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Abstract

Soft physical systems, be they elastic bodies, fluids, and compliant-bodied creatures,

are ubiquitous in nature. Modeling and simulation of these systems with computer al-

gorithms enable the creation of visually appealing animations, automated fabrication

paradigms, and novel user interfaces and control mechanics to assist designers and en-

gineers to develop new soft machines. This thesis develops computational methods to

address the challenges emerged during the automation of the design, modeling, and

control workflow supporting various soft dynamic systems. On the design/control

side, we present a sketch-based design interface to enable non-expert users to design

soft multicopters. Our system is endorsed by a data-driven algorithm to generate

system identification and control policies given a novel shape prototype and rotor

configurations. We show that our interactive system can automate the workflow of

different soft multicopters’ design, simulation, and control with human designers in-

volved in the loop. On the modeling side, we study the physical behaviors of fluidic

systems from a local, collective perspective. We develop a prior-embedded graph

network to uncover the local constraint relations underpinning a collective dynamic

system such as particle fluid. We also proposed a simulation algorithm to model

vortex dynamics with locally interacting Lagrangian elements. We demonstrate the

efficacy of the two systems by learning, simulating and visualizing complicated dy-

namics of incompressible fluid.
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Chapter 1

Introduction

The thesis consists of three projects that are all exploring the design, modeling and

control of soft dynamic systems. Full content of the multicopter project and vortical

flow project can be found in papers [Deng et al., 2020; Xiong et al., 2021] that I

coauthored.

1.1 Soft Multicopter

Today, rigid multicopters have been widely used in photography, product delivering,

monitoring, etc., but have you ever imagined operating a deformable drone which

could adjust its shape according to the environment or the terrain, entering narrow

spaces and conducting tasks that are hard for those typical drones made of metal and

plastic?

Unfortunately, soft drones are not common since they are hard to control. To the

best of our knowledge, there’s no methods to control the deformation of drones so

far. For real drones, the observable data from sensors can be very limited, and the

deformation make the posture of a soft drone hard to define.

To solve the problem, we decompose the state of a soft multicopter into transla-
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1.2 Multi-body constraint systems

tion, rotation, and pure deformation components, which are measured purely and

conveniently by Inertial Measurement Units (IMUs), and train a neural model to

predict their nonlinear couplings. The learned dynamic model is integrated into a

non-conventional Linear Quadratic Regulator (LQR) based control loop, enhanced

by a novel online relinearization scheme that enables the soft drone to perform vari-

ous tasks.

We show examples of controlling both 2D and 3D drones. To design 2D drones with

organic shapes, we provide a web-based interface to sketch drones contours.

We demonstrate the efficacy of our approach by generating controllers for a broad

spectrum of customized soft multicopter designs and testing them in a high-fidelity

physics simulation environment.

1.2 Multi-body constraint systems

Position based dynamics has been a hot topic due to its advantage over stability,

robustness and speed, compared with traditional simulation methods Müller et al.

[2007]. A stable status could be reached after several iterations via constraint func-

tions. However, not all systems could be easily analysed and find a explicit constraint

function. Meanwhile, it’s an interesting topic to predict the future status of a system

based on observations from previous frames, even with no or few proir knowledges.

Yang et al.’s work Yang et al. [2020] integrates position based dynamics and neural

networks, demonstrates that for both rigid and soft bodies, the constraints could be

learned purely from the observation data, and the future status can be predicted in

a diligent manner.

In this work, we propose to use the position based framework to learn soft dynamic

systems with a looser connection, e.g, fluids. We do this by constructing connection

by distance, learning the pair-wise relationship among neighbors, accumulate neigh-
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1.3 Predicting multi-body vortical flow motion

bor influences, find the constraint, and then do projection. In this way, we can learn

from one set of particle data and apply it to a dynamics with the same property

but with a different setting, e.g. a different number of particles, or applied to extra

forces. We designed neural networks with different structures, and show their ability

of learning the constraint of a fluid system.

1.3 Predicting multi-body vortical flow motion

We propose a vortex segment cloud method that combines the flexibility of the vortex

particle method and the stability and accuracy of the vortex filament method. To

represent the vorticity field, we discretize it as a series of vortex segments of certain

lengths. To deal with local topology changes, we devise three local segment reseeding

operations including splitting, merging and deletion to enable sophisticated topology

changes of vortical fluid. With this method, we realize the reconnection of nonclosed

vortex tubes using the pure Lagrangian method for the first time to the best of our

knowledge. After generating the simulation data, we built the scenes with artistic

consideration and rendered realistic result in Houdini.
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Chapter 2

Related Work

2.1 Soft Multicopter Control

Multicopter Control In recent years, multicopters have emerged to dominance in

the realm of commercial UAVs, thanks to their simple mechanical structures, opti-

mized efficiency for hovering, and easy-to-control dynamics [Tedrake, 2020; Agrawal

and Shrivastav, 2015].

Various methods have been successfully developed to control multicopters, in-

cluding PD/PID [Tayebi and McGilvray, 2004], LQR [Du et al., 2016; Bouabdal-

lah et al., 2004], differential flatness [Mellinger and Kumar, 2011], integral sliding

mode [Waslander et al., 2005], and MPC [Wang et al., 2015] methods. Noncon-

ventional geometries [Du et al., 2016], hybrid wing-copter modes [Xu et al., 2019],

articulated structures [Zhao et al., 2018b,a], and foldable structures [Floreano et al.,

2017] have been tackled in the controller design problem. Recent works have also

been done to extend drone’s ability to actively deform itself to pass through tight

spaces [Zhao et al., 2018b; Kulkarni et al., 2019] or to perform secondary function-

alities like grasping [Anzai et al., 2018], via elaborately designed assembly of linked

multicopters.
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2.1 Soft Multicopter Control

Du et al. [Du et al., 2016] create an automatic system that generates feedback

controllers for user-designed non-standard rigid drone geometries with any number

of rotors. Our work shares the same spirit with them where we also aim to facil-

itate novel drone designs by automatically generating the controller for them. PD

control is lightweight and effective, but it generally requires the handcrafting of cas-

cading structures and the empirical tuning of various parameters. LQR controllers,

in comparison, comes in one piece, requires less parameter tuning, and it solves for

the optimal control signal. However, it requires the full dynamic model and assumes

all states are measurable, and it is designed for linear systems only.

Learning-based Soft-Body Control The control of soft robots has been exten-

sively studied [George Thuruthel et al., 2018]. However, up to date it remains a

very challenging topic due to the under actuated nature of the high-dimensional state

space for a soft body [Rus and Tolley, 2015]. A broad array of control mechanics,

including the simulation-driven control [Bieze et al., 2018], morphological comput-

ing schemes [Urbain et al., 2017], and learning-based physics simulators [Battaglia

et al., 2016; Spielberg et al., 2019] have been proposed to reduce the complexity or

accelerate the computation of a soft-body control problem. For example, Spielberg

et al. [Spielberg et al., 2019] propose a end-to-end training method that uses an au-

toencoder to map high-dimensional state vector to low-dimensional latent vectors

as input to the neural network controller. Among these approaches, neural physics

simulators [Battaglia et al., 2016; Li et al., 2019] play an important role in connect-

ing the real-world physics and the numerical controller by providing an differentiable

surrogate model.

5



2.2 Learning multi-body constraint systems

2.2 Learning multi-body constraint systems

Position-Based Dynamics Position based dynamics has been used widely in game

and visual effects industries due to its stable, robust and fast nature. A number of

research have been conducted to simulate different dynamics [Müller et al., 2007],

including fluid [Macklin and Müller, 2013]. Yang et al.’s work [Yang et al., 2020]

integrates position based dynamics and neural networks, demonstrating that a simple

constraint could be learned to represent complex physical systems.

Learning Fluid Dynamics Using neural networks to learn fluid parameters or

to accelerate fluid simulation has been extensively studied. SPNets [Schenck and

Fox, 2018] proposed an approach to simulate fully differentiable fluid dynamics and

give examples to learn fluid parameters from data, perform liquid control tasks, and

learn policies to manipulate liquids. Yang et al. [Yang et al., 2016] proposed a data-

driven projection method to accelerate grid-based fluid simulation by using a neural

network to avoid iterative computation, while Dong et al.’s fluidnet [Dong et al., 2019]

accelerates Eulerian fluid simulation by generating multiple neural networks before

the simulation. All of these methods requires prier knowledge of fluid properties. In

Sanchez-Gonzalez et al.’s work [Sanchez-Gonzalez et al., 2020], Graph Network-based

Simulators has been used to represents the state of a physical system with particles

(including fluids), expressed as nodes in a graph, and computes dynamics via learned

message-passing.

2.3 Predicting multi-body vortical flow motion

Vortex particle method Although early works adopted point vortices to numer-

ically simulate the dynamical evolution of 2-D inviscid flow in an unbounded do-

6



2.3 Predicting multi-body vortical flow motion

main [Rosenhead, 1931; Takami, 1964], the modern vortex method is marked by the

vortex blob method proposed by [Chorin, 1973], which removes the singularity in the

kernel function by replacing the point vortex with certain vortex cores. The vor-

tex blobs might be of various shapes, such as an isotropic sphere or a small vortex

sheet [Pfaff et al., 2012a]. Various options exist for the vorticity distribution in vortex

blob methods, such as the Gaussian distribution [Park and Kim, 2005], the Rankine

vortex model [Loiseleux et al., 1998], and the Krasny model [Krasny, 1988], etc. There

are possible limitations of using the vortex blob method to solve large-scale complex

vortical flow. For long-term computational accuracy, a vortex blob method requires

that each vortex element overlap its neighboring blobs, which consumes a massive

number of vortex elements for computational stability [Hald and Del Prete, 1978;

Hald, 1979]. Besides, the shape of every single blob is different from the common

filamentous or tubular structures in the flow field, making it challenging for vortex

methods to form coherent structures under a turbulent setting [She et al., 1990]. Fi-

nally, a vortex blob method updates the vorticity stretching term with the original,

transposed [Choquin and Huberson, 1990], or symmetrical [Cottet and Koumout-

sakos, 2000] form by taking the derivative of the kernel function. The correctness of

a numerical stretching relies on the distribution of vortex elements together with the

choice of a proper kernel function to ensure numerical precision and adaptability [An-

gelidis, 2017]. In the absence of ambiguity, we refer to the vortex particles/points

below as vortex blobs.

Vortex filament method Vortex filaments are important for 3D turbulence dy-

namics [Xiong and Yang, 2017, 2019b], providing one of the most efficient numerical

methods to reproduce the complexity of smoke with sparse discrete primitives [Weiß-

mann et al., 2014; Eberhardt et al., 2017]. The numerical simulation of vortex fila-

ments can be traced back to Hasimoto’s study on the local induction approximation
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2.3 Predicting multi-body vortical flow motion

(LIA) of some isolated vortex filaments, which validates that a single vortex filament

in LIA fits well with the experimental results of the propagation of isolated waves

on a twisted structure [Hasimoto, 1972; Hopfinger et al., 1982; Aref and Flinchem,

1985]. For the first time, [Angelidis and Neyret, 2005] simulated the flow field with a

large number of closed vortex filaments. From a Hamiltonian perspective, [Weißmann

and Pinkall, 2009] proposed a physically conservative model that compensates for the

discretization errors inherent to the polygonal vortex filament model. [Barnat and

Pollard, 2012] developed a new set of reconnection criteria to simulate smoke with

a filament graph. Then, [Padilla et al., 2019] simulated elaborate physical phenom-

ena with the thickness of vortex filaments taken into account, such as the dynamic

evolution of an ink drop. A potential limitation of vortex filament methods is the

need for tedious mesh repair operations to handle their topological changes, such as

splitting and merging [Chorin, 1990, 1993; Marzouk and Ghoniem, 2007; Bernard,

2009]. These operations also make it challenging to establish large-scale parallel pro-

cessing algorithms. The vortex sheet method, also based on mesh connectivities, is

specialized to capture codimension-1 vortex structures evolving in three-dimension

space [Pfaff et al., 2012b; Brochu et al., 2012].
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Chapter 3

Design and Control of a Soft

Multicopter

3.1 Soft Multicopter Dynamics

A soft multicopter can be interpreted as a soft, continuum body Ω attached with n

rotors. Let X be the material coordinates of points in a body domain Ω and x be their

world-space coordinates. The two coordinate systems are bridged by a deformation

mapping x = Φ(X). The soft material model is described by its density ρ, damping γ,

and an elasticity model denoted by a functional ε(Φ). In the simulation code, ε can be

implemented as a Neo-Hookean model, co-rotated model, and so on [Kim et al., 2012;

Skallerud and Haugen, 1999]. We design a control mechanism that is independent

from the exact deformable model implementation, meaning that it can work with

different numerical or real-world deformable systems by observing different data sets.

A rotor on a soft drone is defined by a tuple {ui, λi,Ti, ri}, with ui as the magnitude

of the propeller thrust, λi as the spinning direction, Ti as the thrust direction in the

world space, and ri as the rotor position in the material space. We assume each rotor

is stick to a local point near the surface of the body in material space. The rotor

9



3.2 Drone Designs

direction is given as the average of the surface normals in the local region around

ri, i.e., Ti =
∑

j∈Nb(i) nj/|
∑

j∈Nb(i) nj| in a discrete setting, with nj as the normal

direction of a neighboring surface triangle.

From Newton’s second law, the soft multicopter dynamics can be written as:

ẍ + γẋ +∇xε = b(X) + g. (3.1)

The left-hand side of Equation 3.1 describes the soft body’s internal forces, including

the inertial force, damping force, and elastic force. The right-hand side describes the

body’s external forces, including the thrust input b(ri) = λiuiTi, and the gravity g.

Compared with the rigid-body multicopter dynamics equation (e.g., see [Du et al.,

2016]), the soft-body version does not have the Euler’s equation to describe the body’s

rotational movement. The torque effect of a rotor is considered in the elastic solve by

enforcing boundary conditions from b. The spinning torque effect is eliminated on

the design stage by implementing each rotor as a pair of propellers spinning in the

opposite directions.

3.2 Drone Designs

3.2.1 2D drone design

To customize 2D drones, we develop a web-based interface to sketch contours and

assign rotor positions of drones.

The interface provides 4 types of layers: curves, point sets, images and meshes.

A curve layer is where the users actually sketch the contour of the drone. It’s similar

to the pen tool in other software. Users can draw Hermite splines by assigning control

points, and move the tangent handler to adjust the tension.

10



3.2 Drone Designs

A point-set layer is where users could assign rotor positions. By simply clicking on the

screen, users can assign as many rotors as they want. The rotors should be attached

to the boundary of the contour. Otherwise the dot would be ignored and no rotor

would be actually added in our simulator.

An image layer allows users to add pictures as references. When users click ”change

color”, a color layer with a screen blend mode would be added on top of the picture,

making it easier for users to see distinguish the contour of the picture.

By clicking ”export”, the curved drone contours will be exported as a sequence of

vertices, as well as the rotor positions. Since the curve is defined by connected

segments, by specifying the detail level, users can define the smoothness of the curves.

We use TetGen[Si, 2015] to generate a volumetric mesh (for 2D case it refers to a

triangle mesh) from the segment data.

The generated mesh could be used directly in our simulation program. It can also be

imported again into our sketching interface. It would create a new layer where users

can assign colors to the triangles of the mesh. The mesh could be exported again with

a value converted from the color information of each triangle. Then in our simulator,

the weight could be interpreted as the material type.

To try this tool, please visit https://2d-contour-generator.readthedocs.io/

en/latest/intro.html3.1 Users can export the curved drone contours as a sequence

of vertices with specifying the detail level, as well as the rotor positions.

Future work One main gap for the tool is from the contour to the mesh. We

developed a simple CPP program integrating TetGen to generate a triangle meshe

file from the input file with segment information. The workflow would be much

smoother if we could generate the triangle mesh directly on the webpage. Another

possible improvement is that although we allow users to draw super organic shapes,

symmetric shapes are desired in many cases in drone designing. Mirroring functions

11
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3.2 Drone Designs

Figure 3.1: Left: sketching the contour; Right: painting the mesh.

could be very helpful. Besides, not all rotor configurations make sense. To better

control a soft shape, it’s possible to give suggestion for rotor settings.

3.2.2 3D drone design

3D drones are modeled in Maya as closed surface meshes. Then again we use Tet-

Gen[Si, 2015] to create tetrahedron meshes from the triangle meshes and add rotors

to the assigned positions.

3.2.3 Geometry and Material

As mentioned previously, we separate the representation of a soft drone’s state into

three geometric components: the deformation vector s, the rotaiton vector e and

the position vector p. The s and e vectors which jointly defines the soft drone’s

deformation is measured by Inertial Measurement Units (IMU) only. Since rotation

in 2D can be represented by one scalar only, for 2D drones the IMU will only output

the angle between the measured vector and the horizontal. The measured vectors are

shown in Figure 3.3. The specifications of our models tested are presented in Table.

3.1. For the 3D examples, the sensing scheme is shown in Figure 3.2. Each IMU is

able to output the rotation information of itself as a rigid object, which is attached to

a local region on the surface of the drone. In other words it defines its own reference

12



3.2 Drone Designs

Table 3.1: Design Specifications
3D models

specs Donut Starfish Flower Leaf Octopus Orange peel
mass(kg) 1 1 1 1 1 1

modulus(N/m2) 1e4 3e3 6e3 3e3 1e4 5e2
length-x(m) 3.5 3.6 3.6 2.4 3.6 3
length-y(m) 0.36 0.375 0.225 0.075 1.5 1.3
length-z(m) 3.5 3.6 3.6 4.5 3.6 2.9
num sensors 4 4 8 4 8 5
num rotors 4 5 9 4 9 5

max thrust(N) 10 10 10 10 10 10

2D models
specs Engine Bunny Diamond Elephant Rainbow Long Rod

mass(kg) 1 1 1 1 1 1
modulus(N/m2) 6e3 6e3 6e3 6e3 6e3 6e3

length-x(m) 1.90 1.12 1.47 2.46 2.08 0.1
length-y(m) 2.16 1.75 1.42 1.69 1.30 8.0

num sensors(m) 6 3 8 3 4 8
num rotors(m) 6 3 4 2 2 5
max thrust(N) 10 10 10 10 10 10

frame with its X,Y,Z axes. On the figure, the X, Y, Z axes are coded by Red, Green,

Blue respectively, with the Y axes pointing out of the plane. Each measurement will

be done by an individual IMU, and for the peripheral measurements we will only

make use of the measured Y axis neglecting the X and Z axes.

The stiffness of the models are defined by the elastic modulus, which measures

the drone’s resistance to being deformed elastically. We adjust the modulus of each

example according to their shape to make sure the deformation is not too subtle to

notice nor too dramatic to control.

Though the table only shows examples with one elastic modulus value that applies

to the whole model, the value is actually assigned to vertices separately. By assigning

different values for each part of a drone, we could create multi-material drones.

13



3.2 Drone Designs

Figure 3.2: Drone’s sensor placement (3D). Top row: Flower, Octopus, Orange Peel;
Bottom row: Starfish, Donut, Leaf.

Figure 3.3: Drone’s sensor placement for 2D designs (illustrated by red arrows).Top
row: Engine, Bunny, Diamond, Elephant, Rainbow; Bottom row: Long Rod.

14



3.3 Dynamics Identification

Figure 3.4: System overview: the workflow of our system consists of five stages to
automate the control policy generation procedure for a soft drone design.

3.3 Dynamics Identification

As shown in Figure 3.4, our system takes soft drone geometries with customized rotor

and sensor configurations as input, and returns a functional that computes full-state

feedback control matrices depending on the drone’s current state.

3.3.1 Geometric Representation

The design philosophy of our geometric representation is motivated by the rigid-

deformable coordinate decomposition technique proposed in [Terzopoulos and Witkin,

1988] and applied in many following reduced deformable simulators [Pentland and

Williams, 1989; Sorkine and Alexa, 2007; Lu et al., 2016]. The key insight is to

view a soft body’s deformation as a decomposition of three components: rotation,

translation, and pure deformation. Mathematically, for a point Xi in material space,

the relationship among the three components can be written as:

Φ(Xi) = R(e)S(Xi) + T(p), (3.2)

with p, e ∈ R3 describing the position and orientation of a local rigid frame bind to

the soft body, R,T ∈ R3×3 as the corresponding rotation and translation matrices,

and S(Xi) describes the pure deformation mapping of Xi within the local frame.
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3.3 Dynamics Identification

For a rigid drone, the state of the drone at any given time can be uniquely deter-

mined by p, e, and their derivatives, i.e., xT := [p, ṗ, e, ė], by assuming S(Xi) = Xi.

However, for deformable drones, due to the existance of non-constant S, the combina-

tion of p and e no longer determines the drone’s configuration uniquely, in particular,

since particles in deformable bodies can move independently, a single rotation matrix

cannot describe the distribution of particles, thereby leaving ambiguities for informa-

tion such as rotor positions, orientations, moment of inertia which all influence the

drone’s dynamics significantly.

Figure 3.5: Geometric rep-

resentation of a soft multi-

copter

As a result, we seek to extend the state space to

eliminate these ambiguities. Inspired by Equation 3.2,

we extend the previous state with an additional vector

s ∈ Rm (m can be arbitrary) that represents the de-

formation in body frame which e defines. Given that

such s is present, we have xT := [s, ṡ, e, ė,p, ṗ]. In this

work, ṡ is constituted of scalar angle values extracted

from IMU measurements (see Figure 3.5 for an exam-

ple).

The next step is to formulate the temporal evolution

equations for the extended x with decomposed compo-

nents. Here we use three new functions {d,g,h} to describe the temporal relations

among {s, e,p} and the rotor thrusts {u}. We make a reasonable assumption that

the dynamics of pure deformation will not be influenced by rotation or translation,

i.e., ṡnext= d(s, ṡ,u) for some function d; the dynamics of rotation will not be in-

fluenced by position, i.e. ėnext= g(s, ṡ, e, ė,u) for some function g; the dynamics

of the position will be influenced by deformation, rotation as well as velocity i.e.

ṗnext= h(s, ṡ, e, ė, ṗ,u) for some function h. Therefore, in state-space form, the dy-
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3.3 Dynamics Identification

namics are expressed as follows:

ẋ = f(x,u) =



ṡ

s̈

ė

ë

ṗ

p̈


=



ṡ

1
α

(d(s, ṡ,u)− ṡ)

ė

1
α

(g(s, ṡ, e, ė,u)− ė)

ṗ

1
α

(h(s, ṡ, e, ė, ṗ,u)− ṗ)


, (3.3)

where α represents the timelapse between sensor updates.

3.3.2 Learning-based identification

We train three simple neural networks to learn {d,g,h}, respectively. We use the

residual block [He et al., 2016] with convolution layers replaced by linear layers, as

previously explored by [Weinan, 2017; Lu et al., 2018]. We do not use any normal-

ization throughout the networks. The neural networks consist of four residual blocks

followed by one linear layer. All three functions share the same network architecture

but different parameter weights.

The training data is generated with our implementation of a Finite Element sim-

ulator. Given a drone geometry, we initialize the drone as undeformed, lying at the

origin, and apply a random thrust to each rotor and observe the drone’s position,

rotation and deformation at 100 Hz. Each set of random thrust is applied for 0.6

seconds. Other data generation schemes we tried also consist of using a rigid LQR

controller to generate the thrusts, or apply a different random thrust each frame,

but the former yields poor test loss due to the confined distribution of LQR control

outputs, while the latter were too noisy to train. The insight that we need to give

the system enough time to respond to a signal and display meaningful behavior is
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3.4 Evaluation and Results

Figure 3.6: 3D (top) and 2D (bottom) soft drone designs with unconventional shapes
and rotor layouts

inspired by [Holl et al., 2020]. We refer the readers to the supplementary for the

simulation and training details.

3.4 Evaluation and Results

To verify that our system can handle different soft drone designs, we developed a

number of different models in both 2D and 3D that include both symmetrical and

asymmetrical structures, even and odd number of rotors, single or multiple materials,

with virtual springs to add material complexities (see Figure 3.6).

Locomotion Control We demonstrate that our method is able to control the lo-

comotion of soft drones with low Young’s modulus with dominating superiority to

the state-of-the-art LQR controllers. For benchmark testing we implement the tradi-

tional LQR controller as if each drone is rigid in its undeformed shape. The geometry-

updating LQR is enhanced with the capacity to observe the deformation of the soft

drone at each control step, and update the relevant dynamics information regarding

rotor position, orientation and rotational inertia accordingly. The correctness of our
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3.4 Evaluation and Results

Figure 3.7: First Row: Locomotion animation; Second Row: Deformation animation;
Third Row: Obstacle avoidance animation

benchmark models are verified by increasing the modulus to be 15 times as much so

that the drones being tested are approximately rigid.

Target Reaching

metrics ours LQR geometry-updating LQR

survival time (s) 20.0 3.54 5.28

final error (m) 0.126 49.517 22.084

thrust usage (N) 26740 90596 61947

Deformation Control A talent unique to our controller is its ability to decide

how the drone is shaped while controlling its locomotion at the same time. In the

experiment shown in the second row of Figure 3.7, we require the flower drone to
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3.4 Evaluation and Results

maintain at the origin while deforming into two shapes. In the first shape, which is

ordered at timestep 0, the lateral pedals lie flat, while the axial pedals rise to reach

an ordered angle of 1.0 radian. In the second shape, which is ordered at timestep

2000, the lateral pedals will rise while the axials will lie flat.

From a practical standpoint, the controller’s ability to reconcile all three con-

trol tasks in altitude, position and deformation at once, enables it to pass through

restrained terrains, maintaining a velocity and attitude while deforming in ways to

reduce its width or surface area. In the example shown in Figure 3.7, the drone is

challenged to pass through a hole, formed by three concrete barricades, that is nar-

rower than its body. In order to pass through, the human pilot can order it to close

up the two wings in coordination. But at the same time it needs to pitch forward

while staying as close as it can to the middle without crashing into the walls on the

sides. Besides, it needs to provide enough thrust to maintain a forward velocity. As

one sees in Figure 3.7, our controller is able to handle this task. First, it successfully

reduces its body width for over 30%; secondly, it does so while maintaining balance,

allowing the drone to fly strictly in the X-Y plane with no more than 5 cm deviation

in the Z-direction over the 8 second horizon.

Obstacle Avoidance Of course, the controller’s ability to reconcile all three tasks

at once, altitude, position and deformation control is not limited to hovering. It can

also, for instance, track a certain attitude precisely, maintain a velocity and deform

into certain shape. This makes it powerful enough for our drone to travel through

restricted terrains by deforming in ways that reduces its length in a certain direction.

In the example shown in the last row of 3.7, we explicitly require the pedal 2 and 4 to

contract so that it can pass through a gap between two walls that is parallel to the x

axis and emerge out of it at the top. So the controller need to reconcile three different

tasks. First it needs to close up the two wings in coordination. Second it needs to tile
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3.4 Evaluation and Results

sideways. Third it needs to provide enough thrust to maintain a motion along the

x,y axis, but reduce motion along the z axis, which will make it bump into the wall.

As seen in the pictures, our controller does a satisfactory job. First it successfully

contracted its wings, reducing its width along its body frame z axis for over 30%.

Secondly it did so while maintaining balance, allowing the drone to fly strictly in the

+x, +y direction, while only causing 5 cm of deviation in the z axis over the 8 second

long passage, as seen in the middle graph.
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3.4 Evaluation and Results

Figure 3.8: Visualization of more test results; Top 2: Obstacle avoidance animation;
Bottom: Locomotion animation;
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Chapter 4

Learning multi-body constraint

systems

4.1 Position Based Framework

The key idea of a standard position-based framework is to move (or ”project”) a set

of points according to a constraint to satisfy the constraint.

According to Macklin and Müller’s position based fluid [Macklin and Müller, 2013],

for a fluid system, the constraint is defined as a constant density for each particle

at each time step to enforce the incompressibility. Our algorithm shares the same

workflow with PBF to update the predicted position iteratively until the density for

each particle reaches the desired value.
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4.2 Fluid with a Constraint

Algorithm 1 Simulation loop

1: for particles i do
2: Apply external forces v∗i ← vi + ∆ta
3: Predict position x∗i ← xi + ∆tv∗i
4: end for
5: while iter < solverIterations do
6: for particles i do
7: Find Neighboring particles Ni
8: Calculate λi
9: end for

10: for particles i do
11: Calculate ∆pi
12: Update position x∗i ← positionx∗i + ∆pi

13: end for
14: end while
15: for particles i do

16: Update velocity vi ←
(x∗

i−xi)

∆t

17: Apply viscosity and update vi

18: Update position xi ← x∗i + ∆pi

19: end for

4.2 Fluid with a Constraint

4.2.1 Apply the Constraint in Simulation

In our simulation process, to update the position, we follow the algorithm in PBF.

ρi =
∑
j∈P

mjW (pi − pj, h) (4.1)

Ci(p1, ..., pn) =
ρi
ρ0

− 1 (4.2)

24



4.2 Fluid with a Constraint

For kernel function W, Poly6 is used:

Wpoly6(Pi − Pj, h) =


315

64πh9
(h2 − |Pi − Pj|2)3, if |Pi − Pj| < h

0, otherwise

(4.3)

where h is the cutoff for W. Particles would be regarded as neighbors only if their

distances are closer than h.

The mass for every particle is the same. Changing particle mass without changing

the rest density would change the rest distance among particles.

To ensure that Ci ≈ 0 all the time, given P, we want to find a ∆P along the

gradient that satisfies:

C(P + ∆P ) = 0 (4.4)

≈ C(P ) +∇CT∆P (4.5)

≈ C(P ) +∇CT∇Cpλ (4.6)

According to these equations, λ could be calculated as:

λ = − Ci(p0, ..., pn)∑
k |∇pkCi|2 + ε

(4.7)

In practice, we use autograd of PyTorch to compute the gradient of relative po-

sitions. Only the particle itself and its neighbors would contribute to the constraint.

The gradient of other particles would be zero.

Then the updated positions are calculated as:

∆pi =
1

ρ0

∑
j⊂Ni

(λi + λj)∇W (pi − pj, h)/2 (4.8)
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4.2 Fluid with a Constraint

When there are not enough particles around, clustering will happen to satisfy the

constraint (especially at boundaries). An artificial pressure term is incorporated to

avoid particle collision, creates surface tension, and lower the neighborhood require-

ments when updating positions:

∆pi =
1

ρ0

∑
j⊂Ni

(λi + λj + scorr)∇W (pi − pj, h)/2 (4.9)

scorr = −k(
W (pi − pj, h)

W (∆q, h)
)n (4.10)

where |∆q| = 0.1h, k = 0.1, and n = 4.

The artificial pressure term prevents the constraint (defined in Equation 4.1) to

literally become 0, as well as introduce difficulties in designing a general network to

learn the constraint without strong prior knowledge, which would be discussed in

later sections.

To validate this workflow, we initialize particles on a 8*8 grid. We then apply a

gravity that is always pointing to the origin from everywhere in the space. By this

means we get rid of container representation and collision calculation, and focus only

on the interaction of particles themselves.

The simulation result is shown in Figure 4.2.1 The surface tension created by the

would make sure that the overall shape of the fluid dynamics would become circle-like

after enough frames, and the gravity would move the fluid to the origin.

We then create training data by generating particles on a grid with random offsets

that are smaller than half-cell length. The initial positions of the grids are also

randomized.
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4.2 Fluid with a Constraint

Figure 4.1: Frame 1, 3, 50 and 100 of the GIF generated by the simulator. Yellow
dots shows particle positions before projections, and blue dots shows positions after
projection.

4.2.2 Learning the Constraint

In this section, we will discuss how we design the network.

Basically, we are trying to learn how the relative positions of the neighbors of

a particle contribute to its constraint.The input data is the predicted positions given

in line 3 of algorithm 1. The output is the updated positions, which should satisfy

the constraint.

Learn the kernel function

In the first experiment, to make sure that the network is able to learn the constraint,

the label we use to compute loss is given by equation (8), which is not using the

correction term. This makes sure that we already know the explicit constraint

computing function, and the constraint is 0 after iterations for each projection.

In this case, we use the network to replace equation 3. In other words, the network

is learning the kernel function directly.

During the process, we also found that using the relative position converges slowly,

and the result shows a projection preference of axis and direction. Using the distance

gives us a better result.

However, this method is not using the actual simulation data, and learning only
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4.2 Fluid with a Constraint

Figure 4.2: Frame 1, 3, 50 and 100 of the GIF generated by the learning both the
kernel function and the correction; 64 particles in the Top line, 256 particles in the
Bottom line. Yellow dots shows particle positions before projections, and blue dots
shows positions after projection.

the kernel function is too boring.

Learn the kernel function and the correction

We use two networks to calculate the result. One network learns the kernel function

(by using the distance directly), and the other network uses w to learn the correction

term.

Figure 4.2.2 shows that it can actually learn the correction term in this way. Other

visualization show that the result works for different number of particles.

By using the distance information directly instead of using the relative position,

the result is less likely to show a preference of direction (e.g. some previous networks

would move the particles more along y-axis than along x-axis).
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4.2 Fluid with a Constraint

Figure 4.3: Frame 1, 3, 50 and 100 of the GIF generated by learning an abstract
constraint. 64 particles in the Top line, 256 particles in the Bottom line. Yellow
dots shows particle positions before projections, and blue dots shows positions after
projection.

Find an abstract constraint

This method tries to learn a single constraint that is more representative than density,

and could define the fluid directly without the artificial pressure term.

Our first attempt is to get rid of the artificial pressure term directly, and everything

else stays the same as the previous network. This didn’t give us any satisfying result.

With the information of the original position before applying velocity, the move-

ment of particles becomes more stable even without viscosity.

Again, by directly using the relative positions, the result does not converge, but

by using the distances directly we could get a much better result.The problem occurs

at the boundaries – particles are clustering and the surface tension is not correctly

learned.
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4.2 Fluid with a Constraint

Figure 4.4: A Classic Message-passing GNN framework

Implementation details

Using GNN

Previous section strictly follows the workflow of PBF, and the result is close to the

ground truth. However, there are two main drawbacks: 1. too much prior knowledge

is given, and the projection function is too complicated; 2. the projection is only

about positions; viscosity is not taken into consideration.

In this section, we explored methods to solve the issues. To make the projection

function more scalable, we use GNN to learn the fluid dynamics; Similar layers are

used to learn the pair-wise relationship. To learn the viscosity at the same time, we

tried to learn the velocity by adding more features to our input.

The workflow of aggregating information from neighbors and updating a feature

is very similar to a graph neural network (GNN) [Scarselli et al., 2009], and can be

directly migrated to a GNN framework (See Figure 4.4).

By assuming that information passing among neighbors and iterations would make

sure that at last the constraint is satisfied for every particle, we move a particle
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4.2 Fluid with a Constraint

towards the direction that makes its own constraint approach 0.

In other words, the updated position is computed as:

∆pi = λi∇C (4.11)

We also tried to update the position towards the direction that reduce the con-

straint of the sum of its neighbors, but the training result failed to converge:

∆pi =
∑
j∈Ni

λj∇iCj (4.12)

λ is computed as the same way in Equation 4.7.

GNN + Linear Layer

C1i =
∑
j∈Ni

f(Xi −Xj) (4.13)

C2i = g(C1i) (4.14)

• Edge input features: relative positions, relative velocities, distances

Add up edge outputs for each node

• One more Layer to process the output (Linear + ReLu layers)

2 Layers of GNN

C1i =
∑
j∈Ni

f(Xi −Xj) (4.15)

C2i =
∑
j∈Ni

g(distij, C1i, C1j) (4.16)

31



4.2 Fluid with a Constraint

Figure 4.5: Frame 1, 3, 50 and 100 of the GIF generated by the GNN + linear layer
network. Yellow dots shows particle positions before projections, and blue dots shows
positions after projection.

Figure 4.6: Frame 1, 3, 50 and 100 of the GIF generated by 2 Layers of GNN. Yellow
dots shows particle positions before projections, and blue dots shows positions after
projection.

where C1 is an intermediate feature; C2 is the output (considered as the con-

straint).

• Edge input features: relative positions, relative velocities

For each node, add up outputs of adjacent edges

• Edge input features: last output of Pi, last output of Pj, distance

Add up edge outputs for each node

As is shown in Figure 4.2.2, the correction term to avoid clustering is not learned

by this method.
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4.2 Fluid with a Constraint

Considering Viscosity

During visualization, we simply subtract positions between frames and divide it by

time step to calculate velocity; viscosity is not applied.

Viscosity would influence the relative velocity among neighboring particles so par-

ticles that are close to each other would be prompt to have the same velocity (but

not exactly the same).

In order to take this into our consideration, we decide to use the positions predicted

without considering velocity as the position to be projected), and the positions of the

previous frame to be another input parameter, and then to compute the output

position.

The input features becomes:

X̂f+1 = 2Xf −Xf−1 (4.17)

Xf+1 = P (X̂f+1, Xf ) (4.18)

No stable result is learned so far by this way. The visualization of particles could

be found in Figure 4.2.2.

Implementing Details

We use L1 loss function to compute the error of the predicted position and the actual

position.
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4.3 Soft Body with a Constraint

Figure 4.7: Frame 1, 3, 35 and 45 of the GIF generated by the network considering
viscosity. Yellow dots shows particle positions before projections, and blue dots shows
positions after projection.

4.3 Soft Body with a Constraint

With our framework, we also tried to learn the constraint of a rope. The constraint of a

rope would be the bending and a fixed length between neighbors. Experiments show

that our framework successfully learns the fixed-length constraint and the learned

model could be applied to ropes expressed by arbitrary number of particles. However,

in this case we need to specify the connection manually.

4.4 Conclusion and Future work

Our work shows the potential of learning fluids purely from observation data, and

apply it to another fluid system with similar properties. Experiments show that the

learned models work fine with different particle number, or different forces.

However, compared with other position based methods, our method is still not

simple and clean enough. The network still needs some pre-computed data (e.g.,

distances among particles) or prior knowledge, (e.g., h value for the neighbor range).

To evaluate the efficiency of our methods, experiments with larger number of

particles should be conducted.
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Chapter 5

Modeling multi-body vortical flow

motion

Various fluid phenomena simulated using our vortex segment method. (Far Left)

Leapfrogging vortices. (Middle Left) Turbulent smoke flowing past a rotating bunny.

(Middle Right) Reconnected vortex tubes from two intersecting ones. (Far Right)

Cigarette smoke.

5.1 Vortex segment method

Various categories of numerical methods are developed to explore different kinds of

complex and changing flow phenomena. From the perspective of computing vari-

ables, they are classified as solving velocity [Xiong and Yang, 2019a, 2020], auxiliary

velocity [Kuz’min, 1983; Cortez, 1996; Saye, 2016; Hao et al., 2019], vorticity [Cot-
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5.1 Vortex segment method

Figure 5.1: Comparison of splitting and reconnection of intersecting vortex tubes with
the vortex segment method and the vortex particle method. Top/bottom 4 pictures
show frames with vortex segment/particle method at 1, 100, 200 and 300 respectively.

tet and Koumoutsakos, 2000], and wave function [Chern et al., 2016, 2017], and so

on. From the perspective of discretization forms, they are classified as Lagrangian

method [Monaghan, 1992; Weißmann and Pinkall, 2010], Eulerian method [Rogallo,

1981; Xiao et al., 2020; Qu et al., 2019], and Lagrangian–Eulerian hybrid method

[Van Rees et al., 2011; Wang et al., 2020]. With their own unique advantages, these

methods can be used for numerical simulations of various flows.

The Lagrangian vortex method, a Lagrangian method based on vorticity dynam-

ical equation, has a special advantage in the simulation of unsteady flows where the

vortex structures play a leading role, such as dynamical evolution of a forced shear

layer [Ghoniem and Ng, 1987], an impulsively started rigid body [Pepin, 1990], and

some interacting coherent vortical structures [Weißmann and Pinkall, 2010; Padilla

et al., 2019]. Firstly, this method shares all the merits of Lagrangian method, namely,

with the material elements themselves being discrete elements, it doesn’t have to con-

struct complicated Eulerian meshes for flows with complex geometries. Also, it dra-

matically decreases numerical dissipations [Ploumhans and Winckelmans, 2000] by

avoiding interpolating between grids with the physical quantities stored on material
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5.1 Vortex segment method

elements. Secondly, The Lagrangian vortex elements can be placed adaptively (that

is, with the number of vortex elements being placed proportional to the vorticity

strength) in the process of discretizing vorticity field. In the end, a corresponding

relationship between discretized vorticity field and continuous incompressible velocity

field can be built using Biot–Saviot law (BS law), enabling reconstructing a continu-

ous solenoidal velocity field that fills the entire computational domain with relatively

fewer discretized vortex elements needed for dynamical evolution [Wu et al., 2015].

Back in 1990, Chorin described in his pioneering work [Chorin, 1990] that “a

physical vortex is approximated by a cloud of tubular vortices.” The vortex segment

method he proposed in this work, in which vorticity is carried on a set of segments

and evolved by calculating their interactions, was the predecessor of the modern

vortex particle method (e.g., [Cottet and Koumoutsakos, 2000]). Following this work,

[Chorin, 1993] switched the data representation from discrete segments to a segment

mesh, to reduce the redundant vertex storage and hence improve the computation

efficiency, which laid the foundation of the modern vortex filament method [Weißmann

and Pinkall, 2010]. These two pieces of classical work yield an insightful mathematical

model that “an incompressible flow can be approximated by a ‘polymeric’ model,

which consists of an ensemble of stretched, folded, and pinched vortex tubes” [Chorin,

1990], which serves as the motivation for our numerical paradigm design.

Motivated by Chorin’s work, we devise a structure-enriched and connectivity-free

Lagrangian method to model vortical flow featured by its anisotropic geometry and

dynamics. Specifically, we build a generalized particle representation based on seg-

ment clouds with each particle consisting of two-point samples. From a computational

perspective, discrete segments, or a generalized Lagrangian representation with each

particle carrying two-point samples possess a series of inherent computational ad-

vantages when modeling anisotropic vortical flows. Numerical merits include ease of
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5.1 Vortex segment method

Figure 5.2: The splitting and reconnection of quasi-parallel vortex tubes. Left to
right columns: frames 1, 100, 300, and 400. The pictures are visualized by vortex
segments clouds (top 4 pictures) and tracer particles (bottom 4 pictures).

Turbulence above a static sphere and a rotating bunny. the top-left four pictures:
the static sphere frames at 100, 200, 240, and 400, respectively; the bottom-left four
pictures: the rotating bunny frames at 83, 93, 163, and 184, respectively; the right
picture: the rotating bunny frame at 271.
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5.1 Vortex segment method

Figure 5.3: Comparison of the simulation of cigarette smoke using vortex segment
and particle methods.

modeling local, vortical stretching [Zhang and Bridson, 2014], enforcing adaptivity

[Fernandez et al., 1996], and to handling topological changes robustly [Weißmann and

Pinkall, 2009].

To accommodate the various types of anisotropic geometrical and topological evo-

lution on a segment cloud, we build a set of discrete reseeding operations enhanced

by each segment’s orientation. These reseeding operations consist of merging, split-

ting, and deleting, which are combined to mimic the conventional particle reseeding

procedure. All of these operations leverage the anisotropic and oriented features

of the segment primitives. Moreover, these operations are local, parallelizable, and

connectivity-free, facilitating a high-performance code implementation to leverage

the modern parallel computer architectural intricacies. As demonstrated in our ex-

amples, the proposed method accommodates the parallel computation of large-scale

vortex phenomena on modern computing hardware, which boosts the capability of

the method in solving strongly anisotropic and topologically complicated flows.
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5.2 Physical Model

Figure 5.4: Leapfrogging vortices with vortex segments showing frames 100 (top left),
200 (bottom left), and 300 (right).

5.2 Physical Model

Considering the incompressible fluid in a domain Ω, the fluid dynamics can be de-

scribed by 
Du

Dt
= −1

ρ
∇p+ f ,

∇ · u = 0,

(5.1)

with proper initial and boundary conditions. Here u(x, t) is the velocity field, D/Dt =

∂/∂t+ u ·∇ is the material derivative, t denotes the time, p is the pressure, ρ is the

density, and f is the body force. If we assume ρ is a constant, taking the curl of (5.1)

yields the governing equation of vorticity ω = ∇× u as

Dω

Dt
= (ω ·∇)u + ∇× f . (5.2)

We discretize the vorticity field on a set of discrete vortex elements

ω(x, t) =
Nv∑
j=1

Γj(t)fδ[x− xj(t)]. (5.3)

Here Nv is the total number of vortex elements, Γj and xj are the vorticity strength

and the central position of the jth vortex element. We use fδ as a distribution function

that satisfies
∫

Ω
fδ(x)dx = 1, describing the distribution of the vorticity around xj.
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5.3 Discrete Vortex Segments

fδ is designed as an isotropic mollification function in a conventional vortex particle

method. Without loss of geometric generalities, the primitives of the vortex elements

can be points (the classical vortex particle method), segments, triangles, etc.

Substituting (5.3) into the Biot–Savart (BS) law, the velocity field for vortex

element convection can be obtained as

u(x, t) = u∞ +

∑Nv

j=1 Γj(t)× Fδ(x,xj, t)

2(Nd − 1)π
, (5.4)

with

Fδ(x,xj, t) =

∫
Ω

(x− x′)fδ[x
′ − xj(t)]

|x− x′|Nd
dΩ′, (5.5)

where u∞ is the background velocity, Nd is the dimension of the computational do-

main Ω, and dΩ′ is the volume element at x′.

5.3 Discrete Vortex Segments

5.3.1 Geometric Representation

We discretize the vorticity field with a cloud of vortex segments. The information

carried on each vortex segment includes the positions of the two endpoints x±j , j =

1, 2, · · · , Nv and the vorticity strength magnitude Γj. The segment’s midpoint can

be calculated as xj = (x+
j + x−j )/2. The vorticity strength vector on each vortex

segment is calculated as Γj = Γj(x
+
j − x−j )/|(x+

j − x−j )|. In addition, each vortex

segment has a virtual radius R for numerical regularization. In two-dimensional

space, a vortex segment will degenerate to a vortex point xj, in which case the vortex

segment method will amount to a vortex particle method. We remark that a more

precisely induced velocity around a vortex tube can be obtained with a cloud of vortex

segments compared with vortex particles.
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5.3 Discrete Vortex Segments

In three-dimension space, the position of the jth vortex element is represented by

the segment Cj. We have fδ as a delta function supported on Cj. Substituting fδ into

(5.5) and (5.4), we obtain the induced velocity of the jth vortex element with regard

to a spatial point x as:

uBSj (x) =
Γj
4π

(
x+
j − x

‖x+
j − x‖+R

−
x−j − x

‖x−j − x‖+R

)

· (x+
j − x−j )

(x−j − x)× (x+
j − x)

‖(x−j − x)× (x+
j − x)‖2 +R2

,

(5.6)

whereR is a small positive number for regularization. This formula is presented as the

form of an analytical expression in [Weißmann and Pinkall, 2010], while the discrete

form is given in [Padilla et al., 2019]. For 2D cases, fδ(x) becomes a conventional

Dirac delta function δ(x), and the induced velocity becomes

uBSj (x) =
Γj
2π

ez × (x− xj)

‖x− xj‖2 +R2
, (5.7)

where ez is the normal direction of the 2D plane. We take the summation of induced

velocities of all the vortex elements and the background velocity u∞ to calculate the

velocity at x as

u(x) =
Nv∑
j=1

uBSj (x) + u∞. (5.8)

5.3.2 Lagrangian Advection and Vortex Stretching

According to the Kelvin’s circulation theorem, the vorticity strength of a vortex

filament element is conservative during the action of stretching and convection:

dΓj
dt

=

∫
Dj

(
Dω

Dt
− ω · ∇u

)
· dS = 0, (5.9)
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5.3 Discrete Vortex Segments

where Dj is the cross-section of the vortex segment in the direction of the vorticity.

Thus, neither advection nor stretching changes the vorticity strength of the vortex

filament. Therefore, naively updating the position of the endpoints of each vortex

segment without considering the radius change of the vortex segment

dx±j
dt

= u(x±j ) (5.10)

can update the vortex element with both advection and stretching. Without consid-

ering reseeding, the position and the length of a vortex segment will change during

its evolution, but its shape will remain straight.

There is no vorticity stretching in two-dimensional space. Hence, the 2D vortex

convection can be simplified as

dxj
dt

= u(xj). (5.11)

Similar ideas of processing vortex stretching using an explicit segment represen-

tation can also be found in the previous work of [Zhang and Bridson, 2014], where

virtual segments were created on a background grid in every time step to measure the

local stretching effects. Compared with this hybrid representation, our segment cloud

method fully leverages the vorticity expressiveness of discrete segments and naturally

evolves the system’s motion in a pure Lagrangian way.

5.3.3 Topological Changes with Segments

One of the most salient features of our segment cloud method is its capability of

processing local topological changes with simple and parallel segment operations.

Motivated by [Chorin, 1990] on removing hairpin segments and the various particle

reseeding and local re-meshing techniques in computer graphics (e.g., [Ferstl et al.,
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5.3 Discrete Vortex Segments

Figure 5.5: Splitting and merging of vortex elements

2016; Wang et al., 2020]), we devise three local segment reseeding operations includ-

ing segment splitting, merging, and deletion. We showcase that the combination of

these three operations can facilitate our simulation system to automatically handle

complicated topological changes of vortical fluid such as vortex tube reconnection.

At the same time, these segment operations enable our system to always maintain a

reasonable number of the segment during the simulation.

Segment splitting We employ a segment splitting operator (see the left of Figure

5.5) as splitting a segment into two as they both keep stretching. By setting a max

length threshold for a segment, we split it into two new segments with ends when the

segment with ends (x−j ,x
+
j ) is greater than the threshold:

[x−j , (x
+
j + x−j )/2] and [(x+

j + x−j )/2,x+
j ]. (5.12)

Segment merging We devise a segment merging operation (see the right of Figure

5.5) to avoid two parallel segments getting too close. We check two criteria before

merging a pair of segments. First, we check if the central positions of the two segments

are close enough (i.e. the absolute value |xi − xj| < λ with λ as a threshold).

Second, we check if the vorticity directions of the two segments are almost opposing

each other. In particular, we check if the angle between the two vorticity vectors

(specified by the vorticity magnitude and the segment endpoints) is almost π (i.e.
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5.4 Temporal evolution

xi · xj/|xi||xj| < cos θ with θ as a given threshold). We will merge two segments if

they are both close and their vorticities are pointing to roughly opposite directions.

The center, length, and vorticity of the merged segment are updated by the average

of the quantities stored on the two original segments as



xij =
xi + xj

2

Lij =
|x+

i − x−i |+ |x+
j − x−j |

2

Γij =
2[Γi(x

+
i − x−i ) + Γj(x

+
j − x−j )]

|x+
i − x−i |+ |x+

j − x−j |
.

(5.13)

Segment deletion We delete a segment if its vorticity falls below a threshold.

Accommodated by these operations, the realization of disconnection and recon-

nection of vortex tubes can happen automatically while stabilizing the computational

algorithm. We demonstrate the efficacy of the combination of these two basic seg-

ment operations by simulating the various vortex tube reconnection examples (see

Figures 5.1 and 5.2) that are infeasible for a pure particle method or potentially

complicated for a mesh-based method to process their topological changes.

5.4 Temporal evolution

We initialize each segment’s position randomly and its vorticity strength based on a

given vorticity distribution. We use the fourth-order Runge–Kutta method for the

time integration of the vortex segments.

We carry out the temporal evolution of the vortex segment cloud using the fol-

lowing steps:

(a) Calculation of induced velocity using (5.8);

(b) Advection of vortex segments using (5.10) for 3D flows and (5.11) for 2D flows;
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5.5 Visualization of Vortex Segments

(c) Splitting of vortex segments using (5.12) for 3D flows;

(d) Merging of vortex segments using (5.13) for 3D flows;

(e) We delete segments if their vorticity falls below a threshold.

5.5 Visualization of Vortex Segments

To visualize our results, we take the output of our simulation and rendered them in

Houdini as smokes. The simulation results are represented as a set of particles. For

most of the examples, the only property of the particles is the three dimensional vector

– position. For the leapfrogging example, we add another property that specifies

which vortex ring the particle originally belongs to. Different colors are assigned to

the rings.

Given the particles, we create a volume and rasterize it to be voxels with density.

We adjust a set of parameters including particle size, voxel size and filter size, etc. to

find a desired realistic result.

During the rendering process, we meet several challenges:

• The rendering process could be very slow to get pictures with a good quality

• The smoke could either be too noisy or too blurry

We found that the number of ray samples would not affect the quality of the picture

too much, and the number of samples per pixel would also have little influence over

the picture quality after a threshold. To make sure that the picture is not too noisy

nor too blurry, we need to make sure that we have enough points to represent the

smoke. The best number of particles could vary since the structure of the smoke is

different. If the smoke forms certain shapes, the number could be smaller; if the smoke

fills the whole space, the number would be larger. We choose the best configurations
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5.6 Results

based on observations in real life. We adjust the configuration for each example to

make sure that we get reasonable results in an acceptable amount of time.

5.6 Results

Vortex tube reconnection Figures 5.1 and 5.2 show the splitting and reconnec-

tion of two intersecting and quasi-parallel vortex tubes forming another two separated

U-shaped tubes [Beardsell et al., 2016; van Rees et al., 2012]. This simulation captures

the main topological changes and the pinched-off vortex filaments using a mesh-free

Lagrangian method, which was not feasible for any previous particle-based methods.

In particular, as shown in Figure 5.1, we compared our results with the ones ob-

tained by a conventional vortex particle method, which failed to capture such highly

anisotropic and topologically complicated phenomena. This comparison showcased

our method’s unique ability in modeling the topological transitions and evolution of

complicated vortex flow.

Vortices interacting with solids Figure 5.1 demonstrates the upward rising

smoke passing a static sphere and a rotating bunny swinging from side to side forming

a waving wake flow. We can see that our vortex segment method can capture the

boundary vortical details effectively and transport these vortices with the advected

segments in the flow field.

Cigarette smoke The simulations of rising cigarette smoke in Figure 5.3 show a

comparison between vortex segments and vortex particles. In each time step, a small

number of vortex elements in both examples rise from the bottom with an average

velocity forming a smoke effect as the vortex elements rising with strength gradually

decay to zero. The number of the simulation particles in the computation domain
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5.6 Results

converges to around 400. The small-scale vortical flow details are well-preserved in

the simulation produced by the segment method. In contrast, the simulation using

the particle method shows less turbulent features due to the insufficient amount of

particles being used.

Leapfrogging vortices As shown in Figure 5.4, two vortex rings are initialized us-

ing the same in-plane vorticity strength and different radii. The interaction between

the two rings delivers a leapfrogging motion along the common axis. The bigger ring

with smaller self-induced velocity shrinks and accelerates due to their mutual inter-

action and the smaller ring with larger self-induced velocity widens and decelerates.

The rear decrescent ring then passes through the leading enlarged ring. We show that

we can capture the leaping dynamics of the vortex rings in a long-term stable fashion

without maintaining the segment connectivities as in a conventional vortex filament

method.
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Chapter 6

Conclusion

The thesis focuses on challenges of the design, modeling and control of soft dynamic

systems. We show the workflow of designing a soft drone as well as providing a tool to

customize a 2D drone by sketching. We then learn the soft-body controller through

simulation data, decomposing the state space of the soft drone into three physics-

based geometric variables, and train three respective neural networks to represent

the dynamics of these variables. We show examples of incorporating the learned

neural network dynamic system into an enhanced LQR controller to control a variety

of tasks of soft drones.

For modeling, we propose a position based method that could learn a fluid dynamic

from particle positions. We learn stable fluids following the framework of position

based fluid, showing the network’s ability to resolve complex dynamics. The model

learned from a small number of particles could also be used to simulate fluid with

larger number of particles. We also develop a full set of parallelizable vortex dynamics

solvers with the support of dynamic solid boundaries to endorse the simulation of

various challenging flow phenomena and further simulate a series of complex flows,

such as the reconnection of vortex tubes.
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