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ABSTRACT 

The trajectories of soccer ball penalty kicks that strike one of the goal-posts 
while rolling along the surface are simulated and analyzed using 
conservation of linear and angular momenta. The reflected trajectories 
upon collisions with the goalpost are calculated and used to determine 
whether double or triple bounces take place. The analysis is iterated for a 
range of initial launch speeds, angular velocities, and normal and tangential 
coefficients of restitution of the goalpost-ball collisions. It is observed that 
double bounces can take place for almost any combination of the above 
parameters if the soccer ball strikes the appropriate narrow sectors of the 
first goalpost. The corresponding parameter ranges and impact areas are 
considerably more restricted for generating triple bounces. The angular 
velocity and coefficients of restitution are found to significantly influence 
the occurrence of multiple bounces. 
 
Keywords Soccer ball dynamics, Penalty kicks, Double bounce, Triple 
bounce, Goalpost collision, Coefficient of restitution, Conservation of 
angular momentum 

 

INTRODUCTION 

When a penalty kick taken from the designated spot of a standard soccer pitch 

strikes one of the goalposts, it is significantly more probable for the ball to either enter 

the goal or bounce away from the goal, than to strike the other goalpost. The significantly 

less probable outcome of the ball rebounding off the goalpost and striking the other 

goalpost, i.e. a double bounce penalty, can be produced by appropriate combinations of 

ball speed, ball spin, impact location and impact surface friction. A geometric analysis of 

the double bounce penalty kick (Widenhorn, 2016) for a non-spinning soccer ball that 

undergoes ideal velocity reflection upon striking a goalpost demonstrates that the ball 

must strike a sliver of the goalpost of width 0.6 mm along the direction of the goal line to 

produce this occurrence, and the corresponding margin is 0.007 mm for a triple bounce 

penalty, where the ball hits the second goalpost and goes back to strike the first post. An 

analytic examination of the same non-spinning case shows analogy with the classic 

Alhazen's billiard problem (Elkin, 1965), which leads to a quartic equation of the 

coordinates of impact. 

The motivation for Widenhorn’s paper was the double bouncing penalty kick 

during the thrilling MLS match between Portland Timbers and Sporting Kansas City in 
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2015, which turned out to be a missed match-winner. While Widenhorn’s analysis 

calculates the allowed region of ball-goalpost impact for the penalty kick in concern, it 

disregards the rotation of the ball clearly visible on video (Youtube link: 

https://youtu.be/LeTDeRp_ZvI?t=375). By contrast, this paper incorporates more 

parameters that are encountered during an actual penalty kick and therefore presents an 

improved study.  

In this paper, we expand the above study to incorporate ball speed, ball spin and 

coefficients of restitution of the goalpost-ball collision to determine double and triple 

bounce conditions. Similar to the above study, it is assumed that the ball is constrained 

to travel only on a planar 2D surface and its weight can be ignored. At the same time, this 

assumption only allows the ball to spin around an axis that passes through the center of 

the ball perpendicular to the plane along which the ball travels. The wider span of 

variables introduced by these modifications is analyzed using computational techniques, 

which generate penalty kick trajectories at different combinations of these variables and 

identify successful double and triple bounces.  
 

METHOD 

The collision in our model is based on the conservation of angular momentum and 

the impulse provided by the frictional force during contact, as has been studied by Cross 

(Cross, 2005). The bounce of a spinning ball on a surface is described in terms of the 

tangential (𝑣𝑥) and normal (𝑣𝑦) components of the impact velocity (relative to the impact 

surface), the angular velocity 𝜔 and the normal (𝑒𝑦) and tangential (𝑒𝑥) coefficients of 

restitution (Cross, 2005; Brody, 1984). The two coefficients of restitution are defined as 

(Cross, 2002): 

𝑒𝑦 =
𝑣𝑦𝑓

𝑣𝑦𝑖

       (1) 

𝑒𝑥 = −
𝑣𝑥𝑓

−𝑅𝑏𝑎𝑙𝑙𝜔𝑓

𝑣𝑥𝑖
−𝑅𝑏𝑎𝑙𝑙𝜔𝑖

   (2) 

where 𝑣𝑥𝑖
 and 𝑣𝑦𝑖

 are respectively the tangential and normal components of the impact 

velocity and 𝑣𝑥𝑓
 and 𝑣𝑦𝑓

 are the corresponding components of the rebound velocity of the 

center-of-mass of the ball, 𝑅𝑏𝑎𝑙𝑙 is the radius of the ball, and 𝜔𝑖 and 𝜔𝑓 are angular 

velocities of the ball (around an axis that passes through its center and is normal to the 

plane spanned by 𝑣𝑥𝑖
 and 𝑣𝑦𝑖

) before and after impact respectively. The signs of the 

angular velocities are defined using the direction of rotation and the direction of 𝑣𝑥𝑖
: at 

the instant immediately prior to impact, if the point on the ball that is about to strike the 

surface has a velocity pointing in the direction opposite to 𝑣𝑥𝑖
, i.e. the ball possesses a 

"topspin", the angular velocity is considered positive; if the above velocity points in the 

same direction as 𝑣𝑥𝑖
, i.e. ball possesses a "backspin", the angular velocity is considered 

negative (see Appendix). It follows that the point on the ball that strikes the goalpost has 
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velocities of (𝑣𝑥𝑖
− 𝑅𝑏𝑎𝑙𝑙𝜔𝑖) and (𝑣𝑥𝑓

− 𝑅𝑏𝑎𝑙𝑙𝜔𝑓) immediately before and immediately after 

impact respectively. 

The coefficients 𝑒𝑥 and 𝑒𝑦 depend on the surface materials in contact, and 

determine the duration of contact between ball and surface (Cross, 2005). For angles of 

incidence below 45° of the surface normal, a bounce takes place at 0 <  𝑒𝑦 < 1 and −1 <

 𝑒𝑥 < 1 (Cross, 2005). A combination of 𝑒𝑦 = 1 and 𝑒𝑥 = −1 represents a perfectly 

frictionless collision which conserves both tangential and normal components of the 

impact velocity. Increasing values of 𝑒𝑥 indicate greater friction and “stickier" surfaces, 

where 𝑣𝑥𝑓
 has a greater dependence on angular velocities (Cross, 2005; Cross, 2002). The 

ball moment of inertia around an axis passing through its center is given by 𝐼 = 𝛼𝑀𝑅𝑏𝑎𝑙𝑙
2 , 

where 𝑀 is the mass of the soccer ball, 𝑅𝑏𝑎𝑙𝑙 = 0.11 m is the standard soccer ball radius 

(Laws of the Game, 2019-20) and 𝛼 =
2

3
 is the moment of inertia coefficient of a spherical 

shell assuming that the ball shell thickness is negligible. By accounting for conservation 

of angular momentum for the bounce in terms of the ball moment of inertia, we obtain 

(Cross, 2002): 

𝐼𝜔𝑖 + 𝑀𝑅𝑏𝑎𝑙𝑙𝑣𝑥𝑖
= 𝐼𝜔𝑓 + 𝑀𝑅𝑏𝑎𝑙𝑙𝑣𝑥𝑓

  (3) 

 

and 𝑣𝑥𝑓
, 𝑣𝑦𝑓

 and 𝜔𝑓 can be solved as (Cross, 2005): 

𝑣𝑦𝑓
= 𝑒𝑦𝑣𝑦𝑖

   (4) 

𝑣𝑥𝑓
= 𝑣𝑥𝑖

[
1−𝛼𝑒𝑥

1+𝛼
+

𝛼(1+𝑒𝑥)

1+𝛼
(

𝑅𝑏𝑎𝑙𝑙𝜔𝑖

𝑣𝑥𝑖

)]  (5) 

𝜔𝑓 = 𝜔𝑖 (
𝛼−𝑒𝑥

1+𝛼
) +  (

1+𝑒𝑥

1+𝛼
) (

𝑣𝑥𝑖

𝑅𝑏𝑎𝑙𝑙
)  (6) 

The above equations imply that coefficients 𝑒𝑥 and 𝑒𝑦 play a part in determining both the 

rebound speed and the angular speed after impact. In addition, the rebound velocity 

components 𝑣𝑥𝑓
 and 𝑣𝑦𝑓

 may change disproportionately after impact, which changes the 

angle of reflection compared to the angle of incidence. 

For our analysis, we simulate in Mathematica (Wolfram Mathematica, 2021) the 

impact of a soccer ball that is launched from the designated penalty spot directed towards 

a fixed goalpost. The ball skids along the ground, i.e. travels linearly at a constant speed 

𝑣1 and constant angular velocity 𝜔1, and strikes some part of the circular cross-section of 

the goalpost. It is assumed that only when the ball strikes a goalpost, its velocity and 

angular velocity are allowed to change. The impact velocity components 𝑣𝑥𝑖1
 and 𝑣𝑦𝑖1

 are 

derived from the impact speed 𝑣1 and incident angle 𝜃1 (Figure 1) of the ball on the 

goalpost. The equations above are used to calculate the rebound velocity components 

(𝑣𝑥𝑓1
, 𝑣𝑦𝑓1

) and the rebound angular velocity 𝜔2, and subsequently used to find the 

reflected trajectory of the rebounding ball to determine whether the ball strikes the other 

goalpost, i.e. performs a double bounce. If a double bounce takes place, the incident angle 
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𝜃2 and corresponding incident speed 𝑣2 and velocity components (𝑣𝑥𝑖2
, 𝑣𝑦𝑖2

) of the second 

bounce are calculated, and the resultant rebound trajectory, which has velocity 

components (𝑣𝑥𝑓2
, 𝑣𝑦𝑓2

) and angular velocity 𝜔3, is similarly calculated to determine 

whether a triple bounce occurs. 

 

Coordinate System 

In our 2D coordinate system, the ball is confined to travel along the ground, which 

is defined as the xy-plane, and the z-axis passing through the center of the ball represents 

the axis of rotation. We define the penalty spot as the origin (0,0) and the line joining the 

penalty spot to the center of the target goalpost as the +x-axis. It is also assumed that the 

second goalpost lies above the x-axis in the first quadrant. Standard dimensions of a 

soccer pitch and radii of goalpost and ball are used in this study (Laws of the Game, 2019-

20). Using the goalpost radius (𝑅𝑝𝑜𝑠𝑡 = 0.05 m), the separation between the goalposts 

(7.32 m) and the perpendicular distance from the inner edge of the goal line to the penalty 

spot (11 m), the coordinates of the target goalpost are calculated to be (𝑥𝑃1
, 𝑦𝑃1

) = (11.56 

m, 0 m) and the second goalpost to be (𝑥𝑃2
, 𝑦𝑃2

) = (9.18 m, 7.03 m). The x-axis and the 

goal line form an angle of Θ0 = 71.28° (Figure 1). 

 

 

Figure 1. View of setup from above, depicting the coordinate system used to analyze the first bounce and 

the coordinates of the penalty spot (0,0) m, the first post (11.56,0) m and the second post (9.18,7.03) m. 

The launch angle 𝜙1, the incident angle 𝜃1 and the rebound angle 𝜙2 of the first bounce are marked, along 

with the corresponding incident and reflected trajectories, the impact point (𝑥𝐵1
, 𝑦𝐵1

) and the angle Θ0 = 

71.28° between the goal line and the x-axis. The trajectories represent the center of the ball, and accordingly 

the impact point is shown on the circle with radius (𝑅𝑝𝑜𝑠𝑡 + 𝑅𝑏𝑎𝑙𝑙). 
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According to the sign convention for angular velocity described earlier, a clockwise 

rotation in this setup implies positive angular velocity of the ball and vice-versa, because 

the ball travels from the penalty spot and strikes the upper half of the target goalpost in 

Figure 1 (described in the next section). Therefore, a clockwise rotation results in a 

topspin whereas a counterclockwise rotation results in a backspin when the ball strikes 

the goalpost. For subsequent double or triple bounces, which involve greater variations 

in impact region and ball direction, the signs of the angular velocities will be revisited. 

 

First Bounce 

The simulated ball is launched towards the target goalpost with an initial speed 𝑣1 

and an initial angular velocity 𝜔1. The center of the ball is directed at a launching angle 

𝜙1 measured from the +x-axis, such that the outer surface of the ball collides with some 

part of the goalpost. The coordinates of the center of the ball at point of impact (𝑥𝐵1
, 𝑦𝐵1

) 

are calculated by equating the center of ball trajectory 

𝑦𝐵1
= (tan 𝜙1)𝑥𝐵1

   (7) 

with the goalpost circle centered at (𝑥𝑃1
, 𝑦𝑃1

) having a combined radius of the ball and 

goalpost 

(𝑥𝐵1
− 𝑥𝑃1

)
2

+ (𝑦𝐵1
− 𝑦𝑃1

)
2

= (𝑅𝑏𝑎𝑙𝑙 + 𝑅𝑝𝑜𝑠𝑡)
2
  (8) 

to obtain the following solutions for 𝑥𝐵1
 and 𝑦𝐵1

: 

𝑥𝐵1
=

𝑥𝑃1−√(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)
2

(1+tan2 𝜙1)−(𝑥𝑃1 tan 𝜙1)
2

1+tan2 𝜙1
  (9) 

𝑦𝐵1
= (tan 𝜙1)𝑥𝐵1

    (10) 

 

The slope of the goalpost at this point of contact is obtained from the derivative of the 

circle in Eq. (8) evaluated at (𝑥𝐵1
, 𝑦𝐵1

): 

𝑑𝑦

𝑑𝑥
=

𝑥𝑃1−𝑥𝐵1

√(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)
2

−(𝑥𝐵1−𝑥𝑃1)
2
   (11) 

The slope of the normal to the goalpost (Figure 1) at this point is therefore the negative 

reciprocal of the slope above: 

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 =  −
√(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)

2
−(𝑥𝐵1−𝑥𝑃1)

2

𝑥𝑃1−𝑥𝐵1

   (12) 
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The arctan of the above quantity gives the angle between the x-axis and the normal to the 

goalpost at the impact point (𝑥𝐵1
, 𝑦𝐵1

). Then the incident angle 𝜃1 on the goalpost is 

geometrically calculated (see Appendix): 

𝜃1 =  𝜙1 − arctan (−
√(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)

2
−(𝑥𝐵1−𝑥𝑃1)

2

𝑥𝑃1−𝑥𝐵1

)  (13) 

 

The impact velocity components are calculated by 𝑣𝑥𝑖1
= 𝑣1 cos (

𝜋

2
− 𝜃1) and 𝑣𝑦𝑖1

=

𝑣1 sin (
𝜋

2
− 𝜃1),  and the rebound velocity components 𝑣𝑥𝑓1

 and 𝑣𝑦𝑓1
 are obtained from Eq. 

(4) and Eq. (5). The rebound speed is calculated by 𝑣2 = √(𝑣𝑥𝑓1
)

2
+ (𝑣𝑦𝑓1

)
2
 and rebound 

angle 𝜙2, measured from the x-axis as shown in Figure 1, is given by (see Appendix): 

𝜙2 = arcsin (
𝑣𝑥𝑓1

𝑣2
) − arctan (−

√(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)
2

−(𝑥𝐵1−𝑥𝑃1)
2

𝑥𝑃1−𝑥𝐵1

)  (14) 

In the equations above, it is assumed that 𝜙1 is positive (i.e. measured counter-clockwise 

from +x-axis) and is less than 
𝜋

2
 (see trial criteria in next paragraph), which leads to a 

positive 𝜃1 and positive velocity components (𝑣𝑥𝑖1
, 𝑣𝑦𝑖1

). If the ball carries a topspin, i.e. 

𝜔1 > 0, then 𝜙2 must be positive and the ball travels upwards away from the x-axis upon 

rebound. If the ball carries a sufficiently large backspin, i.e. 𝜔1 < 0, it is possible to 

generate a negative 𝜙2, in which case the ball would travel downwards below the x-axis 

and hence not produce a double bounce. The rebound angular velocity 𝜔2 is calculated 

using Eq. (6). 

In this study, to simulate typical ball speeds and spins, the initial speed 𝑣1 is varied 

from 5 to 45 m/s in increments of 2.5 m/s, and the initial angular velocity 𝜔1 is varied 

from -45 rad/s to 45 rad/s in increments of 1 rad/s. The launching angle 𝜙1 is varied from 

0 to arctan(0.0135) in increments of arctan(0.0001) to locate impact points on the 

goalpost between the x-axis and the goal line. The coefficients of restitution of collision 

between ball and goalpost are varied in the ranges −1 < 𝑒𝑥 < 1 and 0.2 < 𝑒𝑦 < 1 in 

increments of 0.2. For every combination of parameters above, a simulation trial is 

performed to determine the trajectories of the ball before and after impact. The direction 

of the rebound trajectory, defined using 𝜙2, is used to determine whether a double bounce 

takes place for each trial, as described in the next section. 

Double Bounce 

 A double bounce is considered to occur if 𝜙2 is found to lie between the angles 

formed by the center of the ball at impact (𝑥𝐵1
, 𝑦𝐵1

) and the edges of the second goalpost 

6
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circle centered at (𝑥𝑃2
, 𝑦𝑃2

) with radius (𝑅𝑏𝑎𝑙𝑙 + 𝑅𝑝𝑜𝑠𝑡) (Figure 1), which ensures contact 

between the ball and the second goalpost: 

arctan [
𝑦𝑃2−𝑦𝐵1

|𝑥𝑃2−𝑥𝐵1|+(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)
] ≤  𝜙2 ≤ arctan [

𝑦𝑃2−𝑦𝐵1

|𝑥𝑃2−𝑥𝐵1|−(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)
] (15) 

The trials that generate 𝜙2's lying within the above range are filtered out and analyzed to 

determine the incident angle 𝜃2 and corresponding incident velocity components (𝑣𝑥𝑖2
, 

𝑣𝑦𝑖2
) of the second bounce. The rebound angular velocity 𝜔2 derived from the first 

goalpost impact is used as the initial angular velocity for the second bounce, with a 

possible sign change (discussed later). 

If the system consisting of the two goal posts is transformed to place the center of 

the first goal post at the origin (0, 0) m and to align the goal line with the x- axis, the same 

steps used to analyze the first bounce can be reused for the second bounce. In order to 

perform this transformation, the system is linearly translated by (𝑥𝑃1
, 𝑦𝑃1

) and then 

rotated clockwise through a rotation matrix 𝑅: 

𝑅 = [
cos(𝜋 − Θ0) sin(𝜋 − Θ0)

−sin(𝜋 − Θ0) cos(𝜋 − Θ0)
] = [

−cos(Θ0) sin(Θ0)

− sin(Θ0) −cos(Θ0)
] (16) 

where (𝜋 − Θ0) is the supplementary of the angle between the current x-axis and goal line 

(Θ0 = 71.28°). 

The coordinates (𝑥𝐵1
, 𝑦𝐵1

) are transformed to: 

[
𝑥𝐵1

𝑦𝐵1

] = 𝑅 [
𝑥𝐵1

− 𝑥𝑃1

𝑦𝐵1
− 𝑦𝑃1

]   (17) 

Similarly, the center of the second goal post is transformed to (𝑥𝑃2
, 𝑦𝑃2

)→ (7.42, 0) m on 

the x-axis (Figure 2). The rebound angle 𝜙2 is accordingly transformed by 𝜙2 → Θ0 − 𝜙2 

so that 𝜙2 represents the angle between the transformed x-axis, i.e. the goal line, and the 

trajectory of the rebounding ball from the first post. 

7
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Figure 2. View of transformed coordinate system used to analyze the second bounce. The first goal post is 

centered at (0,0) m and the second post at (7.42,0) m, while the first bounce impact point (𝑥𝐵1
, 𝑦𝐵1

) is 

transformed accordingly. The rebound angle 𝜙2 is now measured from the new x-axis to the first bounce 

reflected trajectory. The second bounce incident angle 𝜃2 and the second bounce rebound angle 𝜙3 are 

marked in the figure, along with the corresponding incident and reflected trajectories and impact point 

(𝑥𝐵2
, 𝑦𝐵2

) on the second post. 

 

Following from the previous section, the coordinates of the center of the ball at 

second post impact (𝑥𝐵2
, 𝑦𝐵2

) are calculated by equating the center of ball trajectory 𝑦𝐵2
=

𝑦𝐵1
+ (tan 𝜙2)(𝑥𝐵2

− 𝑥𝐵1
) with the second goalpost circle centered at (𝑥𝑃2

, 𝑦𝑃2
) having a 

combined radius of the ball and goalpost (𝑥𝐵2
− 𝑥𝑃2

)
2

+ (𝑦𝐵2
− 𝑦𝑃2

)
2

= (𝑅𝑏𝑎𝑙𝑙 + 𝑅𝑝𝑜𝑠𝑡)
2
: 

𝑥𝐵2
=

1

1+tan2 𝜙2
[𝑥𝑃2

+ tan 𝜙2 (𝑥𝐵1
tan 𝜙2 − 𝑦𝐵1

+ 𝑦𝑃2
)] −

 
1

1+tan2 𝜙2
[√(𝑅𝑏𝑎𝑙𝑙 + 𝑅𝑝𝑜𝑠𝑡)

2
(1 + tan2 𝜙2) − ((𝑥𝐵1

− 𝑥𝑃2
) tan 𝜙2 − 𝑦𝐵1

+ 𝑦𝑃2
)

2

] (18) 

𝑦𝐵2
= 𝑦𝐵1

+ (tan 𝜙2)(𝑥𝐵2
− 𝑥𝐵1

)   (19) 

When calculating the incident angle 𝜃2 on the second post, the slope of the normal 

at (𝑥𝐵2
, 𝑦𝐵2

) is positive if the impact occurs on the lower half of the goal post, i.e. if 𝑦𝐵2
<

0, and negative on the upper half, i.e. 𝑦𝐵2
> 0. Therefore, Eq. (13) is modified below to 

find 𝜃2: 

𝜃2 = 𝜙2 − 𝑠𝑖𝑔𝑛(𝑦𝐵2
) arctan (−

√(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)
2

−(𝑥𝐵2−𝑥𝑃2)
2

𝑥𝑃2−𝑥𝐵2

)             (20) 

For this second bounce, 𝜃2 must be negative if the impact occurs on the lower half 

of the goal post (since 𝜙2 must be negative for such impacts). If 𝜙2 is positive and the all 
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strikes the upper half of the goalpost while travelling upwards, then 𝜃2 must be positive. 

If the ball strikes the upper half of the goal post while travelling downwards at a negative 

𝜙2, then 𝜃2 can be positive or negative depending on impact location and the slope of the 

normal at that point (Figure 3). 

 

Figure 3. Various ball trajectories (solid lines) incident on the second goal post. If the incident angle 𝜃2 is 

traced from the normal to the incident trajectory in a counterclockwise direction, it is considered positive, 

and vice-versa. For an upward travelling trajectory (with 𝜙2 > 0), 𝜃2 must be positive. For a downward 

travelling trajectory (with 𝜙2 < 0), 𝜃2 can be positive, negative or zero depending on the slope of the normal: 

𝜃2 must be negative if the ball strikes the lower half of the goalpost. The normals at impact points are 

represented by dashed lines. 

The impact velocity components 𝑣𝑥𝑖2
= 𝑣2 cos (

𝜋

2
− 𝜃2) and 𝑣𝑥𝑖2

= 𝑣2 sin (
𝜋

2
−

𝜃2) are calculated using the absolute value of 𝜃2, and Eq. (4), Eq. (5) and Eq. (6) are used 

to calculate the corresponding rebound velocity components 𝑣𝑥𝑓2
 and 𝑣𝑦𝑓2

, as well as the 

rebound angular velocity 𝜔3 (using the same 𝑒𝑥 and 𝑒𝑦 as for the first bounce). The 

rebound speed is then obtained from 𝑣3 = √𝑣𝑥𝑓2

2 + 𝑣𝑦𝑓2

2  and the rebound angle 𝜙3, 

measured from the segment of goal line that lies between the goal posts (Figure 2), is 

calculated by modifying Eq. (14): 

𝜙3 = 𝑠𝑖𝑔𝑛(𝜃2) [arcsin (
𝑣𝑥𝑓2

𝑣3
)] − 𝑠𝑖𝑔𝑛(𝑦𝐵2

) [arctan (−
√(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)

2
−(𝑥𝐵2−𝑥𝑃2)

2

𝑥𝑃2−𝑥𝐵2

)]  (21) 

Similar to the determination of double bounces, this rebound angle 𝜙3 is compared 

with the first goal post coordinates and the combined ball and post radii to filter out trials 

that undergo triple bounces, as described in the next section. 
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Triple Bounce 

As with double bounces, a triple bounce occurs if 𝜙3 lies between the angles formed 

by the center of the ball at second impact (𝑥𝐵2
, 𝑦𝐵2

) and the edges of the first goalpost circle 

centered at (𝑥𝑃1
, 𝑦𝑃1

) = (0, 0) with radius (𝑅𝑏𝑎𝑙𝑙 + 𝑅𝑝𝑜𝑠𝑡) (Figure 2): 

arctan [
𝑦𝑃1−𝑦𝐵2−(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)

|𝑥𝑃1−𝑥𝐵2|
] ≤  𝜙3 ≤ arctan [

𝑦𝑃1−𝑦𝐵2+(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)

|𝑥𝑃1−𝑥𝐵2|
] (23) 

The trials that generate triple bounces are identified and, similar to the previous sections, 

the coordinates of the center of the ball at third bounce impacts (𝑥𝐵3
, 𝑦𝐵3

) are calculated 

by equating the center of ball trajectory with the first goalpost circle centered at (0, 0): 

𝑥𝐵3
=

1

1+tan2(−𝜙3)
[tan(−𝜙3) (𝑥𝐵2

tan(−𝜙3) − 𝑦𝐵2
)] −

 
1

1+tan2(−𝜙3)
[√(𝑅𝑏𝑎𝑙𝑙 + 𝑅𝑝𝑜𝑠𝑡)

2
(1 + tan2(−𝜙3)) − (𝑥𝐵2

tan(−𝜙3) − 𝑦𝐵2
)

2
 ]  (24) 

𝑦𝐵3
= 𝑦𝐵2

+ (tan(−𝜙3))(𝑥𝐵3
− 𝑥𝐵2

)   (25) 

where the tan of (−𝜙3) compensates for 𝜙3 being measured between the -x- axis and the 

ball trajectory (Figure (2)). The results for trials that undergo multiple bounces are 

analyzed in the following section. 

 

RESULTS AND DISCUSSIONS 

 

Double Bounce 

In order to facilitate visual representation of the initial speed 𝑣1, initial angular 

velocity 𝜔1 and launch angle 𝜙1 at various values of 𝑒𝑥 and 𝑒𝑦 studied, a color code 

designating first bounce impact locations is introduced (Figure (4)). Each 1° sector of the 

first goalpost impact surface is assigned a specific color that is employed in Figure (5) to 

designate the impact point of the first bounce. Figure (5) depicts all successful double 

bounce instances generated within the entire parameter space studied. Each column in 

Figure (5) represents a specific value of 𝑒𝑦 and consists of a stack of 𝑣1 vs 𝜔1 planes that 

corresponds to the full range of 𝑒𝑥 values analyzed. The color of a point on a plane 

designates the first bounce impact location that generates a successful double bounce for 

the particular set of parameters (𝑣1, 𝜔1, 𝑒𝑦, 𝑒𝑥) corresponding to that point. 

10

Georgia Journal of Science, Vol. 79 [2021], Art. 4

https://digitalcommons.gaacademy.org/gjs/vol79/iss2/4



 

Figure 4. Cross-section of the first goalpost showing the color codes of the first bounce impact surface, 

which is divided into 1° sectors from the goal line (0°) to the line joining the penalty spot to the goalpost (Θ0 

= 71.28°). Based on its point of impact on this cross-section, every bounce is assigned a color which is then 

employed in Figure (5) and Figure (9) to represent its first bounce impact location. 

 
 

Figure 5. Representation of all data points that produce successful double bounces categorized by 𝑒𝑦 

(columns), 𝑒𝑥 (rows), 𝑣1 (x-axis of planes) and 𝜔1 (y-axis of planes). Each successful double bounce instance 

is assigned a color corresponding to the scheme described in Figure (4) to designate its impact point on the 
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first goalpost during the first bounce (white dots indicate absence of double bounce instances). Altogether, 

the first bounce impact location and the 𝑣1, 𝜔1, 𝑒𝑦 and 𝑒𝑥 of every successful double bounce are captured in 

this figure. 

The bottom-left corner of Figure (5) shows that at the most negative 𝑒𝑥 = -1 and 

the smallest 𝑒𝑦 = 0.2, double bounces take place at first bounce impact location at ≈ 50° 

measured from the x-axis (i.e. colored green in Figure (4)) for all combinations of 𝑣1 and 

𝜔1. Owing to a small 𝑒𝑦, the vertical component of rebound velocity 𝑣𝑦𝑓1
 drops  

considerably. Owing to a large negative 𝑒𝑥, the 𝑣𝑥𝑓1
 does not deviate from 𝑣𝑥𝑖1

 with zero 

contribution from angular velocity 𝜔1, i.e. the goal post surface is frictionless and 

conserves 𝑣𝑥𝑖1
. Altogether, it leads to a larger reflection angle compared to the incident 

angle irrespective of 𝑣1 or 𝜔1, and the reflected trajectory from this impact point is 

directed towards the second goalpost to generate a double bounce. 

 At increasing values of 𝑒𝑥 up the same column, the homogeneity in color fades as 

we see blue spots appearing at large negative 𝜔1 values and small 𝑣1 values, implying that 

impacts at 30° to 45° (i.e. cyan to blue) locations at these combinations produce double 

bounces. The 𝑣𝑦𝑓1
 component still diminishes considerably but 𝜔1 contributes 

increasingly more to 𝑣𝑥𝑓1
. A negative 𝜔1 contributes to reduce 𝑣𝑥𝑓1

 and therefore to reduce 

the reflected angle, whereas a positive 𝜔1 does the opposite. Towards the top of the 

column, impact locations at angles of ≈5° (i.e. red) are seen to produce double bounces at 

large negative 𝜔1 values which sufficiently alter the reflected trajectory. At the very top 

plane, a spectrum from low to high angles is observed, blending from small angles (red, 

violet, blue) at negative 𝜔1 to large angles (cyan, green, yellow) at positive 𝜔1. Therefore, 

for increasing 𝑒𝑥's, an increasingly larger goalpost impact area is available to generate 

double bounces, but are associated with narrower permitted ranges of 𝑣1 and 𝜔1. The 

extreme angles (yellow and red) require small 𝑣1's within narrow ranges of extreme 𝜔1's 

for precise reflections, and therefore occupy less space on the 𝑣1 vs 𝜔1 plane. In addition, 

there are blank white spots at the corner of large negative 𝜔1 and small \𝑣1, indicating 

that these trials did not produce any successful double bounce, primarily because of the 

disproportionately large backspins deviating the reflected trajectories away from the goal 

line. 

 Moving to higher 𝑒𝑦 values at the columns on the right, we see increasingly bluer 

colors at the bottom plane (i.e. 𝑒𝑥 =-1) frictionless bounces, indicating that double 

bounces are generated by first bounce impacts closer to the goal line because of the larger 

𝑒𝑦 coefficients that contribute to reduce the reflected angle. Going up the columns, the 

pattern is the same as in the first column - gradual shift to cyan to blue to violet to red 

impact locations, along with increasing dependence on 𝜔1 and 𝑣1 as before. At the 

bottom-right corner of 𝑒𝑦 = 1 and 𝑒𝑥 = -1, i.e. a collision that conserves both tangential 

and normal velocity components after collision, reflection and incident angles are equal 

and double bounce occurs at a blue impact location of angle ≈35°. This impact location 

agrees with the calculation of Widenhorn (Widenhorn, 2006) for an ideal reflection of 

velocity. At the top-right corner of 𝑒𝑦 = 1 and 𝑒𝑥 = 1, i.e. a collision on a “sticky" surface 
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with large dependence on 𝜔1 that conserves normal velocity after collision, permitted 

impact locations move towards colors (violet and red) closer to the goal line, except at 

large positive 𝜔1's. As a general trend, the very top planes of all columns demonstrate 

competing contributions by 𝑒𝑦 and 𝜔1, where increasing 𝑒𝑦's restrict the range of reflected 

angles for all 𝜔1 and therefore tend to homogenize the plane colors. 

In total, less than 2% of all trials produced double bounces. The above analysis 

demonstrates that double bounces are generally constrained to thin slices of impact areas 

on the first goal post, except at large positive values of 𝑒𝑥, i.e. “sticky" surfaces, where 𝜔1 

plays a significant role in altering reflection angles. On such surfaces, a wider area of 

impact permits double bounces, but within constrained combinations of 𝑣1 and 𝜔1. 

For all successful double bounce trials, the distributions of impact locations for 

both the first and second bounces are illustrated in Figure (6). In agreement with Figure 

(5), the first bounce distributions are concentrated (indicated by dark shades) at angles 

in the vicinity of 30° (i.e. blue in Figure (4)). The histogram on the top-left showing the x-

coordinate distributions of impact locations accordingly shows a peak at about 0.04 m 

from the center of the first post. By contrast, the second bounce impacts are distributed 

widely over the left-half (i.e. the side facing the first post) of the second post. This half of 

the second post receives the various reflected trajectories off the first post that are 

scattered over a wide range owing to the various coefficients of restitutions (𝑒𝑥 and 𝑒𝑦) 

and angular velocities (𝜔1) involved, and subsequently produces the provided 

distribution. 
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Figure 6. Distribution of impact locations of successful double bounce instances on the first post (left 

column) and second post (right column). The top row shows distributions ordered by x-coordinates of 

impact points (defining x = 0 at center of each post). For both posts, the +x-axis points from the center of 

the first post to the center of the second post (see Figure (2)). The bottom row shows distributions ordered 

by angular positions of impact on each post (defining the goal line as 0°) represented by grayscale intensity, 

where black represents maximum frequency and white represents zero frequency of data points. 

The change in speeds and angular velocities for all successful double bounce trials 

before and after the first and second bounces are illustrated in Figure (7). 

The first column shows that among all trials analyzed, positive 𝜔1 (i.e. a top-spin) 

is more likely than a negative 𝜔1 (i.e. a back-spin) to produce a double bounce, while it is 

almost equally likely with any 𝑣1 (the last bar in the 𝑣1 histogram is smaller owing to 

sampling termination at 45 m/s). After the bounces, 𝜔2 and 𝜔3 assume decaying forms 

extending up to 400 rad/s and 300 rad/s respectively, owing to friction upon impact as 

dictated by 𝑒𝑥. The rebound speeds 𝑣2 and 𝑣3 also assume a decaying form corresponding 

to energy re-distribution by impact. 

 

 

Figure 7. Distributions of speeds (𝑣1, 𝑣2, 𝑣3) and angular velocities (𝜔1, 𝜔2, 𝜔3) for all successful double 

bounce instances. The left and middle columns refer to 𝑣1, 𝜔1 and 𝑣2, 𝜔2 before and after the first bounce 

respectively, whereas the right column represents 𝑣3 and 𝜔3 after the second bounce. The first column 

shows that double bounces are more favored by positive 𝜔1's than negatives, but all 𝑣1's are almost equally 

favored (the last bar in the 𝑣1 histogram is smaller owing to sampling termination at 45 m/s). Also, it is 

observed that both (linear) speed and angular velocities assume a decaying form after impact. 

As illustrated above in Figure (5), creating a double bounce from a penalty kick 

requires precise combinations of 𝑣1 and 𝜔1 at narrow angular sectors of impact. The 
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criteria for triple bounces are even stricter, leading to a much smaller fraction of 

successful triple bounce trials, as described in the next section. 

Triple Bounce 

 A sample successful triple bounce trajectory is shown in Figure (8). 

 

Figure 8. An example triple bounce trajectory drawn to scale showing the path of the ball from launch to 

third bounce. The first post is centered at the origin (0,0) m and the second post at (7.42,0) m. The dashed 

lines passing through these centers represent the normals at points of impact. The ball starts from the 

penalty spot above (not shown in figure) and strikes the first post (trajectory shown by thin, solid line), then 

follows the reflected trajectory after the first bounce from the first post to the lower part of the second post 

(dashed line) and finally is reflected back to the first post (thick, solid line) to complete the triple bounce. 

Using the same color scheme as used for the previous section in Figure (4) and 

Figure (5), the successful triple bounce trials are presented according to their 𝑣1, 𝜔1, 𝑒𝑥, 

𝑒𝑦 and impact locations for the first bounce in Figure (9).  
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Figure 9. Representation of all data points that produce successful triple bounces categorized by 𝑒𝑦 

(columns), 𝑒𝑥 (rows), 𝑣1 (x-axis of planes) and 𝜔1 (y-axis of planes). Each successful triple bounce instance 

is assigned a color corresponding to the scheme described in Figure (4) to designate its impact point on the 

first goalpost during the first bounce (white dots indicate absence of triple bounce instances). Altogether, 

the first bounce impact location and the 𝑣1, 𝜔1, 𝑒𝑦 and 𝑒𝑥 of every successful triple bounce are captured in 

this figure. 

Since successful triple bounces form a subset of successful double bounces, Figure 

(9) consists of filtered data points from Figure (5). A tiny fraction of successful triple 

bounce trials appears at 𝑒𝑦 = 0.2, and the corresponding fractions progressively increase 

with 𝑒𝑦. At the same time, the impact locations gradually shift from higher angles (green) 

to lower angles (blue and violet). The highest concentration appears at 𝑒𝑦= 1 and 𝑒𝑥 = 0.8, 

and in general, higher concentrations of data points are observed between 𝑒𝑥 = -0.8 and 

𝑒𝑥 = 0.8, indicating that goalposts having a certain amount of “stickiness" favor triple 

bounces. 

The impact location distributions are shown in Figure (10). 

 

Figure 10. Distribution of impact locations of successful triple bounce instances for the first bounces (left 

column), the second bounces (middle column) and the third bounces (right column). The top row shows 

distributions ordered by x-coordinates of impact points (defining x = 0 at center of each post). For all posts, 

the +x-axis points from the center of the first post to the center of the second post (see Figure (2)). The 

bottom row shows distributions ordered by angular positions of impact points on each post (defining the 

goal line as 0°) represented by grayscale intensity, where black represents maximum frequency and white 

represents zero frequency. The first bounce distribution resembles the corresponding distribution for 

successful double bounces in Figure (6). In contrast, the second bounce distribution shows that triple 
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bounces are generated overwhelmingly by impacts below the y-axis, with a preference closer to the goal line 

at y = 0 (i.e. 180°). The third bounces are more uniformly distributed over the right-half of the first post 

that faces the second post. 

 Figure (10) shows that for successful triple bounces, the first bounce distribution 

mimics that of successful double bounces, with a peak at the same sector at approximately 

30°. The second bounce distribution shows concentration at about 180°, i.e. the sector of 

the second post located on the goal line facing the first post. Also, no triple bounce is 

produced by any second bounce that occurs significantly above the goal line (i.e. 180°). 

The remaining triple bounces occur at impact locations below the y-axis, i.e. inside the 

goal. The third bounces are distributed over almost the entire right-half of the first post 

that faces the second post.  

The second bounces that occur below the y-axis must carry large negative 𝜔2's that 

change the rebound trajectory back towards the first post. Figure (11) shows the 

distribution of 𝜔2 over second bounce impact locations, as well as the reflection angle 𝜙3 

after the second bounce. 
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Figure 11. Scatter plots of 𝜔2 (top), _3 (middle) and y-coordinate of third bounce impact (bottom) as a 

function of the x-coordinate of second bounce impact for successful triple bounces, where x = 0 is defined 

at the center of the second post and the +x-axis points from the center of the first to the second post. For 

impacts closer to x = 0, the top diagram shows that larger 𝜔2, i.e. larger backspins, are required to rebound 

the ball back towards the first post, and the middle diagram shows that larger positive 𝜙3's are required to 

travel back to the first post since impacts take place below the y-axis (see Figure (10)). The bottom diagram 

shows that reflections from the second bounce scatter uniformly along the first post during third bounces. 
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As expected, for successful triple bounce trials where the second bounce occurs 

below the y-axis, i.e. x-coordinate closer to 0, 𝜔2 is seen to assume large values. Although 

positive values of 𝜔2 are plotted, the resulting collision with the second goalpost below 

the y-axis effectively produces a negative 𝜔2, i.e. a backspin (see Figure (3) and Eq. (21)). 

Similarly, the larger positive 𝜙3 are observed for the same trials as above, indicating that 

the reflected trajectories travel upwards towards the positive y-axis, i.e. on the same side 

of the normal as the incident trajectory, as a result of the backspins. The plot of second 

bounce x-coordinates and third bounce y-coordinates at the bottom of Figure (11) shows 

that there is no significant correlation between the impact points of second and third 

bounces, as illustrated by the relatively uniform scattering of data points above (𝑦𝐵3
≥ 0) 

and below (𝑦𝐵3
≥ 0) the goal line (y = 0) at any x-coordinate of impact, in agreement with 

the third bounce distributions depicted in Figure (10). 

As with Figure (7), the change in speeds and angular speeds before and after the 

first and second bounces are illustrated in Figure (12) for all successful triple bounce 

trials. Apart from a greater emphasis on positive 𝜔1's over negative 𝜔1's, the observed 

distributions closely resemble Figure (7), and indicate that successful triple bounces form 

an uniform subset of double bounces with respect to speeds and angular velocities. 

 

Figure 12. Distributions of speeds (𝑣1, 𝑣2, 𝑣3) and angular velocities (𝜔1, 𝜔2, 𝜔3) for all successful triple 

bounce instances. The left and middle columns refer to 𝑣1, 𝜔1 and 𝑣2, 𝜔2 before and after the first bounce 

respectively, whereas the right column represents 𝑣3 and 𝜔3 after the second bounce. The first column 

shows that triple bounces are more favored by positive 𝜔1's and slightly more favored by small 𝑣1's. Also, it 

is observed that both (linear) speed and angular velocities assume a decaying form after impact. 
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Before we conclude this section, it ought to be pointed out that triple bounces 

under specified conditions require impacts at very narrow slices of the first goal post 

during their first bounces. In this study, while fine angular spacing has been employed, it 

is possible that some of these triple bounces have been missed owing to inadequate 

resolution. 

 

CONCLUSION 

By simulating soccer balls travelling on a plane with specified linear and angular 

velocities from the penalty spot to one of the goalposts, and calculating rebound 

trajectories for one or more collisions with both goalposts, we generated a large dataset 

spanning several variables (𝑣1, 𝜔1, 𝜙1, 𝑒𝑥, 𝑒𝑦) and used it to identify instances of double 

and triple bounces. 

The results show that for any specified set of variables, double and triple bounces 

occur from penalty kicks that strike specific narrow slices (<2°) of the first goalpost, 

corresponding to rarity of such events in real life. In the case of “sticky" goalpost surfaces 

characterized by large 𝑒𝑥 values that reduce the reflection angle, there is greater 

dependence on ball speed and spin, and the slices of the first goalpost that can facilitate 

multiple bounces tend to become wider. For surfaces characterized by large 𝑒𝑦 values that 

conserve normal velocity component, these goalpost slices tend to shift closer to the goal 

line. Since triple bounces form a subset of double bounces, they require narrower impact 

slices during the first bounce, and are found to be increasingly favored by larger 𝑒𝑦 values 

and by 𝑒𝑥 values in the range of −0.8 ≤ 𝑒𝑥 ≤ 0.8. 

Among all trials, double and triple bounces are found to be more favored by 

positive 𝜔1's and at angular impact locations of about 30° on the first bounce. A triple 

bounce can only be generated if the second bounce impact occurs below the y-axis or at 

the goal line. Subsequently, triple bounces are overwhelmingly more favored by positive 

𝜔2's that generate back-spins upon impact below the y-axis. Altogether, less than 2% of 

all trials produced double bounces, and less than 1% of successful double bounce trials 

produced triple bounces. 

Although actual parameters 𝑒𝑦 and 𝑒𝑥 for a real-life goalpost and soccer ball are 

not available (estimated guess by Dr. Cross via private communication: 𝑒𝑦 = 0.7 and 𝑒𝑥 =

0.2), this paper covers a wide range of possible combinations that produce noticeably 

different results regarding double and triple bounces. Upon making experimental 

measurements of 𝑒𝑦 and 𝑒𝑥, comparison with the appropriate subspaces of the simulated 

data can yield insight to double and triple bounce behavior of a real system. 

In the double bounce penalty kick that occurred in the 2015 MLS match referred 

in the introduction, it is observed in the video that the ball struck the first post with a 

topspin at about the 45° sector or higher. In addition, the ball strikes this first post ≈ 1 ft 

above the ground. The rebounding ball bounces on the ground before striking the second 

post at a large angle (> 45°) measured from the goal line (as defined in Fig. (4)) and finally 

travels away from the goal. According to Figure (5), it would require 𝑒𝑦 to be 

unrealistically small (𝑒𝑦 ≈0.2) for a double bounce to occur at this first post impact 
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location. However, the path of the ball from one post to the other is not linear and is 

slightly (≈ 1 cm) longer than assumed in this simulation. Furthermore, upon bouncing 

on the ground, the rebounding ball could have deviated slightly towards the second post. 

These slight deviations can possibly account for the discrepancy between simulation and 

observation results. 
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APPENDIX 

 

Angular Velocity Sign Convention 

 The sign of the angular velocity 𝜔 is based on the concepts of topspin and backspin 

when a rotating ball strikes a surface. If the axis of rotation of the ball is normal to the 

plane defined by 𝑣𝑥 and 𝑣𝑦, then the sign of 𝜔 is determined by the direction of 𝑣𝑥 and the 

direction of motion of the point on the ball that strikes the surface. At the instant before 

impact, if the direction of this point is opposite to 𝑣𝑥, the ball is said to possess topspin 

and 𝜔 is considered to be positive. If the direction of this point is the same as 𝑣𝑥, the ball 

is said to possess backspin and 𝜔 is considered to be negative (Figure (13)). 
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Figure 13. Top Row: Back spin for a ball rotating counterclockwise (left) and clockwise (right). The red 

arrow shows the velocity of the point on the ball that is about to strike the surface. This velocity points in 

the same direction as 𝑣𝑥 in both cases. Bottom Row: Top spin for a ball rotating clockwise (left) and 

counterclockwise (right). The red arrow shows the velocity of the point on the ball that is about to strike the 

surface. This velocity points opposite to 𝑣𝑥 in both cases. 

Deriving 𝜽𝟏 and 𝝓𝟐 

 For the goalpost centered at (𝑥𝑃1
, 𝑦𝑃1

), the normal to the point (𝑥𝐵1
, 𝑦𝐵1

) where the 

ball strikes the post makes an angle of 𝜃𝑁 with the x-axis (see Figure (14)): 

𝜃𝑁 = arctan (−
√(𝑅𝑏𝑎𝑙𝑙+𝑅𝑝𝑜𝑠𝑡)

2
−(𝑥𝐵1−𝑥𝑃1)

2

𝑥𝑃1−𝑥𝐵1

)   (26) 

within the range −90° < 𝜃𝑁 ≤ 90°. Also, the angle 𝜃𝑥 between the first bounce reflected 

trajectory and the normal is calculated by: 

𝜃𝑥 = arctan (
𝑣𝑥𝑓1

𝑣2
)    (27) 

where 𝑣2 is the rebound speed and 𝑣𝑥𝑓1
 is the tangential component of the rebound 

velocity. 

Representing these angles in Figure (14), it is observed that geometrically 𝜃1 =

𝜙1 − 𝜃𝑁 and 𝜙2 = 𝜃𝑥 − 𝜃𝑁, where a negative sign is placed before each 𝜃𝑁 to compensate 

for the negative angle generated by the negative slope. 
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Figure 14. Illustration of the angles 𝜙1, 𝜃1, 𝜙2, 𝜃𝑁 and 𝜃𝑥 for the first bounce. The two 𝜙1 angles are 

alternate angles and the two 𝜃𝑁 angles are corresponding angles. It is observed that 𝜃1 = 𝜙1 − 𝜃𝑁 and 𝜙2 =

𝜃𝑥 − 𝜃𝑁 (where the negative signs compensate for negative values of 𝜃𝑁). 
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