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Abstract 

At the end of 2019, the COVID-19 disease emerged in the city of Wuhan, China, and caused an 
outbreak of unusual viral pneumonia. Being highly transmissible, this novel coronavirus disease 

has spread fast all over the world. COVID-19 continues to challenge most developed countries in 

the search for an effective strategy to either prevent infection or to avoid the spreading of the 
disease. While several developed countries have managed to contain COVID-19, several countries 

in Latin America continue to report an increase in the daily number of infected people. Ecuador, 

particularly, became the epicenter of the COVID-19 outbreak in the region during March and April 
2020. In this context, the present study shows a simple mathematical approach to understand the 

effect of the COVID-19 outbreak in Ecuador (and some Latin American countries such as Brazil, 

Peru, and Colombia). The proposed method is based on the exponential model, discrete logistic 
equation, and differential logistic model using one-year data from March 1, 2020, to February 28, 

2021. This study presents the estimated growth rate coefficient (λ), the total number of cases (N), 

and the midpoint of maximum infection (t_0) as well as the variability of the λ coefficient as a 

function of total cases and time. The exponential model shows a high value of λ=0.185 which 

decreases to λ=0.014 and λ=0.056 according to the discrete and differential logistic models, 

respectively. An accurate value of the total number of cases of infected people was found by 
analyzing the number of daily cases as a function of the total of cases whose value (N~409 K) 

agrees with the data reported at the end of May 2021, validating the proposed approach. How to 

use the current mathematical approach for long-term prediction is also discussed here. Most 
importantly, the proposed method has two important characteristics: (i) the mathematical model is 

as simple as possible compared to other time-consuming approaches, and (ii) it can be used to 

study the effect of COVID-19 and predicts its consequences in other countries, allowing revenue 
new decisions against the COVID-19 disease. 
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1- Introduction 

In December 2019 [1], a cluster of cases associated with a new respiratory syndrome was reported in China and 

spread rapidly around the world [2]. This syndrome is called coronavirus disease 2019 (COVID-19) [3] caused by a 

novel coronavirus SARS-COV-2, according to the International Committee on Taxonomy of Viruses [4]. The COVID-
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19 disease was declared a global pandemic on March 11, 2020, by the World Health Organization (WHO) [5] with more 

than 170 M cases by the end of May 2021. Nowadays, the most affected five countries by the spread of COVID-19 are 

the US, India, Brazil, Russia, and France (see: https://www.worldometers.info/coronavirus/countries-where-coronavirus-

has-spread/). At this time, several countries of Latin America (e.g., Ecuador, Perú, Colombia) are also being harshly 

impacted by the current pandemic [6]. The unprecedented public health crisis created by the global spread of COVID-

19 presents an incomparable challenge all over Latin America [7].  

Particularly, in Ecuador, COVID-19 has affected not only the public health system and emergency response but has 

also had profound socio-economic, equity, and ethical consequences. During this time, inexperience in the process of 

collecting, reporting, and analyzing data from public institutions became more evident, such complicating the appropriate 

decision-making of Ecuador's public health system, which resulted in a slow operational capacity and a lack of a strategic 

preparedness plan to mitigate the spread of the infection and cope with the increasing number of cases and deaths. With 

an overwhelmed health system, due to the high number of infected patients and delayed proactive response, Ecuador 

became the epicenter of the COVID-19 pandemic in Latin America during March and April 2020. 

In this context, Alava et al. [8] indicated Ecuador’s response capacity plan to counteract and mitigate the pandemic 

effect was not adequate to contain the transmission of the virus, especially in Guayas, Pichincha, Manabí, Azuay, and 

Tungurahua provinces. Moreover, the insufficiency of biosafety equipment for the frontline health personnel, the 

deficient number of trained staff, the critical care beds scarcity, and the unavailability of a coordinated plan for early 

detection conducted to the collapse of the Ecuadorian public health system. Torres et al. [9] examined the number of 

confirmed COVID-19 cases in Ecuador, which may have been influenced by the low capacity of laboratories to perform 

tests, underestimating or overestimating the real Ecuadorian situation. The latter suggests that it is necessary to augment 

laboratory capabilities for improved decision-making and related health policies. The impact of the COVID-19 outbreak 

in Ecuador was measured using the estimates of excess mortality [9]. Although, the study was limited to March 17–

October 22, 2020; the results evidenced excess mortality in Ecuador during April 4, 2020. In general, Ecuador had a 

high mortality rate (882 pmp) by February 26, 2021. The country’s positivity rate (28% in 56,000 tests pmp) is higher 

than in other South American countries such as Uruguay (5.7% in 290,000 tests pmp), Chile (8.8% in 490,000 tests 

pmp), Colombia (19.6% in 223,000 tests pmp), and even more than the US (8% in 1 million tests pmp) [10,11]. The 

Ecuadorian government has implemented social distancing, case testing, and random quarantine to protect the population 

against COVID-19 [12]. Nevertheless, these directives appear to be unsuccessful ineffective in controlling the disease 

to date. Taking all this into account, and also the novel virus mutation [13], the case of Ecuador represents an important 

challenge to understand the effect of COVID-19.  

While the global urgency is to find a vaccine [14], the scientific community is using this crisis to identify the 

vulnerabilities by modeling reported data from the COVID-19 outbreak around the world to predict and prevent similar 

events. Then, precise estimations of the infection growth rate, turning point, duration of outbreaks, and total amount of 

COVID-19 cases, are common questions [15]. To address those questions, different mathematical approaches have been 

proposed, including models based on the simple logistic function [16], improved SIR and SEIR models [17], hierarchical 

polynomial regression models [18], statistical models including machine learning techniques [19], time-varying Markov 

process [20], Gaussian mixture model [21], among others. However, mentioned models should be used with caution, 

especially, if these models are used for long-term forecasting [22]. Recently, Pelinovsky et al. [23] reported a simple 

mathematical approach based on the logistic equation to study the COVID-19 outbreak in different countries (Austria, 

Switzerland, the Netherlands, Italy, Turkey and South Korea), considering the first months of the pandemic. In particular, 

the logistic model was considered appropriate for most countries, because it allowed to estimate the growth rate and the 

expected number of infected people. As well, Wang et al. [24] predicted the epidemic trends in COVID-19 using the 

epidemiological data before June 16, 2020 (for Brazil, Russia, India, Peru and Indonesia) employing the logistic model 

and machine learning time series prediction model. Abusam et al. [25] used the logistic model to describe the dynamics 

of COVID-19 pandemic in Kuwait based on the Verhulst and Richards approaches. Gao et al. [26] developed a 

mathematical model based on the logistic equation to provide a quantitative insight on the dynamics of age-specific case-

fatality rates. Aviv-Sharon et al. [27] provided a generalized logistic modeling to study the COVID-19 outbreak in Asia, 

demonstrating that the estimated parameters match the confirmed reports. From all these works it can be seen that the 

logistic model is an excellent option to explore the COVID-19 outbreak. 

To the best of our knowledge, a one-year data analysis of the COVID-19 outbreak in Ecuador using the logistic model 

has not been reported yet. In this work, such a missing study is presented. Being more specific, the discrete logistic 

equation and ordinary differential equation (ODE) logistic model are used to study the Ecuadorian case as well as some 

Latin American countries, such as Brazil, Peru, Colombia. The proposed method allows estimating the infection growth 

rate, turning point, and the maximum number of cases. As infections and deaths continue throughout the world, this 

model can be extended to other countries or locations to take immediate corrective strategies due to it can be calibrated 

by adding the daily data of infected people and total cases as well.  
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2- Research Methodology 

2-1- Data Collection and Analysis 

One-year data of COVID-19 outbreak in Ecuador, from March 1, 2020, to February 28, 2021, was taken (and 

compared) from: 

 Worldometer (https://www.worldometers.info/coronavirus/country/ecuador/);  

 Johns Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/region/ecuador); 

 Ministry of Public Health of Ecuador (https://www.salud.gob.ec/coronavirus-covid-19/).  

From these sources, we have extracted the following values: 

 The total number of coronavirus cases for given data; 

 Daily news reported cases. 

Some discrepancies were found between the given sources given, particularly, the first month of the pandemic. As 

mentioned, this can be attributed to the lack of qualified laboratories to carry out tests and large inexperience in collecting 

and reporting daily data. However, similar problems were also detected in the other Latin American countries studied 

here (Brazil, Peru, Colombia). For this reason, the present study uses a seven-point (7p) moving average (shown below), 

which means that it takes the last 7 days, adds them up, and divides them by 7. This smooth-out resulting curves by 

canceling out peaks and valleys in data collection. For instance, if certain days, the laboratories might not be able to 

report their cases, but the following day yes, we will notice a combination of cases from the previous days and the current 

day in a report and such creating a large peak in data. However, using the 14-point and 21-point moving averages, it was 

observed that the estimated values could be underestimated. The fitting and needed computations were carried out on 

Mathematica 12 (license provided by CEDIA: https://www.cedia.edu.ec/es/licencias-wolfram).  

All parameters considered in our models are: 

 The total number of infected people as a function of time; 

 The initial number of the infected people 𝑡 = 0 days; 

 The maximum number of infected people; 

 The point of maximum growth. 

2-2- Theoretical Approach  

We shall start with the following simple model. Exponential functions can be used to model population growth, 

interest rates, radioactive decay, and the amount of medicine in the bloodstream. Since our interest is to model the 

increasing number of infected people during the pandemic, the following equation is proposed: 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜆𝑒𝑥𝑝  𝑁(𝑡) (1) 

𝜆𝑒𝑥𝑝 is taken as the (positive) exponential growth rate of the epidemic (day-1) and 𝑁(𝑡) represents the total number of 

infected people which depends on time. Solving step-by-step Equation 1:  

∫
𝑑𝑁(𝑡)

𝑁(𝑡)
= ∫ 𝜆𝑒𝑥𝑝 𝑑𝑡 (2) 

ln 𝑁(𝑡) =  𝜆𝑒𝑥𝑝  𝑡 + 𝑐 (3) 

𝑁(𝑡) = 𝑒𝜆𝑒𝑥𝑝𝑡  𝑒𝑐 (4) 

One can finally get: 

𝑁(𝑡) = 𝑁0𝑒𝜆𝑒𝑥𝑝 𝑡 (5) 

where 𝑁0 is the initial number of the infected people and 𝑡 is the time since the first reported cases (day). Equation 5 can 

only be used at the early stage of the pandemic if the number of confirmed COVID-19 cases as a function of time is 

described by a clear exponential equation [28], which is illustrated in Figure 1a. In addition, during this initial period, 

we don't observe the depletion of possible infection candidates. 

 

https://www.worldometers.info/coronavirus/country/ecuador/
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Figure 1. Illustration cases: a) the total number of cases as a function of time using the exponential model, b) the total number 

of cases as a function of time. The discrete logistic equations (red line) are compared to the solution of the ODE logistic model 

(dashed blue line), and c) the daily cases as a function of total cases. Parameters used: 𝑵𝒎𝒂𝒙 = 𝟏𝟎𝟎, 𝑵𝟎 = 𝟏, 𝝀𝒍𝒐𝒈 = 𝟎. 𝟐 (day-1), 

𝝀𝒆𝒙𝒑 = 𝟎. 𝟐 (day-1), 𝒕𝟎 = 𝟑𝟎 (day). 

In fact, this model can be applied as long as there are no changes in the curve. On the other hand, if restrictions are 

implemented to flatten the curve (such as social distancing, case testing, hand washing, and quarantine), the dataset must 

be fitted using the discrete logistic equation [29]: 

𝑁(𝑡) =
𝑁𝑚𝑎𝑥

1 + 𝑒−𝜆𝑙𝑜𝑔(𝑡−𝑡0)
 (6) 

Which also allows estimating the maximum number of infected people (𝑁𝑚𝑎𝑥), the logistic growth rate (𝜆𝑙𝑜𝑔, day-1), 

and the point of maximum growth (𝑡0). Logistic functions were first studied in the context of population growth, as early 

exponential models failed after a significant amount of time had passed. By adding the correcting factor  

−
𝜆𝑙𝑜𝑔𝑁(𝑡)2 

𝑁𝑚𝑎𝑥
 in Equation 1 and taking 𝜆𝑒𝑥𝑝 = 𝜆𝑙𝑜𝑔 , the resulting equation is:  

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜆𝑙𝑜𝑔  𝑁(𝑡) (1 −

𝑁(𝑡)

𝑁𝑚𝑎𝑥

) (7) 

Equation 7 is the logistic equation written in the form of ODE. 𝑁(𝑡) denotes the total number of confirmed cases as 

a function of time, and the respective solution is easily found as follow:  

𝑁(𝑡) =
𝑁0𝑁𝑚𝑎𝑥𝑒𝜆𝑙𝑜𝑔 𝑡

𝑁𝑚𝑎𝑥 + 𝑁0(𝑒𝜆𝑙𝑜𝑔 𝑡 − 1)
 (8) 

Note that Equation 6 and Equation 8 can be used to estimate the 𝜆𝑙𝑜𝑔 and 𝑁𝑚𝑎𝑥 parameters from the curve of the total 

case (Figure 1b), but the 𝑡0 parameter cannot be estimated from Equation 8.  
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Now, using the difference logistic equation as follow: 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑁𝑖+1 + 𝑁𝑖 = 𝐾(𝑡) (9) 

Where 𝐾(𝑡) is the daily reported cases, the following expression is found: 

𝐾(𝑡) = 𝜆𝑙𝑜𝑔  𝑁(𝑡) (1 −
𝑁(𝑡)

𝑁𝑚𝑎𝑥

) (10) 

Which shows a simple relation between 𝐾(𝑡) (daily cases) and 𝑁(𝑡) (total cases) (Figure 1c). Interestingly enough, 

Equation 10 can also be used to estimate the 𝜆𝑙𝑜𝑔 and 𝑁𝑚𝑎𝑥  parameters. Additionally, the logistic growth rate can be 

found from Equation 10, as follow: 

𝜆𝑙𝑜𝑔 =  
𝐾(𝑡)

𝑁(𝑡) (1 −
𝑁(𝑡)
𝑁𝑚𝑎𝑥

)
 

(11) 

In fact, Equation 11 can be used to study the growth rate variability as a function of total confirmed cases (𝑁(𝑡)) or time 

(𝑡). To simplify the notation, 𝜆𝑒𝑥𝑝 and 𝜆𝑙𝑜𝑔 have been taken as 𝜆 through the text, Figures, and Tables. 

 

Figure 2. Schematic representation of the research methodology 

Figure 2 shows the research methodology of the present work. In the exponential model, the data of the first 30 days 

were used, where an exponential increase in the number of infected people was observed. In the other models, the 

complete data set was analyzed with a seven-day moving average (359 data points). As observed, the exponential model 

gives access to the exponential growth rate at the beginning of the pandemic. On the other hand, the discrete logistic 

model helps correct the error of the exponential model for long periods, also allowing to estimate the logistic growth 

rate, the total number of infected people, and the inflection point of the curve. Most importantly, the differential logistic 

model can give a more complete picture of the COVID-19 pandemic because Equations 8 and 10 can be used to estimate 

the growth rate coefficient and the total number of infected people as a function of time or total cases, respectively. 

Finally, Equation 11 allows to study the growth rate coefficient variability, evidencing the random phenomenon of data 

as a consequence of the collecting/reporting data or social behavior.  

3- Results and Discussion 

Ecuador is a country in northwestern South America, bordered by Colombia on the north, Peru on the east and south, 

and the Pacific Ocean on the west. Ecuador also includes the Galápagos Islands. The largest cities are Quito and 

Guayaquil located in the provinces of Pichincha and Guayas, respectively. In terms of population density, Pichincha 

(333.08 people per km2) and Guayas (275.47 people per km2) have the highest number. The epicenter of the COVID-19 

pandemic in Latin America was the city of  Guayaquil according to The Brazilian Reports (see: https://brazilian.report 

/liveblog/coronavirus/2020/07/26/ecuador-coronavirus-epicenter-moves-from-guayaquil-to-quito/). In particular, 

Guayaquil was the first city in Latin America to be completely devasted by the current pandemic due to several images 

of dead bodies lying on the streets of the Ecuadorian city shocked the world in March and April 2020. 
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Figure 3. Ecuador population density map 

The spread of COVID-19 in Ecuador is shown in Figure 4. Reported data are shown in the black color and 7-day 

moving average data in the red color. As mentioned earlier, the 7-day moving average dataset will be used throughout 

this work to avoid the peaks and valleys due to inadequate daily data collection and reporting. Although Ecuador had 

about two months to prepare for the pandemic, the health system and communication channels could not fulfill their 

purpose against the COVID-19 disease as observed in Figure 4a-4c and discussed below. 

 

Figure 4. Ecuador: a) the number of infected people per day, b) the total number of confirmed cases reported on 02/28/2021, 
and c) the forward differential method applied to the daily reported cases. China: d) the total number of confirmed cases 
reported on 12/31/2020. Data are represented in black and the 7-point average data in red. The inset in Figure 1d shows the 

fit of China data using the discrete logistic model.  
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Figure 4a shows the daily reported cases as a function of time within a 365-day window. As observed, the reported 

data are characterized by several intense peaks over the 1.5 × 103 daily cases. However, a deep valley is observed 

between days 180 and 190 (from August 27 to September 7, 2020), where zero new cases were reported. This strongly 

suggests the use of the 7-day moving average. Although the dispersion of the data points concerning the moving-average 

curve is noticeable, the trend of the data is maintained and the entire analysis can be continued with the 7-day moving-

average data. Taking this into account, the number of daily cases continues to increase after twelve months, confirming 

not an early saturation with current public health policies. 

Build on the same data, the total number of confirmed cases increases with time (Figure 3b). In particular, an extra 

interruption in the reported data can be observed from May 4 to May 8, 2020 (days 65-69), which is corrected by the 7-

day moving average approach. Most importantly, the COVID-19 data from Ecuador contrast, for instance, with those 

reported by China where saturation of total infected people was achieved in approximately two months (at the beginning 

of March 2020) [30,31]. The latter is confirmed in Figure 4d. Nevertheless, the spread of COVID-19 in Ecuador follows 

almost the same scenario in all Latin American countries [32-34], which means an exponential increase in the number 

of cases, and the pandemic has not yet reached its peak. To identify the different waves in Ecuador, Figure 4c displays 

the forward differential method applied to the daily reported cases. However, a clear first or second wave or more cannot 

be evidenced because the data maintain a constant trend between ±1.0 × 103, suggesting that the population continues 

to be infected without any control. The latter requires immediate intervention by state and local authorities in the 

adoption of restrictive regulations until the population has access to the vaccine. 

Since there is currently no global solution to the pandemic, modeling is an excellent option to explore the effect of 

COVID-19 and predict its consequences. This can be done by estimating the (exponential or logistic) growth rate, the 

point of maximum growth, and the maximum number of infected people. In this context, Figure 5 shows the curve of 

the total case compared to different models: the exponential model (Figure 5a), the discrete logistic equation (Figure 

5b), and the solution of the ODE logistic model (Figure 5c). The estimated value of the constants and corresponding 

statistical parameters (standard error and R2) are reported in Table 1. 

 

Figure 5. The total number of cases as a function of time fitted with different models: a) exponential model (Equation 5), b) 

discrete logistic equation (Equation 8), and c) solved ODE logistic equation (Equation 10). Data and fit are represented in 
black and red, respectively. Pink lines represent the confidence level (95%). 
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Table 1. Estimated parameters using the different models of the present work. The 𝝀 represents the estimated (exponential 
or logistic) growth rate, 𝑵𝒎𝒂𝒙 is the maximum number of infected people, and 𝒕𝟎 denotes the sigmoid midpoint. 

Exponential Model – Equation 5 

Parameter Estimated Standard Error R2 

𝜆 0.185 0.001 0.978 

Discrete Logistic Model - Equation 6 

𝜆 0.014 0.001 

0.997 𝑡0 225.563 2.231 

𝑁𝑚𝑎𝑥 294730 3597.460 

Solved ODE - Equation 8 

𝜆 0.056 0.001 
0.915 

𝑁𝑚𝑎𝑥 203776 2922.990 

 

As observed, the growth rate coefficient estimated from the exponential model (𝜆 =  0.185) is around 13.2 times 

and 3.3 times higher than those found by Equation 6 (𝜆 =  0.014) and Equation 8 (𝜆 =  0.056), respectively. The high 

growth rate of the exponential model is attributed to the fact that any control measure was applied at the beginning of 

the pandemic and health policies were not implemented on time. Such is the case that Ecuador suspected its first case 

of COVID-19 since February 14, 2020, but a partial quarantine was only imposed on March 17, 2020. Thus, on April 2, 

2020 (two weeks after the official arrival of the pandemic in Latin America), the BBC showed that Ecuador ranked 

second in number of infected people and deaths per capital after Brazil (see: https://www.bbc.com/mundo/noticias-

america-latina-52036460). On April 23, 2020, The New York Times reported that the total number of deaths was fifteen 

times more than those reported by the government, being the city of Guayaquil the most affected (see: 

https://www.nytimes.com/2020/04/23/world/americas/ecuador-deaths-coronavirus.html). 

Figure 5a shows a clear exponential growth in the first 30 days with few points above or below the exponential fit 

(red line) and confidence interval (pink lines). Within the 30-days window, the total number of infected people was  
𝑁𝑚𝑎𝑥 = 2240 as of March 31, 2020. Most of the cases were reported in the province of Guayas (𝑁𝑚𝑎𝑥 = 1615). On 

the other hand, the discrete logistic model shows an excellent agreement between the reported data and the fitting curve 

(Figure 5b). Comparing the midpoint values of Ecuador (𝑡0~226) and China (𝑡0~19, Figure 3d inset), it is observed 

that the flattening of the infection curve in Ecuador began on October 12, 2020, more than seven months after the arrival 

of the pandemic. Furthermore, this value is 12 times higher than that reported by China where the numerical result 

suggests that the pandemic was controlled the first month. Most importantly, Figure 5c shows a discrepancy between 

the reported data and the fitting curve, suggesting that Equation 8 (the solution of the ODE differential logistic model) 

should be used with caution for long-term forecasting. In particular, the total number of infected people (𝑁𝑚𝑎𝑥 =
203776) could be underestimated. The latter fails with almost 100000 cases of infected people compared to what is 

estimated by the discrete logistic model (𝑁𝑚𝑎𝑥 = 294730). Beyond this, the approximation of the available data, 

reported in Table 1, is good enough (𝑅2 > 0.8) [23], suggesting the approach proposed is sustainable for the Ecuador 

case, considering a complete data set of one year or more. 

Now we focus on the estimated growth rate coefficient to qualitatively scrutinize Ecuador's policies against the 

COVID-19 disease. As public health strategies were implemented, for example, mitigation (social distancing, case 

testing, and symptomatic case isolation) and suppression (case isolation, quarantine, treatment of COVID-19 patients, 

and viral testing), the rate growth rate coefficient decreases, which means a reduction in the number of infected people 

over the months. This result is shown in Figure 6 where the possible contact of infected people is also illustrated. When 

analyzing the exponential model (Figure 6a) versus Equations 6 (Figure 6b) and Equation 8 (Figure 6c), the growth rate 

coefficient decreases by ~92%  and ~70% , respectively. Nevertheless, the growth rate coefficient estimated by 

Equation 8 is four times higher than that estimated by Equation 6, confirming a chaotic/random behavior as a function 

of time [23] (discussed below). This growth rate variation is attributed to government health rules taken at random, the 

negligence of the population, and a weak healthcare system. To all these, we must add the political meetings in the 

second half of 2020 (see: https://www.bbc.com/news/world-latin-america-56674200). In fact, Ecuador is characterized 

by a multi-stage behavior where the first, second, or more waves overlap (Figure 3c). To support this idea, it is necessary 

to mention that Ecuador ended the quarantine on May 4, 2020, proposing social distancing as the only rule. After this 

date, many holidays and festivities were celebrated without any control from the government and without reinforcing 

the health sector until now. 

 

https://www.bbc.com/mundo/noticias-america-latina-52036460
https://www.bbc.com/mundo/noticias-america-latina-52036460
https://www.bbc.com/news/world-latin-america-56674200
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Figure 6. Matrix representation of the growth rate coefficient (𝝀) from (a) exponential model (for simplicity is taken 𝝀 ), (b) 
discrete logistic equation, and (c) solved ODE logistic model. Black markers represent the infected people affected by COVID-

19. 

Let us stress again, the maximum number of infected people can be estimated either Equation 6 (𝑁𝑚𝑎𝑥 = 294730) or 

Equation 8 (𝑁𝑚𝑎𝑥 = 203776) but the resulting values were exceeded on March 9, 2021 (𝑁𝑚𝑎𝑥 = 295114) and December 

17, 2020 (𝑁𝑚𝑎𝑥 = 204249), respectively. These results evidence that the discrete logistic model and the solution of the 

ODE logistic model cannot be used to properly predict the total number of cases when a sigmoidal trend is not observed, 

such as that reported in Figure 4d inset. With this in mind, a more accurate value of the maximum number of infected 

people can be predicted by means of Equation 10. This equation shows a simple relationship between daily reported 

cases (𝐾) and total cases (𝑁) but allows calculating the growth rate coefficient and the maximum number of cases with 

current state policies. For comparative purposes, Equation 10 has also been applied to Brazil, Peru, and Colombia. These 

countries show the same behavior as Ecuador (Figure 4b). The estimated values and corresponding statistical parameters 

are reported in Table 2. In Figure 7, the parabolic approximation curves (red) show a reasonable agreement with the data 

reported for the different countries (𝑅2 > 0.80) [23], giving a 𝑁𝑚𝑎𝑥 = 409156  for Ecuador, 𝑁𝑚𝑎𝑥 = 1.606 × 107  for 

Brazil, 𝑁𝑚𝑎𝑥 = 1.579 × 106 for Peru, and 𝑁𝑚𝑎𝑥 = 2.827 × 106  for Colombia. The estimated 𝑁𝑚𝑎𝑥  value in Ecuador 

agrees with the data reported at the end of May 2021 (𝑁𝑚𝑎𝑥 = 426037) (see the following link for the real-time updated 

map on the Ecuador situation of cases of coronavirus: https://coronavirus.jhu.edu/region/ecuador). This suggests that 

the proposed logistic model may be useful and further calibrated if more data from daily cases are added. 
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Figure 7. The daily cases as a function of the total confirmed cases. The black markers show the data and the red curve is the 

regression according to Equation 10. Pink lines represent the confidence level (95%). For comparison, it is analyzed different 
countries: a) Ecuador, b) Brazil, c) Peru, and d) Colombia. 

Table 2. Estimated parameters using Equation 10 applied to different countries: Ecuador, Brazil, Peru, and Colombia. 

Equation 10 

Parameter Estimated Standard Error R2 

Ecuador 

𝜆 0.011 0.001 
0.902 

𝑁𝑚𝑎𝑥 409156 2922.990 

Brazil 

𝜆 0.011 0.001 
0.856 

𝑁𝑚𝑎𝑥 1.606 × 107 1.139 × 106 

Peru 

𝜆 0.013 0.001 
0.905 

𝑁𝑚𝑎𝑥 1.579 × 106 90730.921 

Colombia 

𝜆 0.016 0.001 
0.897 

𝑁𝑚𝑎𝑥 2.827 × 106 61098.893 
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Interestingly enough, the growth rate estimated by Equation 10 for Ecuador (𝜆 = 0.011 day-1) shows a decrease of 

~94% compared to that found in the exponential model (𝜆 = 0.185 day-1). This result agrees with that reported by the 

discrete logistic model (𝜆 = 0.014 day-1). Furthermore, this result is similar to that found in Brazil (𝜆 = 0.011 day-1) 

but slightly lower than that reported in Peru (𝜆 = 0.013 day-1) and Colombia (𝜆 = 0.016 day-1), confirming the same 

scenario of the Ecuadorian case as well as that the government policies and the social behavior adopted could be very 

similar in these countries. As observed in the different countries, the scatter of data points concerning the parabolic 

curve and the confidence interval is not small, indicating that it is necessary to consider the variability of the growth rate 

coefficient as a time function, mainly, if new daily cases are reported. The coefficient variability can be determined from 

Equation 11, expressed as a function of total cases (Figure 8) or time (Figure 9). We focus on the Ecuadorian case, which 

is the main goal of the present work. However, similar results were found in the other countries considered here.  
 

 

Figure 8. a), c) the growth rate coefficient as a function of the total confirmed cases computed using Equation 11 and 
considering the data in a one-year window for Ecuador. b), d) the associated histograms.  

Figure 8 shows the variability of the coefficient 𝜆. Figure 8a shows that the growth rate coefficient obtained the 

highest values in the first 10×103 total confirmed cases (0.2 < 𝜆 < 0.08). After 20×103 and 30×103 total confirmed 

cases, the value of the coefficient 𝜆 decreases to ~0.05 and ~0.01, respectively. The variability of the coefficient 𝜆 is 

confirmed in Figure 8c, from 40×103 to 300×103 total cases with 0.02 < 𝜆 < 0.005. A close picture shows three broad 

peaks as the number of total cases increase. The first peak between 80 ×103 and 160 ×103, the second peak between 

170 ×103 and 280 ×103, and the third peak from 290 ×103. These peaks are related to a multi-stage COVID-19 

outbreak in Ecuador, and not necessarily to several waves. The maximum of the first and second peaks is found in the 

week of September 28 to October 4, 2020, and December 7 to 13, 2020. In particular, the second peak coincides with 

the beginning of the Christmas and New Year celebrations.  
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Figure 8b shows a skewed right, i.e., the distribution of the growth rate coefficient is asymmetric with a tail going 

off to the right. On the right side, there are few growth rates whose values are higher than the rest. Most of the growth 

rate coefficients are found below 0.02 day-1. The latter is corroborated in Figure 8d, where an almost symmetrical 

characteristic can be observed, and most of the growth rates coefficients are found between 0.007 and 0.017 days-1. The 
highest frequency value is found at a growth rate coefficient of 0.001 day-1. 

 

Figure 9. The growth rate coefficient of Equation 11 is represented as a surface-color plot vs 30-days and 12-months. (a) the 

growth rate in a one-year window and (b) the growth rate from May 1, 2020, to February 28, 2021. 

Finally, Figure 9 displays the growth rate coefficient (𝜆) as a function of time. As observed, March and April 2020 

were the most critical months in Ecuador, mainly, the maximum values of the coefficient 𝜆 are observed in the third 

week (Figure 9a). In the remaining months (from May 2020 to February 2021), a variability of the coefficient 𝜆 is also 

appreciated (Figure 9b) which can be attributed to the variable number of examined people per day or social behavior 

[35]. Nevertheless, its values are not as high as in the first months because the population adopted for personal care, 

such as face masks, sanitizers, social distancing, and limited intercity mobility. 

4- Conclusion 

Here, we have presented a simple mathematical approach based on the conventional exponential model, the discrete 

logistic equation, and the differential logistic model to scrutinize the COVID-19 outbreak in Ecuador. The proposed 

mathematical approach is partially extended to Brazil, Peru and Colombia. The estimated parameters were the growth 

rate (𝜆), the total number of cases (𝑁), and the midpoint of the maximum growth (𝑡0). Additionally, the variability of 

the growth rate coefficient was study as a function of the total cases or time. The one-year data from March 1, 2020, to 

February 28, 2021 were analyzed considering a seven-point moving average. The results evidenced that the growth rate 

decreased from 𝜆 = 0.185  day-1 (exponential model) to 𝜆 = 0.014  day-1 (discrete model) and 𝜆 = 0.056  day-1 

(differential model) over the months. While the lockdown declared on March 17, 2020, in Ecuador had a “relative” 

positive effect on reducing the growth rate values, the high number of infected people in the early days of the pandemic 

collapsed Ecuador's weak health service. The latter is corroborated by analyzing the growth rate variability as function 

of time where it is observed that the most critical months of the pandemic were March and April 2020. The total number 

of cases were estimated by discrete model (𝑁~295 K) and differential model (𝑁~204 K), showing that neither of them 

can be used for long-term forecasting, given that the first one fits well to one-year data and the second the total number 

of cases is underestimated. However, this problem can be solved by analyzing daily cases as a function of total cases. 

Thus, the predicted numerical value (𝑁~409 K) of the total number of infected people was found to be in good 

agreement with the real-time data reported at the end of May 2021. This simple mathematical approach can be calibrated 

by adding the daily data of infected people, and it can be used in other Latin American countries and localities to take 

immediate action against the COVID-19 disease.  
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