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Fertilization represents a critical stage in biology, where
successful alleles of a previous generation are shuffled into new
arrangements and subjected to the forces of selection in the
next generation. Although much research has been conducted
on how variation in morphological and behavioural traits
lead to variation in fertilization patterns, surprisingly little is
known about fertilization at a molecular level, and specifically
about how genes expressed on the sperm and egg themselves
influence fertilization patterns. In mammals, several genes have
been identified whose products are expressed on either the
sperm or the egg, and which influence the fertilization process,
but the specific mechanisms are not yet known. Additionally, in
2014 an interacting pair of proteins was identified: ‘Izumo’ on
the sperm, and ‘Juno’ on the egg. With the identification of these
genes comes the first opportunity to understand the molecular
aspects of fertilization in mammals, and to identify how the
genetic characteristics of these genes influence fertilization
patterns. Here, we review recent progress in our understanding
of fertilization and gamete compatibility in mammals, which
should provide a helpful guide to researchers interested in
untangling the molecular mechanisms of fertilization and the
resulting impacts on population biology and evolutionary
processes.

1. Introduction
The process of fertilization represents one of the most important
steps in population biology and evolution: being the stage at
which successful alleles of a previous generation are shuffled into
new combinations and packaged as individuals to be subjected
to the forces of selection in the next generation. Factors that
influence patterns of fertilization have subsequent impacts on the

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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variance in reproductive performance across individuals, which ultimately influences the reproductive
and growth potential of a population [1]. Moreover, factors that divide a population into groups
of individuals where intra-group fertilization occurs more readily than inter-group fertilization can
ultimately lead to speciation [2]. Given these wide-ranging effects, improving our understanding of the
forces shaping patterns of fertilization is a goal of biologists across a broad range of specialties. Although
much research has been conducted on how variations in morphological and behavioural traits lead to
variation in fertilization patterns [3–5], surprisingly little is known about how genes expressed on the
sperm and the eggs themselves—and which represent the crucial ‘locks and keys’ needed for successful
fertilization—influence fertilization success and fitness.

Fertilization is mediated by a complex series of interactions between the sperm and the egg, key
steps of which require complementary interactions between proteins expressed on the surface of each
gamete [6–8]. The properties of these proteins influence how compatible a sperm and egg are, in terms
of potential for successful fertilization, which is often referred to as their ‘gametic compatibility’. Until
recently, the complementary genes controlling this compatibility had only been well described and
studied in a few marine invertebrates, most notably abalone [9–12] and urchins [13–16]. In both taxa,
the genotype of the receptor on the egg directly determines which sperm genotypes are capable of
fertilization [9,12,14]. These sperm–egg interactions, and resulting non-random fertilization patterns,
scale up to having large impacts on patterns of individual reproductive success within populations
[14], and on the development of reproductive barriers during speciation [16–19]. The complementary
nature of these genes means that there is not one ‘best’ genotype, but rather what genotype is ‘good’
depends on the genotype of the corresponding gamete. This sort of epistasis, or non-additive interaction
between alleles, provides an important mechanism for maintaining genetic diversity within populations
and for providing the raw material to drive reproductive isolation and speciation through the presence
of segregating incompatible alleles [20]. Although the benefits of genes influencing gamete compatibility
are clear in species with external fertilization such as these, to ensure eggs are fertilized by sperm of
the correct species, much evidence exists that such genes are important also in organisms with internal
fertilization, such as mammals.

Genes involved in reproduction, and in gamete compatibility in particular, have proved to be among
the fastest evolving genes in organisms yet studied (along with those of the immune system) [11,21,22].
There are three primary hypotheses, which are not mutually exclusive, regarding the underlying
selection pressures [21]. The first is sperm competition, where the genetic complement of a sperm
could influence its chances of fertilization success at many stages throughout the fertilization process,
and intense competition among sperm could then lead to rapid evolution of the associated genes.
Second is sexual selection, where particular sperm–egg combinations have higher success rates than
others, leading to the continual coevolution of genes expressed on the gametes of both sexes. Last is
sexual conflict, where selection on eggs to block polyspermy, and intense competition among sperm,
provide conflicting selection pressures on the gametes (on eggs to make multiple fertilization difficult,
and on sperm to more rapidly fertilize the egg). This process would lead to a continual coevolution
of the genes involved in such strategies. Related to the ‘sexual selection’ hypothesis is the rapid
divergence in gamete compatibility genes often found between recently diverged species [17,19,23].
Selection against cross-species fertilization could lead to rapid divergence of gamete compatibility
genes, relative to other parts of the genome, and thus lead to effective reproductive boundaries
between taxa.

In mammals, many genes have been identified whose products are expressed on either the sperm
or the egg, and are somewhat involved in gamete compatibility, but the specific interactions and
mechanisms are not yet known [22,24–28]. However, this changed in 2014 when a pair of genes (called
‘Izumo’ for the sperm surface protein, and ‘Juno’ for the complementary egg receptor) was identified
with a specific ligand–receptor relationship [29,30]. With the identification of these genes comes the
first opportunity to understand the details and mechanisms of gamete compatibilities in mammals, to
identify how genetic variation at these genes influence fertilization patterns and fitness, and to assess the
subsequent implications for the development of reproductive barriers and speciation.

Given this recent progress, it seems timely to review our state of knowledge of these candidate genes
and the processes that they influence. Here, we provide a brief overview of the structure of mammalian
gametes and the fertilization process in mammals, review what is known about key candidate genes
involved and provide a brief review of the key areas where the analysis of such genes may be fruitful.
The hope is that such a review will provide motivation, as well as a guide, for researchers interested
in untangling the mechanisms of gamete compatibility and the resulting impacts on population biology
and evolutionary processes.
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Figure 1. Overview of egg structure. The ovulated egg is surrounded by a hyaluronic acid matrix, which contains cumulus cells. The zona
pellucida (ZP) separates the cumulus cells from the egg. The perivitelline space is the space between the ZP and the membrane of the
egg. Figure drawn from [8,31].

2. Gamete structure
2.1. The egg
An ovulated mammalian egg is surrounded by two key layers (figure 1). The first is an outer layer of
cumulus cells that are contained in an extracellular matrix composed mainly of hyaluronic acid (also
called the cumulus oophorus) [8,32]. Cumulus cells promote oocyte growth and development, and
secrete progesterone, which is probably one of the chemoattractants—attracting the sperm to the egg
[31,33]. The cumulus oophorus has many soluble factors and hormones that affect the egg and sperm
in several ways, such as coordinating oocyte maturation and transport, and stimulating sperm motility
[32]. The cumulus cells also act as the first of several barriers to spermatozoa, representing a dense mass
through which only sperm that have undergone proper initial steps (see below) can pass. Interestingly,
the cumulus layer is shed shortly after ovulation in marsupials and monotremes, and is therefore only a
key player in fertilization within eutherian mammals [34,35]

The second major layer is a thick glycoprotein layer called the zona pellucida (ZP) [7]. It often serves
as a species-selective barrier for sperm, and the binding of sperm to the ZP represents the first (of two)
major interactions between the sperm and the egg. The ZP is composed of three different glycoproteins
in most mammals: ZP1, ZP2 and ZP3; but humans and other primates have an additional glycoprotein,
ZP4 [36,37]. Alterations to the ZP after fertilization prevent polyspermy and protect the early-stage
embryo [35].

Interior to the ZP is the perivitelline space, which separates the egg proper from the zona pellucida,
creating an area of protection [38]. Lastly, the egg is surrounded by a plasma membrane, to which
spermatozoa bind during fertilization.

2.2. The sperm
Mammalian sperm can be divided into three main sections: the head, midpiece and tail, with lengths
and characteristics that vary across species [39]. The sperm head contains the nucleus and the acrosome.
The nucleus contains the haploid genome needed for fertilization. The acrosome is a secretory organelle
that covers the first two-thirds of the sperm head, and is key to the binding of spermatozoa to the egg
(figure 3) [39,40]. The midpiece is the central segment that connects the tail to the sperm head. It contains
a central filamentous core surrounded by a large number of mitochondria as energy suppliers for the
spermatozoa. The tail, or flagellum, is the longest part of the sperm, and is responsible for propulsion to
the site of the egg [39].

3. Fertilization
Fertilization is an extremely complex, multistep process of which many details remain poorly
understood. For our purposes, we will consider the processes involved in fertilization that occur post
copulation. This delineation point is arbitrary, and prior aspects of reproduction such as the structure of
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Figure 2. Overview ofmajor structures, sites and transport/guiding processes involved in fertilization. Although there is variation across
mammals, this is meant to represent generic features of mammalian reproduction. Figure drawn from [49,51].

reproductive organs, and mating systems and behaviour, obviously influence patterns of fertilization.
However, in contrast to the wide variation in these characteristics across mammals, there is much
similarity in the process once sperm have entered the female reproductive tract. Therefore, this stage
serves as a suitable starting point for examining the context and processes associated with the molecular
aspects of fertilization.

When sperm first enter the reproductive tract, two main objectives can be envisaged: evading the
female immune system and targeting movement towards the egg. The importance of the former can be
seen from data where seminal fluid triggers an invasion of antisperm antibodies and white blood cells
into the vagina [41–43] that can proceed to break down the spermatozoa (motile sperm) [44,45]. Indeed,
it is thought that avoiding such an immune response is why many species evolved genitalia capable
of depositing spermatozoa directly into the uterus, or at least close to the cervix where they can then
quickly be moved through the cervix into the uterus [46]. Components within the seminal plasma also
appear to provide at least some additional protection from phagocytosis [47]. This immune response,
and the medium of the cervical mucus, are thought to limit the progress of a large portion of the sperm
(including those that are malformed or damaged), whereas a small portion of morphologically normal
sperm may proceed rapidly into the oviduct.

Numerous factors appear to aid the movement of sperm towards the egg, and the relative importance
of each may vary across species. In general, four main factors are key [46,48,49]. First, uterine contractions
can efficiently move large numbers of sperm through the initial components of the reproductive tract
(vagina, cervix, uterus). Second, folds present in the tissues may serve as pathways directing sperm
through the cervix and uterus, and towards the oviduct. Third, thermotaxis—or the movement of
spermatozoa along a temperature gradient—helps guide sperm down the fallopian tube towards the
site of fertilization, which is 1–2° warmer than the entrance of the fallopian tube [49,50]. The fourth,
and perhaps most interesting, factor is chemoattraction: where sperm are attracted by chemical signals
released from the egg [48,51]. Such a process is prevalent in the animal kingdom, but less well understood
in mammals. For example, the specific chemicals used have been identified for many non-mammalian
species, but have yet to be identified in mammals [49,51] (figure 2).

3.1. Modification of sperm prior to fertilization
Successful movement of the gametes towards one another is not the only hurdle to be overcome
for fertilization to be successful. Instead, early studies showed that spermatozoa cannot fertilize eggs
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Figure 3. Sperm structure and capacitation. Diagram of the sperm head containing the nucleus with the haploid genome, and
the acrosome, which is a secretory organelle. The acrosome has two membranes, an inner and outer. Capacitation causes multiple
physiological changes in the head, acrosome and tail of the sperm, which is necessary for fertilization. Figure drawn from reference [8].

immediately after ejaculation, but rather require an incubation time in the female reproductive tract
before acquiring this potential [52–55]. These studies provided early indications of the complexity of
fertilization, and the important role of environmental conditions within the female reproductive tract
[52,55]. Although such an incubation time is required across mammals, the necessary length of time
varies across species, ranging from approximately 1 h in humans to approximately 5 h in rabbits and
cows [56–58]. These data demonstrate that the sperm must undergo modifications that are triggered by
the environment in order to interact properly with the egg. Two such transitions are now known to occur:
capacitation and the acrosome reaction.

3.1.1. Capacitation

As spermatozoa make their way through the uterus and into the oviductal isthmus, they become
reversibly bound to the oviductal epithelium [51]. This is the stage at which spermatozoa become
capacitated (figure 2). One of the key steps that appears to trigger this process is the removal (in vitro)
or dilution (in vivo) of the seminal fluid associated with the spermatozoa, which is a known inhibitor of
capacitation [55,59,60]. Not all spermatozoa undergo capacitation at the same time, however, and at any
given time only a small portion (approx. 10%) are capacitated, with a relatively high turnover rate of
which sperm are capacitated and which are not [55].

The processes that take place during capacitation have two major effects on the fertilization abilities
of the sperm. First, it is at this time when sperm become ‘hyperactivated’. Hyperactivation usually
involves increased amplitude and asymmetry in flagellar beating patterns, and appears necessary for
the spermatozoa to break free from their bonds with the oviductal epithelium, complete their journey
towards the egg and penetrate the outer layers of the egg [61,62]. Second, it is during capacitation when
the proteins needed for sperm–egg interactions become ‘unmasked’ due to the removal and/or changes
in the proteins present on the plasma membrane on the head of the sperm [55,63,64] (figure 3). Thus,
it is at this stage when the first proteins involved in sperm–egg interaction are exposed, and the genes
underlying such proteins should be a key target in investigations into the molecular aspects of gametic
compatibility.

After capacitation, spermatozoa move through the fallopian tube towards the egg, probably guided
by a combination of thermotaxis, chemotaxis and oviductal contractions. Only capacitated sperm can
make their way through the cumulus cells surrounding the egg [55].

3.1.2. The acrosome reaction

The second major transition that must take place in the spermatozoa for fertilization to be successful is the
acrosome reaction (AR). The acrosome is a secretory vesicle in the head of mammalian spermatozoa that
is enclosed by a continuous acrosomal membrane. The membrane can be further divided into the inner
acrosomal membrane, which is in close proximity to the nuclear membrane, and the outer acrosomal
membrane, which is under the plasma membrane that covers the acrosome [65,66] (figure 4). During
the AR, the plasma membrane and outer acrosomal membrane fuse, and the acrosomal contents are
released. This process uncovers a new set of proteins that will interact with the plasma membrane of the
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acrosomal cap region

acrosome reaction

equatorial region

Figure 4. Changes to spermatozoa during the acrosome reaction. The inner acrosomal membrane is exposed allowing the spermatozoa
to bind to and penetrate the zona pellucida, and to bind to the egg plasma membrane. Figure drawn from [8,37].

egg during fertilization [66,67] (figure 3). However, once the spermatozoon makes its way through the
ZP and reaches the plasma membrane of the egg, the point of contact with the egg is not the tip of the
spermatozoon, but rather the equatorial region on either side [8] (figure 4). Thus, it is proteins expressed
on these regions, after the acrosome reaction that are probably key to gamete compatibility at this stage
of fertilization.

It has historically been thought that the acrosome reaction is triggered when the proteins on the
head of the spermatozoa that were exposed during capacitation interact with those on the ZP. Indeed,
several studies have shown that the ZP, and ZP3 in particular, have sperm-binding capabilities and can
also trigger the AR [68,69]. Additionally, during the AR enzymes are released that can dissolve the ZP,
creating a hole through which spermatozoa can pass [70]. However, recent studies have shown that, at
least in mice, this is not necessarily the case, and that spermatozoa can undergo the acrosome reaction
prior to interaction with the ZP, and even prior to encountering the cumulus cells surrounding the egg
[71,72]. Therefore, at this time the trigger(s) for the acrosome reaction and the exact location where it
takes place are not known. A role for an interaction with the ZP still seems likely, but what that role is,
and how essential it is are now unclear. One possibility is that interaction with the ZP3 may facilitate the
completion of the AR, rather than being a key aspect of AR initiation [71].

3.2. Summary of gamete interaction stages
In summary, there are two major stages where the proteins of the gametes interact with one another,
and thus where the characteristics of these proteins may influence fertilization patterns. First is when the
proteins on the head of the spermatozoon interact with those on the egg’s zona pellucida. However,
as stated above, it was originally thought that it was the proteins exposed during capacitation that
interact with the ZP, triggering the acrosome reaction. However, it is now clear that many of the
spermatozoa that bind to the ZP have already undergone the AR, and therefore, it is probably
proteins exposed on the head post AR that are key to sperm–ZP interactions. Second is when those
proteins exposed on the equatorial region of the spermatozoa during the AR interact with those on the
egg’s plasma membrane (figure 4). By considering which proteins are expressed when, and in what
locations, it is possible to identify a suite of potentially interacting candidate genes influencing gametic
compatibility.

4. Potential gamete compatibility genes
Below is a brief description of the genes that, at the time of this writing, have the most potential for
being key players in gamete compatibility. It is divided into those found on each gamete. We reiterate
that only one interacting pair is currently known in mammals: Izumo on the sperm, with Juno on the
egg. However, the other genes described are known to influence gamete compatibility in some way, even
though the details have not yet been worked out. We caution readers that this list represents many of
the likely candidates given our current understanding; however, it is not completely exhaustive, and our
understanding is still in its infancy. Therefore, some genes that may prove key in the future may not be
included here, and some included here may be of limited use.
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Figure 5. Major steps in fertilization. (1) Spermatozoa undergo the acrosome reaction probably prior to reaching the cumulus mass
[71,72]; (2) spermatozoa penetrate the cumulus cells; (3) spermatozoa binds to the zona pellucida; (4) sperm moves through the zona
pellucida into the perivitelline space; (5) sperm binds to the egg plasma membrane; (6) sperm fuses with the egg plasma membrane.
Note that binding (step 5) and fusion (step 6) are distinct processes, and studies have shown that sperm canbind to the plasmamembrane
without fusing with it. Figure drawn from [7].

4.1. Sperm

4.1.1. Izumo1

The Izumo1 protein (named after a Japanese marriage shrine) has a large extracellular region, a single
transmembrane region and a short cytoplasmic tail [73,74]. During the acrosome reaction, Izumo1 shifts
from the anterior head of the sperm to the equatorial segment where fusion takes place [75]. Mice that
lack the Izumo1 protein produce normal sperm that are capable of binding to, and penetrating, the zona
pellucida, but which are unable to fuse with eggs. The sperm instead built up in the perivitelline space
(the space in between the ZP and the plasma membrane of the egg) [76]. An inhibitory antibody bound to
this section inhibited sperm–egg fusion but it did not affect sperm motility or egg binding [73]. Binding
is a necessary step where the sperm is attached to the egg, before fusion can take place (figure 5) [32].
This suggests the inhibitory effect occurs during the sperm–egg fusion [73]. The putative functional sites
where Izumo1 interacts with Juno have been identified, with amino acids 148–163 being particularly
important [77,78].

4.1.2. CRISP1

CRISP1, also known as DE (due to showing up on non-denaturing gels as two bands—called proteins
D and E [79]) is one member of the cysteine-rich secretory protein (CRISP) family [80]. Members of
the CRISP family vary in their biological functions, are found in different mammalian tissues and can
even be found in the venom of snakes, lizards and snails [81,82]. The proteins are characterized by 16
conserved cysteine residues, with 10 being clustered in the C-terminal domain [27]. CRISP1 is unique
among the candidate genes considered here, in that it appears to be involved in both stages of the sperm–
egg interaction. There are two ‘populations’ of CRISP1 expressed on spermatozoa: one loosely bound
population that is involved in the initial binding of sperm to the ZP (and which are subsequently released
from the sperm during the acrosome reaction); and a second, tightly bound, population that migrates to
the equatorial region of the sperm head after the AR and is subsequently involved in egg membrane
binding [27]. Mice with a mutated CRISP1 gene were still fertile, but had decreased fusion ability in
an environment that promoted sperm competition with healthy sperm [83]. Additionally, the masking
of CRISP1 resulted in a significantly lower ability to fertilize eggs that had the cumulus cells and zona
pellucida removed. Thus, sperm lacking CRISP1 have a disadvantage in their capacity to both interact
with the zona pellucida and fuse with the egg [83]. The egg-binding ability of CRISP1 is located in a
specific 12 amino acid sequence known as Signature 2 [84]. However, another member of the CRISP
family may compensate in sperm that are lacking CRISP1. CRISP2 may interact with common binding
sites on the egg as CRISP1 [85], and CRISP2’s Signature 2 region only differs from CRISP1 by two amino
acids [83].
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4.1.3. CRISP2

CRISP2, also called Tpx-1, is expressed exclusively in male haploid germ cells, and shows high homology
(69%) to CRISP1 [85]. Unlike CRISP1, CRISP2 is not involved in ZP binding, and is only associated with
binding to the plasma membrane of the egg. CRISP2 is expressed on the equatorial section of the sperm
after the acrosome reaction, and experimental studies have found that an inhibitory CRISP2 antibody
reduces the percentage of fertilized eggs, with sperm accumulating in the perivitelline space [85]. The
antibody had no effect on ZP penetration, sperm motility or the AR [85]. A potential functional site was
seen in human males: a polymorphism in exon 9 of CRISP2 resulted in sterility [86].

4.1.4. PKDREJ

PKDREJ is a large, intron-less gene that codes for an approximately 8 kb transcript in humans [87]. Its
name is derived from the fact that it has high homology to two different types of genes: the PKD family
and the REJ gene. The PKD family of genes code for membrane-bound proteins that form calcium ion
channels and are involved in cell–cell and cell–extracellular matrix interactions [88]. A region of PKDREJ
is also homologous with the sea urchin REJ gene, which is involved in sperm–egg interaction [89]. The
PKDREJ protein is located on the acrosome of the sperm head, suggesting that PKDREJ is involved in
ZP binding [90]. Experimental evidence indicates that although PKDREJ is involved in ZP binding, it is
not essential [91]. For example, male mice homozygous for a mutated PKDREJ allele could still fertilize
eggs, but had lower fertilization success when in a competitive environment with normal sperm. This
reduction was due to an increase in the amount of time needed for the acrosome reaction to occur [91].
The likely location of the functionally important segment of the PKDREJ gene is the region homologous
to the REJ gene, which corresponds approximately to amino acids 280–800 in humans [25].

4.1.5. PH-20

PH-20 is a plasma membrane protein located on the sperm head as well as on the inner acrosomal
membrane, the latter of which appears to be released during the acrosome reaction [92–94]. For many
years it was thought that PH-20 is required for sperm binding to the ZP, and this requirement led to
investigations of using medicinal blockage of PH-20 as a form of male contraception [92,94]. However,
more recent studies suggest that this may not be universal because PH-20-null mice are still fertile
[95]. PH-20 appears to have a dual role in fertilization [93,96]. First, PH-20 has enzymatic activity and
these proteins covering the head of the sperm are important for penetrating the cumulus layer of cells
surrounding the egg. Second, it has a non-enzymatic role in the secondary binding of spermatozoa to the
ZP after the acrosome reaction [93,96,97]. The active site of PH-20 required for hyaluronic acid binding,
a step in the ability to penetrate the cumulus layer, has been identified at amino acid sites 205–235 [98],
but the site required for secondary binding to the ZP has yet to be identified.

4.1.6. Zonadhesin

Zonadhesin is an acrosomal protein that is unique in its ability to bind to the zona pellucida in a
species-specific manner [99]. It is localized on the outer acrosomal membrane and exposed during
capacitation [100–102]. It differs between species due to rapid evolution and also domain duplication,
mRNA splice variation and processing heterogeneity during the functional maturation of the protein
[101]. Sperm adhesion to the ZP, or sperm penetration, was decreased when sperm cells were exposed
to a zonadhesin antibody [102]. Additionally, mice that lack zonadhesin are fertile, but have lost the
species specificity of sperm–ZP fusion. This loss has not been seen with knockout individuals of other
sperm proteins [101]. A potential binding region is an exposed fragment of 30 amino acids in MAM
(me-prin/A5 antigen/mu receptor tyrosine phosphatase) domain 3 in mice. This section is characterized
by a substantially increased rate of positively selected amino acid sites and exhibits high variability in
predicted post-translational modifications .

4.2. Eggs

4.2.1. The zona pellucida

The zona pellucida (ZP) is composed of three different glycoproteins: ZP1, ZP2 and ZP3. In humans
and other primates, there is an additional glycoprotein, ZP4 [36]. ZP1 is necessary for forming and
maintaining the structural integrity of the zona pellucida [104]. Mice lacking ZP1 still have a zona
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pellucida, but it is thinner than normal, and has a poorly defined border. This disfiguration can lead to
granulosa cells (which make up cumulus cells) accumulating in the perivitelline space, causing functional
disorganization within the egg, and resulting in diffusion of the zona matrix. In functional studies of
ZP1, ZP1-null mice had reduced fertilization rates (80% of ZP1-null mice were sterile), and those where
fertilization was successful had litter sizes that were half those of normal mice [105]. The fact that ZP1-
null mice can still be fertile indicates that ZP1 is not essential for proper sperm–egg interaction and
fertilization.

In humans, ZP2 is responsible for secondary binding of the acrosome-reacted sperm (following initial
binding with ZP3) [106]. ZP2 also provides an effective block to polyspermy. After fertilization, ZP2 is
cleaved from the zona pellucida so that additional sperm are unable to bind to the early embryo, ensuring
monospermic fertilization [106]. Mice without ZP2 are able to form a thin zona pellucida comprising
ZP1 and ZP3. However, the resulting ZP is not sustainable, and the resulting eggs are ZP-free [104]. The
absence of the zona pellucida has a negative effect on the development of the egg, resulting in sterility of
that female [107].

Although, as stated above, the role of sperm binding with the ZP has been revised with respect to
triggering the AR, sperm–ZP binding is still an important step in fertilization, regardless of its role in
the AR. For example, mice that lack ZP3 form oocytes without a zona pellucida, which results in sterility
[104]. ZP3 is also thought to be responsible for the species-specific binding of sperm to the egg [70].
Although some studies have found indications of which specific regions directly influence sperm binding
[108,109], other studies have obtained conflicting results [110,111], and therefore the key regions involved
remain unknown. ZP3 polypeptides do not appear to interact with the sperm directly, but rather do so
via oligosaccharides that bind to the ZP3 polypeptides [70]. Thus variation within the gene itself, as well
as in the associated oligosaccharides, is responsible for the subsequent effects on fertilization. Indeed,
previous studies have shown that this gene is under strong selection, causing rapid divergence between
species [112].

The role of the human ZP4 is not yet well understood and requires more research. As it is structurally
similar to ZP1, it has been assumed that ZP4 also plays a role in maintaining the structural integrity of
the human zona pellucida [104].

4.2.2. Juno

Juno is the egg receptor for Izumo1 [29]. Previously called Folr4, this gene was renamed Juno after
the Roman goddess of fertility and marriage, once it was recognized as the paired receptor for Izumo.
Female mice that lack Juno are completely sterile. Juno is also rapidly shed after fertilization, which could
provide an additional block to polyspermy [29]. The shedding of Juno creates a layer of ‘fake’ eggs that
could attract and bind acrosome-reacted sperm, preventing them from reaching the already fertilized
egg. The interaction of Izumo1 and Juno is a necessary event for adhesion between acrosome-reacted
sperm and the egg membrane [29]. Adhesion is the sustained interaction of sperm cells with the egg
extracellular matrix that should lead to fertilization with normal sperm [32]. However, these proteins do
not facilitate the following step, fusion, which is vital for successful fertilization [29]. Juno has a folate-
binding pocket at amino acids 60–175; however, the binding site for Izumo1 has been identified as the
surface behind this binding pocket, and specifically within amino acid sites 44–91 and 145–191 [77,78].

4.2.3. CD9

Another putative type of gene for moderating fusion on the egg surface is the tetraspanin family
[74]. Tetraspanins are small transmembrane proteins that are thought to affect cell adhesion, motility,
proliferation, differentiation and signalling. CD9 is a necessary tetraspanin for gamete fusion [113].
Knockout mice that lack CD9 have severely reduced fertility. The sperm is able to penetrate the ZP and
bind to the egg membrane, but the membranes are unable to fuse. The exact role of CD9 in sperm fusion
is still unknown. Research suggests that it does not interact directly with a complementary protein on the
sperm, but rather it binds with another ‘egg fusion protein’, causing a change in conformation, which
then interacts with the sperm [74,113]. The functional sites of CD9 have been identified as part of the
large extracellular loop 2, amino acids 173–175. A mutation at these amino acids results in eggs without
fusion ability [113].

The genes discussed here primarily code for proteins thought to interact directly with complementary
proteins on the other gamete. However, the products of some gamete compatibility genes, such as ZP3,
bind to sugar molecules and it is this combined glycoprotein that is involved in gamete interactions
[114–116]. This greatly increases the complexity of gamete interactions, with variation in the proteins
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themselves, the sugar molecules and in the post-translational modification (glycosylation), potentially
impacting gamete compatibility. However, we currently know little about the role of glycoproteins in
mammalian gamete compatibility, outside of those involved with the ZP, but, given their importance
in other taxonomic groups [115], it seems likely that they play an important role, the details of which
remain to be discovered.

5. Applications
Understanding how characteristics at gamete compatibility genes influence patterns of fertilization
has implications for a broad range of fields, ranging from reproductive biology to evolutionary and
conservation genetics, to speciation. Here, we will briefly summarize some of these applications,
highlighting how they can fill key gaps in our understanding.

In terms of reproductive biology and evolutionary genetics, patterns of non-random fertilization
are widespread in nature [117–123]. These are often studied in the context of post-copulatory mate
choice, where females are able to ‘choose’ which sperm fertilize their eggs. In species where laboratory
experiments are possible, this ‘choice’ appears due to differential fertilization success of different types
of sperm relative to the characteristics of each egg [122,123]. Despite the widespread nature of these
patterns, however, the mechanisms involved have remained elusive. Thus, identifying the underlying
genes and mechanisms has long been regarded as a high priority [118,119,121]. Genes involved in gamete
compatibility are clearly the most likely candidate genes influencing these non-random fertilization
patterns [14], and their analyses will therefore shed much needed light on the issues of post-copulatory
sexual selection, female choice and evolutionary genetics.

Understanding these patterns also has large implications for the fields of conservation biology and
conservation genetics. In many of the species where non-random fertilization patterns have been found,
fertilizations are biased towards gametes that are genetically dissimilar [117–119,121,123–125]. The result
is offspring with higher levels of heterozygosity than expected from a similar-sized random-mating
population. In this way, this process can not only slow the decline of heterozygosity expected from
genetic drift, but can also maintain heterozygosity at higher levels than expected in small populations.
Thus, these biased fertilization patterns can significantly counter the effects of genetic drift, and act to
maintain genetic diversity in small populations [126,127]. Moreover, the resulting benefits (primarily
offspring with high heterozygosity) have been proposed as one of the main driving forces behind
the evolution of polyandry [128–131]. Obtaining a better understanding of how the characteristics of
gamete compatibility genes shape fertilization patterns can, therefore, lead to a better understanding of
the mechanisms through which patterns of genetic diversity influence reproductive performance and
recovery potential in endangered species, and lead to a more thorough understanding of the evolution
of different mating systems and strategies.

The process of speciation involves the evolution of reproductive barriers between closely related
groups of individuals. Although the development of geographical barriers (resulting in allopatric
populations) is often thought to be the trigger for the subsequent development of ‘biological’ barriers,
it is the presence of these biological barriers that often underlies where species lines are drawn
[132,133]. Gamete compatibility genes are likely candidates for the initial development of reproductive
incompatibilities between closely related groups of individuals [17–19,134–136]. Indeed, Gavrilets &
Waxman [17] showed that if segregating alleles within a population result in females differing in
their compatibility to different males, this will lead to different ‘groups’ of reproductive (compatible)
individuals. Over time, this can result in the sympatric evolution of reproductively isolated groups. Thus,
gamete compatibility genes are probably a key factor in the evolution of biological reproductive barriers,
and provide a clear path through which one species can sympatrically be split into two based solely
on different fertilization patterns among existing alleles. A similar process is probably also important in
many cases of allopatric speciation with gene flow, where differentiation at gamete compatibility genes
underlies the development of reproductive barriers. In this way, the analysis of these genes represents
a promising approach for improving our understanding of how genetic characteristics influence the
speciation process.

When trying to identify loci influencing specific traits, two approaches are generally used: the
candidate gene approach where specific genes or loci are targeted for sequencing and analysis; and
genome-wide association studies (GWAS) where tens of thousands of loci (generally single nucleotide
polymorphisms, or SNPs) are analysed to screen the genome for regions or loci showing an appropriate
signature. The rapid evolution and decreasing cost of methods to characterize and genotype individuals
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at tens of thousands of SNPs have led to the rapid growth of our understanding of how genotype
influences fitness and phenotype based on the GWAS approach [137–139]. However, such studies
often involve two stages: the first involving the large-scale genome screening to identify loci with an
appropriate signature, and then a second stage of further sequencing and characterization of the area
around the SNP originally identified. Therefore, the candidate gene approach may still be a more efficient
option in cases where putative candidate genes have been identified [140]. Much research has been
conducted on potential gamete compatibility genes, and their likely roles in the fertilization process.
Therefore, the goal of this review was to bring this wealth of literature together into one cohesive paper
and framework, and to create a list of candidate genes that hold the most potential for success, and
therefore serve as a guide for future studies. Moreover, given the broad range, and importance, of
processes influenced by gamete compatibility genes, we hope that this paper will serve as motivation
for more researchers to pursue this line of inquiry.
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