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Abstract

In this work, we model users’ behavior on Twitter in discussion of the COVID-19

outbreak using inverse reinforcement learning to better understand the underlying forces

that drive the observed pattern of polarization. In doing so, we address the largely

untapped potential of inverse reinforcement learning to model users’ behavior on social

media, and contribute to the body of sociology, psychology, and communication research

seeking to elucidate the causes of socio-cultural polarization. We hypothesize that

structural characteristics of each week’s retweet network as well as COVID-19 data on

cases, hospitalizations, and outcomes are related to the Twitter users’ reward function

which leads to polarized discussion of COVID-19 on the platform. To derive the state

space of our inverse reinforcement learning model, we compute the relative modularity of

retweet networks formed from retweets about COVID-19. The action space is determined

by the distribution of mask-wearing sentiment in tweets about COVID-19. We build

a fine-tune a BERT text classifier to determine mask-wearing sentiment in tweet. We

design state features which reflect both structural characteristics of the retweet networks

and COVID-19 data on cases, hospitalizations, and outcomes. Our results indicate that

polarized Twitter discussion about COVID-19 weighs more heavily on features relating

to the severity of the COVID-19 outbreak and less heavily on features relating to the

structure of retweet networks. Overall, our results demonstrate the aptitude of inverse

reinforcement learning in helping understand user behavior on social media.
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Chapter 1

Introduction

Section 1.1

Polarization and COVID-19

The recent rise of social media allows individuals to access information from around the

world on an unprecedented scale. From 2005 to 2015, use of social media skyrocketed

- 65% of American adults now use social media [46]. Many of these users are young

people (90% of Americans aged 18-29 use social media platforms) but usage amongst

Americans 65 and older has also tripled from 2005-2015 [46]. Given its prominence,

social media have become invaluable tools in spreading information and opinions. Twitter

in particular has captured the attention of the American public in recent years. On Twitter,

users can interact with and post short messages known as "tweets". As of October 2020,

22% of American adults use Twitter [2]. Roughly 42% of Twitter users are active on the

platform daily [2]. A staggering 500 million tweets are sent every day [2].

Coupled with the rise in social media usage is another phenomenon: the rise of

partisan news and polarized discussion. Americans are more ideologically polarized now

than in recent decades. The 2020 U.S. presidential election exemplifies the deep divides

amongst the American public. Before the election, roughly 80% of all American voters

believed core American values set them apart from the other side [1]. Roughly 90% felt

that a victory by the hand of the opposition would yield "lasting harm" to the country [1].
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1.1 POLARIZATION AND COVID-19 INTRODUCTION

Representatives in the House of Representatives and the Senate are acutely polarized as

well. Political scientists have shown that Democratic and Republican legislators began

pulling apart in the 1970s reaching a degree of polarization not seen since the post-Civil

War era [11]. Polarization amongst the American public has been exacerbated by the rise

of partisan news media. Researchers blame both the increasingly partisan nature of news

media and the human tendency to seek out information that aligns with their political

ideologies for the rise of polarization [26]. Partisan news outlets put viewers in an "echo

chamber" of their beliefs, which might in turn polarize them [54]. These programs are

often designed to persuade and bolster the opinions of viewers, who often already share

similar beliefs. Given that 71% of Twitter users use the platform as their primary news

source [2], Twitter and related social media are now used as tools to proliferate partisan

news . Social media as a whole, including Twitter, have made the production, distribution,

and discovery of news cheaper and easier.

This is due in part because, even as access to information increases, human attention

limits the amount of information individuals can consume. Limits on human attention

require content to be filtered such as to only provide an individual with a digestible

amount of information. On social media, this information is filtered according to con-

sumer biases. As a result, individuals now find themselves in “echo chambers,” where

they only consume information that aligns with their opinions and beliefs. The outcomes

and implications of the polarization induced by social media can be dangerous.

The 2020 outbreak of the COVID-19 pandemic exemplifies the pervasiveness of

polarization in the United States. When asked whether they thought the United States

did a good job dealing with the outbreak of COVID-19, 78% of Republicans said yes

compared to 29% of non-Republicans [40]. This discrepancy in support for the governing

coalition was the largest amongst the 14 nations surveyed [40]. The divide extends across

many issues related to the pandemic, including contact tracing, the response of public

health officials, mask wearing, vaccinations, and the return to “normal”. Coverage of such

topics on social media has been riddled with misinformation and unfounded information.
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1.2 INVERSE REINFORCEMENT LEARNING INTRODUCTION

There have already been serious consequences to this trend. Echo chambers on social

media reinforced this misinformation and individuals’ misguided beliefs, leading to

racially motivated assaults and discriminatory events against specific racial groups

in the United States and beyond [55]. Moreover, the spread of misinformation and

unfounded information in the face of a public health threat interferes with the nation’s

recovering from such a crisis. These dangerous effects demanded researchers to take

a closer look at polarization over social media surrounding the COVID-19 pandemic.

Preceding the outbreak of the pandemic, scientists studied polarization through the lens

of sociological, psychological, and communication theories. Recent advances in the

computer science field, however, could offer new perspectives on how polarization on

social media platforms evolves.

Section 1.2

Inverse Reinforcement Learning

The problem of inverse reinforcement learning was primarily motivated by its potential

to inform computational models of animal and human learning. Computational models

that use reinforcement learning rely on a fixed and known reward function. For example,

scientists observed evidence of reinforcement learning occurring in bee foraging [39] and

songbird vocalization [50]. Yet in other instances animal and human learning, specifically

those involving multi-attribute reward functions, the reward function must be discovered

through empirical observation. One example of such behaviors is human economic

decision making, where different considerations must be taken into account. Computer

scientists have also found this problem applicable to the task of driving. When adults

learn to drive, they learn by demonstration rather than a specified reward function. They

learn by a process called apprenticeship learning, meaning learning from an expert.

Inverse reinforcement learning critically solves the problem of extracting a reward

function given observed, optimal behavior [44]. The inverse reinforcement learning

problem is informally characterized as follows:

3



1.3 OUR GOAL INTRODUCTION

Given

1. Measurements of an agent’s behavior over time under varied conditions,

2. Measurements of the agent’s sensory inputs,

3. A model of the environment

Determine The reward function being optimized.

The three givens along with the reward function form a Markov Decision Process

(MDP). More formally, a MDP is a tuple (S, A, T, R) where S is a finite set of states;

A is a finite set of actions, T is a set of state transition probabilities; and R is the

reward function, which we assume to be bounded in absolute value by 1. We let MDP/R

denote an MDP without a reward function. For the purpose of this work, we choose a

probabilistic approach to inverse reinforcement learning because of its resolution of the

ambiguity other inverse reinforcement learning techniques face. Namely, strategies such

as linear programming, structured maximum margin prediction and matching feature

expectations result in a large set of reward functions (including those of that are all

zeros) for which the observed policy is optimal. Instead, we take a probabilistic approach

known as maximum entropy inverse reinforcement learning which results in a single

stochastic policy.

Section 1.3

Our Goal

With COVID-19 continuing to spread across the world and trends of polarization contin-

uing on social media, it becomes increasingly important to understand the formation and

evolution of echo chambers. Inverse reinforcement learning opens the doors to gaining a

different perspective on how polarization on social media occurs. More specifically, we

seek to learn the reward function underpinning the human behavior that results in polar-

ization on Twitter. In doing so, we hope to better elucidate the learning process of human

4



1.3 OUR GOAL INTRODUCTION

ideological polarization. Polarization on social media helps propagate perceptions, even

when corrective measures are taken [20]. During a time where the United States faces a

grave public health and economic threat, proliferating only grounded truths is of utmost

importance. To achieve this, we present an maximum entropy inverse reinforcement

learning model to learn the reward function underlying the trend of polarization sur-

rounding COVID-19 on Twitter. To create the model, we collected tweets related to

COVID-19 from February, 2020 to September, 2020. Using this data, we derive both

a state space and an action space. We also incorporate data detailing number of cases,

number of hospitalizations, and number of deaths due to COVID-19 between February,

2020 and September, 2020 as features of the state space.

We derive the state space by constructing a retweet network using the collected

tweets. A retweet denotes that a user x has shared another user’s tweet. We construct

directed, weighted graphs based on users retweeting other users in a given week, wherein

a vertices u, v in graph G represent Twitter users and there is an edge e from u to v

if user v retweeted user u. We also consider how many times a user retweets another

user by adding a weight w to edge e denoting the number of times user v retweeted

user u. We then find the modularity of such retweet networks to classify the relative

polarization occurring in each network as "high", "medium", or "low". Each week can

thus be associated with a state by classifying the relative modularity of the week’s retweet

network. The classifications of each retweet network form the state space for our inverse

reinforcement learning model.

To derive the action space, we creating a text classification model which classifies

tweets as revealing pro- or anti-mask-wearing sentiment. We use the pretrained Bidirec-

tional Encoder Representations from Transformers (BERT) model and add a layer which

classifies tweets as pro- or anti- mask-wearing. Using these classifications, we can then

find the distribution of pro- and anti- mask tweets amongst all of the collected tweets.

We use entropy to measure the level of agreement amongst mask-wearing sentiment

classifications. The distribution of mask-wearing sentiment classifications for a given

5



1.3 OUR GOAL INTRODUCTION

week can be classified as "high", "medium", or "low". Each week can thus be associated

with an action by classifying the relative entropy of the distribution of mask-wearing

sentiment in tweets from that week. The classifications of the distribution of tweet

sentiments form the action space for our inverse reinforcement learning model.

Using structural characteristics of the constructed retweet networks as well as

COVID-19 case data, we define features of each state of the agent. For each week

and its associated state, we calculate the density, the number of connected components,

and the density of the largest connected component in the week’s retweet network. These

basic structural characteristics will help constitute the network-related state features.

We also calculate the number of new cases of COVID-19, number of new COVID-19

hospitalizations, and number of new deaths due to COVID-19. These measurements will

help constitute the COVID-19-related state features. Then, for each state of the agent,

we calculate the average of both the network-related measurements and the COVID-19

related measurements across all weeks associated with the given state.

A defining feature of our work is the use of inverse reinforcement learning models to

examine human socio-cultural trends on social media. Our hypothesis is three-fold:

• Pro- and anti-mask-wearing sentiment can be predicted based on users’ tweets

alone.

• Retweet networks constructed will show modularity that increases over time.

Increased modularity over time would indicate the formation of "echo chambers"

within conversations related to COVID-19 on Twitter.

• Structural characteristics of each week’s retweet network as well as COVID-19

data on cases, hospitalizations, and outcomes are related to the Twitter users’

reward function which leads to polarized discussion of COVID-19 on the platform.

This work expands on previous applications of inverse reinforcement learning models

which, to the best of our knowledge, are limited predominately to modelling route choice,

6



1.4 OVERVIEW OF RESULTS INTRODUCTION

football players’ strategies, and robot navigation. Significantly, we present an approach

that offers a new computational technique to examining user behavior on social media.

Section 1.4

Overview of Results

We constructed a text sequence classifier using a pretrained Bidirectional Encoder

Representations from Transformers (BERT) model and added a layer which classifies

tweets as pro- or anti- mask-wearing. The classifier did not perform significantly better

than a dummy classifier, however.

We also constructed a retweet network based on our collected data. For a given week,

we create an edge between two users if one retweeted the other. The weight of this

edge denotes the number of times one of the users retweeted the other. We examine the

modularity of these networks, which reveals the strength of division of a network into

communities. Contrary to our hypothesis, the modularity of retweet networks did not

increase over time. However, our measurements of modularity remain relatively high

across all weeks in the collection period.

We were indeed able to extract a reward function using the state space and action

space generated from both text classifications of tweets and structures of the retweet

networks. Twitter users’ rely more heavily on COVID-19-related features than retweet

network-related features when demonstrating polarized COVID-19 discussion on Twitter.

This might signal that event-related characteristics might be more influential on Twitter

polarization related to COVID-19 than structural characteristics of retweet networks.

Further, this result indicates that, given a well formed state and action space, inverse

reinforcement learning can be used to discover the reward function of human behavior

on social media. Also, our results demonstrate that inverse reinforcement learning can be

an effective approach to test whether certain factors influence human behavior on social

media.

7



Chapter 2

Related Work

Section 2.1

Polarization

Americans are more ideologically polarized now than in recent decades. The 2020 U.S.

presidential election exemplifies the deep divides amongst the American public. Before

the election, roughly 80% of all American voters believed core American values set

them apart from the other side [1]. Roughly 90% felt that a victory by the hand of the

opposition would yield "lasting harm" to the country [1]. Representatives in the House

of Representatives and the Senate are acutely polarized as well. Political scientists have

shown that Democratic and Republican legislators began pulling apart in the 1970s

reaching a degree of polarization not seen since the post-Civil War era [11]. However, the

trend of polarization is not limited to the United States. Across the globe, social media

users form polarized opinions based on information (as well as misinformation) regarding

socio-cultural activities, products, and services. Consider the following examples of

polarizing events taking place outside of the United States:

1. In Nigeria, fake news of a infant’s bloodied corpse induced polarizing opinions,

and the ensuing violence led to the killing of 10 people [34].

8



2.1 POLARIZATION RELATED WORK

2. In Chile, secondary school students organized a campaign against metro fare

evasion that resulted in protests, instability, violence, and deaths as well as damage

to cultural heritage sites and museums [57].

3. In India, efforts to suppress the release of a controversial film backfired, resulting

in widespread distribution of the film over social media [17].

These events reveal the potential of polarized opinions to cause widespread human

suffering and destruction of property [45]. With the recent rise of social media, users

across the globe are given the ability to access and share information on a massive scale.

This widespread consumption of information via social media might induce polarized

opinions that can impact behavior. Sociology, psychology, and communication research

have long acknowledged the importance of understanding polarization.

In the sociological domain, game theory, muted group theory, social identity theory,

as well as theories of social distance and protracted social conflict have been used to

explain polarization. Woon employs behavioral game theory to understand the connection

between voter behavior and candidate positioning that leads to polarization amongst

political candidates [60]. Korn defines muted group theory as inequity in language

yielding marginalized groups unable to express themselves, in turn creating a loss and

distortion of information that produces polarization [29]. Other sociologists have argued

that strong social identity, or social attachments to one’s group memberships, create

attitudes that are both partisan and uncontested ideologically [25, 59]. Social distance

in the sociological domain refers to the level of trust felt towards another individual

or group. Akerlof suggests that social distance might induce ideological behavior that

results in polarization [3]. Protracted social conflict based in ethnic, racial, cultural, and

religious hatreds can also result in polarization [7].

The psychological domain offers further theoretical explanations for polarization.

Cognitive dissonance, the phenomenon of positive feelings experienced when con-

fronting opinion-reinforcing information, might extend towards consumption on social

media, influencing polarization [41]. Similarly, confirmation bias is the human tendency

9



2.1 POLARIZATION RELATED WORK

towards information that confirms preexisting opinions and can result in polarization

[58]. On the other hand, motivated skepticism is the human tendency of being more

skeptical towards information that does not align with one’s preexisting opinions and

can also lead to polarization [22, 38]. Further psychological explanations of polarization

include theories of motivated reasoning [53] and anti-reflexivity [37].

Polarization can also be explained through the lens of communication theories. For

one, the media plays an influential role dictating the importance of issues, thus polarizing

the audience [24]. Similarly, cultivation theory explains the alignment between reality

portrayed through the media and society’s lived reality, which can lead to polarization

[51]. Elaboration Likelihood Models [4, 23], flaming [13], and spiral of silence theories

[14, 31] further elucidate the causes of polarization.

While various disciplines attempt to explain the roots of socio-cultural polarization,

the rise of social media and polarized discussions on social media offer new data sources

for investigating this phenomenon. Echo chambers, wherein users consume information

which aligns with their held opinions [10, 19], and their potential to have polarizing

effects demand further analysis of polarization induced by social media.

One timely issue that has been the source of polarizing debate is the outbreak of

COVID-19. Potential for polarized discussion extends across many issues related to

the pandemic, including contact tracing, the response of public health officials, mask-

wearing, vaccinations, and the return to “normal”. The present work offers a computa-

tional approach for looking at polarization. By using a probabilistic learning approach to

investigate user behavior in COVID-19 Twitter discussion, we demonstrate a technique

for testing hypotheses of the causes of socio-cultural polarization on social media that

differs from traditional sociological, psychological, and communication approaches.

10
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Section 2.2

Analysis of COVID-19 Discussion on Twitter

Since the outbreak of COVID-19, studies have leveraged Twitter data to monitor and

analyze discussion related to the virus.

Studies employ different approaches to investigate the content and sentiment of

COVID-19 Twitter discussion. Manguri et al. use the TextBlob library in python to per-

form sentiment analysis on tweets collected across seven days in April 2020 containing

the keywords "COVID-19" and "coronavirus" [36]. Similarly, Boon-Itt and Skunkan

explore public perception of COVID-19 on Twitter by finding frequent keywords and per-

forming both sentiment analysis and topic modelling on roughly 100,000 collected tweets

[9]. Specifically relating to masks, Sanders et al. use clustering and sentiment analysis

techniques to organize tweets in the first 5 months of 2020 relating to mask-wearing into

high-level themes and then use automatic text summarization to extract key words and

topics for individual clusters [49]. In addition,[42] pre-train a transformer-based model

on a large corpus of tweets from January, 2020 to April, 2020 related to COVID-19 to

create COVID-Twitter-BERT [42]. Rodriguez et al. use communicative content analysis

to compare the spread misinformation on Twitter and Sina Weibo in early February,

2020 [48]. Jiang et al. seek to quantify partisan and geographic differences in online

conversations about COVID-19 in the United States from January, 2020 to April, 2020

[28].

While previous work investigates the content and sentiment of discussion about

COVID-19 on Twitter, many studies leverage data from short time frames towards

the beginning of the outbreak. As the COVID-19 outbreak continues into 2021, more

data has become available for analysis and Twitter users’ opinions on various issues

are continually shaped. As more information is disseminated regarding the efficacy of

wearing masks in curtailing the spread of COVID-19, further analysis is necessary to

capture the scope of Twitter discussion on the topic. By leveraging data from across seven

11



2.3 TWITTER RETWEET NETWORKS RELATED WORK

months of the COVID-19 outbreak, the present work considers the evolution of Twitter

discussion of COVID-19 and mask wearing. Specifically, we present a mask-wearing

sentiment classifier trained on tweets about COVID-19 spanning 28 weeks. Thus, our

analysis of COVID-19 and mask-wearing discussion on Twitter might offer insight that

takes into account a wider trajectory of the outbreak.

Section 2.3

Twitter Retweet Networks

Previous work uses various aspects of user interactions on Twitter to draw conclusions

about how information is shared on the platform. However, Bi & Cho demonstrate

that retweet networks provide a clearer signal to identify users’ topical interests [8].

Retweet networks are conceptualized through the use of graphs, wherein nodes are

users and edges denote one user retweeted another. The aptitude of retweet networks in

investigating patterns of information sharing can be seen in many studies. For example,

in investigating political polarization on Twitter, it is demonstrated that retweet networks

have a partisan structure while user-to-user mention networks do not [15]. Stewart et

al. use retweet networks to elucidate the contributions of Twitter trolls in politically

divided conversations on Twitter [52]. Retweet networks have also been used to find

which users have retweeted or have been retweeted in the past [61]. In working with

retweet networks, many studies calculate the modularity of the network. Modularity can

be defined as how well a network can be divided into smaller clusters [43]. Thus, in the

retweet network of a polarized discussion, one would expect the graph to have a higher

measure of modularity.

Since retweet networks demonstrate promising results in analyzing polarized dis-

cussions on Twitter, the present work constructs retweet networks for each week in

the collection period. We use modularity to examine communities formed within each

retweet network.

12



2.4 INVERSE REINFORCEMENT LEARNING RELATED WORK

Section 2.4

Inverse Reinforcement Learning

The problem of inverse reinforcement learning was primarily motivated by its potential

to inform computational models of animal and human learning.

Reinforcement learning seeks to find an optimal policy which maximizes the rewards

of an agent [56]. Computational models that use reinforcement learning rely on a fixed

and known reward function. For example, scientists observed evidence of reinforcement

learning occurring in bee foraging [39] and songbird vocalization [50]. Yet in other

instances animal and human learning, specifically those involving multi-attribute reward

functions, the reward function must be discovered through empirical observation. In these

cases inverse reinforcement learning is used as a tool to estimate the reward function

and learn a demonstrator’s policy of action [44]. A real-world example where the reward

function unknown is human economic decision making, where different considerations

must be taken into account. Computer scientists have also found this problem applicable

to the task of driving. When adults learn to drive, they learn by demonstration rather

than a specified reward function. They learn by a process called apprenticeship learning,

meaning learning from an expert. Inverse reinforcement learning critically solves the

problem of extracting a reward function given observed, optimal behavior [44]. The

inverse reinforcement learning problem is informally characterized as follows:

Given

1. Measurements of an agent’s behavior over time under varied conditions,

2. Measurements of the agent’s sensory inputs,

3. A model of the environment

Determine The reward function being optimized.

The three givens along with the reward function form a Markov Decision Process

(MDP). More formally, a MDP is a tuple (S, A, T, R) where S is a finite set of states; A

13



2.4 INVERSE REINFORCEMENT LEARNING RELATED WORK

is a finite set of actions, T is a set of state transition probabilities; and R is the reward

function, which we assume to be bounded in absolute value by 1. We let MDP/R denote

an MDP without a reward function.

As inverse reinforcement learning was first proposed, the learner receives an optimal

policy as input, as well as the state space, action space, and fully known transition

probabilities. A critical challenge of this form of inverse reinforcement learning is that

many reward functions (e.g. ones in which all reward values are zero) can be considered

optimal for the given policy [44]. This creates ambiguity in the solution to an inverse

reinforcement learning problem. Thus, many approaches have been used for inverse

learning, including margin-based optimization and entropy-based optimization.

The goal of maximum margin prediction is to learn a reward function that better

explains the demonstrated policy by some margin as compared to alternative policies

[5]. This approach eliminates ambiguity of inverse reinforcement learning solutions by

converging to a solution that maximizes some margin. Different approaches for defining

and calculating the margin can be employed. Across maximum margin prediction tech-

niques, a hypothesis for the policy is created each time the reward weights are updated.

Thus, when the expert displays sub-optimal behavior, a linear reward function cannot be

found [62].

To remedy this, the principle of maximum entropy can be applied under the assump-

tion that the distribution over behaviors or trajectories that maximizes entropy minimizes

commitments to any particular path beyond the constraints of matching feature expecta-

tions [27]. This approach is most prevalent in resolving the ambiguity of other inverse

reinforcement learning solutions.

Inverse reinforcement learning has been implemented to estimate the reward function

in a variety of problems. For example, maximum entropy inverse reinforcement has been

used to model route choice of taxi drivers [62]. Similar inverse reinforcement learning

techniques hav also been employed to understand football players’ strategies [32] and
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robot navigation [30]. Liu et al. model human risk decision making using maximum

entropy inverse reinforcement learning [33].

Despite its promise for understanding human behaviors, few studies examine social

media users’ behavior using inverse reinforcement learning. One study investigates

the effects of social-psychological feedback on human behavior on social media using

inverse reinforcement learning [16]. In another study, inverse reinforcement learning

is used to understand differences in behavior between troll and non-troll accounts on

Twitter [35]. Still, the potential of inverse reinforcement learning to help understand

human behavior on social media remains largely untapped. Thus, in the present work,

we examine polarization on Twitter using a maximum entropy inverse reinforcement

learning framework to better understand users’ behavior.
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Chapter 3

Data Collection and Preprocessing

Section 3.1

Data Collection

We rely on the publicly available COVID-19 Twitter data set which has been collected on

an ongoing basis since January 28, 2020. Chen et al. used Twitter’s streaming API and

Tweepy to track 76 specific English keywords relating to COVID-19 [12]. As of May

3, 2021, the authors collected 1,443,871,621 tweets. For this purpose of this work, we

use tweets collected between January, 2020 and September, 2020. We randomly sample

100,000 unique tweets per day between this time frame.

We also collect data from The COVID-19 Tracking Project at The Atlantic. This

includes cross-checked data from 56 states and territories in the United States regarding

testing, hospitalizations, and patient outcomes [47]. The data set spans January, 2020 up

to March, 2021. For the purpose of this work, we store the number of new cases, new

deaths, and new hospitalizations. New cases of COVID-19 include both confirmed and

probable cases. New hospitalizations include patients hospitalized with confirmed or

suspected COVID-19 cases. New deaths include fatalities with confirmed or probable

COVID-19 diagnosis. We only use data collected between January, 2020 and September,

2020.
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3.2 PREPROCESSING DATA COLLECTION AND PREPROCESSING

Section 3.2

Preprocessing

Amongst the 100,000 sampled tweets per day, we only include tweets that are written in

the English language. We store data containing: the hashtags included in the tweet; the

user ID of the tweet’s author; the Twitter username of the author; the name of the author;

the text of the tweet; any linked URLs contained in the tweet; the author’s Twitter bio;

the user ID of the retweeted tweet’s author; the text of the retweeted tweet; and the time

of the tweet. If the tweet is an original tweet, i.e. not a retweet, we store "None" under

the retweeted user’s ID and the retweeted text. We extract the date the tweet was written

from the time of the tweet. For some tweets, the time of the tweet is stored as "None",

and such tweets are discarded from the data set. Using the time of the tweet, we find the

Gregorian week number in which the tweet was written. We use the Gregorian week

number as an index to collect all tweets written in the same week for examining both

mask-wearing sentiment and retweet network structure. The corresponding 2020 dates

for each Gregorian calendar week number can be found in Table A.1.
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Chapter 4

Methods

Section 4.1

Mask-Wearing Sentiment Classification

4.1.1. Bidirectional Encoder Representations from Transformers (BERT)

The foundation of our mask-wearing sentiment classifier is a pretrained Bidirectional

Encoder Representations from Transformers (BERT) classifier. BERT is a language

representation model designed to pre-train deep representations of unlabeled text [18].

The model is pre-trained using a large English corpus using a masked language modeling

(MLM) objective. BERT can be fine-tuned with only one additional output layer and

is suitable for a wide range of natural language processing tasks without requiring

significant task-specific architecture modifications.

For the purpose of this work, we use the ’bert-base-uncased’ pretrained model. This

model is uncased, so it does not make a difference between ’english’ and ’English’ when

processing textual data.

4.1.2. Mask-Wearing Sentiment Classifier

We create a model which classifies the text of a tweet as either pro-mask-wearing or

anti-mask-wearing. We examine tweets spanning the collection period and parse the
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hashtags included in the tweet. We compile a list of common hashtags that reveal an

anti-mask-wearing sentiment:

• #NoMask

• #BurnYourMasks

• #AntiMask

• #AntiMaskers

• #NoLockdowns

• #NoNewNormal

• #WeWillNotComply

For any tweet in the data set which contains at least one of the above hashtags, we

label the tweet with a 0 to denote anti-mask-wearing sentiment. We found 5 tweets

containing at least one of the above hashtags. Similarly, we compile a list of common

hashtags that reveal a pro-mask-wearing sentiment:

• #WearAMask

• #MasksSaveLives

• #WearADamnMask

• #WearAMaskSaveALife

• #WearYourMask

For any tweet in the data set which contains at least one of the above hashtags, we

label the tweet with a 1 to denote pro-mask-wearing sentiment. We found 23 tweets

containing at least one of the above hashtags.

We collect all tweets with the label 0 or 1 to form a labeled data set to train and

validate a supervised learning model. Thus, 28 tweets are included in this data set.
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We then transform the text of each tweet in the data set into a list of strings called

tokens, where each token is one word or punctuation mark. We accomplish this using

the tokenizer from the Transformers library. We then map each token to an ID, which is

an integer representation of the token. After tokenizing the data, we split this data set

using 90% for training and 10% for validation.

We use a pretrained Bidirectional Encoder Representations from Transformers

(BERT) model (bert-base-uncased). We fine-tune the model for pro-/anti-mask-wearing

sentiment prediction using the data set defined above. We add a linear classification

layer to the BERT model so that the fine-tuned model outputs either a 0 (anti-mask) or 1

(pro-mask).

After validation, the fine-tuned BERT model performs with 67% accuracy. We com-

pare this with a "dummy" classifier which uses a stratified strategy to make predictions.

The dummy classifier performs with a 66% accuracy.

4.1.3. Discussion

The fine-tuned BERT classifier does not perform significantly better than the baseline

dummy classifier. One possible explanation for this result is the lack of labeled training

and validation data. Consequentially, it is possible that our classifier over-fits the training

data, and performs poorly when generalizing to other examples. One possible solution

to this problem is to get more labeled data. We could expand the list of hashtags such

that more tweets could be included in the labeled data set. This approach runs the risk of

mislabeling tweets as pro- or anti-mask-wearing in the training data. Another approach

would be to derive the relevant hashtags using clustering, as in [49]. In this study, k-means

clustering is used to cluster tweets in their embedding space, and k-means is applied

again to each cluster to form a two-level cluster hierarchy [49]. The authors then find key

words to describe and differentiate between each of the clusters and sub-clusters. For

the present work, performance might be improved by deriving key words and hashtags

using a clustering approach to represent pro- and anti-mask-wearing sentiment.
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Section 4.2

Retweet Networks

4.2.1. Creation of Retweet Networks

To examine the structure of retweets amongst Twitter discussion related to COVID-19,

we construct a set of undirected, weighted graphs. For each week in the collection period,

we find all of the tweets in which one user is retweeting another user. We identify tweets

which are retweets by checking whether a retweeted user ID is stored for the given tweet.

We filter the retweets for each week to include only users who are included in every

week’s collection of retweets. Figure 4.1 displays the number of retweets for each week

after filtering users.

For each week, we construct a weighted, un-directed graph where each there is an

edge between a user u and a user v if either user retweeted the other. The weight of the

edge is equal to the number of retweets between the two users. Thus, the weight of the

undirected edge from u to v is given by:

wu,v = wv,u = ru,v + rv,u (4.1)

In Equation 4.1, ru,v is the number of times user u retweeted user v. rv,u is the number

of times user v retweeted user u.

Figure 4.2 shows the graphs constructed for the weeks of February 24 to March 1,

March 2 to March 8, March 16 to March 22, and March 23 to March 29, 2020.

4.2.2. Modularity

We use a measurement of network modularity to investigate polarization in discussions

on Twitter surrounding COVID-19. The modularity of a network measures the strength

of division of the network into different communities. Thus, in the retweet network of a

polarized discussion, one would expect the graph to have a higher measure of modularity.

Using our constructed retweet networks, we calculate the modularity of the graph for
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Figure 4.1: The number of retweets included in each week’s retweet network. We identify
a week by it’s Gregorian calendar number. The corresponding 2020 dates for each week
can be found in Table A.1. We did not create retweet networks for weeks with less than
10,000 cleaned retweets.
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Figure 4.2: Retweet networks for four weeks in 2020. Each week contains the same set
of Twitter users. Each node in the network is a Twitter user, and an edge between two
users denotes one user retweeted the other. The graph for week 9 (upper left) has 87
nodes and 63 edges. The graph for week 10 (lower left) has 262 nodes and 258 edges.
The graph for week 12 (upper right) has 163 nodes and 139 edges. The graph for week
13 (lower right) has 188 nodes and 168 edges.
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Week # Nodes # Edges # CCs Modularity
9.0 87 63 24 0.914792

10.0 262 258 10 0.802715
11.0 190 169 22 0.900658
12.0 163 139 24 0.910247
13.0 188 168 20 0.905614
14.0 189 168 21 0.907649
15.0 220 204 17 0.877533
16.0 234 220 17 0.882972
17.0 226 210 17 0.869142
18.0 182 164 19 0.908149
19.0 191 175 16 0.887520
20.0 213 197 17 0.871320
21.0 132 109 23 0.891405
22.0 123 102 21 0.918800
23.0 164 143 22 0.887070
26.0 65 42 23 0.932396
27.0 191 173 19 0.902213
28.0 241 232 11 0.871118
29.0 252 241 13 0.898735
30.0 245 236 14 0.879035
31.0 209 203 12 0.847282
32.0 91 69 22 0.886917
33.0 91 67 24 0.807574
34.0 146 131 16 0.868075
35.0 127 105 22 0.898015
36.0 129 108 21 0.897098
37.0 179 166 16 0.877060
38.0 149 133 17 0.897547

Table 4.1: Summary statistics of retweet networks for each week. CCs indicates con-
nected components of a network. The calculations of modularity are given by Equation
4.3.

each week. For the purpose of this work, we use the Louvain algorithm to help calculate

modularity. The Louvain algorithm is robust towards weighted graphs, thus making it

suitable for this application [6].

In computing modularity we first find the partition of the graph nodes which max-

imizes modularity based on the Louvain heuristics [6]. This is called the modularity

optimization step. The Louvain algorithm for community detection has two phases that

are repeated iteratively. During the first phase, each node in the weighted graph contain-

ing N nodes is assigned to its own community. Then, for each node i we examine each
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of its neighbors j and calculate the gain of modularity achieved by removing i from its

community and placing it in j’s community. The change in modularity given by moving i

into community C is given by:

∆Q =

[
∑in+2ki,in

2m
−
(

c+ ki

2m

)2
]
−

[
∑in

2m
−
(

∑tot

2m

)2

−
(

ki

2m

)2
]

(4.2)

Where ∑in is the sum of the weights of the edges inside C, ∑tot is the sum of the

weights of the edges incident to nodes in C, ki is the sum of the weights of the edges

incident to node i, ki,in is the sum of the weights of the edges from i to nodes in C,

and m is the sum of the weights of all of the edges in the network. We place i in the

community where the gain, ∆Q, is both positive and maximum, or else it stays in its

original community. This phase is repeated until no node can be moved to improve

modularity.

In the second phase of the Louvain algorithm, we build a new network wherein

the nodes are the communities found in the first phase. This is called the community

aggregation step. The weight of the edges between two new nodes are equal to the sum

of the weight of the edges between nodes in the corresponding two communities. Edges

between nodes of the same community lead to self-loops in the new graph. Once this

step is complete, the modularity optimization step is reapplied to the resulting weighted

network followed by another iteration of the community aggregation step. Iteration of

these two phases continues until there are no more changes and maximum modularity is

attained.

To find the partition that maximizes the modularity as defined above, we use the

Python-Louvain API [6]. We then compute the modularity of the partition using the

same library as follows:

Q =
1

2m ∑
i, j
[Ai j−

kik j

2m
]δ (ci,c j) (4.3)

Where Ai j is the edge weight between node i and node j; kik j are the sum of the edge

weights attached to nodes i and j, respectively; m is the sum of all edge weights; ci,c j
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Figure 4.3: Examples of two retweet networks in which different color nodes represent
different communities in the network. Communities are computed by finding the partition
of nodes which maximizes the modularity of the network. The network on the left is the
network with the highest modularity across the collection period. The network on the
right is the network with the lowest modularity across the collection period.

are the communities of nodes i and j, respectively; and δ is the Kronecker delta function.

Figure 4.3 shows two retweet networks wherein different colors of nodes represent

different communities in the retweet networks. We store the maximized modularity for

each retweet network.

The modularity, number of nodes, and number of edges in the retweet networks over

the course of 28 weeks can be shown in Table 4.1.

4.2.3. Discussion

We hypothesized that the networks would display increasing modularity over time. This

result would indicate the formation of "echo chambers" within conversations related to

COVID-19 on Twitter. The resulting networks did not demonstrate increased modularity

over time. There are several possible explanations for such a result. For one, it is possible

that formation of echo chambers did not occur within conversations related to COVID-19

on Twitter. However, the measurements of modularity stayed relatively high (i.e. close to

1) and consistent as can be seen in Table 4.1. This could indicate that polarization levels

stayed relatively high and consistent across the observed 28 weeks.
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There are also other possible ways to construct the graph of retweets. For this study

we observe the structure of a weighted, un-directed graph. However, it is possible to

construct a directed graph using this data, wherein a directed edge from user u to user

v denotes that user v retweeted user u. The weight of such an edge would denote the

number of times user v retweeted user u. If the network were to be constructed as such, it

would be necessary to devise an implementation of community detection and modularity

computation which takes into account directed and weighted edges.

Section 4.3

Inverse Reinforcement Learning Model

We model the Twitter community behavior of polarization surrounding COVID-19 using

Markov Decision Process. We argue that the Markovian property of transition and action

holds for polarization with certain assumptions when setting up the state and action

spaces. Specifically, we set states as the relative level of modularity of a given week’s

retweet network as compared to the modularity of other networks across the collection

period. The state can be represented by 0 (low modularity), 1 (medium modularity), or

2 (high modularity). The next state of the retweet network we assume depends on the

previous week’s retweet network state and current action. Our action space is comprised

of the relative entropy level of mask-wearing sentiment classification for a given week as

compared to other weeks across the collection period. Lower entropy indicates a higher

level of agreement regarding mask-wearing. The action can be represented by 0 (low

entropy), 1 (medium entropy), or 2 (high entropy). We consider a trial to be a span of

time or trajectory of states whose lengths range from 2 weeks to 28 weeks.

On Twitter, the group of users discussing COVID-19 resemble an agent in a rein-

forcement learning task. The goal of the group of users is to collect the largest reward in

a single trial from forming communities or "echo chambers" within the group of users

without knowing the structure or modularity of communities. We can regard this process

of a group of users learning an unknown reward function. Because of the irrational nature
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of groups of users, the true reward function (modularity of communities over time) is

never learned. Instead, the group of users’ sentiment regarding mask-wearing provides

data that demonstrate potential underlying influence of historical trials to current ones.

This means the data is not independent with each other between different trials.

4.3.1. State Space

We use the constructed retweet networks to derive the state space for our inverse rein-

forcement learning model. First, we sort the stored modularity values for each week’s

retweet network in increasing order. We classify each week as 0 (low modularity), 1

(medium modularity), or 2 (high modularity). The state of the agent is then the modularity

level of the given week’s retweet network.

4.3.2. Action Space

We use classifications of tweets based on their sentiment regarding mask-wearing to

generate the action space for our inverse reinforcement learning model. We classify the

mask-wearing sentiment of all of the tweets in our data set as pro- or anti- mask-wearing.

For each week in the collection period, we calculate the entropy of the distribution of

classifications from that week. We sort the entropy values in increasing order and classify

each week as 0 (low entropy), 1 (medium entropy), or 2 (high entropy). Lower entropy

indicates a higher level of agreement regarding mask-wearing. In other words, we use

entropy level as a proxy for the observed level of agreement amongst Twitter users

sentiment on mask-wearing. In designating the mask-wearing sentiment of users’ tweets

as the action space, we also make the assumption that the next state of the agent, i.e. the

modularity of the following week’s retweet network, relies on both the current state and

the entropy level of mask-wearing sentiment of users’ tweets for the current week. The

action taken by the agent for a given week is then the entropy level of mask-wearing

sentiment of the week’s tweets.
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4.3.3. State Features

We construct the state features in a way that reflects information from historical trials.

Table 4.2 shows our state features, calculated for each week’s retweet network.

In constructing the state features, we assume potential influences on the state of a

given week’s retweet network, apart from users’ sentiment regarding mask-wearing,

include features related to COVID-19 and features related to the structure of retweet

networks.

To derive features related to COVID-19, we use data from The COVID-19 Tracking

Project at The Atlantic. This includes cross-checked data from 56 states and territories

in the United States regarding testing, hospitalization, and patient outcomes. For the

purpose of this work, we store the number of new cases, new deaths, and new hospi-

talizations. New cases of COVID-19 include both confirmed and probable cases. New

hospitalizations include patients hospitalized with confirmed or suspected COVID-19

cases. New deaths include fatalities with confirmed or probable COVID-19 diagnosis.

We aggregate the number of new cases, the number of new deaths, and the number

of new hospitalizations for each of the 28 weeks in our collection period for retweet

networks. Then, for each low, medium, or high modularity state, we calculate the average

number of new cases, average new hospitalizations, and average new deaths for weeks

in this state. We use the average number of new cases, the average number of new

hospitalizations, and average number of new deaths as features of a given state.

We also include features related to the retweet networks in our state features. We

include three basic characteristics of retweet networks: density of edges, number of

connected components, and density of the largest connected component. The density of

edges is calculated by:

d =
2m

n(n−1)
(4.4)

For a retweet network G, n is the number of nodes and m is the number of edges in G.

The number of connected components in retweet network G is the number of subgraphs
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Feature Value Meaning
1 Float Avg. number of new deaths for this state
2 Float Avg. number of new hospitalizations for this state
3 Float Avg. number of new cases for this state
4 Float Avg. density of retweet network for this state
5 Float Avg. number of CCs in retweet network for this state
6 Float Avg. density of largest CC in retweet network for this state

Table 4.2: State features with value and meaning. CC denotes connected component.

in G where each pair of nodes in the subgraph is connected. The largest connected

component is the largest subgraph of G in which each pair of nodes is connected, and the

density of the largest connected component is calculated by applying Equation 4.4 to the

subgraph with the largest number of nodes. For each low, medium, or high modularity

state, we calculate the average density, average number of connected components, and

average density of the largest connected component in the retweet networks. We use the

average density, average number of connected components, and average density of the

largest connected component as features of a given state.

Overall, we derive 6 state features for each state. Features and their meanings are

listed in Table 4.2

4.3.4. Maximum Entropy Inverse Reinforcement Learning

In a traditional Markov Decision Process (MDP), the aim is to find a policy for an

agent. The policy specifies which action an agent will choose when in a given state.

A MDP assumes that the reward function of agents is known. In real world scenarios,

humans often do not explicitly know the reward function of their actions and behaviors.

In imitation learning, an agent observes the states and actions of an expert over the

course of different trajectories. A trajectory can also be known as a path, or a sequence

of states that an agent will take in one example demonstration. Inverse reinforcement

learning takes a different approach, reducing the problem to recovering the reward

function that makes behavior of an agent closely mimic the demonstrated behavior.

Inverse reinforcement learning assumes that there is a linear relationship between the

reward value of a state R and the specified features associated with states, fs j . This
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linear function is parameterized by some reward weights, θ . Thus, the reward value of a

trajectory ζ , is the sum of state rewards along that trajectory. This is equal to the reward

weight applied to the path feature counts, which are the sum of the state features along

the path:

reward(fζ ) = θ
T fζ = ∑

s j∈ζ

θ
T fs j (4.5)

The most prevalent inverse reinforcement learning model is the maximum entropy

inverse reinforcement learning model, as proposed by [62]. This model finds the reward

weights which maximizes the entropy of trajectories:

θ = argmaxθ L(θ) = argmaxθ ∑
examples

logP(ζ̃ | θ ,T ) (4.6)

We can use gradient descent to optimize reward weights. The gradient is the differ-

ence between the expected empirical feature counts and the learning agent’s expected

feature counts. The learning agent’s feature counts can be expressed in terms of expected

state visitation frequencies, Dsi .

∇L(θ) = f̃−∑
ζ

P(ζ | θ ,T )fζ = f̃−∑
si

Dsifsi (4.7)

Dsi is derived using Algorithm 1 in [62] and f̃ is calculated by:

f̃ = ∑
Pathζi

P(ζi)fζi (4.8)

Now, we can find a policy distribution based on the reward weights that maximizes

the entropy of trajectories. The policy distribution takes the form:

P(at | st) ∝ exp(θ T f(st)) (4.9)

Using the maximum entropy inverse reinforcement learning algorithm as defined

above, we find reward weights which make the Twitter community behavior appear
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Figure 4.4: Weights of features for inverse reinforcement learning models trained using
different trajectory (i.e. length n for path ζ = {s1, ...,sn}).

near optimal under the learned reward function. Using our 28 weeks of collected data

as expert behavior, we find calculate optimal reward weights for different trajectory

lengths. To generate different trajectories, we partition the 28 week sequence of states

into sub-sequences ranging from 2 state (week) long trajectories to a single 28 week long

trajectory. The reward weights for different trajectory lengths can be seen in Figure 4.4.

The reward weights from the maximum entropy inverse reinforcement learning model

trained on trajectories of length 2 can be seen in Figure 4.5.
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Figure 4.5: Weights of features from the inverse reinforcement learning model with
trajectory length of 2 and 14 trajectories. The meaning of the 6 features are listed in
Table 4.2.
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4.3.5. Discussion

The weights of features for trajectories of length 2 are in Figure 4.5, and weights of

features across all generated trajectory lengths are in Figure 4.4. Interestingly, overall,

Twitter users show higher weight of "Average number of new hospitalizations for this

state" (feature 2), possibly indicating a general effect of COVID-19 resource availability

on Twitter polarization in COVID-19 discussion. Moreover, Twitter users weigh sig-

nificantly more on COVID-19-related features and weigh less on characteristics of the

retweet networks. The "Average number of new deaths for this state" (feature 1) and

"Average number of new cases for this state" (feature 3) still show higher weight than

the network-related features. This might indicate that polarization of Twitter discussion

of COVID-19 is more heavily impacted by the severity of the outbreak at a given time,

rather than the structure of Twitter discussions of the topic. Amongst the network-related

features, however, "Average number connected components in retweet network for this

state" (feature 5) weighed highest. Thus, the number of sub-networks in which Twit-

ter users all retweet one another might be more influential on polarization than other

characteristics of the retweet network.

The learned weights of the model demonstrated consistent relative magnitudes across

different trajectory lengths. Mainly, Twitter users weight more on "Average number of

new hospitalizations for this state" (feature 2) and less on "Average density of retweet

network for this state" (feature 4) and "Average density of largest connected component

in retweet network for this state" (feature 6).

Polarization of opinions has occurred surrounding many events across the world.

Recently, examples of polarizing issues have included climate change in the United

States [21], fake news of a baby’s bloodied corpse [34], metro fare evasion in Chile [57],

and a the suppression of a controversial film in India [17]. Although polarization can arise

due to a wide variety of events, our results indicate that polarized COVID-19 discussion

on Twitter might be more heavily influenced by the severity of the COVID-19 outbreak

at a given time. Users tend to weigh more heavily on features specific to COVID-19
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rather than those that could be shared amongst a variety of events. Thus, the driving

forces of polarized Twitter discussion of COVID-19 might be related to COVID-19,

rather than a common influence across all Twitter discussions.

This result contributes to the various theories and processes used to explain polar-

ization, including sociological theories, psychological theories, and selection processes.

While different instances of polarization share commonalities, this work indicates that

event-specific features might also be heavily influential on ideological polarization.

These results demonstrate the ability of inverse reinforcement learning to provide

insights into the underlying influences of Twitter users’ behavior. However, our interpre-

tation of Twitter users’ behavior introduces bias to our work. Specifically, our choice of

state space, action space, and state features derived from both Twitter data and national

COVID-19 data heavily influence the findings of this research. These results should only

be viewed as a preliminary analysis of polarized Twitter discussion of COVID-19.
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Chapter 5

Limitations and Discussion

Section 5.1

Limitations

One limitation to our work is the lack of available twitter data labeled as pro- or anti-

mask-wearing. As a result, it is possible that our mask-wearing sentiment classifier

over-fits the training data, and is less robust towards new data samples.

Our method of labeling the available mask-wearing-sentiment data also leaves room

for error in our classification. For example, a tweet that includes the hashtag ’#antimask’

does not necessarily indicate that the author holds an anti-mask-wearing stance. More-

over, based on our labeling approach, it is possible that our training data is not limited to

unique tweets. For example, an original tweet that contains the hashtag ’#wearamask’

could be retweeted by another user, and both tweets would be included in our data

set despite having the same text. Thus, it is possible that the number of unique tweets

included in the training data is smaller than the total number of tweets.

In the analysis of retweet networks, the algorithm used to calculate the modularity of

our network accounts for weighted but not directed edges. With this in mind, we created

retweet networks containing undirected edges between users. As a result, information is

lost as to which user retweeted the other. Calculation of modularity then also does not

account for which users are disseminating information.
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Our method of filtering users to be included in the retweet network does not take

into account whether retweeted users are present in all weeks of the collection period.

Thus, each retweet network has a different number of nodes, which could impact our

comparisons of modularity between retweet networks.

In defining the state and action spaces of the inverse reinforcement learning model,

the interpretation of Twitter users’ behavior introduces bias to our work. Social media

provides ample examples of human data as potential sources for investigation using

inverse reinforcement learning models. The decision of which data constitutes the states

and actions of the agent, as well as who or what is considered the agent, is entirely up to

the investigator. By choosing the modularity of the retweet network to be the state of

the agent, the entropy of mask-wearing-sentiment classification to be the action of the

agent, our definition of state features as seen in Table 4.2, and the Twitter conversation

surrounding COVID-19 to be the agent itself, some degree of bias is introduced to this

work. Thus, these results should only be viewed as a preliminary analysis of polarized

Twitter discussion of COVID-19.

In regards to the COVID-19 related state features, the data set used to calculate the

features 1, 2, and 3 in Table 4.2 consists of national data from the United States, whereas

the collected Twitter data features all tweets written in English. Thus, the data used to

derive those state features does reflect the severity of the COVID-19 outbreak for Twitter

users outside of the United State who are present in our Twitter data set.

Section 5.2

Discussion

The fine-tuned BERT classifier does not perform significantly better than the baseline

dummy classifier. One possible explanation for this result is the lack of labeled training

and validation data. Consequentially, it is possible that our classifier over-fits the training

data, and performs poorly when generalizing to other examples. One possible solution

to this problem is to get more labeled data. We could expand the list of hashtags such
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that more tweets could be included in the labeled data set. This approach runs the risk of

mislabeling tweets as pro- or anti-mask-wearing in the training data. Another approach

would be to derive the relevant hashtags using clustering, as [49]. In this study, k-means

clustering is used to cluster tweets in their embedding space, and k-means is applied

again to each cluster to form a two-level cluster hierarchy. The authors then find key

words to describe and differentiate between each of the clusters and sub-clusters. For

the present work, performance might be improved by deriving key words and hashtags

using a clustering approach to represent pro- and anti-mask-wearing sentiment.

We hypothesized that the networks would display increasing modularity over time.

This result would indicate the formation of "echo chambers" within conversations

related to COVID-19 on Twitter. The resulting networks did not demonstrate increased

modularity over time. There are several possible explanations for such a result. For one,

it is possible that formation of echo chambers did not occur within conversations related

to COVID-19 on Twitter. However, since modularity levels remained relatively high (i.e.

close to 1) across the observed 28 weeks, it is possible that there was a high level of

polarization in Twitter discussions from the beginning of our collection period.

There are also other possible ways to construct the graph of retweets. For this study

we observe the structure of a weighted, un-directed graph. However, it is possible to

construct a directed graph using this data, wherein a directed edge from user u to user

v denotes that user v retweeted user u. The weight of such an edge would denote the

number of times user v retweeted user u. If the network were to be constructed as such, it

would be necessary to devise an implementation of community detection and modularity

computation which takes into account directed and weighted edges.

The weights of features for trajectories of length 2 are in Figure 4.5, and weights of

features across all generated trajectory lengths are in Figure 4.4. Interestingly, overall,

Twitter users show higher weight of "Average number of new hospitalizations for this

state" (feature 2), possibly indicating a general effect of COVID-19 resource availability

on Twitter polarization in COVID-19 discussion. Moreover, Twitter users weigh sig-
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nificantly more on COVID-19-related features and weigh less on characteristics of the

retweet networks. The "Average number of new deaths for this state" (feature 1) and

"Average number of new cases for this state" (feature 3) still show higher weight than

the network-related features. This might indicate that polarization of Twitter discussion

of COVID-19 is more heavily impacted by the severity of the outbreak at a given time,

rather than the structure of Twitter discussions of the topic. Amongst the network-related

features, however, "Average number connected components in retweet network for this

state" (feature 5) weighed highest. Thus, the number of sub-networks in which Twit-

ter users all retweet one another might be more influential on polarization than other

characteristics of the retweet network.

The learned weights of the model demonstrated consistent relative magnitudes across

different trajectory lengths. Mainly, Twitter users weight more on "Average number of

new hospitalizations for this state" (feature 2) and less on "Average density of retweet

network for this state" (feature 4) and "Average density of largest connected component

in retweet network for this state" (feature 6).

Polarization of opinions has occurred surrounding many events across the world.

Recently, examples of polarizing issues have included climate change in the United

States [21], fake news of a baby’s bloodied corpse [34], metro fare evasion in Chile [57],

and a the suppression of a controversial film in India [17]. Although polarization can arise

due to a wide variety of events, our results indicate that polarized COVID-19 discussion

on Twitter might be more heavily influenced by the severity of the COVID-19 outbreak

at a given time. Users tend to weigh more heavily on features specific to COVID-19

rather than those that could be shared amongst a variety of events. Thus, the driving

forces of polarized Twitter discussion of COVID-19 might be related to COVID-19,

rather than a common influence across all Twitter discussions.

This result contributes to the various theories and processes used to explain polar-

ization, including sociological theories, psychological theories, and selection processes.
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While different instances of polarization share commonalities, this work indicates that

event-specific features might also be heavily influential on ideological polarization.

These results demonstrate the ability of inverse reinforcement learning to provide

insights into the underlying influences of Twitter users’ behavior. However, our interpre-

tation of Twitter users’ behavior introduces bias to our work. Specifically, our choice of

state space, action space, and state features derived from both Twitter data and national

COVID-19 data heavily influence the findings of this research. These results should only

be viewed as a preliminary analysis of polarized Twitter discussion of COVID-19.
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Chapter 6

Conclusions

Section 6.1

Our Findings

We hypothesized that pro- and anti- mask-wearing sentiment could be predicted based on

users’ tweets alone. The model created did not support this claim, achieving an accuracy

score that was only 1% higher than that of a dummy classifier. These results could be

due to lack of training data to fine-tune our BERT model.

We also hypothesized that our constructed retweet would show modularity that

increases over time. We thought that increased modularity over time would indicate the

formation of "echo chambers" within conversations related to COVID-19 on Twitter.

Evidence did not support this claim. Table 4.1 shows the modularity of the retweet

networks across the 28 weeks included in the data set. Modularity values fluctuated

over time, staying above 0.80 for all 28 weeks. This might indicate that, rather than

polarization increasing over time, discourse surrounding COVID-19 on Twitter remained

polarized since the beginning of our collection period.

Finally, we hypothesized that structural characteristics of each week’s retweet net-

work as well as COVID-19 data on cases, hospitalizations, and outcomes are related to

the Twitter users’ reward function which leads to polarized discussion of COVID-19

on the platform. The weights of features for trajectories of length 2 are in Figure 4.5,
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and weights of features across all generated trajectory lengths are in Figure 4.4. Overall,

Twitter users show higher weight of "Average number of new hospitalizations for this

state" (feature 2), possibly indicating a general effect of COVID-19 resource availability

on Twitter polarization in COVID-19 discussion. Moreover, Twitter users weigh sig-

nificantly more on COVID-19-related features and weigh less on characteristics of the

retweet networks. The "Average number of new deaths for this state" (feature 1) and

"Average number of new cases for this state" (feature 3) still show higher weight than

the network-related features. Amongst the network-related features, however, "Average

number connected components in retweet network for this state" (feature 5) weighed

highest.

This result indicates that COVID-19 data on cases, hospitalizations, and outcomes

are more influential in Twitter users’ reward function which leads to polarized discussion

of COVID-19 on the platform. While this result is promising, it relies on the derivation of

the state and action space from our modularity calculations and mask-wearing sentiment

classification.

Section 6.2

Future Work

Future work on mask-wearing sentiment classification using tweets should focus on find-

ing better ways to label tweets as pro- or anti-mask-wearing. This could be accomplished

by using different approaches to identify pro- or anti-mask-wearing hashtags, which

could help more accurately label tweets for training. One such approach could involve

using k-means clustering to form a two-level cluster hierarchy, as in Sanders et al., and

finding key words or hashtags which separate the clusters [49]. Those key words or

hashtags could be used to label training data as pro- or anti-mask-wearing. Alternatively,

unsupervised learning approaches can help identify pro- or anti-mask-wearing sentiment

in tweets without requiring labeling. Unsupervised learning techniques would eliminate
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the bias introduced by the assumption that the use of a certain hashtag or key word

definitively indicates mask-wearing sentiment.

In the analysis of retweet networks, implementing algorithms to calculate modular-

ity of a weighted, directed graph would offer more insight into the dynamics of such

networks. To the best of our knowledge, there lacks readily available python implementa-

tions for community detection on weighted, directed graphs, leading us to represent the

retweet networks using un-directed graphs instead. Thus, details as to which users serve

as prominent sources of information are lost. Moreover, information on individual users’

retweet patterns are lost in the calculation of the weights of the edges in the network.

By exploring different ways to calculate modularity in a weighted, directed network,

more information can be extracted from the analysis of retweet networks. Further, in

examining polarization on Twitter relating to COVID-19, it would be interesting to

investigate the temporal dynamics of hashtag networks (i.e. an un-directed graph in

which two users in the graph share an edge if their tweet contained the same hashtag)

and user-to-user mention networks (i.e. a directed graph in which two users share an

edge if one user mentioned the other).

Based on the bias introduced in defining the state space, action space, and state

features of the inverse reinforcement learning model, future work on the subject should

be wary of making assumptions about human actions in data. The decision of which

aspects of data constitute an action versus a state of an agent can potentially introduce bias

into an inverse reinforcement learning model. Due to the bias introduced, using inverse

reinforcement learning to examine human behavioral data means that the extracted

reward function might mis-specify human goals. Thus, evaluating the performance of

inverse reinforcement learning models in extracting reward function from observed users’

behavior should be a key component of future work with this approach.

Future work should also further verify these findings by performing inverse rein-

forcement learning using different state spaces, action spaces, and state features. For

example, one possible state feature could be derived from the number of in-edges versus
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the number of out-edges in a retweet network. By using different state features on the

same state and action spaces, future work can test hypothesis of different explanations

for the same observed behavior.
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Appendix A

Dates of Retweet Networks
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DATES OF RETWEET NETWORKS DATES OF RETWEET NETWORKS

Week Dates
9 2/24-3/1

10 3/2-3/8
11 3/9-3/15
12 3/16-3/22
13 3/23-3/29
14 3/30-4/5
15 4/6-4/12
16 4/13-4/19
17 4/20-4/26
18 4/27-5/3
19 5/4-5/10
20 5/11-5/17
21 5/18-5/24
22 5/25-5/31
23 6/1-6/7
26 6/22-6/28
27 6/29-7/5
28 7/6-7/12
29 7/13-7/19
30 7/20-7/26
31 7/27-8/2
32 8/3-8/9
33 8/10-8/16
34 8/17-8/23
35 8/24-8/30
36 8/31-9/6
37 9/7-9/13
38 9/14-9/20

Table A.1: Gregorian calendar week number and 2020 dates
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