
Oberlin Oberlin

Digital Commons at Oberlin Digital Commons at Oberlin

Honors Papers Student Work

2021

Collaborative Game Mosaics Collaborative Game Mosaics

Xiaoyun Gong
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors

 Part of the Mathematics Commons

Repository Citation Repository Citation
Gong, Xiaoyun, "Collaborative Game Mosaics" (2021). Honors Papers. 827.
https://digitalcommons.oberlin.edu/honors/827

This Thesis is brought to you for free and open access by the Student Work at Digital Commons at Oberlin. It has
been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at Oberlin. For
more information, please contact megan.mitchell@oberlin.edu.

https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/827?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

Collaborative Game Mosaics

Xiaoyun Gong
Honors Advisor: Robert Bosch

March 26, 2021

0 Introduction

Imagine two players are playing a strategy board game. With one player holding black
stones and the other player holding white stones, they take turns to place their pieces.
After a while, they start to recognize some patterns. With three colors in front of them,
black, white, and the color of the game board, they are curious about if they can form a
recognizable image. Instead of playing the game to win, they start to collaborate with
each other to form a mosaic. Later, they invite more players and provide them their
own stones in different shades of gray.

The goal of this project is to use mathematical optimization techniques to design
mosaics that simultaneously resemble well-known images and look like the current state
of a board game like gomoku or something that could be played on a Go board or chess
board. The work described here builds upon techniques devised by Professor Robert
Bosch and some of his student[1][2].

The paper will be structured as follows: First, we will discuss the data, variables,
objective function, and universal constraints. Then we will explore constraints for two
specific games, gomoku and chess. Next we will present several examples, sharing both
images and statistics, and we will talk about methods we have devised for improving
the results. We will conclude with a discussion of future directions for our research.

1 Data, Variables, Objective Function, and Univer-

sal Constraints

1.1 Data

Given a grayscale target image, we first partition it into a grid that consists of r rows
and c columns of squares. After calculating the average grayscale value of each cell,

1

we have an r × c matrix with grayscale value of each cell in it. If we denote the row-i
column-j entry in the matrix as βi,j, where i ∈ {1, · · · , r} and j ∈ {1, · · · , c}, then

βi,j = average grayscale value of cell (i, j) .

Here, βi,j ∈ [0, 1] and βi,j = 0 means cell (i, j) is completely black, while βi,j = 1
means cell (i, j) is completely white. Intermediate values of βi,j correspond to shades
of gray. Larger βi,j’s are for cells (i, j) that are brighter.

For images with lower contrast levels, an optional adjustment to the data is to
scale each βi,j entry so that the maximum and minimum of all the βi,j’s are 1 and 0
respectively. To update the βi,j’s, we set βmin = mini,j{βi,j} and βmax = maxi,j{βi,j}
and then we redefine

βi,j :=
βi,j − βmin
βmax − βmin

.

1.2 Variables

Imagine we are placing stones or game pieces of different shades of gray on a Go board
or a Chess board. If we have two players, one player’s stones will be black (shade 0)
and the other player’s stones will be white (shade 2). We reserve shade 1 for the board,
which will serve as a background. Note that we assuming that the board is mid-range
gray. We will use k to index the shades of gray. For each (i, j) where i ∈ {1, · · · , r}
and j ∈ {1, · · · , c}, we introduce Boolean variables

xi,j,k =

{
1 if the cell (i, j) is colored in shade k .

0 if the cell (i, j) is not colored in shade k .

While these xi,j,k variables enable us to model stone-placement decisions in the
classic two-player gomoku game, we want to allow for more than two players. If there
are n players where n is even and each player has their own shade of stone, then we
assume that player k uses stones of shade k. Here we reserve shade n/2 for the board
(mid-range gray). In total, there are r × c× (n+ 1) such xi,j,k variables.

1.3 Objective Function

We want to minimize the difference between the shades of gray in our mosaic and the
original grayscale values. We define bk as

bk :=
k

n
.

Our goal is to minimize
r∑

i=1

c∑
j=1

(
βi,j −

n∑
k=0

bkxi,j,k

)2
.

2

Let’s consider
(
βi,j −

∑n
k=0 bkxi,j,k

)2
for each cell (i, j) now. Note that

(
βi,j −

n∑
k=0

bkxi,j,k
)2

= β2
i,j − 2βi,j

n∑
k=0

bkxi,j,k +
(n∑

k=0

bkxi,j,k
)2

︸ ︷︷ ︸
1©

. (1)

Term 1© can be rewritten as

(n∑
k=0

bkxi,j,k
)2

=
n∑

k1=0

n∑
k2=0

bk1bk2xi,j,k1xi,j,k2

=
n∑

k=0

b2kx
2
i,j,k︸ ︷︷ ︸

2©

+
n−1∑
k1=0

n∑
k2=k1+1

2bk1bk2xi,j,k1xi,j,k2︸ ︷︷ ︸
3©

.

Because the xi,j,k variables are Boolean, we have x2i,j,k = xi,j,k in term 2©. In addition,
if we impose constraints that say that each cell (i, j) can hold at most one stone, then
for each (i, j) there will be only one xi,j,k that equals 1. Thus, term 3©= 0, as each
of its product terms equals 0. With these two changes, term 1© =

∑n
k=0 b

2
kxi,j,k. Now,

when we substitute the simplified version of term 1© into equation (1), we obtain

(
βi,j −

n∑
k=0

bkxi,j,k
)2

= β2
i,j − 2βi,j

n∑
k=0

bkxi,j,k +
n∑

k=0

b2kxi,j,k

= β2
i,j +

n∑
k=0

(b2k − 2bkβi,j)xi,j,k.

We end up with a simplified objective function,

r∑
i=1

c∑
j=1

(
β2
i,j +

n∑
k=0

(b2k−2bkβi,j)xi,j,k

)
=

r∑
i=1

c∑
j=1

βi,j +
r∑

i=1

c∑
j=1

n∑
k=0

(b2k−2bkβi,j)xi,j,k . (2)

Note that while the original objective function is convex quadratic in the xi,j,k’s,
the new and simplified version is affine (a linear function of the xi,j,k’s plus a constant).
This simplification helps optimization solvers to find the optimal solution much faster.

1.4 Universal Constraints

In most games, each location on the game board can hold at most one game piece.
We therefore impose constraints that ensure that each cell holds at most one stone.
Suppose n players are playing on a r × c board. For each cell (i, j), we impose

n∑
k=0

xi,j,k = 1 . (Universal Constraint#1)

3

As players take turns to place their stones, the difference between the number of stones
in different shades should be 0. For each cell (i, j) and each k1, k2 ∈ {0, · · · , n} with
k1 6= k2, k1 6= n/2, and k2 6= n/2,

r∑
i=1

c∑
j=1

(xi,j,k1 − xi,j,k2) = 0. (Universal Constraint#2)

As these universal constraints apply to all games, in the next section we going to
introduce particular games and describe constraints for these games.

2 Gomoku Game

The game of gomoku is an abstract strategy board game. It is traditionally played with
Go pieces (black and white stones) on a Go board. The gomoku game is also called
“Five in a Row.” Players alternate turns placing a stone of their color on an empty
intersection. The winner is the first player to form an unbroken chain of five stones -
horizontally, vertically, or diagonally.

2.1 Gomoku Constraints

To form an unfinished gomoku game on a go board, we require that there are no five
consecutive stones in the same shades in a row, column or diagonal.

To make sure that there are not any rows of five consecutive stones of the same
shade,for all i ∈ {1, · · · , r}, j ∈ {1, · · · , c − 4}, k ∈ {0, · · · , n} with k 6= n/2, and
J ∈ {1, · · · , c− 4}, we impose

J+4∑
j=J

xi,j,k ≤ 4. (Gomoku Constraint#1)

Similarly, to ensure that there are not any five consecutive stones of the same shades,
for all i ∈ {1, · · · , r − 4}, j ∈ {1, · · · , c}, k ∈ {0, · · · , n} with k 6= n/2, and I ∈
{1, · · · , r − 4}, we require that

I+4∑
i=I

xi,j,k ≤ 4. (Gomoku Constraint#2)

For diagonals, we need that for all i ∈ {1, · · · , r}, j ∈ {1, · · · , c}, and k ∈ {0, · · · , n}
with k 6= n/2,

xi,j,k + xi+1,j+1,k + xi+2,j+2,k + xi+3,j+3,k + xi+4,j+4,k ≤ 4 , (Gomoku Constraint # 3)

xi+4,j,k + xi+3,j+1,k + xi+2,j+2,k + xi+1,j+3,k + xi,j+4,k ≤ 4 . (Gomoku Constraint # 4)

4

2.2 Examples

Based on the objective function we discussed in Section 1.3 and the constraints we
discussed in both Section 1.4 and 2.1, we created a C program that can generate a .lp
file that can be read by an optimization solver Gurobi [3]. We then use the solution
Gurobi provided to draw the image. We generated three groups of images, and in each
case we collected statistics on work time (in seconds), the size of the branch-and-bound
tree (in nodes), and two measures of quality: total squared error and average squared
error. While some of these images are high quality, some are merely passable. We will
also discuss what leads to a poor result, and what are some possible solutions.

2.2.1 Example 1: Photograph of Marilyn Monroe by Alfred Eisenstaed[4]

(a) Original Image (b) n = 2 (c) n = 4

(d) n = 6 (e) n = 8

Figure 1: Photograph of Marilyn Monroe by Alfred Eisenstaed, Gomoku, n = 2, 4, 6, 8.

In the table above, for each case, the total square error is the optimal value of the
objective function. The average squared error is given by

Average Squared Error =
Total Squared Error

r × c
.

5

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.19 1 43.2034 0.0480
4 0.40 1 24.5684 0.0273
6 1.20 11 20.5178 0.0228
8 0.62 1 18.5184 0.0206

Table 1: Photograph of Marilyn Monroe by Alfred Eisenstaed, Gomoku, n = 2, 4, 6, 8.

2.2.2 Example 2: Girl with a Pearl Earring by Johannes Vermeer[5]

(a) Original Image (b) n = 2 (c) n = 4

(d) n = 6 (e) n = 8

Figure 2: Girl with a Pearl Earring by Johannes Vermeer, Gomoku, n = 2, 4, 6, 8 .

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.45 1 121.6094 0.1351
4 0.28 0 105.9544 0.1177
6 0.60 1 102.6205 0.1140
8 0.63 1 101.4719 0.1127

Table 2: Girl with a Pearl Earring by Johannes Vermee, Gomoku, n = 2, 4, 6, 8 .

Compared to the last example (Photograph of Marilyn Monroe), keeping the number

6

of different shades the same, this group of images has larger total and average errors.
Why is this the case?

Notice that Girl with a Pearl Earring has a black background while the Photograph
of Marilyn Monroe has a gray background. As we did not put any “Gomoku con-
straints” on the shade of middle-range gray, we require each player to play the same
number of stones in other shades. In the Girl with a Pearl Earring example, we need
more stones in lighter shades to balance the dark background.

How can we solve this problem? A way to balance highlight and shadow is to alter
“Universal Constraint #2.” In this case, we need to allow the player holding black
stone to play more than the player holding white stone. To generalize this idea, we
want to give a handicap of h stones to either player. With everything else remaining
the same, we alter “Universal Constraint #2.” For all i ∈ {1, · · · , r}, j ∈ {1, · · · , c},
k1, k2 ∈ {0, · · · , n} with k1 6= k2, k1 6= n/2, and k2 6= n/2, we now impose∣∣∣∣∣

r∑
i=1

c∑
j=1

(xi,j,k1 − xi,j,k2)

∣∣∣∣∣ ≤ h.

The figure and table below shows the resulting images and statistics of altering
“Universal Constraint #2” with different h’s.

7

(a) Original Image (b) h = 0 (Reference) (c) h = 100

(d) h = 200 (e) h = 300 (f) h = max = 418

Figure 3: Girl with a Pearl Earring by Johannes Vermeer, Gomoku with altered Uni-
versal Constraint #2.

Table 3: Statistics for Girl with a Pearl Earring by Johannes Vermeer, Gomoku with
altered Universal Constraint #2.
h = work time (seconds) # of nodes Total Squared Error Average Error
0 0.45 1 121.6094 0.1351
100 0.47 0 96.6094 0.1973
200 0.63 1 71.6094 0.0795
300 0.36 1 48.2094 0.0536
hmax = 418 0.15 1 36.5894 0.0406

(Note: We obtained hmax by removing “Universal Constraint #2” instead of altering
it. In such case, there are 505 black stones, 328 empty cells, and 87 white stones.)

Altering “Universal Constraint #2” helped us reduce the errors significantly. But
this might not be the case for all images. We are going to discuss this topic in example
3.

8

2.2.3 Example 3: Self-portrait by Vincent Van Gogh

(a) Original Image (b) n = 2 (c) n = 4

(d) n = 6 (e) n = 8

Figure 4: Self-portrait by Vincent Van Gogh, Gomoku, n = 2, 4, 6, 8.

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.05 0 29.8272 0.0331
4 0.15 0 24.8572 0.0276
6 0.38 1 23.0305 0.0255
8 0.48 0 22.1447 0.0245

Table 4: Self-portrait by Vincent Van Gogh, Gomoku, n = 2, 4, 6, 8.

For this group of images, we observed that the Average Errors are about the same
as the Photograph of Marilyn Monroe group of example, but the resulting images are
not very ideal. As mentioned before, we wondered what will happen if we adapt the
same alternation as we did in the Girl with a Pearl Earring example? The Figure and
table below show the result of altering “Universal Constraint # 2.”

9

Figure 5: Self-portrait by Vincent Van Gogh, Gomoku with h = 0, 107.

(a) Original Image (b) h = 0 (Reference) (c) hmax = 107

Table 5: Self-portrait by Vincent Van Gogh, Gomoku with h = 0, 107.
h = work time (seconds) # of nodes Total Squared Error Average Squared Error
0 0.05 0 29.8272 0.0331
hmax = 107 0.01 1 26.7372 0.0297

(Note: When h = hmax = 107 , there are 34 black stones, 725 empty cells, and 141
white stones.)

Unlike in the example of Girl with a Pearl Earring, after altering “universal con-
straint #2”, the errors didn’t change as much. It is not hard to arrive at the conclusion
that balancing highlight and shadow cannot result in a better image. However, by
comparing to the last two examples, we noticed that Self-portrait has a very large gray
area with little highlight and shadow. How should we handle situations like this? We
will discuss this issue in the section “Future Directions.”

3 Chess Game

We now turn our attention to a different board game, chess. Here, we do not attempt to
use all of the pieces. We instead allow ourselves to use knights and nothing else. When
playing chess, each of the two players has two knights. Here, we allow each player to
use as many knights as they want, provided that each player uses the same number.

3.1 Chess Constraints

We are mostly interested in the constraints because the data, variables, and objective
functions are the same as they are in the gomoku game. We can separate knight moves

10

into two cases as in the figure below.

i

j

i+ 1

i+ 2

j + 1

(a)

i

j

i+ 1

i+ 2

j + 1

(b)

j

i

i+ 1

j + 1 j + 2

(c)

j

i

i+ 1

j + 1 j + 2

(d)

As before, suppose there are n players facing a r × c chess board. We still reserve
shade n/2 for the background.

In case (a) and (b), for all i ∈ {1, · · · , r − 2}, j ∈ {1, · · · , c − 1}, and k1, k2 ∈
{0, · · · , n} with k1 6= k2 6= n/2, we impose

xi,j+1,k1 + xi+2,j,k2 ≤ 1 (Knight Constraint #1)

xi,j,k1 + xi+2,j+1,k2 ≤ 1 (Knight Constraint #2)

In case (c) and (d), for all i ∈ {1, · · · , r−1}, j ∈ {1, · · · , j−2}, and k1, k2 ∈ {0, · · · , n}
with k1 6= k2 6= n/2, we impose

xi+1,j,k1 + xi,j+2,k2 ≤ 1 (Knight Constraint #3)

xi,j,k1 + xi+1,j+2,k2 ≤ 1 (Knight Constraint #4)

In addition to these Knight constraints, we also need Universal Constraint #1 and #2
discussed in Section 1.4.

11

3.2 Examples

3.2.1 Example 1: Photograph of Marilyn Monroe by Alfred Eisenstaed

(d) Original Image (e) n = 2

(f) n = 4 (g) n = 6

Figure 6: Photograph of Marilyn Monroe by Alfred Eisenstaed, Chess, n = 2, 4, 6.

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.05 0 36.6134 0.0406
4 7.76 318 27.6734 0.0307
6 10529.82 86474 29.6556 0.0329

Table 6: Photograph of Marilyn Monroe by Alfred Eisenstaed, Chess, n = 2, 4, 6.

12

3.2.2 Example 2: Girl with a Pearl Earring by Johannes Vermeer

(a) Girl with a Pearl Earring (b) n = 2

(c) n = 4 (d) n = 6

Figure 7: Girl with a Pearl Earring by Johannes Vermeer, Chess, n = 2, 4, 6.

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.07 0 114.1894 0.1268
4 1.71 1 110.7844 0.1230
6 240.95 3667 112.9571 0.1255

Table 7: Girl with a Pearl Earring by Johannes Vermeer, Chess, n = 2, 4, 6.

13

3.2.3 Example 3: Self-portrait by Vincent Van Gogh

(a) Original Image (b) n = 2

(c) n = 4 (d) n = 6

Figure 8: Self-portrait by Vincent Van Gogh, Chess, n = 2, 4, 6.

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.04 0 30.0472 0.0333
4 0.8 4 26.5822 0.0295
6 2.61 1 25.4127 0.0282

Table 8: Self-portrait by Vincent Van Gogh, Chess, n = 2, 4, 6.

In all three examples we see that the Knight constraints force stones of the same
shade to form clusters. Also note that, unlike in the gomoku game, as n increases, work
time increases.

How should we break the clusters? This leads us to the discussion in next section.

14

4 Alter the Knight Constraints

4.1 Knight Constraints (Altered)

In the last section, we wanted to find a way to prevent stones from clustering. What if
stones in shade k attack stones in shade k instead of stones in other shades? In light of
this idea, we alter the constraints so that for all i ∈ {1, · · · , r − 2}, j ∈ {1, · · · , c− 1},
and k ∈ {0, · · · , n} with k 6= n/2,

xi,j+1,k + xi+2,j,k ≤ 1 (Altered Knight Constraint #1)

xi,j,k + xi+2,j+1,k ≤ 1 (Altered Knight Constraint #2)

For all i ∈ {1, · · · , r − 1}, j ∈ {1, · · · , c− 2}, and k ∈ {0, · · · , n} with k 6= n/2,

xi+1,j,k + xi,j+2,k ≤ 1 (Altered Knight Constraint #3)

xi,j,k + xi+1,j+2,k ≤ 1 (Altered Knight Constraint #4)

4.2 Examples

4.2.1 Example 1: Photograph of Marilyn Monroe by Alfred Eisenstaed

(a) Original Image (b) n = 2 (c) n = 4

(d) n = 6 (e) n = 8

Figure 9: Photograph of Marilyn Monroe by Alfred Eisenstaed, Chess (altered), n =
2, 4, 6, 8.

15

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.07 0 56.2134 0.0624
4 0.27 0 30.2434 0.0336
6 1.47 1 24.1156 0.0267
8 1.20 1 20.9934 0.0233

Table 9: Photograph of Marilyn Monroe by Alfred Eisenstaed, Chess (altered), n =
2, 4, 6, 8.

4.2.2 Example 2: Girl with a Pearl Earring by Johannes Vermeer

(a) Original Image (b) n = 2 (c) n = 4

(d) n = 6 (e) n = 8

Figure 10: Girl with a Pearl Earring by Johannes Vermeer, Chess (altered), n =
2, 4, 6, 8.

16

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.11 0 137.7594 0.1530
4 0.66 0 113.5494 0.1261
6 1.02 0 106.9771 0.1188
8 3.13 1 103.7744 0.1153

Table 10: Girl with a Pearl Earring by Johannes Vermeer, Chess (altered), n = 2, 4, 6, 8.

4.2.3 Example 3: Self-portrait by Vincent Van Gogh

(a) Original Image (b) n = 2 (c) n = 4

(d) n = 6 (e) n = 8

Figure 11: Self-portrait by Vincent Van Gogh, Chess (altered), n = 2, 4, 6, 8.

n = work time (seconds) # of nodes Total Squared Error Average Squared Error
2 0.04 0 32.4872 0.0360
4 0.24 1 26.7672 0.0297
6 0.82 1 24.1538 0.0268
8 0.87 0 22.8372 0.0253

Table 11: Self-portrait by Vincent Van Gogh, Chess (altered), n = 2, 4, 6, 8.

17

5 Future Directions: Alternative Approach

In section 2.3.3, we left a question on how to handle areas of middle-range gray. Recall
that in section 2, we measured the goodness of fit by comparing each individual cell to
its corresponding average grayscale value. However, this approach can not handle a big
area of middle-range gray. To solve this, we propose the alternative approach.

Let’s consider the case in which the image we are fitting is a middle range gray
square, as shown in the left graph below. Suppose that we are fitting this image with
black and white stones. Here, all the βi,j’s are 0.5, and 0 represent pure black and 1
represent pure white. The optimization method we discussed in the last section will
give us random output of 0’s and 1’s. One example is shown in the center graph below.
Because the error is the same either way, it doesn’t matter which color of stones we put.
But is this the best solution? The ideal solution should look like the right graph below.
Instead of each one by one cell, let’s consider each two-by-two square composed of four
cells and compare it with the average grayscale value of the corresponding two-by-two
square in the original image.

In the center figure, the top left 2× 2 square has a total brightness level of 0, while
the top right 2× 2 square has a total brightness value of 1, the bottom left 2× 2 square
has a total brightness value of 2, and the bottom right 2×2 square has a total brightness
of 3. The total brightness value of all the 2 × 2 squares vary. However, in the right
figure, each of the 2× 2 squares has a total brightness value of 2, which is the same as
4× 0.5, the ideal value of a middle-range gray target image.

5.1 Variables

Suppose we cut the target image into r× c squares. We need a variable to represent all
the possibilities of color combinations in each two-by-two square. Consider the r × c
matrix M whose row-i-column-j entry is the number of shade of the stone we placed at
the row-i-column-j position on the board. LetM be the set of all possible 2× 2 blocks
of M .

18

For all i ∈ {1, · · · , r − 1}, j ∈ {1, · · · , c− 1}, and M =

[
m11 m12

m21 m22

]
∈M, we denote

yi,j,M =

1, if cells (i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)

are colored in shades m11,m12,m21,m22 respectively.

0, otherwise.

If there are n players and n + 1 shades including the background gray, we have a
total of (n+ 1)4(r − 1)(c− 1) such variables.

5.2 Objective Function

We want to minimize the difference between the sum of the fitted color in the two-
by-two squares and the sum of the original grayscale value in the two-by-two squares.
Therefore, for all i ∈ {1, · · · , r − 1}, j ∈ {1, · · · , c − 1}, and M ∈ M, we want to
minimize

r−1∑
i=1

c−1∑
j=1

∑
M∈M

[(m11 +m12 +m21 +m22)− (βi,j + βi,j+1 + βi+1,j + βi+1,j+1)]
2yi,j,M .

5.3 Constraints

For each two-by-two squares, we can only place one two-by-two matrix M . Therefore,
for all i ∈ {1, · · · , r − 1} and j ∈ {1, · · · , c− 1} we impose∑

M∈M

yi,j,M = 1 . (Two by Two Constraint #1)

We also need to make sure that we color the two-by-two squares in such a way that
they overlap with each other both horizontally and vertically. To achieve that, we asked
that for all i ∈ {1, · · · , r − 1} and j ∈ {1, · · · , c− 2},∑

M∈M

yi,j,M =
∑
N∈M

yi,j+1,N when m12 = n11 = u and m22 = n21 = v .

(Two by Two Constraint #2)
and for all i ∈ {1, · · · , r − 2} and j ∈ {1, · · · , c− 1},∑

M∈M

yi,j,M =
∑
N∈M

yi+1,j,N when m21 = n11 = u and m22 = n12 = v .

(Two by Two Constraint #3)
The figure below demonstrate the constraints above.

19

i+ 1

i

j j + 1 j + 2

m11

m11

v

u n12

n22 i+ 2

i+ 1

i

j j + 1

m11

u

n21 n22

v

m12

We still need that there are no five consecutive cells in a row, column, or diagonal
that are all colored in the same shades of gray, and the difference between cells colored in
different shades should be 0. We need the corresponding constraints from the previous
sections. Therefore we need constraints that link the xi,j,k’s to the yi,j,M ’s. We need to
make sure that yi,j,M = 1 if and only if xi,j,m11 = 1, xi,j+1,m12 = 1, xi+1,j,m21 = 1 and
xi+1,j+1,m22 = 1. To achieve this, we impose linear constraints

yi,j,M ≤ xi,j,m11 , (Two by Two Constraint #4)

yi,j,M ≤ xi,j,m12 , (Two by Two Constraint #5)

yi,j,M ≤ xi,j,m21 , (Two by Two Constraint #6)

yi,j,M ≤ xi,j,m22 , (Two by Two Constraint #7)

xi,j,m11 + xi,j,m12 + xi,j,m21 + xi+1,j+1,m22 ≤ 3 + yi,j,M . (Two by Two Constraint #8)

Although this approach would solve the problem in theory, when we tried to use
Gurobi to solve it, Gurobi wasn’t able to find an optimal solution after two full days.
The reason why is that the model has a large number of variables. For example, when
r = 30, c = 30, and n = 2 we will need 34 × 29 × 29 = 68121 yi,j,M variables and
3× 30× 30 = 2700 xi,j,k variables.

6 Acknowledgements

I developed and greatly extended this project from the group final project assignment
of Nonlinear Optimization class taught by Professor Robert Bosch. I appreciate the
efforts that Shuangwei Yu and Carolyn Zhao contributed to this project. Under the
supervision of Professor Robert Bosch, I continued this project as my honor thesis.
I would like to thank Professor Robert Bosch for providing valuable suggestions on
research directions and offering practical assistance on programming and wording. I
am also grateful for the endless encouragement from Professor Robert Bosch.

20

7 References

1 Bosch, R., 2019. Opt Art: From Mathematical Optimization to Visual Design.
Princeton University Press.

2 Bosch, R. and Pike, A., 2009. Map-Colored Mosaics. Bridges Banff: mathemati-
cal connections in art, music, and science, pp.139-146.

3 “Gurobi Optimizer,” http://www.gurobi.com/products/gurobi-optimizer.

4 Pix Inc., 1953. Photograph of Marilyn Monroe. [image] Available at:
https://www.biography.com/actor/marilyn-monroe [Accessed 3 October 2020].

5 Vermeer J., 1665. Girl with a Pearl Earring. [oil on canvas].

6 Van Gogh, V., 1889. Self-portrait. [oil on canvas].

7 Vanderbei, R.J., 2014. Linear Programming: Foundations and Extensions, Springer.

8 Yucata.de. 2021. Yucata - Rules for the game ‘Gobang & Gomoku’. [online]
Available at: https://www.yucata.de/en/Rules/Gomoku [Accessed 18 March 2021].

21

	Collaborative Game Mosaics
	Repository Citation

	tmp.1641834621.pdf.kuj9q

