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M A J O R A R T I C L E

Heritable Factors Play a Major Role in Determining
Host Responses to Wuchereria bancrofti Infection
in an Isolated South Pacific Island Population

Karen T. Cuenco,1 Eric A. Ottesen,2 Steven A. Williams,3 Thomas B. Nutman,4 and Cathy Steel4

1Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine and Department of Human Genetics,
Graduate School of Public Health, University of Pittsburgh, Pennsylvania; 2Task Force for Global Health, Lymphatic Filariasis Support Center,
Decatur, Georgia; 3Department of Biological Sciences, Smith College, Northampton, Massachusetts; 4Laboratory of Parasitic Diseases, National
Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland

Background. It is increasingly recognized that host genetic factors may play an important role in determining
the outcome of filarial infections. To test this hypothesis in bancroftian lymphatic filariasis, pedigree data were
collected twice during an 18-year period from an isolated Polynesian population living on a Pacific island where
lymphatic filariasis is endemic.

Methods. Using variance-component analysis, we examined the contribution of shared genetic and environ-
mental effects on host clinical and immune responses to filarial infection, along with potential confounding
determinants.

Results. Sex was found to have a negligible influence on heritability estimates, but shared-household effects
accounted for up to 32% of host variability. After accounting for these shared-household effects, heritability
estimates suggested that levels of microfilariae and circulating adult worm antigen, as well as host eosinophil and
immunoglobulin G antibody responses to larval and adult worm antigens, were highly heritable (range of heritability
estimates, 0.15–0.84).

Conclusions. These data provide evidence of a key role for genetic factors in determining the host response
to filarial infections in humans and emphasize the complexity of the relationships among the host, parasite, and
environment.

Infection with the lymphatic filarial parasites Brugia

malayi and Wuchereria bancrofti affects 1120 million

persons worldwide and exacts an enormous disease

burden on populations in which the parasites are en-

demic [1]. Clinical disease occurs in a subset of infected

individuals with a wide range of manifestations, in-

cluding lymphadenitis and lymphangitis, lymphatic ob-
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struction or dysfunction (elephantiasis and/or hydro-

cele), and tropical pulmonary eosinophilia [2]. Most

infected individuals have a subclinical infection, often

associated with the presence of circulating microfilariae

(Mf). In some populations, a third group has been

described; these persons, although exposed to the par-

asite, appear to be resistant to infection (“endemic nor-

mal” or “putatively immune”) [3]. Immunologically,

both subjects with patent filarial infection and those

who are exposed but resistant to infection mount vig-

orous antibody responses to parasite antigen, most

uniquely immunoglobulin G4 (IgG4) and immuno-

globulin E [4, 5]. In contrast to antibody responses,

parasite-specific T cell responses in infected individuals

are significantly down-regulated in comparison with

those in individuals who are exposed but uninfected

[3, 6].

Several explanations have been advanced to explain

the variability seen in disease manifestations among
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Figure 1. Map of Maukean sampling sites (A–E) and land character-
istics. White areas with dots represent swamp region where taro is
farmed, and gray densities indicate volcanic rock. Adapted from Ottesen
et al [13] and Stoddart et al [28].

filaria-infected patients. These include differences in (1) im-

munologic responsiveness caused by human host factors, such

as cytokines and specific regulatory molecules [7, 8]; (2) trans-

mission potential as measured by vector monitoring [9]; (3)

in utero exposure to parasite antigens [10, 11]; and (4) mod-

ulation of the immune response by parasite factors [12]. How-

ever, there is growing recognition that host genetic factors might

play an important role in determining both the nature of the

responses to filarial infection and the variability observed in

pathologic outcome. Previous studies in filaria-endemic regions

showed that filarial disease tends to aggregate in families [13,

14] and that Mf levels are attributable to genetic factors after

adjustments are made for shared environment [15]. Earlier

studies suggested a role for genes associated with the major

histocompatibility complex in determining susceptibility to fi-

larial disease and its clinical spectrum [16–18]. More recently,

studies in South India [19] linked susceptibility to bancroftian

filarial infection to 2 other specific candidate genes; in addition,

polymorphisms in the vascular endothelial growth factor A gene

have been associated with the occurrence of hydrocele [20].

Indeed, host genetic factors have also been implicated as im-

portant determinants in other helminth infections, including

schistosomiasis [21, 22] and trichuriasis [23].

To extend these earlier observations, we evaluated the influ-

ence of host genetics on clinical outcomes and host immune

responses in the population of a small Polynesian island

(Mauke) in the Cook Islands, South Pacific. Previous longi-

tudinal [24] and cross-sectional [3, 25–27] studies on Mauke,

where subperiodic bancroftian filariasis is endemic, have pro-

vided clinical, immunologic, and pedigree data on a highly

characterized and largely isolated population over a period of

nearly 2 decades. Earlier segregation analyses of a single large,

extended Maukean family indicated that their filarial infection

patterns were compatible with a recessive genetic model, and

no evidence was found for linkage to HLA-A or -B locus spec-

ificities [13]. Since then, improved biologic measures of filarial

disease have been developed, thus enabling collection of more

in-depth information for assessing phenotypic heritability. The

results of this study demonstrate that specific clinical and im-

munologic factors in filarial infection can indeed be recognized

as having a distinct, heritable component.

METHODS

Study population. Mauke, in the southern Cook Islands, is

a small (26 km2), flat, volcanic island where subperiodic W.

bancrofti infection is endemic. Inhabitants ( in 1974n p 750

and in 1992) lived in 5 villages (2 coastal, 2 inland,n p 627

and 1 intermediate) located on the northern tip of the island

in an area encompassing 3.2 km2 (Figure 1). First settled by

early Maori Polynesians between the 10th and 14th centuries

CE [29], the island had been physically and culturally isolated

because of its geographic remoteness. It is likely that outside

contact was, until recently, restricted principally to islanders of

the neighboring southern Cook Islands, who shared similar

racially homogeneous populations, thus implying minimal hu-

man genetic substructure. Indeed, examination of HLA anti-

gens found that, although differences did exist, Maukeans were

considerably more similar to other Polynesians than to Pacific

Melanesians [25].

The population of Mauke was studied in depth during two

3–4-month periods in 1974–1975 and 1992. Informed consent

was obtained for all aspects of the study. Thorough clinical

(history, physical examination, and complete blood count), ep-

idemiologic, and parasitologic observations were conducted

and extensive pedigree data were collected during both time

periods. Assessment of the population determined that only

permanent Polynesian residents lived on the island in 1974,

with only a few long-term visitors in 1992. Pedigree informa-

tion was collected by Maukean government-appointed staff

[25] and was updated in 1992. Pedigree analysis was conduct-

ed in 448 (60%) of 750 individuals in 1974 and in 625 (99.7%)

of 627 in 1992.

A pedigree database was constructed, and individual study

identification numbers were assigned to each person. Of the

1073 individuals contributing to the database from the second

time period, 139 were seen in both 1974 and 1992. These in-
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Table 1. Subject Demographics, by Survey Year

Demographic variable

Subjects, no. (%)

(df)2x P a1974 ( )n p 370 1992 ( )n p 587

Age 17.3 (6) .007
!10 years 95 (26) 127 (22)
10–19 years 81 (22) 180 (31)
20–29 years 38 (10) 79 (13)
30–39 years 51 (14) 50 (9)
40–49 years 31 (8) 40 (7)
50–59 years 38 (10) 51 (9)
�60 years 36 (10) 60 (10)

Sex 7.35 (1) .007
Male 164 (44) 313 (53)
Female 206 (56) 274 (47)

Household region 49.9 (4) !.001b

A 54 (15) 75 (13)
B 69 (19) 191 (33)
C 22 (6) 108 (18)
D 93 (25) 94 (16)
E 80 (22) 117 (20)
Fc 51 (14) 2 (0)

a Calculated by the test for differences in distribution.2x
b Excluding category F.
c Individuals not assigned to a particular household.

dividuals were assigned a single identifier for the purpose of

this study. In a system similar to that of Mäkinen et al [30],

study identification numbers were also assigned to deceased

individuals with whom a positive relationship with another

person (either living or deceased) was confirmed, to reconstruct

the pedigree relationships. Household affiliation for each par-

ticipant was recorded at each collection period. Mauke house-

holds were categorized as belonging to 1 of 5 villages (A–E)

followed by an individual household number (eg, A1). Where

household affiliation could not be verified, the individual was

assigned to region F followed by a number (Table 1).

Clinical and parasitologic parameters. Serum and plasma

samples were collected at both time periods and stored at

�80�C until needed. For this study, 3 clinical or parasitologic

measures were used. First, absolute blood eosinophil counts

were determined from heparinized blood specimens as the per-

centage of eosinophils times the total white blood cell count.

Second, circulating Mf levels were quantified by filtration of 1

mL of whole blood through a Nucleopore 3-mm polycarbonate

filter (Whatman). Third, a quantitative measure of active in-

fection (ie, related to the adult worm burden) was assessed by

the level of circulating filarial antigen (CAg) in serum for all

samples collected in 1992 and for 361 (81%) of 448 samples

collected in 1974 [31]; for this CAg, the Og4C3 enzyme-linked

immunosorbent assay (ELISA) (TropBio) was used in accor-

dance with the manufacturer’s instructions. Filarial antigen

positivity status was also recorded as a binary variable (noted

as positive or negative) for each individual, with positive values

defined as 132 U/mL in the Og4C3 ELISA, as recommended

by the manufacturer. This noncontinuous, qualitative deter-

minant for CAg was used for comparison with the quantitative

value determined by the ELISA standard curve.

Antibody responses to defined parasite antigens. Parasite

antigens used in this study were saline extracts of the adult

(BmA) and microfilarial (MfAg) stages of the related filarial

parasite B. malayi, produced as described elsewhere [32]. Serum

IgG and IgG4 responses to BmA and IgG responses to MfAg

were determined by ELISA, as described elsewhere [33]. In

addition, IgG responses to 2 immunoreactive larval peptides

were measured: peptide 2 (EPQAWCRPNENQSWTD) and

peptide 3 (VIERKNNGKLEYSYC) from the W. bancrofti abun-

dant larval transcript (ALT2 pep2 and ALT2 pep3, respectively)

(Research Technologies Branch, National Institute of Allergy

and Infectious Diseases). Briefly, plates were coated with each

peptide (10 mg/mL) at 4�C overnight. Plates were then washed

and blocked for 1 h at 37�C. After washing, serum samples

were added, followed by overnight incubation at 4�C, further

washing, and subsequent addition of alkaline phosphatase–con-

jugated anti–human IgG (Jackson Immunoresearch Labora-

tories). Plates were developed with alkaline phosphatase sub-

strate tablets (Sigma-Aldrich), and IgG levels (in arbitrary units

per milliliter) for each sample were determined from a standard

curve (based on a reference pool of patient serum samples).

Statistical and heritability analysis. The distribution of
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Table 2. Filarial Antigen and Immune Responses in the Total Population by Year

Response 1974 ( )n p 370 1992 ( )n p 587

CAg level, antigen units/mLa 798.7 (10 to 1.7 � 107) 17.2 (10 to 4.2 � 106)
Mf level, Mf number/mLa 0.9 (0 to 10,000) 0.03 (0 to 1030)
Absolute eosinophil counta 935.8 (0 to 1.4 � 10 4) 15.7 (0 to 2640)
IgG4 response to BmA, ng/mLa 19,600 (84 to 2.1 � 106) 880 (23 to 2.6 � 106)
IgG response, U/mL

BmA ND 83,700 (2140 to 1.7 � 10 7)
MfAg ND 48100 (1560 to 1.26 � 106)
ALT2 pep2a 504 (34 to 2530) 363 (37 to 46,600)
ALT2 pep3a 432 (27 to 2630) 216 (15 to 2830)

Antigen positive/total, proportion (%) of subjects 176/362 (49) 88/581 (15)

NOTE. Data are geometric means (ranges), unless otherwise indicated. ALT2 pep2 and ALT2 pep3, peptide 2 and peptide
3 from Wuchereria bancrofti abundant larval transcript 2; BmA, antigen from adult Brugia malayi; CAg, circulating filarial antigen;
IgG, immunoglobulin G; Mf, microfilariae; MfAg, microfilarial antigen; ND, not done.

a for 1974 compared with 1992 statistics.P ! .001

each immunologic measure was first assessed for normality.

Statistical transformations (including rank ordering, Winsori-

zation, and Box-Cox functions) were applied to continuous

traits that appeared to be nonnormally distributed, and fre-

quencies are reported for values for binary traits. Categorical

variables, including age, sex, and geographic affiliation, were

compared for differences in distribution by assessment year,

using tests. Continuous measures of filarial antigen and2x

immune responses were compared for distributional differences

by year and household affiliation, using a 2-sample t test of

geometric means and assuming unequal population variances

or generalized linear models. These procedures were performed

using SAS software (version 9.1; SAS Institute).

Narrow-sense heritability, which estimates the proportion of

the total trait variance that could be attributed to additive ge-

netic effects, was also obtained using variance components as

implemented in SOLAR (sequential oligogenic linkage analysis

routines) software (version 4.1.3; Southwest Foundation for

Biomedical Research) [34]. The variance components approach

allows for joint consideration of the pedigree members and

provides a more stable estimate than the correlation-based es-

timate of heritability, which allows for only a single relation

class to be considered at a time [35]. Heritability estimated

from variance components assumes that the trait variability can

be broken down into genetic and environmental contributions.

Shared environment is further broken down into a specific

shared-household effect, based on reports of common house-

hold affiliations.

Narrow-sense heritability was assessed using 4 hierarchical

models generated for each trait and survey year. These models

were (1) no genetic ( ) or shared-household ( ) effects, (2)2 2h c

effects only, (3) effects only, and (4) and joint effects.2 2 2 2c h h c

All models included the additional shared environmental effects

beyond those from shared-household effects and therefore can-

celed out during model comparisons. Model 4 was treated as

the full model and was compared with the other 3 models using

likelihood ratio tests. These tests are based on 2 times the

difference in log likelihood from each model (which approx-

imates a statistic with 1 df and assumes a multivariate normal2x

distribution). If the test shows significant differences ( ),P � .05

then model 4 is a better fit than the reduced model. A larger

value of log likelihood corresponds to a poorer-fitting model

that is unable to explain trait variability adequately. For a com-

plete analysis, model 2 and model 3 estimates are provided,

along with results for the best-fitting model. The effect of po-

tential confounding by age and sex was evaluated by comparing

heritability estimates from adjusted and unadjusted models. If

heritability estimates from these models differed by 110%, the

variable was considered a confounder and retained for heri-

tability estimates.

RESULTS

There were 448 individuals in 1974 and 625 in 1992 who par-

ticipated in each survey and were included for pedigree analysis.

Of those participants, demographic, parasitologic, clinical, and

immunologic factors were available for 370 subjects in 1974

and 587 in 1992 (Tables 1 and 2). Therefore, a total of 1073

individuals were included in the pedigree reconstruction, but

only the 957 individuals with full demographic data were avail-

able for trait descriptive statistics.

The overall age distribution of study participants differed by

year ( ); there were fewer children !10 years old in theP p .007

1992 population than in the 1974 population. The proportion

of men studied in 1992 was significantly higher than in 1974

(313 [53%] of 587 vs 164 [44%] of 370; ). The geo-P p .007

graphic locations of occupied households differed as well

( ) (Figure 1). Although the proportion of the popu-P ! .001

lation living in coastal area A and inland area E remained stable

(for A, 15% in 1974 vs 13% in 1992; for E, 22% vs 20%,
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Table 3. Age-Adjusted Heritability and Household Effects Contributing to Infection and Immune Responses

Trait

1974 1992
a2h a2c Best model a2h a2c Best model

CAg level 0.58 (0.11) 0.18 (0.06) 2h 0.40 (0.09) 0.17 (0.06) ,2 2h c
Ag positivity 0.46 (0.15) 0.02 (0.09) 2h 0.84 (0.13) 0.07 (0.03) 2h
Mf level 0.49 (0.13) 0.13 (0.06) 2h … … …
Absolute eosinophil count 0.20 (0.13) 0.11 (0.05) 2c 0.43 (0.11) 0.50 (0.12) 2h
IgG4 response to BmA 0.21 (0.10) 0.0 (0.07)b None 0.40 (0.10) 0.28 (0.07) ,2 2h c
IgG response

BmA … … … 0.18 (0.09) 0.11 (0.04) 2c
MfAg … … … 0.18 (0.10) 0.10 (0.04) 2c
ALT2 pep2 0.06 (0.12) 0.08 (0.05) None 0.31 (0.08) 0.06 (0.03)c 2h
ALT2 pep3 0.19 (0.12) 0.07 (0.05)c None 0.06 (0.07) 0.0 None

NOTE. Values are not given for microfilariae (Mf) level for 1992 because of too few nonzero observations, and values are not
given for the immunoglobulin G (IgG) response to antigen from adult Brugia malayi (BmA) and microfilarial antigen (MfAg) in 1974
because data were not collected. Ag, antigen; ALT2 pep2 and ALT2 pep3, peptide 2 and peptide 3 from Wuchereria bancrofti
abundant larval transcript 2; CAg, circulating filarial antigen.

a Estimated from models with either heritability ( ) or shared-household ( ) effects alone. The best model was determined by2 2h c
likelihood ratio test and by comparison with the full model ( and joint effects); “none” means that neither term was significant2 2h c
in the model. Percentages are standard errors.

b Estimated from the model with both and effects.2 2h c
c Score statistic �F0.00F.

respectively), a greater percentage of individuals studied in 1992

were from coastal area B or midland area C (for B, 33% in

1992 vs 19% in 1974 [ , ; ]; for C, 18%2x p 22.1 df p 1 P ! .001

vs 6%, respectively [ , ; ]). The pro-2x p 30.0 df p 1 P ! .001

portion of the population in area D did not differ significantly

between the 2 study periods.

Reconstruction of family relationships resulted in 20 pedi-

grees with the following structure: 7 pedigrees with 2 individ-

uals, 5 pedigrees with 3, 3 pedigrees with 4, 2 pedigrees with

5, 1 pedigree with 7, 1 pedigree with 8, and 1 very large pedigree

with 723 individuals. This last pedigree had 1672 parent-off-

spring, 1345 full-sibling, 248 half-sibling, and 2562 avuncular

pairs. There were also 140 individuals without self-affiliation

to any particular pedigree.

Filarial infection was less prevalent on the island in 1992

than in 1974; geometric mean values for parasitologic indicators

(Mf and CAg) were significantly lower in 1992 than in 1974

(Table 2), most likely owing to a one-time treatment of the

entire population with diethylcarbamazine in the late 1980s [3].

The rate of CAg positivity decreased from 49% in 1974 to 15%

in 1992. In 1974, 87% of households had at least 1 member

with infection. Host responsiveness also differed in the 2 pop-

ulations, with total eosinophil count, IgG4 antibody responses

to BmA, and IgG antibody responses to the larval peptides all

significantly lower in the 1992 study population. The largest

decrease in the antibody responses was observed for the IgG4

response to BmA (geometric mean, 19,600 ng/mL in 1974 vs

only 880 ng/mL in 1992).

Heritability and shared-household effect estimates varied by

trait as well as by year (Table 3). For subjects in 1974, heritability

estimates for levels of CAg, antigen positivity, and Mf levels

ranged from 0.46 to 0.58. These values reflect the proportion

of variability for each trait attributable to additive genetic effects

and were retained in the best model for those traits. Levels of

eosinophils, IgG4 antibody to BmA, and IgG antibody to ALT2

pep3 were estimated to have heritability ranging from 0.06 to

0.21; however, the best model found that these terms did not

contribute significantly to explaining the overall trait variability.

In 1992, heritability estimates for antigen positivity, eosinophil

levels, IgG responses to BmA and ALT2 pep2, and IgG4 re-

sponses to BmA ranged from 0.15 to 0.84. Mf levels in 1992

were near or at zero for most subjects, resulting in too little

trait variability for estimating heritability ( ) or shared-house-2h

hold ( ) effects. In 1992 but not in 1974, there was also var-2c

iability in CAg—and therefore infection intensity—among geo-

graphic locations of households (Table 4). The estimated heri-

tability of antigen positivity increased over time (0.46 in 1974 vs

0.84 in 1992) and remained an important predictor of antigen

positivity in the best model. The best models for IgG response

to BmA indicated that was not significant. For IgG response2h

to ALT2 pep3 in 1974 and to ALT2 pep2 in 1992, score statistics

for the log likelihood indicated a poor model fit on the basis of

nonzero score statistics that resulted in unreliable estimates. Age

at the time of survey confounded effect estimates and was re-

tained for the reported analyses; however, sex had a negligible

effect (data not shown) and was not retained.

The contribution of shared environmental effects due to

common household affiliation was less variable in 1974 ( , 0–2c

0.18) than in 1992 ( , 0–0.50) (Table 3). On the basis of2c

averaging across values (multiplied by 100 to obtain per-2c
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Table 4. Circulating Antigen (CAg) Levels, by Household Sampling Region and Year

Household region

1974 1992

No. of
subjects

CAg level, geometric
mean (range),

antigen units/mL
No. of

subjects

CAg level, geometric
mean (range),

antigen units/mL

A 54 446 (10 to 2 � 107) 72 11 (10 to 200)
B 67 403 (10 to 2 � 106) 187 15 (10 to 5 � 105)
C 21 1339 (10 to 4 � 106) 103 27 (10 to 4 � 105)
D 92 2441 (10 to 4 � 106) 77 50 (10 to 9 � 105)
E 77 602 (10 to 2 � 106) 117 57 (10 to 4 � 106)

NOTE. Household regional affiliation was significantly associated with CAg levels in 1992 ( )P ! .03
but not in 1974 ( ).P p .11

centages) by year, 11% of trait variability in 1974 could be

explained by a shared environment, increasing to 21% in 1992.

In addition, 18% of observed CAg, 2% of antigen positivity,

and 13% of Mf were attributable to shared-household effects

in 1974, as reflected by the values. However, household effects2c

did not contribute significantly to the majority of best models.

In contrast, the best models for CAg, IgG response to BmA

and MfAg, and IgG4 response to BmA in 1992 did include a

shared-household effect.

DISCUSSION

The genetics of immune or autoimmune diseases (eg, asthma

[36] and rheumatoid arthritis [37]) has been a subject of re-

search for many years . More recently, reports have described

genetic associations in individuals with the widespread but less

studied infections caused by parasitic helminths [19–23]. The

present study addressed the role played by host genetics in

clinical and immune responses to filarial infection in a well-

characterized island population for whom bancroftian filariasis

is endemic. The population under study was from a relatively

isolated island with little genetic exchange outside the popu-

lation, thus making the findings even more unique.

Especially interesting is the finding that factors related to the

presence of the parasite itself (ie, CAg and Mf levels) were

strongly attributable to host genetics, particularly in 1974, be-

fore any drug intervention had been conducted. CAg levels,

which correlate directly with adult worm burdens [38] and Mf

levels [31], are influenced by host genetics, and this demon-

strates that the burden of infection in individuals is not simply

a result of transmission intensity.

Our results also indicate that although host genetics has a

significant effect on the outcome of filarial infection, shared

environmental conditions (such as household affiliation) may

also have an effect on host responses, albeit to a lesser extent.

Age was an important confounder in the assessment of genetic

and environmental contributions—as might be expected, given

that infection level and immune responses to filarial antigens

have been shown to fluctuate with age [39, 40]. Other work

with this population has also demonstrated a role for prenatal

exposure to parasite antigen in the long-term immune response

of the host [10]. This factor, although not really a heritable

genetic variant or external environmental exposure, may serve

as a “modifier” of heritable responses and would be interesting

to examine; unfortunately, that would require more mother-

child pairs than previously studied.

Estimates of the relative influences that shared genetics and

shared-household effects have on filarial traits varied depending

on the survey year. Although the one-time, islandwide treat-

ment with diethylcarbamazine in 1987 for all residents 15 years

of age did not eliminate filarial infection on the island, it still

had the effect of reducing transmission intensity by reducing

Mf load [24]. Because a higher prevalence of filarial infection

increases the probability of a household having an infected

member, discrimination between household and genetic effects

on infection becomes more difficult. Indeed, households in

1974 were relatively homogeneous, given that the majority had

at least 1 member with infection. Predictably, therefore, the

evidence for household effects (from the 1974 data) was weak

and implied that a shared environment did not play a prom-

inent role in heritability estimates of infection and immune

responses at that time. The effect of environment on trait values

became more apparent in 1992 owing to increased heteroge-

neity for household infection, improving the ability to detect

statistical effects due to household affiliation.

Although differences in the estimated heritable and envi-

ronmental effects between assessments in 1974 and 1992 could

result from demographic changes on Mauke, this explanation

seems unlikely given the relatively close proximity of the villages

(Figure 1). There were undoubtedly microclimate differences

among villages leading to differing levels of mosquito breeding

(particularly high in inland areas) that might alter exposure;

however, the living environment was not necessarily the pri-

mary place of exposure to infected, day-biting mosquitoes.

Rather, most Maukeans also farmed taro in the inland swampy

regions of the island, causing greater and more equivalent ex-
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posure than they otherwise would have had in their respective

villages.

The variance-component approach in this analysis allowed

for both specification of shared genetic and environmental ef-

fects and assessment of confounders [34]. This approach has

a distinct advantage over heritability estimation from relative

pair intraclass correlations because it can generate valid esti-

mates even in the presence of dominant genetic and environ-

mental effects. Variance-component estimates confirmed that

environmental effects were significant, so that relative pair cor-

relation estimates were less useful for estimating heritability in

this population [41].

Despite the potential confounders, we were still able to detect

heritable traits in the responses to W. bancrofti infection because

of the presence of a large, extended pedigree on this isolated

island, reflecting a highly genetically homogeneous study pop-

ulation. Because the population was primarily from a single

family, there were fewer founders contributing genetic variants

with potentially different trait effects; rather, there would prob-

ably be a more limited set of genetic variants to determine

infection and immune responses in this population. The exact

degree of genetic isolation of the population conferred by ge-

ography remains uncertain. Studies of language suggest that

the Cook Islands had been inhabited by an isolated population

until a sudden migration of Taiwanese and other Asian people

several thousand years ago [42, 43]. Data on Y chromosome

haplotypes [44] suggest that the introduction of genetic ma-

terial to the Cook Islands from outside populations took place

over a more protracted period. Even with the influx of genes

into the Cook Islands, the number of haplotype variants is low,

with a single predominant haplotype indicating less mixture

and a more genetically isolated population.

Identification of heritable traits relating to filarial infection

and immune responses reaffirms the need for further research

to identify genomic characteristics associated with these traits.

It would be useful to pursue genomewide studies with both

high-throughput polymorphism and epigenomic studies. This

approach might also identify host factors generating specific

immune responses relevant to protective immunity (as recently

seen with another helminth infection [21]), thus leading to the

development of more effective vaccine candidates for filarial

parasites. Ultimately, knowledge about which genetic factors

can predict a host response to these parasites might help tailor

future treatment programs as well as enhance our understand-

ing of the relationship between host and parasite in filarial

infection.
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