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ABSTRACT

Maps of the Rees—Sciama (RS) effect are simulated using the parallel N-body code, HYDRA, and
a run-time ray-tracing procedure. A method designed for the analysis of small, square cosmic
microwave background (CMB) maps is applied to our RS maps. Each of these techniques
has been tested and successfully applied in previous papers. Within a range of angular scales,
our estimate of the RS angular power spectrum due to variations in the peculiar gravitational
potential on scales smaller than 42/h megaparsecs is shown to be robust. An exhaustive study
of the redshifts and spatial scales relevant for the production of RS anisotropy is developed
for the first time. Results from this study demonstrate that (i) to estimate the full integrated
RS effect, the initial redshift for the calculations (integration) must be greater than 25, (ii) the
effect produced by strongly non-linear structures is very small and peaks at angular scales close
to 4.3 arcmin, and (iii) the RS anisotropy cannot be detected either directly—in temperature
CMB maps—or by looking for cross-correlations between these maps and tracers of the dark
matter distribution. To estimate the RS effect produced by scales larger than 42/h megaparsecs,
where the density contrast is not strongly non-linear, high accuracy N-body simulations appear
unnecessary. Simulations based on approximations such as the Zel’dovich approximation and
adhesion prescriptions, for example, may be adequate. These results can be used to guide the
design of future RS simulations.

Key words: methods: numerical —cosmic background radiation — cosmology: theory — large-
scale structure of Universe.

1 INTRODUCTION

In this paper, we revisit the so-called Rees—Sciama (RS; Rees &
Sciama 1968) effect. In Puchades et al. (2006, hereafter paper I),
the effect was properly defined and its angular power spectrum es-
timated using various numerical codes and computational methods.
Simulations of cosmic structures were performed with a Particle-
Mesh (PM) N-body code (Hockney & Eastwood 1988). In Cai et al.
(2010), numerical techniques were designed, tested, and applied
to estimate the RS angular power spectrum for angular scales, ¢,
<10%. Our simulations and numerical methods allow us to estimate
this spectrum for £ > 103. Combined, these procedures should lead
to accurate estimated RS spectra for £ < 3.2 x 10*. Our methods
allow us to probe the spatial and temporal scales that contribute to
the RS angular power spectra in contemporary cosmologies.

For the large simulation boxes required in our study (see below),
the spatial resolution of PM codes is a limitation, in particular, in

*E-mail: mfullana@mat.upv.es (MJF); thacker@ap.stmarys.ca (RJT);
diego.saez@uv.es (DS)

regions with large non-linear excesses of dark matter as well as in
almost empty voids. Thus, better N-body simulations are necessary
to get more accurate estimates of the RS angular power spectrum,
the spatial scales producing the effect, and so forth. These results are
necessary in order to assess the possibility of detecting the RS con-
tribution to the cosmic microwave background (CMB) anisotropy
for ¢ > 10%. To address these concerns, we use the parallel Hy-
DRA implementation of the Adaptive Particle-Particle-Particle-Mesh
(AP3M) code (Thacker & Couchman 2006) to simulate non-linear
cosmic structures with mass and space resolutions higher than those
of paper L. This is the same code that was used and tested in a related
previous paper (Fullana et al. 2010), where the weak lensing effect
on the CMB was studied in detail for large ¢ values.

As in paper I, we evolve a triply periodic model universe in a
cubic simulation box. The CMB photons move in this universe—
crossing successive image boxes—from a suitable initial redshift
to the present time. If the photons move almost parallel to the box
edges, they would pass close to the same structures many times and
the RS effect would undergo a large magnification due to this peri-
odicity; however, as has been noted in many previous papers (Antén
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et al. 2005; Sdez Milén et al. 2006), it is possible to propagate pho-
tons in a periodic universe in a manner which makes negligible
the aforementioned magnification. Our calculations are based on
this method (ray-tracing procedure) whose main characteristics are
briefly summarized below. By using this ray-tracing within the Hy-
DRA simulations, we have been able to get small, but useful, maps
of the RS temperature contrast, with an appropriate angular reso-
lution. The analysis of these maps leads to the RS angular power
spectrum for £ > 500. Calculations of this spectrum are performed
using the method described in Sdez, Holtmann & Smoot (1996),
which is based on previous work by Bond & Efstathiou (1987).
Improvements are described below.

Since the RS effect is purely gravitational, it is essentially pro-
duced by the dominant dark matter component, with contributions
due to baryons are expected to be small. This suggests that N-body
simulations may be appropriate to get a good estimate of the RS
power. The suitability of this approach (without baryons) is dis-
cussed in the last paragraph of Section 5.

We assume a flat universe with scalar perturbations of an infla-
tionary origin. The resulting inhomogeneities are then adiabatic and
their statistical distribution is Gaussian. The initial conditions for
our simulations are set using cosmological parameters (at the 1o
confidence level) from the Planck collaboration as found in Planck
Collaboration X VI (2014a, last column of table 5). In this reference,
six parameters were adjusted to explain, at the required confidence
level, current observational data from: Planck CMB temperatures
(Planck), WMAP (Wilkinson Microwave Anisotropy Probe) polar-
ization anisotropy at low ¢ < 23 (WP), ACT (Atacama Cosmology
Telescope) plus SPT (South Pole Telescope) anisotropy for very
high ¢ values (HighL), and baryon acoustic oscillations (BAO). The
resulting minimal fit is then named ‘Planck+WP-+HighL+BAO’.
The values obtained for the six parameters are: (a) 2y h*> = 0.022 14
and Q4 h?> = 0.1187, where 2, €24, and / are the baryon and dark
matter density parameters, and the reduced Hubble constant & =
1072H,, respectively, Hy being the Hubble constant in units of km
s~ Mpc~!; (b) the third value is Oy;c = 1.041 47 x 1072, this param-
eter is the angular acoustic scale; namely, the ratio r(z,)/da(zx),
where r(z,) is the sound horizon at decoupling redshift z, and
da(z4) is the angular diameter distance for the same redshift; (c)
the fourth parameter has the value T = 0.092, where 7 is the opti-
cal depth that characterizes reionization; and (d) the remaining two
parameters are given in the formula

k ng—1
Py(k) = As(%) ) M

which gives the power spectrum of the scalar energy density per-
turbations at horizon crossing. The fifth and sixth parameters are
A =2.20 x 107° (spectrum normalization constant) and n; = 0.961
(spectral index). Finally, the constant ky, the so-called pivot scale,
is taken to be ko = 0.05Mpc~' as in Planck Collaboration XVI
(2014a).

The inputs required to generate the initial conditions for the HYDRA
N-body code are calculated from the above parameters as follows:
for our current purposes, energy is either dark matter (€24) or dark
energy (€25 ) and the universe is assumed to be flat, hence, one must
use Q2p = 0 and Qaer = 29 = (1 — 2,) = 0.307. The values h =
0.678 and o3 = 0.826 are also inputs for the HYDRA code: these are
given in Planck Collaboration XVI (2014a) as derived parameters.
Finally, the power spectrum P(k) of the energy density perturbations
at the initial time of the N-body simulation is required, and this
spectrum may be calculated using the code cams (Lewis, Challinor
& Lasenby 2000) for the Planck-adjusted parameters above.
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Figure 1. Quantity A} in terms of log (¢). The solid line corresponds to
the L-ISW effect. Dotted, dashed, dot—dashed, and triple-dot—dashed lines
are the spectra of RS-42, RS-52, RS-62, and RS-72; namely, RS spectra for
different values of Ly,x (see the text).

We choose units such that the speed of light is ¢ = 1 and the
gravitation constant is G = 1/87. For a quantity ‘A’, we define A_ ,
Ao, and A, to be the value of A on the last scattering surface, at
present time, and in the background, respectively; A (A’) stands
for the derivative of A with respect to the conformal (cosmological)
time. Symbols x, a, z, and n, stand for the comoving position vector,
the scale factor, the redshift, and the conformal time, respectively.
We set ag = 1 Mpc. The quantity A, = [€(£ + 1)C,/27]"/?, given
in pK, is represented in Figs 1, 3—11 as a measure of the angular
power spectrum.

This paper is organized as follows: relevant theoretical comments
on the RS and the late integrated Sachs—Wolfe (L-ISW; Sachs &
Wolfe 1967) effects are presented in Section 2. Our numerical tech-
niques: N-body simulations and ray-tracing are described in Sec-
tion 3. Results from our simulations are presented in Section 4,
where accurate RS power spectra are presented over an appropriate
range of ¢ and, finally, in Section 5, after a summary of our results
we discuss detection of the RS effect and the RS power spectrum
estimation for £ > 500.

2 GENERAL CONSIDERATIONS ON THE
L-ISW AND RS EFFECTS

In this section, we present a brief but thorough study of the L-ISW
and RS effects in the context of the A cold dark matter (ACDM)
model. This study is necessary to understand our simulations as
well as our discussion and conclusions.

Beginning with the L-ISW effect: this cannot be generated while
matter dominates dark energy. It is generated starting a little be-
fore the end of the matter-dominated era and into the dark-energy-
dominated period. Most of the L-ISW anisotropy is produced at low
redshifts z < 1, namely, when the dark-energy density becomes of
the order of the (decreasing) matter energy density. We define the
L-ISW effect to be that produced by large-scale inhomogeneities
evolving strictly in the linear regime; whereas a similar effect (see
below) produced by weakly to strongly non-linear structures will
be called the RS effect (see paper I and comments below). From
these general, qualitative comments, it follows that the L-ISW study
must be based on the linear approximation. We use the formalism
described in Bardeen (1980) and applied in most papers discussing
the CMB anisotropy (Abbott & Schaefer 1986; Ma & Bertschinger
1995; Seljak & Zaldarriaga 1996; Hu & White 1997).

We hereafter assume the longitudinal (conformal Newtonian)
gauge (Ma & Bertschinger 1995), in which, the perturbed line ele-
ment has the form

dS? = a’[—(1 + 2¢)dn? + (1 — 2¢)8;;dx’ dx’], )
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where ¥ (x', ) and ¢(x', ) are two scalar potentials, which are iden-
tical in the absence of anisotropic stress (Bardeen 1980). Hence, in
the period after decoupling (z < 1100), the relation ¢ =~  is valid.
Furthermore, in the same period, the universe contained a fluid with
baryons and dark matter, whose total energy density and density
contrast relative to the background are p and § = (p — p,)/p,, re-
spectively. There is also a constant dark-energy density p without
perturbations, which directly influences the background evolution,
and indirectly, the dynamics of §, ¢, v, and the perturbations in
general.

Let us now discuss the estimation of ¢ and ¥ and their physical
meaning by starting from the gauge invariant formalism described in
Bardeen (1980) where Einstein’s field equations and the equations
of motion are written in terms of gauge invariant variables defined
in momentum space. In the longitudinal gauge, the equation 4.3 in
Bardeen (1980) may be easily rewritten as follows:

k*—3K la

—2T¢_pm 6+3(1+W)%5v , 3)
where K takes on the values 1, —1 and O for a closed, open or
flat background, respectively; k is the wavenumber in momentum
space; W = —1 is the ratio P, /p,; and v’ is the scalar part of the
fluid peculiar velocity.

For k~'(a/a) <« 1, namely for physical spatial scales k~'a well
inside the effective horizon H~! (k~'a « H™"), equation (3) leads
to

2\ 8
M‘(%)ﬁ @

and, consequently, the equation satisfied by ¢ in position space is

1, 1,
Ap >~ —a”p,,é = Ea (0 — Pgo) - 5)

2
Hence, for subhorizon scales, ¢ may be interpreted as the Newto-
nian peculiar gravitational potential due to the matter fluid energy
density perturbations p, — pg,,. However, for superhorizon scales,
this potential does not obey equation (5).

For K = 0 (flat background), well inside the dark-energy-
dominated era (W =~ —1), and for all spatial scales, equation (3)
may be also written in the form (4) and, consequently, equation (5)
holds. Hence, we conclude that in the dark-energy period under
consideration, which corresponds to redshifts smaller than unity, the
potentials i and ¢ are identical and, moreover, they are Newtonian
gravitational potentials for any scale k (either linear or non-linear).

For perturbations evolving in the linear regime, the equations of
the null geodesics corresponding to the line element (2) may be used
to prove that the CMB undergoes the following integrated effect:

AT ™ 3¢(x,n)
TfB(n)—Z/nL “on dn, (6)

where AT /T, = (T — T,)/T, is the temperature contrast with re-
spectto T, (the averaged CMB temperature). A good approximation
to AT /T, may be obtained by calculating the above integral along
the background null geodesic corresponding to the unit line-of-sight
vector n. This is the so-called Born approximation, which has been
shown to be adequate in the £ interval 300 < £ < 5000, where we
estimate the RS power (see Van Waerbeke et al. 2001; Hilbert et al.
2009).

A vanishing anisotropic stress and the condition ¢ >~ i may be
assumed to estimate the L-ISW effect and, then, the integrand of
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equation (6) may be easily calculated (in momentum space) from
equations 18 and 21.d of Ma & Bertschinger (1995). The result is
. . a 1 [a aN’ .
¢(k,n)=n—*n—f2{*—3(*)}(h+6n), @)
a 2k? | a a
where, h(k, n) and n(k, n) are scalar modes associated with the
metric in the synchronous gauge (see Ma & Bertschinger 1995;
Bardeen 1980). Since cMBEAST (Seljak & Zaldarriaga 1996) and
caMmB use this gauge, these codes calculate all the functions involved
in the right-hand side of equation (7) and, consequently, ¢ (k, 1) and
the angular power spectrum of the L-ISW may be easily obtained.
Both codes lead to very similar spectra. The solid line of Fig. (1)
represents the spectrum obtained by using cMBFasT. The calculation
of the L-ISW spectrum performed here is more accurate than the
estimate presented in paper I, which is based on the approximating
assumption that, while the L-ISW effect is produced, any spatial
scale evolves according to the § growing mode given by Peebles
(1980). This is valid for subhorizon scales, but superhorizon scales
only evolve in the same way for W = —1, which is not strictly
valid while the L-ISW effect is being generated: namely, while
matter and dark energy have comparable energy density and W is
only close to, but not strictly equal to —1. As soon as slightly non-
linear scales—say, scales with density contrasts greater than about
0.2—contribute to a given multipole ¢, an RS effect is produced
and C, deviates from the value given in the solid line of Fig. 1.
Appropriate simulations may be used to estimate the point at which
this deviation starts (see Section 5). In Cai et al. (2010, top-left
panel of fig. 17), it is shown that, if simulations of the L-ISW-RS
effects start at redshift z >~ 10, this point corresponds to £ ~ 80,
marked by the small circle in Fig. 1. As it is verified below, the
scales producing effects close to £ ~ 80 are not strongly non-linear
and, consequently, suitable approximations seem to be useful to
estimate the RS effect produced by them. We are not concerned
here with these scales and approximations, which would allow us
to link the solid line (strictly linear structures) and a line giving
the total RS power in the region of the discontinuous lines, which
would be a certain limit of these lines (see Section 5). This link
would lead to a unique spectrum valid for any scale; nevertheless,
we are mostly interested in the form of the spectrum in the £ interval
of the discontinuous lines, which describes the RS effect produced
by strongly and mildly non-linear structures, whose computation
properly requires N-body simulations.

Let us now consider the RS effect, whose definition and estima-
tion are based on the reasonable assumption that, even for non-linear
cosmological structures such as clusters, superclusters, and voids,
the line element maintains the form (2) with ¢ >~ ¢ < 1, as holds
just before the perturbations leave the linear regime while they are
evolving well inside the effective horizon (see above). This assump-
tion has not been rigorously proved: e.g. in the non-linear regime,
the line element might involve two different small potentials (¢ #
¥); in other words, deviations from the line element (2) are possi-
ble in spite of the fact that, at the end of the linear regime, we have
proved that the condition ¢ =~ v is satisfied, and also that ¢ and
are Newtonian gravitational potentials satisfying equation (5). Once
the aforementioned assumption is accepted, it may be easily proved
that equation (6) is also valid to calculate the CMB integrated effect
due to non-linear structures, that is, the RS effect.

For £ > 10°, the RS effect is essentially produced by dark mat-
ter inhomogeneities evolving in the mildly and strongly non-linear
regimes, thus well inside the effective horizon. A box with a size of
a few hundred megaparsecs would contain a statistically significant
distribution of structures with spatial scales smaller than a few tens
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of megaparsecs such as clusters, superclusters, voids, and so on.
Within a simulation box of this scale, the total velocities of the dark
matter particles (Hubble plus peculiar component) are much smaller
than unity, gravitation is weak, and equation (5) holds; hence, New-
tonian N-body simulations are adequate to allow us to estimate the
RS effect.

3 NUMERICAL TECHNIQUES

Following from the comments of Sections 1 and 2, we adopt the
following numerical approach: an N-body code to simulate struc-
ture formation in sufficiently large regions; a ray-tracing procedure
to move photons in the simulated periodic universe avoiding spu-
rious RS magnification; and a method to extract the angular power
spectrum from small maps of RS temperature contrasts. For com-
pleteness, in the following sections, we present a brief description
of these three techniques.

3.1 N-body simulations

The simulations presented hereafter were run using a parallel
OpenMP-based implementation of the ‘HYDRA’ code (Thacker &
Couchman 2006). This code uses the AP3M algorithm to compute
gravitational forces within a simulation containing N, particles. In
the AP3M algorithm, a cubic ‘base’ mesh of size N, cells per side is
supplemented by a series of refined-mesh P3M calculations to pro-
vide submesh resolution. Gravitational softening is implemented
using the S2 softening kernel (Hockney & Eastwood 1988) which
is remarkably similar in shape to the cubic spline softening kernel
used in many treecodes (e.g. Hernquist & Katz 1989). The S2 soft-
ening used in the kernel is approximately 2.34 x S, where S, is an
equivalent Plummer softening length, which we quote throughout
the paper to enable a simple comparison to other work. The soft-
ening length is held constant in physical coordinates subject to the
resolution not falling below 0.6 of the mean interparticle spacing.
This technique is widely applied (e.g. Springel et al. 2005) and is a
compromise between assuring that the potential energy of clusters
does not evolve significantly at low redshift, while still ensuring
that structures and linear perturbations at high redshift are followed
with reasonable accuracy.

Initial conditions were calculated using the standard Zel’dovich
approximation technique (Efstathiou et al. 1985), and all simula-
tions were started at a redshift of z = 50, which is sufficiently early
to place modes in the linear regime.

The free parameters characterizing our N-body simulations are
the box size, Lyox, the number of dark matter particles, N,, the
number of cells per edge, N., and the softening parameter S,,.

3.2 Ray-tracing

Several methods have been developed to calculate the CMB
anisotropies produced by the peculiar gravitational potential of
non-linear structures. Most of them are based on simulations of
non-linear structure evolution in finite boxes. CMB photons move
through these boxes which cover the photon world lines. Specif-
ically, photons are located at time, ¢, inside one simulation box,
whose structures have been evolved to this time z. There is sys-
tematic noise (magnification) associated with the motion of CMB
photons in a periodic universe covered (at any time) by identical
boxes. Nevertheless, this magnification strongly depends on the
specifics of the ray-tracing scheme, namely, on the photon paths,
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Figure 2. Sketch of the photon motion along a certain preferred direction.
The big square is a generic (x, y) plane separating boxes. Photons travel
through successive boxes numbered from 0 to 29. The crossing point—
labelled i—from the i — 1 to the i box belongs to the common (x, y) plane
separating these boxes. Points on the square edges are identified due to box
periodicity.

which must be chosen to avoid repeatedly sampling the same struc-
tures in the periodic images. Various methods have been designed
to achieve this goal, see, e.g. Tuluie, Laguna & Anninos (1996),
Jain, Seljak & White (2000), and Cai et al. (2010).

Other approaches use random translations and orientations of the
simulation boxes, which lead to discontinuities at the points where
the CMB photons cross from one box to its successor (Springel,
White & Hernquist 2001). An improvement on this approach was
designed by Carbone et al. (2008) to minimize the possible effect
of discontinuities; while the signal from the residual discontinuities
is likely small, our ray-tracing has the advantage of avoiding it
completely.

There are also tiling methods, which are based on independent
N-body simulations with decreasing sizes that telescope in resolu-
tion along the line of sight (Hamana, Colombi & Suto 2000; White
& Hu 2001; Sato et al. 2009; Barreira et al. 2016). Since the simu-
lations are different, there are also discontinuities in crossing from
box to box.

Our ray-tracing approach is optimized from a number of perspec-
tives. Identical comoving boxes cover the universe at any time. The
periodicity of the boxes guaranties that there are no discontinuities
in the matter field anywhere. Photons move through the simulation
volume along specially chosen directions to avoid ‘periodicity mag-
nification’. The existence of these directions was first pointed out in
Antén et al. (2005). In Sdez Milén et al. (2006) and also in paper I,
our ray-tracing was improved by introducing a cutoff, which avoids
the power on all spatial scales greater than a certain limit, Ly, in
the calculation of the integrand in equation (6).

The sketch of Fig. 2 shows how photons move along a particular
preferred direction, P;. Axes x, y, and z are parallel to the edges of
the simulation boxes. Angles 6 and ¢ are spherical coordinates de-
fined with respect to these axes. Photons leaving, or arriving at, the
observer along P; will cross successive (x, y) faces. In the sketch,
point 0 is the observer position and point i represents photon loca-
tions on the ith face at crossing time. All these points are represented
on the same generic (x, y) plane, although they may belong to dif-
ferent boxes. Inside the first box, a photon moves from point 0 to
point 1 and it enters then into the second box. If the angles defining
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the P, direction—in radians—are chosen to be § = 0.2547 and
¢ = 0.8771, and the comoving box size is Lyox = 512 h! Mpc,
the distance from points O to 1—in the (x, y) plane—is found to be
D = 1332949 h~! Mpc, this implies that photons enter two succes-
sive boxes at points i and i + 1 separated by distance D, which is
much greater than any assumed value of L,,,x and, then, on account
of the fact that the power on scales L > L;,,x has been avoided, pho-
tons moving along P; enter successive boxes through independent
uncorrelated regions (i.e. there are negligible periodicity effects). In
Fig. 2, we see that a photon may cross 30 successive boxes before
arriving at the box zone in which the observer is located. Since
the comoving distance from z = 25 to 0 is ~77002~! Mpc and
the distance travelled inside any box is 526.6361 h~! Mpc, photons
coming from z = 25 only travel through 15 successive boxes be-
fore reaching the observer. As explained in detail in Sdez Mildn
et al. (20006), there is no unique preferred direction. Various pre-
ferred directions were considered in Fullana et al. (2010), where it
was shown that, for CMB weak lensing, different directions lead to
essentially equivalent results.

The parameters involved in the ray-tracing procedure are the
following: a number of directions, Ny;, per edge of the square CMB
map (one per pixel, Ngir = Npix); an initial redshift, z,, for the
RS calculation; a photon step, A, used to perform the integral in
equation (6); the length L, defining the cutoff; and angles 6 and
¢ defining the preferred direction.

Hereafter, an RS simulation (RSS) is the calculation of the RS
integral along the pixel directions, plus the construction of the maps
and the estimation of C, multipoles (angular power spectra). An
RSS is characterized by the parameters and initial conditions re-
quired by the N-body simulation together with the parameters of the
ray-tracing procedure. We define reference RSSs using the follow-
ing parameters: Lpox = 512 f h! Mpc, where f= 1.35 (see below),
N, =256, N, = 1024, S, = 50 h~' kpc, Ngir = 256, Lyax = 42 h~"!
Mpc, zin =25, and Ay, = 125 h~! kpc. The resolution of these sim-
ulations is ~5S, = 250 h~! kpc. The angular size, D qp, Of the
resulting square RS maps is 3.6f >~ 429, and their angular resolution
is Ay =~ f0.85arcmin ~ 1.15arcmin (£ >~ 12 700" >~ 9400).
There are infinite possible realizations of this type of RSS corre-
sponding to different initial conditions for the N-body simulation as
well as to distinct preferred directions. In Section 4, we consider the
effect of parameter changes and demonstrate that the calculation of
the power spectra (C; multipoles) is robust and accurate at least for
500 < ¢ < 3200.

3.3 Calculation of the RS integral

Given a line of sight with unit vector n, a numerical integration
must be performed to estimate the RS temperature contrast pre-
dicted by equation (6). Integration is done along the background
null geodesic corresponding to n (this is the Born approximation,
as noted above). The integration (photon) step is assumed to be
constant, Ay. This step defines a set of regularly spaced integra-
tion points on the background null geodesic, and the integrand,
0¢(x, n)/9dn, must be evaluated at each of these points. We have
verified in previous work (e.g. Fullana et al. 2010) that, (conser-
vatively) assuming a Plummer softening of S, gives an effective
resolution of 55, (Moore et al. 1998), our simulations exhibit con-
verged results with 2.5 photon steps per effective resolution element.
Moreover, we have shown that this choice ensures convergence of
the calculation of lensed properties up to very high £ (>10%).

The N-body simulations self-consistently treat all spatial scales
within the box, including scales larger than the cutoff, L,,. The
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cutoff is only used to calculate the quantity 9¢(x, n)/0n in the
integral. In this way, structure formation is not affected by the
cutoff, but scales L > Ly,,x do not contribute to the RS temperature
contrast. The same type of cutoff was used in Fullana et al. (2010)
to calculate weak lensing deviations.

Since equation (6) gives the total integrated effect due to linear
and non-linear structures, the limits of the integral involved in this
equation are n, and 79. However, the L-ISW effect produced by
the linear structures has been accurately estimated (see Fig. 1) and,
consequently, only the time interval in which there are non-linear
structures having relevant contributions to the integrated effect must
be included. This interval will be appropriately established in Sec-
tion 4; for now, it is sufficient to say that the limits of this interval
will be ni, and 1o with 1, < 7, . The integral in equation (6) will be
extended to this interval, which corresponds to the redshift interval
(zin, 0). We have also calculated the integral in intervals (ziy, z¢) for
various small values (z¢ > 0) in order to estimate the RS contribution
from low redshifts (see Section 4.5).

Finally, our algorithm for determining d¢(x, )/0n at the inte-
gration points of a given background null geodesic is as follows:

(i) use the photon step, A, to determine all integration points
(radial coordinate and time) for n > n;,;

(ii) place a test particle (which does not influence the N-body
simulation) at each integration point;

(iii) calculate the potential ¢ for the test particles just as is done
in the N-body code: namely, using the long-range fast Fourier trans-
form (FFT) component and short-range PP correction as in the
HYDRA algorithm. However, during the FFT convolution for the test
particles eliminates contributions from scales larger than L.« by
removing the signal from wavenumbers k < 27t/ Lyax;

(iv) given the time, n, for each test particle find the time steps, i
and i + 1, of the N-body simulation such that n; < n < ;4 and
use ¢(n;) and ¢(n, . 1) to calculate the derivative 0¢(x, 1)/0n at the
position of the chosen test particle.

Our method does not smooth on to grids or create RS planes ‘on
the fly’. Nor is simulation data stored for CMB post-processing. In
order to build up our maps of the RS effect, the integrals are cal-
culated along many null geodesics, and calculations are performed
simultaneously over all these geodesics as the code runs. As a conse-
quence of not storing the data, if the parameters associated with the
ray-tracing (see Section 3.2) are varied, a new N-body simulation
is necessary. The ray-tracing used here was already implemented
(Fullana et al. 2010) in a Lagrangian code (HYDRA), and another
ray-tracing on the fly without data storing has been recently imple-
mented (Barreira et al. 2016) in a Eulerian N-body code (RaMSES). In
both cases, the distribution of particles sets what is smoothed. What
matters is the effective resolution of the rays in angle and in space.
As long as either grids, or the approach taken in our paper, are both
beyond a certain limit of resolution the results should be similar
(modulo different assumptions about smoothing kernels and so on).
So far we have pointed out resemblances, let us now list some dif-
ferences, e.g. our ray-tracing applies to Lagrangian N-body codes, it
uses only a simulation in each run, discontinuities from box to box
are prevented, and a cutoff on spatial scales (very useful for scale
analysis, see below) is performed to make periodicity magnification
negligible; however, the ray-tracing of Barreira et al. (2016) applies
to Eulerian codes, various simulations are necessary in every run
to prevent magnification, and there are discontinuities from box to
box.
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3.4 RS small maps: construction and analysis

To build maps of the RS temperature contrast, we proceed as fol-
lows: a preferred direction is selected and it is assumed that this
direction points towards the centre of a square map, which is uni-
formly pixelized by choosing a certain number of pixels, Ny, per
edge. There is an observation direction pointing towards the centre
of each pixel. The angular size of these maps may be easily cal-
culated by taking into account that all the observation directions
(map pixels) are inside the solid angle subtended by a face of the
simulation box (orthogonal to the central line of sight) at redshift
Zin- The angular resolution is then Agpe = ®yyap/Npix, Where @ is the
angle subtended by the side of the map. As a useful example, for
Zin = 6, which was the initial redshift in all the simulations con-
sidered by us in Fullana et al. (2010), a box size Lyo, = 51247
Mpc leads to a square sky patch with angular size ®,,, = 4796,
whose angular resolution, for Nyix = 256, is Ay, ~ 1.16 arcmin
(£ = 10800/ Agng 2 9300). If the value Npix = 256 is fixed, as in
this paper, then ®,,,p (Ayyg) is proportional to Lyox (1/Liox)-

Since the angular size of all the maps considered in this paper is
small (see below), the directions of all the pixels may be considered
as preferred ones and, consequently, RS integrals can be calculated
for each pixel across the full map. Moreover, maps cover small
parts of the celestial sphere and may be regularly pixelized as flat.
In this situation, the power spectrum estimator described in Sdez
et al. (1996) applies. Since this estimator uses the FFT, it has been
improved by assuming mirror symmetric boundary conditions (Pratt
2013).

For zi, > 6, e.g. zi, = 25 (initial redshift of the reference RSSs),
boxes with Ly, = 5124~ Mpc lead to maps having Dp ~ 3°6.
Since these maps seem to be a little small, we have chosen a larger
box with Lyox = f512h~! Mpc and f > 1, which leads to a more
extended map with @, ~ (326f). The f value must be suitably
chosen for every z;, > 6. Larger boxes (maps) correspond to lower
resolutions (angular resolutions) in the N-body (RS) simulation;
hence, f cannot be too large. The criterion used, in Section 4.6, to
fix the f value for each z;, is as follows. The square with Ly, =
f512h~! Mpc, orthogonal to the central line of sight, subtends
a solid angle at a given z;, (>6); the f value is chosen such that
the square having Ly, = 512 h! Mpc, placed at redshift z = 6,
subtends the same solid angle. This choice gives f values producing
admissible reductions of resolution (see below) and more extended
(326f) x (326f) RS maps. As noted in Section 3.2, for z;, = 25, one
obtains f = 1.35.

4 RESULTS

We next analyse the effect of varying key N-body and ray-tracing
parameters. The reference RSSs defined above play a central role in
this analysis. The parameters of the reference simulations are varied
either singly or in constrained pairs as reported in the following
sections. In this way, we estimate the accuracy of the resulting RS
angular power spectrum and highlight its main properties.

4.1 On the number of reference RSSs leading to accurate
C, multipoles

Since our RS maps are small statistical samples, different initial
conditions do not give exactly the same C, coefficients. The RS
angular power spectrum is obtained as the average of a number of
simulations corresponding to distinct initial modes. We have inves-
tigated how many reference RSSs are needed to get a sufficiently
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Figure 3. Quantity A as a function of log (¢) for varying numbers of
averaged RSSs. The averaged power A, obtained with three (dotted line),
six (dashed), and nine (solid) reference RSSs are shown.
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Figure 4. A, power spectrum in terms of log (¢) for different final RS

integration/simulation redshifts. Dotted (dashed) line corresponds to a ref-

erence RSS which has been stopped at zz = 0.5 (zr = 0.2). The curves are
indistinguishable.
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accurate, converged spectrum. In Fig. 3, we show the averaged
power spectra obtained by using 3, 6, and 9 runs. As can be seen,
very similar results have been found for the three cases. Hereafter,
we give spectra found by averaging six independent simulations.
Puchades et al. (2006) found that about 30 PM simulations were
necessary for a converged spectrum. The smaller number of simu-
lations required here is due to the higher resolution of our HYDRA
simulations.

4.2 Effect of changing the final ray-tracing redshift z;

Spectra corresponding to the z; values of 0.5 and 0.2 are shown in
Fig. 4. Evidently, these two spectra are almost indistinguishable,
indicating that the signal produced between redshifts 0.5 and 0.2
contributes negligibly to the total RS effect. We have also verified
that the contribution from 0.2 to 0 is negligible as expected. The
same result was found in the PM simulations of Puchades et al.
(2006).

We also considered other variations from the reference RSSs such
as different boxes, particle numbers and so on. The conclusion is the
same in all the cases: namely, that there is a negligible contribution
between z = 0.5 and 0. Despite this, we evolve all the simulations
to redshift zz = 0.2 (rather than to z; = 0.5). The simulations are
stopped at this redshift to reduce the CPU time, since the N-body
code progresses very slowly from z = 0.2 to 0, particularly for boxes
with many particles.

The fact that the RS effect becomes negligible at z < 0.5 is not
surprising since, at these small redshifts in the modelled cosmol-
ogy, non-linear structures such as voids, clusters, and superclusters
become essentially stable and, consequently, produce very small
values of the time derivative d¢(x, n)/0n in equation (6). In the
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Figure 5. Quantity A, as a function of log (£) for varying particle smooth-
ing and photon step. Solid, dotted, and dashed curves correspond to
Sp =75 = kpe, Sp =50 h~! kpe, and Sp =25 h~! kpc, respectively. The
photon step is Aps = 2.55,, in each case. All other parameters are the same
as for the reference simulations.

case of weak lensing, which is produced by the transverse gradient
of ¢, it has been showed that, for £ > 350, the signal produced at
z < 0.2 1s also negligible (Carbone et al. 2008; Fullana et al. 2010).

4.3 Impact of spatial resolution

‘We now consider the effect of varying the parameters S, (smoothing)
and A, (photon step) on the RS angular power spectra. For a given
S, a photon step satisfying the condition S,/A, >~ 0.5 has been
found to be good enough to take advantage of the effective N-body
resolution in the integrations involved in any RSS; this condition
leads to 2.5 photon steps per effective resolution interval. The same
condition is suitable for weak lensing (see Section 3.3).

In this section, we consider three values of Sy: one is the reference
RSSsvalue, S, = 50 h™! kpc; the other two are S, = 252" kpc and
S, =75h~" kpc. The corresponding values of A, are calculated
using the above condition Ap, = 25,,. The remaining parameters of
these RSSs are unchanged from the reference (see Section 3.2). The
angular power spectra obtained in these simulations are shown in
Fig. 5, where it can be seen that the three spectra are very similar. All
values of S, lead to almost identical C; coefficients for 500 < € <
3200. To quantify the separation between the solid (S, = 75h~!
kpc) and the dashed (S, = 25 h~! kpc) lines, we have calculated
the variance 62 = M ™! E,ﬂwzl [Ar(solid) — Ar(dashed)]?, where M
is the number of At values numerically calculated in the log (€)
interval (2.7, 3.5). The resultis o >~ 1.22 x 107* (very close spec-
tra). In this and the next sections, we calculate variances for other
pairs of spectra in appropriate log () intervals, these variances are
numbered with the subscript i in the form o7, and they allow us
quantitative comparisons of spectra separations.

We have also compared the CMB spectra obtained from two sets
of simulations having different box sizes, but the same value of
Lvox/ f NI}/ 3. In these simulations (shown in Fig. 6), all parameters
except Lo /f and N, have the same values as the reference RSSs.

In the first comparison (top panel), one simulation has Ly, / f =
1024 h~! Mpc and N, = 256° (dashed line), and the other Ly /f=
512 h~"' Mpc and N, = 128 (solid line). The factor f is the same
for both simulations (f = 1.35) and the simulations thus have the
same density of particles N,/ L}, or physical particle mass. We see
that the resulting spectra are similar. The variance corresponding
to the two curves of this panel, in the interval (2.7, 3.5), is 022 ~
1.87 x 1073 > o2,

In the second set of simulations (bottom panel), the ratio
Lo/ f NI} /3 is 1/8 that of the first set corresponding to eight times
better mass resolution. Three different box sizes are compared (see
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Figure 6. Quantity A as a function of log (£) for varying box size at con-
stant particle mass. Top panel: dotted (dashed) line corresponds to a box size
of 1024 f h=! Mpc (512 f h~! Mpc) and N, = 2563 (N, = 128%) particles.
The remaining parameters take on the same values as in the reference RSSs.
Bottom panel: as in the top panel for Lpox = 1024 f h~! Mpc and Ny =
5123 (solid line); Lpox = 512 f h! Mpc and N, = 2563 (dashed; reference
RSS); and Lyox = 256 h~! Mpc and N, = 128° (dotted).

figure caption for details). Again, it can be seen that the computed
RS spectra are rather stable to these parameter variations, but the
dashed and solid lines are very close and the dotted curve separa-
tion from both is appreciable, which indicates convergence towards
a spectrum close to that of the reference RSSs (dashed line in the
bottom panel). Accordingly, in the interval (2.7, 3.5), the variance
associated with the continuous and dotted (continuous and dashed)
lines is 07 >~ 2.42 x 1073 (¢ =~ 3.62 x 10~%). Quantity o} is of
the same order as o7, but o is much smaller (convergence).

4.4 Impact of mass resolution

In this section, we change the mass resolution by varying the num-
ber of particles, N, in a fixed volume. The chosen values of N,
are 1283, 256%, and 512°; the box size, Lyox = 512.f h~! Mpc, and
all the remaining parameters are identical to those of the refer-
ence RSSs. The particle masses are 7.0 x 10'> M, for N, = 128%;
8.4 x 10" M for N, = 256° (reference RSS); and 1.1 x 10" M,
for N, = 512°. The resulting angular power spectra are shown in
Fig. 7, where we see that there is a smooth dependence on mass
resolution; in fact, in the interval (2.7, 3.5), the variance corre-
sponding to the solid (N, = 512%) and dashed W, = 1283) lines is
02 ~2.21 x 1073; which has the same order as o3 and o} (spatial
resolution in Section 4.3). The dependence on mass resolution is
much greater than the dependence on S, variations studied in Sec-
tion 4.3 (07 >~ 1.22 x 107*). For ¢ 2> 1200, the power of the RS
signal is a generally slowly increasing function of N,, and conver-
gence towards a spectrum very close to that of N, = 5123 is evident.
The spectrum corresponding to N, = 256 is very similar to that
of N, = 5123 and, consequently, the spectrum obtained with the
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Figure 7. A, power spectrum in terms of log (£) for varying mass reso-
lution. All simulation parameters are the same as for the reference RSSs,
except Np, which takes the values 1283, 2563, and 5123, for the dashed,
dotted, and solid lines, respectively.
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Figure 8. Quantity A, as a function of log (¢). Dotted, dashed, and dot—
dashed lines correspond to PM simulations (Fig. 6 of paper I) with effective
resolutions of 0.5, 1, and 2 Mpc, respectively. Solid line is an AP3M HYDRA
simulation, with an effective resolution ~0.37 Mpc.

reference RSSs may be considered a very good approximation to
the RS angular power spectrum. A quantitative confirmation of this
convergence is obtained by estimating the variance of the dotted and
solid lines in the interval (3.1, 3.7), whose small value is found to
be 02 ~ 3.11 x 107*. In the interval (2.7, 3.5), we have found the
variance 7 >~ 7.68 x 10~* > ¢2. This inequality suggests that the
growing of mass resolution is very effective to force convergence
for £ 2 1200 and less effective for greater angular scales.

4.5 Contrasting AP3M and PM simulations of the RS effect

We next compare RSSs generated with the AP3M N-body code
used here, with the RSSs computed in paper I using a PM code (full
code details can be found in Quilis, Ibanez & Saez 1998). The RS
power spectra corresponding to three simulations were presented
in paper 1. These spectra are shown by the discontinuous lines in
Fig. 8. The dotted line corresponds to a flat universe with Q24 =
0.27, h = 0.71, og = 0.93, ny = 1 (Harrison—Zel’dovich spec-
trum), simulated using a PM code with Ly, = 256 Mpc, N, = 512,
N, =512, Ngir = 256, zin = 5.2, and Ly = 42 h~" Mpc. Since the
effective resolution, E,., of the PM code is two cells, this simula-
tion has Ers = 0.5 h~! Mpc. A photon step, Aps = 0.252~! Mpc
was found to be adequate to take advantage of this effective resolu-
tion (smaller values lead to very similar results). The other two PM
RSSs were generated by varying the number of cells and particles:
N.=256,N, = 2563, effective resolution 1 Mpc (dashed line); and
N, =128, N, = 128 effective resolution 2 Mpc. The three PM
RSSs (discontinuous lines) show that the greater the PM resolution
the smaller the RS signal. This fact and the comparison of the three
discontinuous lines suggest a possible convergence towards At val-
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Figure 9. Quantity A, as a function of log (¢) for varying initial redshift.
Solid, dashed, dot—dashed, triple-dot—dashed, long-dashed, and dotted lines
correspond to zij, = 30, 25, 20, 15, 10, and 6, respectively. The remaining
parameters are the same as those of the reference RSSs.

ues smaller than those of the dotted line; however, more detailed
simulations are needed to confirm or refute this convergence.

To examine the impact of submesh-scale resolution on the RS
signal, a new AP3M simulation of the RS effect was conducted.
In this RSS, the parameters had the same values as in the above
PM simulations, except for Ly, = 512h~" Mpc, N, = 256°,
N. = 1024, and S, = 50 ™" kpc, other parameters have the same
values as in the reference RSSs. In this case, the effective resolution
is ~250 ! kpc, which is greater than the best resolution of the
three PM simulations. For E.s ~ 250 4! Kpc, we may use the in-
tegration step Aps = 100/2~! kpc (see Section 4.3). We emphasize
that the same ray-tracing procedure, described in Section 3.2, has
been used to deal with photon propagation in both PM- and AP3M-
simulated periodic universes. The solid line of Fig. 8 represents
the angular power spectrum of the AP3M simulation, which may
be compared with the spectra displayed in the three discontinuous
lines (PM RSSs). This comparison leads to the conclusion that the
dotted and dashed lines approximately indicate the region where
the RS power spectrum lies; however, the shape of these lines is not
similar to that of the solid line (AP3M simulation). Finally, the solid
line is not below the dotted line, which means that the aforemen-
tioned convergence suggested by the PM spectra (discontinuous
lines) is only apparent. It is a consequence of using low-resolution
PM simulations.

4.6 Effect of changing the initial ray-tracing redshift z;,

According to the considerations of Section 2, the RS effect is pro-
duced by all non-linear structures. If the full effect is to be estimated
with our AP3M simulations, the initial redshift cannot be z;, = 5.2,
as it was for most of the simulations in paper I or z;, = 10 as in
Cai et al. (2010). With these choices, all the strongly non-linear
structures are likely considered, but the RS effect due to slightly
and mildly non-linear inhomogeneities evolving at higher redshifts
is missed.

To find out how the RS signal is accumulated, we have obtained
the C, coefficients, for the reference RSSs, with the following values
of z,: 6, 10, 15, 20, 25, and 30. The six resulting spectra are
displayed in Fig. 9. It is evident that the spectra corresponding
to zin = 25 and 30 are very similar, which means that there are no
significant contributions to the total RS signal at z;;, > 25 (almost
linear structure evolution). The spectra of Fig. 9 appears to converge
for a value of z;, to 25 and motivate the choice of this value for the
reference RSSs. As may be seen in Figs 1-9, the power of the RS
signal has a maximum, which for z;, = 30, corresponds to £ =~ 1280,
and the power is greater than about 0.6 pK in the ¢ interval (1150,
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Figure 10. A, power spectrum in terms of log (¢) for different values of
the potential cutoff length. All the parameters have the same values as in
the reference RSSs, except for the cutoff length Lp,x. Solid, dashed, and

dotted curves correspond to Ly = 42 h! Mpc, Lmax = 30 h! Mpc and
Lmax = 21 1~ Mpc, respectively.

1600). Could we detect a signal so weak in this £ interval? This
important question is discussed in the next section.

4.7 Effect of changing the cutoff length L.,

AP3M HyDRrA simulations with high resolutions are not necessary to
describe the RS effect produced by scales greater than, e.g. 42 h~!
Mpc. PM simulations should be sufficient to superimpose the RS
effects of these scales, since the PP corrections essentially affect
much smaller spatial scales. Since these PM simulations would have
a lower computational cost, they could be run in very large boxes
from high initial redshifts; evidently, at high enough redshifts, the
Zel’dovich approximation, or some appropriate generalization (see
Matarrese et al. 1992 and references therein), should be sufficient
to deal with the RS effect due to comoving scales L > 42 h~!
Mpc. In these PM simulations, scales smaller than 42/2~' Mpc
would be removed (from the peculiar potential ¢) to calculate the
RS effect complementary of that estimated in this paper for scales
L < Ly =427~ Mpc.

Note also that for a galaxy cluster having a dark matter density
profile with virial radius § ~ 2 h~' Mpc, the profile of ¢ has a
much greater size involving significant spatial scales of a few tens
of megaparsecs; hence, if the cutoff on ¢ is performed, for L, =
42 h~! Mpc, the galaxy cluster contribution to the RS signal will be
fully included in our estimates.

Cutoff lengths between 42 and 72 2~' Mpc have been also con-
sidered, and the resulting spectra are displayed in the discontinuous
lines of Fig. 1. Cutoffs at Ly > 72 h! Mpc should not be per-
formed in reference RSSs with Lyoy/f = 512 h~! Mpc and zj, =
25 (next section for further discussion).

Based upon the preceding considerations, we have chosen L,.x =
42 h=! Mpc as the cutoff length of the reference RRSs. Two other
RSSs with the same parameters as those of the reference, but with
cutoff lengths Ly, = 30h~" Mpc and Ly = 21 h~! Mpc, have
been also examined to build up Fig. 10. From the power spectra
obtained for the L,,x values of Fig. 10, the contribution of different
ranges of non-linear scales to the RS effect may be estimated.
For scales L < Ly, =21h~! Mpc, the RS signal is small and
it takes on its maximum value at ¢ ~ 2500. This signal should
be essentially due to strongly non-linear structures as clusters. The
peak around ¢ = 1250 is mainly produced by mildly non-linear
structures and clusters, whose potentials ¢ involve scales belonging
to the Linterval (21,42) h~! Mpec. Similarly, the contributions to the
RS effect due to the scales in the L intervals (42, 52) h~! Mpc, (52,
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62) h~! Mpc, and (62, 72) h~' Mpc follow from the discontinuous
lines of Fig. 1.

5 CONCLUSIONS AND DISCUSSION

Our reference RSSs have allowed us to estimate the angular power
spectrum of the RS effect produced by scales L < 42 h~! Mpc. This
is a part of the total RS effect which we denote in the RS-42 effect.

We have shown that, for an ensemble created from a large enough
number of reference RSSs (>6), a reliable estimate of the RS-42
angular power spectrum may be obtained (hereafter RS-42 refer-
ence spectrum). In particular, it has been verified that the choice
of parameters for the reference RSSs is robust. We have fixed
Linax = 42071 Mpc and show that spectrum is almost the same
for any z; < 0.5. We have performed an extensive set of parameter
sensitivity studies and conclude that: (i) for a smoothing param-
eter S, satisfying 25 hl < S, <75 h~! kpc, the RS-42 angular
power spectrum is almost indistinguishable from the RS-42 refer-
ence spectrum (S, = 50 h~! kpc); (i) simulations with box sizes in
the interval (2561 024) f h~' Mpc lead to comparable RS-42 spec-
tra if the number of particles is appropriately chosen (same particle
number density); (iii) for N, values of 256 (reference RSSs) and
5123, and Ly, = 512h~! Mpc, the resulting C; coefficients are
very similar. As N, increases, there is convergence towards an an-
gular power spectrum very similar to the RS-42 reference spectrum;
and, (iv) as the z;, redshift increases in the interval [6,30], the an-
gular power spectrum changes, taking very similar values for z;, =
25 (reference RSSs) and zi, = 30, which shows again convergence
towards a spectrum very similar to the RS-42 reference spectrum.

The redshift intervals in which the RS-42 effect is produced are
studied in Sections 4.2 and 4.6. This analysis allows us to discuss
if the detection of the RS-42 effect is feasible, but we will start by
discussing the well-known L-ISW detection method.

In the flat ACDM model, it is well known that the L-ISW ef-
fect is vanishing (negligible) for 2, ~ 0. By exploiting this result,
Crittenden & Turok (1996) proposed a method to look for a possi-
ble relevant cosmological constant. At that time, before the analy-
sis of the supernova Ia luminosities (Riess et al. 1998; Perlmutter
et al. 1999) suggesting an accelerating universe, and after CMB
anisotropy detection (£ < 20) with COBE (Cosmic Background Ex-
plorer; Smoot et al. 1992), the observational evidence supporting
a significant cosmological constant was both scarce and weak and,
consequently, the proposal by Crittenden & Turok (1996) was very
timely. These authors took into account that the L-ISW effect is
produced at low redshifts (z < 1) and is mainly relevant for £ < 100
(see Fig. 1), which means that it is produced by the time-varying
gravitational potential of large-scale structures. As a result, they
concluded that, in the presence of a cosmological constant, there
must be a cross-correlation between the CMB temperature distri-
bution (COBE data), which includes the L-ISW effect, and tracers
of large-scale structure at z < 1 (X-ray ROSAT survey data at that
time). In short, following Crittenden & Turok (1996), researchers
should look for these correlations to identify a non-zero cosmolog-
ical constant.

Today’s situation is different. As noted in Section 1, current ob-
servational data lead to predictions for the cosmological param-
eters in the context of ACDM with small 1o uncertainties: e.g.
one finds Q, = 0.692 £ 0.010 (see last column of table 5 in
Planck Collaboration XVI 2014a). This means that current obser-
vational data are not compatible with 2, = 0 in the ACDM model
and, consequently, one can state that there is an L-ISW effect and
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Figure 11. Contributions to Ay, produced in various redshift intervals, as
functions of log (¢). Calculations are based on the reference RSSs. Top panel:
triple-dot—dashed, dotted, dashed, dot—dashed, and solid lines correspond to
the intervals [6,10], [10,15], [15,20], [20,25], and [25,30], respectively. Bot-
tom panel: triple-dot—dashed, dotted, dashed, dot—dashed, and solid curves
are the contributions in the intervals [6,30], [4,6], [2,4], [1,2], and [0.5,1],
respectively.

cross-correlations should exist between the Planck CMB tempera-
ture distribution and tracers of the dark matter distribution on large
scales for z < 1. These correlations have been predicted in the
context of the ACDM model and, for appropriate tracers (Planck
Collaboration XVII 2014b), they have been recently detected with
rather high statistical significances. Previous detections are numer-
ous, see also Planck Collaboration XVII (2014b) for an exhaustive
list.

In any cosmological model which predicts time variations of the
potential, ¢, produced by linear structures, there will be an L-ISW
effect given by equation (6); the ACDM model is only a particu-
lar case. In different cosmological models, 9¢/0n may contribute
significantly to the integral of equation (6) in different redshift in-
terval [z;, 2] (z < 1 for ACDM) and, consequently, one must look
for cross-correlations with tracers of large-scale structure located
between redshifts z; and z,. This is only possible with good enough
data. In each model, specific cross-correlations may be predicted
and, then, by comparing predictions and detection (if viable), the
model could be either confirmed or ruled out. According to Planck
Collaboration XVII (2014b), some detected cross-correlations are
compatible with the ACDM predictions; nevertheless, other models
may also be admissible.

Let us now consider the RS-42 effect. As has been shown in
previous sections, contributions to this effect arise from various
scales evolving in various redshift intervals; these scales contribute
to the Fourier expansion of the peculiar gravitational potential, ¢,
corresponding to non-linear cosmological structures. In view of
this, we will try to answer the following question: is the detection
of the RS-42 effect possible by looking for correlations between
Planck CMB temperature maps and tracers of non-linear structure?
To answer, we may refer to the results in Fig. 11. In particular, the
solid and dot—dashed lines in the bottom panel of Fig. 11 show that
the RS-42 effect produced at z < 2 is completely negligible, and
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Figure 12. Quantity £(¢ + 1)Cy /2t = A% in terms of log (£). Curves in the
top, middle, and bottom panels display the spectra corresponding to RS-42,
primary anisotropy, and weak lensing, respectively.

is too small for 2 < z < 4. Hence, one would need to look for
cross-correlations between CMB data and tracers of non-linear
structures at z > 4 (see all the curves in Fig. 11). It is not pos-
sible to recover these cross-correlations since there are no suitable
observational maps of any tracer at these high redshifts (see Section
2.2 and fig. 2 in Ade et al. 2014b) and, moreover, as discussed in
the next paragraphs, the RS-42 imprint on the measurable CMB
temperature distribution is too small to be directly observed.

Fig. 12 (top panel) shows that around the peak of the RS-42
spectrum, which occurs at log¢ ~ 3.1 (£ ~ 1250), the amplitude
of (A2)gs—4p is close to 0.77 wK?>. The power of the primary
anisotropy at this scale (for the model described in Section 1) is
(A?)PR ~ 800 wK? (middle panel). This means that, at the peak,
the C, coefficients of the primary anisotropy are around 1100 times
greater than those of the RS-42 effect, which would thus clearly be
unobservable.

Fig. 12 also shows that the situation becomes better for larger ¢
values; e.g. for log £ = 3.65, the power of the primary anisotropy
falls to (A% )pr ~ 0.7 wK? (middle), whereas the power of the RS-
42 signal is (A_%)Rs,gu ~ 0.1 uKz The ratio (A.%)PR/(A_?.)R5742
fast decreases, but (Ai)RS_42 remains close to ~0.1 pK? and,
evidently, this value is too small to be measured on account of
the attainable precision of realistic experiments. Moreover, in the
log ¢ interval [3.5, 3.7], the main hindrance to detection is not the
primary anisotropy, which reaches very small values, but weak
lensing, Sunyaev—Zel’dovich (thermal and kinematic), contaminant

MNRAS 464, 3784-3795 (2017)
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foregrounds (cosmic infrared background, radio galaxies) and noise.
The bottom panel exhibits the weak lensing power numerically es-
timated in Fullana et al. (2010), where it is observed that, for log ¢
= 3.65, one has (A2)w ~ 2.4 uK>. The coupling between the
kinematic and thermal Sunyaev—Zel’dovich components would be
responsible for a power (Ai)sz ~ 10 uK? (George et al. 2015).
The total power at these angular scales would be a few tens of WK?>
(see fig. 12 in Das et al. 2014) and, consequently, a signal as small
as 0.1 pK? cannot be isolated from the above superimposition of
effects (~30 wK?), whose uncertainties are much bigger than the
RS-42 signal.

Finally, the top panel of Fig. 12 also shows that, at logf =~
3.55, the RS-42 power starts to increase. This upturn could be
caused by Poisson noise due to discretization, however, it does not
seem to be the case, since the growth is not triggered when the
resolution decreases (see Fig. 7). Further investigation of this point
is necessary.

In Fig. 10, the RS spectra due to scales smaller than 30 2~' Mpc
(RS-30) and 21 2! Mpc (RS-21) are presented together with the
RS-42 spectrum; moreover, the broken lines in Fig. 1 give us, from
bottom to top, the RS-42, RS-52, RS-62, and RS-72 spectra. In these
two figures, we see that, as Ly« increases and the RS effect of larger
scales is added, the peak of the RS spectrum grows and moves to
smaller £. For scales larger than 72 2~' Mpc, this trend must evolve
in such a way that the RS and L-ISW spectra connect to give a
unique spectrum, however, as discussed below, our methods, based
on high-resolution N-body simulations, are not the most suitable to
achieve this connection.

In the reference RSSs, the initial redshift must be greater than
~25 (see Fig. 9). This is easily understood by noting that these
simulations involve spatial ¢-scales with L < 42 h~' Mpc. Some
of these ¢-scales, e.g. those close to 42 h~! Mpc, correspond to
density contrasts evolving as weakly or mildly non-linear struc-
tures and, structures of this kind (less extended than the ¢-profiles)
are already contributing to the RS effect at z ~ 25. A smaller ini-
tial redshift may be used to study the RS effect due to strongly
non-linear structures, namely, for a cutoff L, < 42 h! Mpc
(see Fig. 10 and comments in Section 4.7). However, for cutoffs
with L. >> 42 h~' Mpc, which would be necessary to connection
the L-ISW and RS effects, the largest scales would be present at
Zin > 25, perhaps at z;, > 50 which is the initial redshift of our
N-body simulations. Finally, if too large ¢-scales are considered
by choosing L. 3> 42 h~! Mpc, even for the preferred directions,
photons might cross the same large-scale region various times in
our simulated periodic universe and, consequently, RS magnifica-
tion would arise. Much more extended boxes would be necessary to
properly perform cutoffs with L. > 42 h~! Mpc, entailing a very
high computational cost in order to maintain an admissible level of
accuracy.

We have accurately estimated the RS-42 spectrum and, then,
to discuss the connection between the L-ISW and RS spectra, have
considered the RS effect due to weakly and mildly non-linear scales
larger than 42 h~! Mpc but smaller than 72 h~' Mpc. To achieve
the connection, scales larger than 72 2~! Mpc must be taken into
account; this might be done in future by using PM codes com-
bined with appropriate approximations (see Section 4.7). Accord-
ing to Fig. 1 (discontinuous lines), the RS contributions of scales
between 42 and 72 h~' Mpc are smaller than ~2 pK and, more-
over, these contributions appear in the ¢ range where the primary
anisotropy is strongly dominant; hence, after the above discussion
of the RS-42 observability, it follows that RS-72 would be neither
observable.

MNRAS 464, 3784-3795 (2017)

Finally, we comment on possible baryon contributions to the
RS power. As has been discussed earlier, most of the RS effect is
produced, at redshifts z > 4, by spatial scales contributing signif-
icantly to the Fourier expansion of ¢. According to Fig. 10, these
scales are larger than ~20/~! Mpc; in contrast, however, WL is
produced at much lower redshifts by smaller scales relevant to
the expansion of the transverse gradient of ¢. The contributions of
baryons to the RS power depend on the modifications that this scarce
kind of matter causes on d¢» /9t at redshifts z > 4. At these redshifts,
subdominant baryon matter is falling in the potential wells of dark
matter to form protoclusters; but the baryons have not yet collapsed
to form central cores with relevant feedback, cooling, and other
effects, which are already ongoing at lower redshifts where WL is
produced. This suggests that the presence of baryons must affect
RS power less than it does WL power. While hydrodynamic simula-
tions, such as those conducted in Jing et al. (2006), Semboloni et al.
(2011), and Osato et al. (2015), could be used to properly estimate
the RS effect due to baryons, the above analysis suggests this effort
is not necessary, as a contribution to the RS power, as large as the
greatest baryon contributions to WL (about 10 per cent), would not
affect either our main conclusions or the above discussion.
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