
Smith ScholarWorks Smith ScholarWorks 

Computer Science: Faculty Publications Computer Science 

2021 

Towards a Generic Method for Articulating Design Uncertainty Towards a Generic Method for Articulating Design Uncertainty 

Mouna Dhaouadi 
Université de Montréal 

Kate M. B. Spencer 
Smith College 

Megan H. Varnum 
Smith College 

Alicia M. Grubb 
Smith College, amgrubb@smith.edu 

Michalis Famelis 
Université de Montréal 

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Dhaouadi, Mouna; Spencer, Kate M. B.; Varnum, Megan H.; Grubb, Alicia M.; and Famelis, Michalis, 
"Towards a Generic Method for Articulating Design Uncertainty" (2021). Computer Science: Faculty 
Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/csc_facpubs/173 

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/173?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Journal of Object Technology | RESEARCH ARTICLE

Towards a Generic Method for Articulating Design-time
Uncertainty

Mouna Dhaouadi∗, Kate M. B. Spencer†, Megan H. Varnum†, Alicia M. Grubb†, and Michalis Famelis∗
∗Université de Montréal, QC, Canada

†Smith College, MA, USA

ABSTRACT Modelers encounter different kinds of uncertainty in their designs and models of software systems. One such type
concerns uncertainty about how to build a model. This is called design-time uncertainty, and existing research has studied
how modelers can work in its presence. However, the process by which they come to elicit and express their uncertainties
remains unclear. In this paper, we take steps towards addressing this gap by introducing DRUIDE (Design and Requirements
Uncertainty Integrated Development Environment), a language and workflow for articulating design time uncertainty. We present
and illustrate our proposal on a software design example. Additionally, we conduct a real life case study of domain analysis
related to the uncertainty caused by the COVID-19 pandemic, and evaluate DRUIDE with it. Our evaluation shows that DRUIDE

is sufficiently expressive to articulate design time uncertainty.

KEYWORDS Uncertainty language, modeling language, model-driven engineering, requirements models, design-time decisions.

1. Introduction
The requirements and specification of software systems continue
to evolve during the modeling and design phase, as additional
information is gathered from stakeholders. Making decisions
at the right time is key to successfully performing engineering
tasks. Making decisions without all necessary information may
lead to wasted effort or to premature commitment to potentially
dangerous assumptions; however, modelers are often required
to work in the presence of uncertainty. One way to handle such
contingency is to avoid uncertain parts of the system for as long
as possible (Poppendieck & Poppendieck 2003); however, this
may lead to under-utilization of resources. Another approach
is to explicitly articulate uncertainty in models and to treat
uncertainty as a first-class concern in model-based decision
making (Walker et al. 2003).

Consider a team of modelers who want to create a tool for
modeling concurrent systems with place/transition nets (PTNs),

JOT reference format:
Mouna Dhaouadi, Kate M. B. Spencer, Megan H. Varnum, Alicia M. Grubb,
and Michalis Famelis. Towards a Generic Method for Articulating
Design-time Uncertainty. Journal of Object Technology. Vol. 21, No. 3,
2021. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.21.3.a3

such as the model in Fig. 1(a). They create the metamodel for
PTNs, shown in the dashed box in Fig. 1(b). Its entry point is
the class Net that contains all other classes. Then they create the
class Transition to represent the events that can occur in a PTN
model, represented by the box element 3 in the instance model
in Fig. 1(a). The modelers create the Place class to represent
the conditions that need to be met in order for such an event
to happen, represented by the circle elements 1 and 5. The
Token class indicates which conditions are satisfied at a given
point in time, using a black marker token as shown for place
1 in Fig. 1(a). Finally, to represent the connections between
places and transitions (i.e., the arrows labeled 2 and 4), they add
the PlaceToTransitionArc and TransitionToPlaceArc classes to the
metamodel in Fig. 1(b).

As the requirements of their tool evolve, the team needs to
adapt their metamodel and it is not obvious how to proceed.
For example, should the arcs between places and transitions be
reified as separate classes? The same effect could be modelled
in a more memory-efficient way as associations between the
Place and Transition classes. They also consider the possibility
of extending their metamodel to support events prioritization by
adding weights to the arcs, which requires them to be reified.
Finally, they are unsure if the metamodel should allow PTN
elements to store the location of their graphical representations

An AITO publication

http://dx.doi.org/10.5381/jot.2021.21.3.a3


in PTN diagrams. Doing so makes it easier to store human-
readable diagrams but makes the metamodel overly coupled
with the concrete syntax.

Making these decisions without enough information is risky,
as the team may have to undo some of their work if they make
the wrong assumption. But avoiding these decisions is also
risky, as designs chosen provisionally in the present can become
constraints for decisions in the future. Worse, the team may
lose the context for why certain designs were chosen, as well
as which designs were provisional and which were the result
of careful consideration. These problems may result in costly
reinventions of the same solution.

In summary, the team members face uncertainty about how to
evolve the design of their metamodel, due to the lack of informa-
tion about the future needs of their system. They need to keep
track of the points of uncertainty, and the different alternative
design scenarios, with their various degrees of interdependency.
Modelers should be able to:
MC1 express that they are uncertain about how to design some

aspects of their model;
MC2 be as vague as necessary at first, while they explore possi-

ble solutions;
MC3 indicate what parts of the model they are uncertain about;
MC4 elaborate their uncertainty into concrete design decisions,

as they understand the implications of each design;
MC5 express the evolution of these design decisions;
MC6 describe dependencies between the design decisions; and
MC7 show how to make decisions actionable in the model.

These types of uncertainty concern the modelers’ lack of
information about how to design a model. It is known as design
time uncertainty and can affect models at any point in the soft-
ware lifecycle. Design time uncertainty can be made explicit and
managed in models (Famelis & Chechik 2019). Various aspects
of working with design time uncertainty have been studied in the
literature, such as using partial models for reasoning (Famelis
et al. 2012). Other approaches for modeling design time un-
certainties have been developed in the context of bidirectional
transformations using JTL (Eramo et al. 2015), architectural in-
terfaces (Watanabe et al. 2017), and pattern matching (Semeráth
& Varró 2017). All these approaches rely on articulating the
uncertainty that the modeler has about design decisions directly
in a software model. To the best of our knowledge, previous
work takes for granted that modelers have already expressed
their uncertainty in a model. In other words, the process by
which this is elicited and expressed remains unclear.

In this paper, we propose a generic language and approach
that supports articulating and evolving design time uncertainty,
called DRUIDE (Design and Requirements Integrated Devel-
opment Environment). We llustrate its usage and evaluate it
using a case study from the COVID-19 pandemic. We pose
the following research question (RQ): “To what extent can
DRUIDE be used to articulate uncertainty?”. We consider un-
certainty within the same model (i.e., intra-model) or across
related models (i.e., inter-model) in our in-depth case study. We
used the case study to evaluate the adequacy and expressive-
ness of DRUIDE, as well as to draw wider conclusions about
modeling heterogeneous types of uncertainty. We envision the

1

2

3
4

5

(a) PTN Instance

(b) PTN Metamodel

Figure 1 Modeling Place-Transition Nets (PTNs)

following benefits of DRUIDE: (a) it allows the “separation
of modeling concerns” regarding different types of uncertainty
(see Sect. 5); (b) it improves the state of the art in design-time
uncertainty management allowing better leveraging of existing
techniques (see Sect. 7); and (c) it is a step towards lowering
the barrier to adoption for some design rationale modeling tech-
niques (see Sect. 7).

In this paper, we make three contributions: (1) a language for
modelers to express design time uncertainty; (2) a workflow for
using the language to express and localize design uncertainty,
as well as evolve and operationalize design decisions; and (3)
an in-depth real world evaluative case study of uncertainty that
spans heterogeneous models and their relationships.

The remainder of this paper is organized as follows: We
introduce background work in Sect. 2 and present DRUIDE in
Sect. 3. We illustrate and evaluate DRUIDE with a case study in
Sect. 4, and discuss these results in Sect. 5. We discuss threats
in Sect. 6, related work in Sect. 7, and conclude in Sect. 8.

2. Background
In this section, we present relevant background work, focusing
on concepts that are influential to the development of DRUIDE.

Walker et al. defined a harmonized terminology and typology
of uncertainty in model-based decision support (Walker et al.
2003). They provided a conceptual framework for the system-
atic treatment of uncertainty, from a modeler’s perspective, in
order to improve its management in decision making processes.
Walker et al. suggested that uncertainty is a three dimensional
concept, defined by a matrix, consisting of its nature, level, and
location. We use these concepts to characterize different types
of uncertainty found in a model-based system. Walker et al.
construed the level of uncertainty as a continuous progression
between determinism and ignorance, classifying six levels: (1)
Determinism, where everything is known precisely; (2) Statisti-
cal Uncertainty, where uncertainty follows a known statistical
distribution and is thus predictable; (3) Scenario Uncertainty,
where there exists of a set of possible alternative scenarios, and
the uncertainty resides in not knowing which one to pick; (4)
Recognized Ignorance, where modelers acknowledge that they
don’t know something (i.e., known unknowns); (5) Indetermi-

2 Dhaouadi et al.



Figure 2 DRUIDE Metamodel

nacy (also called Irreducible ignorance), where it is impossible
to resolve the ignorance due to its indeterminate nature (i.e., at
the edge of Recognized Ignorance); and (6) Total Ignorance,
which represents a higher order of uncertainty, where modelers
are not even aware that they do not have enough information
(i.e., unknown unknowns).

Zhang et al. proposed the U-Model: a conceptual model
for uncertainty specifically designed for Cyber-Physical Sys-
tems (CPSs) (Zhang et al. 2016). They extended the Restricted
Use Case modeling (RUCM) methodology (Yue et al. 2013),
to identify and specify uncertainty as part of system require-
ments (Zhang et al. 2018), resulting in the U-RUCM method-
ology. They showed the efficiency of their method based on
two case studies of industrial Cyber-Physical Systems. The
U-Model includes a BeliefModel, a MeasureModel and an Un-
certaintyModel and is mapped to the CPSs three logical levels:
Application, Infrastructure, and Integration.

The U-Model introduced uncertainty related concepts, such
as Indeterminacy, IndeterminacySource and IndeterminacyNa-
ture. Indeterminacy refers to a situation where necessary knowl-
edge is unavailable. IndeterminacySource represents the factors
that lead to the uncertainty of an Indeterminacy element. As
there are several kinds of IndeterminacySources, Zhang et al.
categorized them with different IndeterminacyNatures. We list
the categories of IndeterminacyNature and their explanations:
(a) Insufficient Resolution: the available information is not pre-
cise enough. (b) Missing Information: some related information
is unavailable. (c) Non-determinism: the phenomenon is non-
deterministic. (d) Composite: a combination of two or more
indeterminacy natures. (e) Unclassified: none of the above. For
example, consider a modeler exploring the usage of multiple in-
heritance in a high-level design without knowing if the program-
ming language used for implementation supports this option,
due to an incomplete specification. The Indeterminacy is the
uncertainty about whether multiple inheritance should be used

or not. Its IndeterminacySource is the incomplete specification
and its associated IndeterminacyNature is MissingInformation.

We are interested in uncertainty that concerns design deci-
sions. The Decision Requirements Diagram (DRD), part of
OMG’s Decision Model and Notation (DMN) (OMG 2020-03),
is composed of elements that constitute the domain of decision
making, and the dependencies between them. Dependencies
between elements represent three types of requirements: Knowl-
edge Requirement, Authority Requirement and Information Re-
quirement. The Information Requirement captures the idea that
an output of a decision is used as input to another decision.

Decision modeling is also used for Software Product Line En-
gineering (SPLE). In the context of SPLE, DOPLER (Decision-
Oriented Product Line Engineering for effective Reuse) is the
best known variability modeling approach (Dhungana et al.
2007). The DoplerVML modeling language (Dhungana et al.
2011), distinguishes between Decisions and Assets. Decisions
are used to represent the problem space (i.e., the available cus-
tomization options), while Assets are used to define the solution
space (i.e., the parts required to compose the product). The
model also defines traceability links between Decisions and
Assets, which enables a specific product configuration to be
generated from a customer’s input for the decisions. Schmid et
al. reviewed several decision modeling approaches for product
lines, including DOPLER, and defined their common elements
as a basic model structure (Schmid et al. 2011). Schmid et
al. observed that all approaches define a Question attribute, as
part of the Decision element, that describes the decision to the
user. The approaches agree that there exists different types of
decisions, supporting Boolean and Enumerated types. Addition-
ally, the approaches allow for creating dependencies between
decisions and a hierarchy of dependency types.

Famelis and Chechik proposed managing the lifecycle of de-
sign time uncertainty using partial models (Famelis & Chechik
2019), based on a simplification of MAVO (Salay et al. 2012).

Towards a Generic Method for Articulating Design-time Uncertainty 3



Constraint Rationale

A DDependency element cannot dependsOn and depend-
edUpon the same DDecision.

Avoid self dependencies.

A set of DDecisions cannot be connected by DDepen-
dency elements to form a cycle.

Avoid cycle dependencies.

A pair (or set) of DDecisions cannot have more than one
DDependency element between them.

DRUIDE introduces a hierarchy of dependencies that is intended to capture all possible
dependency types between a set of decisions.

A set of only DPolar decisions cannot be the source of a
DRephrasingDependency.

DPolar decisions (i.e., binary questions) should be answered by yes or no. We consider
them to be the final result of the thinking process, where a decision has been reduced to a
clear choice.

DLogicalDependencies can only exist between sets of
DPolar decisions.

Only DPolar decisions can be atomically expressed as logical propositions.

The source and target decisions of a DRephrasingDe-
pendency must have the same dUncertainty.

When a set of decisions rephrases another set of decisions, they should all concern the
same uncertainty.

Table 1 Well-formedness constraints for DDependency links between DDecision elements.

MAVO is a formal approach for modeling partiality in a
metamodel-agnostic way, and distinguishes four partiality types:
May, Abs, Var, and OW. May partiality concerns uncertainty
about the inclusion of a particular element in the model. In
Famelis et al. (Famelis et al. 2012), a model element with a
May annotation is interpreted as a Boolean variable encoding
whether the element is included in the model or not. These
semantics are defined in propositional logic, as a formula over
all such Boolean variables, called a May formula. The resolu-
tion of uncertainty, called concretization, thus takes the form
of assigning a truth value to all the variables such that the May
formula evaluates to True. Abs, Var, and OW partiality consider
uncertainty in the uniqueness of an element, distinctness of an
element, and completeness of the model, respectively.

3. Description of DRUIDE

In this section, we introduce the two components of DRUIDE: (a)
a language for articulating design uncertainty about modeling
decisions, and (b) a tracing mechaninism for describing the
impact of uncertainty to system models. We illustrate them
using the PTN metamodel example, shown in Fig. 3, where the
modelers have elaborated the initial design from Fig. 1 while
using DRUIDE to model their uncertainty and design decisions.

3.1. Language Definition
We created the DRUIDE modeling language by combining con-
cepts from the modeling approaches described in Sect. 2. We
show the metamodel in Fig. 2. In what follows, we refer to
metaclasses of the DRUIDE metamodel simply as “classes”.

To adapt the distinction between the problem space and the
solution space from DoplerVML, in DRUIDE we distinguish
between DUncertainty and DDecision. The “problem space”
consists of statements of uncertainty and the “solution space” is
a set of specific decisions, such that making a decision resolves
the corresponding uncertainty. Thus, DUncertainty elements
are the basic units for representing the uncertainty of a modeler
about the design of a software artifact. DDecision elements are
used to represent decisions about the design.

The DUncertainty class extends the U-Model by adding a

description, used for recording a textual explanation of the
modeler’s uncertainty. In the example, the modeler creates the
DUncertainty element DU1 with the description “How should
we represent the PTN metamodel?”. A DUncertainty element
can be associated with a DIndeterminacySource. This class
specializes the U-Model by adding a description attribute that
can store an explanation of the cause of uncertainty. The ele-
ment DU1 in Fig. 3 is associated with the indeterminacy source
element DI1 whose description explains that the modeler is
uncertain about the PTN metamodel design.

The class DIndeterminacySource has a nature attribute of
type DIndeterminacyNature, which is an enumeration of the U-
Model’s indeterminacy natures listed in Sect. 2. The nature of
the element DI1 in Fig. 3 is MissingInformation as the modelers
are uncertain because they do not have enough information
about what is the best way to represent arcs in PTNs. The
DIndeterminacySource also includes a level attribute of type
DUncertaintyLevel, which is an enumeration of the uncertainty
levels proposed by Walker et al., as described in Sect. 2. The
level of the element DI1 in Fig. 3 is ScenarioUncertainty as the
modeler has at their disposal a set of alternative solutions from
the Metamodel Zoo but does not know which one to use.

Next, the DDecision class is inspired from the DoplerVML
language. It has a question attribute that textually represents the
question that must be answered in order to resolve the decision,
as well as a resolved attribute (Boolean) to indicate whether the
decision has been made. In the example, after thinking about
DU1 in concrete terms, the modelers identify three design de-
cisions that would allow them to resolve DU1. They add three
DDecision elements, marking each as not resolved: DD1, ask-
ing “How should Arcs be represented?”; DD2, asking “Should
Arc meta-classes contain weight attributes?”; and DD3, asking
“Should the metamodel enable the storage of the location of the
graphical elements on the diagram?”.

Each DDecision element is assigned a DType that captures
the form of the question at the core of the decision. We distin-
guish between open and closed decision types. Closed ended
decisions, represented by the class DClosedEnded, are those for
which resolution means picking one from a set of enumerated

4 Dhaouadi et al.



Figure 3 DRUIDE applied to the PTN metamodel.

alternative answers. DPolar is a special kind of closed decision
where the answer is Boolean (yes/no). Open ended decisions,
represented by the class DOpenEnded, are those for which the
set of potentially acceptable answers has not yet been defined.
The decisions DD2 and DD3 in our example are DPolar, as their
corresponding questions can be resolved by answering yes or no.
The decision DD1 is typed as DClosedEnded, as the modelers
have at their disposal an enumerated set of alternative solutions
for representing arcs from the Metamodel Zoo.

Each DDecision element also has an allowedPartiality at-
tribute of type DPartiality, which is an enumeration of the four
MAVO partiality types described in Sect. 2. This is an indica-
tion of how the modeler may realize the decision in the model.
This is explained further in the next section, where we introduce
operationalization traces. In our example, the modeler uses
May partiality throughout, as it is well suited to representing an
enumerated set of alternative designs (Famelis et al. 2012). In
this paper, we limit ourselves to this partiality type, leaving the
extension to other MAVO partiality types for the future.

Decisions can impact other decisions in various ways. In
DRUIDE, this is captured by the DDependency class, which
links source and target DDecision elements. We define and
describe three subclasses: DRephrasingDependency, DLogi-
calDependency, and DInformationRequirementDependency.

We use DRephrasingDependency when one DDecision is a
restatement of another DDecision. This can be used to capture
the cases where one decision refines another, e.g., by providing
more context, or by addressing a more specific concern. Ideally,

this additional information is reflected in evolving the DDeci-
sion’s DType: from DOpenEnded to DClosedEnded or from
DClosedEnded to DPolar. In the simplest case, a rephrasing
may express the same decision from a different perspective with-
out necessarily adding more information, keeping the DType the
same. In our example, the modeler refines the DClosedEnded
DDecision DD1 into two DPolar alternative DDecision ele-
ments: DD4, with the question “Are arcs represented as separate
metaclasses?”; and DD5 asking “Are arcs represented as asso-
ciations?”. This evolution in the modeler’s understanding is
represented by the DRephrasingDependency element DR1.

In DRUIDE, DLogicalDependency objects describe depen-
dencies between decisions that can be encoded in propositional
logic. We assume that the source and target DDecision elements
can be encoded as propositional variables, each one encoding
the corresponding question of the decision. Dependencies are
captured by a propositional formula stored in an associated
DDependencyFormula element. We further elaborate two spe-
cial cases of DLogicalDependency: DRequires and DExcludes.
The former is a shorthand for s→ t, and the latter for s→ ¬t,
where s and t are conjunctions of the source and target decision
variables respectively. In our example, the DPolar decisions
DD4 and DD5 are mutually exclusive. This is expressed as a
DLogicalDependency with the DExcludes element DE1. Model-
ers find that if arcs are represented as metaclasses (DD4) then
weights can be stored in arc metaclasses (DD2), and express
this with the DRequires element DRE1 between DD2 and DD4.

Inspired by the DMN standard, the DInformationRequire-

Towards a Generic Method for Articulating Design-time Uncertainty 5



Operation Constraint Rationale

Create a
LocalizationTrace

All DUncertainty elements should be localized (e.g.,
should at least have one localization trace).

Avoid having extremely vague uncertainties. The user should, be able
to denote which parts of the system the uncertainty relates to. In the
worst case, the user can localize the uncertainty at the model level.

A DUncertainty element cannot have two localization
traces with the same target element (e.g., same source and
same target).

Avoid redundant links.

Create an Operational-
izationTrace

Only DPolar decisions can be operationalized. Other types of decisions cannot be operationalized, they require further
refinement for operationalization.

A DPolar decision cannot have two operationalization
traces with the same target element (e.g., same source and
target).

Avoid redundant links.

The system elements that have been introduced as a result
of the operationalization of a DPolar decision should be
linked to at least one of the system elements that the
decision’s dUncertainty was localized at.

The elements that operationalize a decision should be traced to the ele-
ments where that decision’s uncertainty was localized. This is to make
sure, to some extend, that the operationalization and the localization
are consistent.

A DInformationRequirementDependency source set of
DPolar decisions cannot be operationalized, if one de-
cision among the DInformationRequirementDependency
target set is still unresolved.

A DInformationRequirementDependency means that the output of the
target decisions set is used as input for the source decisions set; there-
fore, the source set cannot possibly be operationalized unless the target
set has been already resolved.

Table 2 Constraints for LocalizationTrace and OperationalizationTrace elements.

mentDependency is used when the result of a decision influences
another decision, and it is not conceptually correct or convenient
to represent this influence using propositional logic. Examples
of this dependency type are discussed in Sect. 4.

Finally, we define a set of six well-formedness and consis-
tency constraints for DDependency links between DDecision
elements. We list them with rationale in Tbl. 1. For example,
the first constraint imposes that a DDependency element can-
not dependsOn and dependedUpon the same DDecision, which
avoids self-depended DDecisions elements in the model.

3.2. Tracing Design Uncertainty
Using the metamodel described in Fig. 2, modelers can express
design uncertainty about any model, as the DRUIDE specifi-
cation is self-contained and independent from other artifacts.
To show how design uncertainty impacts a specific system, we
connect the DRUIDE model with the model of the system via
trace links. A trace is a simple object that references two other
objects, one from the DRUIDE model and one from the system
model. Other than establishing the link, we can give meaning
to traces, using them to localize the expressions of uncertainty
in the system and to describe the effect of design decisions on
the elements of the system model. We distinguish two types:
LocalizationTrace and OperationalizationTrace.

LocalizationTrace elements identify which parts of the sys-
tem concern the uncertainty. A LocalizationTrace links a
DUncertainty element from the DRUIDE model with the set
of elements from the system model, which the modeler identi-
fies as relevant to the DUncertainty’s description. If the modeler
is unsure about choosing a specific system model element, the
entire model may be chosen. In the PTN example, the PTN
metamodel plays the role of the system model; its classes are
shown in the bottom right part of Fig. 3. The elements of the
DRUIDE model occupy the top left part of the figure. The mod-
eler localizes the DUncertainty element DU1 at the NET class

level using a LocalizationTrace, shown as a blue line. Note that
LocalizationTraces do not have any effect on the system model,
and serve only to document the modeler’s thought process.

In DRUIDE, OperationalizationTrace elements are used to
model the impact of design decisions on the system model.
We borrow the “operationalization” concept from the field of
Requirements Engineering, where leaf level goals of a goal
model are operationalized into concrete tasks (van Lamsweerde
2009). An OperationalizationTrace points to the system model
elements that would be impacted by a given DDecision.

The impact of a DDecision on system model elements is de-
termined by its DType and its allowedPartiality. In the current it-
eration of DRUIDE, we only support the creation of Operational-
izationTrace elements for fully refined decisions (i.e.,DPolar).
We assume that such decisions only allow the May partiality
type. More formally, an OperationalizationTrace linking a
DDecision p to a set {q1, . . . , qn} of system model elements
represents the formula p ↔ q1 ∧ . . . ∧ qn. In other words the
linked system elements of an OperationalizationTrace are in-
cluded in the final system model if and only if the modeler
decides to answer “yes” to the question of the corresponding
DDecision. We can construct a partial model (Famelis et al.
2012) from the system model by annotating the linked system
model elements of OperationalizationTraces with May partiality
and constructing the May formula from the Operationalization-
Trace links and the DLogicalDependency relations between the
corresponding DDecision elements in the DRUIDE model.

In the PTN example (see Fig. 3), the modelers operational-
ize the DPolar decisions DD4 and DD5 by introducing the
PlaceToTransitionArc and TransitionToPlaceArc classes, and asso-
ciating these classes with the Place and Transition classes via
src and dest links. Additionally, they operationalize DD2 with
the weight attribute in each of the PlaceToTransitionArc and Tran-
sitionToPlaceArc classes. Finally, they operationalize DD3 with
the Location class and three location associations. The relevant

6 Dhaouadi et al.



OperationalizationTrace elements are shown in red in Fig. 3.
Resolving any of these decisions has a direct impact on the PTN
metamodel. For example if the modeler answers “yes” to DD5
and “no” to DD3, the resulting PTN metamodel will be the same
as the one shown in Fig. 1 with only the addition of the src and
dest links between the Place and Transition classes.

Finally, we define a set of well-formedness constraints for
the creation of LocalizationTrace and OperationalizationTrace
elements. We show them along with their rationale in Tbl. 2.
For example, the first constraint imposes that all DUncertainty
elements should be localized. This ensures avoiding vague
uncertainties that are unrelated to the system model.

3.3. Modeling Design Uncertainty
Given the DRUIDE metamodel, as well as the constraints in
Tbl. 1 and Tbl. 2, we sketch a workflow for modeling design
time uncertainty. The steps below correspond roughly to the
steps taken by the modeler in the PTN example, described in
the previous subsections.
Step 1 When first faced with uncertainty, document it in

DUncertainty elements and optionally characterize their
DIndeterminacySource.

Step 2 Localize each DUncertainty element in the system model
using LocalizationTrace elements.

Step 3 Try to elicit specific design decisions from the descrip-
tion of the DUncertainty elements, and model them as
DDecision elements.

Step 4 Describe the dependencies between decisions. Use DIn-
formationRequirementDependency when the input of a
DDecision depends on the output of others. Use DLogi-
calDependency associations to model any logical depen-
dency between DPolar decisions.

Step 5 Initially, DDecisions may be of type DOpenEnded. Try
to refine them to more specific DClosedEnded decisions,
keeping track of DRephrasingDependencies. Ideally, all
decisions should be refined until they are DPolar.

Step 6 If it is clear how to implement a DPolar decision, add
the required elements to the system model and connect
them with OperationalizationTrace elements.

Using the above workflow and PTN example (Fig. 3), we
demonstrate how DRUIDE satisfies the modelers’ criteria MC1–
MC7 presented in Sect. 1. The modelers of the PTN were able
to express that they were uncertain about how to design aspects
of the model at different levels of abstraction (MC1). They
started by modeling a vague DUncertainty DU1 (MC2) that
they expanded afterwards into a set of concrete decisions (DD1–
DD3) (MC4). They were then able to evolve their decisions
(e.g., DD4 and DD5 evolved from DD1) (MC5), and express
the dependencies between them (DR1, DRE1 and DE1) (MC6).
Finally, they were able to express where their uncertainty is
located using the blue LocalizationTraces (MC3) and how their
specific DPolar decisions can be made operational in the model
using the red OperationalizationTraces (MC7).

We also applied the DRUIDE workflow to two additional
non-trivial realistic worked examples that have been used to
validate prior relevant research work (Famelis & Chechik 2019).
One example concerns uncertainty about the design of a state

machine model of a simple peer-to-peer protocol. The other
example is about uncertainty caused due to multiple alternative
ways to repair a sequence diagram model of a diagramming tool.
The experience gained from these examples (Dhaouadi 2020)
gives us confidence to proceed with the evaluative case study
presented in Sect. 4.

In this section, we focused on the process of articulation
and modeling of design uncertainty. At this stage, the modeler
is able to derive a fully fledged partial model, which can be
used in a variety of development tasks such as verification,
transformation, and refinement (Famelis & Chechik 2019).

4. Evaluative Case Study
In this section, we present an evaluative case study to explore
the expressiveness of DRUIDE. In the next section, we use this
case study to answer our research question introduced in Sect. 1.
Case Scenario: Emma’s Social Distancing Dinner. In the
midst of the COVID-19 pandemic (Zhu et al. 2020), Emma,
a Quebec resident, must decide how to acquire dinner for the
week. Emma has some options for dinner, but she wants to
protect herself, as well as her local community. Emma wants
to decide between cooking at home or picking up takeout from
a local restaurant. She is concerned that she may not be able
to practice social distancing when picking up takeout but also
does not want businesses to suffer.

In order to help Emma make the optimal decision in this
case study, we model the intentions of Emma in Tropos and
model epidemiological data about the transmission of COVID-
19 in Emma’s community using a Bayesian network. We then
connect these models, enabling Emma to connect her personal
decisions with their social impacts. The models in this paper
represent current information about the COVID-19 pandemic
as of mid-May 2020 in Quebec, Canada.
Goal Modeling in Tropos. Goal models are used to elicit and
document the intentions of stakeholders in the early phases of
requirements engineering (Mylopoulos et al. 1992; Horkoff et
al. 2019). In this paper, we use the Evolving Intentions frame-
work (Grubb 2019) to evaluate Emma’s intentions and consider
tradeoffs in her decisions about dinner (i.e., whether to cook
at home or order takeout, see Fig. 4). The Evolving Intentions
framework allows for evolution in Tropos goal models (Giorgini
et al. 2005), and the creation of simulation paths that return how
the evaluation of each node in the model changes over time.
Bayesian Belief Networks. Bayesian networks are used in arti-
ficial intelligence for reasoning with uncertainty (Ertel 2017).
These networks are acyclic directed graphs, where each node
represents variables, and each edge represents causal influence.
We build a Bayesian network based on an epidemiological mod-
eling report about COVID-19, provided by the Government of
Quebec (Brisson et al. 2020). The report captures the impact of
respecting lock-down measures on the probabilities of exposure
to the virus, and resulting hospitalizations and deaths.
Modeling Uncertainties. For both Emma’s Tropos goal model
and Bayesian networks of COVID-19 transmission risk, we use
DRUIDE to articulate uncertainties. In each of the remaining
subsections, we describe, in detail, the process of modeling

Towards a Generic Method for Articulating Design-time Uncertainty 7



with DRUIDE and the resulting models. Sect. 4.1 details the
uncertainty in Emma’s goal model and Sect. 4.2 describes the
Bayesian networks. We link these two models to create a full
picture and describe the uncertainties in Sect. 4.3, which enables
Emma to consider the potential impacts of her decisions on the
Bayesian network variables. Finally, in Sect. 4.4, we discuss
the use of DRUIDE in this case study and lessons learned.

4.1. Emma’s Goal Model
Before discussing our uncertainties, we give an overview of
Emma’s goal model in Fig. 4. The original model (Varnum et al.
2020) is shown inside the dotted hexagon in Fig. 4 and consists
of two actors: Emma and Society. Emma has two goals; have
dinner, and not get or transmit COVID-19. The goal have dinner
is decomposed into two potential tasks (green hexagons), pick
up takeout or cook at home. The task cook at home helps (i.e.,
contributes positively to) the soft goal (orange peanut shape)
of practice social distancing because it does not require Emma
to leave her house. The task cook at home is also impacted
by the availability of the fresh groceries resource (light blue
rectangle), which decreases over time. The actor Society has
three soft goals: minimize economic impact, minimize exposure
to essential workers, and minimize the spread of COVID-19. Mini-
mize exposure to essential workers helps minimize the spread of
COVID-19. Emma’s task pick up takeout helps to minimize eco-
nomic impact by supporting a local restaurant, but hurts (i.e.,
contributes negatively to) minimize exposure to essential workers
because it requires interaction with the restaurant staff. Finally,
Emma’s goal to not get or transmit COVID-19 helps Society to
minimize the spread of COVID-19.

To ensure that the above model most accurately depicts
Emma’s scenario, several uncertainties must be articulated. We
use DRUIDE to describe these modeling uncertainties. The
resulting model is presented in Fig. 4.

First, we are unsure about the relationship between the task
pick up takeout and the soft goal practice social distancing. We
ask the question, “What is the relationship between ‘pick up
takeout’ and ‘practice social distancing’?”. We model it as
the DUncertainty E-DU1. Because this uncertainty derives
from lacking precise information of the nodes’ relationship,
we characterize the DIndeterminacySource E-DI1 nature as
InsufficientResolution. This is a ScenarioUncertainty, because
there is a fixed set of possible relationships in goal modeling.
We localize E-DU1 using the blue LocalizationTraces as shown
in Fig. 4. To resolve this uncertainty, we suggest decomposing
pick up takeout into two tasks: pick up takeout with contact and
pick up takeout with no contact. We model this as the DPolar
decision E-DD1. However, if we decide to decompose E-DD1,
we then must decide what contribution links to add, expressed
in E-DD2. Since E-DD2 depends on the output of E-DD1, we
use the DInformationRequirementDependency to express this.

Second, we consider if there exists a relationship between
the soft goal practice social distancing and the goal not get or
transmit COVID-19. Specifically, we are unsure if this preventive
measure helps reduce the spread of the virus, has no effect on
virus spread, or possibly makes matters worse. The decision
is impeded from the absence of information. We express this

using the DUncertainty E-DU2 and characterize the DIndermi-
nacySource E-DI2 by specifying its level to RecognizedIgno-
rance and its nature to MissingInformation. Then, we localize it
using the blue LocalizationTraces. We articulate our decisions.
Initially, we need to decide if a relationship exists (E-DD3).
We operationalize this decision by the introduction of a link
between the practice social distancing soft goal and the not get or
transmit COVID-19 goal. This link is connected to E-DD3 by an
OperationalizationTrace shown in red (see Fig. 4). We also need
to decide which contribution link to use on this relationship, so
we model the DClosedEnded decision E-DD4. Similarly, since
we didn’t make our decision about the existence of the link yet,
and since E-DD4 depends on the output of E-DD3, we use a
DInformationRequirementDependency to express this.

Third, we are uncertain about the behavior of the resource
fresh groceries. Within the Evolving Intentions framework, the
MN label on the fresh groceries resource in Fig. 4 indicates that
fresh groceries will become less fulfilled over time. However,
we are unsure if this is the best evolving function to character-
ize fresh groceries (E-DU3). Since this DIndeterminacySource
is of a composite nature (E-DI3), we articulate three possible
decisions (E-DD5, E-DD6 and E-DD7) and express the depen-
dencies between them (E-DR3 and E-DR4).

Forth, we ask the question (E-DU4), “Should we decouple
get and transmit COVID-19?”. We consider decomposing the
goal not get or transmit COVID-19 into two goals: not get COVID-
19 and not transmit COVID-19 (E-DD8). We are unsure that the
factors that may prevent a person from being infected are the
same as the factors that prevent a person from infecting others
(E-DI4). Additionally, not transmitting the virus may contribute
differently in reducing the spread of the virus. Intuitively, we
suggest that it may contribute more strongly, but there is no
official information yet that clarifies this difference.

Fifth, we are uncertain about how to model the impact of
wearing a mask (E-DU5), and how to represent this Scenar-
ioUncertainty (E-DI5) in our goal model. We localize this
uncertainty at different parts of the model, as shown by the mul-
tiple blue LocalizationTraces connected to E-DU5 (see Fig. 4).
Initially, we consider adding an intention for wearing masks
(E-DD9). Then, if we choose to add an intention, we must de-
cide on its type (E-DD10). Once resolved, we need to decide
the relationships that should be connected to this intention to
represent the impacts of wearing a mask (E-DD11). To express
this chain of dependencies, we use the DInformationRequire-
mentDependency.

Finally, we are unsure about how to evaluate the soft goal
minimize the spread of COVID-19. Thus, we elaborate our un-
certainty (E-DU6) and articulate our decision concerning this
(E-DD12).

4.2. Quebec’s Epidemiological Model
We model a Bayesian Network which captures the impact of
respecting the lock-down measures on the probabilities of expo-
sure to the virus, hospitalization and death, based on a govern-
ment report (Brisson et al. 2020). We first modeled the Bayesian
Network presented inside a dotted line in Fig. 5, which shows
five Boolean variables that represent the possible health states

8 Dhaouadi et al.



Figure 4 The resulting model after expressing the modeling uncertainties with DRUIDE on Emma’s goal model.

of an individual during the pandemic: Susceptible, Exposed.
Symptomatic, Hospitalized and Dead. The transition from one
state to another is estimated based on conditional probabilities
shown in matrices next to the edges in the figure. We deduced
these probabilities from the report (Brisson et al. 2020). For
instance, the probability of a person to be hospitalized if they
are known to be symptomatic is equal to 0.07. The report also
specifies the Symptomatic probabilities based on the age of a
person. Thus, we add the age variable and the corresponding
conditional probabilities in our model.

We use DRUIDE to express our uncertainties and present
them in Fig. 5. First, the report does not specify the probability
of being exposed to the virus. We model this as a DUncertainty
(DU1) with an indeterminacy source (DI1) of type MissingInfor-
mation. Then, we localize it at the Exposed-Susceptible condi-
tional probabilities matrix.

Second, to map the epidemiological model to the Bayesian
Network semantics, we gathered the mutually exclusive health
states as the possible values for one variable. For instance,
in (Brisson et al. 2020), researchers distinguish between Symp-
tomatic and Asymptomatic. In our Bayesian model, we used
only the Symptomatic variable with two values: True and False.
When the value is False, the probabilities express the state
Asymptomatic. Similarly, the epidemiological model has two
states: Death and Recovered. In our Bayesian model, we use

only the Death variable with True and False values, where the
False value refers to the Recovered state. Since we do not know
what the Bayesian model should emphasize, we are unsure
which variables are more appropriate (i.e., Death vs. Recovered
and Symptomatic vs. Asymptomatic). We model this uncertainty
as the DUncertainty DU2. Since we have two alternatives for
the indeterminacy source of each variable, we denote the level
as ScenarioUncertainty and nature as InsufficientResolution in
DI2. We localize DU2 in the Symptomatic and Death variables
with the blue lines connected to DU2 in Fig. 5. Additionally, we
express two concrete DClosedEnded design decisions: DD1 and
DD2. Since, the articulation of DD1 is similar to DD2, we only
expand on DD2 to reduce visual clutter. Specifically, we refine
DD2 into two mutually exclusive DPolar decisions (DD3 and
DD4) and operationalize each. For example, the operationaliza-
tion of DD3 resulted in the addition of the Recovered variable,
the edge linking the Hospitalization state to the Recovered state
and the Recovered-Hospitalization matrix. These elements are
connected to DD3 using the OperationalizationTrace red links.

Third, we are unsure how to model the fact of respecting
preventive measures. The report distinguishes between two
measures: Reduce contacts and Isolation if symptomatic. We
model the uncertainty of whether they should be distinguished
as two variables (DU3), and characterize this indeterminacy
source (DI3). We articulate and evolve the related decisions

Towards a Generic Method for Articulating Design-time Uncertainty 9



Figure 5 DRUIDE on the Bayesian network of Quebec’s COVID-19 epidemiological model.

(DD5–DD7), operationlize the DPolar ones (DD6 and DD7).
Finally, the report didn’t include the impact of respecting the

preventive measures on being exposed to the virus; thus, we
express and localize this uncertainty (DU4).

4.3. Linking Models
After creating Emma’s goal model and Quebec’s epidemiolog-
ical model separately, we link the case study components to-
gether forming the complete picture. We map the goal model
tasks to the corresponding evaluation of the Bayesian variables
they may impact. For example, when Emma chooses to cook at
home, she respects the preventive measures by reducing contact;
thus, cook at home is connected with the True evaluation of the
Bayesian variables Reduce Contacts and Respect of Preventing
Measures. By considering the interactions between Emma’s de-
cisions and the Bayesian network variables, Emma can choose
a more optimal solution. We denote this mapping in Fig. 6
using green dashed links. These links indicate the presence of a
mechanism that observes the goal model and triggers an update
of the corresponding Bayesian network algorithm, once a task
has been chosen. We also note that we omit several DRUIDE
elements to reduce visual clutter in Fig. 6.

We are faced with uncertainty when mapping pick up takeout

with variables in the Bayesian network. We ask two questions
of this relationship, “Does pick up takeout break preventive mea-
sures, or does it respect them?” and “Does it help reduce contact,
or not?”. Intuitively, it is safer than eating outside at a restau-
rant but riskier than cooking at home. We are uncertain if it
should be considered as a preventive or non-preventive measure.
We use DRUIDE to represent this uncertainty (DI5, DU5) and
articulate its corresponding decisions (DD8, DD9, DD10). We
operationalize each alternative as follows. DD10 considers pick
up takeout as a non-preventive measure, and thus maps it to the
False values of the variables Reduce Contacts and Respect of
Preventing Measures (see orange dotted links in Fig. 6). On the
other hand, DD9 views pick up takeout as a preventative measure,
and maps it to the True values of Reduce Contacts and Respect
of Preventing Measures (see green dashed links in Fig. 6). In
the latter case, pick up takeout leads to an identical evaluation as
cook at home. This means that enacting DD9 would cause the
Bayesian network to view both tasks as equivalent. The prob-
ability of exposure would be the same, and both tasks would
carry the same risk.

When merging the two models into one, we found similar
uncertainties between them. For example, the E-DU2 uncer-
tainty that describes the relationship between practicing social

10 Dhaouadi et al.



Figure 6 DRUIDE on the mapping between Emma’s goal model and Quebec’s epidemiological model.

distancing and not getting or transmitting the virus in the Emma
model is the same as the DU4 uncertainty that describes the
impact of respecting preventive measures on the probability
of exposure to the virus in the Bayesian network. Although
phrased differently, they both refer to the effectiveness of pre-
ventive measures on reducing the spread of the virus. Similarly,
the E-DU1 uncertainty that describes the relationship between
picking up takeout and practicing social distancing in Emma’s
goal model refers to the DU5 mapping uncertainty explained
above. This illustrates how the same uncertainty can appear in
different models.

Finally, we note that our final model in Fig. 6 depicts three
different types of uncertainties: (1) Emma’s uncertainty in her
dinner decision, captured by the goal model; (2) the uncertainty
in Quebec’s COVID-19 epidemiological model, expressed using
the Bayesian network probabilities; and (3) the uncertainty
surrounding the models and their relationships, articulated using
DRUIDE.

4.4. Lessons Learned
Using DRUIDE, we were able to represent the inherent uncer-
tainties in Emma’s goal model and transform them into concrete
decisions. In exploring alternatives, we found that for the most
part, we made appropriate decisions about how to represent
Emma’s tradeoffs in Tropos, and the epidemiologic informa-
tion in our Bayesian network. By specifying and maintaining
this uncertainty, we were able to use Emma’s goal model to

make decisions, as well as update it as new information became
available. For example, in our initial analysis with Emma’s
goal model, we found that Emma should cook at home to keep
her and others the most safe (Varnum et al. 2020). We were
able to update our representation of the risks associated with
Pick Up Takeout in the Bayesian network with the availability of
new surface transmission information (not shown). We resolved
E-DU1 by making decisions for E-DD1 and E-DD2 (see Fig. 6).
In doing so, we decomposed Pick Up Takeout into Contact Pick
Up and No Contact Pick Up and linked these new tasks to the
soft-goals in the model (not shown for space considerations).
By articulating and resolving our uncertainties in Emma’s goal
model, we are more confident about our original model and our
ability to make the most appropriate decision.

The linked model in Fig. 6 illustrates how DRUIDE satisfies
the needs of modelers (see MC1–MC7 in Sect. 1), across dif-
ferent model types (i.e., inter-model). We were able to express
our uncertainty (MC1) by elaborating the vague DUncertainty
DU5 (MC2), and were able to localize this uncertainty using
the blue LocalizationTraces (MC3). We articulated a specific
design decision (DD8) (MC4) and evolved it into two DPolar
decisions (DD9 and DD10) (MC5). Additionally, we could ex-
press the dependencies between the decisions (DR3, DE5 and
DE6) (MC6). Finally, the red OperationalizationTraces enabled
us to show how the DPolar decisions can be made operational
in the model (MC7).

Towards a Generic Method for Articulating Design-time Uncertainty 11



5. Results

To answer our research question “To what extent can DRUIDE be
used to articulate uncertainty?”, we consider uncertainty within
the same model (intra-model) or across related models (inter-
model) in real scenarios. We draw on our experiences from the
case study in Sect. 4 and the examples described in Sect. 3.3.
Intra-model Validation. In this paper, we applied DRUIDE to
two scenarios, in two different software lifecycle phases. One
concerns a metamodel for PTNs, during the design phase; the
other concerns a Bayesian network and a Tropos goal model,
during the domain analysis phase of requirements engineering.

The workflow described in Sect. 3.3 was developed based on
our experiences with the case study presented in Sect. 4. For
each model, we used brainstorming to probe our understanding
of the models and created a list of all our uncertainties. We
then explored each uncertainty in detail and modeled it using
the elements of the DRUIDE metamodel. We found it helpful to
consider the IndeterminacySource first, followed by generating
possible DDecisions for each uncertainty. Finally, we consid-
ered any localization and operationalization in the model. We
were able to represent all the uncertainties that we listed using
the metamodel presented in Fig. 2.

An earlier draft of our metamodel did not include DInforma-
tionRequirementDependency. In creating Emma’s goal model
(see Fig. 4), we incorrectly used the DLogicalDependency to
describe when a decision depended on the resulting information
from another decision. By adding the DInformationRequire-
mentDependency we were able to more accurately represent
these dependencies (e.g., E-DR2 and E-DR3, in Fig. 4).

Within the context of creating goal models, we found
DRUIDE complementary to prior work in goal modeling, which
explored beliefs of the modelers and assumptions in the environ-
ment (Amyot et al. 2010; van Lamsweerde 2009), and we were
able to articulate and document uncertainty about elements in
the model.
Inter-model Validation. We focus on the application of
DRUIDE on the linked model from our case study described
in Sect. 4.3 (see model in Fig. 6). This model depicts and links
the uncertainty both in the Bayesian network and the goal model.
Using DRUIDE, we were able to articulate uncertainties concern-
ing the relationships between two different and heterogeneous
models (see DU5 and its corresponding decisions). Also, the
same uncertainty can appear in different models. We already
noted similar uncertainties above (e.g., E-DU2 and DU4). In
DRUIDE, these can be easily merged into one, and have associ-
ated decisions in different models.

Finally, the case study clearly illustrated that different types
of uncertainty require different modeling approaches and differ-
ent treatments (see Sect. 4.3). Existing modeling notations, like
Bayesian networks or goal models, are suitable for representing
uncertainty inside the system, however they do not cover the
uncertainty about the design of the system. DRUIDE decouples
the modeling and representation of design uncertainty from
problem specific representations of uncertainty. This is a form
of “separation of modeling concerns” that helps clarify the role
of different types of uncertainty in models.

Initial Applicability. Without an empirical investigation with
independent users, we cannot make claims about the applica-
bility of DRUIDE. Here we give our initial impressions, based
on our experiences with the evaluative case study presented
in Sect. 4. The first idea that DRUIDE users have to internalize
is that it explicitly models uncertainty about a model rather
than uncertainty within the model. This distinction is espe-
cially important for languages that model scenario uncertainty
or tradeoffs (e.g., goal models). Second, we found that the open-
ended nature of the DUncertainty element helps users quickly
add elements to the model without any concern for how they
will be formalized. However, once users begin creating and
linking DDecision elements, it is important that they review
the DRUIDE metamodel (see Fig. 2) and the list of constraints
(see Tbl. 1 and Tbl. 2). Finally, novice users may also struggle
with identifying DIndeterminacyNature and allowedPartiality.
Although definitions are given as part of DRUIDE, providing
additional examples for each of these concepts to users can help
guide them to the appropriate categorization.

Based on these three perspectives, we answer our RQ:

We found DRUIDE to be sufficient for articulating uncertainty
both within a model and across models of different types.

6. Threats to Validity

We briefly explore possible threats to our evaluative case
study (Runeson et al. 2012), and begin by looking at two poten-
tial issues with Construct Validity. First, we cannot guarantee
that the concepts, models and relationships used in the case
study were interpreted correctly. To mitigate this, we held reg-
ular meetings to clarify constructs. This iterative process lead
to both an increased shared understanding of DRUIDE concepts
and the case study contents within our team, as well as updates
to the metamodel, as described in Sect. 5.

Second, there is a risk that the application of DRUIDE to
the case study was not a reliable representation of a modeling
process containing design uncertainty. To mitigate this threat,
we chose a real world scenario outside our immediate areas of
expertise. The case study concerned the ongoing public health
crisis and was conducted at a time of heightened uncertainty
both for health experts as well as for the general public who are
called upon to make critical everyday decisions based on pop-
ularized science and public health guidelines. The uncertainty
expressed in modeling the “Emma” persona and the Quebec
epidemiological report is an accurate reflection of the real uncer-
tainties faced by reasonably educated and socially responsible
citizens during the COVID-19 pandemic.

Our finding that DRUIDE is sufficient for articulating uncer-
tainty is threatened by both External Validity (generalizability to
other domains and modeling notations) and Reliability (whether
the analysis is dependent on the individual researchers involved).
Both of these risks can only be mitigated by the independent
findings of other researchers and future work to validate whether
our results generalize to other modeling notations and scenarios.

12 Dhaouadi et al.



7. Related Work

Design uncertainty (Ramirez et al. 2012) concerns the question
about how to design a model and can result from dealing with
different design alternatives (van Lamsweerde 2009), making
decisions about architecture (Esfahani et al. 2013), resolving
inconsistencies (Egyed et al. 2008), or conflicting stakeholder
requirements (Sabetzadeh et al. 2010). Various approaches have
been proposed for working in the presence of design uncer-
tainty such as reasoning (Famelis et al. 2012), bidirectional
transformations using JTL (Eramo et al. 2015), architectural in-
terfaces (Watanabe et al. 2017), and pattern matching (Semeráth
& Varró 2017). However, to the best of our knowledge, exist-
ing work does not explicitly discuss the process of articulating
design uncertainty or representing its evolution.

DRUIDE is an extension of our previous work on modeling
and managing the lifecycle of design uncertainty with partial
models (Famelis & Chechik 2019). The central idea is to rep-
resent design uncertainty directly in models using formal par-
tiality annotations (Salay et al. 2012). While in previous work
we showed how partial models can be useful for accomplishing
various development tasks, we did not address questions such as:
“Why does this model element have a partiality annotation?”,
and “How did we come to assign a partiality annotation to that
element?”. DRUIDE fills the gap in the literature by providing
a language and an approach to explicitly articulate and evolve
design uncertainty in models.

The work by Zhang et al. on uncertainty modeling for Cyber-
Physical Systems (CPSs) is closest to ours (Zhang et al. 2016).
They propose the U-Model, a conceptual model for uncertainty,
but unlike DRUIDE, they separate it from the CPS system model.
In subsequent work, the authors propose the U-RUCM method-
ology and tool to identify and specify uncertainty as part of
system requirements (Zhang et al. 2018). However, their work
is focused on use-case modeling. In contrast, DRUIDE is a
generic approach that applies to any modeling language.

As discussed in Sect. 2, our research is related to and in-
spired from work in decision modeling (OMG 2020-03) and
decision oriented Product Line Engineering (PLE) (Dhungana
et al. 2007). More broadly, since design uncertainty often in-
volves modeling sets of design alternatives, DRUIDE is related
to research on creating representations of sets of related models.
This is a fundamental modeling task that has applications in the
formal specification of requirements (Larsen 1989), the defini-
tion of feature-oriented PLE (Kang et al. 2002), the modeling
of model families (Alwidian & Amyot 2020), etc.

Finally, there are some commonalities with work on cap-
turing design rationale (DR) (Burge 2005), especially when it
comes to documenting design decisions. One significant dif-
ference is that we focus on design uncertainty first, before it
is crystallized to specific decisions. This allows modelling the
earlier stages of the design lifecycle, as well as the formation
and evolution of design decisions. One of the biggest adoption
barriers to DR capture has been that the documentation of de-
sign decisions is often seen as an expensive afterthought (Burge
2005). We envision using DRUIDE to guide users in the de-
sign process in order to generate and elaborate design decisions,

rather than retroactively documenting them. This would cre-
ate a useful synergy with DR capture, potentially lowering its
adoption barriers.

8. Conclusions and Future Work

In this paper, we introduced DRUIDE, a language and workflow
for articulating design time uncertainty, and illustrated its usage
on a software engineering example. We completed an evaluative
case study of DRUIDE, which modeled an individual’s decisions
during the COVID-19 pandemic. Our evaluation showed that
DRUIDE is sufficiently adequate and expressive to articulate
design time uncertainty.

In the future, we intend to evolve the DRUIDE language,
using the experience gained from modeling the COVID-19
case study and other examples. For example, we suspect that
the decision types we adopt in this paper (i.e., DOpenEnded,
DClosedEnded, and DPolar) may be overly simplistic. We plan
to investigate other approaches, and take into account the poten-
tial impact of a decision type on the corresponding uncertainty
level and nature. We used only May partiality (see Sect. 3.1),
but we see potential for using Abs partiality in the future. Future
work will expand the repertoire of allowedPartiality types and,
crucially, define the semantics of DRUIDE models, using the
MAVO logical formalism. Additionally, we want to further
investigate other types of uncertainty, and elaborate the typol-
ogy of uncertainties. Once complete, we may study the extent
to which the existing modeling language adequately supports
different uncertainty types.

DRUIDE gives modelers the ability to explicitly articulate
uncertainty and compose completely heterogeneous models,
by linking uncertainties. This launches new opportunities in
automated data-driven software engineering decision making
with both qualitative and quantitative information, where stake-
holders can test hypotheses and resolve uncertainty to make
informed decisions. In our case study, we used a single data
model (a Bayesian network) for virus transmission. We envision
that users could plug in multiple different domain models based
on publicly available learned data. We also want to investigate
the potential for creating intelligent assistants to help populate
DRUIDE models with mined data from social interactions, such
as online discussions about design (Viviani et al. 2019).

At the time of our case study, we used draw.io1 to complete
modeling tasks. We intend to develop tool support for DRUIDE,
including implementing the metamodel, operators, and con-
straints introduced in this paper, as well as allowing for multiple
data models for hypothesis testing and automated analysis.

Acknowledgments

This research was partially funded by the Tunisian Ministry of
Higher Education and Scientific Research, a MITACS Research
Training Award, and the SURF Program at Smith College.

1 https://github.com/jgraph/drawio

Towards a Generic Method for Articulating Design-time Uncertainty 13

https://github.com/jgraph/drawio


References

Alwidian, S., & Amyot, D. (2020). "Union is Power": Analyz-
ing Families of Goal Models Using Union Models. In Proc.
of MODELS’20 (p. 252-262).

Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton,
L., & Yu, E. (2010). Evaluating Goal Models Within the
Goal-Oriented Requirement Language. International Journal
of Intelligent Systems, 25(8), 841–877.

Brisson, M., Gingras, G., Drolet, M., Laprise, J., & et al.
(2020). Épidémiologie et Modélisation de l’évolution de
la COVID-19 au Québec (Tech. Rep.). Centre de Recherche
du CHU de Québec – Université Laval. Retrieved from http://
www.marc-brisson.net/covid19-response/Epidemiologie-et
-modelisation-evolution-COVID-19-au-Quebec_7-mai.pdf
(Pg. 29–33, accessed 09/13/2020.)

Burge, J. E. (2005). Software engineering using design rationale.
PhD thesis, Worcester Polytechnic Institute.

Dhaouadi, M. (2020). Articulating Design-time Uncertainty
with DRUIDE. MSc thesis, Université de Montréal.

Dhungana, D., Grünbacher, P., & Rabiser, R. (2007). Domain-
specific adaptations of product line variability modeling. In
Working conference on method engineering (pp. 238–251).

Dhungana, D., Grünbacher, P., & Rabiser, R. (2011). The DO-
PLER meta-tool for decision-oriented variability modeling: a
multiple case study. Automated Software Engineering, 18(1),
77–114.

Egyed, A., Letier, E., & Finkelstein, A. (2008). Generating
and Evaluating Choices for Fixing Inconsistencies in UML
Design Models. In Proc. of ASE’08 (pp. 99–108).

Eramo, R., Pierantonio, A., & Rosa, G. (2015). Managing
uncertainty in bidirectional model transformations. In Proc.
of SLE’15 (pp. 49–58).

Ertel, W. (2017). Reasoning with Uncertainty. In Introduction
to artificial intelligence (pp. 125–174). Springer.

Esfahani, N., Malek, S., & Razavi, K. (2013). GuideArch: Guid-
ing the Exploration of Architectural Solution Space Under
Uncertainty. In Proc. of ICSE’13 (pp. 43–52).

Famelis, M., & Chechik, M. (2019). Managing design-time
uncertainty. SOSYM, 18(2), 1249–1284.

Famelis, M., Salay, R., & Chechik, M. (2012). Partial models:
Towards modeling and reasoning with uncertainty. In Proc.
of ICSE’12 (pp. 573–583).

Giorgini, P., Mylopoulos, J., & Sebastiani, R. (2005). Goal-
oriented Requirements Analysis and Reasoning in the Tropos
Methodology. Engineering Applications of Artificial Intelli-
gence, 18(2), 159–171.

Grubb, A. M. (2019). Evolving Intentions: Support for
Modeling and Reasoning about Requirements that Change
over Time (Doctoral dissertation, University of Toronto).
http://hdl.handle.net/1807/95842.

Horkoff, J., Aydemir, F. B., Cardoso, E., Li, T., Maté, A., Paja,
E., . . . Giorgini, P. (2019). Goal-oriented requirements
engineering: an extended systematic mapping study. Require-
ments Engineering, 24, 133–160.

Kang, K. C., Lee, J., & Donohoe, P. (2002). Feature-oriented
product line engineering. IEEE software, 19(4), 58–65.

Larsen, K. G. (1989). Modal specifications. In Proc. of CAV’89
(pp. 232–246).

Mylopoulos, J., Chung, L., & Nixon, B. (1992, June). Represent-
ing and using nonfunctional requirements: a process-oriented
approach. IEEE TSE, 18(6), 483–497.

OMG. (2020-03). Decision Model and Notation, version 1.3.
Poppendieck, M., & Poppendieck, T. (2003). Lean software

development: an agile toolkit. Addison-Wesley.
Ramirez, A., Jensen, A., & Cheng, B. (2012). A Taxonomy of

Uncertainty for Dynamically Adaptive Systems. In Proc. of
SEAMS’12 (pp. 99–108).

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case
Study Research in Software Engineering - Guidelines and
Examples. Wiley.

Sabetzadeh, M., Nejati, S., Chechik, M., & Easterbrook, S.
(2010). Reasoning about Consistency in Model Merging. In
Proc. of LWI’10.

Salay, R., Famelis, M., & Chechik, M. (2012). Language
independent refinement using partial modeling. In Proc. of
FASE’12 (pp. 224–239).

Schmid, K., Rabiser, R., & Grünbacher, P. (2011). A compar-
ison of decision modeling approaches in product lines. In
Proc. of VAMOS’11 (pp. 119–126).

Semeráth, O., & Varró, D. (2017). Graph constraint evalua-
tion over partial models by constraint rewriting. In Proc. of
ICMT’17 (pp. 138–154).

van Lamsweerde, A. (2009). Requirements Engineering - From
System Goals to UML Models to Software Specifications.

Varnum, M. H., Spencer, K. M. B., & Grubb, A. M. (2020).
Towards an Evaluation Visualization with Color. In Proc. of
i*’20 (istar’20) (pp. 79–84).

Viviani, G., Famelis, M., Xia, X., Janik-Jones, C., & Murphy,
G. C. (2019). Locating latent design information in developer
discussions: A study on pull requests. IEEE TSE.

Walker, W. E., Harremoës, P., Rotmans, J., Van Der Sluijs,
J. P., Van Asselt, M. B., Janssen, P., & Krayer von Krauss,
M. P. (2003). Defining uncertainty: a conceptual basis for
uncertainty management in model-based decision support.
Integrated assessment, 4(1), 5–17.

Watanabe, K., Ubayashi, N., Fukamachi, T., Nakamura, S.,
Muraoka, H., & Kamei, Y. (2017). iArch-U: interface-centric
integrated uncertainty-aware development environment. In
Proc. of MiSE’17 (pp. 40–46).

Yue, T., Briand, L. C., & Labiche, Y. (2013). Facilitating the
transition from use case models to analysis models: Approach
and experiments. ACM TOSEM, 22(1), 5.

Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., & Norgren, R.
(2016). Understanding uncertainty in cyber-physical systems:
a conceptual model. In Proc. of ECMFA’16 (pp. 247–264).

Zhang, M., Yue, T., Ali, S., Selic, B., Okariz, O., Norgre, R.,
& Intxausti, K. (2018). Specifying uncertainty in use case
models. Journal of Systems and Software, 144, 573–603.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., . . .
Tan, W. (2020). A novel coronavirus from patients with
pneumonia in china, 2019. N Engl J Med, 382(8), 727-733.

14 Dhaouadi et al.

http://www.marc-brisson.net/covid19-response/Epidemiologie-et-modelisation-evolution-COVID-19-au-Quebec_7-mai.pdf
http://www.marc-brisson.net/covid19-response/Epidemiologie-et-modelisation-evolution-COVID-19-au-Quebec_7-mai.pdf
http://www.marc-brisson.net/covid19-response/Epidemiologie-et-modelisation-evolution-COVID-19-au-Quebec_7-mai.pdf
http://hdl.handle.net/1807/95842

	Towards a Generic Method for Articulating Design Uncertainty
	Recommended Citation

	tmp.1631124415.pdf.w8s9B

