ UR (4.3)

We let L = {v ∈ V | deg(v) <
√
m} be the set of light vertices and H = V \ L be the

24

4.1. COUNTING TRIANGLES IN THE STREAMING MODEL 25

heavy vertices of V . The number of candidate triples in UL is |UL| =
∑
v∈L

(deg(v)
2

)
and the

number of triples containing at least one heavy vertex is |UH | = |H| ·m
It is critical in the analysis of our algorithm that labeled triples are sampled from U

uniformly. To achieve that, we use an “importance sampling” method. In one pass of pre-
processing, we calculate the degree of every vertex. This also allows us to precisely calculate
|UL| and |UH |. For elements in UL, we use the degree information to sample low-degree
vertices v ∈ L with a probability proportional to the number of triples in UL labeled with v.
For elements in UH , we just need to sample a vertex v ∈ H and an edge e ∈ E uniformly at
random.

The proposed triangle counting algorithm is shown below:

Algorithm 1: Counting triangles in the streaming model
1: procedure Degree-based-Triangle-Count(σ)
2: Pass 1: Calculate the degree deg(v) for every vertex v ∈ V .
3: Offline: Calculate UL and UH based on the degree information.
4:
5: Sample a pair (v, {w, z}) ∈ V × V 2, s times in parallel, as follows:
6: F ← Flip a coin with probability |UL|

|UL|+|UH |
.

7: if F = HEADS then
8: Sample v ∈ L with probability (deg(v)

2)
|UL|

.
9: Pass 2: Sample two different vertices w, z uniformly from N(v).
10: else
11: Sample v ∈ H with probability 1

|H| .
12: Pass 2: Sample some edge (w, z) with probability 1

m

13: end if
14: Pass 3:
15: Check if {v, w, z} forms a triangle.
16: Let Xi = 1 if that is the case, with 1 ≤ i ≤ s. Otherwise set Xi = 0.

17: Output: 1
s

s∑
i=1

Xi.

18: end procedure

4.1.1 Analysis

The following theorem is the gist of the algorithm developed above:

Theorem 4.1.1. There exists a 3-pass streaming algorithm for (ε, n−O(1))-estimating
the triangle count in an undirected graph, using Õ

(
n+ m3/2

T

)
bits of space in the worst

case.

We prove that our algorithm is correct, accurate and memory-efficient through a series of
concise lemmata:

26 CHAPTER 4. SAMPLING AND COUNTING TRIANGLES

Lemma 4.1.1. |U | = |UL ∪ UR| = O(m3/2)

Proof. |U | = |UL ∪ UH | = |UL|+ |UH |. We have that

|UL| =
∑
u∈L

(
deg(u)

2

)
<
∑
u∈L

deg(u)2 = O(m3/2) (4.4)

as deg(u) <
√
m for u ∈ L. Also, |UH | ≤

√
2m · m = O(m3/2) as |H| ≤

√
2m by the

handshaking lemma.

Lemma 4.1.2. Every triangle is found 3 times in U as an unlabeled triple {u, v, w}

Proof. If a triangle {u, v, w} contains i light vertices and 3− i heavy vertices, with 0 ≤ i ≤ 3,
then it appears i times in UL and 3− i times in UH , for a total of 3 times.

Lemma 4.1.3. Our algorithm samples a labeled triple uniformly from U .

Proof. If (u, {v, w}) ∈ UL, then it is sampled with probability

�
��|UL|

|UL|+ |UH |
· ����
(deg(u)

2

)
���|UL|

· 1

��
��

(deg(u)
2

) =
1

|UL|+ |UH |
=

1

|U |
(4.5)

If (u, {v, w}) ∈ UH , then it is sampled with probability

���|UH |
|UL|+ |UH |

· 1

�
�|H|
· 1

��m
=

1

|UL|+ |UH |
=

1

|U |
(4.6)

Lemma 4.1.4. If s = Θ
(
|U | logn
ε2T

)
, then Algorithm 1 (ε, n−d)-approximates T3, where d is

some constant greater than 1.

Proof. First, it is easy to see that E[Xi] = 3T
|U | . Now, applying a standard Chernoff bound

and a trivial union bound, we get that:

Pr

[∣∣∣∣∣1s
s∑
i=1

Xi −
3T

|U |

∣∣∣∣∣ ≥ ε · 3T

|U |

]
≤ 2exp

(
−ε

2Ts

2|U |

)
≤ n−d (4.7)

Lemma 4.1.5. Algorithm 1 uses Õ
(
n+ m3/2

T

)
bits of space in the worst case.

Proof. The algorithm uses Õ(n + s) bits of space. However, by Lemma 5.3.2, we have that
s = Θ̃

(
m3/2

T

)
gives a good approximation.

4.2. TRIANGLE SAMPLING 27

4.2 Triangle Sampling

We can make use of Algorithm 1 to make a method that samples a triangle from a graph
stream uniformly using little memory.

When running Algorithm 1 but only sampling a single labeled triple (s = 1), the prob-
ability of sampling a triangle is p = 3T

|U | . Given that a triangle is sampled, it is sampled
uniformly from the set of all triangles in the graph, because the labeled triples are sampled
uniformly (Lemma 4.1.3).

We will show that Algorithm 2 finds a triangle with probability at least 1−ε. Even though
the instructions in Lines 6-18 happen in parallel, we assume that they finish in some arbitrary
order - a logical assumption for any computer system. In this order, let M be the number of
the iterations that it takes for a triangle to be first detected. M is geometrically distributed
with parameter p = 3T

|U | , so we expect the that after Exp[M] = 1
p

= |U |
3T

= O
(
m3/2

T

)
iterations,

a triangle will be found. Therefore, running Lines 6-18 in parallel only Exp[M] times should
be enough to uniformly sample a triangle.

Algorithm 2: Uniform Triangle Sampling in the Streaming model
1: procedure Degree-based-Triangle-Sample(σ, ε)
2: Pass 1: Calculate the degree deg(v) for every vertex v ∈ V .
3: Offline: Calculate |UL| and |UH | based on the degree information.
4:
5: Execute 1

ε
· |U |

3T
times in parallel :

6: F ← Flip a coin with probability |UL|
|UL|+|UH |

.
7: if F = HEADS then
8: Sample v ∈ L with probability (deg(v)

2)
|UL|

.
9: Pass 2: Sample two different vertices w, z uniformly from N(v).
10: else
11: Sample v ∈ H with probability 1

|H| .
12: Pass 2: Sample some edge (w, z) with probability 1

m

13: end if
14: Pass 3:
15: Check if {v, w, z} forms a triangle.
16: if a triangle t = {v, w, z} is found then
17: Output t
18: B If multiple triangles are found, then any of them is returned
19: end if
20: Output FAIL.
21: end procedure

However, we want to upper bound (by ε) the probability that more parallel samplings
are needed. By the Markov inequality, the probability that M actually becomes larger than
1
ε
· |U |

3T
is at most:

28 CHAPTER 4. SAMPLING AND COUNTING TRIANGLES

Pr

[
M ≥ 1

ε
· |U |

3T

]
≤ Exp[M]

1
ε
Exp[M]

= ε (4.8)

Therefore, 1
ε
· |U |

3T
parallel samplings are enough to guarantee with probability at least

1− ε that a triangle will be found. Thus, we have proven the following theorem:

Theorem 4.2.1. There is a 3-pass, streaming algorithm for sampling a triangle from an
undirected graph uniformly at random. The algorithm uses O

(
n+ m3/2

εT

)
bits of space.

Chapter 5

Simplex Counting Algorithms

In this chapter, we will be exploring the main problem of this thesis: counting simplices in
hypergraph streams. We will be presenting a few algorithms to solve this problem, eventually
finding an optimal algorithm, as claimed in Theorem 1.3.1. To illustrate our algorithms, we
will first present them for 3-uniform hypergraphs and then generalize them for k-uniform
hypergraphs.

The first algorithm we see is a straightforward generalization of a method in [BC17]
that runs in Õ(m5/3/S) for 3-graphs, and in Õ(m2− 1

k /S) in general. That algorithm is of
particular interest because its analysis is not straightforward; indeed it prompted the use of
hyperforest decomposition methods, as covered in Chapter 3, which may be of independent
interest.

However, the Õ(m2− 1
k /S) upper bound is not optimal. By adapting Theorem 4.1.1, we

present an algorithm for k = 3 that runs in Õ(n2 + m4/3/S) or in Õ(m4/3/S)-space given
a codegree oracle. This algorithm can be adapted to sampling simplices uniformly from a
3-uniform hypergraph, akin to theorem 4.2.1.

Finally, we return to the method in [BC17] and generalize it in a different way, eventually
obtaining an optimal Õ(m1+ 1

k /S) algorithm that does not require codegree oracles. We note
that, for our purposes, k is a constant, so it does not affect our analysis.

For the purpose of completeness, at the end of the chapter, we present some other, less
efficient generalizations of triangle counting algorithms into the problem of simplex counting.

5.1 A first attempt at simplex counting

In their 2017 paper [BC17], Chakrabarti and Bera propose a generic algorithm for counting
substructures in an arbitrary-order graph stream. The algorithm samples a sufficient num-
ber of edges, hoping to select an edge cover for the requested substructure being counted.
Assuming that the size of the requested substructure is a constant, they use two passes to
produce an unbiased estimator with bounded variance. The authors improve on this bound
by proposing 4-pass streaming algorithms for counting cliques and cycles of odd size.

In the following sections we generalize their streaming algorithms to count simplices in 3-
uniform hypergraphs. To that end, we use the insights on hyperforest decomposition covered
in Chapter 3.

29

30 CHAPTER 5. SIMPLEX COUNTING ALGORITHMS

5.1.1 The Algorithm

We impose a total ordering on V according to Lemma 2.1.2. We associate a simplex on
vertices u, v, w, z with the pair ((u, v, w), z) ∈

(
V
3

)
× V where:

• {u, v, w} ∈ E .

• u ≺∅ v ≺∅ w ≺∅ z, where recall that ≺∅ is our degree-based ordering.

In other words, we produce a label for each simplex in the graph. Given the label, then we
can determine exactly the simplex referenced and each simplex has a unique label. We let S
denote the number of simplices in H and the number of the simplices whose label contains
the hyperedge {u, v, w} is denoted by S{u,v,w}.

Algorithm 3: Counting simplices in 3-uniform hypergraph streams
1: procedure 4-Simplex-Stream-Count(σ)
2: Pass 1 B O(1) space
3: Pick an edge {u, v, w} ∈ E using reservoir sampling.
4: Pass 2 B O(1) space
5: Calculate the degrees deg(u), deg(v) and deg(w).
6: Pass 3 B O(S(F0) + rS(L0)) space
7: Let r :=

⌈
min{deg(u), deg(v), deg(w)} ·m−1/2

⌉
.

8: Re-arrange (if needed) u, v, w so that u ≺∅ v ≺∅ w.
9: for k = 1 to r do:
10: Zk ← 0
11: Construct a virtual stream σk consisting of the vertices in N(u) \ {v, w}.
12: Sample vertex xk from N(u) \ {v, w} u.a.r using `0-sampling on σk
13: end for
14: Simultaneously, approximate |N(u)| using F0-estimation (B O(log n) space).
15: Pass 4 B O(r) space
16: Compute the degrees deg(x1), deg(x2), ..., deg(xr).
17: for k = 1 to r do
18: if w ≺∅ xk and {u, v, w, xk} form a 4-simplex then
19: Zk = |N(u)| − 2 B u has the smallest degree
20: end if
21: end for
22: Y ← 1

r
(
∑r

k=1 Zk) B Average out the trials
23: return X = mY B Scale to get an unbiased estimator
24: end procedure

The algorithm proceeds by sampling a hyperedge {u, v, w} u.a.r. It then samples a vertex
in the neighborhood of u u.a.r. and examines if the assembled label makes up a simplex.
Necessary degree bookkeeping requires 4 passes for all the information to be collected.

A caveat that immediately appears in this case and not in the original algorithm is the
uniform sampling of the vertex in the neighborhood of u (Line 11). In graphs, reservoir

5.1. A FIRST ATTEMPT AT SIMPLEX COUNTING 31

sampling suffices because sampling a neighbor of u is equivalent to sampling uniformly
an edge that is incident on u. The same is not true for hypergraphs, because sampling a
hyperedge that contains u u.a.r. gives a probabilistic advantage to vertices which share many
hyperedges with u. Thus, we need to use `0-sampling techniques in a substream consisting
of neighbors of u.

A second caveat that appears is in the calculation of the size of the neighborhood of
u. Treating every edge containing u as a virtual stream σu, we can calculate |N(u)| by
counting the distinct elements in σu. This can be done either precisely, in O(n) space, or
approximately in O(log n) space, using F0-estimation algorithms.

5.1.2 Analysis

Our analysis proceeds like [BC17]. The only differences are the presence of `0-sampling, F0

estimation, and the use of the upper bounds established in 3.2.

Remark: In the analysis below, we will assume that the algorithms for `0 sampling and
F0 estimation produce the desired outputs correctly. Any precision errors are assumed
to be absorbed into the quality of the estimator X. Our analysis does not examine the
implications of this assumption in a more pedantic way because this algorithm is meant
as a first-attempt to a suboptimal solution.

Unbiased Estimator First we prove that our estimator X is unbiased. Let EE = E{u,v,w}
denote the event in which the hyperedge E = {u, v, w} is sampled in Pass 1. Because we use
`0 sampling in Line 12 of our algorithm above, we choose with probability (|N(u)|−2)−1 each
of the S{u,v,w} vertices which complete a valid simplex label with hyperedge E. Therefore,
we have that

E[Zk | E{u,v,w}] = S{u,v,w}
1

|N(u)| − 2
(|N(u)| − 2) = S{u,v,w} (5.1)

and so by the law of total expectation we get that

E[X] =
m

r

r∑
k=1

∑
{u,v,w}∈E

1

m
E[Zk | E{u,v,w}] =

1

r

r∑
k=1

∑
{u,v,w}∈E

S{u,v,w} = S (5.2)

Bounded variance Now we attempt to bound the variance. Proceeding along similar
lines as above, we have that

E[Z2
k | E{u,v,w}] = (|N(u)| − 2) · S{u,v,w} ≤ |N(u)| · S{u,v,w} (5.3)

E[Zk1Zk2 | E{u,v,w}] = S2
{u,v,w} (5.4)

32 CHAPTER 5. SIMPLEX COUNTING ALGORITHMS

because Zk1 and Zk2 are independent events even when conditioned on E{u,v,w}. So we have:

E[Y 2 | E{u,v,w}] = E

(1

r

r∑
k=1

Zk

)2

| E{u,v,w}

 (5.5)

=
1

r2

r∑
k=1

E[Z2
k | E{u,v,w}] +

1

r2

∑
k1 6=k2

E[Zk1Zk2 | E{u,v,w}] (5.6)

≤ |N(u)|
r

S{u,v,w} +

(
r
2

)
r2
S2
{u,v,w} ≤ 2

√
mS{u,v,w} + S2

{u,v,w} (5.7)

because |N(u)|
r
≤ 2deg(u)

r
≤ 2
√
m by the definition of r. Finally we get that:

V ar[X] = m2V ar[Y] ≤ m2E[Y 2] (5.8)

= m2
∑

{u,v,w}∈E

1

m
E[Y 2 | E{u,v,w}] (5.9)

≤ 2m3/2
∑

{u,v,w}∈E

S{u,v,w} +m
∑

{u,v,w}∈E

S2
{u,v,w} (5.10)

≤ 2m3/2S +m
∑

{u,v,w}∈E

S2
{u,v,w} (5.11)

At this point we need a bound on
∑
T 2
{u,v,w}. Using Lemma 2.1.2, we argue that∑

{u,v,w}∈E

S2
{u,v,w} = O(S

√
m) (5.12)

because for any edge {u, v, w} we have that S{u,v,w} ≤ |Su| = O(
√
m), where we use Su as

in the proof of Lemma 2.1.2. This allows us to claim that

V ar[X] = O(m3/2S) (5.13)

Space Complexity Using the median-of-means improvement, we can see that our algo-
rithm uses space O(m3/2B/S) to output a (ε, 1/3)-approximation of T , where B = O(S(F0)+
rS(L0)) is the space used by one instance of Algorithm 3. We must now verify that our al-
gorithm does not cause B to explode.

Remark: Let S(F0) be the space complexity of the F0-estimator and S(L0) be the space
complexity of the `0 sampler. We assumed that those algorithms function perfectly. To
boost this confidence probability over all repetitions of Algorithm 3, the confidence param-
eters in each algorithm need to be adjusted accordingly. However, since the confidence
parameter is inside a logarithm, it becomes insignificant in the total space complexity.
We omit more thorough investigation because it escapes the purposes of this section.

We calculate the expected value of B: E[B] = S(F0) + S(L0)E[r]. We have that:

5.1. A FIRST ATTEMPT AT SIMPLEX COUNTING 33

E[r] =
1

m

∑
{u,v,w}∈E

⌈
min{deg(u), deg(v), deg(w)}√

m

⌉
(5.14)

= O

m−3/2
∑

{u,v,w}∈E

min{deg(u), deg(v), deg(w)}

 (5.15)

Using Theorem 3.2.2 we get that E[r] = O(m5/3−3/2) = O(m1/6). Thus B = O(S(F0) +

m1/6S(L0)) in expectation. We can assume that S(F0) = Õ(log n) and S(L0) = Õ(log2 n),
meaning that

E[B] = Õ(logn +m1/6 log2 n) = Õ(m1/6 log2 n) (5.16)

If we terminate the algorithm when it uses more than (say) 10m1/6 log2 n space, then with
high probability we get a worst-case memory bound of O(m5/3 log2 n/S). We thus arrive to
the following theorem:

Theorem 5.1.1. If H = (V, E) is a 3-uniform hypergraph with n vertices and m edges,
then a 4-pass streaming algorithm exists that (ε, δ)-approximates the number of simplices
in H using Õ(m5/3 log2 n/S) space.

5.1.3 Generalizing to k-graphs

Theorem 5.1.1 can be easily generalized to k-uniform hypergraphs. The idea of the algorithm
remains the same: each simplex is labeled by an edge-vertex pair, where the vertices are
ordered by degree. An edge is first sampled uniformly. If u is the vertex on that edge with
the smallest degree, then then a vertex from the neighborhood of u is sampled. Using a final
pass, we check whether the assembled label is a simplex and perform multiple iterations in
order to bring the variance down. As before, primitives for `0 sampling and F0 estimation
are needed and are assumed to function perfectly.

The analysis does not change much. The estimator X is shown to be unbiased in precisely
the same way. To bound the variance, we go through the same procedure to get

Var[X] ≤ (k − 1)m3/2S +m
∑
e∈E

S2
e (5.17)

By Lemma 2.1.2, we see that Se ≤ |Su| = O(
√
m), so the final bound on the variance is:

Var[X] = O(m3/2S) (5.18)

Remark: Note that the variance of the estimator in the general case is still O(m3/2S),
due to the existence of the m

∑
e∈E

S2
e term.

34 CHAPTER 5. SIMPLEX COUNTING ALGORITHMS

To figure out the expected memory usage of this algorithm, we use Theorem 3.2.4 to
calculate:

Exp[r] =
1

m

∑
{u1,...,uk}∈E

⌈
min{deg(u1), deg(u2), ..., deg(uk)}√

m

⌉
(5.19)

= O

m−3/2
∑

{u1,...,uk}∈E

min{deg(u1), deg(u2), ..., deg(uk)}

 = O(m
1
2
− 1

k) (5.20)

Algorithm 4: Counting simplices in k-uniform hypergraph streams
1: procedure (k + 1)-Simplex-Stream-Count(σ)
2: Pass 1 B O(1) space
3: Pick an edge {u1, u2, ..., uk} ∈ E using reservoir sampling.
4: Pass 2 B O(1) space
5: Calculate the degrees deg(u1), deg(u2), ..., deg(uk).
6: Pass 3 B O(S(F0) + rS(L0)) space
7: Let r :=

⌈
min{deg(u1), deg(u2), ..., deg(uk)} ·m−1/2

⌉
.

8: Re-arrange (if needed) u1, u2, ..., uk so that u1 ≺∅ u2 ≺∅ · · · ≺∅ uk.
9: for j = 1 to r do:
10: Zj ← 0
11: Construct a virtual stream σj of the vertices in N(u1) \ {u2, ..., uk}.
12: Sample vertex xj from N(u1) \ {u2, ..., uk} u.a.r using `0-sampling on σj
13: end for
14: Simultaneously, approximate |N(u1)| using F0-estimation (B O(log n) space).
15: Pass 4 B O(r) space
16: Compute the degrees deg(x1), deg(x2), ..., deg(xr).
17: for j = 1 to r do
18: if uk ≺∅ xj and {u1, u2, ..., uk, xj} form a 4-simplex then
19: Zj = |N(u1)| − k + 1 B u1 has the smallest degree
20: end if
21: end for
22: Y ← 1

r

(∑r
j=1 Zj

)
B Average out the trials

23: return X = mY B Scale to get an unbiased estimator
24: end procedure

Using the median-of-means improvement (2.2.1), we arrive to the following theorem:

Theorem 5.1.2. If H = (V, E) is a k-uniform hypergraph with n vertices and m edges,
then a 4-pass streaming algorithm exists that (ε, δ)-approximates the number of simplices
in H using Õ(m2− 1

k log2 n/S) space.

5.2. A CODEGREE-BASED APPROACH 35

5.2 A codegree-based approach

A disadvantage of the algorithms described in the previous section is that they need to use `0

sampling and F0 estimation as primitives. The underlying reason behind why they need to
use such primitives is the difference between neighborhood size and degree. The neighborhood
of a set of vertices is much harder to keep track of because many vertices can be incident on
many edges simultaneously.

Another bothersome aspect of Algorithms 3 and 4 is their high memory requirements.
As we will prove in Chapter 6, no algorithm can solve the simplex-counting problem in a
3-uniform hypergraph using o(m4/3/S) bits of space in the worst case. Clearly, there is a
gap between the space requirements of Algorithm 3 and this lower bound. The inefficiency
in memory usage seems to stem from two factors:

• High variance: Var[X] = O(m3/2 · S). Our improved algorithm below will have
Var[X] = O(m1+ 1

k · S) for k ≥ 3.

• Large memory usage per iteration: In algorithm 4, Exp[B] ≈ Exp[r] = O(m
1
2
− 1

k).
We strive for Exp[B] = O(1).

An improved, efficient algorithm for simplex counting will need to address the issues above.
First, we discuss one possible line of attack for improvement and show why it is not a fully
efficient method.

5.2.1 Simplifying the sampling

A first way to improve Algorithm 4 by removing the `0 and F0 primitives is to sample vertices
adjacent to u1 with probability proportional to the number of edges they share with u1. This
could be performed simply by using reservoir sampling on the virtual stream σj. The key
observation to make is that the frequency of a vertex x in σj is exactly equal to its codegree
degGu1

(x). Since the vertices u2, ..., uk are not in σj, we get by the generalized handshake
lemma 2.1.1 for Gu1 that:

|σj| = (k − 1)deg(u1)−
k∑
i=2

degGu1
(ui) (5.21)

This would sample a vertex x ∈ N(u1) \ {u2, ..., uk} with probability degGu1
(x)/|σj|. If VE is

the set of vertices that can complete a simplex label with edge E, and we assigned the value
|σj|/degGu1

(x) to the estimator Xj corresponding to sampling vertex xj, then

Exp[Xj|EE] =
∑
z∈VE

[
degGu1

(z)

|σj|
· |σj|
degGu1

(z)

]
= |VE| = SE (5.22)

So we can get an unbiased estimator and remove the `0/F0 streaming primitives. In bounding
the variance, we see that

Exp[X2
j | EE] =

∑
z∈VE

degGu1
(z)

|σj|
·

(
|σj|

degGu1
(z)

)2
 ≤ |σj| · deg(u1) (5.23)

36 CHAPTER 5. SIMPLEX COUNTING ALGORITHMS

E[Xj1Xj2 | EE] = S2
E (5.24)

Due to equation 5.24, the bound on the overall variance still depends on the additive term∑
e∈E

S2
e , which remains O(m3/2) in our algorithm. Therefore, even though we removed a lot of

complexity for our algorithm, the space complexity remains high due to the high variance.

5.2.2 An optimal algorithm for simplex counting

In order to lower the variance of our estimator, we will pursue techniques that work on the
cases where the notions of degree and neighborhood size coincide. In k-uniform hypergraphs,
this happens when examining the neighborhood and codegree of a set with (k − 1) vertices.
This change in perspective leads us to the main idea that the algorithms to follow will use:

Main idea: Instead of looking at the neighbors of the min-degree vertex in a randomly
chosen edge, we sample from the neighborhood of the (k − 1) vertices in the edge that
have the smallest codegrees. To be more precise:

Definition 5.2.1. If e ∈ E is some hyperedge, then we define:

• c1(e) to be the vertex of e with the smallest degree

• ci(e) is the vertex of e with the smallest {c1(e), ..., ci−1(e)}-codegree, for 1 < i < k.

• Clearly, ck(e) is the vertex that remains.

Our algorithms then sample from the neighborhood N(c1(e), ..., ck−1(e)) of a randomly
chosen edge e. In the graph Gc1(e),...,ck−1(e), the notions of neighborhood size and degree
coincide, so there is no need for `0 sampling!

Using this idea, we arrive at an optimal algorithm for simplex counting:
Let k ≥ 2. We associate a simplex S in H with a hyperedge-vertex pair (e, z), where:

• S = e ∪ {z}

• For all i = {1, 2, ..., k − 1}, if we let Si(e) := {c1(e), ..., ci(e)}, we have that

ci ≺Si−1(e) z

• ck(e) ≺Sk−2(e) z

We let Te be the number of (k + 1)-simplices labeled with edge e.

Observation 5.2.1. For any simplex S there is a unique label (e, z) associated with S

Proof. Let S = {u1, ..., uk+1}. Assume that two distinct labels (e1, z1) and (e2, z2) are asso-
ciated with S. WLOG, assume that u1 is the vertex with the smallest degree in S. Then
u1 must be in e1 and e2 by definition. Now, again WLOG, assume that u2 is the vertex of

5.2. A CODEGREE-BASED APPROACH 37

Figure 5.1: A simplex-characterization with k = 4.

S \ {u1} with the smallest u1-codegree. u2 must also belong to e1 and e2 by definition. We
can repeat this process until k − 1 vertices have been added to both e1 and e2. There are 2
vertices left: uk and uk+1. If we assume WLOG that uk has smaller {u1, ..., uk−2}-codegree
than uk+1, then, by definition, uk must be in e1 and e2. At that point we can see that e1 = e2

and so z1 = z2 - a contradiction.

Our general algorithm follows an importance sampling approach: it samples an edge and a
vertex and checks if the assembled label characterizes a simplex. Throughout the algorithm
and the analysis, we treat k as a constant.

5.2.3 Analysis

We proceed in a fashion similar to Algorithms 3 and 4 above. We can show that our estimator
is unbiased by using the same logic as we did before. If Ee is the event of sampling edge e in
Line 3, then

E[Zk | Ee] = Te
1

deg(Sk−1(e))
deg(Sk−1(e)) = Te (5.25)

because deg(Sk−1(e)) = |N(Sk−1(e))|. For the variance, we work in parallel to our previous
discussion to establish, with the difference that now deg(Sk−1(e))

r
= m1/k, which gives the

following upper bound:

Var[X] ≤ m1+1/kS +m
∑
e∈E

T 2
e (5.26)

The following lemma allows us to make this bound more compact:

Lemma 5.2.1. For any e ∈ E we have that

Te = O(m1/k) (5.27)

Proof. We use induction on k. For k = 2 this is equivalent to Lemma 2.1.2. Now let k ≥ 3.
We distinguish between two cases:

38 CHAPTER 5. SIMPLEX COUNTING ALGORITHMS

Algorithm 5: Counting (k + 1)-simplices in k-uniform hypergraph streams
1: procedure (k + 1)-Simplex-Stream-Count(σ)
2: Pass 1 B O(1) space
3: Pick an edge {u1, u2, ..., uk} ∈ E using reservoir sampling.
4: Pass 2 B O(2k) = O(1) space
5: Calculate the degrees deg(S) for all non-trivial S ⊂ e.
6: Pass 3 B O(r) space
7: Re-arrange (if needed) u1, ..., uk so that ui = ci(e) for i ∈ [k].
8: With Sj(e) := {c1(e), ..., cj(e)}, let r :=

⌈
deg(Sk−1(e)) ·m−1/k

⌉
.

9: for j = 1 to r do:
10: Zj ← 0
11: Construct a virtual stream σj consisting of the vertices in N(Sk−1(e))
12: B Note that deg(Sk−1(e)) = |N(Sk−1(e))|
13: Sample vertex xj from N(Sk−1(e)) u.a.r using reservoir sampling.
14: end for
15: Pass 4 B O(kr) = O(r) space
16: Compute the codegrees deg(Si−1(e), xj) for all i ∈ [k] and j ∈ [r]
17: for j = 1 to r do
18: if (ci ≺Si−1(e) z, ∀i ∈ [k]) and (e ∪ {xj} form a 4-simplex) then
19: Zk = deg(Sk−1(e))
20: end if
21: end for
22: return X ← m

r
(
∑r

k=1 Zk) B Average out the trials and scale
23: end procedure

1. deg(c1(e)) ≥m(k−1)/k. Then in any simplex labeled with edge e and vertex z, we
must have that deg(z) ≥ deg(c1(e)). But there are at most O(m1/k) such vertices due
to the handshake lemma, so it follows that Te = O(m1/k).

2. deg(c1(e)) <mk−1/k. If S = e ∪ {z} is a simplex labeled with (e, z), then S ′ = S \
{c1(e)}must also be a simplex in GS1(e). Further, S ′ must be labeled with (e\{c1(e)}, z)
in GS1(e) because codegrees in GS1(e) are (c1(e))-codegrees in H. So Te ≤ Te\{c1(e)}.

GS1 is a (k − 1)-uniform hypergraph and so, using our induction hypothesis, we have
that Te\{c1(e)} = O(|ES1(e)|1/(k−1)). But |ES1(e)| = deg(c1(e)), so we get that

Te = O
(
deg(c1(e))1/(k−1)

)
= O(m1/k) (5.28)

Thus our variance is bounded as Var[X] = O(m
k+1
k S), and the median of means trick gives

us an algorithm that uses 4 passes and O(m
k+1
k B/S) bits of space, where B = Θ(r). Thus,

as before, we need to bound r in expectation. We find that:

E[r] = m−(k+1)/k
∑
e∈E

deg(Sk−1(e)) (5.29)

5.2. A CODEGREE-BASED APPROACH 39

The following theorem allows us to claim that r = O(1) in expectation:

Theorem 5.2.2. Let k ≥ 3. If H is a k-uniform hypergraph, then:∑
e∈E

deg(Sk−1(e)) = O(m
k+1
k)

Proof. We use induction on k. For k = 2, this is given by 3.2.4. Let k ≥ 3 below.
Consider partitioning the vertex set into “light” and “heavy” vertices as follows:

L := {u ∈ V | deg(u) < m(k−1)/k}

H := {u ∈ V | deg(u) ≥ m(k−1)/k}

LetMu be the set of hyperedges in which vertex u has the minimum degree:

Mu := {e ∈ E | u = c1(e)}

Then E = ∪u∈VMu, so we can write:∑
e∈E

deg(Sk−1(e)) =
∑
u∈V

∑
e∈Mu

deg(Sk−1(e)) (5.30)

=
∑
u∈L

∑
e∈Mu

deg(Sk−1(e)) +
∑
u∈H

∑
e∈Mu

deg(Sk−1(e)) (5.31)

We first take care of the first term of the last summation, with u ∈ L. Each hyperedge
e ∈ Mu corresponds to an edge e′ = e \ {u} ∈ Eu in the (k − 1)-uniform hypergraph Gu.
Hyperedge e′ has k − 1 vertices and we have that Sk−2(e′) ∪ {u} = Sk−1(e). Therefore,
deg(Sk−1(e)) = degGu

(Sk−2(e′)) in Gu and we have:∑
u∈L

∑
e∈Mu

deg(Sk−1(e)) ≤
∑
u∈L

∑
e′∈Eu

degGu
(Sk−2(e′)) (5.32)

Because Gu is a (k − 1)-uniform hypergraph, through the induction hypothesis, we get that∑
e′∈Eu

degGu
(Sk−2(e′)) = O(|Eu|k/(k−1)) = O(deg(u)k/(k−1)) =⇒ (5.33)∑

u∈L

∑
e′∈Eu

degGu
(Sk−2(e′)) ≤

∑
u∈L

deg(u)k/(k−1) (5.34)

=
∑
u∈L

deg(u)deg(u)
1

k−1 (5.35)

= O(m1/k)× km (5.36)

= O(m(k+1)/k) (5.37)

Next, we want to bound the sum

SH =
∑
u∈H

∑
e∈Mu

deg(Sk−1(e))

40 CHAPTER 5. SIMPLEX COUNTING ALGORITHMS

Let M be the multiset consisting of the (k − 1)-subsets of vertices whose degrees appear in
SH . If P = {u1, ..., uk−1} is one subset in M , let fP be its multiplicity. Also, let M ′ be the
support of M . we write:

M =
⋃
P∈M ′

P (fP) (5.38)

We easily see that:

SH =
∑
P∈M

deg(P) =
∑
P∈M ′

deg(P) · fP (5.39)

We claim that fP = O(m1/k) for all P ∈M . For some hyperedge we have that P = Sk−1(e).
Let z = e \ P be the vertex of e not in P . Then, by definition, deg(z) ≥ deg(c1(e)) =
deg(u) ≥ m(k−1)/k. So we have that:

fP ≤ |{z ∈ V | deg(z) > m(k−1)/k)}| = O(m1/k)

by the handshake lemma. Using this bound on fP and the handshake lemma we can now
get:

SH =
∑
u∈H

∑
e∈Mu

deg(Sk−1(e)) =
∑
P∈M ′

deg(P) · fP (5.40)

≤ O(m1/k)
∑
P∈M ′

deg(P) (5.41)

≤ O(m1/k) · km = O(m
k+1
k) (5.42)

thus concluding the proof.

After applying the median-of-means improvement in a way similar to Theorem 5.1.1, we
arrive to the following result:

Theorem 5.2.3. If H = (V, E) is a k-uniform hypergraph with n vertices and m edges,
then a 4-pass streaming algorithm exists that (ε, δ)-approximates the number of simplices
in H using O(m1+ 1

k /S) space.

Remark: This algorithm, as we shall see in the next chapter, is optimal in its space
complexity. It also does not require any pre-processing, degree oracles or `0/F0 streaming
primitives. On the other hand, one disadvantage of this algorithm is the O(2k)-space
factor in pass 2. Because we treat k as a constant, this is negligible, but if k and n are
comparable asymptotically, the algorithm becomes prohibitively expensive.

5.3. IMPORTANCE-SAMPLING AND ORACLES REVISITED 41

5.3 Importance-sampling and oracles revisited

The codegree approach adopted in the previous section can also be combined with the
importance-sampling approach taken for Theorem 4.1.1. In this section, we design and
analyse an algorithm to count simplices in 3-uniform hypergraphs using a codegree oracle.
The algorithm is space-optimal, as it runs in Õ(m4/3/S) bits of space in the worst case. It
uses two main ideas:

• Given a vertex u, consider wedges {{v, w}, {v, z}} in Gu. When v is the common
vertex in such a wedge, we say that the wedge is centered at v.

A wedge {v, w, z} centered in v in Gu is called ≺u-consistent if

v ≺u w and v ≺u z

Let Wu be the number of ≺u-consistent wedges in H.

• We implicitly construct a small set U that contains every 4-simplex 4 times.

As done a few times already, we will call a vertex u light if deg(u) < m2/3. Otherwise
we call u heavy. Let L and H denote the set of heavy and light vertices respectively.
We can break up U as U = UL ∪ UH , where

UL = {(u, (v, w, z)d) | u ∈ L and {v, w, z} is a ≺u-consistent wedge centered at v}
(5.43)

UH = {(u, (v, w, z)d | u ∈ H and {v, w, z} ∈ E} (5.44)

Our algorithm samples from U uniformly by making use of the following quantities:

– L4 = |UL| =
∑
u∈L

Wu

– H4 = |UH | = |H| ·m

Remark: For this section, we assume that we have access to an oracle for the degree of
any vertex u and the codegree of any pair of vertices (u, v). Calculating these quantities
from scratch requires Õ(n2) space and one additional pass.

How is the sampling in line 10 performed? We use the 2 pass wedge sampling outlined
in [MVV16]. That algorithm uses `0 and `2 sampling to sample a single consistent wedge.
We will assume that those primitives run without error, and we will not take them into
account in our final space complexity because they are logarithmic factors. Note that this
increases the complexity of our algorithm because one has to remember that the sampling
procedures may fail and so there is an additional component which weakens the quality of
the overall estimate.

42 CHAPTER 5. SIMPLEX COUNTING ALGORITHMS

Algorithm 6: 4-Simplex Counting in the Arbitrary-Order Streaming model
1: procedure Degree-based-4-Simplex-Count(σ)
2: Offline: Calculate the sets L and H, as well as H4 using the degree oracle.
3: Pass 1 B O(n2) space
4: Using the codegree oracle, calculate Wu for every u ∈ L.
5: Use this information to calculate L4

6: Sample a pair (ui, (vi, wi, zi)d), s times in parallel, as follows:
7: F ← Flip a coin with probability L4

L4+H4
.

8: if F = heads then
9: Sample ui ∈ L with probability Wu

L4
.

10: Passes 2-3: Sample a ≺u consistent wedge (vi, wi, zi) uniformly from Gu.
11: else
12: Sample v ∈ H with probability 1

|H| .
13: Passes 2-3: Sample some hyperedge {vi, wi, zi} with probability 1

m

14: end if
15: Pass 4:
16: Check if {ui, vi, wi, zi} forms a 4-simplex for each i ∈ [s]
17: Let Xi = 1 if that is the case, with 1 ≤ i ≤ s. Otherwise set Xi = 0.

18: Output: 1
s

s∑
i=1

Xi.

19: end procedure

5.3.1 Analysis

The analysis here has very similar structure to the one of Algorithm 1.

Lemma 5.3.1. Wu = O(deg(u)3/2)

Proof. Let v 6= u. Consider the set Suv of the neighbours z of v in Gu such that v ≺u z. By
definition, degGu

(v) ≥ |Suv |, so we then have by the handshake lemma:

2 deg(u) ≥
∑
z∈Su

v

degGu
(z) ≥ |Suv | · degGu

(v) ≥ |Suv |2 =⇒ |Suv | ≤
√

2 · deg(u)1/2 (5.45)

Now, each edge (v, w) ∈ Eu with v ≺u w can be in at most |Suv | ≺u-consistent wedges. Thus
Wu ≤ deg(u) ·

√
2 · deg(u)1/2 = O(deg(u)3/2)

Lemma 5.3.2. |U | = |UL ∪ UH | = O(m4/3)

Proof. We can write |U | as:

|U | = |UL|+ |UH | = L4 +H4 =
∑
u∈L

Wu + |H| ·m (5.46)

5.3. IMPORTANCE-SAMPLING AND ORACLES REVISITED 43

From lemma 5.3.1, we get that

∑
v∈L

Wu = O

(∑
v∈L

deg(v)3/2

)
(5.47)

= O

(∑
v∈L

deg(v)1/2deg(v)

)
(5.48)

= O

(
m

2
3
× 1

2

∑
v∈L

deg(v)

)
= O(m4/3) (5.49)

Due to the handshake lemma, there are at most (3m)1/3 vertices in H, so H4 = O(m4/3).
Adding up L4 and H4, we get the desired O(m4/3) upper bound.

Lemma 5.3.3. Every 4-simplex is found 4 times in U as an unlabeled quadruple {u, v, w, z}

Proof. If a 4-simplex {u, v, w, z} contains i light vertices and 4 − i heavy vertices, with
0 ≤ i ≤ 3, then it appears i times in UL and 4− i times in UH , for a total of 4 times.

Lemma 5.3.4. Our algorithm 6 samples a labeled quadruple uniformly from U .

Proof. If (u, {v, w, z})d ∈ UL, then it is sampled with probability

��L4

L4 +H4

· �
�Wu

��L4

· 1

�
�Wu

=
1

L4 +H4

=
1

|U |
(5.50)

If (u, {v, w, z}) ∈ UH , then it is sampled with probability

��H4

L4 +H4

· 1

�
�|H|
· 1

��m
=

1

L4 +H4

=
1

|U |
(5.51)

Lemma 5.3.5. If s = Θ
(
|U | logn
ε2S

)
, then Algorithm 6 (ε, n−d)-approximates S, where d is

some constant greater than 1.

Proof. First, it is easy to see that E[Xi] = 4S
|U | . Now, applying a standard Chernoff bound:

P

{∣∣∣∣∣1s
s∑
i=1

Xi −
4S

|U |

∣∣∣∣∣ ≥ ε · 4S

|U |

}
≤ 2exp

(
−4ε2Ss

2|U |

)
≤ n−d (5.52)

Lemma 5.3.6. Algorithm 6 uses Õ
(
n2 + m4/3

S

)
bits of space in the worst case.

Proof. The sampling in lines 10 or 13 requires Θ̃(1) space. Since |U | = O(m4/3) (Lemma
5.3.2) and s = Θ̃

(
|U |
S

)
, we have that lines 6-18 require O

(
m4/3

S

)
bits of space.

44 CHAPTER 5. SIMPLEX COUNTING ALGORITHMS

Remark: This algorithm could be generalized to count simplices for arbitrary k, but
it looks like that would require Θ(k) passes and involve a O(nk−1) additive constant to
the space complexity. Due to these disadvantages, we are not explicitly exploring the
generalization to an arbitrary k. On the other hand, we also have not explored whether
some of these disadvantages can be removed.

5.4 Other algorithms for simplex counting

To conclude this chapter, we present for the sake of completeness, two additional general-
izations of well-known triangle counting algorithms to the hypergraph problem.

5.4.1 A reduction based algorithm

The paper [BYKS02] of Bar-Yossef et al (2002) is a seminal paper whose central goal is
to introduce a general methodology for streaming algorithms: streaming reductions. By
reducing problems of streaming nature to already-existing algorithms, we obtain efficient
solutions. The paper introduced this idea abstractly and also developed some primitives for
calculating frequency moments Fk. The reduction of triangle counting to frequency moment
estimation is a truly clever algorithm and one of the first ones to tackle and solve this problem
in the streaming setting.

It is straightforward to adapt their technique to hypergraph streaming. We will omit the
space-complexity analysis, but will present the general methodology. Suppose we are trying
to count simplices on (k − 1)-uniform hypergraphs. On arrival of edge e = {u1, u2, ..., uk−1}
we make the virtual stream consisting of k-tuples e ∪ {v} 6= e, where v ∈ V . Then the p-th
frequency moment of this virtual stream is:

Fp(σ) =
k∑
i=1

Pii
p (5.53)

where Pi is the number of k-tuples where exactly i hyperedges exist. Plugging in p ∈
{0, 1, 2, ..., k − 1}, we get the system:

F0

F1

F2

.

.

.
Fk−1

=

1 . . . 1
1 2 3 . k
1 4 . . k2

1 8 . . k3

.

.
1 2k−1 . . kk−1

=

P1

P2

P3

.

.

.
Pk

(5.54)

Solving for [P1 · · ·Pk]T we just have to invert that matrix. This matrix is the inverse of a
Vandermonde matrix, so its determinant is:

5.4. OTHER ALGORITHMS FOR SIMPLEX COUNTING 45

D =
∏

1≤ij≤k

(j − i) = (k − 1)!× (k − 2)!× · · · × 2× 1 6= 0 (5.55)

So we have to run algorithms for Fp estimation for p = 0, 1, ..., k − 1. This is a rather
inconvenient strategy because Fp-norm estimation cannot be done efficiently for p /∈ (0, 2).

What if we wanted to count Kr
k with r < k? We insert with each edge e = (u1, ..., ur)

the remaining k−r vertices. This creates a stream withm
(
n−r
k−r

)
elements. If Pi is the number

of k tuples containing i edges with r vertices, then:

Fp(σ) =

(k
r)∑
i=1

Pii
p (5.56)

Using the same exact technique, this time our system has a Vandermonde matrix of size(
k
r

)
×
(
k
r

)
, but its determinant is still non-zero. Therefore the system can be solved and we

can retrieve the desired value P(k
r)
.

5.4.2 Another sampling approach

In [BFL+06], Buriol et al introduced sampling techniques to the problem of triangle counting
in streams. The main idea behind their algorithm was to pick an edge at random e = (a, b)
and a vertex v ∈ V \ {a, b}. The estimator takes the value 1 if {a, b, v} forms a triangle and
0 otherwise. Repeating this around O(ε−2 log δ−1mn/T) times and taking the average leads
to an accurate and precise estimator estimator X with expected value E[X] = 3S

m(n−2)
. This

algorithm is simple to implement and has an elegant analysis.
To count the occurrences of a k-cliqueKr

k in a r-uniform hypergraph (r < k), this method
could be generalized to collect an edge e = {u1, ..., ur} and vertices ur+1, ..., uk. Then we can
check on a second pass if the k-tuple we collected forms Kr

k . Let X be the random variable
representing that outcome. Then,

E[X] =

(
k
r

)
T rk

m
(
n−r
k−r

) (5.57)

where T rk is the number of Kr
k copies in our hypergraph.

Picking an edge happens through reservoir sampling and picking k − r vertices requires
O((k − r) log n) memory. The space required for an average of the above estimators to be
efficient and accurate is: O(ε−2 log δ−1m

(
n−r
k−r

)
/T rk). If k = r = Ω(n), this translates into very

little memory required, as expected.

Chapter 6

Lower Bounds for Simplex Counting

This chapter concerns lower bounds for the problem of simplex counting in hypergraph
streams. By proving a lower bound for the worst-case memory usage of any constant-pass
streaming algorithm, we finally complete the proof of Theorem 1.3.1.

We will be using methods from communication complexity to reach the desired results.
For more information on prerequisite knowledge about Communication Complexity, please
refer to Chapter 2. The results in this chapter will all be lower bounds of the form: “No
algorithm can solve problem using o(f(n,m, ε, k)) bits of memory in the worst case”,
where f is some function of the number of vertices, edges, uniformity and precision in a
simplex counting problem.

6.1 General approach

Given a stream σ describing a k-uniform hypergraph H = (V, E) with n vertices and m
edges, we want to produce an estimate of S - the number of (k + 1)-simplices in H. If we
denote our estimate by S̃, then we want S̃ ∈ [(1 − ε)S, (1 + ε)S] with probability at least
2/3. Here we have ε ∈ (0, 1) is a constant which characterizes the precision of our estimate.
Any algorithm that can achieve such an approximation using at most p passes over σ solves
the problem Simplex-Countk(n,m, ε).

If T ≥ 1 is some constant threshold and we just want to decide whether H contains 0 or
at least T (k + 1)-simplices with probability at least 2/3 in p passes, then we want to solve
the problem Simplex-Distk(n,m,T). Note that we could have that 0 < S < T , but we
do not care in this case what the algorithm returns. We just want it to work right when
S = 0 or S ≥ T . In some sense, this a a promise problem.

If T ≥ 1 is again some constant threshold and we wish to decide whether S > (1 + ε)T
or S ≤ (1 − ε)T with probability at least 2/3 in p passes over σ, then we are solving the
promise problem Simplex-Sepk(n,m,T, ε). As before, if S ∈ ((1− ε)T, (1 + ε)T], we do
not care what our algorithm returns.

Intuitively, Simplex-Countk is harder to solve than Simplex-Distk or Simplex-Sepk,
because a good approximation to S allows us to easily decide about a general range S lies
in. This is made formal below:

46

6.2. A LOWER BOUND IN TERMS OF N 47

Theorem 6.1.1. Simplex-Distk and Simplex-Sepk reduce to Simplex-Countk with
no additional memory.

Proof. Let A be an algorithm solving Simplex-Countk(n,m, ε).
For Simplex-Distk(n,m, T), we just run A and check if the output S̃ is 0 or at least

(1 − ε)T . If S = 0, then S̃ must also be zero with probability at least 2/3. If S ≥ T , then
with probability at least 2/3 we will know that (1 − ε)T ≤ (1 − ε)S ≤ S̃, so we answer
correctly.

For Simplex-Sepk(n,m, T, ε), we will run A are check if the output S̃ is greater than
(1−ε2)T . If so we will decide that S > (1+ε)T . Otherwise we will decide that S ≤ (1−ε)T .
There are again two cases (because we do not care what happens if S ∈ ((1−ε)T, (1+ε)T]):

• S > (1 + ε)T . Then our verdict will be wrong if S̃ ≤ (1− ε2)T . But S̃ ≥ (1− ε)S >
(1 − ε2)T with probability at least 2/3. Therefore we will be wrong with probability
at most 1/3.

• S < (1− ε)T . With probability at least 2/3 we know that S̃ ≤ (1 + ε)S ≤ (1− ε2)T ,
so we are right again.

Both of these reductions require no additional space, so we conclude the proof.

In the following sections we will deduce theorems about the hardness of the Simplex-
Dist and Simplex-Sep problems. By the preceding Theorem 6.1.1 this will also imply
theorems about the hardness of Simplex-Count.

6.2 A lower bound in terms of n

If we parametrize the space complexity just in terms of the number of vertices n, then we
get a discouraging lower bound result.

Suppose we have the problem of counting all the copies of Kr
k , the r-uniform hypergraph

with k vertices in an r-uniform hypergraph H with n vertices and m edges. We provide a
lower bound to a much simpler, yet equally hard problem: distinguishing whetherH contains
zero or more copies of Kr

k . For K2
3 (triangles), the construction is classic: we reduce from

the disjointness problem in communication complexity. We split 3n vertices into 3 parts and
make a construction in which Alice and Bob’s inputs share a common 1 if and only if the
construction has a triangle.

We could try generalizing this approach to Kk−1
k first. Alice and Bob have inputs

A,B ∈ {0, 1}nk−1 . Assume of course that k ≤ n. They view their inputs as (k − 1)-
dimensional cubes with side length n. As they parse their input, they parse the edges of
an implicit hypergraph H: The vertices of H are split into 3 groups: A = {a1, ..., an}, B =
{b1, ..., bn}, C = {c1, ..., cn}. If A[i1, i2, ..., ik−1] = 1, then Alice connects with a hyperedge
the vertices ai1 and {ci2 , ci3 , ci4 , ..., cik−1

}. When she is done constructing this stream, she
passes her information to Bob, who does the same, except he includes vertex bi1 instead of
ai1 . Bob also includes in his stream the n

(
n
k−3

)
hyperedges of the form {ai, bi} ∪ C ′ for all

(k − 3)-sized subsets of C.

48 CHAPTER 6. LOWER BOUNDS FOR SIMPLEX COUNTING

Lemma 6.2.1. DISJ(A,B) = 1 if and only if G contains a copy of Kk−1
k .

Proof. If A andB have a common 1 in places (i1, i2, ..., ik−1), then the edges {ai1 , ci2 , ..., cik−1
},

{bi1 , ci2 , ..., cik−1
} and all the edges containing ai1 , bi1 and the (k − 3)-sized subsets of C ′′ =

{ci2 , ci3 , ..., cik−1
} are contained in H. This is k hyperedges in total, forming a simplex.

Conversely, if G contains a copy of Kk−1
k , then the vertices of that copy must be some

set of the form {ai1 , bi1 , ci2 , ..., cik−1
} because of the way we set up H. So that means that

A[i1, i2, ..., ik−1] = B[i1, i2, ..., ik−1] = 1.

Since DISJnk−1 requires Ω(nk−1) bits of communication in the worst case to even approxi-
mate the right answer with some probability of error, our algorithm for simplex distinguishing
also requires Ω(nk−1) bits of space in the worst case. Therefore, we have proven the following
theorem:

Theorem 6.2.1. Any (possibly randomized) streaming algorithm that distinguishes be-
tween a hypergraph having zero or more copies of Kk−1

k requires Ω(nk−1) space in the
worst case. If we allow p passes over the stream, then this lower bound becomes Ω

(
nk−1

2p−1

)
.

What about counting Kr
k? The generalization is easy: But this time Alice has to add(

k−2
r−1

)
hyperedges for every element. Bob, along with his edges, also adds edges of the form

{ai, bi} ∪ C ′, where C ′ ⊆ C and |C ′| = r − 2. The overall lower bound remains Ω(nk−1).

Theorem 6.2.2. Any (possibly randomized) streaming algorithm that distinguishes be-
tween a hypergraph having zero or more copies of Kr

k requires Ω(nk−1) space in the worst
case.

6.3 Lower bounds dependent on ε

In this section we present some hardness results for the space complexity of streaming al-
gorithms solving Simplex-Count in 3-uniform hypergraphs. We parameterize the space
complexity in terms only of the precision parameter ε.

Our results are stated as impossibility theorems rather than lower bounds to the space
complexity. We prove that no algorithm can achieve a specified upper bound on all inputs
by examining certain hard instances. This is different from proving Ω-style lower bounds,
as that type of result would have to hold for all possible inputs, whereas we simply exhibit
hard instances.

6.3.1 o(ε−1) is impossible

Theorem 6.3.1. There is no algorithm solving Simplex-Sep3 with precision parameter
ε using o(ε−1) bits of space in the worst case.

6.3. LOWER BOUNDS DEPENDENT ON ε 49

Proof. Assume that n is the smallest positive integer which is such that 1
n+1
≤ ε ≤ 1

n
. We

first prove the impossibility result for ε = 1
n
.

We reduce from the 3-party communication problem U-Disjn. Alice, Bob and Charlie
hold strings x, y, z ∈ {0, 1}n respectively. We think of x, y, z as the characteristic sets of
subsets X, Y, Z ⊆ [n]. We operate under the promise that X ∩Y ∩Z = ∅ or |X ∩Y ∩Z| = 1.

We use a p-pass streaming algorithm A that solves Simplex-Sep with parameter 1
n
to

design a p-round protocol for U-Disjn. To this end, we transform an instance (x, y, z) of
U-DISJn to an instance of Simplex-Sep3 - that is to a 3-uniform hypergraph H and a
parameter T .
This is how we construct H = (V, E) and implement a protocol reduction for DISJn:

1. V = {a1, ..., an} ∪ {b1, ..., bn} ∪ {c1, ..., cn} ∪ {d1, ..., dn} ∪ {q1, ..., qn} ∪ {r1, ..., rn}.
Clearly |V | = 6n = N . Alice starts running A on the following hyperedges:

2. Alice first adds the following 4n3 − n2 “static” hyperedges:

• {{ai, bj, ck}, {ai, bj, dk}, {ai, cj, dk} | (i, j, k) ∈ [n]3}
• {{bi, cj, dk} | (i, j, k) ∈ [n]3 and k 6= 1}. She excludes the n2 (b, c, d1) hyper-

edges.

3. For every index k ∈ [n2] such that x[k] = 1, Alice adds the n2 hyperedges

{{ai, bj, qk}, {ai, bj, rk} | (i, j) ∈ [n]2}

In the worst case she adds n3 hyperedges. Alice then copies the memory tape of
A at this point onto the shared whiteboard.

4. Bob retrieves the memory tape from the whiteboard and continues running A with
n2 hyperedges for each k ∈ [n] such that y[k] = 1:

{{ai, cj, qk}, {ai, cj, rk} | (i, j) ∈ [n]2}

In the worst case he adds n3 hyperedges. In the end, he copies down the memory
tape of A onto the shared whiteboard.

5. Finally, Charlie retrieves the memory tape and continues running A with the edges:

{{bi, cj, qk}, {bi, cj, rk} | (i, j) ∈ [n]2}

where z[k] = 1. In the worst case he adds n3 hyperedges.

6. Let T = n4. If this is not the p-th pass over the stream, Charlie writes down the
memory tape contents onto the whiteboard and we go back to step 2. Otherwise
Charlie outputs:

• |X ∩ Y ∩ Z| = 1, if A returns “S > (1 + 1
n
)T ”.

• |X ∩ Y ∩ Z| = 0, if A returns “S < (1− 1
n
)T ”.

During the protocol above, we constructed a hypergraph H and streamed it to A. H has

50 CHAPTER 6. LOWER BOUNDS FOR SIMPLEX COUNTING

Figure 6.1: The reduction of Theorem 6.3.1. The dotted hyperedge is missing. 2n3 simplices
are created with an intersection.

6n vertices and m ≤ 4n3 − n2 + 6n3 = Θ(n3) hyperedges. The following lemma allows us to
complete our reduction:

Lemma 6.3.1. H has more than (1 + 1
n
)T 4-simplices if and only if |X ∩ Y ∩ Z| = 1.

Otherwise H has at most (1− 1
n
)T 4-simplices.

Proof. Alice’s “static” edges make up n4−n3 = (1− 1
n
)T 4-simplices. Assume thatX∩Y ∩Z =

{l}. Then every quadruple {ai, bj, ck, ql} and {ai, bj, ck, rl} is a 4-simplex, so there are at least
n4 − n3 + 2n3 = (1 + 1

n
)T 4-simplices. On the other hand, if |X ∩ Y ∩ Z| = 0, there are no

additional simplices.

To conclude our proof, we recall that U-DISJn requires Ω(n) bits of communication.
However, this is also a lower bound on the bits of space A must use. If A uses space(A)
bits of space then after p passes the protocol uses (3p− 1)space(A) bits of communication.
Therefore, since p = O(1) we have space(A) = Ω(n).

We now generalize to an arbitrary ε. Since ε ≥ 1
n
, an algorithm solving Simplex-Sep3

with parameter ε can also solve Simplex-Sep3 with parameter 1
n
. Since n ≤ ε−1 ≤ n + 1,

we see than no algorithm can solve Simplex-Sep3 in o(ε−1) space.

Theorem 6.3.2. There is no algorithm solving Simplex-Count3 with precision pa-
rameter ε using o(ε−1) bits of space in the worst case.

Proof. We just combine Theorem 6.3.1 with Lemma 6.1.1.

6.3.2 o(ε−2) is impossible

We now prove a slightly stronger theorem by utilizing a different communication problem,
which is outlined in Chapter 2.

6.3. LOWER BOUNDS DEPENDENT ON ε 51

Theorem 6.3.3. There is no algorithm solving Simplex-Sep3 with precision parameter
ε using o(ε−2) bits of space in the worst case.

Proof. Similarly to Theorem 6.3.1, we assume that 2√
n+1
≤ ε ≤ 2√

n
and show the impossibil-

ity result for ε = 2√
n
. We skip the generalization details for arbitrary ε as they are identical

to Theorem 6.3.1.
We will reduce from the Gap-Hamming3 problem in the multi-party, number-in-hand,

blackboard communication model.
Alice, Bob and Charlie hold strings x, y, z ∈ {±1}n. They are promised that the

Gap-Hamming distance D(x, y, z) of their strings satisfies either D(x, y, z) ≥ n/2 +
√
n

or D(x, y, z) ≤ n/2 +
√
n and they want to figure out which is the case.

Let A be a p = O(1)-pass streaming algorithm for solving Simplex-Sep3 with parameter
2√
n
. Alice, Bob and Charlie want to construct a hypergraph H = (V, E) based on (x, y, z)

and input this hypergraph as a stream to A along with some parameter T . The parties
communicate A’s memory tape by writing it on the blackboard every time their turn has
ended. This way they make a communication protocol that solves Gap-Hamming3. Because
Rε(Gap-Hamming3) = Ω(n) and p = O(1), A must require Ω(n) bits of memory.
We set T = n4/2. The construction of H = (V, E) is as follows:

• V = {a1, ..., an} ∪ {b1, ..., bn} ∪ {c1, ..., cn} ∪ {s1, ..., sn} ∪ {t1, ..., tn}.

• Alice first adds all n3 edges of the form {{ai, bj, ck} | i, j, k ∈ [n]}.

• If x[k] = 1 for some k ∈ [n], Alice adds the n2 edges of the form {ai, bj, sk}. If
x[k] = −1, she instead adds {ai, bj, tk} edges.

• If y[k] = 1 for some k ∈ [n], Bob adds the n2 edges of the form {bi, cj, sk}. If
y[k] = −1, he instead adds {bi, cj, tk} edges.

• If z[k] = 1 for some k ∈ [n], Charlie adds the n2 edges of the form {ai, cj, sk}. If
z[k] = −1, he instead adds {ai, cj, tk} edges.

• Eventually, Charlie says “D(x, y, z) ≥ n/2 +
√
n ” if A says “T3 ≤ (1 + 2√

n
)T ”.

The above construction shows that H has N = 5n vertices and m = Θ(n3) edges. We now
need to show that solving Simplex-Sep3; on H with parameter 2√

n
solves Gap-Hamming3:

Lemma 6.3.2. H has more than (1+ 2√
n
)T 4-simplices if and only if D(x, y, z) ≤ n/2−

√
n.

Otherwise H has at most (1− 2√
n
)T 4-simplices.

Proof. 4-simplices exist in H only due to positions of matching characters in x, y and z.
If D(x, y, z) ≤ n/2 −

√
n, then there are at least n/2 +

√
n positions i ∈ [n] such that

x[i] = y[i] = z[i]. So, there are at least (n/2 +
√
n)n3 = n4

2
+ n7/2 = (1 + 2√

n
)T 4-simplices

of the form {ai, bj, ck, sr} or {ai, bj, ck, tr}. Conversely, if D(x, y, z) ≥ n/2 +
√
n, there are

at most n4

2
− n7/2 = (1− 2√

n
)T 4-simplices.

52 CHAPTER 6. LOWER BOUNDS FOR SIMPLEX COUNTING

Figure 6.2: The o(ε−2) construction showing an example of a matching position in x, y, z.

Consequently, A cannot solve Simplex-Sep3 using o(n) space. Because n ≤ ε−2 ≤ n+1,
we get that no algorithm can solve Simplex-Sep3 with parameter ε using o(ε−2) bits of
space.

From Theorem 6.3.3 and Theorem 6.1.1, we can arrive at the following impossibility result:

Theorem 6.3.4. There is no algorithm solving Simplex-Count3 with precision pa-
rameter ε using o(ε−2) bits of space in the worst case.

6.4 Lower Bounds Dependent on m and S

In this section we present hardness results for the space complexity of streaming algorithms
solving Simplex-Count in uniform hypergraphs, under the promise that S ≥ T for some
parameter T . We parameterize the space complexity in terms of the number of edges m and
the number of simplices S.

6.4.1 Weaker results

o(m/S) is impossible

We first present a sub-optimal hardness result for the Simplex-Dist3 problem in terms of
m and the parameter T . We then use the promise S ≥ T and Theorem 6.1.1 to derive the
o(m/S) impossibility for Simplex-Count3.

Theorem 6.4.1. No algorithm solving Simplex-Dist3 with parameter T on a hyper-
graph H with m hyperedges can use o(m/T) bits of space in the worst case.

Proof. The idea behind this reduction is almost identical to the Ω(nk−1) lower bound we
proved earlier. Let n be a sufficiently large positive integer. Let p = n3 and r = n3

3
. We

reduce from the Disjr,Tp communication problem, where T ≤ r.

6.4. LOWER BOUNDS DEPENDENT ON M AND S 53

Figure 6.3: The reduction of Theorem 6.4.1 portrayed in a sketch

Alice and Bob hold strings x, y ∈ {0, 1}n3 . We view x and y as 3-dimensional adjacency
matrices. We have three sets of vertices A = {a1, ..., an}, B = {b1, ..., bn} and C =
{c1, ..., cn} and if x[i1, i2, i3] = 1, Alice inserts the hyperedge {ai1 , ci2 , ci3}. Bob does the
same with y, but instead he inserts the hyperedge {bi1 , ci2 , ci3}. He also inserts the edges
n⋃
i=1

{{ai, bi, cj} | cj ∈ C} at the end.

Our constructed hypergraph H has at least T 4-simplices if and only if x[i1, i2, i3] =
y[i1, i2, i3] = 1 at least T distinct times. The number of edges m in H is m = 2n3

3
+ n2 =

Θ(r). If some constant-pass streaming algorithm solved Simplex-Dist3 using o(m/T) bits
of space in the worst case, then then Alice and Bob would be able to communicate DISJr,Tp
using o(m/T) = o(r/T) communication, which contradicts the Ω(r/T) lower bound on the
communication complexity of this function.

Theorem 6.4.2. No algorithm solving Simplex-Count3 on hypergraphs H with m
hyperedges and S 4-simplices under the promise that S ≥ T can use o(m/S) bits of space
in the worst case.

Proof. By Theorem 6.1.1, such an algorithm could solve Simplex-Dist3 with parameter T
using o(m/S) = o(m/T) space, which contradicts Theorem 6.4.1

o(m/S3/4) is impossible

We can strengthen our previous hardness result even further:

54 CHAPTER 6. LOWER BOUNDS FOR SIMPLEX COUNTING

Theorem 6.4.3. No algorithm solving Simplex-Dist3 with parameter T on a hyper-
graph H with m hyperedges can use o(m/T 3/4) bits of space in the worst case.

Proof. Let A be an algorithm solving Simplex-Dist3 with parameter T , using o(m/T 3/4)
bits of space in the worst case. Given a hypergraphH = (V, E) withm edges and S simplices,
we make a hypergraph H′ = (V ′, E ′) by

• Replacing each vertex v ∈ V with T vertices v1, ..., vT

• Replacing each hyperedge {a, b, c} with the T 3 hyperedges {ai, bj, ck}.

Any 4-simplex in H is now replaced with T 4 simplices in H′. Furthermore, any simplex in
H′ corresponds to a simplex in H. So H′ has T 3m edges and T 4S simplices.

We can now reduce from the problem Simplex-Dist3(T = 1): H has at least one 4-
simplex if and only if H′ has at least T 4 4-simplices. A uses o(mT 3/(T 4)−3/4) = o(m) bits
of space on H′, thus solving Simplex-Dist3(T = 1) in o(m) space, which is impossible by
Theorem 6.4.1. Therefore, A cannot use o(m/T 3/4) space in the worst case.

As before, the promise S ≥ T gives us the following impossibility result for Simplex-
Count3:

Theorem 6.4.4. No algorithm solving Simplex-Count3 on hypergraphs H with m
hyperedges and S 4-simplices under the promise that S ≥ T can use o(m/S3/4) bits of
space in the worst case.

6.4.2 Optimal lower bounds

The constructions in this section are very similar conceptually to the o(ε−2) construction
made above. Please refer to Figure 6.2 for an illustration of those ideas.

o(m4/3/S) is impossible

Theorem 6.4.5. No algorithm solving Simplex-Dist3 with parameter T on a hyper-
graph H with m hyperedges can use o(m4/3/T) bits of space in the worst case.

Proof. We reduce from the Disj communication problem. Alice and Bob hold n-bit strings
x, y ∈ {0, 1}n respectively. These strings represent subsets of [n]. Alice and Bob want
to determine whether the represented sets have an intersection (Disj(x, y) = 0) or not.
We know from communication complexity theory that any randomized protocol that allows
Alice and Bob to answer correctly with probability at least 2/3 has to use Ω(n) bits of
communication.

Let A be an algorithm for solving Simplex-Dist3. Alice uses her x to construct a
hypergraph stream and feed it into A. The constructed hypergraph H has 4n vertices split
into 4 groups of n: A = [ai]

n
i=1, B = [bi]

n
i=1, C = [ci]

n
i=1 and D = [di]

n
i=1. If x[i] = 1 for some

i ∈ [n], Alice feeds n2 hyperedges of the form {di, aj, bk} into A.

6.4. LOWER BOUNDS DEPENDENT ON M AND S 55

After she finishes parsing x, she sends to Bob the memory tape of A and Bob continues
running A by parsing through his y the same way Alice did. He adds 2n2 hyperedges when
y[i] = 1: the hyperedges {di, bj, ck} and {di, aj, ck}. After Bob finishes parsing y he adds
n3 hyperedges of the form {ai, bj, ck} to A. If, after that, A responds that H has at least
T = n3 simplices then Bob decides that Disj(x, y) = 0.

In the end, H has Θ(n3) edges. Further, x and y have a non-empty intersection if
and only if H has at least n3 simplices. Now, if A used o(m4/3/T) bits of memory, this
communication protocol would use o(n4/n3) = o(n) bits of memory, which contradicts the
known lower bound for the communication complexity of Disj.

Theorem 6.4.6. No algorithm solving Simplex-Count3 on hypergraphs H under the
promise that S ≥ T can use o(m4/3/S) bits of space in the worst case.

Proof. By Theorem 6.1.1, such an algorithm could solve Simplex-Dist3 with parameter T
using o(m4/3/S) = o(m4/3/T) space, which contradicts Theorem 6.4.5

Generalizing to k-graphs

Theorem 6.4.7. No algorithm solving Simplex-Distk with parameter T on a hyper-
graph H with m hyperedges can use o(m

k+1
k /T) bits of space in the worst case.

Proof. As before, we reduce from the Disj communication problem. Alice and Bob hold
n-bit strings x, y ∈ {0, 1}n respectively.

Let A be an algorithm for solving Simplex-Distk. Alice uses her x to construct a
hypergraph stream and feed it into A. The constructed hypergraph H has (k+ 1)n vertices
split into (k + 1) groups of n: Aj = [aji]

n
i=1 for j ∈ [k] and D = [di]

n
i=1. If x[i] = 1 for some

i ∈ [n], Alice feeds nk−1 hyperedges of the form {di, a1
i1
, a2

i2
, ..., a

(k−1)
ik−1
} into A.

After she finishes parsing x, she sends to Bob the memory tape of A and Bob continues
running A by parsing through his y the same way Alice did. He adds (k−1)nk−1 hyperedges
when y[i] = 1: the hyperedges

{
di, a

1
i1
, ..., aj−1

ij−1
, aj+1

ij+1
, ..., akjk

}
for j = 1, 2, ..., (k − 1). After

Bob finishes parsing y he adds nk hyperedges of the form {a1
i1
, ..., akik} to A. If, after that,

A responds that H has at least T = nk simplices then Bob decides that Disj(x, y) = 0.
In the end, H has Θ(nk) edges. Further, x and y have a non-embpty intersection if

and only if H has at least nk simplices. Now, if A used o(m
k+1
k /T) bits of memory, this

communication protocol would use o(nk+1/nk) = o(n) bits of memory, which contradicts the
known lower bound for the communication complexity of Disj.

Theorem 6.4.8. No algorithm solving Simplex-Countk on hypergraphs H with m

56 CHAPTER 6. LOWER BOUNDS FOR SIMPLEX COUNTING

hyperedges and S (k + 1)-simplices under the promise that S ≥ T can use o(m
k+1
k /S)

bits of space in the worst case.

Proof. By Theorem 6.1.1, such an algorithm could solve Simplex-Dist3 with parameter T
using o(m

k+1
k /S) = o(m

k+1
k /T) space, which contradicts Theorem 6.4.5

Chapter 7

Conclusion

In this thesis, the problem of counting the number of simplices in uniform hypergraph streams
was explored from multiple perspectives. An efficient k-simplex algorithm was given in the
arbitrary-order streaming model for when k � n. A matching lower bound was also proven
in terms of multiple different space parameterization options, effectively resolving the most
important open question regarding the space complexity of the problem.

Further, the problem of triangle counting and sampling was studied, and space-optimal
streaming algorithms were developed and analyzed for both problems. These algorithms have
not appeared in the literature, and may be of value due to their simplicity for implementation
purposes.

Regarding implementation, a necessary future follow up work to this thesis is the imple-
mentation of the algorithms developed. By implementing and testing them against real-life
data, we can determine their practical advantages and shortcomings, which will motivate
future research questions. For instance, if the assumption that k � n is removed, the space
requirements of Algorithm 5 become prohibitively large. A natural empirical question is
whether such instances exist in real-life hypergraph networks, and if so, is there a way to
remove the 2k-factor in the space complexity?

A related question has to do with lower bounds. In terms of k, how much memory
does an algorithm that solves the simplex question require? Such a lower bound was not
investigated in this thesis, and would settle the question of whether the 2k factor can be
removed or whether it is part of what makes the problem difficult.

Overall, one may be surprised by the fact that the optimal algorithm for simplex counting
requires Õ

(
m1+ 1

k

T

)
bits of space in the worst case. The surprise factor lies in the fact that

the space goes to O(m/T) as k → ∞, independently of n. Therefore, it gets easier and
easier to count simplices as their complexity increases. Why is that? An intuitive answer
to this question may be that more complex simplices are fewer in number in a hypergraph.
Therefore, an importance sampling technique that reduces the search space to a sufficiently
small number of vertex k-tuples should be able to estimate S without using much memory.

Our formalized approach to this intuitive idea is through the codegree characterization
of the vertices in each hyperedge. By restricting the available candidates for completing
a simplex to an extreme amount, we reduce the variance of our estimator to an optimal
amount. Besides that, the idea of degree-based vertex partitioning is the other crucial tool
our algorithms use.

57

58 CHAPTER 7. CONCLUSION

A few other follow-up questions may be raised at this point1. First, our algorithm is
sub-optimal when the hypergraphs contain few simplices (T is small). Indeed, one could
simply store all the edges in that case and that would save space. To remedy this situation
for triangles, a O

(
m√
T

)
algorithm has been given, and thus the complexity of the triangle

counting problem is typically written as O
(

min
{

m√
T
, m

3/2

T

})
. It is very interesting to ask

whether a similar approach can be discovered for hypergraphs as well.
Also, our algorithm uses 4 passes over the input stream. One has to wonder if this is the

best possible number of passes required to achieve this space complexity. Indeed, it might
be the case that a 1-pass algorithm, for instance, requires more memory usage, so we have
to use multiple passes. Such a result would come about possibly from a reduction from the
Index problem in communication complexity, and will definitely be the focus of future work.

Finally, the problems explored in this thesis open up more lines of research in field of
pattern counting in streamed graphs and hypergraphs. One could ask about counting or
enumerating other types of patterns, like cycles, star-like shapes and motifs of various kinds.
Research could also explore the area of directed hypergraphs (or dihypergraphs) and study
how the problems change in that setting. Further, the uniformity assumption could be
removed. The hypergraphs we study are all uniform, but what if that was not the case? Is
counting patterns in non-uniform hypergraphs as hard or possibly easier than the case where
uniformity is given? Further research can definitely shed a lot of light on such questions about
hypergraphs in the streaming setting.

1Thank you Professors Deeparnab Chakrabarty and Hsien-Chih Chang for motivating these questions

Bibliography

[BC17] Suman K. Bera and Amit Chakrabarti. Towards tighter space bounds for count-
ing triangles and other substructures in graph streams. In Heribert Vollmer and
Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer
Science, STACS 2017, March 8-11, 2017, Hannover, Germany, volume 66 of
LIPIcs, pages 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

[BDGL08] Ilaria Bordino, Debora Donato, Aristides Gionis, and Stefano Leonardi. Mining
large networks with subgraph counting. In 2008 Eighth IEEE International
Conference on Data Mining, pages 737–742. IEEE, 2008.

[BFKP16] Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, and Rasmus Pagh. Tri-
angle counting in dynamic graph streams. Algorithmica, 76(1):259–278, 2016.

[BFL+06] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Christian Sohler. Counting triangles in data streams. In
Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 253–262, 2006.

[BOV13] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is count-
ing triangles in the streaming model? In International Colloquium on Automata,
Languages, and Programming, pages 244–254. Springer, 2013.

[BR+91] Richard A Brualdi, Herbert J Ryser, et al. Combinatorial matrix theory, vol-
ume 39. Springer, 1991.

[Bre13] Alain Bretto. Hypergraph theory: An introduction. Mathematical Engineering.
Cham: Springer, 2013.

[Bru10] Richard A Brualdi. Spectra of digraphs. Linear Algebra and its Applications,
432(9):2181–2213, 2010.

[BS20] Suman K Bera and C Seshadhri. How the degeneracy helps for triangle counting
in graph streams. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 457–467, 2020.

[BYKS02] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algo-
rithms, with an application to counting triangles in graphs. In SODA, volume 2,
pages 623–632, 2002.

59

60 BIBLIOGRAPHY

[CF10] Nicholas A Christakis and James H Fowler. Social network sensors for early
detection of contagious outbreaks. PloS one, 5(9):e12948, 2010.

[CJ17] Graham Cormode and Hossein Jowhari. A second look at counting triangles in
graph streams (corrected). Theoretical Computer Science, 683:22–30, 2017.

[CJLT12] Yeow Meng Chee, Lijun Ji, Andrew Lim, and Anthony KH Tung. Arboricity:
An acyclic hypergraph decomposition problem motivated by database theory.
Discrete applied mathematics, 160(1-2):100–107, 2012.

[CKS03] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower
bounds on the multi-party communication complexity of set disjointness. In
18th IEEE Annual Conference on Computational Complexity, 2003. Proceed-
ings., pages 107–117. IEEE, 2003.

[CMW+94] Boliong Chen, Makoto Matsumoto, Jianfang Wang, Zhongfu Zhang, and
Jianxun Zhang. A short proof of Nash-Williams’ theorem for the arboricity
of a graph. Graphs and Combinatorics, 10(1):27–28, 1994.

[CN85] N. Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Comput., 14:210–223, 1985.

[ELRS15] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting
triangles in sublinear time. USA, 2015. IEEE Computer Society.

[FG06] Jörg Flum and Martin Grohe. Parameterized complexity theory. Springer Science
& Business Media, 2006.

[FH97] Ioannis Fudos and Christoph M Hoffmann. A graph-constructive approach
to solving systems of geometric constraints. ACM Transactions on Graphics
(TOG), 16(2):179–216, 1997.

[FKK03] András Frank, Tamás Király, and Matthias Kriesell. On decomposing a hy-
pergraph into k connected sub-hypergraphs. Discrete Applied Mathematics,
131(2):373 – 383, 2003. Submodularity.

[GMT15] Sudipto Guha, Andrew McGregor, and David Tench. Vertex and Hyperedge con-
nectivity in dynamic graph streams. In Proceedings of the 34th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 241–247,
2015.

[Gow06] W Timothy Gowers. Quasirandomness, counting and regularity for 3-uniform
hypergraphs. Comb. Probab. Comput., 15(1-2):143–184, 2006.

[Hae95] Willem H Haemers. Interlacing eigenvalues and graphs. Linear Algebra and its
applications, 226:593–616, 1995.

[Her20] Matthias Hermann. Graph sparsification techniques for triangle counting. Mas-
ter’s thesis, 2020.

[HW07] Johan Håstad and Avi Wigderson. The randomized communication complexity
of set disjointness. Theory of Computing, 3(1):211–219, 2007.

BIBLIOGRAPHY 61

[JLL+20] Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P Woodruff.
Learning-augmented data stream algorithms. ICLR, 2020.

[JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proceedings of the thir-
tieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 49–58, 2011.

[JW21] Rajesh Jayaram and David Woodruff. Perfect l_p sampling in a data stream.
SIAM Journal on Computing, 50(2):382–439, 2021.

[Kee11] Peter Keevash. Hypergraph Turan problems. Surveys in combinatorics, 392:83–
140, 2011.

[KKP18] John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity
of graph and hypergraph counting. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 556–567. IEEE, 2018.

[KMPT12] Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E
Tsourakakis. Efficient triangle counting in large graphs via degree-based ver-
tex partitioning. Internet Mathematics, 8(1-2):161–185, 2012.

[KN96] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge
University Press, USA, 1996.

[KNPW11] Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment
estimation in data streams in optimal space. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pages 745–754, 2011.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm
for the distinct elements problem. In Proceedings of the Twenty-Ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS ’10, page 41–52, New York, NY, USA, 2010. Association for Comput-
ing Machinery.

[LHK10] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and
negative links in online social networks. In Proceedings of the 19th international
conference on World wide web, pages 641–650, 2010.

[Lov68] László Lovász. On chromatic number of finite set-systems. Acta Mathematica
Academiae Scientiarum Hungarica, 19(1-2):59–67, 1968.

[Lov70] László Lovász. A generalization of Kónig’s theorem. Acta Mathematica
Academiae Scientiarum Hungarica, 21(3-4):443–446, 1970.

[MV20] Andrew McGregor and Sofya Vorotnikova. Triangle and four cycle counting in
the data stream model. In Proceedings of the 39th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pages 445–456, 2020.

62 BIBLIOGRAPHY

[MVV16] Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better algorithms for
counting triangles in data streams. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 401–411,
2016.

[PRS05] Yuejian Peng, Vojtech Rödl, and Jozef Skokan. Counting small cliques in 3-
uniform hypergraphs. Combinatorics, Probability and Computing, 14(3):371–
413, 2005.

[PT12] Rasmus Pagh and Charalampos E Tsourakakis. Colorful triangle counting and
a MapReduce implementation. Information Processing Letters, 112(7):277–281,
2012.

[PTTW13] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu.
Counting and sampling triangles from a graph stream. Proc. VLDB Endow.,
6(14):1870–1881, September 2013.

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications.
Cambridge University Press, 2020.

[SJHS15] Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. StreaM - a
Stream-Based Algorithm for Counting Motifs in Dynamic Graphs. pages 53–67,
08 2015.

[SOK+20] Kijung Shin, Sejoon Oh, Jisu Kim, Bryan Hooi, and Christos Faloutsos. Fast,
accurate and provable triangle counting in fully dynamic graph streams. ACM
Transactions on Knowledge Discovery from Data (TKDD), 14(2):1–39, 2020.

[Sun13] He Sun. Counting hypergraphs in data streams. arXiv preprint arXiv:1304.7456,
2013.

[TKMF09] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos.
Doulion: counting triangles in massive graphs with a coin. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 837–846, 2009.

[Vor20] Sofya Vorotnikova. Improved 3-pass algorithm for counting 4-cycles in arbitrary
order streaming. arXiv preprint arXiv:2007.13466, 2020.

[WCW+18] Zhiang Wu, Jie Cao, Yaqiong Wang, Youquan Wang, Lu Zhang, and Junjie
Wu. hPSD: A Hybrid pu-learning-based Spammer Detection Model for Product
Reviews. IEEE transactions on cybernetics, 50(4):1595–1606, 2018.

[Yus06] Raphael Yuster. Finding and counting cliques and independent sets in r-uniform
hypergraphs. Information Processing Letters, 99(4):130–134, 2006.

	Counting and Sampling Small Structures in Graph and Hypergraph Data Streams
	Recommended Citation

	Introduction
	Problem Formulation
	Streaming Algorithms
	Hypergraphs and Generalized Networks
	Main Problem Statement
	Other problems studied

	Related work
	Main Results
	Thesis Outline

	Preliminaries
	Graphs and Hypergraphs
	Data Stream Algorithms
	0 sampling
	Reservoir Sampling
	F0 estimation

	Communication Complexity
	Notation Appendix

	Mathematical Insights
	Hyper-forest packing
	Hyper-arboricity upper bound on 3-graphs
	Generalizing to k-graphs

	Bounding the simplex-count in uniform hypergraphs

	Sampling and Counting Triangles
	Counting Triangles in the Streaming Model
	Analysis

	Triangle Sampling

	Simplex Counting Algorithms
	A first attempt at simplex counting
	The Algorithm
	Analysis
	Generalizing to k-graphs

	A codegree-based approach
	Simplifying the sampling
	An optimal algorithm for simplex counting
	Analysis

	Importance-sampling and oracles revisited
	Analysis

	Other algorithms for simplex counting
	A reduction based algorithm
	Another sampling approach

	Lower Bounds for Simplex Counting
	General approach
	A lower bound in terms of n
	Lower bounds dependent on
	o(-1) is impossible
	o(-2) is impossible

	Lower Bounds Dependent on m and S
	Weaker results
	Optimal lower bounds

	Conclusion

