€» SMITH COLLEGE

A Smith ScholarWorks
Biological Sciences: Faculty Publications Biological Sciences
4-1-2021

Gene Expression Associated with Disease Resistance and Long-
Term Growth in a Reef-Building Coral

Emma R. Kelley
Smith College

Robin S. Sleith
Smith College

Mikhail V. Matz
The University of Texas at Austin

Rachel M. Wright
Smith College, rwright@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs

6‘ Part of the Biology Commons

Recommended Citation

Kelley, Emma R.; Sleith, Robin S.; Matz, Mikhail V.; and Wright, Rachel M., "Gene Expression Associated
with Disease Resistance and Long-Term Growth in a Reef-Building Coral" (2021). Biological Sciences:
Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/bio_facpubs/175

This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu


http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/bio_facpubs
https://scholarworks.smith.edu/bio
https://scholarworks.smith.edu/bio_facpubs?utm_source=scholarworks.smith.edu%2Fbio_facpubs%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.smith.edu%2Fbio_facpubs%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/bio_facpubs/175?utm_source=scholarworks.smith.edu%2Fbio_facpubs%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

Downloaded from https://royal societypublishing.org/ on 29 July 2021

ROYAL SOCIETY
OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Check for
updates

Research

Cite this article: Kelley ER, Sleith RS, Matz MV,
Wright RM. 2021 Gene expression associated
with disease resistance and long-term growth
in a reef-building coral. R. Soc. Open Sci. 8:
210113,

https://doi.org/10.1098/rs0s.210113

Received: 23 January 2021
Accepted: 25 March 2021

Subject Category:
Genetics and genomics

Subject Areas:
ecology/genetics/genomics

Keywords:

coral disease, gene expression, Montastraea
cavernosa, Flower Garden Banks National Marine
Sanctuary

Author for correspondence:
Rachel M. Wright
e-mail: rwright@smith.edu

Gene expression associated
with disease resistance
and long-term growth
in a reef-building coral

Emma R. Kelley', Robin S. Sleith!, Mikhail V. Matz?
and Rachel M. Wright'

1Department of Biological Sciences, Smith College, Northampton, MA, USA
2Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA

RMW, 0000-0002-5867-1224

Rampant coral disease, exacerbated by climate change and
other anthropogenic stressors, threatens reefs worldwide,
especially in the Caribbean. Physically isolated yet genetically
connected reefs such as Flower Garden Banks National
Marine Sanctuary (FGBNMS) may serve as potential refugia
for degraded Caribbean reefs. However, little is known about
the mechanisms and trade-offs of pathogen resistance in reef-
building corals. Here, we measure pathogen resistance in
Montastraea cavernosa from FGBNMS. We identified individual
colonies that demonstrated resistance or susceptibility to Vibrio
spp. in a controlled laboratory environment. Long-term growth
patterns suggest no trade-off between disease resistance
and calcification. Predictive (pre-exposure) gene expression
highlights subtle differences between resistant and susceptible
genets, encouraging future coral disease studies to investigate
associations between resistance and replicative age and
immune cell populations. Predictive gene expression
associated with long-term growth underscores the role of
transmembrane proteins involved in cell adhesion and cell—cell
interactions, contributing to the growing body of knowledge
surrounding genes that influence calcification in reef-building
corals. Together these results demonstrate that coral genets
from isolated sanctuaries such as FGBNMS can withstand
pathogen challenges and potentially aid restoration efforts in
degraded reefs. Furthermore, gene expression signatures
associated with resistance and long-term growth help inform
strategic assessment of coral health parameters.

1. Introduction

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.c.
5369028.

Infectious diseases associated with a variety of bacterial, viral and
fungal pathogens (reviewed in [1]) cause mass coral mortality

© 2021 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.

THE ROYAL SOCIETY

PUBLISHING


http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.210113&domain=pdf&date_stamp=2021-04-21
mailto:rwright@smith.edu
https://doi.org/10.6084/m9.figshare.c.5369028
https://doi.org/10.6084/m9.figshare.c.5369028
http://orcid.org/
http://orcid.org/0000-0002-5867-1224
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Downloaded from https://royal societypublishing.org/ on 29 July 2021

worldwide, especially in the Caribbean where stony coral tissue loss disease (SCTLD) has massively [ 2 |

reduced live coral cover [2-4]. Several Vibrio species contribute to coral diseases, though the exact
etiological agents for many outbreaks, including SCLTD, are uncharacterized [5,6]. Heterogeneity in
disease outcomes exists between and within coral species. For example, acroporid and pocilloporid
coral species appear to be among the most vulnerable taxa [7] while massive corals, like Porites, resist
bacterial challenge [8]. These species-level differences in disease resistance shape reef communities
[9,10]. Variation in disease susceptibility observed among members of a coral species (e.g. [11-13])
may contribute to reef restoration if resistant genets can repopulate degraded reefs [14].

At 190 km off the Louisiana—Texas coastline, healthy corals in Flower Garden Banks National Marine
Sanctuary (FGBNMS) produce larvae that can disperse throughout the Caribbean [15]. This deep and
isolated reef environment has maintained greater than 50% coral cover with no documented disease
outbreaks [16]. However, a highly localized mortality event occurred in late July 2016, affecting 5.6 ha
(2.6% of the area) of the East Flower Garden Bank (FGB) while the West FGB remained unaffected
[17]. Diverse invertebrates presented with advancing lesions of tissue loss that mimic an infectious
disease. Studies found that localized hypoxia contributed to this disease-like mortality rather than a
specific bacterial pathogen [17,18]. Given the importance of this sanctuary as a source population to
help restore Caribbean reefs, it is critical to assess the ability of its coral inhabitants to withstand
disease challenges.

Here, we measure variation in susceptibility to a bacterial pathogen in the great star coral Montastraea
cavernosa from FGBNMS. Once considered among the most robust Caribbean species [19], M. cavernosa
have experienced substantial mortality from SCTLD in recent years [3]. In addition to assessing
susceptibility as the appearance of tissue loss upon challenge with Vibrio spp., we also measure long-
term calcification to account for trade-offs between growth and resistance. This coral species has
demonstrated a stable calcification rate under heat stress [20], but the impacts of disease on coral
growth are unknown.

This study also characterizes predictive gene expression to identify molecular markers associated
with long-term calcification and resistance to bacterial pathogen invasion. Recent studies have made
progress identifying allelic variation associated with coral thermal tolerance by sequencing hundreds
of corals and often relying on reproductive crosses [20-23]. Here, we rely on global gene expression,
which can be used to associate gene expression with complex phenotypes in wild populations [24,25].
Previous studies have identified inter-individual differences in gene expression under benign
conditions that may contribute to observed differences in stress responses [26,27]. Baseline gene
expression associated with resistance to bacterial challenge and calcification over the subsequent year
enhance our understanding of the molecular determinants of disease resistance and growth in coral.

2. Methods

2.1. Coral collection and fragmentation

Coral fragments were obtained from the East and West Texas FGBs on 10 November 2014. SCUBA divers
retrieved M. cavernosa fragments using hammers and chisels. Fifteen colonies were sampled from both
the East and West Banks for a total of 30 colonies. The larger sampled coral fragments were then
divided with a wet saw into control and experimental series (1 =2-3 fragments per genet per series;
mean +s.d. area=4.8+1.8 cm?). The replicate fragments recovered in 15 gallon tanks of 32 ppt
artificial seawater (ASW; Instant Ocean). Tanks were maintained at 23°C under 12000 K LED lights
on a 12L:12 D cycle. Corals were fed Coral Frenzy every 2 days. After 2 days of recovery, fragments
were moved to individual experimental chambers containing 300 ml ASW under the same lighting
and temperature conditions.

2.2. Bacterial challenge and survival

Single isolates of Vibrio coralliilyticus or Vibrio shiloi were incubated overnight in Difco Marine Broth-2216
(BD) along with a sterile broth control at 30°C with shaking (150 rpm). Overnight cultures were triple
washed in sterile ASW by centrifugation at 5000 g for 10 min and resuspension in ASW. Corals were
challenged with either 10" CFU ml™" of triple-washed Vibrio (treatment) or the same volume of triple-
washed marine broth (control) on 28 November and subsequently every 24h for 17 days. We
challenged the corals with V. shiloi for the first 10 days and V. coralliilyticus for the subsequent week
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of bacterial inoculations. These bacteria were selected for their suspected coral pathogenicity [28,29]. B

However, some studies report that most corals remain visually healthy after experimental challenges
with these pathogens [30,31]. One explanation for the inability to reliably induce symptoms of disease
with isolated pathogenic agents is that virulence may depend on interactions between multiple
bacterial taxa [32]. Our successive bacterial challenge design aimed to (i) provide an opportunity for
bacterial interactions that may induce virulence in situ and (ii) increase stress incrementally in order to
resolve between more susceptible and more resistant genets. Similarly, the temperature was ramped to
29°C between the fifth and sixth days of inoculation (both for controls and bacteria-inoculated
fragments), as increased temperatures have been shown to induce Vibrio virulence [33]. The fragments
were photographed daily using a Nikon D5100 with a coral health card to monitor lesion
development. Time-of-death was recorded as the day when tissue loss exceeded 50% of the surface
area. After the seventeenth day of bacterial challenge, surviving genets were placed in 15 gallon
aquaria under control conditions.

2.3. Growth measurements and analysis

The number of polyps was counted on each of the surviving fragments in February 2015 and again a year
later, in March 2016. Surviving individuals were weighed in February 2015 and again in February 2016
following the buoyant weight protocol [24,34]. Temperature and lighting conditions remained constant
over the long-term monitoring period (25°C, 12L:12 D). Surface areas for each fragment were
measured using IMAGE] [35]. Skeletal weight and polyp growth were normalized to the surface area.
Statistical analyses were conducted in R version 3.6.1 [36]. The R package MCMCglmm [37] was used
to fit generalized linear mixed models for tissue and skeletal growth rates between phenotype
(resistant versus susceptible), treatment (control versus Vibrio-challenged) and collection location
(East versus West Bank).

2.4, Predictive gene expression

RNA was isolated from two replicate subsamples of each genet before bacterial challenge using the
RNAqueous Total RNA Isolation Kit (Invitrogen). Genet identities were subsequently modified to
reflect the presence of clones detected by sequence analysis, but all samples were retained in
downstream gene expression analyses because each library was prepared from RNA derived from
independent tissue samples. A total of 54 gene expression libraries prepared following the TagSeq
protocol [38] were of high enough quality for Illumina HiSeq 2500 sequencing (SRA: PRJNA355872).
Adapter sequences were trimmed and low-quality reads (minimum quality score =20; minimum per
cent bases above minimum quality score=90%) were filtered using FASTX toolkit [39]. Reads were
mapped to a holobiont reference consisting of the M. cavernosa genome [22] and Cladocopium goreaui
transcriptome [40] using Bowrtie 2 [41]. Reads were converted to counts representing the number of
independent observations of a transcript over all isoforms for each gene.

Isogroups (henceforth called ‘genes’) with a mean count of less than three across all samples were
removed from the analysis. Expression sample outliers were detected using arrayQualityMetrics [42].
Differentially expressed genes (DEGs) were identified using DESeq2 [43]. Wald tests were performed
to compare phenotype (resistant versus susceptible) and collection location (EastFGB versus WestFGB)
using the model ‘count~susceptibility phenotype + bank’ (1 =50 after outlier detection). Wald tests
were also performed to compare continuous growth phenotypes using the models ‘count~mean
calcification rate + mean polyp generation + susceptibility phenotype’ (n=38 after outlier detection).
The DESeq2 models were run independently as we necessarily had slightly different samples in each
model owing to limitations in the ability to collect growth data from susceptible corals that did not
survive the year-long growth monitoring period. We report Wald statistics (log fold change/standard
error) to represent the magnitude of expression difference between groups or per unit change of
continuous variables. False-discovery rate (FDR) p-values were adjusted using the Benjamini-
Hochberg procedure [44]. Gene expression heatmaps were generated using pheatmap [45] and gene
ontology enrichment was performed based on signed adjusted p-values using GO-MWU [46].

2.5. Reference-based 2bRAD genotyping

We prepared 64 genotyping libraries using the 2bRAD protocol [47] and sequenced the libraries on the
Ilumina HiSeq 2000 platform at UT Austin Genome Sequencing and Analysis Facility. We used FASTX
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toolkit to remove barcodes, deduplicate reads and apply quality filters such that only reads in which
90% or more of the bases with a Phread score >20 were retained. These reads were mapped to the
M. cavernosa genome [22] using BowTie 2 [41]. Genotyping was performed with ANGSD v0.930 [48].
Sites were filtered to retain loci with a mapping quality > 20, base call quality >30 and minor allele
frequency > 0.05 that were sequenced in at least 20 individuals. These sites were used to calculate
pairwise identity-by-state distances between individual samples. Distances < 0.15 were presumed to be
clones based on similarity detected across genotyping replicates. Only one clone per sample was
retained for subsequent population genetic analysis. Library replicates were removed as clones, as
well as two additional pairs of clones. The VCFtools subprogram weir-fst-pop calculated fixation index
(Fsr) estimates. To determine dominant symbiont types, we mapped 2bRAD sequences to a combined
symbiont reference composed of transcriptomes from Symbiodinium ‘clades” A and B [49] and ‘clades’
C and D [50] using a custom perl script “zooxtype.pl’. Custom scripts are hosted within the 2bRAD
GitHub repository (https:/ /github.com/z0on/2bRAD_denovo).

3. Results
3.1. 2bRAD genotyping

An average of 71.9% of reads uniquely mapped to the M. cavernosa genome across the 64 2bRAD libraries
and an average of 67.3% of sites were covered at greater than 5x sequencing depth. We identified two
pairs of clones (7/29 and 17/21; electronic supplementary material, figure S1), which are presumably
fragments inadvertently sampled from different parts of the same colony. We identified 11 081 single
nucleotide polymorphisms (SNPs) from 26 unique (non-clonal) samples. Principal component analysis
based on identity-by-state demonstrates a lack of genetic structure between sampling sites or
resistance phenotype groups (electronic supplementary material, figure S2). Fsr represents the level of
genetic differentiation between groups. We calculated weighted Fsy, which accounts for differences in
the numbers of individuals in each group. We observed no genetic differentiation between corals
grouped by resistance phenotype (Fsy=0) and little genetic differentiation between East and West
FGB origin (Fst=0.004). Mapping 2bRAD-seq data to symbiont references determined that all corals
were dominated by Cladocopium (electronic supplementary material, figure S3).

3.2. Bacterial challenge survival

Time-of-death was recorded when a coral fragment displayed greater than 50% tissue loss (e.g. figure 1a).
Survival ranged from 10 to 22 days (mean + s.d. 18.6 + 3.3 days) among fragments that developed lesions
(figure 2). Only one fragment from genet 10 developed a lesion and subsequently recovered (electronic
supplementary material, figure 54). Bacterial challenge significantly increased mortality (p=2 x 10716,
figure 1b). Collection site was not associated with differential survival (p = 0.13; figure 1c).

3.3. Long-term coral growth

Across all coral fragments, the average (+s.d.) long-term calcification rate was 135 + 61 mg cm ™2 yr_l. We
observed between 0 and 30 new polyps on each fragment over the year (mean +s.d. =10.9 + 6.7), which
ranged from approximately 0-7 new polyps cm™ of surface area. Neither annual calcification rate nor
annual polyp generation was significantly associated with collection site, treatment or resistance
phenotype (figure 3).

3.4. Host differential gene expression

TagSeq yielded an average 319 547 M. cavernosa (coral host) gene counts per sample after filtering lowly
expressed genes (base mean < 3). No genes were differentially expressed according to sampling origin
and only one unannotated gene was significantly associated with an annual increase in polyp number
(Mcavernosa00313, Wald stat = —4.8, FDR = 0.011).

The contrast between resistant and susceptible genets yielded only one DEG at FDR =0.05. This
transcript shares substantial homology with a lymphocyte antigen 6H-like gene identified in Orbicella
faveolata (E-value =2 x 10~'*!, identity = 87%) and was more highly expressed in resistant genets (Wald
stat=6.2, FDR=5.7 x 107°). Gene ontology (GO) enrichment tests between resistant and susceptible
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Figure 1. (a) Example lesion progression. (b) The survival of coral fragments in the control (grey) or Vibrio treatments (red). (c) The
survival of coral fragments from East FGB (blue) or West FGB (green). p-values correspond to the effect of treatment (b) or collection
site () in a Cox proportional hazards model. The dashed line at day 6 denotes a shift from 23°C to 29°C. The dotted line at day 10
and a shift from Vibrio shiloi to Vibrio coralliilyticus exposure.
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Figure 2. Timing of mortality for genets in the control and Vibrio treatments. Susceptible and resistant genet identities are shown
in red and black, respectively. Columns are ordered left to right from earliest to latest mortality.

corals yielded eight biological processes (BP), 20 cellular components (CC) and five molecular functions
(MF) significantly enriched (adjusted p <0.05) among genes associated with disease phenotype. Among
these terms, several categories related to cell division (e.g. regulation of mitotic cell cycle, DNA integrity
checkpoint, kinetochore microtubule) were enriched with genes showing higher expression in resistant
corals (figure 4).

Fifty-nine DEGs were significantly associated with the rate of calcification in the year following
TagSeq library preparation (electronic supplementary material, Data S1). Some of the top DEGs
associated with calcification rate include those encoding Hairy and Enhancer of Split (HES) 1
(Mcavernosal2226, Wald stat=3.8, FDR=0.032, E-value=0.0) and putative cell adhesion proteins
fermitin family homologue 2 (Mcavernosa09908, Wald stat=>5.1, FDR =5.1 x 107, E-value=1x 10724
and coadhesin (Mcavernosall572, Wald stat=4.3, FDR=7.4x 1073, E-value =0.0) (figure 5). GO
enrichment tests yielded 12 BF, 14 CC and 17 MF significantly enriched (adjusted p <0.05) with genes
associated with calcification rate (electronic supplementary material, figure S5A). Among these terms,
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Figure 3. (alcification rate (mg a2 yr‘1; top) was not associated with collection site (a), treatment (b) or resistance phenotype
(). Polyp generation (new polyps an™% bottom) was not also associated with collection site (d), treatment (e) or resistance
phenotype (f).

‘intrinsic component of the plasma membrane’ and ‘regulation of organ morphogenesis” were enriched
with genes showing higher expression in corals with faster annual calcification rates.

Seventeen DEGs were significantly associated with the rate of new polyp generation in the year
following TagSeq library preparation (electronic supplementary material, Data S1). Some of the top
DEGs associated with polyp generation include transcripts encoding a heat shock protein chaperone
sacsin (Mcavernosa09333, Wald stat=4.0, FDR =0.03, E-value =0.0) and major facilitator superfamily
domain-containing protein 12 (Mcavernosal6593, Wald stat=—4.3, FDR =0.018, E-value=>5 x 107%).
The fermitin family homologue 2 transcript that was associated with increased calcification rate
was significantly downregulated in corals that generated more new polyps (Wald stat=—4.8, FDR =
3.6 x 107°) (figure 5; electronic supplementary material, Data S1). GO enrichment tests yielded 20 BP,
12 CC and 10 MF significantly enriched (adjusted p<0.05) with genes associated with polyp
generation (electronic supplementary material, figure S5B). Among these terms, ‘nuclear speck’ and
‘mRNA processing’ were enriched with genes showing higher expression in corals that generated
more polyps over the subsequent year.

3.5. Algal symbiont gene expression

TagSeq yielded an average of 9510 Cladocopium (algal symbiont) counts per sample after filtering lowly
expressed genes (base mean<3). No symbiont genes were significantly associated with sampling
location, host calcification rate or host polyp generation (FDR=0.05). One unannotated gene was
significantly associated with host resistance to bacterial challenge (Wald stat=4.6, FDR =0.003). GO
enrichment analyses did not yield any significantly enriched categories for the symbiont genes.

4. Discussion

4.1. No trade-offs between resistance and coral growth

Variation in disease resistance can be explained by differential investment in immunity parameters [19]
that compete for energetic resources with other life-history traits such as growth and reproduction [51].
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Figure 4. BP, MF and (C enriched by adjusted p-value generated by testing for association with resistance phenotype. The text
colour indicates the direction of differential expression between resistant and susceptible genets (red, upregulated in resistant corals;
blue, upregulated in susceptible corals). The text size indicates the significance of the term as indicated by the inset key. The fraction
preceding the term indicates the number of genes within the term that had an adjusted p-value less than 0.05. Trees indicate gene
sharing among GO categories (categories with no branch length between them are subsets of each other).

Here, we found no association between long-term growth (polyp generation or buoyant weight increase)
and disease resistance (figure 3cf). This result complements previous findings that growth rates in
another reef-builder, Acropora millepora, were not associated with trade-offs in other health parameters,
including survival under Vibrio challenge [12]. We also found that surviving corals demonstrated
similar long-term growth rates regardless of whether they received sterile media or Vibrio culture
during the experimental period (figures 3 and 5b,e). These results suggest that long-term growth rates
can remain stable after a disease event if a coral can survive and recover from an outbreak. However,
back-to-back bleaching events [52] and multi-year infectious disease outbreaks [3] limit the amount of
time a coral can recover before the next life-threatening challenge. Furthermore, our long-term growth
data summarize growth over an entire year, so we cannot detect any sharp variation in growth rate
that may have occurred immediately following the disease challenge. Future studies could investigate
the immediate effects of bacterial challenge on coral growth with more frequent measurements.

Our experimental design included bacterial challenges with two Vibrio species and a temperature
increase in an effort to create an increasingly stressful environment that could reveal differences in
susceptibility among the coral genets. However, our results demonstrate that our coral genets were
only susceptible to the successive challenge at increased temperature. A recent study [53] was able to
induce mortality in fragments of apparently healthy M. cavernosa from the disease-affected Florida
Reef Tract within a 21-day time period, which is consistent with the timing of lesion onset in this
study (10-22 days after initial infection; mean +s.d.=18.6 +3.3 days). Future studies may consider
including multiple populations of corals with suspected variance in disease susceptibility to better
discern patterns of expression related to bacterial resistance. These studies may also take care to
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Figure 5. Gene expression associated with (a) annual calcification rate (FDR < 0.01) and (b) annual polyp generation (FDR < 0.05).
Heatmap rows are genes, and columns are samples. Samples are ordered by calcification rate, as indicated by the bar heights. The
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monitor lesion progression rates, in addition to lesion onset and ‘time-of-death’, in order to provide more
precise metrics of disease risk.

4.2. Genomic associations with disease resistance

One objective of the TagSeq experiment was to associate predictive gene expression with subsequent
exposure outcome. We did not attempt to find differences in gene expression responses between
individuals, and, in this case, we would be unable to do so given the level of mortality we observed.
The remaining tissue from the susceptible individuals at 50% lesion progression was also beginning to
slough. Still, identifying differences in gene expression responses between susceptible and resistant
individuals is critical to understanding molecular mechanisms underlying disease tolerance. Future
studies attempting to fill that knowledge gap will need to carefully consider when to sample for
expression. For example, recent work investigating responses to thermal stress in corals and symbiotic
anemones has shown that symbiosis breaks down well before bleaching becomes apparent [54,55].
Furthermore, future studies should note that our ability to detect predictive gene expression
associated with a subsequent bacterial challenge outcome was limited by our sample size (1=26
genets in the gene expression analysis). Collection limits for threatened species and experimental
constraints, such as isolated aquaria needed to prevent coral-to-coral disease transmission, restrict the
number of genets that can be included in similar experiments. We recommend careful consideration of
the sample size necessary to detect the signature of interest given the large variation in constitutive
gene expression among individuals.

Our study to identify predictive gene expression associations with disease outcome revealed subtle
differences in pre-exposure transcriptomic states between corals that subsequently demonstrated
resistance or susceptibility to Vibrio challenge. Only one transcript, which shares extensive homology
with a lymphocyte antigen-6 (Ly6) gene, passed the genome-wide significance threshold of FDR =
0.05; it was upregulated in resistant corals prior to bacterial challenge (electronic supplementary
material, Data S1). Genes belonging to the Ly6 family play various roles across metazoans, such as
epithelial barrier formation in Drosophila [56] and neutrophil migration in mammals [57]. In mouse
epithelial cells, the expression of a Ly6 protein (Lypd8) promotes gut homeostasis and prevents
pathogen attachment [58]. Given that many coral diseases are associated with the loss of tissue
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structure and bacterial infiltration [59], future studies should explore the potential role of this gene family
in promoting coral tissue integrity upon bacterial challenge.

Mitotic activity including spindle formation and cell cycle phase regulation were enriched among
upregulated genes in resistant individuals (figure 4), possibly indicating an abundance of a specific
population of proliferative cells or higher cell division rates in resistant individuals, though our bulk
transcriptomic data cannot discern between these hypotheses. Future investigations using single-cell
transcriptomics may reveal differences in activated cell populations between resistant and susceptible
genets. Alternatively, senescence may explain differences in cell growth rates [60]. Colony age can
explain differences in disease susceptibility, as has been reported in Acropora palmata affected with
white-pox disease [61]. All coral cells of a clonal genet have the same age since sexual recruitment
(i.e. chronological age), but soft tissues across the colony have probably experienced different numbers
of cell divisions (i.e. replicative age). Across colonies of the massive reef-builder Porites with an
average age of 41 years, the average polyp age was only 2-3 years [62]. Future investigations of the
impacts of ageing and age-related cell turnover rates [63] on disease susceptibility in corals could
evaluate markers of replicative age, such as telomere length or somatic mutation accumulation [64].

The small sample size of this study precludes investigation of the genomic architecture underlying
disease resistance, though in situ disease transmission experiments provide evidence for a genetic
basis to disease resistance in some species of reef-building corals [13,65]. A recent study that identified
dozens of genetic variants associated with resistance to Vibrio infection in a flatfish used phenotype
data from thousands of fishes and whole-genome resequencing for over 500 individuals [66].
Conducting experiments at this scale in threatened coral species presents considerable challenges,
though genomic predictors for thermal tolerance in corals have been possible through low-coverage
sequencing from minimally invasive tissue samples from hundreds of adult colonies in situ [22] and
genome-wide SNP analysis of coral larvae produced through sexual reproduction from experimentally
selected parent colonies [23]. Our estimates of Fsy between corals from the East and West FGB match
previous studies [67] and support models of high gene flow through larval dispersal in the region [15,68].

4.3. Predictive gene expression associated with long-term calcification

Transcripts homologous to HES, coadhesin and transmembrane protease serine 9 protein were more
highly expressed in corals with higher annual calcification rates (electronic supplementary material,
Data S1). HES regulates bone mass in mammals [69], but its role in coral biology is currently unclear.
Coadhesin and transmembrane protease serine 9 have been identified as part of the coral skeletal
proteome in Acropora millepora [70] and Stylophora pistillata [71], respectively. Given their demonstrated
role in coral calcification in previous studies and our predictive gene expression associations here,
these genes represent prime candidates for validation as potential predictive growth biomarkers.

5. Conclusion

We demonstrate intraspecific variation in pathogen resistance in a reef-building coral from an isolated
marine sanctuary with no documented instance of coral disease. Understanding the immediate and
long-term consequences of bacterial pathogen exposure is especially important given the potential
impact of this sanctuary as a larval source to restore disease-degraded Caribbean coral populations.
The presence of resistant genets and lack of trade-offs between resistance and growth under these
laboratory conditions provide hope that this coral population may be able to withstand some bacterial
challenge. However, ever-worsening ocean conditions threaten marine organisms with multiple
concurrent stressors. The health of coral reefs ultimately relies on global action to mitigate the effects
of climate change.
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