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Overview of the results

Two main objects of my research so far have been countable discrete groups and their

operator algebras (C*-algebras and von Neumann algebras). Discrete groups are often suc-

cesfully studied using geometric and ergodic-theoretic methods, the corresponding areas of

mathematics being called geometric resp. measured group theory. The worlds of groups,

dynamical systems and operator algebras are deeply interconnected: studying spectral prop-

erties of groups or the corresponding dynamical systems amounts to passing to corresponding

operator algebras, and often one can even pass back, understanding a discrete group or a

dynamical system by looking at the operator algebra only. In this way, one studies objects

through properties of their “relatives”.

My main research interest lies exactly in understanding and exploiting the mutual con-

nections between groups, groupoids and operator algebras. Amazingly, here one often profits

from techniques from other areas of pure mathematics, notably algebraic topology (in con-

nection to L2-Betti numbers), differential and metric geometry (negatively curved groups),

algebraic groups and Lie groups (which provide lattices as important examples of discrete

groups), representation theory or even homological algebra. Given that, it’s not surprising

that the majority of my research projects came up through discussions with colleagues from

neighbouring fields, and indeed this way of producing new results proved to be the most

fruitful and fulfilling for me. It is safe to say that in the past several years I’ve been gradually

learning several areas of mathematics (to name a few: (noncommutative) real algebraic ge-

ometry, coarse geometry, theory of semisimple algebraic groups over number fields and local

fields) through completing research projects which borrow techniques from these.

This thesis has a cumulative form: each chapter is a research article, and therefore has its

own abstract and bibliography. The majority of these publications have been peer-reviewed

and published in various journals. Two chapters correspond to submitted articles currently

under revision, and yet another two chapters correspond to articles in preparation; by the

time this thesis arrives at the referees, they hopefully will be available in more complete form

on the arXiv e-print archive.

What follows is a brief description of each chapter.

The first chapter contains the article [AK15] where together with David Kyed we inves-

tigated the version of first continuous L2-cohomology of von Neumann algebras suggested by

Andreas Thom as an interesting invariant potentially able to distinguish free group factors.
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8 OVERVIEW OF THE RESULTS

Unfortunately, as it turned out, this invariant vanishes – this is the result of article [Ale14]

constituting the second chapter.

The third chapter contains the paper [ANT16] written together with Tim Netzer and

Andreas Thom where we investigate quadratic modules, an important object in noncommu-

tative real algebraic geometry, and show that semialgebraicity of free (= noncommutative)

convex hulls of semialgebraic sets fail to be semialgebraic in general.

Chapter 4 contains the article [AFS16] where together with Martin Finn–Sell we inves-

tigated coarse geometry of spaces of graphs attached to a sofic approximation of a finitely

generated group. These results and the corresponding questions lead to some further research

work which is still in progress; I also have to mention that some questions which we posed at

the end of this article have been meanwhile answered (in particular, by Tom Kaiser).

The fifth chapter corresponds to the article [AFS18] where together with Martin Finn–

Sell we answered some questions on approximation properties of topological groupoids previ-

ously raised by Claire Anantharaman-Delaroche and Rufus Willett. It is a short paper mainly

describing a very specific example of a topological groupoid with desired properties.

Chapter 6 contains the article [AK19] where together with David Kyed we made some

progress on a question by Rostislav Grigorchuk, Magdalena Musat and Mikael Rørdam about

uniqueness of C∗-norms on group rings.

Chapters 7 and 8 contain the articles [AB18] and [AB19] written together with Rahel

Brugger on invariant random positive definite functions and some “strongly regular” subfac-

tors of von Neumann algebras of lattices in higher rank Lie groups.

Finally, the last two chapters contain preliminary versions of some work-in-progress preprints.

Chapter 9 contains the preliminary version of [AFS] which concerns representation theory of

full groups of étale groupoids and its connection to semigroup theory; Chapter 10 contains

a veru short outline of the preprint [AC] which describes maximal amenable subgroups of

arithmetic groups and proves that they induce maximal amenable von Neumann subalgebras

of their group von Neumann algebras.
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CHAPTER 1

Measure-continuous derivations on von Neumann algebras

Abstract

We prove that norm continuous derivations from a von Neumann algebra into the algebra

of operators affiliated with its tensor square are automatically continuous for both the strong

operator topology and the measure topology. Furthermore, we prove that the first continuous

L2-Betti number scales quadratically when passing to corner algebras and derive an upper

bound given by Shen’s generator invariant. This, in turn, yields vanishing of the first con-

tinuous L2-Betti number for II1 factors with property (T), for finitely generated factors with

non-trivial fundamental group and for factors with property Gamma.

1. Introduction

The theory of L2-Betti numbers has been generalized to a vast number of different con-

texts since the seminal work of Atiyah [Ati76]. One recent such generalization is due to

Connes and Shlyakhtenko [CS05] who introduced L2-Betti numbers for subalgebras of finite

von Neumann algebras, with the main purpose being to obtain a suitable notion for arbitrary

II1-factors. Although their definitions are very natural, it has proven to be quite difficult

to perform concrete calculations. The most advanced computational result so far is due to

Thom [Tho08] who proved that the L2-Betti numbers vanish for von Neumann algebras with

diffuse center. Notably, the problem of computing a positive degree L2-Betti number for a

single II1-factor has remained open for a decade at the time of writing! Due to this evident

drawback, Thom [Tho08] introduced a continuous version of the first L2-Betti number, which

turns out to be much more manageable than its algebraic counterpart. The first continuous

L2-Betti number is defined as the von Neumann dimension of the first continuous Hochschild

cohomology of the von Neumann algebra M with values in the algebra of operators affili-

ated with M⊗Mop. The word ‘continuous’ here means that we restrict attention to those

derivations that are continuous from the norm topology on M to the measure topology on

the affiliated operators.

In this paper we continue the study of Thom’s continuous version of the first L2-Betti

number and our first result (Theorem 3.1) shows that norm continuous derivations are auto-

matically also continuous for both the strong operator topology and the measure topology.
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12 1. MEASURE-CONTINUOUS DERIVATIONS ON VON NEUMANN ALGEBRAS

This allows us to derive all previously known computational results concerning the first contin-

uous L2-Betti number, and furthermore to prove that it vanishes for II1 factors with property

(T) (Theorem 3.10). In Section 3.4 we prove that it scales quadratically when passing to cor-

ner algebras (Theorem 3.13) and is dominated by Shen’s generator invariant (Corollary 3.17).

Along the way, we give a new short cohomological proof of the fact that the (non-continuous)

first L2-Betti number vanishes for von Neumann algebras with diffuse center, and furthermore

derive a number of new vanishing results regarding the first continuous L2-Betti number, in-

cluding the vanishing for II1 factors with property Gamma and finitely generated factors with

non-trivial fundamental group (Corollaries 3.17 & 3.18).

2. Preliminaries

In this section we briefly recapitulate the theory of non-commutative integration and the

theory of L2-Betti numbers for von Neumann algebras.

2.1. Non-commutative integration. Let us recall some facts from the theory of non-

commutative integration, cf. [Nel74], [Tak03, IX.2]. Let N be a finite von Neumann algebra

equipped with a normal, faithful, tracial state τ . Consider N in its representation on the GNS-

space arising from τ , and let N be the algebra of (potentially) unbounded, closed, densely

defined operators affiliated with N . We equip N with the measure topology, defined by the

following two-parameter family of neighbourhoods of zero:

N(ε, δ) = {a ∈ N | ∃p ∈ Proj(N) : ‖ap‖ < ε, τ(p⊥) < δ}, ε, δ > 0.

With this topology, N is a complete [Tak03, Theorem IX.2.5] metrizable [Rud73, Theorem

1.24] topological vector space and the multiplication map

(a, b) 7→ ab: N ×N → N

is uniformly continuous when restricted to products of bounded subsets [Nel74, Theorem

1]. Convergence with respect to the measure topology is also referred to as convergence in

measure. We also introduce the notation

N(0, δ) = {a ∈ N | ∃p ∈ Proj(N) : ap = 0, τ(p⊥) < δ},

and

N(ε, 0) = {a ∈ N | ‖a‖ < ε} ⊂ N .

Notice that N(0, δ) and N(ε, 0) are not zero neighbourhoods in the measure topology, but

merely Gδ sets However, the following additive and multiplicative properties continue to hold

for all ε1, ε2, δ1, δ2 > 0, cf. [Nel74, Theorem 1]:

(2.1) N(ε1, δ1) +N(ε2, δ2) ⊂ N(ε1 + ε2, δ1 + δ2),

(2.2) N(ε1, δ1) ·N(ε2, δ2) ⊂ N(ε1ε2, δ1 + δ2).
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The noncommutative Lp-spaces Lp(N, τ) are naturally identified with subspaces of N [Tak03,

Theorem IX.2.13]. We fix the notation
s−→ for strong convergence of elements in von Neumann

algebras,
2−→ for the L2-convergence and

m−→ for the convergence in measure of elements in N .

Clearly strong convergence implies convergence in 2-norm, and we remind the reader that for

nets that are bounded in the operator norm the converse is also true — a fact we will use

extensively in the sequel. As in the commutative case, the Chebyshev inequality can be used

to establish the following fact.

Lemma 2.1 ([Nel74, Theorem 5]). For any p > 1 the inclusion Lp(N, τ) ⊂ N is contin-

uous; i.e. Lp-convergence implies convergence in measure.

In [CS05] Connes and Shlyakhtenko introduced L2-Betti numbers in the general setting

of tracial ∗-algebras; if M is a finite von Neumann algebra and A ⊂ M is any weakly dense

unital ∗-subalgebra its L2-Betti numbers are defined as

β(2)
p (A, τ) = dimM⊗Mop TorA�A

op

p (M⊗Mop,A).

Here the dimension function dimM⊗Mop(−) is the extended von Neumann dimension due to

Lück; cf. [Lüc02, Chapter 6]. This definition is inspired by the well-known correspondence

between representations of groups and bimodules over finite von Neumann algebras, and it

extends the classical theory by means of the formula β
(2)
p (Γ) = β

(2)
p (CΓ, τ) whenever Γ is a

discrete countable group. In [Tho08] it is shown that the L2-Betti numbers also allow the

following cohomological description:

β(2)
p (A, τ) = dimM⊗Mop ExtpA�A(A,U ),

where U denotes the algebra of operators affiliated with M⊗Mop. It is a classical fact

[Lod98, 1.5.8] that the Ext-groups above are isomorphic to the Hochschild cohomology groups

of A with coefficients in U , where the latter is considered as an A-bimodule with respect to

the actions

a · ξ := (a⊗ 1op)ξ and ξ · b := (1⊗ bop)ξ for a, b ∈ A and ξ ∈ U .

In particular, the first L2-Betti number can be computed as the dimension of the right

M⊗Mop-module

H1(A,U ) =
Der(A,U )

Inn(A,U )
.

Here Der(A,U ) denotes the space of derivations from A to U and Inn(A,U ) denotes the

space of inner derivations. We recall that a linear map δ from A into an A-bimodule X is

called a derivation if it satisfies

δ(ab) = a · δ(b) + δ(a) · b for all a, b ∈ A,
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and that a derivation is called inner if there exists a vector ξ ∈ X such that

δ(a) = a · ξ − ξ · a for all a ∈ A.

When the bimodule in question is U , with the bimodule structure defined above, the deriva-

tion property amounts to the following:

δ(ab) = (a⊗ 1op)δ(b) + (1⊗ bop)δ(a) for all a, b ∈ A.

Although the extended von Neumann dimension is generally not faithful, enlarging the coeffi-

cients from M⊗Mop to U has the effect that β
(2)
1 (A, τ) = 0 if and only if H1(A,U ) vanishes

[Tho08, Corollary 3.3 and Theorem 3.5]. In particular, in order to prove that β
(2)
1 (A, τ) = 0

one has to prove that every derivation from A into U is inner. These purely algebraically

defined L2-Betti numbers have turned out extremely difficult to compute in the case when

A is M itself. Actually, the only computational result known in this direction (disregarding

finite dimensional algebras) is that the they vanish for von Neumann algebras with diffuse

center (see [CS05, Corollary 3.5] and [Tho08, Theorem 2.2]). In particular, for II1-factors

not a single computation of a positive degree L2-Betti is known, and furthermore this seems

out of reach with tools available at the moment. It is therefore natural to consider variations

of the definitions above that take into account the topological nature of M , and in [Tho08]

Thom suggests to consider a first cohomology group consisting of (equivalence classes of)

those derivations δ:A → U that are closable from the norm topology to the measure topol-

ogy. Note that when A is norm closed these are exactly the derivations that are norm-measure

topology continuous. We denote the space of closable derivations by Derc(A,U ), the con-

tinuous cohomology by H1
c (A,U ) and by η

(2)
1 (A, τ) the corresponding continuous L2-Betti

numbers; i.e.

η
(2)
1 (A, τ) = dimM⊗Mop H1

c (A,U ).

These continuous L2-Betti numbers are much more manageable than their algebraic coun-

terparts — for instance they are known [Tho08, Theorem 6.4] to vanish for von Neumann

algebras that are non-prime and for those that contain a diffuse Cartan subalgebra.

Finally, let us fix a bit of notation. For the rest of this paper, we consider a finite von

Neumann algebra M with separable predual M∗. We endow M with a fixed faithful, normal,

tracial state τ and consider M in the GNS representation on the Hilbert space H = L2(M, τ).

The trace τ induces a faithful, normal, tracial state on the von Neumann algebraic tensor

product M⊗Mop of M with its opposite algebra; abusing notation slightly, we will still

denote it by τ . We always consider M⊗Mop in the GNS representation on L2(M⊗Mop, τ)

and denote by U the algebra of closed, densely defined, unbounded operators affiliated with

M⊗Mop. More generally, if N is a finite von Neumann algebra endowed with a tracial state

ρ we denote by U (N) the algebra of operators on L2(N, ρ) affiliated with N . We will use the

symbol “⊗” to denote tensor products of von Neumann algebras and “�” to denote algebraic



3. IMPROVING CONTINUITY 15

tensor products, and, unless explicitly stated otherwise, all subalgebras in M are implicitly

assumed to contain the unit of M . Finally, when there is no source of confusion we will often

suppress the notational reference to the trace τ , and simply write L2(M), β
(2)
p (M), η

(2)
1 (M)

etc.

3. Improving continuity

In this section we prove that a derivation which is continuous for the norm topology is

automatically continuous for the strong operator topology and the measure topology as well.

Intuitively, this statement is based on the fact that strong convergence is “almost uniform”,

which is known as the non-commutative Egorov theorem, cf. [Tak02, Theorem II.4.13]. The

precise statement is as follows.

Theorem 3.1.

(i) Let A ⊂ M be a weakly dense C∗-algebra and let δ:A → U be a norm-measure

continuous derivation. Then δ has a unique norm-measure continuous extension to

M .

(ii) Let δ:M → U be a norm-measure continuous derivation. Then δ is also continuous

from the strong operator topology to the measure topology.

(iii) Let δ:M → U be a norm-measure continuous derivation. Then δ is also continuous

from the measure topology on M to the measure topology on U ; in particular, it

has a unique measure-measure continuous extension to the algebra M of operators

affiliated with M .

Note that the extension property in i) also follows from the rank-metric based arguments

in [Tho08, Theorem 4.3 & Proposition 4.4], but the boundedness of the extension is not

apparent from this.

Proof. We first prove i). By Kaplansky’s density theorem the unit ball (A)1 is strongly

dense in (M)1, and for a ∈ (M)1 we may therefore choose a sequence1 an ∈ (A)1 with an
s−→ a.

Let us first prove that δ(an) is Cauchy in measure. So we fix an ε > 0 and want to find an

N0 such that δ(an) − δ(am) ∈ N(ε, ε) for min{m,n} > N0. We first make use of the norm-

measure topology continuity of δ:A → U to find a γ > 0 such that ‖a‖ 6 γ implies that

δ(a) ∈ N(ε/3, ε/3). Consider now N× N with the ordering

(m,n) > (m′, n′) iff m > m′ and n > n′,

and the net of self-adjoint elements b(m,n) := (am − an)∗(am − an). Then for every ξ ∈ H

we have ‖b(m,n)ξ‖ 6 2‖(am − an)ξ‖ and hence b(m,n)
s−→ 0. Let now f :R → [0, 1] be a

1As the predual M∗ is assumed separable, (M)1 is a separable and metrizable space for the strong operator
topology and we can therefore do with sequences rather than nets.
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continuous function with f(x) = 1 for x 6 γ2/4 and f(x) = 0 for x > γ2 and consider the net

h(m,n) := f(b(m,n)). It follows that ‖h(m,n)‖ 6 1 and

γ2

4
(1− h(m,n)) 6 b(m,n).

Since the C∗-algebra generated by b(m,n) is commutative and both b(m,n) and 1 − h(m,n) are

positive this implies

0 6 (1− h(m,n))
∗(1− h(m,n)) 6

16
γ4 b

∗
(m,n)b(m,n),

and thus

‖1− h(m,n)‖26 4
γ2 ‖b(m,n)‖2→ 0.

Hence 1−h(m,n)
2−→ 0, and the convergence therefore holds in measure as well. Also note that

‖b(m,n)h(m,n)‖ 6 γ2 and hence

(3.1) ‖(am − an)h(m,n)‖ 6 γ.

We now use the derivation property to obtain:

δ(am)− δ(an) = δ((am − an)h(m,n)) + δ((am − an)(1− h(m,n)))

= δ((am − an)h(m,n)) + (1⊗ (1− h(m,n))
op)δ(am − an)

− ((am − an)⊗ 1op)δ(h(m,n)).

By (3.1) and the choice of γ, the first summand is in N(ε/3, ε/3). Let us now consider

the second summand. The norm-measure topology boundedness of δ on A implies [Rud73,

Theorem 1.32] that the set

{δ(am − an) | n,m ∈ N}

is bounded in U . Hence it follows from the fact that 1 − h(m,n)
m−→ 0 together with the

uniform continuity of multiplication on bounded sets of U , that there exists an N1 such that

(1 ⊗ (1 − h(m,n))
op)δ(am − an) ∈ N(ε/3, ε/3) for min{m,n} > N1. Lastly we consider the

third term. Again by norm-boundedness of δ, the set {δ(h(m,n))}n,m∈N is bounded in U . As

an is strongly convergent it also converges in 2-norm; hence an⊗1op converges in 2-norm and

is, in particular, a Cauchy sequence for the measure topology. Thus, there exists an N2 such

that

((am − an)⊗ 1op)δ(h(m,n)) ∈ N(ε/3, ε/3)

for min{n,m} > N2. Taking N0 = max{N1, N2} establishes that δ(an) is a Cauchy se-

quence in the measure topology. Appealing to the completeness of U , we may now define

δ(a) := limn δ(an); it is routine to check that this yields a well-defined derivation δ:M → U .

The continuity of the extension follows from its definition from which it is clear that the set

δ((M)1) is contained in the measure topology closure of the bounded set δ((A)1) which is

again bounded by [Rud73, Theorem 1.13]. Thus the extension maps norm bounded sets to



3. IMPROVING CONTINUITY 17

measure topology bounded sets and is therefore continuous [Rud73, Theorem 1.32], and the

proof of i) is complete.

Next we prove ii) and iii). If δ:M → U is a norm continuous derivation, then by repeating

the above arguments for m = ∞, a = a∞, we get strong continuity of δ on bounded sets:

if an
s−→ a and the sequence an is uniformly bounded, then δ(an)

m−→ δ(a). Since strong

convergence implies L2-convergence it also implies convergence in measure by Lemma 2.1, and

hence it suffices to prove that δ is measure-measure continuous. To this end, by metrizability

of the measure topology it suffices to take a sequence an ∈ M such that an
m−→ 0 and prove

that δ(an)
m−→ 0. Since an

m−→ 0 we get2 a sequence of projections pn such that ‖anpn‖ → 0

and τ(pn) → 1 Thus, pn is a norm bounded sequence that converges to 1 strongly and, by

what was just proven, it follows that δ(pn)
m−→ δ(1) = 0. Now we use the derivation property

of δ:

(3.2) δ(an) = δ(anpn) + (1⊗ (1− pn)op)δ(an)− (an ⊗ 1op)δ(pn).

As δ is norm-bounded, the first summand in (3.2) converges to 0 in measure. The second

summand converges to 0 in measure because 1 − pn ∈ N(0, εn) with εn = 1− τ(pn)→ 0 and

δ(an) ∈ N(γn, εn) for some γn > 0 [Tak03, Lemma IX.2.3]. The third summand converges

to 0 in measure because δ(pn)
m−→ 0 and multiplication is measure continuous. This finishes

the proof. �

The next lemma shows that there is no hope for weaker continuity properties of deriva-

tions.

Lemma 3.2. Let M be a diffuse finite von Neumann algebra. The only derivation δ:M →
U which is continuous from the ultraweak topology on M to the measure topology is the zero

map.

Proof. Let δ:M → U be a derivation which is continuous from the ultraweak topology

onM to the measure topology. Let {un}n∈N ⊂M be a sequence of unitaries weakly converging

to zero and let m ∈M be given. Then unm weakly converges to zero and we have

(un ⊗ 1op)δ(m) = δ(unm)− 1⊗mopδ(un).

Because the ultraweak topology and the weak operator topology agree on bounded subsets

of M , both summands on the right-hand side converge to zero in measure since δ is assumed

continuous; hence (un ⊗ 1op)δ(m)
m−→ 0. Multiplying by the unitaries (u∗n ⊗ 1op), we infer

δ(m) = 0. �

2The existence of pn can, for instance, be seen by noting that εn := inf{ε > 0 | an ∈ N(ε, ε)} must converge

to zero if an
m→ 0.
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Remark 3.3. Bearing in mind the numerous automatic continuity results for derivations

between operator algebras (see [SS95] and references therein), it is of course natural to

ask if norm continuity of a derivation δ:M → U is also automatic. We were not able to

prove this, and it seems to be a difficult question to answer. One reason being the absence

of examples of finite von Neumann algebras (or C∗-algebras, for that matter) for which a

non-inner derivation into the algebra U is known to exist. Moreover, the fact that we are

considering the operators affiliated with M⊗Mop (as opposed to M itself) has to play a role if

automatic norm continuity is to be proven, as there are examples of derivations from M into

the operators affiliated with M which are not norm-measure topology continuous. This follows

from [BCS06] where the authors exhibit a (commutative) finite von Neumann algebra M for

which there exists a derivation δ: U (M)→ U (M) which is not measure-measure continuous.

If the restriction δ|M were norm-measure continuous, then it is not difficult to see that the

graph of the original derivation δ is closed (in the product of the measure topologies), and

hence it cannot be discontinuous. If norm continuity turns out to be automatic, there is

of course no difference between the ordinary and the continuous L2-Betti numbers, and one

might even take the standpoint that if there is no such automatic continuity, then continuity

has to be imposed in order to get a satisfactory theory.

In this section we apply the above automatic continuity result to obtain information

about the first continuous L2-Betti number for von Neumann algebras. Some of the results

presented are already known, or implicit in the literature, but since the proofs are knew and

quite simple we hope they will shed new light on these results. The main new result in this

section is Theorem 3.10 which shows that the first continuous L2-Betti number vanishes for

property (T) factors.

Recall that if N ⊂M is an inclusion of von Neumann algebras, then the normalizer of N

in M is defined as the set of unitaries in M which normalize N :

NM (N) = {u ∈ U(M) |u∗Nu = N}.

The following lemma appears in [Tho08], but we include its short proof for the sake of

completeness.

Lemma 3.4 ([Tho08, Lemma 6.5]). Let δ:M → U be a derivation which vanishes on a

diffuse subalgebra N ⊂M and let u ∈ NM (N). Then δ(u) = 0.

Proof. Let h ∈ N be a diffuse element. Since δ(u∗) = −(u∗ ⊗ u∗op)δ(u) we get

0 = δ(uhu∗) = (1⊗ (hu∗)op)δ(u) + (uh⊗ 1op)δ(u∗)

= (1⊗ (hu∗)op)δ(u)− (uhu∗ ⊗ u∗ op)δ(u)

= (u⊗ u∗op)(1⊗ hop − h⊗ 1op)(u∗ ⊗ 1)δ(u).
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Since h is diffuse, 1⊗ hop − h⊗ 1op is not a zero divisor in U , and it follows that δ(u) = 0.

�

The next lemma, which might be of independent interest, shows that if a von Neumann

algebra only allows inner derivations into the algebra of operators affiliated with its double,

then the same is true for the algebra of operators affiliated with the double of any ambient

von Neumann algebra.

Lemma 3.5. Let N ⊂ M be a sub-von Neumann algebra. Then the following statements

are equivalent:

(i) β
(2)
1 (N, τ) = 0,

(ii) every derivation δ:N → U is inner (where U is considered as an N -bimodule via

the inclusion N ⊂M).

Proof. By [Lod98, 1.5.9] we have H1(N,U ) = Ext1
N�Nop(N,U ) and by [Tho08, The-

orem 3.5] this right U -module is isomorphic to

HomU

(
TorN�N

op

1 (U , N),U
)
.

Furthermore, by [Tho08, Corollary 3.3] this module vanishes exactly when

dimM⊗Mop TorN�N
op

1 (U , N) = 0.

But since U �M⊗Mop − and M⊗Mop �N⊗Nop − are both flat and dimension preserving (see

[Rei01, Proposition 2.1 and Theorem 3.11] and [Lüc02, Theorem 6.29]) we get

dimM⊗Mop TorN�N
op

1 (U , N) = dimM⊗Mop TorN�N
op

1 (U �M⊗Mop M⊗Mop, N)

= dimM⊗Mop U �M⊗Mop TorN�N
op

1 (M⊗Mop, N)

= dimM⊗Mop TorN�N
op

1 (M⊗Mop, N)

= dimM⊗Mop TorN�N
op

1 (M⊗Mop �N⊗Nop N⊗Nop, N)

= dimM⊗Mop M⊗Mop �N⊗Nop TorN�N
op

1 (N⊗Nop, N)

= dimN⊗Nop TorN�N
op

1 (N⊗Nop, N)

= β
(2)
1 (N, τ). �

Since H1(M,U ) is the algebraic dual of H1(M,U ) [Tho08, Theorem 3.5] it follows from

[Tho08, Corollary 3.3 & 3.4] that β
(2)
1 (M) = 0 if and only if H1(M,U ) is trivial. In the

continuous case it is not so clear if the cohomology H1
c (M,U ) is also a dual module, but

as the following proposition shows, vanishing of η
(2)
1 (M) does actually imply innerness of all

continuous derivations from M to U . As we will see in the following subsections, η
(2)
1 (M)

vanishes in a lot of special cases and these vanishing results can therefore be translated into

automatic innerness of continuous derivations on M with values in U . We point out that we
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do not know an example of a von Neumann algebra M for which η
(2)
1 (M) 6= 0 and it cannot

be excluded that a innerness of continuous derivations from M to U is automatic in general.

Proposition 3.6. We have η
(2)
1 (M) = 0 if and only if H1

c (M,U ) = {0}.

The proof is a modification of an argument from [TP11].

Proof. The “if” part of the statement is obvious so we only have to prove the converse.

Assume therefore that η
(2)
1 (M) := dimM⊗Mop H1

c (M,U ) = 0 and let δ ∈ Derc(M,U ) be

given; we need to prove that δ is inner. By Sauer’s local criterion [Sau05, Theorem 2.4] we

can find a partition {pn}∞n=1 of the unit in M⊗Mop such that δ(−)pn ∈ Inn(M,U ) for every

n ∈ N. Thus, there exists ξn ∈ U such that

δ(x)pn = (x⊗ 1− 1⊗ xop)ξn for all x ∈M,

and we may therefore furthermore assume that ξn = ξnpn for every n ∈ N. We now claim

that the series
∑∞

n=1 ξn converges in measure and that its limit implements δ. To prove the

convergence it suffices to show that Sk :=
∑k

i=1 ξi is Cauchy in measure. For given ε > 0 and

k sufficiently big we have
∑∞

i=k+1 τ(pi) < ε, and therefore qk :=
∑k

i=1 pi satisfies τ(1− q) < ε

and for every l > k we have

(Sl − Sk)q =
l∑

i=k+1

k∑
j=1

ξipj =
l∑

i=k+1

k∑
j=1

ξipipj = 0,

since the pn’s are mutually orthogonal. Thus, Sk is Cauchy in the measure topology (even in

the rank topology) and hence the limit ξ := limm
k Sk exists and this limit implements δ since

δ(x) =
m

lim
k→∞

δ(x)qk =
m

lim
k→∞

k∑
i=1

δ(x)pi =
m

lim
k→∞

k∑
i=1

(x⊗ 1− 1⊗ xop)ξi

=
m

lim
k→∞

(x⊗ 1− 1⊗ xop)Sk = (x⊗ 1− 1⊗ xop)ξ. �

Note that the above proof does not uses the continuity of the derivation δ at any point,

so this also provides a proof of the fact that β
(2)
1 (M) vanishes iff H1(M,U ) = {0}.

3.1. The case of diffuse center. Using methods from free probability, Connes and

Shlyakhtenko proved in [CS05, Corollary 3.5] that β
(2)
1 (M, τ) = 0 when M has diffuse cen-

ter, and using homological algebraic methods this was later generalized by Thom to higher

L2-Betti numbers in [Tho08, Theorem 2.2]. In this section we give a short cohomological

proof of this result in degree one.

Proposition 3.7 ([CS05, Corollary 3.5]). If M has diffuse center then every derivation

δ:M → U is norm-measure topology continuous and β
(2)
1 (M, τ) is zero.
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Proof. Since the center Z(M) is diffuse we can choose an identification Z(M) = L∞(T) =

LZ. Denote by h a diffuse, selfadjoint generator of Z(M). To see that δ is bounded, it suffices

to prove that its graph is closed [Rud73, Theorem 2.15]; let therefore xn ∈M with ‖xn‖→ 0

and δ(xn)
m−→ η. Then

0 = δ([xn, h]) = (xn ⊗ 1op)δ(h) + (1⊗ hop)δ(xn)− (1⊗ xop
n )δ(h)− (h⊗ 1op)δ(xn)

m−→ (1⊗ hop − h⊗ 1)η,

and since h is diffuse (1⊗ hop− h⊗ 1) is not a zero-divisor in U ; hence η = 0. We now claim

that δ has to be inner on Z(M) = LZ. If this were not the case, then, by Lemma 3.5, there

exists a non-inner derivation δ′:LZ → U (LZ⊗LZ). By what was just proven, δ′ is norm-

measure continuous and therefore, by Theorem 3.1, also continuous for the strong operator

topology. Because of this, the restriction of δ′ to the complex group algebra C[Z] has to be

non-inner, contradicting the fact that 0 = β
(2)
1 (Z) = β

(2)
1 (C[Z], τ) (cf. [CS05, Proposition 2.3]

and [CG86, Theorem 0.2]). Hence there exists ξ ∈ U such that δ agree with δξ := [·, ξ] on

Z(M). The difference δ − δξ therefore vanishes on Z(M) and by Lemma 3.4 it has to vanish

on every unitary in M . Since the unitaries span M linearly, we conclude that δ is globally

inner. �

Remark 3.8. By combining Lemma 3.4 and Proposition 3.7 with the automatic strong

continuity from Theorem 3.1, one may at this point easily deduce the conclusion of [Tho08,

Theorem 6.4]; namely that the first continuous L2-Betti number vanishes for non-prime von

Neumann algebras as well as for von Neumann algebras admitting a diffuse Cartan subalgebra.

Since this will also follow from the more general vanishing results obtained in Section 3.4, we

shall not elaborate further at this point.

3.2. Factors with property (T). If Γ is a countable discrete group with property (T) it

is well known that its first L2-Betti number vanishes. This observation dates back to the work

of Gromov [Gro93], but the first complete proof was given by Bekka and Valette in [BV97].

Applying the recent techniques from[TP11, Theorem 2.2], this can now be deduced easily

from the Delorme-Guichardet theorem (see e.g. [BdlHV08]), which characterizes property

(T) of Γ in terms of vanishing of its first cohomology groups. The notion of property (T) for

II1-factors was introduced by Connes and Jones in [CJ85] and in [Pet09a] Peterson proved

a version of the Delorme-Guichardet theorem in this context:

Theorem 3.9 ([Pet09a, Theorem 0.1]). Let M be a finite factor with separable predual.

Then the following conditions are equivalent:

(i) M has property (T);

(ii) there exists a weakly dense ∗-subalgebra M0 ⊂ M which is countably generated as

a vector space and such that every densely defined L2-closable derivation from M

into a Hilbert M -M -bimodule whose domain contains M0 is inner.
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In this section we apply Peterson’s result to prove the following von Neumann algebraic

version of the classical group theoretic result mentioned above.

Theorem 3.10. Let M be a II1-factor with separable predual. If M has property (T) then

η
(2)
1 (M, τ) = 0.

Proof. Since M has property (T), we obtain from Theorem 3.9 a dense ∗-subalgebra

M0 ⊂M such that M0 is countably generated as a vector space and such that any derivation

from M0 into a Hilbert M -bimodule H, which is closable as an unbounded operator from

L2(M) to H, is inner. We first observe that

dimM⊗Mop Derc(M,U ) = dimM⊗Mop{δ ∈ Derc(M,U ) | δ(M0) ⊂M⊗Mop}.

To see this, it suffices by Sauer’s local criterion [Sau05, Theorem 2.4] to prove that for each

continuous derivation δ:M → U and each ε > 0 there exists a projection p ∈ M⊗Mop such

that τ(p⊥) 6 ε and δ(−)p maps M0 into M⊗Mop. Choose a countable linear basis (en)∞n=1

for M0. Since each δ(en) is affiliated with M⊗Mop there exists a projection pn ∈ M⊗Mop

such that τ(p⊥n ) 6 ε
2n and such that δ(en)pn ∈M⊗Mop. The projection p :=

∧
n pn therefore

satisfies the requirements. We now have to prove that

dimM⊗Mop{δ ∈ Derc(M,U ) | δ(M0) ⊂M⊗Mop} 6 1,

and we will do so by proving that a continuous derivation δ:M → U for which δ(M0) ⊂
M⊗Mop has to be inner. We claim that it suffices to prove that δ is L2-closable from M0

to L2(M⊗Mop). Indeed, if this is the case, then by Peterson’s result there exists a vector

ξ ∈ L2(M⊗Mop) such that

δ(a) = (a⊗ 1)ξ − (1⊗ aop)ξ for all a ∈M0.

Considering ξ as an operator in U , we get that it implements δ on M0 and hence by Theorem

3.1 it implements δ on all of M . Thus, our task is to show that δ:M0 → L2(M⊗Mop)

is L2-closable. Let therefore xn ∈ M0 and assume that xn
2−→ 0 and δ(xn)

2−→ η. Since

convergence in 2-norm implies convergence in measure (Lemma 2.1) and since δ is continuous

from the measure topology on M to the measure topology on U (Theorem 3.1) we obtain

that δ(xn)
m→ 0 as well as δ(xn)

m→ η; hence η = 0 as the measure topology is Hausdorff. �

3.3. Further remarks. In this section we collect a few observations concerning the first

continuous L2-Betti number. Some of them are easily derived from the results in [Tho08],

but since they are also direct consequences of Theorem 3.1 we include them here for the sake

of completeness.

Proposition 3.11. Let A ⊂M be a weakly dense ∗-subalgebra. Then

η
(2)
1 (M, τ) 6 η(2)

1 (A, τ) 6 β(2)
1 (A, τ).

and if A is a C∗-algebra we have η
(2)
1 (M, τ) = η

(2)
1 (A, τ).
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Note that the inequalities in Proposition 3.11 are contained in [Tho08, Theorem 6.2], but

that the equality when A is a C∗-algebra does not directly follow from this. Compare also

with [Tho08, Theorem 4.6].

Proof. By Theorem 3.1 the map H1
c (M,U ) −→ H1

c (A,U ) induced by restriction is

injective in general and an isomorphism when A is a C∗-algebra. That η
(2)
1 (A, τ) 6 β(2)

1 (A, τ)

is clear, as we have an inclusion Derc(A,U ) ⊂ Der(A,U ) for any algebra A. �

To illustrate the usefulness of the above result, we record the following consequences.

1) If Γ is a discrete countable group with β
(2)
1 (Γ) = 0 then also η

(2)
1 (LΓ, τ) = 0.

By [CS05, Proposition 2.3], β
(2)
1 (Γ) = β

(2)
1 (CΓ, τ) and the claim therefore follows

from Proposition 3.11. In particular, the first continuous L2-Betti number of the

hyperfinite factor R vanishes since R ' LΓ for any amenable icc group Γ. The

result about the hyperfinite factor can also be obtained directly from the definition

of hyperfiniteness by realizing R as the von Neumann algebraic direct limit of matrix

algebras, for which it is also known [AK11, Example 6.9] that the (non-continuous)

L2-Betti numbers of the corresponding algebraic direct limit vanishes.

2) It is well known [BV97] that when Γ is a discrete, countable group with property

(T) then β
(2)
1 (Γ) = 0 and hence also η

(2)
1 (LΓ, τ) = 0. Thus, in the case of factors

arising from discrete groups, Theorem 3.10 can be deduced immediately.

3) For the von Neumann algebra L∞(O+
n ) associated with the free orthogonal quantum

group O+
n we have η

(2)
1 (L∞(O+

n ), τ) = 0. Denoting by Pol(O+
n ) the canonical dense

Hopf ∗-algebra in L∞(O+
n ), it is known that β

(2)
1 (Pol(O+

n ), τ) = 0 (see [Kye08] for

the case n = 2 and [Ver09] for the case n > 3) and hence, by Proposition 3.11,

η
(2)
1 (L∞(O+

n ), τ) = 0.

Since η
(2)
1 (−) measures the dimension the space of continuous derivations it follows from

the results already proven that this number is finite for von Neumann algebras that are finitely

generated. Since we will use this repeatedly in the sequel, where a concrete upper bound will

be of importance, we single this out by means of the following lemma.

Lemma 3.12. If M is generated as a von Neumann algebra by n selfadjoint elements then

η
(2)
1 (M, τ) 6 n− 1.

Proof. If M is generated by n selfadjoint elements x1, . . . , xn then the complex subal-

gebra A generated by {1, x1, . . . , xn} is a dense unital ∗-subalgebra in M and by Proposition

3.11 any continuous derivation δ:M → U is uniquely determined by its values on A. From

the derivation property it follows that δ is already completely determined on its values on the

generators x1, . . . , xn and hence we get η
(2)
1 (M, τ) 6 n− 1 as desired. �

3.4. The compression formula in continuous cohomology. Recall from [CS05,

Theorem 2.4] that the algebraic L2-Betti numbers scale quadratically when passing to corners;



24 1. MEASURE-CONTINUOUS DERIVATIONS ON VON NEUMANN ALGEBRAS

more precisely if M is a finite factor and p ∈M is a non-zero projection then β
(2)
n (pMp, τp) =

τ(p)−2β
(2)
n (M, τ), where τp denotes the restriction of τ to the corner pMp rescaled with τ(p)−1.

In this section we prove that the same holds true for the first continuous L2-Betti number and,

as a byproduct, provide a cohomological proof of the scaling formula for the first algebraic

L2-Betti number as well.

Theorem 3.13. Let M be a II1-factor with trace-state τ and let p ∈ M be a non-zero

projection. Then η
(2)
1 (pMp, τp) = 1

τ(p)2 η
(2)
1 (M, τ).

Proof. Denote p⊗ pop ∈M⊗Mop by q and consider the right qM⊗Mopq-linear map

Φp: Der(M,U q) −→ Der(pMp, qU q)

δ 7 −→ (p⊗ pop) · δ|pMp

Note that this map induces a map Φp:H
1(M,U q) → H1(pMp, qU q) on the ordinary coho-

mology as well as a map on the continuous cohomology Φp:H
1
c (M,U q) → H1

c (pMp,U q),

since continuity of a derivation is preserved by construction, and an inner derivation imple-

mented by ξ ∈ U q is mapped to the inner derivation on pMp implemented by qξ. We also

note that the restriction maps Φ∗ are compatible with the order structure: if r, s ∈ Proj(M)

and r 6 s then Φr = Φr ◦ Φs. Our aim is to prove that the map Φp is an isomorphism

of right qM⊗Mopq-modules on the level of continuous 1-cohomology. Once this is estab-

lished, the result follows from the general cut-down formula for the dimension function (see

e.g. [KPV12, Lemma A.15]) since

η
(2)
1 (pMp, τp) := dimqM⊗MopqH

1
c (pMp,U (pMp⊗(pMp)op))

= dimqM⊗MopqH
1
c (pMp, qU q)

= dimqM⊗MopqH
1
c (M,U q)

= dimqM⊗MopqH
1
c (M,U )q

=
1

(τ ⊗ τop)(q)
dimM⊗Mop H1

c (M,U )

=
1

τ(p)2
η

(2)
1 (M, τ).

By construction, Φp is right q(M⊗Mop)q-linear so we only have to provide the inverse to

Φp:H
1(M,U q) → H1(pMp, qU q) and show that it maps H1

c (pMp, qU q) to H1
c (M,U q).

To this end, choose n to be the smallest integer such that nτ(p) > 1 and choose orthog-

onal projections p1, . . . , pn ∈ M summing to 1M such that p1, p2, . . . , pn−1 are equivalent

to p and pn is equivalent to a subprojection f of p. We furthermore may, and will, as-

sume that p1 = p. This choice provides us with a ∗-isomorphism sMn(pMp)s ∼= M where

s ∈ Mn(pMp) = Mn(C)⊗ pMp is the projection
∑n−1

i=1 vii ⊗ p+ vnn ⊗ f . Here, and in what

follows, we denote by {vij}ni,j=1 the standard matrix units in Mn(C). In the sequel we will
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suppress this isomorphism and simply identify M and sMn(pMp)s.

Now we define two maps. The first one is “induction-to-matrices”:

indn: Der(pMp,U q)→ Der (Mn(pMp),Mn(C)⊗Mn(C)op ⊗ qU q)

given by

indn(δ)(x) =

n∑
i,j=1

(vi,1 ⊗ vop
1,j)⊗ δ((v1,i ⊗ p)x(vj,1 ⊗ p)).

A direct computation verifies that indn(δ) is indeed a derivation whenMn(C)⊗Mn(C)op⊗qU q

is endowed with the natural Mn(C)⊗ pMp-bimodule structure given by

(a⊗ x)⊗ (b⊗ y)op.T := (a⊗ bop ⊗ (x⊗ yop))T, a, b ∈Mn(C), x, y ∈ pMp, T ∈ qU q.

The map indn(δ) descends to both cohomology and continuous cohomology since an in-

ner derivation implemented by ξ ∈ qU q maps to the inner derivation implemented by∑n
i=k vk1 ⊗ vop

1k ⊗ ξ and since indn(−) clearly maps continuous derivations to continuous

derivations.

The second map is the compression map with respect to the projection s:

Φs: Der (Mn(pMp),Mn(C)⊗Mn(C)op ⊗ qU q) −→ Der(M,U q)

δ 7 −→ s⊗ sop · δ|sMn(pMp)s

Note that this restriction map indeed maps to Der(M,U q): in the matrix picture p identifies

with v11 ⊗ p which is a subprojection of s and hence

U q = U
(
s⊗ sop(Mn(C)⊗ pMp)⊗(Mn(C)op ⊗ (pMp)op)s⊗ sop

)
q

= (s⊗ sop)U
(

(Mn(C)⊗ pMp)⊗(Mn(C)op ⊗ (pMp)op)
)

= (s⊗ sop).(Mn(C)⊗Mn(C)op ⊗ qU q).

We now claim that Φs ◦ indn is the inverse of Φp on the level of (continuous) cohomology. One

composition can be easily computed using the order compatibility of the restriction maps:

Φp ◦ Φs ◦ indn = Φp ◦ indn which is the identity map even at the level of derivations. To

see this, consider x ∈ pMp and recall that in the matrix picture p ∈ M identifies with the

projection v11 ⊗ p. Thus,

Φp ◦ indn(δ)(x) = (v11 ⊗ p)⊗ (v11 ⊗ p)op

 n∑
i,j=1

vi1 ⊗ vop
1j ⊗ δ((vi1 ⊗ p)x(vj1 ⊗ p))


= v11 ⊗ v

op
11 ⊗ δ(x) = δ(x).
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Next we have to compute Φs◦indn◦Φp. We start with a derivation δ ∈ Der(M,U q). Consider

the the following two systems of matrix units {vij ⊗ (p − f)}n−1
i,j=1 and {vij ⊗ f}ni,j=1 in M

and denote by A0 the ∗-algebra they generate. This is a finite dimensional3 C∗-algebra and

hence β
(2)
1 (A0, τ |A0) = 0 by [CS05, Proposition 2.9]. By Lemma 3.5, the restriction of δ to

A0 is therefore inner, so by subtracting an inner derivation we may assume that δ vanishes

on A0. Hence for all a, b ∈ A0 and x ∈ M we have δ(axb) = (a ⊗ bop)δ(x). In particular,

Φp(δ) = δ|pMp since p = v11⊗p ∈ A0. Thus, splitting the unit in M as
∑n−1

i=1 vii⊗p+ vnn⊗ f
we have

δ(x) =

n−1∑
i,j=1

δ((vii ⊗ p)x(vjj ⊗ p)) +

n−1∑
i=1

δ((vii ⊗ p)x(vnn ⊗ f))+

+

n−1∑
i=1

δ((vnn ⊗ f)x(vii ⊗ p)) + δ((vnn ⊗ f)x(vnn ⊗ f))

=
n−1∑
i,j=1

δ((vi1 ⊗ p)(v1i ⊗ p)x(vj1 ⊗ p)(v1j ⊗ p))+

+

n−1∑
i=1

δ((vi1 ⊗ p)(v1i ⊗ p)x(vn1 ⊗ p)(v1n ⊗ f))+

+
n−1∑
i=1

δ((vn1 ⊗ f)(v1n ⊗ p)x(vi1 ⊗ p)(v1i ⊗ p))+

+ δ((vn1 ⊗ f)(v1n ⊗ p)x(vn1 ⊗ p)(v1n ⊗ f))

=
n−1∑
i,j=1

(vi1 ⊗ p)⊗ (v1j ⊗ p)opδ((v1i ⊗ p)x(vj1 ⊗ p))+

+
n−1∑
i=1

(vi1 ⊗ p)⊗ (v1n ⊗ f)δ((v1i ⊗ p)x(vn1 ⊗ p))+

+

n−1∑
i=1

(vn1 ⊗ f)⊗ (v1i ⊗ p)opδ((v1n ⊗ f)x(vi1 ⊗ p))+

+ (vn1 ⊗ f)⊗ (v1n ⊗ f)δ((v1n ⊗ p)x(vn1 ⊗ p))

= (s⊗ sop).

 n∑
i,j=1

(vi1 ⊗ vop
1j )⊗ δ((v1i ⊗ p)x(vj1 ⊗ p))


= (s⊗ sop).indn(δ|pMp)(x)

3The map Mn−1(C) ⊕Mn(C) 3 (a, b) 7→ a ⊗ (p − f) + b ⊗ f is surjective and an isomorphism in the generic
case when f 6= 0 and f 6= p.
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= (s⊗ sop).indn(Φp(δ))(x)

= Φs ◦ indn ◦ Φp(δ)(x),

as desired. �

Remark 3.14. More generally, for any t > 0 the t-th amplification of M is defined as

rMn(M)r where n = btc+ 1 and r ∈Mn(M) is a projection with (trn⊗τ)(r) = t/n. We note

that the scaling formula holds true in this generality since applying it first to M considered as

a corner in Mn(M) yields η
(2)
1 (M) = n−2η

(2)
1 (Mn(M)) and applying it once more with respect

to the projection r therefore gives

η
(2)
1 (Mt) = (trn⊗τ)(r)−2η

(2)
1 (Mn(M)) =

n2

t2
n2η

(2)
1 (M) = t−2η

(2)
1 (M).

The isomorphism provided in the proof of Theorem 3.4 is clearly also an isomorphism

on the algebraic level so along the way we also proved the following special case of [CS05,

Theorem 2.4].

Porism 3.15. If M is a II1-factor and t > 0 then β
(2)
1 (Mt) = t−2β

(2)
1 (M).

Corollary 3.16. If M is a finitely generated II1-factor with non-trivial fundamental

group then η
(2)
1 (M, τ) = 0.

Proof. If M is generated by n elements x1, . . . , xn then by extracting the real and

imaginary part of these generators we get 2n selfadjoint generators a1, . . . , an, b1, . . . , bn and

from Lemma 3.12 it follows that η
(2)
1 (M) 6 2n <∞. Picking a non-trivial projection p ∈M

such that M ∼= pMp4 we conclude from the scaling formula that

η
(2)
1 (M, τ) = η

(2)
1 (pMp, τp) =

1

τ(p)2
η

(2)
1 (M, τ),

and since we just argued that η
(2)
1 (M, τ) <∞ this forces η

(2)
1 (M, τ) = 0. �

Recently, Shen [She05] introduced the generator invariant G(M) and proved that G(M) <
1
4 implies that M is singly generated. A further study of the generator invariant, as well as

its hermitian analogue Gsa(M), was undertaken in [DSSW08] where the authors, inter alia,

prove a scaling formula for the invariant under the passage to corner algebras. This scaling

formula implies that the class of II1 factors with vanishing generator invariant5 is stable under

passing to corners. As a consequence, we obtain the following result showing, yet again, that

the first continuous L2-Betti number vanishes on a large class of II1 factors.

Corollary 3.17. For any II1 factor M we have η
(2)
1 (M) 6 Gsa(M). In particular,

factors that are either non-prime, admits a Cartan or has property Gamma has vanishing

first continuous L2-Betti number.

4Since M is a factor this isomorphism must intertwine the trace τ with τp.
5At the time of writing, no example of a II1 factor with non-vanishing generator invariant is known.
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The inequality in Corollary 3.17 can be deduced from the more general result [DSSW08,

Corollary 5.12], but since the result there is stated without proof we find it worthwhile to

include the short argument below. Note also that the vanishing of η
(2)
1 (−) in the non-prime

and Cartan case was already proved by Thom in [Tho08] and that in the special case of a

group von Neumann algebra, the result about property Gamma factors can be deduced from

[Pet09b, Theorem 1.2] and the general inequality η
(2)
1 (LΓ) 6 β(2)

1 (Γ).

Proof. We first prove that if k is any integer then if Gsa(M) < k then η
(2)
1 (M) 6 k. To

see this, just note that by [DSSW08, Theorems 3.1 & 5.5] we have that M is generated by

k + 1 selfadjoint elements and by Lemma 3.12 this implies that η
(2)
1 (M) 6 k. The inequality

is trivial when Gsa(M) =∞, so assume that Gsa(M) <∞ and put tn :=
√

Gsa(M) + 1
n . Then

by the scaling formula for sa [DSSW08, Corollary 5.6] we have Gsa(Mtn) < 1 and hence

by what was just proven also η
(2)
1 (Mtn) 6 1. By Theorem 3.13 (see also Remark 3.14) we

therefor have

η2
1(M) = t2nη(Mtn) 6 t2n −→n→∞ Gsa(M).

That η
(2)
1 (M) = 0 when M is non-prime, has a Cartan subalgebra or has property Gamma

follows from the formula Gsa(M) = 1
2Gsa(M) [DSSW08, Theorem 5.5] in conjunction with

[She05, Section 6] where it is shown that G(M) = 0 under the aforementioned hypotheses. �

Corollary 3.18. The first continuous L2-Betti number vanishes on any class of singly

generated II1-factors that is stable under passing to corners.

Proof. Let C be such a class of II1 factors and note that η
(2)
1 (−) is bounded by 1 on C.

Let M ∈ C be given and choose a sequence of non-trivial projections pn ∈M with τ(pn)→ 0.

Since C is stable under passing to corners we obtain

1 > η(2)
1 (pnMpn, τpn) =

1

τ(pn)2
η

(2)
1 (M, τ).

and hence

η
(2)
1 (M, τ) 6 τ(pn)2 −→

n→∞
0.

�

Note that above corollary has the following curious consequence: If the notorious gener-

ator problem has a positive solution (i.e. every II1 factor is singly generated) then the first

continuous L2-Betti number vanishes globally on the class of II1 factors.

We end this section with a result regarding interpolated free group factors which shows

that the first continuous L2-betti number is “linear in the number of generators”. This

is another consequence of the scaling formula and the proof is verbatim the same as the

corresponding proof regarding Shen’s generator invariant given in [DSSW08]. We include it

below for the sake of completeness.



3. IMPROVING CONTINUITY 29

Proposition 3.19. There exists a ∈ [0, 1] such that η
(2)
1 (LFr) = a(1 − r) for every

r ∈]1,∞[. In particular, if η
(2)
1 (LF2) > 0 then the interpolated free group factors LFr are

pairwise non-isomorphic for r ∈]1,∞[.

Proof. Denote by f : ]0,∞[→ R the function r 7→ η
(2)
1 (LFr+1) and recall [Dyk94] that

for r > 1 and λ > 0 the interpolated free group factors satisfy the scaling formula L(F1+ r−1

γ2
) =

L(Fr)γ . Hence

f

(
r − 1

λ2

)
= η

(2)
1

(
F1+ r−1

γ2

)
=

1

γ2
η

(2)
1 (LFr) =

1

γ2
f(r − 1).

The map f therefore satisfies f(sr) = sf(r) for all s, r > 0 and thus f(r) = rf(1) =

rη
(2)
1 (LF2); hence a := η

(2)
1 (LF2) does the job and since η

(2)
1 (LF2) 6 β

(2)
1 (F2) = 1 we have

a ∈ [0, 1]. The final statement concerning non-isomorphism follows trivially from this.

�
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CHAPTER 2

First continuous L2-cohomology of free group factors vanishes

Abstract

We prove that the first continuous L2-cohomology of free group factors vanishes. This

answers a question by Andreas Thom regarding continuity properties of free difference quo-

tients and shows that one can not distinguish free group factors by means of first continuous

L2-Betti number.

1. Introduction

Introduced by topologists [Ati76], L2-Betti numbers have been generalized to various

contexts like groups, groupoids etc. Alain Connes and Dimitri Shlyakhtenko [CS05] intro-

duced L2-Betti numbers for subalgebras of finite von Neumann algebras, with the purpose to

obtain a suitable notion for arbitrary II1-factors and in the hope to get a nice homological

invariant for them. Unfortunately, as of now there are only very few concrete calculations

of them. The most advanced computational result so far is due to Andreas Thom [Tho08]

who proved that the L2-Betti numbers vanish for von Neumann algebras with diffuse cen-

ter. To allow more computable examples, he also introduced a continuous version of the first

L2-Betti number [Tho08] which turns out to be much more manageable than its algebraic

counterpart. The first continuous L2-Betti number is defined as the von Neumann dimension

of the first continuous Hochschild cohomology of the von Neumann algebra M with values in

the algebra of operators affiliated with M⊗Mop. The word ‘continuous’ here means that we

restrict attention to derivations which are continuous from the norm topology on M to the

measure topology on the affiliated operators.

So far only vanishing results were obtained about the first continuous L2-Betti number:

it has been shown to vanish for II1-factors with Cartan subalgebras, non-prime II1-factors

[Tho08] as well as for II1-factors with property (T), property Γ and finitely generated II1

factors with nontrivial fundamental group [AK13]. The last result is due to a compression

formula for the first continuous L2-Betti number [AK13, Theorem 4.10].

The hope placed upon L2-Betti numbers for group von Neumann algebras was to be

able to connect them with L2-Betti numbers of groups, thus obtaining a powerful invariant

which would be able to distinguish free group factors, thus solving a long-standing problem

in operator algebras. In fact, the attempt to do this can be formulated in a very concrete

way using generators of the L2-cohomology of the group ring CFn of the free group or some

33
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other subalgebras of LFn generated by free elements. One possible choice of generators is to

consider the so-called Voiculescu’s free difference quotients [Voi98]. Andreas Thom posed

a natural question in [Tho08], whether these derivations possess continuous extensions to

operators from LFn to U (LFn⊗LFop
n ); a positive answer to this question would solve the free

factor isomorphism problem.

In the present paper we answer this question in the negative; in fact, we show that the

first continuous L2-cohomology of free group factors vanishes; in particular, they can not be

distinguished by this invariant. This also suggests that the invariant might be altogether

trivial, i.e. that the first continuous L2-cohomology might in fact vanish for all II1-factors

(while preparing the publication, we’ve been informed that Sorin Popa and Stefaan Vaes

answered the above question affirmatively in [PV14]).

The result is established in several steps. First, we focus on the free group with three

generators F3 and show that the canonical derivations which “derive in direction of a free

generator” cannot be extended to the group von Neumann algebra. This is shown by analyzing

their values on some specific elements for which the spectrum of the resulting operators can

be calculated using free probability theory. To derive the vanishing of the whole continuous

cohomology, we have to use certain automorphisms of the free group factors. Hereby we make

use of certain weak mixing properties relative to a subalgebra; intuitively speaking, we are

using the fact that there are enough automorphisms to move our derivations around; thus,

the existence of one continuous non-inner derivation would automatically guarantee that all

derivations of CF3 are extendable, which yields a contradiction. Finally, we make use of the

compression formula to extend the result from a single free group factor to all of them.

The author thanks Thomas Schick and Andreas Thom for helpful discussions and useful

suggestions.

2. Preparatory results

In this section we set up the notation and briefly recapitulate the theory of non-commutative

integration and the theory of L2-Betti numbers for von Neumann algebras.

2.1. Notation. We consider finite von Neumann algebras M , N etc. with separable

preduals. We always endow them with a fixed faithful normal tracial state (usually denoted

by τ) and consider them in the corresponding GNS representation L2(N, τ). If (N, τ) is a

finite von Neumann algebra, then there is an induced a faithful normal tracial state on the von

Neumann algebraic tensor product N⊗Nop of N with its opposite algebra; abusing notation

slightly, we will still denote it by τ . We let U (N) be the algebra of closed densely defined

operators on L2(N, τ) affiliated with N . We equip U (N) with the measure topology, defined

by the following two-parameter family of zero neighbourhoods:

N(ε, δ) = {a ∈ U (N) | ∃p ∈ Proj(N) : ‖ap‖ < ε, τ(p⊥) < δ}, ε, δ > 0.
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With this topology, U (N) is a complete [Tak03, Theorem IX.2.5] metrizable [Rud73, The-

orem 1.24] topological vector space and the multiplication map

(a, b) 7→ ab: U (N)×U (N)→ U (N)

is uniformly continuous when restricted to products of bounded subsets [Nel74, Theorem

1]. Convergence with respect to the measure topology is also referred to as convergence in

measure and denoted by
m−→. If ξ ∈ U (N) and p ∈ N is its source projection, we denote

rk ξ := τ(p). Of course, we also have rk ξ = τ(q), where q is the target projection of ξ.

Here and in the sequel � denotes the algebric tensor product over C. We freely identify

M -M -bimodules with M �Mop-modules. For N = M⊗Mop we equip U (M⊗Mop) with the

M -M -bimodule structure

m · ξ := (m⊗ 1op)ξ and ξ ·m := (1⊗mop)ξ for m,m ∈M and ξ ∈ U .

All M -M -sub-bimodules of U (M⊗Mop) inherit this bimodule structure.

Let Γ be a discrete group with its natural left action λ on itself. Its von Neumann

algebra LΓ = λ(Γ)′′ ⊂ B(`2(Γ)) is equipped with the natural faithful normal tracial state

τ(·) := 〈·δe, δe〉. Notice that the GNS representation of LΓ with respect to τ coincides with

`2(Γ).

Let A be an algebra and X an A-A-bimodule. We recall that a linear map δ:A → X is

called a derivation if it satisfies

δ(ab) = a · δ(b) + δ(a) · b for all a, b ∈ A,

and that a derivation is called inner if there exists a vector ξ ∈ X such that

δ(a) = a · ξ − ξ · a for all a ∈ A.

Consider a free group F generated by a set S. For s ∈ S, a derivation

∂s:CF→ LF⊗LFop

is defined uniquely by the properties

∂s(s) = s⊗ 1op, ∂s(s
′) = 0, s 6= s′ ∈ S.

In [CS05] Connes and Shlyakhtenko introduced L2-Betti numbers in the general setting

of tracial ∗-algebras; if M is a finite von Neumann algebra and A ⊂ M is any weakly dense

unital ∗-subalgebra its L2-Betti numbers are defined as

β(2)
p (A, τ) = dimM⊗Mop TorA�A

op

p (M⊗Mop,A).

Here the dimension function dimM⊗Mop(−) is Lück’s extended von Neumann dimension [Lüc02,

Chapter 6]. This definition is inspired by the well-known correspondence between representa-

tions of groups and bimodules over finite von Neumann algebras, and it extends the classical
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theory by means of the formula β
(2)
p (Γ) = β

(2)
p (CΓ, τ) whenever Γ is a discrete countable

group. In [Tho08] it is shown that the L2-Betti numbers also allow the following cohomo-

logical description:

β(2)
p (A, τ) = dimM⊗Mop ExtpA�A(A,U ),

where U = U (M⊗Mop) denotes the algebra of operators affiliated with M⊗Mop. It is

a classical fact [Lod98, 1.5.8] that the Ext-groups above are isomorphic to the Hochschild

cohomology groups of A with coefficients in U , where the latter is considered as an A-

bimodule with respect to the actions

a · ξ := (a⊗ 1op)ξ and ξ · b := (1⊗ bop)ξ for a, b ∈ A and ξ ∈ U .

In particular, the first L2-Betti number can be computed as the dimension of the right

M⊗Mop-module

H1(A,U ) =
Der(A,U )

Inn(A,U )
.

Here Der(A,U ) denotes the space of derivations from A to U and Inn(A,U ) denotes the

space of inner derivations. These purely algebraically defined L2-Betti numbers have turned

out extremely difficult to compute in the case when A is M itself. Besides finite-dimensional

algebras, the only computational result known in this direction vanishing for von Neumann

algebras with diffuse centre (see [CS05, Corollary 3.5] and [Tho08, Theorem 2.2]). It is

therefore natural to consider variations of the definitions above that take into account the

topological nature of M . The continuous version of the first L2-cohomology module was

introduced by Andreas Thom in [Tho08], where one restricts attention to those derivations

δ:A → U which are closable from the norm topology to the measure topology. Note that

when A is norm closed these are exactly the derivations that are norm–measure topology

continuous by the closed graph theorem. We denote the space of closable derivations by

Derc(A,U ), the continuous cohomology by H1
c (A,U ) and by η

(2)
1 (A, τ) the corresponding

continuous L2-Betti numbers; i.e.

η
(2)
1 (A, τ) = dimM⊗Mop H1

c (A,U ).

Notice that by continuity of multiplication on U , Derc(A,U ) is naturally a right U -module.

The first continuous L2-Betti number satisfies the following compression formula analo-

gous to [CS05, Theorem 2.4]:

Theorem 2.1 ([AK13, Theorem 4.10]). Let M be a II1-factor with trace-state τ and let

p ∈M be a non-zero projection. Then η
(2)
1 (pMp, τp) = 1

τ(p)2 η
(2)
1 (M, τ).

Although the extended von Neumann dimension is generally not faithful, enlarging the

coefficients from M⊗Mop to U has the effect that β
(2)
1 (A, τ) = 0 if and only if H1(A,U )

vanishes [Tho08, Corollary 3.3 and Theorem 3.5]. In particular, in order to prove that
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β
(2)
1 (A, τ) = 0 one has to prove that every derivation from A into U is inner. An analogous

statement holds for continuous L2-cohomology:

Proposition 2.2 ([AK13, Proposition 4.3]). Let M be a finite von Neumann algebra.

We have η
(2)
1 (M) = 0 if and only if H1

c (M,U ) ∼= 0.

2.2. Some properties of convergence in measure. Here we prove several lemmas

which will help us to analyse convergence in measure of some particular operators. The

following lemma tells us that we can analyse convergence in measure “locally”.

Lemma 2.3. Let {an}∞n=1 ⊂ U (N) be a sequence. Then an
m−→ 0 if and only if

(2.1) ∀ε > 0 τ
(
χ[ε2,+∞)(a

∗
nan)

)
→ 0, n→∞.

Proof. Suppose that (2.1) is satisfied. For every ε > 0 set pn := 1− χ[ε2,+∞)(a
∗a). We

obtain

‖anpn‖2 = ‖pna∗nanpn‖ 6 ε2

and

τ(pn)→ 1, n→∞.

Thus, an
m−→ 0.

On the other hand, let an
m−→ 0 and suppose that (2.1) is false. Then, extracting a

subsequence if needed, we may assume that

τ
(
χ[ε2,+∞)(a

∗
nan)

)
> δ, n > N0.

Suppose now that there exists a sequence of projections {qn}∞n=1 such that

‖anqn‖ → 0, τ(qn)→ 1.

Then for sufficiently big n we get τ(qn) > 1− δ/2. Putting rn := χ[ε2,+∞)(a
∗
nan), we obtain

‖anqn‖2 = ‖qna∗nanqn‖ > ‖r′na∗nanr′n‖ > ε2

for r′n := rn ∧ qn, which satisfies τ(r′n) > δ/2, obtaining a contradiction. �

Lemma 2.4. Let an ∈ U (N) be a sequence of selfadjoint elements such that

∀ε > 0 τ
(
χ[−ε,ε](an)

)
→ 0, n→∞.

Then for every nonzero projection p ∈ N

anp9m0.

Proof. From the assumption of the lemma it immediately follows that

∀ε > 0 τ
(
χ[ε2,+∞)(a

∗
nan)

)
→ 1.

Setting rn := χ[ε2,+∞)(a
∗
nan), we get τ(rn) → 1, n → ∞. Now, if τ(p) = δ > 0, then

there exists an N0 such that τ(rn) > 1 − δ/2, n > N0. Thus for such n we obtain that the
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projections qn := rn ∧ p satisfy τ(qn) > δ/2. It follows that

qna
∗
nanqn > ε

2qn,

and hence by Lemma 2.3 qna
∗
nanqn9m0. On the other hand, if anp

m−→ 0, then by boundedness

of qn

qna
∗
nanqn = qnpa

∗
nanpqn

m−→ 0.

This proves the lemma. �

2.3. Continuity properties of derivations. We will be interested in continuity of

certain derivations. To understand it, we recollect some useful notions and properties here.

Let A ⊂M be a weakly dense ∗-subalgebra and δ:A→ U be a derivation. Let

Pδ := {p ∈ Proj(M⊗Mop) | δ · p is continuous}.

Lemma 2.5. Pδ is a complete sublattice of Proj(M⊗Mop).

Proof. If ξ ∈ U , the right U -submodule generated by δ ·ξ contains the derivation δ ·t(ξ),
where t(ξ) is the target projection of ξ. If now p1, p2 ∈ Pδ, then p1 ∧ p2 ∈ Pδ for obvious

reasons, and p1 ∨ p2 ∈ Pδ because δ · (p1 + p2) is continuous and p1 ∨ p2 = t(p1 + p2). If now

{pi}i∈I is an orthogonal family of projections with sum p, then∑
i∈I

τ(pi) = τ(p) 6 1,

and therefore the series ∑
i∈I

δ(x) · pi

converges uniformly in measure to δ(x) · p. As sums of uniformly convergent series of contin-

uous maps are continuous, δ · p is continuous. �

Definition 2.6. We call the unique supremum of Pδ the continuity projection of δ.

Let δ:A→ U be a derivation and σ ∈ Aut(M) be an automorphism with σ(A) = A; by

slight abuse of notation, we still denote by σ the induced automorphism σ ⊗ σop ∈ Aut(U ).

The map

δσ := σ−1 ◦ δ ◦ σ

is then a derivation A → U . If δ is continuous, then δσ is obviously continuous as well.

Notice that for ξ ∈ U we have

(δ · ξ)σ = δσ · σ−1(ξ).

The following observation is easy, but very useful.

Lemma 2.7. If Σ ⊂ Aut(M) is a subgroup of automorphisms of M leaving A invariant

and δσ = δ for σ ∈ Σ, then the continuity projection of δ is Σ-invariant.
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Proof. Let p be the continuity projection of δ. Then δ · p is continuous, and therefore

(δ · p)σ = δσ · σ−1(p).

is continuous as well. If for some σ ∈ Σ we have σ−1(p) 6= p, then σ−1(p) ∨ p ∈ Pδ has p as a

proper subprojection, contradicting maximality. �

2.4. Some automorphisms of free group factors and their mixing properties.

Let α be a trace-preserving automorphism of (LZ, τ), where τ(x) = 〈xδe, δe〉 is the canonical

trace. It induces automorphisms of LF3 obtaining by decomposing LF3 as a free product

with respect to the subalgebras (LZ)a, (LZ)b, (LZ)c generated by a, b and c using the free

product decomposition LF3 = (LZ)a ∗ (LZ)b ∗ (LZ)c. We denote

Auta(LF3) = {α ∗ id ∈ Aut(LF3
∼= (LZ)a ∗ LF2) |α ∈ Aut(LZ, τ)},

Autb(LF3) = {id ∗β ∗ id ∈ Aut(LF3
∼= LZ ∗ (LZ)b ∗ LZ) |β ∈ Aut(LZ, τ)}.

Autc(LF3) = {id ∗γ ∈ Aut(LF3
∼= LF2 ∗ (LZ)c) | γ ∈ Aut(LZ, τ)}.

We get actions of the groups Gc = Autc(LF3), Gbc = Autb(LF3) × Autc(LF3), and G =

Auta(LF3)×Autb(LF3)×Autc(LF3) on LF3.

The following definition of the relative mixing property appeared in [Pop07, Definition

2.9]. We will use a strengthening of it.

Definition 2.8. Let N ⊂ M be a trace-preserving inclusion of finite von Neumann

algebras and let σ:G → Aut(M) be a trace-preserving action of a group G on M such that

σg(N) = N for all g ∈ G. The action σ is called weakly mixing relative to N if for every

finite set F ⊂M 	N and for every ε > 0 there is a g ∈ G such that

‖EN (y∗σg(x))‖2 < ε, x, y ∈ F.

An action σ which is weakly mixing relative to N = C is called weakly mixing.

When N is pointwise fixed by the action, we get the following result resembling the

classical equivalent characterisations of weakly mixing actions (cf. [Vae07, Proposition D.2]).

Proposition 2.9. Let N ⊂ M be a trace-preserving inclusion of finite von Neumann

algebras σ:G → Aut(M) be a trace-preserving action such that σg(n) = n for all g ∈ G and

n ∈ N . Then each of the following conditions implies the next one:

(i) σ is weakly mixing relative to N ;

(ii) for every x1, . . . , xn ∈ M 	 N there exists a sequence gj ∈ G such that for every

y ∈M ‖EN (y∗σgj (xi))‖2 → 0, j →∞, i = 1, . . . , n.

(iii) every finite-dimensional invariant subspace of M is contained in N ;

(iv) for every action ρ of G on a finite von Neumann algebra P

(M⊗P )σ⊗ρ = N⊗P ρ.
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Proof. The proof of [Vae07, Prop. D.2] goes through with small modifications. i) ⇒ ii)

is immediate. To show ii) ⇒ iii), take a finite-dimensional invariant subspace V ⊂ M .

Consider the space V ′ := (1−EN )(V ) ⊂M 	N ; it is also finite-dimensional and G-invariant.

But in view of ii) we have for every x ∈ V ′ and y ∈M that

τ(EN (y∗σgj (x))) =
〈
σgj (x), y

〉
→ 0, j →∞.

It means that σgj (x)→ 0 weakly as j →∞. As V ′ is finite-dimensional, this implies conver-

gence to zero in norm, and as the G-action is norm-preserving, this means that x = 0. Thus,

V ′ = {0}, thus V lies in N .

To show iii) ⇒ iv), take T ∈ (M⊗P )σ⊗ρ ⊂ L2(M) ⊗ L2(P ) and view it as a Hilbert–

Schmidt operator T :L2(P ) → L2(M). Then the image of T is contained in M , and the

operator TT ∗ is trace-class and commutes with the G-action. Taking its spectral projection,

we obtain a finite-dimensional G-invariant subspace of M , which is necessarily contained in

N by iii). Thus, the image of T lies in N , and therefore T ∈ N⊗P ρ. �

Lemma 2.10. Let Q and N be finite von Neumann algebras and σ:G→ Aut(Q) a trace-

preserving weakly mixing action of a group G on Q. Then the action σ ∗ id of G on the free

product von Neumann algebra M = Q ∗N is weakly mixing relative to N .

Proof. By a standard density argument it is enough to check the relative weak mixing

condition on the algebraic free product M = Q ∗alg N ⊂ M , which is the algebra generated

by Q and N inside M . It is spanned by N and alternating products of elements from N 	C1

und Q 	 C1; without loss of generality we may and will assume that the operator norms of

all factors are bounded by 1. Moreover we have

EN (n) = n, n ∈ N

and

EN (q1n1 · · · qk−1nk−1qk) = 0

for qi ∈ Q	 C1, ni ∈ N 	 C1. Thus, for qi, q
′
i ∈ Q	 C1, ni, n

′
i ∈ N 	 C1 we get

EN (q1n1 · · · qknkn′`q′` · · ·n′1q′1) = 0, k 6= `,

EN (q1n1 · · · qknkn′kq′k · · ·n′1q′1) = EN (n1q1 · · ·nkqkq′kn′k · · · q′1n′1) =

k∏
i=1

τ(nin
′
i)τ(qiq

′
i).

Thus, M	N is spanned by the alternating products of elements from N	C1 and Q	C1,

and it’s enough to check the weak mixing property for such alternating products. Given a

finite set F of them, let F ′ ∈ Q	C1 be all factors from Q	C1 occuring in the products. By

the weak mixing property we find a g ∈ G such that

|τ(qσg(q
′))|< ε < 1, q, q′ ∈ F ′.
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The above formulae for EN then imply for two elements x, y ∈ F that EN (y∗σg(x)) = 0 unless

y∗ = nq1n1 · · · qknk and x = n′kq
′
k · · ·n′1q′1n′,

where qi, q
′
i ∈ Q	C1, ni, n

′
i ∈ N 	C1, ‖ni‖ 6 1, ‖n′i‖ 6 1, ‖qi‖ 6 1, ‖q′i‖ 6 1, n, n′ ∈ N with

‖n‖ 6 1, ‖n′‖ 6 1.

In this case we get

‖EN (nq1n1 · · · qknk(σg ∗ id)(n′kq
′
k · · ·n′1q′1n′))‖2 6

k∏
i=1

|τ(nin
′
i)τ(qiσg(q

′
i))|< ε

which proves the statement. �

Using the existence of weakly mixing actions on an arbitrary finite von Neumann algebra

(e.g. Bernoulli actions [Pop06, Sect. 2.4]) and Proposition 2.9, we obtain

Corollary 2.11. Consider the actions of Gc = Autc(LF3), Gbc = Autb(LF3)×Autc(LF3),

and G = Auta(LF3)×Autb(LF3)×Autc(LF3) on LF3 described above. Then

(i) every Gbc-invariant element LF3⊗LFop
3 is contained in (LZ)a⊗(LZ)op

a ;

(ii) every Gc-invariant element LF3⊗LFop
3 is contained in (LF2)ab⊗(LF2)op

ab .

3. Non-continuous derivations

Let F3 = 〈a, b, c〉 be a free group on three generators. We will naturally view F2 = 〈b, c〉
as a subgroup of F3. It’s well-known that F2 = 〈b, c〉 contains a copy of F∞ = 〈g1, g2, . . . 〉,
and we well fix such a copy.

We recall that the derivation

∂a:C[F3]→ U (LF3⊗LFop
3 )

is uniquely defined by the conditions

∂a(a) = a⊗ 1op, ∂a(b) = ∂a(c) = 0.

It can obviously be extended to the algebra generated by a and (LF2)bc, and we will still

denote this extension by ∂a.

Proposition 3.1. Let p ∈ LF3⊗LFop
3 be a nonzero projection. There is no norm-measure

continuous extension of ∂a · p to LF3.

Proof. We will first construct a particular sequence yn ∈ C[F3] such that ‖yn‖∞ →
0, n→∞, but ∂a(yn)9m0. We set

xn := g1ag2ag3a · · · agna ∈ C[F3]

and consider

∂a(xn) =

n∑
k=1

g1a · · · gka⊗ gk+1a · · · gna
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The elements

g1a, g1ag2a, . . . , g1ag2a · · · gna ∈ F3

are free. Indeed, the family {gia}ni=1 is free, because {gi}ni=1 is a free family which is itself

free from a.

Therefore the elements

(g1a · · · gka, gk+1a · · · gna) ∈ F3 × Fop
3 , k = 1, n

are free and hence form a freely independent family of unitaries {ui}ni=1 ⊂ LF3⊗LFop
3 . Con-

sider the elements

hn := Re ∂a(xn) =
1

2
(∂a(xn) + ∂a(xn)∗) =

1

2

n∑
i=1

(ui + u∗i ) ∈ LF3⊗LFop
3 .

The spectral density of this operator can be computed using free probability theory. Indeed,

hn is an instance of a scaled random walk operator on a free group, and therefore we can use

the formula for the Cauchy transform for its spectral density from [VDN92, Example 3.4.5]:

Ghn(ζ) =
nζ
√

1− (2n− 1)ζ−2 − (n− 1)

ζ2 − n2

Using the Stieltjes inversion formula, we get the spectral density of hn:

dµhn =


n
√

(2n− 1)− x2

n2 − x2
dx, x ∈ [−

√
2n− 1,

√
2n− 1],

0 otherwise.

We see that

τ

(
χ[−ε,ε]

(
hn
4
√
n

))
=

∫ ε 4√n

−ε 4√n

n
√

(2n− 1)− x2 dx

n2 − x2
6

2ε · n5/4
√

2n− 1

n2 − ε2
√
n

→ 0, n→∞.

In view of Lemma 2.4, for every nonzero projection p ∈ LF3⊗LFop
3 we get

hn
4
√
n
· p9m0, n→∞.

In particular,

∂a

(
xn
4
√
n

)
9m0, n→∞,

although xn/
4
√
n converges to 0 in norm, because ‖xn‖∞ = 1. Thus, yn := xn/

4
√
n satisfies

the required properties, and the derivation ∂a is not continuous.

Now we have to show that the continuity projection q of δ is equal to 0. The derivation

∂a is invariant under the actions of the groups Autb(LF3) and Autc(LF3). By Lemma 2.7 we

get that q is invariant under Autb(LF3) and Autc(LF3), hence by Corollary 2.11, i) it belongs

to (LZ)a⊗(LZ)op
a .
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Now, for α ∈ Auta(LF3) we infer that

∂αa (x) = α−1(∂a(α(x)))α−1(q) = ∂a · (a−1 ⊗ 1op)α−1(∂a(α(a)))α−1(q)

is continuous (the last equality follows by evaluating at a, b, c). The support projection of

(a−1 ⊗ 1op)α−1(∂a(α(a)))α−1(q) is equal to α−1(q), and by maximality of q it follows that

α−1(q) = q. Therefore, q = 0 or q = 1, but the latter case is impossible because ∂a is not

continuous.

�

For obvious symmetry reasons, the statement of Proposition 3.1 is also true for the deriva-

tions

∂b, ∂c:C[F3]→ U (LF3⊗LFop
3 )

uniquely determined by the conditions

∂b(b) = b⊗ 1op, ∂b(a) = ∂b(c) = 0

resp.

∂c(c) = c⊗ 1op, ∂c(a) = ∂c(b) = 0.

Is is well-known that for every nonzero projection p ∈ LF3⊗LFop
3 the derivations ∂a·p, ∂b·p,

∂c·p are not inner. The derivations ∂a, ∂b, ∂c freely generate the module Der(CF3,U (LF3⊗LFop
3 )).

Theorem 3.2. The first continuous L2-cohomology of LF3 vanishes:

H1
c (LF3,U (LF3⊗LFop

3 )) ∼= 0.

Proof. The restriction of δ to CF3 is a derivation and therefore can be uniquely written

as a combination of ∂a, ∂b, ∂c:

δ(x) = ∂a(x) · ξ′′a + ∂b(x) · ξ′′b + ∂c(x) · ξ′′c , x ∈ CF3

for some ξ′′a , ξ
′′
b , ξ

′′
c ∈ U (LF3⊗LFop

3 ). As inner derivations are continuous, after subtracting

an inner derivation we may assume that ξc = 0 and

δ(x) = ∂a(x) · ξ′a + ∂b(x) · ξ′b, x ∈ CF3.

The right U -module generated by ∂a ·ξa contains ∂a ·pa, where pa is the target projection

of ξa. As the right U -action preserves continuity, we may assume that ξa = pa and that δ

has the form

δ(x) = ∂a(x) · pa + ∂b(x) · ξb, x ∈ CF3.

Multiplying from the right with (1− pa) and using Proposition 3.1, we deduce ξb(1− pa) = 0.

Thus, rk ξb 6 rk pa; reasoning symmetrically, we infer rk ξb = rk ξa = rk pa. We also observe

that for every δ ∈ Derc(CF3,U (LF3⊗LFop
3 )), the elements pa and ξb are uniquely determined.

Now, let

Pcont = {p ∈ Proj(LF3⊗LFop
3 ) | ∃δ ∈ Derc(CF3,U (LF3⊗LFop

3 )): p = pa}.
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Analogously to Lemma 2.5, we are going to prove that Pcont is a complete lattice. Indeed,

if p1, p2 ∈ Pcont, then p1 ∧ p2 ∈ Pcont because p1 · (p1 ∧ p2) = p1 ∧ p2. Now, if δ1 and δ2 are

derivations corresponding to p1 resp. p2, then p1∨p2, being the support projection of p1 +p2,

corresponds to the derivation δ1 + δ2. Completeness of Pcont is proven as follows: if let (pi)i∈I

be an orthogonal family in Pcont with corresponding derivations δi with elements ξ′b,i. By the

observation above, rk(ξ′b,i) = rk(pi). But then∑
i∈I

rk(ξ′b,i) =
∑
i∈I

rk(pi) 6 1

and therefore as in Lemma 2.5 the series∑
i∈I

δi(x) =
∑
i∈I

(∂a(x) · pi + ∂b(x) · ξb,i)

converges uniformly in measure to a derivation δ having the supremum of pi as the corre-

sponding projection pa.

Thus, Pcont is a complete lattice. Let p be its maximal element. In view of the equalities

δβ(x) = ∂a(x) · β−1(pa) + β−1(∂b(β(x)))β−1(ξb)

and

δγ(x) = ∂a(x) · γ−1(pa) + ∂b(x) · γ−1(ξb)

for β ∈ Autb(LF3) and γ ∈ Autc(LF3) we get by maximality that p is invariant under

Autb(LF3) and Autc(LF3). Therefore by Corollary 2.11, i) we deduce that p ∈ (LZ)a⊗(LZ)op
a .

Now, for α ∈ Auta(LF3) we get that

δα(x) = α−1(∂b(α(x)))α−1(p) + ∂b(x) · α−1(ξb)

= ∂a · (a−1 ⊗ 1op)α−1(∂a(α(x)))α−1(p) + ∂b(x) · α−1(ξb)

is continuous. The support projection of (a−1 ⊗ 1op)α−1(∂a(α(a)))α−1(p) is equal to α−1(p),

and by maximality of p it follows that α−1(p) = p. Therefore, p = 0 or p = 1.

If p = 1, we are given a continuous derivation of the form

δ0(x) = ∂a(x) + ∂b(x) · ζb, x ∈ CF3.

For γ ∈ Autc(LF3) we obtain

δγ0 (x) = ∂a(x) + ∂b(x) · γ−1(ζb), x ∈ CF3.

As δγ0 − δ0 is continuous, Proposition 3.1 implies that

γ−1(ζb) = ζb, γ ∈ Autc(LF3).

Thus using Corollary 2.11, ii), we get that ζb ∈ U (LF2⊗LFop
2 ), where LF2 ⊂ LF3 is generated

by a and b. Consider the restriction of the derivation δ to LF2. Subtracting an inner derivation

and multiplying with a suitable element of U (LF2⊗LFop
2 ) from the right, we may assume



3. NON-CONTINUOUS DERIVATIONS 45

that the derivation

δ1(x) = ∂a(x)ra, x ∈ CF2,

is continuous for some nonzero projection ra. Thus, the continuity projection of ∂a:CF2 →
U (LF2⊗LFop

2 ) is nonzero. Arguing as in Proposition 3.1, we deduce that the continuity

projection of ∂a:CF2 → U (LF2⊗LFop
2 ) is equal to 1. For symmetry reasons, ∂b:CF2 →

U (LF2⊗LFop
2 ) is continuous as well. Therefore the module Derc(LF2,U (LF2⊗LFop

2 )) of

continuous derivations is two-dimensional, and hence the first continuous L2-Betti number of

LF2 is equal to 1:

η
(2)
1 (LF2) = 1.

But then by the compression formula (Theorem 2.1) we obtain

η
(2)
1 (LF3) = 2,

which contradicts the result of Proposition 3.1 that the submodule generated by ∂a consists

of discontinuous derivations. �

As a corollary we get the following result.

Theorem 3.3. The first continuous L2-cohomology of an interpolated free group factor

Fr, 1 < r <∞, vanishes:

H1
c (LFr,U (LFr⊗LFop

r )) ∼= 0.

Proof. This follows immediately from the case r = 3 by the compression formula (The-

orem 2.1) and Proposition 2.2. �

In particular, the answer to the question of Andreas Thom in [Tho08] is negative:

Voiculescu’s free difference quotients don’t have continuous extensions to LFn. Our result

also allows to ask, whether η
(2)
1 (M) = 0 for all II1-factors M . While preparing this publi-

cation, we’ve been informed that Sorin Popa and Stefaan Vaes answered the above question

affirmatively in [PV14] extending the key idea of Proposition 3.1 from free group factors to

all finite von Neumann algebras.





Bibliography

[AK13] Vadim Alekseev and David Kyed. Measure continuous derivations on von Neumann algebras and

applications to L2-cohomology. Arxiv preprint arXiv:1110.6155 (rev. 2), 2013. ↑33, ↑36, ↑37

[Ati76] M. F. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. In Colloque “Analyse

et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), pages 43–72. Astérisque, No. 32–33. Soc.
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CHAPTER 3

Quadratic modules, C∗-algebras, and free convexity

Abstract

Given a quadratic module, we construct its universal C∗-algebra, and then use meth-

ods and notions from the theory of C∗-algebras to study the quadratic module. We define

residually finite-dimensional quadratic modules, and characterize them in various ways, in

particular via a Positivstellensatz. We give unified proofs for several existing strong Posi-

tivstellensätze, and prove some new ones. Our approach also leads naturally to interesting

new examples in free convexity. We show that the usual notion of a free convex hull is not

able to detect residual finite-dimensionality. We thus study a notion of free convexity which

is coordinate-free. We characterize semialgebraicity of free convex hulls of semialgebraic sets,

and show that they are not always semialgebraic, even at scalar level. This also shows that

the membership problem for quadratic modules (a well-studied problem in Real Algebraic

Geometry) has a negative answer in the non-commutative setup.

1. Introduction

Quadratic modules are well-studied objects in real algebra. They are generalizations of

the cone of sums of squares, and play the role in Positivstellensätzen that ideals play in

Nullstellensätzen. The commutative theory of quadratic modules is quite well-understood

(see [5, 22, 26] or [28] for a survey). Interest in the non-commutative theory is much more

recent (see [29] for a survey; more references to non-commutative Positivstellensätze can be

found throughout this article). Also a quite new development with many recent results is

free convexity (see for example [8,13,15,16]). Instead of looking at convex sets in Rd only,

one considers sets of matrix-tuples of all sizes simultaneously. A suitable notion of convexity

then relates the different matrix levels. All these notions are well-motivated by applications

in such diverse areas as quantum physics, linear systems engineering, free probability and

semidefinite optimization (see [13] for more information).

In this paper, our contribution is the following. In Section 2 we consider the C∗-algebra

that one can canonically assign to an (archimedean) quadratic module (this was also done in

[7]). With this construction, some of the most important methods from operator algebra pass

to quadratic modules, as we explain. After assembling the necessary techniques, we define

residually finite-dimensional (r.f.d.) quadratic modules in Section 3. This notion exists for

C∗-algebras, and has interesting characterizations when formulated for quadratic modules. It

49



50 3. QUADRATIC MODULES, C∗-ALGEBRAS, AND FREE CONVEXITY

corresponds to a Positivstellensatz with positivity at finite-dimensional representations. In

this context we give alternative and uniform proofs for the strong Positivstellensätze from

[14, 17], and prove the same results for more classes of examples. In Section 4 we investi-

gate free convexity, showing in particular that the coordinate-based approach is not always

able to detect the property r.f.d. of a quadratic module. We thus suggest a coordinate-free

approach towards free convexity. We characterize free convex hulls of semialgebraic sets to

be semialgebraic at each matrix level. We produce examples showing that both matrix- and

operator-convex hulls of free semialgebraic sets can fail to be semialgebraic, even at scalar

level. This also shows that for a finitely generated quadratic module in a free algebra, the

intersection with a finite-dimensional subspace can fail to be semialgebraic. So the member-

ship problem has a negative answer in the non-commutative setup (see [2] for partial positive

answers in the commutative case).

For further references on matrix- and operator convexity consult [8,13,15,16,24].

2. Universal C∗-algebras of quadratic modules

In this section we define the most important notions of the paper, and assemble important

techniques for later use.

Definition 2.1. A quadratic module (A,Q) is a pair consisting of a unital complex ∗-
algebra and a subset Q ⊆ Ah, where Ah denotes the R-subspace of hermitian elements of A,

such that 1 ∈ Q and

a, b ∈ Q, c ∈ A ⇒ c∗(a+ b)c ∈ Q.

Definition 2.2. The quadratic module (A,Q) is archimedean if `−a∗a ∈ Q for any a ∈ A

and large enough `, or equivalently ` − a ∈ Q for any a ∈ Ah and large enough `. It is also

enough to require this for generators of A only (see [7] for technical details).

It’s clear from the definitions that any quadratic module contains sums of squares

Σ2A =

{
n∑
i=1

a∗i ai |n ∈ N, ai ∈ A

}
.

In the sequel, if we don’t specify a quadratic module in a ∗-algebra A, we always assume that

it comes with the smallest quadratic module Σ2A. Notice that for a C∗-algebra A, Σ2A is

just the set of positive elements of A (for an introduction to C∗-algebras consult for example

[1]).

Definition 2.3. Let (A,Q) and (B,R) be two quadratic modules. Their tensor product

(A,Q)⊗ (B,R)

is defined to be the smallest quadratic module in A⊗B containing the set {q⊗r | q ∈ Q, r ∈ R}.
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Example 2.4. (1) If (B,R) = Mn(C), then

(A,Q)⊗Mn(C) =

(
Mn(A),

{∑
finite

(a∗i qaj)ij | a1, . . . , an ∈ A, q ∈ Q

})
.

For sake of brevity we denote this quadratic module also by Q⊗Mn. It is not hard to check

that Q⊗Mn is archimedean, if Q was.

(2) Let R ⊆ R be an extension of real closed fields. Then C ⊆ C = R[i] is an extension of

algebraically closed fields, and C is a unital ∗-algebra over C with Ch = R. For Q = Σ2C =

R+ we find Q ⊗Mn = Mn(C)+, the set of positive semidefinite hermitian matrices over C.

Note that semidefiniteness has the same characterizations over C as over C, for example by

Tarski’s Transfer Principle (see for example [26] for details on real closed fields and their

model-theoretic properties).

Definition 2.5. Let (A,Q) and (B,R) be two quadratic modules.

(i) A unital completely positive morphism (u.c.p. morphism)

%: (A,Q)→ (B,R)

is a unital ∗-linear map %:A→ B such that for every n ∈ N,

(%⊗ id)(Q⊗Mn) ⊆ R⊗Mn.

(ii) A homomorphism between quadratic modules

π: (A,Q)→ (B,R)

is a unital ∗-homomorphism π:A→ B such that π(Q) ⊆ R.

(iii) A representation of a quadratic module (A,Q) is a homomorphism

π: (A,Q)→ B(H),

where H is a Hilbert space.

Notice that any ∗-homomorphism between quadratic modules is obviously a u.c.p. mor-

phism. Of course, a representation of (A,Q) is just a ∗-representation π:A→ B(H) fulfilling

π(q) > 0 for all q ∈ Q. We will see that representations of a quadratic module are in one-to-one

correspondence with the representations of its universal C∗-algebra.

Although the collection of all representations of a quadratic module is in general not a

set, this problem can be avoided by appropriately resticting the cardinality of the target

Hilbert space, for instance, bounding it to the cardinality of the universal representation

of the corresponding C∗-algebra. We will tacitly do this and denote by Rep(A,Q) the set

of all representations of a quadratic module (A,Q) and by Repfd(A,Q) the subset of finite-

dimensional representations.
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Definition 2.6. Let (A,Q) be an archimedean quadratic module. We equip the algebra

A with the seminorm

‖a‖Q = sup
π∈Rep(A,Q)

‖π(a)‖.

The supremum is finite, because

‖π(a)‖2 = ‖π(a∗a)‖ 6 `, π ∈ Rep(A,Q),

if `− a∗a ∈ Q. In fact we have

‖a‖Q= inf
{
` | `2 − a∗a ∈ Q

}
,

which follows by separation from the archimedean cone Q, and the GNS construction.

As in [7], the (separated) completion of A with respect to ‖·‖Q is denoted by C∗(A,Q)

and called the universal C∗-algebra of (A,Q). We denote by ι:A → C∗(A,Q) the canonical

map with dense image.

The name “universal” comes from the following fact:

Proposition 2.7. Let (A,Q) be an archimedean quadratic module, ι:A → C∗(A,Q) the

canonical map, and B a C∗-algebra.

(i) ι is a homomorphism of quadratic modules and respects the (semi)-norm.

(ii) There is a one-to-one correspondence between u.c.p morphisms %: (A,Q) → B and

u.c.p. morphisms %:C∗(A,Q) → B. The correspondence is given by the formula % = % ◦ ι.
This correspondence maps homomorphisms to homomorphisms.

Proof. (i) For any ` > ‖q‖Q we have `2 − q∗q ∈ Q. Then

`− q =
1

2`

(
(`2 − q∗q) + (`− q)∗(`− q)

)
∈ Q.

In particular 2`− q ∈ Q and thus

`2 − (`− q)∗(`− q) =
1

2`
((2`− q)∗q(2`− q) + q∗(2`− q)q) ∈ Q.

This proves ‖` − q‖Q≤ `, whenever ` > ‖q‖Q. The same then holds in C∗(A,Q), and this is

well known to imply positivity in a C∗-algebra.

For (ii) first note that ι is u.c.p., and any u.c.p. map on C∗(A,Q) is continuous. Further,

any u.c.p. map % on (A,Q) factors through C∗(A,Q). Indeed if ‖a‖Q= 0, then ε − a∗a ∈ Q

for all ε > 0. Then(
1 a

a∗ ε

)
=

(
1

a∗

)(
1 a

)
+

(
0

1

)
(ε− a∗a)

(
0 1

)
∈ Q⊗M2

and thus (
1 %(a)

%(a)∗ 0

)
> 0,
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which implies %(a) = 0. Finally, (ι⊗id)(Q⊗Mn) is dense in the positive elements of C∗(A,Q)⊗
Mn(C), so % is u.c.p. �

We now formulate some important techniques from operator algebra in the context of

quadratic modules (see [24] for the corresponding results for C∗-algebras).

Proposition 2.8 (Stinespring’s Dilation Theorem). Let (A,Q) be an archimedean qua-

dratic module and let

%: (A,Q)→ B(H%)

be a u.c.p. morphism. Then there is a representation π: (A,Q) → B(Hπ) and an isometry

γ:H% ↪→ Hπ such that % = γπ, where

γπ(a) = (γ∗ ◦ π(a) ◦ γ).

Proof. For C∗-algebras, this is precisely the statement of Stinespring’s Dilation Theorem

([24], Theorem 4.1). The version for quadratic modules is immediate from Proposition 2.7.

�

Now let V ⊆ A be a unital ∗-subspace. For n ∈ N we equip the ∗-space V⊗Matn(C) with

the convex cone

(Q⊗Mn)|V := (Q⊗Mn) ∩ (V⊗Mn(C)) .

A unital ∗-linear mapping %:V→ B(H) is again called u.c.p. if all mappings %⊗ id map these

cones to positive elements.

Proposition 2.9 (Arveson’s Extension Theorem). Let (A,Q) be an archimedean qua-

dratic module and V ⊆ A a unital ∗-subspace. Then any u.c.p. map %:V→ B(H) extends to

a u.c.p. map %:A→ B(H).

Proof. Any u.c.p. map %:V → B(H) factors through ι(V), by the same argument as in

Proposition 2.7. We show that the resulting map %: ι(V) → B(H) is u.c.p., and the result

then clearly follows from the standard version of Arveson’s Extension Theorem [24, Theorem

7.5].

It is not hard to check that C∗(A ⊗Mn(C),Q ⊗Mn) = C∗(A,Q) ⊗Mn(C) holds. Every

∗-linear functional ϕ:A⊗Mn(C)→ C which is nonnegative on Q⊗Mn is automatically u.c.p.,

and thus extends to a u.c.p. functional on C∗(A,Q)⊗Mn(C). So if (ι⊗ id)(M) > 0 for some

M ∈ V⊗Mn(C), then M ∈ (Q⊗Mn)∨∨, the double dual cone. Since Q⊗Mn is archimedean,

this means M + ε ∈ Q⊗Mn, and this implies (%⊗ id)(M) > 0. This proves that % is u.c.p. �

Given %:V→ B(H) ∗-linear, where H is of finite dimension n, we define a functional

c%:V⊗Mn(C)→ C

v ⊗M 7→ tr(%(v)M).
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Proposition 2.10 (Choi’s Theorem). Let (A,Q) be an archimedean quadratic module and

V ⊆ A a unital ∗-subspace. Let H be a Hilbert space of dimension n <∞, and %:V→ B(H)

unital ∗-linear. Then the following are equivalent:

(i) % is u.c.p.

(ii) %⊗ id maps (Q⊗Mn)|V to positive operators.

(iii) c% is nonnegative on (Q⊗Mn)|V.

Proof. Clear from the standard version of Choi’s Theorem [24, Theorem 6.1] and the

above considerations. �

We finally formulate the real closed separation theorem from [23] in the more general

context of quadratic modules.

Definition 2.11. The quadratic module (A,Q) is called tame, if Q =
⋃
i∈I Qi, where

• (I,≤) is a directed poset

• each Qi is a closed convex cone in a finite-dimensional subspace of Ah

• i ≤ j ⇒ Qi ⊆ Qj for all i, j ∈ I
• for each finite-dimensional subspace V ⊆ A and each i ∈ I there exists j ∈ I such

that V∗QiV ⊆ Qj .

Example 2.12. Assume Q ∩ −Q = {0} and Q admits a generating set S ⊆ Q, such that

v∗qv = 0⇒ v = 0

holds for all v ∈ A, q ∈ S. Then (A,Q) is tame. To see this, let

I = {(V, T ) | V finite-dimensional subspace of A, T ⊆ S finite}

be equipped with the obvious partial order. For i = (V, T ) ∈ I we define

Qi =

∑
q∈T

∑
j

v∗qjqvqj | vqj ∈ V

 .

Using the arguments from [25, Proposition 2.6 and Lemma 2.7], closedness of Qi follows if we

show ∑
q∈T

∑
j

v∗qjqvqj = 0⇒ vqj = 0 ∀q, j.

But this is clear from our assumptions.

Theorem 2.13. Let (A,Q) be a tame quadratic module, and a ∈ Ah \ Q. Then there

exists an extension R ⊆ R of real closed fields, a C-vector space H with inner product, a

∗-homomorphism of C-algebras

π:A⊗C C→ L(H)
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mapping Q⊗R+ to positive operators, and ξ ∈ H with

〈π(a⊗ 1)ξ, ξ〉 < 0.

Furthermore, ξ can be assumed to be cyclic w.r.t. π, meaning each h ∈ H is of the form π(b)ξ

for some b ∈ A⊗C.

Proof. Since the argument is an adaption of the results in [23], we skip the technical

details. For every i ∈ I we find a linear functional ϕi:A
h → R with ϕi ≥ 0 on Qi and ϕ(a) < 0.

Choose an ultrafilter ω on I containing all the the upper sets {i ∈ I | i ≥ j}, and let R = Rω

be the ultrapower. Then the R-linear map ϕ:Ah → R; b 7→ (ϕi(b))i∈I separates b from Q

(using  Los’s Theorem from model theory), and we can extend ϕ to a unital ∗-linear map

ϕ:A→ C = R[i]. Using the fourth property from the definition of a tame quadratic module

(and  Los’s Theorem again), one checks that ϕ is u.c.p. It follows that the C-linear map

ϕ⊗ id:A⊗C C→ C is nonnegative on Q⊗R+, and we perform the usual GNS construction,

that works as well over C. From this the result follows. �

3. Residually finite-dimensional quadratic modules

We now define the notion of a residually finite-dimensional quadratic module, and char-

acterize it in several ways. First, the notion of the Fell topology for ∗-representations of

C∗-algebras easily generalises to u.c.p. maps (see [4, Section F.2] for more details on the Fell

topology).

Definition 3.1. Let A be a C∗-algebra and %:A→ B(H) be a u.c.p. map. A functional

of positive type associated with % is a functional

ϕ(a) = 〈%(a)ξ, ξ〉 ,

where ξ ∈ H is a unit vector. We denote the set of such functionals by Pos(%) ⊂ A∗.

Definition 3.2. Let A be a C∗-algebra and %:A → B(H%) be a u.c.p. map, let F ⊂ A

and Φ ⊂ Pos(%) be finite. The neighborhood system

N(%, F,Φ, ε) ={
%′:A→ B(H%′) u.c.p. | ∀ϕ ∈ Φ ∃ψi ∈ Pos(%′) ∀a ∈ F :

∣∣∣∣∣ϕ(a)−
∑
finite

ψi(a)

∣∣∣∣∣ < ε

}
defines a topology on the set of u.c.p. maps A→ B(H) called the Fell topology. We say that

a u.c.p. map %′ is weakly contained in %, denoted %′ ≺ %, if %′ ∈ {%}.

The Fell topology just defined clearly coincides with the usual Fell topology when re-

stricted to the set of representations of A. The Stinespring Dilation Theorem implies at once

that any u.c.p. map is weakly contained in its Stinespring dilation.
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Definition 3.3. An archimedean quadratic module (Q,A) is residually finite-dimensional

(r.f.d.) if its universal C∗-algebra C∗(A,Q) is residually finite dimensional, meaning that finite

dimensional representations are dense in the set of all representations.

Theorem 3.4. For an archimedean quadratic module (A,Q), the following are equivalent:

(i) (A,Q) is r.f.d.

(ii) For any a ∈ Ah, whenever π(a) > 0 for all π ∈ Repfd(A,Q), then

a+ ε ∈ Q ∀ε > 0.

Proof. (i) ⇒ (ii): if C∗(A,Q) is r.f.d., π(a) > 0 for all π ∈ Repfd(A,Q) is equivalent to

π(a) > 0 for all π ∈ Rep(A,Q). By the abstract Positivstellensatz [29], a+ ε ∈ Q for all ε > 0

is equivalent to π(a) > 0 for all π ∈ Rep(A,Q).

(ii)⇒ (i): a+ε ∈ Q for all ε > 0 implies ι(a) > 0 in C∗(A,Q). If positivity in a C∗-algebra

is detected by finite-dimensional representations, then the C∗-algebra is r.f.d. �

Remark 3.5. Besides the above Positivstellensatz, property r.f.d. is also interesting from a

computational point of view. The (semi)-norm ‖a‖Q of an element a ∈ A can be approximated

in the following way (see also [11] for more information): Upper bounds are obtained by

computing numbers ` such that `2 − a∗a ∈ Q. This is a semidefinite program, if only finitely

many generators of Q and sums of squares from a finite-dimensional subspace of A are used.

Making these constraints less and less restrictive, the sequence of upper bounds converges to

‖a‖Q from above.

Now a sequence of lower bounds is obtained by computing sup‖π(a)‖ over all represen-

tations π of some bounded dimension. In case of a finitely generated quadratic module in a

finitely generated algebra, this is a semialgebraic decision problem, which is decidable. If Q

is r.f.d., these lower bounds will also converge to ‖a‖Q, with growing dimension.

Lemma 3.6. A C∗-algebra A is r.f.d. if and only if the set of its finite-dimensional repre-

sentations is dense in the set of u.c.p. maps A→ B(H).

Proof. A C∗-algebra A is r.f.d. iff if the set of its finite-dimensional representations is

dense in the set of all representations, which is in turn dense in the set of all u.c.p. maps by

the remark above. �

Definition 3.7. A u.c.p. map %:A→ B(H) is finite-dimensional if H is finite-dimensional.

A u.c.p. map %:A → B(H) is strongly finite-dimensional if it possesses a finite-dimensional

Stinespring dilation.

Theorem 3.8. For a unital C∗-algebra A, the following are equivalent:

(i) A is r.f.d.
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(ii) For every finite-dimensional u.c.p. map %:A→ B(H), every finite F ⊂ A and every

ε > 0 there exists a strongly finite-dimensional u.c.p. map %̃:A→ B(H) such that

‖%(a)− %̃(a)‖≤ ε, a ∈ F.

(iii) Every state ω:A → C is a weak∗-limit of states associated to finite-dimensional

representations.

Proof. The equivalence of (i) and (iii) is well-known, and (ii) obviously implies (iii). The

proof that (i) implies (ii) is essentially the argument from [19, Proposition 2.2]. �

Example 3.9. If A is commutative (with trivial involution), then every archimedean qua-

dratic module in A is r.f.d. This follows for example via Theorem 3.4 from the commutative

archimedean Positivstellensatz [22, Theorem 5.4.4], or can be deduced via functional calculus

for commuting families of operators.

Example 3.10. Let Γ be a group, and A = CΓ the group algebra, equipped with Q =

Σ2A2. Then r.f.d. for Q is a well-studied property in group theory. There are groups which

are r.f.d., for example free groups Fm [6] or surface groups [21], and there are groups which

are not r.f.d., like SLn(Z) for n ≥ 3 (they have Kazhdan’s Property (T) and thus each finite-

dimensional representation is an isolated point in the Fell topology, see [4]).

Example 3.11. We consider the class of examples from [14]. Let A = C〈z1, . . . , zn〉 be

the free algebra with z∗i = zi. Fix Hermitian matrices M1, . . . ,Mn ∈Ms(C)h and let

L = Is +M1z1 + · · ·+Mnzn

be the associated linear matrix pencil. Then

Q =

∑
j

p∗jpj + q∗jLqj | pj , qj ∈ As


is a quadratic module in A which is r.f.d. This can be deduced from the Positivstellensatz in

[14], but we prove it directly, and in fact re-prove this Positivstellensatz with our method. A

representation π ∈ Rep(A,Q) is just a tuple T = (T1, . . . , Tn) of self-adjoint operators on a

Hilbert space H, fulfilling

L(T ) = Is ⊗ idH +M1 ⊗ T1 + · · ·+Mn ⊗ Tn > 0

(to see this, use that π can be assumed to admit a cyclic vector). For any isometry γ: H̃→ H

we set γ∗Tγ = (γ∗T1γ, . . . , γ
∗Tnγ) and find

L(γ∗Tγ) = (Is ⊗ γ)∗L(T )(Is ⊗ γ) > 0.

So the tuple γ∗Tγ gives rise to a representation π̃ of Q again. The usual compression trick

[23, Theorem 6.1] shows that for finite-dimensional subspaces V ⊆ A, H0 ⊆ H, there is some
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isometry γ:H1 → H from a finite-dimensional space H1 ⊇ H0, such that

p(γ∗Tγ) ≡ γ∗p(T )γ(3.1)

on H0, for all p ∈ V. Thus π̃ ∈ Rep(A,Q) is close to π in the Fell topology. This shows that

(A,Q) is r.f.d., even in a very strong sense.

We strengthen the argument to prove the strong Positivstellensatz from [14]. First check

that Q is tame, using Example 2.12. Then for a ∈ Ah \ Q, use the real closed separation

from Theorem 2.13, and obtain π(z1), . . . , π(zn) ∈ L(H) with Is ⊗ idH + M1 ⊗ π(z1) + · · · +
Mn ⊗ π(zn) > 0 (again use that π admits a cyclic vector). Now apply the same compression

trick as before to π, and obtain a finite-dimensional representation over C in which a is not

positive. Using Tarski’s Transfer Principle, such a representation also exists over C. We have

thus shown: If a ∈ Ah is nonnegative on Repfd(A,Q), then a ∈ Q.

Example 3.12. This is the example from [17]. Let A = C〈z1, z
∗
1 , . . . , zn, z

∗
n〉 and

Z =

{
(M1, . . . ,Mn) |Mi matrices,

∑
i

M∗iMi = I

}
.

Then

Q = Σ2A +
{
p ∈ Ah | p ≡ 0 on Z

}
is r.f.d. This can be deduced from the Positivstellensatz in [17], which we again re-prove it

with our above separation method. Let π ∈ Rep(A,Q) be given. With Ti = π(zi) ∈ B(H)

we have
∑

i T
∗
i Ti = idH. Let V ⊆ A,H0 ⊆ H be finite-dimensional subspaces. Without loss

of generality assume that V = Ad, the space of all polynomials of degree at most d ≥ 2.

Inductively define

Hi+1 = span {p(T )h | p ∈ V, h ∈ Hi}

for i = 0, 1. Let γ:H2 ↪→ H be the embedding and consider the compressed operators Mi :=

γ∗Tiγ ∈ B(H2). We have p(M) ≡ γ∗p(T )γ on H1 for all p ∈ V, and thus

M :H1 → Hn
2 ;h 7→ (M1h, . . . ,Mnh)

is an isometry. So we can extend to an isometry

M̃ = (M̃1, . . . , M̃n):H2 → Hn
2 ,

and thus obtain a finite-dimensional representation π̃ of (A,Q) on H2. Now one checks that

p(M̃) ≡ γ∗p(T )γ on H0, and so π̃ is close to π in the Fell topology. So (A,Q) is r.f.d. in a

strong sense.

Now we do the same over a real closed field R. This time, we first pass to

B = A/{p ∈ A | p ≡ 0 on Z} ,
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where Σ2B is tame, as is easily checked (using Example 2.12). We separate by a real-closed

representation and lift it to A. Then we do the compression as described above, and transfer

to C in the end. We have shown: If a ∈ Ah is nonnegative on Repfd(A,Q), then a ∈ Q.

Example 3.13. Essentially the same methods can be used to show that the following

quadratic modules are r.f.d., and even fulfill the strong Positivstellensatz

a ∈ Ah, a > 0 on Repfd(A,Q) ⇒ a ∈ Q.

(i) A = C〈z1, z
∗
1 , . . . , zn, z

∗
n〉 with Q generated by either

1−
n∑
i=1

z∗i zi or 1− z∗i zi for all i.

Here we can separate and compress without any further adjustments.

(ii) A = C〈zij , z∗ij | 1 ≤ i, j ≤ n〉 and Q = Σ2A +
{
p ∈ Ah | p ≡ 0 on Z

}
, where

Z =
{

(M11,M12, . . . ,Mnn) |Mij matrices, (Mij)ij unitary
}
.

After separating and compressing, we invoke Choi’s matrix-trick from [6] and a

suitable permutation of rows and columns.

(iii) A = C〈zij , z∗ij | 1 ≤ i, j ≤ n〉 and Q generated (as in Example 3.11) by the quadratic

matrix polynomial

P = In − (zij)
∗
ij(zij)ij ∈Mn(A)h.

This is even simpler as (ii).

Example 3.14. Let A = C〈u, u∗, v, v∗〉/(z∗z = zz∗ = v∗v = vv∗ = 1) and let Q be

generated by

ε2 − (uv − vu)∗(uv − vu)

for some ε > 0 (this is called the soft torus). It is shown in [9] that (A,Q) is rfd.

Example 3.15. Let Γ = F2 × F2 and A = CΓ. Then A is rfd if and only if Connes’

Embedding Conjecture is true (see [20]).

Example 3.16. Let A = C〈z, z∗〉/(zz∗ − 1) be the Toeplitz algebra. Then Q is not rfd.

Finite dimensional representations correspond to unitary matrices, but the left-shift on `2(N)

yields a representation that cannot be approximated by finite-dimensional representations,

since it is not unitary.

4. Free convexity

Let us briefly introduce the main concepts of free convexity, as in [8,13,15,16]. For some

n ≥ 1 we consider subsets Cs ⊆ Hers(C)n of n-tuples of hermitian matrices of size s, for all
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s ≥ 1. The whole collection C =
⋃
s≥1Cs is called matrix-convex, if it is closed under block-

diagonal sums and compressions via isometries. That means, whenever A = (A1, . . . , An) ∈
Cs, B = (B1, . . . , Bn) ∈ Cr, and V ∈Ms,r(C) with V ∗V = 1, then

A⊕B =

((
A1 0

0 B1

)
, . . . ,

(
An 0

0 Bn

))
∈ Cs+r

and

V ∗AV = (V ∗A1V, . . . , V
∗AnV ) ∈ Cr.

This easily implies that each Cs is convex in the real vectorspace Hers(C)n, but matrix

convexity of C is a stronger assumption in general.

For any set C =
⋃
sCs, its matrix-convex hull mconv(C) is the smallest matrix-convex

superset of C. In case that C is already closed under block-diagonal sums, it is easy to see

that we only need to add compressions to obtain the matrix convex hull:

mconv(C)s = {V ∗AV | r ≥ s,A ∈ Cr, V ∈Mr,s(C), V ∗V = 1} .(4.1)

Now assume A = C〈z1, . . . , zn〉 with z∗i = zi and p ∈ Ah. Define

C(p)s = {(A1, . . . , An) ∈ Hers(C)n | p(A1, . . . , An) > 0}

and C(p) =
⋃
sC(p)s, a so-called (basic closed) free semialgebraic set (finite intersections of

such sets are also called basic closed). Understanding the matrix convex hullof such sets is

one of the main issues in the above mentioned papers.

Note that one can also use operators instead of matrices to define free convex hulls. For

a Hilbert space H define

C(p)H =
{

(T1, . . . , Tn) | Ti ∈ B(H)h, p(T1, . . . , Tn) > 0
}

and the operator convex hull oconv(C(p)) as

oconv(C(p))s = {V ∗TV | H Hilbert space , T ∈ C(p)H, V :Cs → H isometry} .

Now, interesting (and previously open) questions are:

• Can r in (4.1) be bounded in terms of s (and maybe other data)?

• Is mconv(C(p)) and/or oconv(C(p)) semialgebraic in any (free) sense?

• Is at least each mconv(C(p))s and/or oconv(C(p))s semialgebraic in the usual sense?

We will answer these questions to the negative below. But let us first define a broader

and coordinate-free notion of free convexity. Example 4.3 will show that this might be useful.

Note that all of the following concepts coincide for an archimedean quadratic module (A,Q)

and its universal C∗-algebra C∗(A,Q).

Definition 4.1. Let A be a C∗-algebra. The convex hull of Rep(A) is defined as

conv Rep(A) = {%:A→ B(H) | H Hilbert space, % u.c.p.} .
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The convex hull of Repfd(A) is defined as

conv Repfd(A) = {%:A→ B(H) | % strongly finite dimensional u.c.p.} .

Remark 4.2. (i) Convex hulls are the smallest supersets closed under compressions via

isometries. This immediately follows from Stinespring’s Dilation Theorem. Also note that

the sets Rep(A),Repfd(A) and their convex hulls are closed under finite direct sums.

(ii) In case A = C〈z1, . . . , zn〉, we obtain the old notions of free convex hulls when we

restrict the u.c.p. maps to the space V = span{z1, . . . , zn}.

Example 4.3. Let A = C〈z, z∗〉/(zz∗ − 1) be the Toeplitz algebra with Q = Σ2A, and

V = span{z, z∗}. For any finite-dimensional % ∈ conv Rep(A,Q) there is a strongly finite

dimensional %̃ ∈ conv Repfd(A,Q) with % ≡ %̃ on V. In fact %(z) = γ∗π(z)γ for some π ∈
Rep(A,Q) and some isometry γ. So %(z) is a finite-dimensional contraction, and thus admits

a finite-dimensional unitary dilation.

On the other hand, Q is not rfd, as shown in Example 3.16, so for other subspaces V we

don’t even get a good approximation by strongly finite-dimensional morphisms (by Theorem

3.8). This suggests that restricting all the maps to a generating subspace V of A, as done in

free convexity throughout so far, is not always a good idea. This approach will for example

not be able to detect the property rfd. This is why we proposed the above notion of free

convex hulls.

Given a set T of mappings defined on A, and a subset V ⊆ A, we call

T|V =
{
%|V | % ∈ T

}
the projection of T to V. Note that in a finite-dimensional real vectorspace, there is a notion

of semialgebraic set, which is independent of the choice of a basis.

Theorem 4.4. Let A be a C∗-algebra, V ⊆ A a finite-dimensional unital ∗-subspace and

H a Hilbert space with dim(H) = n <∞. Then the following are equivalent:

(i) The projection of {%:A→ B(H) | % ∈ conv Rep(A)} to V is semialgebraic.

(ii) (Σ2A⊗Mn)|V is semialgebraic.

Proof. A unital ∗-linear mapping %:V→ B(H) is in the projection from (i), if and only

if it is u.c.p, by Arvesons’s Extension Theorem. By Choi’s Theorem, this is equivalent to c%

being nonnegative on (Σ2A⊗Mn)|V. So the projection from (i) is just the dual of the closed

set (Σ2A⊗Mn)|V. This proves the claim. �

Example 4.5. Let A be a commutative C∗-algebra. An element from V ⊗ Mn(C) is

positive if and only if it is positive under each representation of the form π ⊗ id, where

π ∈ Rep(A). Since A is rfd we can restrict to π ∈ Repfd(A), and since A is commutative,

even to one-dimensional representations.
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If A is the universal C∗-algebra of a finitely generated quadratic module in a finitely

generated commutative algebra, then the set of one-dimensional representations is semialge-

braic. Thus (Σ2A⊗Mn)|V and the corresponding projection of conv Rep(A) to V are always

semialgebraic.

Example 4.6. Let A = CFm be the group algebra of the free group. Again (Σ2A⊗Mn)|V
is always semialgebraic. As before, an element from V⊗Mn(C) is positive if and only if it is

positive at each representation π ⊗ id, where π ∈ Rep(A). Choi’s proof that A is rfd shows

that we can even restrict to representations π of some fixed dimension, depending only on V

and n. So (Σ2A ⊗Mn)|V can be defined by a formula in the language of ordered rings and

is thus semialgebraic. The same reasoning applies to all quadratic modules from Examples

3.11, 3.12 and 3.13.

In general, the projections of both conv Rep(A) and conv Repfd(A) are not semialgebraic,

answering the above questions.

Theorem 4.7. There exists a finitely generated quadratic module Q in the free algebra

A = C〈z1, . . . , zn〉, such that already the projection of{
ρ:A→ C | ρ ∈ conv Repfd(A,Q)

}
to V = span{z1, . . . , zn} is not semialgebraic.

Proof. Instead of the free algebra, we work with the group algebra A = CΓ of the

discrete Heisenberg group Γ = 〈a, b, c | c = aba−1b−1, ca = ac, cb = bc〉 and Q = Σ2A. By

lifting the relations as pairs of inequalities to the free algebra, one obtains an example in the

free algebra.

Each irreducible n-dimensional representation of A maps c to an n-th root of unity. This is

true since c lies in the center of A, and as a commutator has determinant one. Any n-th root of

unity is attained through a representations, by [10]. Let Ṽ = span{(c+c∗)/2, (c−c∗)/(2i)} ⊆
A. Then the projection of

{
%:A→ C | % ∈ conv Repfd(A)

}
to Ṽ is

conv
{

(x, y) ∈ R2 | x+ iy roof of unity
}
,

which is not semialgebraic. �

Remark 4.8. The example also shows that there is no bound on r in (4.1).

Theorem 4.9. There exists a finitely generated quadratic module Q in the free algebra

A = C〈z1, . . . , zn〉, such that already the projection of

{ρ:A→ C | ρ ∈ conv Rep(A,Q)}

to V = span{z1, . . . , zn} is not semialgebraic.

Proof. Again we work in the group algebra CΓ of the discrete Heisenberg group Γ =

〈a, b, c | c = aba−1b−1, ca = ac, cb = bc〉. This time let Ṽ = span{a + a∗ + b + b∗, (c +
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c∗)/2, (c− c∗)/(2i)}. The classification of irreducible representations of Γ is well-known, the

spectral properties of the above operators in these representations are extensively studied in

[3], and we will use these results. The irreducible representations of Γ are parametrised by

the circle {eiθ | θ ∈ [0, 2π]}, and in every such irreducible representation we have πθ(c) = eiθ,

πθ(ab) = eiθπθ(ba), so in an irreducible representation a and b generate a noncommutative

torus with parameter θ. We denote Hθ = πθ(a+ a∗+ b+ b∗). Using the automorphism of the

noncommutative torus which maps the generators to the negatives of them, it is not hard to

see that the spectrum of Hθ is symmetric.

Now a u.c.p. map %:A→ C is just a state on C∗(Γ), and it’s a well-known general fact that

the states on a C∗-algebra form a closed convex set whose extremal points are the pure states

coming from irreducible representations. Thus, the projection of {%:A→ C | % ∈ conv Rep(A)}
to Ṽ is the closed convex hull

C = conv
{

(±‖Hθ‖, cos θ, sin θ) ∈ R3 | θ ∈ [0, 2π]
}
.

The function θ 7→ ‖Hθ‖ describes the boundary of the “Hofstadter butterfly” [18] (see

Figure 1 for a picture), and is known to be non-differentiable at the points where θ/(2π) is

rational [12, 27]. So if C were a semialgebraic set, its intersection with the cylinder Z =

{(x, y, z) ∈ R3 | y2 + z2 = 1} would also be semialgebraic, and thus the functions θ 7→ ±‖Hθ‖
whose graphs form the (relative) boundary of the set Z∩C would be piecewise smooth, which

yields a contradiction. Therefore C is not semialgebraic. �

Figure 1. The Hofstadter butterfly
https://commons.wikimedia.org/wiki/File%3AHofstadter’s_butterfly.png

The membership problem from real algebraic geometry is the following: Given a finitely

generated quadratic module (A,Q) and a finite-dimensional R-subspace V ⊆ Ah, is Q ∩ V a

semialgebraic set? This is known to be true in certain cases, but an open question in general

[2].

Corollary 4.10. There is a finitely generated quadratic module in the free algebra

C〈z1, . . . , zn〉, for which the membership problem has a negative answer.

https://commons.wikimedia.org/wiki/File%3AHofstadter's_butterfly.png
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Proof. This follows from Theorem 4.9 combined with Theorem 4.4. In fact, if Q ∩ V

is semialgebraic, then so is its closure Q ∩ V, and this is equivalent to condition (ii) for the

universal C∗-algebra C∗(A,Q) in Theorem 4.4. �
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[3] Cédric Béguin, Alain Valette, and Andrzej Zuk, On the spectrum of a random walk on the discrete Heisen-

berg group and the norm of Harper’s operator, J. Geom. Phys. 21 (1997), no. 4, 337–356. ↑↑63

[4] Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Mono-

graphs, vol. 11, Cambridge University Press, Cambridge, 2008. ↑↑55, ↑57

[5] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathe-

matik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag,

Berlin, 1998. Translated from the 1987 French original, Revised by the authors. ↑↑49

[6] Man Duen Choi, The full C∗-algebra of the free group on two generators, Pacific J. Math. 87 (1980), no. 1,

41–48. ↑↑57, ↑59
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CHAPTER 4

Sofic boundaries of groups and coarse geometry of sofic

approximations

Abstract

Sofic groups generalise both residually finite and amenable groups, and the concept is

central to many important results and conjectures in measured group theory. We introduce

a topological notion of a sofic boundary attached to a given sofic approximation of a finitely

generated group and use it to prove that coarse properties of the approximation (property

A, asymptotic coarse embeddability into Hilbert space, geometric property (T)) imply cor-

responding analytic properties of the group (amenability, a-T-menability and property (T)),

thus generalising ideas and results present in the literature for residually finite groups and

their box spaces. Moreover, we generalise coarse rigidity results for box spaces due to Kajal

Das, proving that coarsely equivalent sofic approximations of two groups give rise to a uni-

form measure equivalence between those groups. Along the way, we bring to light a coarse

geometric view point on ultralimits of a sequence of finite graphs first exposed by Ján Špakula

and Rufus Willett, as well as proving some bridging results concerning measure structures on

topological groupoid Morita equivalences that will be of interest to groupoid specialists.

1. Introduction

Finite approximation of infinite objects is a fundamental tool in the modern mathemati-

cian’s toolkit, and it has been used to great effect in the authors’ favourite areas of mathemat-

ics: in the realm of operator algebras the notions of nuclearity, exactness and quasidiagonality

for C∗-algebras [SWW15, TWW15, BK97], and the corresponding notion of hyperfinite-

ness for von Neumann algebras [MvN43] have given rise to the classification programs of

C∗-algebras [Ell76,Kir99] and von Neumann algebras [Con76]. Their natural group theo-

retic counterpart is amenability.

The aforementioned types of approximation are quite strong and therefore restrictive:

they correspond to the “amenable world” of groups and operator algebras. While interesting

and beautiful in its own right, it does not encompass many natural and important examples

in group theory and operator algebras – say, the free groups and operator algebraic objects

related to them. However, one would like to extend the idea of finitary approximation as well

beyond amenability. In the realm of operator algebras, such an approximation was suggested

67
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by Alain Connes in [Con76] and lead to the famous Connes Embedding Conjecture. By the

remarkable work of Eberhard Kirchberg [Kir93] it was shown to be equivalent to the so-called

QWEP conjecture for C∗-algebras.

What one sees by studying the above is a relaxation of algebra homomorphisms to maps

that are approximately homomorphisms. This suggests a more general notion of finite ap-

proximation should exist for groups when we allow for a metric on the finite set on which we

attempt to approximate. This leads to the definition of a sofic group.

To make sense of what an “approximate” map to a finite group is, one chooses finite

symmetric groups as targets and equips them with the normalised Hamming distance. A

group Γ is sofic if it is possible to find approximations of arbitrary finite subsets of Γ in

symmetric groups Sym(X) that are approximately injective and approximately multiplicative

with respect to this distance. A countable collection X of finite sets Xi that witness stronger

and stronger approximations for an exhaustion of the group Γ is a sofic approximation of Γ.

Examples of sofic groups include amenable groups and residually finite discrete groups. Sofic

groups were introduced by Mikhail Gromov [Gro99] in his work on Gottschalk’s surjunctivity

conjecture, and expanded on (and named by) Benjamin Weiss in [Wei00]. Since then they

have played a fundamental role in research in dynamical systems.

The purpose of this paper is to introduce a general technique for studying sofic approx-

imations of groups from the coarse geometric point of view and to give a mechanism for

transferring topological (in this context, coarse geometric) properties from the approxima-

tion back to the group. The vessel we use to complete this journey is coarse geometric in

nature and was initially introduced by George Skandalis, Jean-Louis Tu and Guoliang Yu

in [STY02], where a topological groupoid was constructed to emulate the role of a group

in certain aspects of the Baum–Connes conjecture for metric spaces. The second author of

this paper studied this groupoid and certain of its reductions in [FSW14] and [FS14] in the

context of box spaces associated to residually finite discrete groups.

A box space associated to a residually finite discrete group Γ and a chain of subgroups

{Ni}i is a metric space, denoted �Γ, constructed from the Cayley graphs of the finite quotients

Γ/Ni. This is a particular example of a sofic approximation of a residually finite group.

Box spaces can be a powerful tool, both to differentiate between coarse properties (as

in [AGŠ12]) and to provide a finite dimensional test for analytic properties of the group Γ.

Notably, the following correspondences between coarse geometric properties of the box space

and analytic properties of the group are known:

• �Γ has Property A if and only if Γ is amenable [Roe03, Proposition 11.39];

• �Γ has an asymptotic coarse embedding (or a fibred coarse embedding) into Hilbert

space if and only if Γ is a-T-menable [Wil15,FS14,CWY13,CWW13];

• �Γ has geometric property (T) if and only if Γ has property (T) [WY14].
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The method presented in [FS14] for producing these results was to associate to any given

box space �Γ a topological boundary that admits a free Γ-action – this boundary action is

a particular component of the coarse groupoid of Skandalis–Tu–Yu. The main idea in this

paper is to generalise this procedure to a sofic approximation of a sofic group, but in this

setting the counting measures on each “box” will play a fundamental role. More precisely, we

associate to a given sofic approximation a topological groupoid that we call the sofic coarse

boundary groupoid. The base space of this groupoid – the sofic boundary – is constructed

from the “box space” of graphs coming from the sofic approximation. It carries a natural

invariant measure coming from the counting measure on the graphs and has a nice closed

saturated subset Z of full measure – the core of the sofic boundary – restricted to which, the

sofic coarse boundary groupoid turns out to be a crossed product by an action of Γ as in the

traditional box space case. This allows us to prove:

Theorem 1.1. Let Γ be a sofic group, X a sofic approximation of Γ, and X be the space

of graphs constructed from X. Then:

(i) If X has property A then Γ is amenable (Theorem 4.5);

(ii) If X admits an asymptotic coarse embedding into Hilbert space, then Γ is a-T-

menable (Theorem 4.12);

(iii) If X has boundary geometric property (T) then G has property (T) (Theorem 4.25).

At this point, it is natural to ask about the converse statements. There appears to be

little hope of establishing them in full generality, the main technical reason being that the

core of the sofic boundary is a proper subset of it, and there is no control of what happens

on the complement. We explain this issue in more detail in the final section of the paper.

However, if the sofic approximation is coming from the group being locally embeddable

into a finite group (or briefly an LEF group), the core is the entire boundary, which allows

us to recover the converse to the above statements, thus reproving the known results about

LEF groups from the literature [MS13,MOSS15].

Transitioning from coarse invariants (that are topological invariants of a groupoid) to mea-

surable invariants, we begin to investigate the question: to what extent a sofic approximation

is a “coarse invariant” of the sofic group? To this end, we were able to prove the following:

Theorem 1.2. (Theorem 5.13) Let Γ, Λ be sofic groups with sofic approximations X and

Y respectively. Let XX and XY be their associated spaces of graphs. If XX and XY are coarsely

equivalent, then Γ and Λ are quasi-isometric and uniformly measure equivalent.

This theorem generalises part of the work in [KV15], and the main result of [Das15] to

the case that Γ and Λ are sofic, as opposed to residually finite, and the technique is com-

pletely different – we construct a Morita equivalence bispace for the sofic coarse boundary

groupoids. This bispace looks very much like the topological coupling introduced by Gromov
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in his dynamic classification of quasi-isometries between groups. Given appropriate mea-

sures on the groupoids, we construct a measure on the bispace, which turns the topological

Morita equivalence into a measurable one – and this allows us to deduce the uniform mea-

sure equivalence combining the topological and measure-theoretic properties of sofic coarse

boundary groupoids. As was pointed out in [Das15], by combining a result of Damien Ga-

boriau [Gab02, Theorem 6.3] with Theorem 5.13 we are able to conclude facts concerning

the rigidity of `2-Betti numbers of sofic groups with coarsely equivalent approximations:

Corollary 1.3. If Γ and Λ are finitely generated sofic groups with coarsely equivalent

sofic approximations, then their `2-Betti numbers are proportional.

The downside of the topological groupoid we construct to settle the above questions is

that the unit space is not second countable, therefore not metrizable (and thus not a standard

as a probability space). We remedy this situation by providing a recipe for constructing many

different second countable versions of the groupoid using ideas from [STY02, Exe08]. The

following should be considered as a topological result in line with the standartisation theorem

for measurable actions proved by Alessandro Carderi in [Car15, Theorem A].

Theorem 1.4. Let Γ be a sofic group, X a sofic approximation of Γ, X the associated

total space of the family of graphs attached to X and Z ⊂ X the core of a sofic approximation.

Then there exists a second countable étale, locally compact, Hausdorff topological groupoid G

with following properties:

(i) the base space G(0) =: X̂ is a compactification of X (in particular, it’s a quotient of

βX through a quotient map p:βX → X̂),

(ii) p(Z) ⊂ ∂X̂ is invariant and satisfies G|p(Z)
∼= p(Z)o Γ. As a consequence, we have

an almost everywhere isomorphism

(G|
∂X̂
, νp∗µ)→ (X̂, p∗µ)o Γ.

As an example of this process, we construct the minimal topological groupoid introduced

in [AN12] for a residually finite discrete group and a corresponding Farber chain of finite

index subgroups.

The paper is organised as follows. In Section 2 we recapitulate the necessary definitions

and results both from the theory of sofic group approximations and groupoids arising from

coarse geometry. Section 3 introduces our main player, the sofic coarse boundary groupoid

associated with a fixed sofic approximation of a group and studies its properties; in partic-

ular, we introduce the core of a sofic approximation as the closure of the “good set” in the

approximating graphs. Section 4 is devoted to the proof of the main Theorem 1.1 and its

converse in the case of an LEF group. Finally, in Section 5 we prove that coarse equivalence of

two sofic approximations implies quasi-isometry and uniform measure equivalence of groups

(Theorem 5.13). In the last section we discuss some related open questions that might be of

interest for further investigation.
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2. Preliminaries

In this section we introduce the necessary definitions, facts and references for coarse

groupoids and sofic groups.

2.1. Groupoids from coarse geometry. We recapitulate some particular examples

of groupoids that appear later in the paper. For a basic introduction to étale groupoids

we recommend [Exe08], for their representation theory [SW12] and finite approximation

properties [ADR00]. We also suggest the collected references of [STY02], [Roe03] and

[SW16] for the notion of coarse groupoid and its properties.

Example 2.1. Let X be a topological Γ-space. Then the transformation groupoid asso-

ciated to this action is given by the data X ×G⇒ X with s(x, g) = x and r(x, g) = g.x. We

denote this by X o Γ. A basis {Ui} for the topology of X lifts to a basis for the topology of

X o Γ, given by sets [Ui, g] := {(u, g) | u ∈ Ui}.

Example 2.2. We move now to examples of groupoids coming from uniformly discrete

metric spaces of bounded geometry. We define a groupoid which captures the coarse infor-

mation associated to X. Consider the collection S of the R-neighbourhoods of the diagonal

in X ×X; that is, for every R > 0 the set

ER = {(x, y) ∈ X ×X | d(x, y) 6 R}

Let E be the coarse structure generated by S as in [Roe03]; it is called the metric coarse

structure on X. If X is a uniformly discrete metric space of bounded geometry, then this

coarse structure is uniformly locally finite, proper and weakly connected – thus of the type

studied by Skandalis, Tu and Yu in [STY02].

We now define the coarse groupoid following the approach of [SW16, Appendix C]. Let

βA denote the Stone-Čech compactification of a set A. Set G(X) :=
⋃
R>0ER, where the

closure ER takes place in βX × βX and G(X) has the weak topology coming from the union

– with this topology G(X) is a locally compact, Hausdorff topological space, which becomes

a groupoid with the pair groupoid operations from βX×βX. Another possible approach (for

instance that adopted originally in [STY02] or in [Roe03]) is to consider graphs of partial

translations on X and form a groupoid of germs from this data [Exe08]. Each approach has

value, depending on the particular situation.

One advantage of working with groupoids is that they come with many possible reductions.

Definition 2.3. A subset of C ⊆ G(0) is said to be saturated if for every element γ ∈ G
with s(γ) ∈ C we have r(γ) ∈ C. For such a subset we can form a subgroupoid of G, denoted

by GC which has unit space C and G
(2)
C = {(γ, γ′) ∈ G(2) | s(γ), r(γ) = s(γ

′
), r(γ

′
) ∈ C}.

The groupoid GC is called the reduction of G to C.
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Remark 2.4. For a uniformly discrete metric space X of bounded geometry there are

natural reductions of G(X) that are interesting to consider. It is easy to see that the set X is

an open saturated subset of βX and in particular this means that the Stone-Čech boundary

∂βX is saturated. We remark additionally that the groupoid G(X)|X is the pair groupoid

X ×X (as the coarse structure is weakly connected).

Definition 2.5. The boundary groupoid ∂G(X) associated to X is the groupoid reduction

G(X)|∂βX .

2.2. Box spaces as an example. Let X = {Xi}i be a family of finite connected graphs

of uniformly bounded vertex degree.

Definition 2.6. The space of graphs associated to X is the set X :=
⊔
iXi, equipped

with any metric d that satisfies:

(i) d|Xi is the metric coming from the edges of the graph Xi;

(ii) d(Xi, Xj)→∞ as i+ j →∞.

We remark that any two metrics that satisfy i) and ii) are coarsely equivalent, and thus we

need not be more specific about the rates of divergence.

Natural examples of graph families, and thus spaces of graphs, come from finitely gener-

ated residually finite discrete groups. Let Γ = 〈S〉 be finitely generated and residually finite.

Then, for any chain (i.e. a nested family of finite index subgroups with trivial intersection)

H = {Hi}i we can consider the Schreier coset graphs:

Xi := Cay(Γ/Hi, S).

Remark 2.7. We note that there are various conditions in the literature that one could

reasonably put into such a chain of finite index subgroups, for instance asking for each to

be normal subgroups, or more generally to separate points from the entire conjugacy class of

the subgroup Hi (which is called semi-conjugacy separating in [FSW16] and appears first in

[SWZ14]), or to ask that the family is Farber (that is, for any g ∈ Γ, ni(g) = o(ni), where ni

is the number of conjugates of Hi in Γ and ni(g) is the number of conjugates of Hi containing

g [Far98,AN12]).

For simplicity, suppose the chain consists of normal subgroups. Then the space of graphs

associated to X = {Xi}i is called the box space of Γ with respect to H, and denoted by �HΓ.

This construction and the many results concerning it in the literature drive the coarse

geometric aspect of this paper. We will focus on the coarse groupoid (and its boundary), to

get a better feeling for it in a simpler case than will appear later on.

Definition 2.8. Let S be a family of subsets in X × X. The family S generates E at

infinity if for every R > 0 there are finitely many sets S1, . . . , Sn ∈ S and a finite subset
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F ⊂ X ×X such that

ER ⊆

(
n⋃
k=1

Sk

)
∪ F.

Remark 2.9. The above definition is equivalent to asking that ER \ER ⊆
⋃n
k=1 Sk \ Sk,

where the closure is taken in βX × βX.

If Γ is a discrete group acting on X, let Eg := {(x, x.g) | x ∈ X} be the g-diagonal in X.

We say that the action of Γ generates the metric at infinity if the set {Eg | g ∈ Γ} satisfies

Definition 2.8.

Proposition 2.10 ([FSW14, Proposition 2.5]). Let X be a uniformly discrete bounded

geometry metric space and let Γ be a finitely generated discrete group. If Γ acts on X so that

the induced action on βX is free on ∂βX and the action generates the metric coarse structure

at infinity, then ∂G(X) ∼= ∂βX o Γ. �

The following example is the basic model we will build on in Section 3 for sofic groups.

Example 2.11. Let X = �HΓ be the box space of a residually finite group Γ with

normal chain H. Then, considering the metric d from Definition 2.6 we see that the sets ER

decompose as

ER =
⊔
i

ER,i t FR,

where ER,i is the R-neighbourhood of the diagonal in Xi and FR = {(x, y) | x ∈ Xi, y ∈
Xj , i 6= j, d(x, y) 6 R}. This observation allows us to reduce to considering the set ER,∞ =⊔
iER,i ⊂ ER, as these sets have the same Stone-Čech boundary.

As the group Γ is residually finite, each of the ER,i decomposes as
⊔
|g|6REg,i when i

is sufficiently large – in particular, ∂βER,∞ =
⊔
|g|6R ∂βEg, and so the group, acting by

translations, generates the metric coarse structure at infinity. This action is free at the

boundary by residual finiteness of Γ: for each g ∈ Γ the orbit graph for the action of g on �Γ

has degree at most 2, and thus is at most 3-coloured by Brookes’ theorem. The Stone-Čech

boundaries of each colour set are then permuted by the element g and have empty intersection.

Thus Proposition 2.10 implies that ∂G(X) ∼= ∂βX o Γ.

2.3. A formal definition of soficity. Let us give a formal definition of a sofic group:

Definition 2.12 (see [Pes08, Theorem 3.5]). A group Γ is sofic if for every finite subset

F ⊂ Γ and every ε > 0 there exists a finite set X, a map σ: Γ→ Sym(X) and a subset Y ⊂ X
with |Y |> (1− ε)|X| such that

σ(g)σ(h)(y) = σ(gh)(y), g, h ∈ F, y ∈ Y

and

σ(g)(y) 6= y, g ∈ F \ {e}, y ∈ Y.
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The map σ is said be an (F, ε)-injective almost action on the set X if the condition above

holds.

We note that if Γ is sofic, then by fixing a nested sequence of sets Fi that exhaust the

group, choosing a sequence εi → 0, and letting Xi be a set with an (Fi, εi)-injective almost

actions of Γ, we obtain a sequence of sets together with almost actions of Γ; such a sequence

called a sofic approximation of Γ.

We remark that soficity generalises both being residually finite and being amenable for

a group Γ. We refer the reader to the book [CSC12] for more details of the permanence

properties of sofic groups, and we also note that there is, at time of writing, no group that is

known to be non-sofic.

In the remaining part of this section, we will give a more geometric definition of soficity

which will allow us to apply coarse geometric methods.

2.4. Ultralimits and local convergence of graphs.

Definition 2.13. Let X = {Xi}i be a countable family of finite graphs of bounded degree,

X be the space of graphs attached to X and let ω ∈ ∂βN be a non-principal ultrafilter on

N. Let x be a sequence of points in X, and let S(x) be the set of all y = (yn)n such that

supn(d(xn, yn)) <∞. We define a (pseudo-)metric on S(x) by

dω(y, z) = lim
ω
d(yn, zn)

and the ultralimit along ω, denoted X(ω, x), to be the canonical quotient metric space ob-

tained from (S(x), dω) by identifying all pairs of points at distance 0.

This notion of ultralimit has a natural description in terms of the coarse boundary

groupoid G := ∂G(X) from the previous section. Let η = limω xn be the point in the

Stone-Čech boundary that corresponds to x and ω ∈ ∂βN.

Proposition 2.14. Let Gη be the source fibre of G at η ∈ ∂βX. Equip Gη with the metric

dη((η1, η), (η2, η)) = inf{R > 0 | (η1, η2) ∈ ER}.

Then the map f : X(ω, x) → Gη given by [(yn)] 7→ (lim
ω
yn, η) is a basepoint preserving

isometry.

Proof. For any points [(yn)], [(zn)] ∈ X(ω, x), we have

dω([(yn)], [(zn)]) = inf{R > 0 | ω({n ∈ N | d(yn, zn) 6 R}) = 1}

= inf{R > 0 | ω({n ∈ N | (yn, zn) ∈ ER}) = 1}

= inf{R > 0 | lim
ω

(yn, zn) ∈ ER}

= inf{R > 0 | (lim
ω
yn, lim

ω
zn) ∈ ER}

= dη(lim
ω
yn, lim

ω
zn).
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Hence f is isometric and maps into Gη. It remains to prove that f is surjective.

Let (η′, η) ∈ Gη. Using the view on G(X) in terms of germs of partial translations as in

[STY02, Proposition 3.2] or [Roe03, Chapter 10], we obtain a partial translation t : A→ B

between subsets A,B ⊂ X such that η ∈ A ⊂ βX, η′ ∈ B ⊂ βX and with t(η) = η′.As

η = limω(xn), we have that the set E = {n ∈ N | xn ∈ A} has ω-measure 1, and therefore we

can define another sequence with terms:

yn :=

xn if n 6∈ E

t(xn) if n ∈ E.

As η′ is the unique point in the closure of the graph of t satisfying (η′, η) ∈ graph(t), we have

that

(η′, η) = lim
ω

(t(xn), xn) = lim
ω

(yn, xn),

and thus η′ = limω yn. �

We remark that for a fixed ultrafilter η ∈ ∂βX one can always find a sequence x tending

to infinity and an ultrafilter ω ∈ ∂βN such that η = limω x. There will in general be many

such choices, but the above proposition ensures that they will give isometric fibres.

Ideally, we would like to remove the dependence on the base point from this process. The

suggested method (say of [BS01] or [AL07]) is to make this choice uniformly at random, and

to do this we need a measure on ∂βX.

Given the sequence of counting measures µi on each Xi ∈ X and fixing an ultrafilter

ω ∈ ∂βN, we can obtain a measure µ on the Stone-Čech boundary of X corresponding to the

state

(2.1) µ(f) = lim
ω

1

|Xi|
∑
x∈Xi

f(x), f ∈ C(βX).

Note that µ(X) = 0, whence µ(∂βX) = 1. Armed with this measure on ∂βX, we can now

formulate a notion of graph convergence:

Definition 2.15. A sequence of graphs X of bounded degree is said to Benjamini–

Schramm converge to a graph Y if the set

{x = lim
ω
xn ∈ ∂βX | X(ω, x) ∼= (Y, y) for some y ∈ Y }

of ultralimits that are isomorphic as pointed graphs to Y has µ-measure 1.

A first remark concerning this definition is that the basepoint in Y does not matter if

Y is vertex transitive. The second remark we make is that this definition can also be made

using labelled graphs.

Let S be a finite set of labels. Suppose also that each Xi admits an S-edge labelling.

Then any ultralimit of the sequence X(ω, x) also admits an S-labelling. In this case, we can
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ask that Y admits a labelling and that the base point preserving isometries occurring in the

definition can be taken as isometries of labelled graphs.

Remark 2.16. The traditional formulation of Benjamini–Schramm convergence (found for

instance in [BS01]) uses converging probabilities of isometry types of balls. It is equivalent

to this more topological formulation by realising an ultralimit X(ω, x) as a union of balls

around x and studying how these can be obtained from the sequence X using ω. This works

equally well in labelled and non-labelled settings.

Remark 2.17. This Benjamini–Schramm convergence should be thought of as an “almost

everywhere” (in terms of the normalised counting measure) version of the convergence in the

space of marked graphs – if a sequence of bounded degree finite graphs converges there to a

fixed graph, then it Benjamini–Schramm converges to that graph – in fact, the set of measure

1 will be the entire boundary in that case.

The following definition is central to the paper:

Definition 2.18. Let Γ be a finitely generated group with a finite generating set S. Γ

is sofic if there exists a sequence X of bounded degree, finite S-labelled graphs such that X

Benjamini–Schramm converges to (Cay(G,S), eG).

It is equivalent to Definition 2.12 by an argument present in [Pes08, Theorem 5.1], which

constructs the (S-labelled) graph structure on the sets Xi appearing in Definition 2.12 by

connecting each x ∈ Xi with σi(s) by an edge labelled with s ∈ S; we will always equip Xi

coming from a sofic approximation with this graph structure and (slightly abusing notation)

also call the resulting sequence X a sofic approximation of Γ. The following lemma asserts

that we can assume these graphs to be connected, which we will always do.

Lemma 2.19. Let Γ = 〈S〉 be a finitely generated sofic group and let X′ = {X ′i, σ′i}i be

a sofic approximation; equip X ′i with the graph structure described above. For each i there

is a connected component Xi ⊂ X ′i and maps σi: Γ → Sym(Xi) coinciding with σ′i on the

generating set S such that X = {Xi, σi}i is a sofic approximation with Xi. In particular, the

graph structure coming from X makes Xi connected.

Proof. Let X ′i,j , j = 1, . . . , ni be the connected components of X ′i and let Y ′i ⊆ X ′i be the

subsets from Definition 2.12. Increasing i if needed, we may assume without loss of generality

that S ⊂ Fi. Observe that

|Y ′i |=
ni∑
j=1

|Y ′i ∩X ′i,j |> (1− ε)|X ′i|= (1− ε)
ni∑
j=1

|X ′i,j |.

This implies that there is at least one connected component X ′i,j such that |Y ′i ∩ X ′i,j |>
(1− ε)|X ′i,j |; we denote it by Xi and set Y

(0)
i := Y ′i ∩Xi.

Observe that by definition of the graph structure and by preceding construction:
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• the connected components X ′i,j are invariant under σ′i(S);

• |Y (0)
i |> (1− ε)|Xi|.

For g ∈ Fi, we set Yi,g := {x ∈ Xi |σ′i(g)(x) ∈ Xi}. We define σi(g) ∈ Sym(Xi) for g ∈ Fi by

(arbitrarily) extending the partial bijection σ′i(g):Yi,g → Xi to a permutation σi(g) ∈ Sym(Xi)

and we set σi(g) = idXi for g 6∈ Fi. The above properties guarantee that X = {Xi, σi}i is the

desired sofic approximation:

• as σi(g) coincides with σ′i(g) on the points which remain in Xi under the latter

permutation, the set

Yi := {x ∈ Xi | ∀g, h ∈ Fi σi(g)σi(h)(x) = σi(gh)(x) and ∀g ∈ Fi \ {e} σi(g)(x) 6= x}

contains Y
(0)
i and therefore satisfies |Yi|> (1− ε)|Xi|;

• σi(s) = σ′i(s) for all s ∈ S, and therefore the graph structure associated with σi is

the same as the one coming from σ′i.

This finishes the proof. �

3. The sofic coarse boundary groupoid

Let Γ = 〈S〉 be a finitely generated sofic group and X be a sofic approximation of Γ. The

main idea of this paper is that the space of graphs X associated with X can be thought of as

a box space for sofic group. In this section we will analyse the boundary groupoid attached

with X, defined in the previous section. We will also explain how this analysis connects with

the sofic core of the sofic approximation. We remark that being finitely generated by S gives

rise to a natural quotient map πΓ : FS → Γ, where FS is the free group on the letters S.

Definition 3.1. Let G be the coarse boundary groupoid associated with the space of

graphs X of a sofic approximation X = {Xi, σi}i as defined in the previous section. G is called

the sofic coarse boundary groupoid associated with the sofic approximation X. Its base space

∂βX is called the sofic boundary of X.

Remark 3.2. For a sofic group Γ with a sofic approximation X and the attached space

of graphs X, for µX-almost all ω ∈ βX, the range fibre r−1(ω) is isometric to Cay(Γ, S), as

X is a sofic approximation. Let δω be the Dirac mass at ω and let Ind(δω) be the induced

representation of G(X) associated with the measure δω as in [SW12]. Then C∗(G(X), δω),

obtained through the the representation Ind(δω) of G(X) on L2(r−1(ω), λω), is a subalgebra

of C∗u(Γ) [SW16, Appendix C].

As G is a locally compact étale groupoid, it can be considered as a Borel groupoid using

the natural Borel σ-algebra obtained from the open subsets of G. Our goal in this section is to

relate G to an action Γ, both measurably and topologically. To do this, we introduce an action

of FS on ∂βX. Note that each Xi is an S-labelled finite graph, with labelled edges constructed

using the permutations σi(s). This defines an action of FS on Xi. We then extend this action
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continuously to the Stone-Čech boundary, obtaining an FS-action denoted τ . We remark that

when the graphs are regular, it is precisely the action defined in [FSW14, Lemma 3.26]. The

action τ is in general not free, but is still connected with the groupoid G.

Definition 3.3. A τ -diagonal on the boundary is a set of the form:

AP := {(ω, τ(P )(ω)) | ω ∈ ∂βX}

for each P ∈ FS .

Proposition 3.4. G is isomorphic to the orbit equivalence relation Rτ of the action

τ : FS → Homeo(∂βX), where this equivalence relation is given the weak topology generated

by the clopen sets {AP }P∈FS .

Proof. We check that, for each n ∈ N, the sets ∂En and
⋃
|P |≤nAP are equal. We first

observe that if γ ∈ ∂En then there is a net of pairs ((xλ, yλ))λ with limit γ, and d(xλ, yλ) 6 n

on a convergent subnet.

However, as the distance here is the natural edge metric on a graph, to be at distance of

at most n means that xλ and yλ are connected by an S-labelled path of length of most n.

From this we conclude that the FS-action by the concatenation of the labels will map xλ to

yλ.

To see the reverse inclusion, we observe that anything belonging to at least one of the

AP ’s must be a limit of a net of pairs of the form (xλ, τ(P )(xλ)). Therefore this net consists

of pairs whose distances are bounded precisely by the length of P , which was supposed less

than n. �

We now return to Γ. For each g ∈ Γ, the map σ(g) defined by performing σi(g) in

each graph Xi defines a bijection of X to itself. Extending these maps continuously gives

us a collection of homeomorphisms σ(g) on βX. We remark that this gives a map Γ →
Homeo(∂βX), which is in general not a homomorphism of groups, but it is quite close to a

homomorphism when we make use of the fact that the soficity of Γ is being witnessed by X.

Let Y ⊂ X be the the disjoint union of each Yi coming from Definition 2.12. As the

sets Y c
i are at most µi-measure εi (and tending to 0) we have that µ(Y ) = 1, where µ is the

probability measure on ∂βX defined in (2.1). For any element ω ∈ ∂Y , the maps σ(g)σ(h)

and σ(gh) coincide, and thus the map σ is a homomorphism of groups after throwing out a

set of measure 0 in ∂βX. In particular, this is an example of a “near action” of Γ in the sense

of [GTW05].

This is not yet useful topologically, but we can still make the following definition:

Definition 3.5. The σ-diagonals in ∂βX × ∂βX are sets of the form:

Eg := {(x, σ(g)x) | x ∈ ∂βX},

for g ∈ Γ.



3. THE SOFIC COARSE BOUNDARY GROUPOID 79

Now we relate the equivalence relation Rτ to the Γ-near action on ∂βX by finding an

FS-invariant subset of ∂βX on which the free group action really agrees with the Γ-near

action.

Definition 3.6. The set

Z :=
⋂
g∈Γ

σ(g)(∂Y )

is called the core of the sofic boundary ∂βX. It depends on the choice of the subsets Yi ⊂ Xi

satisfying the conditions of Definition 2.12.

As ∂Y is clopen and the maps σ(g) are all homeomorphisms, the core Z is a closed subset

of ∂βX that is invariant under the maps σ(g). Using de Morgan’s law, it’s clear that µ(Z) = 1;

in particular the core is not empty.

For K ⊂ ∂βX × ∂βX, we denote by KZ the restriction K ∩ (Z × Z).

Lemma 3.7. We have the following compatibility between the action of FS and the action

of Γ on Z:

(i) For g 6= h ∈ Γ, we have that ∂EZg ∩ ∂EZh = ∅.

(ii) StabFS (Z) = ker(πΓ : FS → Γ);

(iii) If πΓ(P ) = πΓ(Q) then AZP = AZQ.

Proof. For i), let (ω, σ(g)(ω)) = (ω, σ(h)(ω)) ∈ ∂EZg ∩ ∂EZh . Thus, ω = σ(g)−1σ(h)(ω).

As Z ⊂ ∂Y , we have that ω = σ(g−1h)(ω), however this can only happen if g−1h = e.

The proofs of the remaining points follow directly from a key observation that comes

from the definition of Z: if w = as1 · · · asn ∈ FS , then τ(w)(ω) = σ(s1) · · ·σ(sn)(ω) =

σ(πΓ(w))(ω) for every ω ∈ Z. ii) and iii) are now deduced by elementary calculations using

this observation. �

We conclude that the set Z is a closed subset which is invariant under the equivalence rela-

tion Rτ , and thus under G. In fact, combining with the arguments in the proof of Proposition

3.4, we can observe:

Lemma 3.8. There is a homeomorphism ∂EZn =
⊔
|g|6n ∂E

Z
g , given explicitly by the map

Θ : ∂EZn →
⊔
|g|6n

∂EZg ,

γ 7→ (s(γ), πΓ(P )(s(γ))).

�

The main result of this section is the following:

Theorem 3.9. The reduction groupoid G|Z and the transformation groupoid Z o Γ are

topologically isomorphic.
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Proof. The technique of the proof is similar to that of Proposition 3.4. As G|Z=
⋃
n ∂E

Z
n ,

and ZoΓ is the disjoint union
⊔
g∈Γ ∂E

Z
g , we obtain a map Θ : G|Z→ ZoΓ using the (obviously

compatible) map from Lemma 3.8. It remains to see that it is both a homeomorphism and a

homomorphism of groupoids.

We observe that:

(i) both groupoids have a basis of topology given by clopen slices [Exe10, Proposition

4.1];

(ii) as G has the weak topology, it is sufficient to consider slices contained in En, i.e we

can consider slices U ⊂ ∂EZn when working with G|Z ;

(iii) slices of the form (U, g) := {(ω, σ(g)ω) | ω ∈ U} for some clopen U ⊂ Z generate

the topology of Z o Γ.

Given a slice U ⊂ G|Z contained in some ∂EZn , we can see that Θ(U), by Lemma 3.7 iv), is

contained within a finite disjoint union of clopen sets ∂EZg . This means, in particular, that

Θ(U) =
⊔
g(Ug, g), which are open and disjoint. A similar argument proves that the map Θ

is continuous.

To complete the proof we must show that the map is a homomorphism. This, however,

follows from Lemma 3.7 ii) and the fact the map πΓ : FS → Γ is a group homomorphism. �

Recall that the measure µ is naturally extended to a Borel measure ν := µ ◦ λ on G|Z ,

defined by: ∫
γ∈G

fdν =

∫
x∈∂βX

 ∑
s(γ)=x

f(γ)

 dµ(x)

for every Borel measurable function f on G|Z .

Corollary 3.10. The measure ν = µ ◦ λ is invariant for G|Z (and thus for G).

Proof. We compute: ∫
γ∈G|Z

fdν =
∑
g∈Γ

∫
γ∈∂EZg

fdν.

We now analyse the last integral under the map γ 7→ γ−1, where it transforms to:∫
γ−1∈∂EZg

fdν =

∫
x∈Z

∑
s(γ−1)=x

γ−1∈∂EZg

f(γ−1)dµ(x).

The conditions on the integrand here are equivalent to the statement that γ ∈ ∂EZg−1 and that

s(γ) = σ(g)(x). As µ and Z are both invariant under σ(g), performing a change of variables

x 7→ σ(g)−1(x) we see that this last integral is equal to:∫
x∈Z

∑
s(γ)=x

γ∈∂EZ
g−1

f(γ)dµ(x) =

∫
γ∈∂EZ

g−1

fdν.
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However, as we are summing over the group Γ, this completes the proof. �

Thus (G|Z , ν) is a measured groupoid and the topological isomorphism of Theorem 3.9

gives us an isomorphism of measured groupoids (G|Z , ν) ∼= (Z, µ)oΓ. Thus, if we extend the

action of Γ on ∂βX by letting every element of Γ act by the identity on the complement of

Z, we obtain an almost everywhere isomorphism1 as in [Ram82] for G and ∂βX o Γ:

Theorem 3.11. The measured groupoids (G, ν) and (∂βX, µ) o Γ (where each element

of Γ is defined to act by the identity transformation on the complement of Z) are almost

everywhere isomorphic as Borel measured groupoids.

Proof. The map defined in the proof of Theorem 3.9 is a well defined groupoid homo-

morphism of topological groupoids, but the set of elements in G for which this map is not

well defined have measure 0; this is precisely the definition of an almost everywhere isomor-

phism: just map the elements γ = (ω, ω
′
) ∈ G|Zc to any pair (ω, τ(Pγ)) and notice that the

homomorphism rule will hold almost everywhere for the appropriate measure on G. �

Remark 3.12. In the purely measurable setting, given a sofic approximation X and an

ultrafilter ω ∈ ∂βN, one can naturally define the ultraproduct measure space∏
i→ω

(Xi, µi)

which will carry a natural Γ-action: viewing the sofic approximation σ as an embedding of Γ

into the ultraproduct of permutation groups,

σ: Γ ↪→
∏
i→ω

Sym(Xi),

one uses natural embeddings Sym(Xi) ↪→ M|Xi|(C) as permutation matrices to obtain a

unitary representation

σ: Γ ↪→ U

(∏
i→ω

(M|Xi|(C), tri)

)
,

where tri denotes the normalized trace. As permutation matrices normalize the subalgebra

of diagonal matrices Ai ⊂M|Xi|(C), we obtain a natural action of Γ on the ultraproduct

Γ y
∏
i→ω

(Ai, tri),

and this latter ultraproduct is by construction isomorphic to∏
i→ω

(Ai, tri) ∼=
∏
i→ω

(`∞(Xi), µi) ∼= L∞

(∏
i→ω

(Xi, µi)

)

1This is just an isomorphism in parts of the measured groupoid literature, cf. [DKP14].
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On the other hand, by definition of the ultraproduct∏
i→ω

(`∞(Xi), µi) ∼= `∞(X)/{f ∈ `∞(X) | lim
i→ω

µi(f
∗f) = 0} ∼= L∞(∂βX, µ).

Therefore measure theoretically our construction yields nothing but the ultraproduct measure

space naturally associated with the sofic approximation.

Remark 3.13. The results in this section should be thought of as an “almost everywhere”

version of Example 2.11, where the set Z should be considered as the appropriate boundary

set to attach to the space of graphs X of a sofic approximation X.

4. From sofic approximations to analytic properties of the group

In this section we prove the results announced in Theorem 1.1, and we recall the necessary

definitions (or references) of the coarse geometric and analytic properties that we need to keep

this paper approximately self contained.

4.1. Amenability. Let X be a uniformly discrete metric space of bounded geometry.

We begin with a few definitions concerning X:

Definition 4.1. X is amenable if for every R > 0, ε > 0 there exists a finite set F ⊂ X

such that
|∂RF |
|F |

< ε,

where ∂RF is the R-boundary of F , that is the set of points in the R-neighbourhood of F

that do not themselves belong to F .

Equivalent to this metric definition is a functional one:

Definition 4.2. X is (R, ε)-amenable if there exists a norm one probability measure φ

on X such that: ∑
(x,y)∈ER

|φ(x)− φ(y)|6 ε.

A space X is amenable if it is (R, ε)-amenable for every R > 0, ε > 0 [BW92].

This leads nicely to a functional definition of property A, a coarse notion of amenability

introduced by Yu in [Yu00], which is heavily studied in the literature. For a comprehensive

survey on what is known about property A, see [Wil09].

Definition 4.3. X has Property A if for every R > 0, ε > 0, there exists an S > 0 and a

function η:X → Prob(X), written x 7→ ηx with the following properties:

(i) each ηx is supported in a ball of radius at most S around x;

(ii) for any pair (x, y) ∈ ER, we have: ‖ηx − ηy‖6 ε.
Condition ii) for η is known as being (R, ε)-variation.
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For families of metric spaces, we can study uniform properties of the family. In this

context, a family X = {Xα}α has property A uniformly if, for every R > 0, ε > 0 and there is

an S > 0 independent of α such that Xα satisfies conditions in the definition of property A

for parameters R, ε, S.

Example 4.4. For families of metric spaces, we know the following:

(i) Any sequence of finite graphs {Xi}i with degree bounded below by 3, above uni-

formly and girth tending to ∞, does not have property A uniformly, where girth is

the length of the shortest simple cycle [Wil11];

(ii) Any box space of any residually finite amenable group has property A (in fact, this

characterises amenability for a residually finite group) [Roe03, Chapter 11].

Here is the amenability part of the main result of this paper.

Theorem 4.5. Let Γ be a sofic group and let X be the a sofic approximation of Γ. If X

has property A uniformly, then Γ is amenable.

Proof. Suppose the space of graphs X associated with X has property A. Then the full

coarse groupoid – and thus G, which is a closed reduction – is topologically amenable as a

groupoid [STY02]. Applying this closed reduction fact again, ZoΓ is therefore topologically

amenable – but since Z has a Γ-invariant probability measure, this can happen if and only if

Γ is amenable [AD02, Example 2.7.(3)]. �

4.2. Amenable limits. As a basic application of the ideas from Section 2.4, we also

give an answer to the following natural question: given a graph sequence with property A,

can one use the measure µ to tell “how many” ultralimits are amenable as metric spaces?

Let Aamen denote the set of ultralimits of a graph sequence X that are amenable as metric

spaces.

Proposition 4.6.

(i) If X = {Xi}i is a family of finite graphs with bounded degree that has property A

uniformly, then there exists an ultralimit X(ω, x) that is (R, ε)-amenable;

(ii) If X has property A and Benjamini–Schramm converges to a graph X, then µ(Aamen) ∈
{0, 1};

(iii) For every q ∈ Q∩ [0, 1] there is a sequence of finite graphs X of bounded degree that

have µ(Aamen) = q.

Proof. For i): as X has property A uniformly, for each R, ε > 0 we can find an S > 0

(independent of i) and a function, for each i:

η:Xi → Prob(Xi),

satisfying:



84 4. SOFIC BOUNDARIES OF GROUPS AND COARSE GEOMETRY OF SOFIC APPROXIMATIONS

• each ηx is supported in a ball of radius at most S around x;

• for any pair (x, y) ∈ ER, we have: ‖ηx − ηy‖6 ε/NR,

where NR is the uniform upper bound on the cardinality of a ball of radius R in Xi.

We now unpack the latter point (and using ‖ηx‖= 1) into:∑
z∈Xi

|ηx(z)− ηy(z)|6 ε

NR

∑
z∈Xi

|ηx(z)|.

Fixing x ∈ Xi and summing over the ball of radius R around x gives:∑
z∈Xi

∑
y∈BR(x)

|ηx(z)− ηy(z)|6 ε
∑
z∈Xi

|ηx(z)|.

Now summing over all possible x ∈ Xi, we obtain∑
z∈Xi

∑
(x,y)∈ER

|ηx(z)− ηy(z)|6 ε
∑
z∈Xi

∑
x∈Xi

|ηx(z)|.

It follows from this that there must be some zi ∈ Xi such that:∑
(x,y)∈ER

|ηx(z)− ηy(z)|6 ε
∑
x∈Xi

|ηx(z)|.

This lets us define φ : Xi → [0, 1] by φ(x) = ηx(zi), and then by the above we deduce:∑
(x,y)∈ER

|φ(x)− φ(y)|6 ε‖φ‖1.

and as ηx is supported in a ball of radius S for each x, φ also is supported in a ball of radius

S.

Repeating this for each Xi and renormalising, we see that for every R > 0, ε > 0 there

exists S > 0 such that for every i ∈ N there is an zi ∈ Xi and a function φi : Xi → [0, 1]

supported in the ball of radius S around zi such that:∑
(x,y)∈ER

|φi(x)− φi(y)|6 ε.

Now take z = (zi)i and fix any nonprincipal ultrafilter ω ∈ ∂βN. We claim that the ultralimit

X(ω, z) is (R, ε)-amenable. Indeed, if we let B = BR+S(z) in X(ω, z), then the set:

E = {i ∈ N | BR+S(xi) is isometric to B}

has ω-measure 1.

Now, for each i ∈ E we can use a fixed isometry to transplant φi onto the set B. We note

that these new transplanted functions also satisfy:∑
(x,y)∈EX(ω,z)

R

|φi(x)− φi(y)|6 ε.
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As B is bounded, we can now take the ultralimit φ = limω φi, which now clearly satisfies:∑
(x,y)∈EX(ω,z)

R

|φ(x)− φ(y)|6 ε.

For ii), observe that a graph family X converges to a graph X locally implies that µ-

almost all X(ω, x) are isometric to X, that is we can find a base point x ∈ X and a basepoint

preserving isometry X(ω, x)→ (X,x) for almost all admissible sequences x.

Running the proof of i) sequentially for the sequence (Rn, εn) = (n, 1
n), we construct a

family of ultralimits denoted by Yn. Now, either Yn is isometric to X for arbitrarily large

n, or it isn’t – and the first case gives us that X is amenable (as it’s (R, ε)-amenable for all

R, ε > 0). To complete the proof, notice that because of the local convergence, the second

case happens for a set of possible admissible sequences of µ-measure 0.

For iii): fix q = a
b ∈ Q. Consider the graph family X = {Xi}i with

Xi =

a⊔
k=1

Yi t
b⊔

k=a+1

Zi,

where Yi is a cycle of length at i and Zi is a family of bounded degree graphs with all vertices

of degree at least three and girth at least i. Let X be the space of graphs attached with X,

and let Y and Z be the spaces of graphs attached with the sequences Y = {Yi}i, Z = {Zi}i
respectively. Then the boundary ∂βX, by definition, splits into

⊔a
k=1 ∂βY t

⊔b
k=a+1 ∂βZ,

and thus µ (
⊔a
k=1 ∂βY ) = q. So for the first part of the claim, it is enough to see that

Aamen =
⊔a
k=1 ∂βY . This is clear, however, as any ultralimit of the sequence Zi is an infinite

tree with all vertices of degree at least three, which is certainly not amenable (this proves

Aamen ⊂
⊔a
k=1 ∂βY ). For the other inclusion, notice that any ultralimit attached the sequence

Y is a copy of the integer bi-infinite ray – this is certainly amenable as a metric space (using

the Følner argument for the integers). �

4.3. a-T-menability. The following is a compression of definitions taken from [Tu99]

and [AD13].

Definition 4.7. Let G be a groupoid.

• A (real) conditionally negative definite function on G is a function ψ:G → R such

that:

(i) ψ(x) = 0 for every x ∈ G(0);

(ii) ψ(g) = ψ(g−1) for every g ∈ G;

(iii) For every x ∈ G(0) , every g1, ..., gn ∈ Gx, and all real numbers λ1, ..., λn with∑n
i=1 λi = 0 we have:∑

i,j

λiλjψ(g−1
i gj) 6 0
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• A locally compact, Hausdorff groupoid G is a-T-menable if there exists a proper,

continuous, conditionally negative definite function ψ:G → R. This definition ap-

plies to groups: a group Γ is a-T-menable if is satisfies ii).

• A Borel groupoid (G, ν) is a-T-menable if there exists a proper, Borel, conditionally

negative definite function G → R. In this context, properness means that ν({g ∈
G | ψ(g) 6 c}) <∞ for every C > 0.

If G is locally compact, Hausdorff, topologically a-T-menable groupoid, then the associ-

ated Borel groupoid (G, νµ) is a-T-menable in the sense of iii) for any quasi-invariant measure

µ on G(0). It’s also transparent that topological a-T-menability passes to closed subgroupoids.

Related to this are various notions of a coarse embedding for a metric space X.

Definition 4.8. A metric space X coarsely embeds into Hilbert space H if there exist

maps f : X → H, and non-decreasing ρ1, ρ2 : R+ → R such that:

(i) for every x, y ∈ X, ρ1(d(x, y)) 6 ‖f(x)− f(y)‖6 ρ2(d(x, y));

(ii) for each i, we have limr→∞ ρi(r) = +∞.

The connection with groupoids here is that a result of [STY02], which states that X

coarsely embeds into Hilbert space if and only if G(X) is topologically a-T-menable. In

[Wil15], Willett introduced a property sufficient for the a-T-menability of the boundary

groupoid associated with a sequence of bounded degree graphs:

Definition 4.9. Let X = {Xi}i be a sequence of finite graphs of bounded degree.

Then the sequence X asymptotically (coarsely) embeds into Hilbert space if there exist non-

decreasing control functions ρ1, ρ2 : R+ → R and symmetric, normalised kernels:

Ki : Xi ×Xi → R,

and a sequence of non-negative real numbers (Ri)i tending to infinity satisfying:

(i) for all i, and all x, y ∈ Xi:

ρ1(d(x, y)) 6 Ki(x, y) 6 ρ2(d(x, y));

(ii) for any i and any subset {x1, ..., xn} ⊂ Xi of diameter at most Ri, and any collection

of real numbers λ1, ..., λn with
∑

i λi = 0 we have:∑
i,j

λiλjKi(xi, xj) 6 0.

The key point here is the parameter family (Ri)i. If this sequence grows faster than the

sequence of diameters, then the family X is coarsely embeddable into Hilbert space (uniformly

in i). However, this might grow slower than the diameter as is the case when the space X

fibred coarsely embeds into Hilbert space but does not coarsely embed into Hilbert space. The

following is [Wil15, Lemma 5.3], which is proved using the techniques of [FS14]:
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Proposition 4.10. If X is an asymptotically coarsely embeddable family of finite graphs

of bounded degree, then the boundary groupoid G of the associated space of graphs X is topo-

logically a-T-menable. �

Let G be the coarse boundary groupoid of the graphs obtained from the sofic approxima-

tion and Z ⊂ ∂βX be a core of the sofic boundary.

Proposition 4.11. If G|Z is a-T-menable, then Γ is a-T-menable.

Proof. As G|Z∼= Z o Γ and carries an invariant measure, in view of [BG13, Corollary

5.11] it is enough to prove that the action of Γ on Z is a-T-menable in the sense of [BG13,

Definition 5.5]; this, however, immediately follows from a-T-menability of G|Z∼= Z o Γ.

�

Theorem 4.12. If Γ is a sofic group admitting a sofic approximation X that asymptotically

embeds into Hilbert space. Then Γ is a-T-menable.

Proof. As X asymptotically coarsely embeds into Hilbert space, the groupoid G is topo-

logically a-T-menable. As G|Z is closed, it also topologically a-T-menable. The result now

follows from Proposition 4.11. �

4.4. Property (T).

Definition 4.13. A finitely generated discrete group Γ = 〈S〉 has property (T) if for

any unitary representation π : Γ→ U(H) that has almost invariant vectors has an invariant

vector. Here, a vector v ∈ H is ε-invariant If

max
s∈S
‖π(s)v − v‖6 ε,

and π has almost invariant vectors if for every ε > 0 there is a ε-invariant vector.

Given a uniformly discrete metric space X of bounded geometry, there is a way to associate

a C∗-algebra to X that bridges operator algebraic properties with coarse geometric properties.

Let `2(X) be the complex Hilbert space spanned by Dirac functions δx for each point x ∈ X.

Any bounded linear operator T ∈ B(`2(X)) can be uniquely represented as a matrix (Tx,y)

indexed by X ×X where the entries are defined by Tx,y = 〈Tδx, δy〉.
For T ∈ B(`2(X)) we can define the propagation of T by the formula:

Propagation(T ) := sup{d(x, y) | Tx,y 6= 0}.

Definition 4.14. The ∗-subalgebra of B(`2X) consisting of operators with finite prop-

agation is denoted C[X]. The closure of C[X] in the operator norm of `2(X) is called the

uniform Roe algebra of X and is denoted by C∗u(X).
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A representation of C[X] is a ∗-homomorphism π : C[X]→ B(H), where H is some Hilbert

space. Each injective representation π gives rise to a completion C∗π(X) := π(C[X]) ⊂ B(H).

In this context we think of C∗u(X) as the regular completion.

Using this observation, it is possible to show that a maximal C∗-norm makes sense and

this leads to:

Definition 4.15. The maximal Roe algebra C∗max(X) is the completion of C[X] in the

norm

‖T‖:= sup{‖π(T )‖| π a cyclic representation of C[X]}.

Definition 4.16. Let X be a coarse space with uniformly locally finite coarse structure

E, and let E ∈ E be an entourage. Then the E-Laplacian, denoted by ∆E , is the element of

C[X] with matrix entries defined by:

∆E
x,y =


−1, (x, y) ∈ (E ∪ E−1) \ diag(E),∣∣{z ∈ X | (x, z) ∈ (E ∪ E−1) \ diag(E)

∣∣ , x = y,

0 otherwise.

Note that if E ⊂ diag(X) then ∆E = 0.

Example 4.17.

(i) If X is a connected graph of bounded degree, then the set E1, that is all pairs of

points of distance 1 (i.e the edges of the graph) generates the metric. In particular,

∆E1 is the unnormalised graph Laplacian of X;

(ii) If Γ is a finitely generated group, and then we can refine this above example to get

the Laplacian:

∆E1 = 1−
∑
s∈S

[s],

where [s] is the formal element in the group ring CΓ given by s ∈ S, and S (sym-

metrically) generates Γ – this group Laplacian will be denoted by ∆Γ.

This latter example connects with property (T) via a result of Valette [Val84, Theorem

3.2], which states that Γ = 〈S〉 has property (T) if and only if 0 is isolated in the spectrum

of the operator ∆Γ in the maximal group C∗-algebra C∗(Γ).

Before moving onto the main result of this section, we point out that we can identify the

algebraic Roe algebra, up to ∗-isomorphism, with the groupoid convolution algebra Cc(G(X))

[Roe03, Section 10.4], [SW16, Appendix C]. In this way, groupoid reductions such as re-

stricting to the boundary ∂βX give rise to representations of C[X].

Definition 4.18. A representation of C[X] (or equivalently Cc(G(X))) is a boundary

representation whenever the ideal

IX = {T ∈ C[X] | Tx,y 6= 0 for only finitely many x, y ∈ X}
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is contained in the kernel.

Note that in groupoid terms, IX is precisely the ideal Cc(X × X) in Cc(G(X)). Thus,

a representation of Cc(G(X) is a boundary representation if and only if it factors through

Cc(∂G(X)).

Definition 4.19. The boundary completion C∗∂(X) of C[X] is its separated completion

in the seminorm

‖T‖∂ := sup{‖π(T )‖| π a boundary representation of C[X]}

We can now state the relevant form of the definition of geometric property (T), using

[WY14, Proposition 5.2]:

Definition 4.20. A space X has geometric property (T) (resp. geometric property (T)

for boundary representations) if there exists2 an entourage E ∈ E and a c > 0 such that

Specmax(∆E) (resp. Spec∂(∆E)) is contained in {0} ∪ [c,∞). Here Specmax denotes the

spectrum in C∗max(X) and Spec∂ denotes the spectrum in C∗∂(X).

We note that the presence of the invariant measure µ on ∂βX allows us to use the following

well known C∗-algebraic fact:

Lemma 4.21 ([WY14, Section 7]). Let Γ y X be an action of Γ on a compact Hausdorff

space. Then C∗max(Γ)→ C(X)omax Γ is injective if and only if X has an invariant measure.

�

Corollary 4.22. Let Γ be a sofic group and Z be a core of its sofic approximation. Then

the natural map C∗max(Γ)→ C(Z)omax Γ is injective.

Definition 4.23. We call any representation π of Cc(G(X)) that factors through Cc(G|Z)

sofic with respect to Z or a Z-representation. The sofic completion C∗s (X) of C[X] is its

completion in the norm

‖T‖s := sup{‖π(T )‖| π a Z-representation of C[X]}

Note that C∗s (X) ∼= C∗max(G|Z).

Definition 4.24. X has geometric property (T) for Z-representations if there exists E ∈ E

and a c > 0 such that Specs(∆
E) ⊂ {0} t [c,∞), where Specs is the spectrum in C∗s (X).

Theorem 4.25. Let Γ be a sofic group, X a sofic approximation and X the corresponding

space of graphs. Then Γ has property (T) if and only if X has geometric property (T) for

Z-representations for any sofic core Z ⊂ ∂βX.

2This is equivalent to “for every” entourage, as the referenced proposition explains.
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Proof. The proof is follows that of [WY14, Theorem 7.1], making use of the fact that

the operator ∆Γ =
∑

s∈S 1−[s] ∈ CΓ maps to the operator ∆Z =
∑

s∈S 1−σ(s) in C(Z)oalgΓ,

and thus it satisfies:

Specmax(∆Γ) = Specmax(∆Z).

The result now follows from [Val84, Theorem 3.2], which shows that property (T) is equivalent

to a spectral gap for ∆Γ. �

Corollary 4.26. If X has either geometric property (T) or geometric property (T) for

boundary representations, then Γ has property (T). �

4.5. Locally embeddable into finite groups and some examples. A group that is

locally embeddable into finite groups has a ε = 0 sofic approximation X, which we call an LEF

approximation. The set Z in this case is the entire boundary ∂βX. From this we can observe

that it is possible to prove the converse of some of the results from the previous section.

This reproves essentially all of the results from [MS13] and [MOSS15]. The arguments are

straightforward after unpacking all of the definitions using groupoids.

Theorem 4.27. Let Γ be LEF, let X be a LEF approximation and let X be the space of

graphs constructed as in section 2.4. Then:

(i) Γ is amenable if and only if X has property A;

(ii) Γ has property (T) if and only if X has geometric property (T).

Proof. It clearly suffices to prove the converses.

For i): as ∂G(X) is topologically amenable, it has weak containment and a nuclear reduced

groupoid C∗-algebra by [BO08, Corollary 5.6.17]. Additionally, the sequence

0→ K(`2(X))→ C∗u(X)→ C∗r (∂G(X))→ 0,

is exact because of weak containment. It follows that C∗u(X) is nuclear, which is a well known

characterisation of property A [STY02].

To show ii), we have to exhibit spectral gap of its Laplacian ∆ ∈ C∗max(X).

By [Sha00, Theorem 6.7], every marked group Γ = 〈S |R〉 with property (T) is a (marked)

quotient of a finitely presented group Γ0 = 〈S |R0〉 with property (T); without loss of gen-

erality we may assume R0 ⊂ R. Given an LEF approximation of Γ, we thus obtain homo-

morphisms ϕi : FS → Xi into some finite groups Xi which (together with their S-labellings)

consitute the LEF approximation. As R0 is finite, after finitely many steps (say, for i > N0)

the maps ϕi descend to homomorphisms ϕi: Γ0 → Xi. Thus, putting X ′ =
⊔
i>N0

Xi, we get

a homomorphism ϕ:C∗(Γ0) → C∗max(X ′) sending the group Laplacian ∆Γ0 to the Laplacian

∆ on X ′. As Γ0 has property (T), ∆Γ0 has spectral gap and therefore so does the Laplacian

∆ on X ′; in other words, this space has geometric property (T). As the Laplacian on a finite

graph always has spectral gap, adding back the graphs Xi for i < N0 retains spectral gap for

the Laplacian. Thus, X has geometric property (T), as claimed.



5. COARSE EQUIVALENCE, QUASI-ISOMETRY AND UNIFORM MEASURE EQUIVALENCE 91

�

We remark that there are many interesting groups that are not residually finite, but are

LEF – chief amongst these are topological full groups of Cantor minimal systems, introduced

by Giordano, Putman, and Skau [GPS99], proved to be LEF by Grigorchuk and Medynets

[GM14], amenable by Juschenko–Monod [JM13] and have a simple commutator subgroup

by Matui [Mat06].

5. Coarse equivalence, quasi-isometry and uniform measure equivalence

In this section we prove that coarsely equivalent sofic approximations give rise to a uniform

measure equivalence between groups, using Morita equivalence of groupoids as a tool. We

first recall some definitions concerning the various notions of equivalence for groupoids that

appear in the literature.

Definition 5.1. (A linking groupoid) Let G be a groupoid and let T be a set with a map

f : T → G(0). Then the set

G[T ] :=
{

(t, t′, g) ∈ (T × T )×G | g ∈ Gf(t)
f(t′)

}
is a groupoid with the obvious operations. If G is a locally compact Hausdorff groupoid, T

is a locally compact Hausdorff topological space and the map f is continuous, then G[T ] is a

locally compact Hausdorff topological groupoid.

For any sets X,Y, T with maps f : X → T , g : Y → T we denote the pullback by X×f,gY ,

or X ×T Y if there is no ambiguity.

Definition 5.2. (A groupoid action) Let G be a groupoid and let M be a set. M is a

(right) G-space if there exists

• a map p : M → G(0) (called the anchor map) and

• a map M ×p,r G→M denoted by (z, g) 7→ zg (called the action map)

with the following properties:

• p(zg) = s(g) for all (z, g) ∈M ×p,r G;

• z(gh) = (zg)h whenever p(z) = r(g) and s(g) = r(h);

• zp(z) = z for every z ∈M .

This allows us to define a natural “crossed product” groupoid M o G with base space M ,

which consists of the elements (z, z′, g) ∈ (M ×M)×G that satisfy z = z′g. Note that since

M o G → M × G given by (z, z′, g) 7→ (z, g) is injective, we can also consider M o G as a

subset of M × G, which we will do. We can also define a left G-space similarly using the

source map instead of the range map: we denote the groupoid constructed from a left action

by GnM .

Every groupoid G naturally acts on its base space G(0) using id:G(0) → G(0) as the anchor

map and the multiplication as the action map. From the algebraic structure of the groupoid
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it easily follows that the orbit relation on G(0) defined by x ∼ y iff x = y · g for some g ∈ G is

an equivalence relation. The corresponding quotient is denoted by G(0)/G. For a set M with

a G-action the quotient space by the action is defined through M/G := M/(M oG).

So far we have mentioned nothing concerning the topological structure of the action and

the crossed product space in case G and M have topologies. This can be adjusted by putting

sufficient continuity and openness conditions on the maps above, which is discussed at length

in [Tu04, Section 2]. The main result of these considerations which we will need is the

following:

Proposition 5.3. [Tu04, Proposition 2.29] Let G1 and G2 be two topological groupoids,

let si, ri be the open source and range maps of Gi. Then the following are equivalent:

(i) there exists a set T with fi : T → G
(0)
i open surjective maps such that G1[T ] ∼= G2[T ];

(ii) there exists a space M with two continuous maps ρ : M → G
(0)
1 , σ : M → G

(0)
2 such

that ρ is the anchor map for a left action of G1 on M , σ is the anchor map of a

right action of G2 on M such that these actions commute, are free and the action

of G2 is ρ-proper, the action of G1 is σ-proper and:

M/G2 → G
(0)
1 and G1\M → G

(0)
2

are homeomorphisms.

Two topological groupoids that satisfy either of the two equivalent conditions above will be

called Morita equivalent.

Remark 5.4. The main point to raise here is that the space M in the proof of i) ⇒ ii) is

constructed as follows [Tu04, Proposition 2.29]: take M1 to be the space G1×s,f1 T , and M2

to be the space T ×f2,r G2. These are then combined over the Gi[T ]-action on the right on

M1 and the left on M2 to the space M := M1×G1[T ]M2, which amounts of dividing the space

M1 ×T M2 by the relation generated by (z, z
′
) ∼ (zg, g−1z), where g ∈ G1[T ]. The space M

then admits a bispace structure which implements ii).

Remark 5.5. The notion of Morita equivalence can also be defined for measured groupoids

in a similar manner, replacing topological conditions by measurable ones, and we will make use

of it later. We refer the reader to [Lan01] and references therein for discussion of definitions

Morita equivalence for various categories of groupoids and operator algebras and connections

between them.

Example 5.6. A coarse equivalence f produces a “coarse correspondence”, as in [STY02],

between G(X) and G(Y ). This is a groupoid G(X t Y ) constructed from a “linking” coarse

structure, defined using the coarse structure E(f) := EXmet t EYmet t EXY t EY X , where the

sets in EXY are precisely those of the form F × f(F ), similarly defining those in EY X using

the coarse inverse of f . This coarse structure is uniformly locally finite if EXmet and EYmet are

[STY02, Proposition 2.3].
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This coarse correspondence allows us to construct a topological space T = βX t βY
that implements a topological Morita equivalence between G(X) and G(Y ) in the sense of

Proposition 5.3. The proof of this is a part of the content of a remark from the beginning of

Section 3.4 of [STY02].

Lemma 5.7. If X and Y are coarsely equivalent by a pair of maps f : X → Y and

k : Y → X, then G(X)[T ] ∼= G(Y )[T ] for T = βX t βY and maps pX : T → βX (resp.

pY : T → βY ) given by

pX(ω) =

ω if ω ∈ βX

f(ω) if ω ∈ βY
.

and a similar definition for pY . �

The space M whose construction was outlined in Remark 5.4 is a quotient of

(5.1) M := G(X)×s,pX T ×pY ,r G(Y )/∼

where ∼ implements the identification of points in T who are joined by continuous extensions

of the coarse maps f : X → Y and k : Y → X. We also remark, that as the sets X and Y

are invariant in their respective coarse groupoids, these bispaces restrict to bispaces over the

boundary groupoids ∂G(X) resp. ∂G(Y ).

Lemma 5.8. Let Γ and Λ be sofic groups with X, and Y sofic approximations of Γ and Λ

respectively, and suppose that f : XX → XY is a coarse equivalence of the associated spaces of

graphs. Then the set f̃(ZX) ∩ ZY has positive measure in ∂βXY.

Proof. By [KV15, Lemma 1] we can assume that f(Xi) ⊂ Yi, and that f |Xi is a (C,C)-

quasi-isometry (for some constant C > 0). As f is a coarse equivalence, there is a constant

n > 0 such that XY = Nn(f(XX)), where Nn is the n-neighbourhood of f(XX) in XY. We

also observe that Nm(A) = N1(Nm−1(A)) for all subsets A ⊆ XY and all m ∈ N. It follows

by induction that, for all i:

|Ni(f(Xi))|6 |SΛ|i|f(Xi)|,

where SΛ is the finite generating set of Λ. This shows that f̃(ZX) has measure at least 1
|SΛ|n |Yi|

in ∂βY as the image preserves unions and the measure ZcX is 0. This completes the proof,

since ZY has µY-measure 1. �

In fact, we can say more using the observation that f̃(ZX) ∩ ZY 6= ∅: it allows us to

construct a quasi-isometry using the transplanting technique of [KV15, Proposition 3]:

Proposition 5.9. Let Γ and Λ be sofic groups, with sofic approximations X and Y re-

spectively. If the spaces of graphs XX and XY attached with X and Y are coarsely equivalent,

then Γ and Λ are quasi-isometric.

Proof. The proof of this fact is precisely the proof of [KV15, Proposition 3], except that

instead of using convergence of marked groups (i.e ultralimits of groups using the identity
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as base point), we use ultralimits along a base point sequence (xi)i, such that η = limω xi

satisfies: f(η) ∈ f̃(ZX) ∩ ZY. �

Finally, we consider the analogous notion of measure equivalence, as was considered in

[Das15] for box spaces of residually finite discrete groups.

Definition 5.10 ([Gro93,Sha04,Das15]). Two groups Γ and Λ are measure equivalent

if there exists a essentially free Borel measure (Γ,Λ)-space (X,µ) such that there are finite

volume fundamental domains XΓ ⊂ X ⊃ XΛ for the actions. A measure equivalence is

uniform if additionally, for every g ∈ Γ (resp. h ∈ Λ) there exists a finite subset Sg ⊂ Λ (resp.

Th ⊂ Γ) such that

gXΛ ⊂ XΛSg and XΓh ⊂ ThXΓ

Our aim is to prove that if Γ and Λ are sofic groups with coarsely equivalent approxima-

tions, then Γ and Λ are uniformly measure equivalent. To accomplish this, we need to take

the topological Morita equivalence M of G(XX) and G(XY) provided by a coarse equivalence

f : XX → XY, and turn it into a Morita equivalence between measured groupoids. To do

this, we have to analyse the correspondence between invariant measures and measures on a

quotient by a free and proper action for étale groupoids:

Proposition 5.11. Let G and H be étale groupoids and let X be a free and proper G-

H-space. Then there is a one-to-one correspondence between G-invariant Radon measures

ρ on X and Radon measures µ on G\X. Moreover, this correspondence is additive and

H-equivariant.

Proof. Each G-invariant Radon measure ρ on X defines a Radon measure µ = Gρ on

G\X using the pushforward of ρ over a subset U ⊂ X such that the quotient map is one-to-

one on U . This construction is H-equivariant as the H-action commutes with the G-action

on X.

To go back, we use the construction from [SW12, Section 3]: let X be a free and proper

left G-space. Then G\X is a locally compact Hausdorff space, and for each x ∈ X, the map

γ 7→ γ · x is a homeomorphism of Gr(x) onto the orbit G · x. We define a Radon measure ρG·x

on X with support G · x by

ρG·x(f) :=

∫
G
f(γ−1(x))dλr(x)(γ)

Our definition is independent of our choice of x in its orbit by left-invariance of the Haar

system λ. Additionally, the map

[x] 7→ ρ[x](f)

is continuous on G\X. Given a finite Radon measure µ on G\X, we define a Radon measure

ρµ on X by

ρµ(f) =

∫
G\X

∫
X
f(y)dρ[x](y)dµ([x])
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The measure ρ is G-invariant by construction, as ρ[x] is invariant and supported on a

G-orbit. On the other hand, as the actions of G and H on X commute and because the

measures ρ[x] are defined by integrating over the orbit, they are H-equivariant: for all χ ∈ H
we have ρ[x]·χ = χ∗ρ

[x].

It’s routine to check that these constructions are additive, inverse to each other and

therefore define a one-to-one correspondence as claimed. �

In the situation of the above proposition we say that µ is the quotient measure corre-

sponding to ρ and write µ =
G
ρ and that ρ is the measure induced by µ through the action

of G and write ρ = Gµ; we use corresponding notations for right actions.

Corollary 5.12. Let G and H be étale groupoids with invariant measures µ and η on

G(0) and H(0) respectively and let M be a Morita equivalence between them. If Gµ
H

on H(0) is

absolutely continuous with respect to η and
G
ηH on G(0) is absolutely continuous with respect

to µ, then (G, νµ) and (H, νη) are Morita equivalent as measured groupoids in the sense of

[Lan01].

Proof. The absolute continuity assumptions imply that the measure

ρ := Gµ+ ηH

descends to measures
G
ρ and ρ

H
which are equivalent to µ resp. η. Thus, (M,ρ) is a Morita

equivalence between the measured groupoids (G, νµ) and (H, νη). �

Using this we can prove:

Theorem 5.13. Let Γ and Λ be sofic groups with approximations X and Y respectively.

If the associated spaces of graphs XX and XY are coarsely equivalent, then the groups Γ and

Λ are uniformly measure equivalent.

Proof. In order to appeal to Corollary 5.12, we have to show that the limits µ and η of

counting measures on the base spaces of GΓ and GΛ satisfy the absolute continuity assumption.

To check this, recall the construction of the space M following (5.1):

M := ∂G(X)×s,pX T ×pY ,r ∂G(Y )/∼

where ∼ implements the identification of points in T = ∂βX t ∂βY who are joined by

continuous extensions of the coarse maps f : X → Y and k : Y → X. It follows that the

measure Gµ
H

is equal to the pushforward f∗µ of the measure µ under the coarse equivalence

map f , and similarly,
G
ηH is equal to the pushforward k∗η under the coarse inverse. As coarse

maps have uniformly finite fibres, the absolute continuity follows. Thus, Corollary 5.12 yields

a measurable Morita equivalence (M,ρ) between (GΓ, νµ) and (GΛ, νη).

To show that Γ and Λ are uniformly measure equivalent, we fix fundamental domains

XΓ, XΛ ⊂ M with compact closures for the GΓ and GΛ-actions respectively and let {Ug}g∈Γ
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and {Uh}h∈Λ be covers of GΓ and GΛ by compact open slices, each of which restricts to a slice

of the form [ZX, g] on G|ZX
∼= ZX o Γ and [ZY, h] on G|ZY

∼= ZY o Λ.

Fix h ∈ Λ. The set {UgXΛ}g∈Γ is an open cover of M , thus in particular it covers XΓUh,

which is a compact subset of M as the right GΛ action is proper and Uh is a compact open

slice of GΛ. Now, compactness of XΓUh allows us to extract a finite subcover {UgXΓ}g∈Th for

some finite set Th ⊂ Γ.

To finish the proof, we remark that the the almost everywhere isomorphisms GΓ
∼= ∂βXoΓ

and GΓ
∼= ∂βX o Λ constructed in Theorem 3.11 give rise to actions of Γ and Λ on M with

(measurable) fundamental domains XΓ and XΛ such that gXΓ and XΓh coincide with UgXΓ

and XΓUh up to null sets. Thus, the set Th satisfies the condition in the Definition 5.10, and

symmetrisation of the argument for the GΛ-action provides for evey g ∈ G a finite set Sg with

the necessary properties. This finishes the proof. �

Appealing to [Gab02, Theorem 6.3], we now obtain:

Corollary 5.14. If Γ and Λ are finitely generated sofic groups with coarsely equivalent

sofic approximations, then their `2-Betti numbers are proportional.

This Corollary has immediate applications to distinguishing families of finite graphs up

to coarse equivalence. In particular, it allows us to see that box spaces of products of free

groups with different number of factors are not coarsely equivalent [Gab02, Corollaire 0.3])

as they have `2-Betti numbers that are not proportional – we remark that this is considered

directly in the work of Das [Das15], and we draw attention to it again due to recent interest

in this question [KV15,Del16].

5.1. Remarks about bilipschitz equivalence. Let Γ and Λ be sofic groups with ap-

proximations X and Y respectively. If XX and XY are bilipschitz equivalent via a map f ,

then they are certainly coarsely equivalent and so the results of the previous section apply.

However, as in the remark that precedes [Sha04, Definition 2.1.4], we can say quite a bit

more concerning the relationship between Γ and Λ in this instance.

Notably, the following basic observations can be used to simplify and improve on the

results from Section 5:

(i) Bilipschitz equivalences are bijections, so the pushforward f∗µX agrees with µY. This

means that Lemma 5.8 is a triviality, as f̃(ZX) is µY-measure 1. We also remark

that any bijection from XX to XY will also give a homeomorphism between ∂βXX

and ∂βXY;

(ii) Let µ and η be measures on G(0) and H(0) respectively (as in Corollary 5.12). Then

applying i), but this time in the construction of the bimodule measure ρ induced

from µ, we see that actually Gµ
H

= η. As a consequence,

(a) we do not need to use the sum of ρ := Gµ+ ηH in the proof of Corollary 5.12;
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(b) there is a common fundamental domain in a topological and measurable sense

(as a consequence of the homeomorphism between ∂βXX and ∂βXY).

Additionally, one can improve Proposition 5.9.

Proposition 5.15. Let Γ and Λ be sofic groups, with sofic approximations X and Y re-

spectively. If the spaces of graphs XX and XY attached with X and Y are bilipschitz equivalent,

then Γ and Λ are bilipschitz equivalent. �

This has additional consequences due to results by Medynets–Thom–Sauer [MTS15,

Theorem 3.2]:

Corollary 5.16. Let Γ and Λ be sofic groups, with sofic approximations X and Y respec-

tively. If the spaces of graphs XX and XY attached with X and Y are bilipschitz equivalent,

then there exist minimal, continuous orbit equivalent actions of Γ and Λ on some Cantor set

C. �

6. A standardisation of the base space

This section is dedicated to the proof of the following theorem:

Theorem 6.1. Let Γ be a sofic group, X be a sofic approximation of Γ and X the associated

total space of the family of graphs attached to X. Then there exists a second countable étale,

locally compact, Hausdorff topological groupoid G with following properties:

(i) the base space G(0) =: X̂ is a compactification of X (in particular, it’s a quotient of

βX through a quotient map p:βX → X̂),

(ii) p(Z) ⊂ ∂X̂ is invariant and satisfies G|p(Z)
∼= p(Z)o Γ. As a consequence, we have

an almost everywhere isomorphism

(G|
∂X̂
, νp∗µ)→ (X̂, p∗µ)o Γ.

Morally, this means that although the space (∂βX, µ) is not a standard probability space,

we can use X̂ to make arguments as if we were actually in ∂βX, whilst actually working in

a standard Borel probability space.

Example 6.2. Let Γ be a residually finite, finitely generated discrete group, let X be a sofic

approximation made up of finite quotients of Γ and let X be the space of graphs associated to

X. Then by considering the Boolean algebra B generated by Cofin(X)∪Fin(X)∪{Sh(eNi)}i,
where

Sh(eNi) :=
⋃
j>i

{x ∈ Xj | πi,j(x) = eiNi}

is the shadow of eNi in X, we obtain a second countable, locally compact, Hausdorff étale

groupoid GB, which is homeomorphic to XB o Γ, and XB
∼= Γ̂X is the profinite completion

associated with the family of finite quotients X. This dynamical system was introduced in
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[AN12], where it was shown to be minimal (and in this case, as subgroups in question are

normal, it’s also free). A similar construction using the shadows of the identity would give us

the boundary ∂T as defined in [AN12] when the chain is Farber. This example shows that

one can choose the appropriate Boolean algebra depending on the goals in question.

The ideas used in the proof stem from the work of Skandalis–Tu–Yu [STY02], where one

pushes the failure of second countability of G(X) purely into the unit space: this allows one

to make use of the groupoid equivariant KK-theory of Pierre-Yves Le Gall [LG01] to describe

the coarse Baum–Connes conjecture attached to X.

Proof of Theorem 6.1. We first recall the outcome of [STY02, Lemma 3.3], which

states that any countable generating set A of the metric coarse structure on a space X gives

rise to a second countable, étale, locally compact Hausdorff groupoid GA, such that the coarse

groupoid G(X) is homeomorphic to the transformation groupoid βX oGA
3. We construct A

in what follows.

In light of Section 3, we can construct generators using those given by the labelling, i. e.

by considering the entourages EP , where P is a word in the free group on the alphabet S.

These clearly generate the metric for the space X (as a total space of the family X). This

family doesn’t give us a good unit space however, as each of the elements we are using here

are bijections (thus the base space XA of GA would end up being a point).

To remedy this, we consider the set B of all countable Boolean subalgebras of 2X that

contain the set Y and some infinite set that is not cofinite. Note that if the approximation X

is a LEF approximation (i.e ε = 0 for i), then Y = X and subsequently, this is all countable

Boolean subalgebras with at least one infinite, not cofinite set.

Fix B ∈ B. By taking the inverse semigroup generated by B and the transformations τ(w)

for w ∈ FS , we get a countable pseudogroup. Let A be this set of partial transformations

τ(g)|A, where A ∈ B, extended continuously to βX. Applying [STY02, Lemma 3.3], we

obtain a second countable étale groupoid GA. Its base space XA is a quotient of βX and

we denote the quotient map by p:βX → XA. Pushing forward the measure µ along the

map p:βX → XA, and using the Urysohn metrization theorem, we obtain that (XA, p∗µ) has

the structure of a standard Borel probability measure space. Since µ is supported inside the

boundary ∂βX, it follows that p∗µ(∂XA) = 1, and we again obtain a boundary type groupoid

GA := GA|∂XA
, and as the set Y from Section 3 belongs to the Boolean algebra generating

GA, we can see that the FS-action factors through Γ up to null sets. This allows us to run

the arguments of Section 3 again to obtain an almost everywhere isomorphism of groupoids

(through a µ-inessential reduction). This finishes the proof. �

3Skandalis-Tu-Yu give a “by hand” proof of this result: a slightly more modern approach to it would be to
make use of the fact that a pseudogroup in this context gives us a inverse monoid, and then construct from
that, using well known techniques of [Exe08], a groupoid with all the desired properties.
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7. Concluding remarks and further questions

We finish the paper with a few questions and comments on the surrounding literature,

concerning primarily the interactions between the geometric and probabilistic points of view

on sofic groups and graphs. Throughout, let Γ be a sofic group, X a sofic approximation and

G|Z be the sofic coarse groupoid restricted to the sofic core.

The statement of our main result immediately suggests a question about the converse:

Question 7.1. To which extent do the converse statements to the one of Theorem 1.1

hold?

Because soficity gives only a measure-theoretic control of actions on the sofic boundary, we

do not expect the converse to hold true in full generality. On the other hand, as amenability, a-

T-menability and property (T) of discrete groups are visible at the level of measure-preserving

actions, it is natural to expect that they will be visible at the sofic boundary; it is natural to

expect some form of probabilistic manifestation of coarse-geometric properties there.

Definition 7.2 ([Ele07,Sch08]). A family of finite graphs Y = {Yi}i of bounded degree

is a hyperfinite family if for every ε > 0 and for each i ∈ N there exists a decomposition of Yi

into Kε,i finite sets Ui,j such that

(i) each Ui,j is uniformly bounded;

(ii) the size of each set E(Ui,j , Ui,j′ ) is at most ε|Yi| whenever j 6= j
′
, where E(Ui,j , Ui,j′ )

is the set of edges between Ui,j and Ui,j′ .

A combination of Theorem 4.5 with [Sch08, Theorem 1.1] shows that property A for a

sofic approxiation implies hyperfiniteness of that approximation.

Question 7.3. Does hyperfiniteness of a sofic approximation imply property A for that

approximation?

Here the fact that we ask this for a sofic approximation is important, as the implication

does not hold for a general Benjamini–Schramm convergent sequence of graphs4.

One approach to this question would be to use a property equivalent to property A called

the metric sparsification property [CTWY08], which was shown to be equivalent in [Sak14]

to a graph family being weighted hyperfinite (as defined in by Elek and Timár in [EAT11]).

However, there is a subtlety here – the measure on the groupoid G only deals with counting

measures on the graphs, whereas the weighted notion of hyperfiniteness from [EAT11] is

dealing with limits of arbitrary measures on the graph family X.

Another recent development in [Kun16] classified measurably those approximations com-

ing from groups with property (T). The natural analogue of hyperfiniteness in this setting is

the following:

4This was communicated by Gabor Elek, in a personal communication.
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Theorem 7.4 ([Kun16, Theorem 1]). Let Γ be a property (T) group and let X = {Xi}i
be a family of bounded degree graphs that Benjamini-Schramm converge to the Cayley graph

of Γ. Then there is a c > 0 and a family of regular graphs Y = {Yi}i such that:

(i) V (Xi) = V (Yi) for every i;

(ii) limi→∞
|E(Xi)4E(Yi)|
|V (Xi)| = 0;

(iii) Each Yi is a vertex disjoint union of c-expanders.

In other words, the graphs Yi are obtained by “rewiring” Xi in an asymptotically negligible

manner.

Question 7.5. Can a sofic approximation of a property (T) group be “asymptotically

rewired” to have some form of geometric property (T)?

As Theorem 4.25 implies that geometric (T), boundary geometric (T) or geometric (T)

for sofic representations imply the conclusion of [Kun16, Theorem 1], the above is asking

about a strengthening of the latter.

As the results of [Kun16] are statements about the ergodic decomposition of the measure,

and these specific questions motivate the following:

Question 7.6 (Ergodic decomposition). What properties do the subgroupoids of G|Z that

correspond to the ergodic components have?

Notice that this question connects very nicely to older results, notably [Ele07] and

[Sch08].

On a related note, there are many measurable notions from the literature, such as cost

[Ele07], entropy and mean dimension [DKP14] that all apply to measured groupoids – the

topological groupoid defined in Section 3 can also be considered in this setting, and after

passing through the standardisation process of Section 6 we obtain groupoids that allow for

these notions to be applied. This mirrors the work of Carderi [Car15], as remarked earlier.

Our standardisation process produces topological groupoids, but is far from giving a

unique space – the difference being that we use countable Boolean subalgebras of 2X, as

opposed to countable Borel σ-algebras – and these each give potentially give rise to very

different metrisable dynamical systems. On the other hand, properties such as amenability

and property (T) will pass to these systems without any loss. This naturally leads to the

following question:

Question 7.7. What is the interaction between coarse properties of X and the measur-

able properties of its various standardisations? More concretely, can we show that for these

systems, the invariants such as entropy (or mean dimension) do not depend on the choice of

countable Boolean subalgebra? Is there an “clopen” analogue of the main results in [Car15]?

Finally, we end this section with a remark about a specific sofic group that itself does not

have property A.
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Example 7.8 (Non-exact groups that are sofic). It is known, by a construction proposed

in [AO14] and completed in [Osa14] that there are groups that are a-T-menable, but do

not have property A. A natural observation is that any such Γ is direct limit of hyperbolic,

CAT(0)-cubulable groups Γm – and as hyperbolic CAT(0)-cubical groups are residually finite

[Ago13], Γ will be LEF (see [CSC12] for a proof of this, in the more general sofic setting).

In this situation, any LEF sequence will mostly likely be asymptotically coarsely embed-

dable, but it will not satisfy a notion of “asymptotic property A” that will be introduced in

[Pil16], which is some form of groupoid exactness that appears to fail in the general setting

– this is related to doing coarse geometry on groupoids with metrizable range fibres as in

[TWY16] or [AD16].

Question 7.9. What can we say concerning the asymptotic geometry of the sofic approx-

imations of the above monster groups? Can we use embeddings of sofic approximations to

construct new exotic monster groups with strange properties?
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L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique]. L’Enseignement
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[Ele07] Gábor Elek. The combinatorial cost. Enseign. Math. (2), 53(3-4):225–235, 2007. ↑99, ↑100

[Ell76] George A Elliott. On the classification of inductive limits of sequences of semisimple finite-

dimensional algebras. Journal of Algebra, 38(1):29–44, 1976. ↑67

[Exe08] Ruy Exel. Inverse semigroups and combinatorial c*-algebras. Bull. Braz. Math. Soc. (N.S.),

39(2):191–313, 2008. ↑70, ↑71, ↑98, ↑160, ↑162, ↑163, ↑165, ↑166, ↑167, ↑169

[Exe10] R. Exel. Reconstructing a totally disconnected groupoid from its ample semigroup. Proc. Amer.

Math. Soc., 138(8):2991–3001, 2010. ↑80, ↑163, ↑164, ↑166

[Far98] Michael Farber. Geometry of growth: approximation theorems for L2-invariants. Math. Ann.,

311(2):335–375, 1998. ↑72

[FS14] Martin Finn-Sell. Fibred coarse embeddings, a-T-menability and the coarse analogue of the

Novikov conjecture. J. Funct. Anal., 267(10):3758–3782, 2014. ↑68, ↑69, ↑86

[FSW14] Martin Finn-Sell and Nick Wright. Spaces of graphs, boundary groupoids and the coarse Baum-

Connes conjecture. Adv. Math., 259:306–338, 2014. ↑68, ↑73, ↑78

[FSW16] Martin Finn-Sell and Jianchao Wu. The asymptotic dimension of box spaces of elementary

amenable groups. arXiv: https://arxiv.org/abs/1508.05018, 2016. ↑72

[Gab02] Damien Gaboriau. Invariants l2 de relations d’équivalence et de groupes. Publ. Math. Inst. Hautes
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CHAPTER 5

Non-amenable principal groupoids with weak containment

Abstract

We construct examples of principal groupoids that have weak containment but are not

amenable, thus answering questions by Claire Anantharaman-Delaroche and Rufus Willett.

1. Amenability and weak containment

Through its many guises, amenability of a group has become a focal concept within both

group theory and operator algebras. By a classical result of Andrzej Hulanicki ([Hul64]), the

amenability of a discrete group is equivalent to the property that all unitary representations

of the group are weakly contained in the left regular representation – we refer to this property

as weak containment.

Recently, there has been interest in how far Hulanicki’s classical result can be generalised,

and in particular it has been shown by Rufus Willett in [Wil15] to fail for groupoids that are

bundles of groups. The purpose of this note is to address Question 4.1 from [AD16] (that

was also raised in Remark 3.6 of [Wil15]), namely we give an example of a principal groupoid

that has weak containment, but is not amenable.

For a information about étale groupoids, their C∗-algebras and representations, we suggest

[BO08, Chapter 5]. For more general information concerning locally compact groupoids, we

refer to [Ren80] and [ADR00] and references therein.

1.1. Preliminaries. Throughout the text, G will be an étale Hausdorff topological groupoid,

and for any subset of the unit space U ⊂ G(0) we will denote by G|U the restriction of G to

U , i.e the subgroupoid of G consisting of all the elements with both source and range in U .

We remark that this groupoid is open (resp. closed) if U is open (resp. closed) in G(0).

Definition 1.1. G has weak containment if the left regular representation λ : C∗(G) →
C∗r (G) is a ∗-isomorphism.

From [ADR00, Theorem 6.1.4] it is known that all measurewise amenable groupoids

have weak containment. We recall the general strategy used in [Wil15] to construct a non-

amenable groupoid with weak containment.

Definition 1.2. Let Γ be a residually finite finitely generated discrete group and let

N := {Ni}i be a family of nested, finite index normal subgroups of Γ with trivial intersection.
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108 5. NON-AMENABLE PRINCIPAL GROUPOIDS WITH WEAK CONTAINMENT

Let πi be the quotient map Γ→ Γ/Ni. The HLS1 groupoid G associated to Γ and N is:

G :=
⊔
i∈N+

{i} ×Xi

where

Xi =

Γ/Ni if i ∈ N

Γ if i =∞
equipped with the topology generated by the following sets:

• the singletons {(i, g)};
• the tails: {(i, πi(g)) | i ∈ N+, i > N} for every fixed g ∈ Γ and N ∈ N.

One can check that equipped with this topology and the obvious partially defined product

and inverse G becomes an étale, locally compact Hausdorff groupoid with unit space N+.

Moreover, it is amenable if and only if Γ is amenable.

Considering the open invariant set U := N ⊂ G(0), we obtain a commuting diagram with

exact rows consisting of C∗-algebras associated with the restriction groupoids G|U and G|Uc :

0 // C∗(G|U )

��

//

��

C∗(G) //

��

C∗(G|Uc) //

��

0

0 // C∗r (G|U ) // C∗r (G) //

%%

QU //

��

0

C∗r (G|Uc) // 0

where QU is the quotient by the ideal C∗r (G|U ). The groupoid G|U is amenable and therefore

has weak containment, and so to deduce weak containment for G it is enough to show that

the map C∗(G|Uc) → QU is isometric. In [Wil15], it is then proved that C∗(G|Uc) ∼= C∗(Γ),

C∗r (G|Uc) ∼= C∗r (Γ), and that vertical arrows come from canonical maps between these; there-

fore weak containment is automatic if Γ is amenable. In the non-amenable case, weak con-

tainment is deduced from the property FD of Lubotzky–Shalom ([LS04]):

Definition 1.3. Let Γ be a countable discrete group. Γ has property FD if finite di-

mensional representations are dense in the unitary dual of Γ; a family of finite quotients

X := {Γ/Nκ}κ is an FD family if the set of representations of Γ which factor through the

quotient maps {πκ : Γ→ Γ/Nκ}κ is dense in the unitary dual of Γ.

This is then used to deduce the key result in [Wil15]: if X is an FD family, then the

C∗-algebra QU in the corresponding HLS groupoid G is isomorphic to the maximal group

C∗-algebra C∗(Γ) through the vertical map C∗(Γ) ∼= C∗(G|Uc) → QU in the above diagram.

1After Nigel Higson, Vincent Lafforgue and George Skandalis who first considered this construction for a
related purpose in [HLS02].
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However, non-amenability of Γ implies that the groupoid G is non-amenable, and this finishes

the construction.

2. Constructing examples

Let Γ be a non-amenable residually finite group with a countable nested (FD) family

X and let G be the HLS groupoid from the previous section. We are going to consider a

transformation groupoid constructed from G and the set of finite quotients X. Let X :=⊔
iXi. We begin by constructing the unit space for this groupoid as a second countable

compactification of X.

For g ∈ Xi, consider the shadow of g in X:

Sh(g) :=
⋃
j>i

{x ∈ Xj | πi,j(x) = g},

where πi,j : Γ/Nj → Γ/Ni is the canonical quotient map.

Let B be the G-invariant C∗-subalgebra of `∞(X) generated by {δx}x∈X and the sets of

projections {1Sh(g))}g∈Xi for all i ∈ N. We will consider the spectrum of B, which we denote

by X̂. As B is G-invariant, X̂ carries a natural G-action, and we consider the transformation

groupoid G := X̂ o G.

We remark that G(0) contains a obvious open invariant subset X ⊂ G(0) corresponding

to the ideal generated by δx, x ∈ X, and let ∂X ⊂ G(0) be the closed (compact) complement.

The following lemma describes it as a Γ-space.

Lemma 2.1.

(i) The space ∂X is Γ-equivariantly homeomorphic to Γ̂X, the profinite completion of

Γ with respect to the family X.

(ii) The algebra A := C(∂X) is a direct limit of finite-dimensional Γ-C∗-algebras Ai,

such that the action on Ai factors through Γ/Ni.

Proof. The inclusion ∂X ⊂ X̂ gives rise to a restriction homomorphism r:B = C(X̂)→
C(∂X) = A which obviously contains all elements δx, x ∈ X, in its kernel. Thus, A = C(∂X)

is generated by images of the projections pi,g := 1Sh(g), i ∈ N, g ∈ Xi.

Consider the finite-dimensional C∗-algebras Ai generated by the projections pi,g, g ∈ Xi.

Notice that the action of Γ on Ai obviously factors through Γ/Ni, as it is isomorphic to

the natural left action of Γ on C[Γ/Ni]. Moreover, there are natural Γ-equivariant injective

homomorphisms

ρi,j :Ai → Aj ,

ρi,j(pi,g) =
∑

πi,j(g′)=g

pj,g′

corresponding to (Γ-equivariant) projections Γ/Nj � Γ/Ni.
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Furthermore, the element pi,g − ρi,i+1(pi,g), considered as an element of C(X̂), equals

δg, and therefore the kernel of the restriction map r is generated by such differences. As a

consequence, we get a Γ-equivariant isomorphism A ∼= lim−→Ai, whence the boundary ∂X is

the inverse limit of the corresponding projective system of Γ-spaces. By the remark above,

this projective system of spaces is naturally identified with the projective system {Γ/Ni}i∈N,

equipped with the natural left Γ-action. This finishes the proof.

�

Remark 2.2. As the C∗-algebras Ai are finite-dimensional, they have natural regular

representations λi:Ai → B(Ai), where Ai carries the Hilbert space structure obtained from

the natural trace τi: pi,g 7→ 1 as well as a unitary representation αi: Γ → U(Ai) given by the

Γ-action. Let φi be the bijection that sends pi,g to πi(g). This induces an isomorphism φi

between Ai o Γ/Ni and the full matrix algebra M|Xi|.

The consequence of Lemma 2.1 is that we can identify the boundary piece of G as

G|∂X∼= Γ̂X o Γ,

where the latter groupoid is the transformation groupoid with the natural free action. It

follows that G is a principal groupoid as the action on X is obviously free: G|X∼=
⊔
i∈N(Xi o

Γ/Ni) by construction.

Attached with this decomposition of X̂ into X and ∂X we obtain a commuting diagram

with exact rows:

0 C∗(G|X) C∗(G) C∗(G|∂X) 0

0 C∗r (G|X) C∗r (G) QX 0

C∗r (G|∂X) 0

q

Lemma 2.3.

(i) If the map q:C∗(G|∂X)→ QX in the above diagram is an isomorphism, then G has

weak containment;

(ii) If the map QX → C∗r (G|∂X) in the above diagram is not an isomorphism, then G

is non-amenable.

Proof. As G|X∼=
⊔
iXi o Γ/Ni is a disjoint union of pair groupoids with the obvious

discrete topology, it is amenable and therefore has weak containment. i) now follows from the

above diagram by the five lemma. ii) follows as amenability passes to restrictions to closed

invariant subsets. �

As a final preliminary before proving our result, we describe an ambient setting for QX

and C∗r (G).
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Lemma 2.4. There is a natural isometric embedding

C∗r (G) ↪→
∏
i∈N
M|Xi|,

which induces an isometric embedding

ι:QX ↪→
∏
jM|Xj |⊕
jM|Xj |

.

Proof. Since X is dense in X̂, we can use [KS04, Corollary 2.4 a)] to see that the norm

of an element f ∈ C∗r (G) is equal to supx∈X‖λx(f)‖, where λx is the left regular representation

on s−1(x) (which is equal to Xi if x ∈ Xi). Thus we get a natural embedding

C∗r (G) ↪→
∏
i∈N
M|Xi|,

where M|Xi| is the full matrix algebra over Xi (viewed as bounded operators on `2(Xi)). As

G|X is a union of pair groupoids, we get C∗r (G|X) ∼=
⊕

jM|Xj |, which implies that QX is

isometrically embedded into

∏
j M|Xj |⊕
j M|Xj |

.

�

Our goal now is connect the maximal crossed product of A by Γ with QX using that Γ

has property (FD).

Proposition 2.5. The maximal crossed product AioΓ embeds into
∏
j>i

Aj oΓ/Nj by the

natural maps ρi,j o πj.

Proof. The claim is equivalent to the statement that every representation of Ai o Γ is

weakly contained in a representation factoring through Aj o Γ/Nj . To this end, consider an

arbitrary representation σ:Ai o Γ→ B(H) and an element

x =
∑

g∈Γ/Ni

pi,gfg ∈ Ai oalg Γ,

where fg ∈ C[Γ] and let ξ, η ∈ H be arbitrary vectors. We have

〈xξ, η〉 =
∑

g∈Γ/Ni

〈fgξ, pi,gη〉

By property (FD) of Γ for every ε > 0 we get a j > i, representation σ′: Γ � Γ/Nj →
U(H′) and vectors ξ′1, . . . , ξ

′
N , η′1, . . . , η

′
N ∈ H′ such that∣∣∣∣∣∣〈xξ, η〉 −
∑

g∈Γ/Ni

N∑
`=1

〈
σ′(fg)ξ

′
`, η
′
`

〉∣∣∣∣∣∣ < ε.

Consider now the Hilbert space H′′ := H′ ⊗ Aj and the representation σ′′ := σ′ ⊗ αj : Γ →
U(H′′) (which factors through Γ/Nj) as well as the representation mi,j := idH

′ ⊗(λj◦ρi,j):Bi →
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B(H′′). It’s easy to see that these give a covariant pair and that for every h ∈ Γ/Nj we have

an equality of matrix coefficients〈
σ′(fg)ξ

′
`, η
′
`

〉
=

〈
σ′′(fg)(ξ

′
` ⊗ pj,h), η′` ⊗

∑
g′∈Γ/Nj

pj,g′

〉

Therefore any matrix coefficient of any representation of Ai o Γ is approximated by a

matrix coefficient of a representation factoring through Aj o Γ/Nj for a suitable j, which

ends the proof. �

We now can prove the following:

Proposition 2.6. The maximal crossed product Ao Γ is isomorphic to QX through the

canonical quotient map q:Ao Γ→ QX .

Proof. In view of Lemma 2.4, it is enough to prove that the composition

ι ◦ q:Ao Γ→
∏
jM|Xj |⊕
jM|Xj |

is isometric. By Lemma 2.1 and the continuity of the maximal crossed product functor, for

this it is enough to prove that the map ι ◦ q is isometric on Ai o Γ.

To this end, take an arbitrary element of the algebraic crossed product Ai oalg Γ

z =
∑

g∈Γ/Ni

pi,gfg,

where fg ∈ C[Γ], and observe that it lifts to C∗(G) as the family of elements

(zj)j =

 ∑
g∈Γ/Ni

pi,g|Xjπj(fg)


j

∈ C(Xj)o Γ/Nj , j > i.

Using the isomorphisms φj :Aj o Γ/Nj → M|Xj | defined in Remark 2.2, we now see that the

image of z under the composition ι ◦ q coincides with (φj ◦ (ρi,j o πj))(z) ∈
∏
j>i
M|Xj |, because

ρi,j(pi,g)(x) = pi,g(x) for all x ∈ Xj .

Therefore the map ι ◦ q:A o Γ →
∏
j M|Xj |⊕
j M|Xj |

coincides with the map A o Γ →
∏
j M|Xj |⊕
j M|Xj |

induced by φj ◦ (ρi,j o πj). The latter is isometric by the previous proposition, and therefore

we are done.

�

Theorem 2.7. Let Γ be a non-amenable residually finite group with a countable nested

(FD) family X. Then the groupoid G constructed above is principal and non-amenable, but

has weak containment.

Proof. In view of Lemma 2.3 and Proposition 2.6, it remains to prove that the map

QX → C∗r (G|∂X) is not an isomorphism. We remark that ∂X has a Γ-invariant probability
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measure obtained by taking the weak∗ limit of the normalised counting measures on each Xi.

By [WY14, Lemma 7.1, Remark 7.1], we get that QX contains C∗(Γ) as a ∗-subalgebra, which

maps onto C∗r (Γ) under the quotient map QX → C∗r (G|∂X). Hence the map QX → C∗r (G|∂X)

is not an isomorphism. This finishes the proof. �

We remark that [LS04, Theorems 2.2 and 2.8] give a wealth of examples of Γ that satisfy

the conditions above: notably free groups and surface groups (also cyclic extensions of these

groups).
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Mathématique, Geneva, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain.

↑107

[BO08] Nathanial P. Brown and Narutaka Ozawa. C∗-algebras and finite-dimensional approximations, vol-

ume 88 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.

↑107

[HLS02] N. Higson, V. Lafforgue, and G. Skandalis. Counterexamples to the Baum—Connes conjecture. Geo-

metric & Functional Analysis GAFA, 12(2):330–354, June 2002. ↑108

[Hul64] A. Hulanicki. Groups whose regular representation weakly contains all unitary representations. Studia

Math., 24:37–59, 1964. ↑107

[KS04] Mahmood Khoshkam and Georges Skandalis. Crossed products of C∗-algebras by groupoids and

inverse semigroups. Journal of Operator Theory, 51(2):255–279, 2004. ↑111

[LS04] Alexander Lubotzky and Yehuda Shalom. Finite representations in the unitary dual and Ramanujan

groups. In Discrete geometric analysis, volume 347 of Contemp. Math., pages 173–189. Amer. Math.

Soc., Providence, RI, 2004. ↑108, ↑113

[Ren80] Jean Renault. A groupoid approach to C∗-algebras, volume 793 of Lecture Notes in Mathematics.

Springer, Berlin, 1980. ↑107

[Wil15] Rufus Willett. A non-amenable groupoid whose maximal and reduced C∗-algebras are the same.

arXiv:1504.05615 [math], April 2015. ↑107, ↑108

[WY14] Rufus Willett and Guoliang Yu. Geometric property (T). Chinese Annals of Mathematics. Series B,

35(5):761–800, 2014. ↑113

115





CHAPTER 6

Uniqueness questions for C*-norms on group rings

Abstract

We provide a large class of discrete amenable groups for which the complex group ring

has several C*-completions, thus providing partial evidence towards a positive answer to a

question raised by Rostislav Grigorchuk, Magdalena Musat and Mikael Rørdam.

1. Introduction

The interplay between group theory and operator algebras dates back to the seminal

papers by Murray and von Neumann [MvN36] and by choosing different completions of a

discrete countable group Γ one obtains interesting analytic objects; for instance the Banach

algebra `1(Γ), the full and reduced C*-algebras C*(Γ) and C*
r (Γ), and the group von Neumann

algebra LΓ. In general there are many norms on, say, `1(Γ) such that the completion with

respect to this norm gives a C*-algebra, and the question of when the C*-completion is unique

(in which case Γ is said to be C*-unique) has been studied by various authors [LN04,Boi84,

Bar83]. A C*-unique discrete group is evidently amenable and it is, to the best of the

authors’ knowledge, an open question whether the converse is true, although it is known to

be false in the more general context of locally compact groups [LN04]. More recently, the

paper [GMRr16] put emphasis on the question of when the complex group algebra CΓ has

a unique C*-completion. As is easily seen [GMRr16, Proposition 6.7], if Γ is locally finite

(i.e. if every finitely generated subgroup is finite) then CΓ has a unique C*-completion, and

[GMRr16, Question 6.8] asks if the converse is true. The present paper provides partial

evidence towards a positive answer to this, in that we prove that for the following classes of

non-locally finite groups have several C*-completions.

Theorem A (see Proposition 2.4 and Corollary 3.7). The class of countable groups Γ for

which CΓ does not have a unique C*-norm includes the following:

(i) Infinite groups of polynomial growth.

(ii) Torsion free, elementary amenable groups with a non-trivial, finite conjugacy class.

(iii) Groups with a central element of infinite order.

The key to the proof of of (i) and (ii) is the so-called strong Atiyah conjecture (see

Section 3.1) which predicts a concrete restriction on the von Neumann dimension of kernels

117
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of elements in the complex group algebra under the left regular representation — notably

these are predicted to be either zero or one if the group in question is torsion free.

Acknowledgements. The authors would like to thank Mikael Rørdam and Thomas

Schick for helpful discussions revolving around the topics of the present paper as well as the

anonymous referee for the valuable remarks improving Corollary 2.3 and Proposition 3.3. DK

gratefully acknowledge the financial support from the Villum Foundation (grant no. 7423)

and from the Independent Research Fund Denmark (grant no. 7014-00145B).

2. Basic results on C*-uniqueness

In what follows, all discrete groups are implicitly assumed to be at most countable. We

will use several operator algebras associated to a discrete group Γ: the maximal C*-algebra

C*(Γ), the reduced C*-algebra C*
r (Γ) and the von Neumann algebra LΓ. For more information

on these, we refer to [BO08, §2.5]. We recall that LΓ = (λ(CΓ))′′ ⊂ B(`2Γ) is generated by

the left regular representation λ:CΓ→ B(`2Γ) and carries a canonical, faithful, normal trace

given by τ(x) = 〈xδe〉 δe. In what follows, tr will denote the normalized trace on Mn(C) while

Tr will denote the non-normalized trace.

We begin by formally introducing the notion of C*-uniqueness. In order to avoid a nota-

tional conflict with the already existing notions studied in [LN04,Boi84], we emphasize that

we are investigating the uniqueness of C*-norms on the complex group algebra in contrast to

the `1-algebra.

Definition 2.1. Let Γ be a discrete group. CΓ is said to be:

(i) C*-unique if it carries a unique C*-norm;

(ii) C*
r -unique if no C*-norm on CΓ is properly majorised by the reduced C*-norm.

Γ is said to be algebraically C*- (respectively C*
r -)unique if CΓ is C*- (respectively C*

r -)unique.

Amenable groups are characterized by the property that the maximal and reduced C*-

algebras coincide, and thus a nonamenable group is never algebraically C*-unique; on the other

hand, for amenable groups the above notions coincide. Note also that the class of C*-simple

groups, which has recently received a lot of attention [BKKO17, LB17], falls within the

class of algebraically C*
r -unique groups. As already mentioned in the introduction, algebraic

C*-uniqueness appeared in the recent paper [GMRr16] in which the authors observed that

locally finite groups have this property and asked if this characterizes the class of locally finite

groups. Below we prove a few basic permanence results regarding algebraic C*-uniqueness,

but before doing so we give an alternative characterization, which is straightforward algebraic

adaptation of the similar result for `1-algebras [Bar83, Proposition 2.4].

Lemma 2.2. Let Γ be a discrete group. Then CΓ is C*-unique (respectively C*
r -unique)

if and only if every nontrivial closed, two-sided ideal in C*(Γ) (respectively C*
r (Γ)) intersects

CΓ non-trivially.
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Proof. We give the proof for the statement about algebraic C*-uniqueness; the other

case is obtained by replacing C*(Γ) by C*
r (Γ) throughout the proof. Assume that there is a

non-trivial ideal J P C*(Γ) intersecting CΓ trivially and denote by q: C*(Γ) → C*(Γ)/J the

quotient map. Composing q with the inclusion CΓ ↪→ C*(Γ) yields a faithful representation

of CΓ and it defines a C*-norm on it that is properly majorised by the maximal norm by

non-triviality of J . Conversely, if there is a C*-norm on CΓ which is properly majorised by

the norm coming from C*(Γ), then C*(Γ) surjects onto the corresponding quotient, and the

kernel of this surjection is a non-trivial ideal intersecting CΓ trivially. �

Corollary 2.3. Let Γ and Λ be discrete groups. If C(Γ× Λ) is C*-unique (respectively

C*
r -unique), then so are CΓ and CΛ.

Proof. Let J P C*
r (Γ) be a non-trivial ideal intersecting CΓ trivially. Then J ⊗max

C*
r (Λ) P C*(Γ) ⊗max C*(Λ) = C*(Γ × Λ) is a non-trivial ideal intersecting C(Γ × Λ) =

CΓ ⊗alg CΛ trivially. The same proof with C* replaced by C*
r and ⊗max replaced by ⊗min

works for the reduced case. �

Proposition 2.4. If Γ is a discrete group with a central element of infinite order then

CΓ is not C*
r -unique.

Proof. Denote by Z the subgroup in Γ generated by a central element of infinite order.

Then C*
r (Z) ∼= C(S1) and LZ ∼= L∞(S1) via the Fourier transform and we denote by p ∈ LZ

the projection corresponding to the characteristic function of the upper half circle {eiθ | θ ∈
[0, π]}. Define π := λΓp; i.e. the left regular representation of Γ restricted to the invariant

subspace p`2(Γ). Choosing a non-zero function f ∈ C(S1) supported in the lower half circle

we obtain a non-zero element x ∈ C*
r (Z) ⊂ C*

r (Γ) with xp = 0 and hence the norm on C*
r (Γ)

induced by π is not the one induced by λΓ. We now only need to see that π is faithful

on CΓ. To this end, consider the trace-preserving conditional expectation E:LΓ → LZ

[BO08, Lemma 1.5.11] and assume that a ∈ CΓ is in the kernel of π. Then a∗a is also in the

kernel of π and since E is an LZ-bimodule map [BO08, Proposition 1.5.7] we get

0 = E(λΓ(a∗a)p) = E(λΓ(a∗a))p.

However, E(CΓ) ⊂ CZ ' Pol(z, z̄) ⊂ C(S1) and therefore E(λΓ(a∗a)) = 0 and since E is

trace-preserving and the trace on LΓ is faithful we conclude that a∗a, and hence a, is zero. �

Corollary 2.5. An abelian group is algebraically C*-unique if and only if it is locally

finite (i.e. pure torsion).

Remark 2.6. The result in Corollary 2.5 was also observed, independently and with dif-

ferent proofs, by Rostislav Grigorchuk, Magdalena Musat and Mikael Rørdam (unpublished).

Remark 2.7. The class of locally finite groups has many stability properties — for in-

stance it is closed under subgroups, quotients and extensions and, moreover, being virtually
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locally finite is the same as being locally finite. However, verifying these properties for the

class of C*-unique groups seems to be a much bigger challenge.

3. The strong Atiyah conjecture and C*
r -uniqueness

3.1. The strong Atiyah conjecture. The key to our main result is the so-called strong

Atiyah conjecture which is briefly described in the following. A good general reference is

[Lüc02, Chapter 10] where all of the results below can be found, and to which we also refer

for the original references. Let Γ be a discrete group and denote by 1
|FIN(Γ)|Z the additive

subgroup in Q generated by the set{
1

|Λ|

∣∣∣ Λ ≤ Γ a finite subgroup

}
.

Given a matrix A ∈ Mn(CΓ) we denote by LA ∈ LΓ ⊗ Mn(C) ⊂ B(`2(Γ)n) the bounded

operator given by left multiplication with A (via the left regular representation of Γ). The

strong Atiyah conjecture then predicts that

dimLΓ ker(LA) := (τ ⊗ Tr)(PkerLA) ∈ 1

|FIN(Γ)|
Z.

Here dimLΓ(−) denotes the von Neumann dimension of the (right) Hilbert LΓ-module ker(LA)

defined as the non-normalized trace of the kernel projection PkerLA ; see [Lüc02] for details on

this. It should be noted that the strong Atiyah conjecture is false in general [Lüc02, Theorem

10.23], but is known to hold for all groups which have a bound on the order of finite subgroups

and belong to Linnell’s class C [Lüc02, Theorem 10.19], the latter being the smallest class

of groups which contain all free groups, is closed under directed unions and extensions by

elementary amenable groups (i.e., if Λ P Γ, Λ ∈ C and Γ/Λ is elementary amenable, then

Γ ∈ C). The above discussion motivates the following notion.

Definition 3.1. Let Γ be a countable group. The torsion multiplier of Γ is defined as

θ(Γ) =
1

lcm{|H|| H 6 Γ finite}
∈ [0, 1].

In this definition, and in what follows, we use the convention that the least common

multiple (lcm) of an infinite set of natural numbers is infinity and that 1
∞ = 0. Note that if

Γ has an upper bound on the set of finite subgroups, then

1

|FIN(G)|
Z = {nθ(Γ) | n ∈ Z} ,

and 1

|FIN(G)|
Z has 0 as an accumulation point otherwise. In view of this, the strong Atiyah

conjecture for a group Γ with θ(Γ) > 0 implies that the possible kernel dimensions are properly

quantized in the sense that they can only take values in the discrete set {nθ(Γ) | n ∈ N} ⊂ R.

Theorem A (i) and (ii) will follow directly from our main technical result, Theorem 3.6

below. The key idea in the proof is to play the aforementioned “quantization” of the kernel
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dimensions against an abundance of central projections in LΓ with small traces which provide

representations of C*
r (Γ) with non-trivial kernels. To quantify this, we need the following

definition.

Definition 3.2. The central granularity of Γ is defined as

σ(Γ) = inf{τ(p) | p ∈ Proj(Z(LΓ)), p 6= 0} ∈ [0, 1].

We note that σ(Γ) < 1 if and only if Z(LΓ) is nontrivial which is equivalent Γ not being

icc1. The next proposition computes the central granularity of Γ in group-theoretic terms.

Recall that the FC-centre Γfc is the normal subgroup of Γ consisting of all elements with finite

conjugacy classes.

Proposition 3.3. Let Γfc P Γ be the FC-centre of Γ. Then

σ(Γ) =
1

|Γfc|
,

where the right-hand side is interpreted as 0 if |Γfc|=∞.

Proof. Γfc is an increasing union of a sequence of finitely generated normal subgroups

Λn P Γ; to see this, note that Γfc is clearly an increasing union of a sequence of finitely

generated subgroups Λ′n, and defining Λn to be generated by the Γ-conjugacy classes of a

finite system of generators for Λ′n yields the desired sequence of finitely generated subgroups

which are normal in Γ. We now have two cases to consider:

(i) all Λn are finite (equivalently, Γfc is a torsion group),

(ii) Λn is infinite for some n.

In case (i), setting pn := 1
|Λn|

∑
g∈Λn

g, we get a projection pn ∈ LΓfc with τ(pn) = 1
|Λn| ;

moreover, pn is central in LΓ since Λn is normal in Γ. This proves that σ(Γ) = 0 if Γfc is an

infinite torsion group (in this case |Λn|→ ∞). If Γfc is finite, then the sequence stabilizes, and

therefore we get a central projection p in LΓ with trace 1
|Γfc| . The centre of LΓ consists of

elements whose associated Fourier series in `2(Γ) = L2(LΓ, τ) are supported only on Γfc and

are constant along conjugacy classes, and is therefore contained in the centre of LΓfc; hence

we get 1
|Γfc| > σ(Γ) > σ(Γfc). But we also have LΓfc = CΓfc which by representation theory

of finite groups is isomorphic to a direct sum of matrix algebras
⊕

πMdπ(C) with the trace

given by
⊕

π
d2
π
|Γfc| tr; thus, the minimal central projection has trace 1

|Γfc| = σ(Γfc); this proves

the claim.

In case (ii) we fix an n ∈ N such that Λn =: Λ is infinite and note that since Λ is generated

by a finite number of elements with finite conjugacy classes, its centralizer CΓ(Λ) is of finite

index in Γ. We now claim that LΛ has a diffuse von Neumann subalgebra and thus projections

of arbitrarily small trace. This can be seen as follows: if LΛ has a direct summand of type

II1, it is clear because such von Neumann algebras are diffuse. Otherwise LΛ is of type I,

1recall that a group is icc if all non-trivial conjugacy classes are infinite
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but then Λ is virtually abelian [Lüc97, Lemma 3.3], and hence, being infinite by assumption

and finitely generated by construction, contains a copy of Z which generates a diffuse von

Neumann algebra LZ ∼= L∞(S1). In view of the above, for an arbitrary ε > 0 there is a

projection p ∈ LΛ ⊂ LΓfc of trace τ(p) < ε
[Γ:CΓ(Λ)] . Now let

q :=
∨
g∈Γ

gp,

where gp := gpg−1. Then q is a central projection in LΓ. Moreover, p is invariant under the

centralizer CΓ(Λ) and upon choosing coset representatives g1, . . . , g[Γ:CΓ(Λ)] for Γ/CΓ(Λ) we

obtain that

q =

[Γ:CΓ(Λ)]∨
i=1

gip

and hence τ(q) 6 [Γ : CΓ(Λ)] · τ(p) < ε. Thus σ(Γ) = 0. �

Lemma 3.4. Let Γ be a discrete non-icc group. For every ε > 0 there exists a nonzero

projection p ∈ Z(LΓ) with τ(p) < σ(Γ) + ε and a nonzero, central element x ∈ C*
r (Γ) with

xp⊥ = 0.

Proof. Since Γ is non-icc, Z(LΓ) 6= C1 so σ(Γ) < 1. Let ε > 0 be given and assume,

without loss of generality, that σ(Γ) + ε < 1. One has Z(LΓ) = Z(C*
r (Γ))′′ = Z(CΓ)′′, as can

bee seen for instance by using Kaplansky’s density theorem together with the center valued

trace, and noting that Z(CΓ) consists of the elements whose coefficients are constant along

conjugacy classes. By Gelfand duality, Z(C*
r (Γ)) is isomorphic to the C*-algebra C(Z) of con-

tinuous functions on its Gelfand spectrum Z, which is a compact Hausdorff space; it is metriz-

able because C*
r (Γ) is separable. The canonical trace τ thus gives a regular Borel probability

measure µ on Z [Rud66, Theorem 2.14] and an isomorphism Z(LΓ) = Z(C*
r (Γ))′′ ∼= L∞(Z, µ)

compatible with the natural inclusions. Projections in Z(LΓ) correspond via this isomorphism

to measurable subsets of Z (up to null sets), and we therefore obtain a measurable subset

A ⊂ Z such that 0 < µ(A) < σ(Γ) + ε/2. By regularity of µ, there exists U ⊇ A open such

that

0 < µ(A) 6 µ(U) < σ(Γ) + ε < 1.

Now, there is a non-zero element x ∈ C(Z) vanishing on the compact set K := Z \ U (for

instance, the distance function to K); letting p be the projection corresponding to U finishes

the proof. �

The following lemma gives a concrete description of the decomposition of the left regular

representation of a discrete group Γ over the cosets of a finite index normal subgroup Λ.

Lemma 3.5. Let Λ P Γ be a normal subgroup of finite index. For every choice of coset

representatives g1, . . . , g[Γ:Λ] ∈ Γ there exists a trace-preserving inclusion of von Neumann

algebras π: (LΓ, τ) ↪→ (M[Γ:Λ](LΛ), τ ⊗ tr) which restricts to corresponding inclusions at the



3. THE STRONG ATIYAH CONJECTURE AND C*
r -UNIQUENESS 123

level of reduced C*-algebras and complex group rings, and which for x ∈ LΛ is given by

(3.1) π(x) = diag(g1x, g2x, . . . , g[Γ:Λ]x),

where gx = gxg−1 is the conjugation action of g ∈ Γ on LΛ.

Proof. Choose coset representatives g1, g2, . . . , g[Γ:Λ] of Γ/Λ and consider the isomor-

phisms of Hilbert spaces

`2(Γ) ∼=
[Γ:Λ]⊕
i=1

`2(g−1
i Λ) ∼=

[Γ:Λ]⊕
i=1

`2(Λ).

These induce a ∗-isomorphism π:B(`2Γ)
∼=−→ Mn(B(`2(Λ))). It is routine to check that π

restricts to a trace-preserving inclusion of CΓ into M[Γ:Λ](CΛ) which automatically implies

the corresponding results for the reduced C*-algebras and von Neumann algebras. Finally,

for h ∈ Λ we have

π(h) = diag(λ(h), . . . , λ(h)) ∈
[Γ:Λ]⊕
i=1

B(`2(g−1
i Λ)),

and thus formula (3.1) follows in view of the identity

hg−1
i h′ = g−1

i (gih)h′, h, h′ ∈ Λ. �

Theorem 3.6. Let Λ be a discrete group satisfying the strong Atiyah conjecture and let

Λ P Γ be a finite index inclusion of Λ into a group Γ as a normal subgroup. If [Γ : Λ]2 ·σ(Λ) <

θ(Λ) then CΓ is not C*
r -unique.

Proof. The assumption [Γ : Λ]2 ·σ(Λ) < θ(Λ) forces Λ to be non-icc and applying Lemma

3.4 we get a projection p ∈ Z(LΛ) with τ(p) < θ(Λ)
[Γ:Λ]2

and a non-zero central element x ∈ C*
r (Λ)

with xp⊥ = 0. We are going to construct a representation of C*
r (Γ) which is injective on CΓ

but with x in the kernel. To this end, consider a set of coset representatives g1, . . . , g[Γ:Λ] for

Γ/Λ and the ∗-homomorphism π:LΓ → M[Γ:Λ](LΛ) provided by Lemma 3.5. From this we

obtain a central projection q :=
∨[Γ:Λ]
i=1

gip ∈ Z(LΛ), and cutting π with the complement of

q̃ := diag(q, . . . , q) ∈ Z(M[Γ:Λ](LΛ)), we get a representation

πq: C*
r (Γ)→ B

(
`2(Λ)[Γ:Λ]q̃⊥

)
,

a 7→ π(a)q̃⊥.

As q⊥ =
∧[Γ:Λ]
i=1

gi(p⊥) and xp⊥ = 0, it follows that x ∈ kerπq in view of (3.1). Let a ∈
CΓ ∩ kerπq. This means that π(a)q̃⊥ = 0, and thus the kernel projection r of π(a) satisfies

r > q̃⊥. Therefore

(τ ⊗ Tr)(r) > (τ ⊗ Tr)(q̃⊥) ≥ [Γ : Λ](1− [Γ : Λ]τ(p)) > [Γ : Λ]− θ(Λ).

On the other hand, the assumption [Γ : Λ]2 ·σ(Λ) < θ(Λ) forces an upper bound on the order

of finite subgroups in Λ, i.e. θ(Λ) > 0, and since Λ is furthermore assumed to satisfy the
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strong Atiyah conjecture we obtain (using the notation of Section 3.1) that

dimLΛ(ker(LA)) = (τ ⊗ Tr)(PkerLA) ∈ {nθ(Λ) | n ∈ Z}

for any matrix A ∈ M[Γ:Λ](CΛ). Thus (τ ⊗ Tr)(r) 6 [Γ : Λ] − θ(Λ) unless π(a) = 0. This

proves that πq is injective on CΓ and hence completes the proof. �

As a corollary, we deduce that some important families of groups are not C*
r -unique. In

particular this includes the groups mentioned in Theorem A (i) and (ii), and together with

Proposition 2.4 this completes the proof of Theorem A.

Corollary 3.7. All groups in following classes are not C*
r -unique:

(i) Torsion free, non-icc groups satisfying the strong Atiyah conjecture; in particular

all elementary amenable, non-icc, torsion free groups.

(ii) Virtually polycyclic groups with infinite FC-centre; in particular, all infinite groups

of polynomial growth.

Proof. To see (i), note that the existence of a non-trivial finite conjugacy class implies

the existence of a non-trivial central element in CΓ (namely the sum of the elements in the

finite conjugacy class) and hence a non-trivial projection in Z(LΓ); thus σ(Γ) < 1. Moreover,

since Γ is torsion free, θ(Γ) = 1 and since Γ is assumed to satisfy the strong Atiyah conjecture

it follows C*
r -unique by Theorem 3.6. The last statement in (i) follows directly from this since

the elementary amenable groups are contained in Linnell’s class C (see Section 3.1) for which

the strong Atiyah conjecture is known to hold in the presence of a bound on the order of

finite subgroups [Lüc02, Theorem 10.19].

To see (ii), let Λ P Γ be a normal finite index polycyclic subgroup of Γ. As Γ has infinite

FC-centre, so does Λ and the FC-centre of Λ is moreover finitely generated by polycyclicity. A

classical result by Hirsch [Hir46, Theorem 3.21] implies that the orders of finite subgroups of

Λ are bounded; thus θ(Λ) > 0. On the other hand, σ(Λ) = 0 by Proposition 3.3 (ii). Moreover,

polycyclic groups, being elementary amenable, satisfy the strong Atiyah conjecture. Thus,

CΓ follows non-C*
r unique by Theorem 3.6.

Finally, the claim about infinite groups of polynomial growth follows by first observing

that by Gromov’s theorem [Gro81] these are exactly finitely generated virtually nilpotent

groups. As finitely generated nilpotent groups are polycyclic, the claim follows once we argue

that virtually nilpotent groups automatically have infinite FC-centre. To see this, recall that

a finitely generated virtually nilpotent group Γ contains a finite index torsion free nilpotent

normal subgroup Λ (by polycyclicity and [Hir46, Theorem 3.21]). Now it follows that the

centre of Λ is infinite, and therefore so is the FC-centre Λfc; but as Λ P Γ is a finite index

inclusion, Λfc ⊆ Γfc. Thus, Γfc is infinite. �
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Addendum

During the meeting “C∗-algebras” in 2019 in Oberwolfach it was pointed out by Naru-

taka Ozawa that the original question of Rostislav Grigorchuk, Magdalena Musat and Mikael

Rørdam [GMRr16, Question 6.8] actually has negative answer: the group ring of the lamp-

lighter group Γ = Z/2 o Z has unique C*-norm. We provide his argument here for the sake

of completeness: setting H =
⊕
Z Z/2, we see that C∗(Γ) ∼= C∗(H)o Z is a crossed product

of the Bernoulli action which is topologically free, so by the Archbold–Spielberg theorem

[AS94, Theorem 1] every ideal I in C∗(Γ) intersects C∗(H) nontrivially. But the group H is

locally finite, so by C*-uniqueness I intersects its group ring nontrivially.

In view of this result, it would be of interest to exactly characterise amenable groups Γ

which have a unique C*-norm on CΓ. In particular, it would be interesting to know whether

there is a torsion-free amenable group with a unique C*-norm on its complex group ring.
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[Lüc97] Wolfgang Lück. Hilbert modules and modules over finite von Neumann algebras and applications

to L2-invariants. Math. Ann., 309(2):247–285, 1997. ↑122
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CHAPTER 7

Invariant random positive definite functions

Abstract

We give the definition of an invariant random positive definite function on a discrete

group, generalizing both the notion of an invariant random subgroup and a character. We

use von Neumann algebras to show that all invariant random positive definite functions on

groups with infinite conjugacy classes which integrate to the regular character are constant.

1. Introduction

In the last years there has been a lot of progress about invariant random subgroups

(IRSes), which shifted the attention in the study of ergodic group actions from their orbit equi-

valence relations to their stabilizers [AGV14], [AGN17], [Gel18], [ABB+11],[ABB+17].

IRSes are a tool to study actions, but also behave similarly to normal subgroups.

We define a generalization of invariant random subgroups, which we call invariant random

positive definite functions. An invariant random positive definite function (i.r.p.d.f.) is a

measurable Γ-equivariant map

ϕ: Ω→ PD(Γ),

where (Ω, µ) is a standard probabilitiy space with a measure preserving Γ-action, and PD(Γ)

are the normalized positive definite functions φ on Γ with Γ-action given by (g.φ)(h) =

φ(g−1hg) for φ ∈ PD(Γ) and g, h ∈ Γ. This specializes to the definition of an IRS if we

demand each ϕ(ω) to be the characteristic function of the stibilizer subgroup of ω.

The definition of an i.r.p.d.f. is also closely related to the notion of a character on Γ, i.e.

a conjugation invariant normalized positive definite function. Indeed, if ϕ is an i.r.p.d.f.,

E[ϕ] :=

∫
Ω
ϕ(ω) dω

is a character.

A construction of Anatoly Vershik shows that in the case of Γ = S∞ every extremal

character, except for the regular, the trivial and the alternating character, is of this form for

a non-constant i.r.p.d.f. ϕ [VK81]. Some of these i.r.p.d.f.’s are IRSes, some are ”twisted

IRSes” arising from cocyles of the action.

Our main result is the following theorem. We call this phenomenon “disintegration rigid-

ity” of the regular character δe ∈ Ch(Γ).

129



130 7. INVARIANT RANDOM POSITIVE DEFINITE FUNCTIONS

Theorem 1.1 (Theorem 5.1). Let Γ be a group where every nontrivial conjugacy class is

infinite and let ϕ: Ω→ PD(Γ) be an i.r.p.d.f. on Γ with E[ϕ] = δe. Then ϕ(ω) = δe for almost

every ω ∈ Ω.

Γ having infinite conjugacy classes is equivalent to δe ∈ Ch(Γ) being an extremal character,

hence the theorem states disintegration rigidity of δe in all cases where it has a chance to be

disintegration rigid.

The main step in the proof of this theorem is to translate a given ergodic i.r.p.d.f. ϕ

with E[ϕ] = δe into a random variable f : Ω → L1(LΓ) which fulfills the invariance condition

f(γ.ω) = π(γ−1)f(ω)π(γ). We then show that such a function must be constantly 1, using

that the conjugation action of Γ on LΓ is weakly mixing. Then ϕ also must be constant. This

method might also apply to other characters than the regular one.

Acknowledgements. The notion of an invariant random positive definite function was

coined by Miklós Abért, the first named author and Andreas Thom at the Erwin Schrödinger

Institute programme “Measured group theory”, February 2016. Correspondingly, we would

like to thank the Erwin Schrödinger Institute for the nice working atmosphere during the

workshop; during it, both the authors were also partially supported by the ERC grant “AN-

ALYTIC” no. 259527 of Goulnara Arzhantseva. We would also like to thank and Miklós

Abért and Andreas Thom for sharing some nice ideas and discussing interesting questions

around this project and Jesse Peterson for stimulating discussions and comments on an early

version of this paper.

2. Preliminaries

As invariant random positive definite functions generalize both characters and invariant

random subgroups we first collect some information about these.

2.1. Characters on discrete groups. Let Γ be a discrete, countable group.

Definition 2.1. A function φ: Γ → C is called positive definite if for all g1, . . . , gn ∈ Γ

the matrix [φ(g−1
j gi)] ∈Mn(C) is positive or, equivalently, if φ induces a state on CΓ.

Definition 2.2. A character τ ∈ Ch(Γ) is a conjugation-invariant positive definite func-

tion on Γ normalized by τ(e) = 1. A character is called extremal if it is not a non-trivial

convex combination of two different characters.

The characters of a given group Γ form a Choquet simplex, i.e. every character can be

uniquely decomposed as a convex combination of extremal ones [Tho64b].

If φ is a positive definite function, then 〈g, h〉 = φ(h∗g) for g, h ∈ Γ extends to a prescalar

product on CΓ. Let H be the separated completion and denote the image of δg in H again
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by δg. Then π(g): δh 7→ δgh extends uniquely to a unitary operator π(g) ∈ U(H). We get a

unitary representation π: Γ→ U(H) such that δe ∈ H is cyclic and

φ(g) = 〈π(g)δe, δe〉

for all g ∈ Γ. The triple (H,π, δe) is unique with these properties up to a unitary. This

is called the GNS construction of φ. Sometimes we will also call the von Neumann algebra

π(Γ)′′ ⊂ B(H) the GNS construction of φ.

If φ = τ is a character, its GNS construction is a finite von Neumann algebra with trace

extending the character. We denote this trace again by τ and get L2(π(Γ)′′, τ) = H. In this

case we also have a unitary right representation

ρ: Γ→ U(H), ρ(g): δh 7→ δhg−1 .

Restricted to π(Γ)′′ ⊂ L2(π(Γ)′′, τ), the maps π(g) and ρ(g) correspond to x 7→ π(g)x and

x 7→ xπ(g−1) when x is viewed as an operator x ∈ B(H). In particular,

Γ→ Aut(π(Γ)′′), g 7→ (x 7→ π(g)xπ(g−1)),

is a trace-preserving action.

In the case of the regular character δe we get the group von Neumann algebra LΓ as GNS

construction.

By [Tho64b], a character is extremal if and only if its von Neumann algebra π(Γ)′′ ⊂
B(H) is a factor.

Definition 2.3. The type of a character is the type I of its von Neumann algebra (e.g.

I, II1 etc.).

Since the GNS construction of a character is finite, an extremal character can only be of

type In or II1.

2.2. Invariant random subgroups. The name “invariant random subgroup” is due to

[AGV14]. However, the concept is much older and was, for example, studied by Vershik in

the 80s and by Stuck-Zimmer in the 90s.

Definition 2.4. An invariant random subgroup (IRS) is a map given by

ϕ: Ω→ Sub(Γ), ω 7→ Stab(ω) = {γ ∈ Γ | γ.ω = ω},

for a measure preserving action Γ y (Ω, µ) on a standard probability space.

In fact, invariant random subgroups were originally defined as conjugation invariant mea-

sures on Sub(Γ). One can show that this is equivalent to the above definition [AGV14, Propo-

sition 13]. We use this formulation because it will fit with our definition of invariant random

positive definite functions and makes our notation easier.
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If ϕ: Ω→ PD(Γ) is an IRS,

E[ϕ]: γ 7→ µ({ω| γ.ω = ω})

is a character.

Example 2.5. Let Ω = {1, . . . , n}, let µ be the normalized counting measure and Γ = Sn

the symmetric group. Then ϕ(i) = {σ|σ(i) = i} for i ∈ Ω is an IRS where E[ϕ] = tr is the

normalized trace on matrices. The trace tr is not an extremal character on Sn.

The following two theorems show that for Γ = S∞, many characters arise in this way.

Theorem 2.6 ([Tho64a]). Every extremal character on S∞ is of the form

τα,β(g) =
∏
k≥2

s
rk(g)
k ,

where rk(g) is the number of cycles of length k in g, α = (αn)n∈N and β = (βn)n∈N are

sequences with αn ≥ αn+1 ≥ 0 and βn ≥ βn+1 ≥ 0 for all n ∈ N and such that∑
n∈N

αn +
∑
n∈N

βn ≤ 1

and the sk are given by

sk :=
∑
n∈N

αkn + (−1)k+1
∑
n∈N

βkn.

All such τα,β are extremal characters and τα,β = τα′,β′ implies α = α′ and β = β′.

All extremal characters on S∞ exept for the trivial character and the alternating character

are of type II.

Remark 2.7. In the theorem the trivial character belongs to α = (1, 0, 0, . . . ) and β = 0,

the alternating character belongs to α = 0 and β = (1, 0, 0, . . . ) and the regular character

belongs to α = β = 0.

Theorem 2.8 ([VK81]). Using the notation of Theorem 2.6, assume β = 0, let

δ = 1−
∑
n∈N

αn

and let Q = N t [0, δ] with probability measure µ which is (αn)n∈N on N and the Lebesgue

measure on [0, δ]. Let Ω =
∏∞

1 Q with measure mα,0 =
∏∞

1 µ and let S∞ act on (Ω,mα,0) by

permutation of the coordinates.

Then τα,0 = E[ϕ] for this IRS ϕ.

3. Invariant random positive definite functions

Definition 3.1. Let Γ be a discrete group. An invariant random positive definite function

(i.r.p.d.f.) is a measurable Γ-equivariant map

ϕ: Ω→ PD(Γ),
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where (Ω, µ) is a standard probabilitiy space with a measure preserving Γ-action and PD(Γ)

are the positive definite functions φ on Γ with φ(e) = 1 and Γ-action given by (g.φ)(h) =

φ(g−1hg) for φ ∈ PD(Γ) .

We often write ϕω for ϕ(ω).

Definition 3.2. An i.r.p.d.f. ϕ is called ergodic if the action Γ y (Ω, µ) is ergodic.

We say ϕ is extremal if ϕ = cϕ1 + (1 − c)ϕ2 for i.r.p.d.f.’s ϕi: Ω → PD(Γ) and c ∈ (0, 1)

implies that ϕ1 = ϕ2 = ϕ.

When viewing the i.r.p.d.f.’s with given Γ y Ω as Γ-equivariant positive definite functions

ϕ: Γ → L∞(Ω, µ), they form a compact convex subset of `∞(Γ, L∞(Ω, µ)) with the topology

of pointwise weak∗ convergence. By the Krĕın–Milman Theorem, the space of these functions

is then equal to the closed convex hull of its extremal points. Hence as for characters, every

i.r.p.d.f. is the convex integral of extremal i.r.p.d.f.’s.

Example 3.3. Invariant random subgroups are i.r.p.d.f.’s because the subgroups Sub(Γ) of

Γ are canonically embedded in PD(Γ) by taking the characteristic function and the stabilizers

of an action fulfill the invariance condition in Definition 3.1.

As for invariant random subgroups, if ϕ: Ω→ PD(Γ) is an i.r.p.d.f.,

E[ϕ] =

∫
Ω
ϕω dµ(ω)

is a character.

Question 3.4. Does ergodicity and extremality of ϕ imply that E[ϕ] is extremal as a

character?

A positive answer to this question would mean that it every i.r.p.d.f. can be decomposed

into i.r.p.d.f.’s with an extremal character as expectation.

Example 3.5. Let (S, λ) be the unit sphere in Cn with Lebesgue measure and let Γ be a

discrete subgroup of the unitary group U(n) acting on S in the natural way. Then

ϕ:S → PD(Γ), ϕξ(γ) = 〈γ.ξ, ξ〉 ∀ξ ∈ S, γ ∈ Γ

is an i.r.p.d.f. for which E[ϕ] = tr is the normalized trace on matrices, which is an extremal

character on Γ iff Γ generates Mn(C) as an algebra. For such Γ, ϕ is an extremal i.r.p.d.f..

Example 3.6. Let (S1, λ) be the circle with Lebesgue measure and trivial action of Z.

Then

ϕ:S1 → PD(Z), ϕz(n) = zn

is an i.r.p.d.f. with E[ϕ] = δe. Here δe is not extremal and ϕz is an extremal character for

every z ∈ S1. In this way every decomposition of a non-extremal character into extremal ones

gives an i.r.p.d.f. with trivial action.
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Example 3.7. Let G be a compact group with Haar measure µ and Γ < G. Let Γ act

on G by left multiplication. Let π:G→ U(H) be a unitary representation and ξ ∈ H a unit

vector. Then

ϕξ: (G,µ)→ PD(Γ), ϕξg(h) = 〈π(hg)ξ, π(g)ξ〉

is an i.r.p.d.f.. If π:G→ U(Cn) is irreducible and Γ is dense, then E[ϕξ](γ) = tr(π(γ)), which

is an extremal character on Γ, and ϕξ is ergodic and extremal.

Example 3.7 shows that, in contrast to the situation for characters, the decomposition

of an i.r.p.d.f. into extremal i.r.p.d.f.’s is not unique: Take an irreducible representation

π:G→ U(Cn), an orthonormal basis (ξi) of Cn and Γ < G dense. Then

n∑
i=1

1

n
ϕξi ≡ tr ◦π.

For different bases we get different ϕξi ’s, so this gives different convex decompositions of the

constant i.r.p.d.f. tr ◦π into extremal i.r.p.d.f.’s..

Theorem 3.8 ([VK81], Theorem 3). In the notation of Theorem 2.6, let

δ = 1−
∑
n∈N

αn −
∑
n∈N

βn,

N+ = N− = N and Q = N+ t N− t [0, δ] with the probability measure µ which is (αn)n∈N on

N+, (βn)n∈N on N− and the Lebesgue measure on [0, δ]. Then let Ω =
∏∞

1 Q with the measure

mα,β =
∏∞

1 µ and let S∞ act on (Ω,mα,β) by permutation of the coordinates.

For g ∈ S∞ and ω ∈ Ω define sgn(g, ω) to be 1 if∏
(i,j):ωi,ωj∈N−, i<j

(g(j)− g(i))

is positive and −1 otherwise. This fulfills the cocycle identity

sgn(gh, ω) = sgn(h, ω) sgn(g, h.ω).(3.1)

Let

ϕω(g) =

sgn(g, ω) if g.ω = ω,

0 if g.ω 6= ω.

Then τα,β = E[ϕ].

The following theorem proves that the above ϕ is an i.r.p.d.f.. If β is non-trivial, then ϕ

is not an IRS.

Theorem 3.9. Let Γ y (Ω, µ) be a p.m.p. action and c: Γ×Ω→ S1 a cocycle as in (3.1).

Then

ϕω(g) =

c(g, ω) if g.ω = ω,

0 if g.ω 6= ω,
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is an i.r.p.d.f..

If c is not constantly 1, ϕ is not an IRS because it takes values outside {0, 1}.

Proof. To show that ϕ is invariant we need that c(g, hω) = c(h−1gh, ω) if h−1gh.ω = ω.

By the cocycle identity we have

1 = c(1, ω) = c(h−1h, h−1gh.ω) = c(h, ω)c(h−1, gh.ω)

and hence

c(h−1gh, ω) = c(h, ω)c(h−1g, h.ω) = c(h, ω)c(g, h.ω)c(h−1, gh.ω) = c(g, h.ω).

Now we show that ϕω is positive definite for a.e. ω ∈ Ω. Let R ⊂ Ω × Ω be the orbit

equivalence relation of Γ y (Ω, µ), equipped with the measure µR which is µ on Ω and the

counting measure in each fiber, i.e., for A ⊂ R measurable

µR(A) :=

∫
Ω
|{(x, y) ∈ A}|dx.

Then π: Γ→ U(L2(R)), given by

(π(g)ξ)(x, y) = c(g, x)ξ(g.x, y)

is a unitary representation and for every X ⊂ Ω we find a vector ξX = χ{(x,x)|x∈X} ∈ L2(R)

such that ∫
X
ϕω(g) = 〈π(g)ξX , ξX〉 .

Hence for every a ∈ CΓ we have ∫
X
ϕω(a∗a) ≥ 0

for all X ⊂ Ω and hence ϕω(a∗a) ≥ 0 almost everywhere. �

Up to now, all our examples of i.r.p.d.f.’s which integrate to a type II character are of this

form. In particular, they are supported on an IRS in the sense that ϕω(γ) = 0 if γ.ω 6= ω.

This leads to the following questions.

Question 3.10. Is every i.r.p.d.f. ϕ such that E[ϕ] is of type II1 supported on an IRS ?

Question 3.11. Is every i.r.p.d.f. which is supported on an IRS as in Theorem 3.9 ?

4. Connections to von Neumann algebras

In this section we translate i.r.p.d.f.’s into the language of von Neumann algebras in order

to be able to use von Neumann methods to study them in the next section. For the relevant

theory of von Neumann algebras see [Bla06],[ADP],[Hou].

Fix a discrete group Γ, a character τ ∈ Ch(Γ) and an ergodic, measure preserving action

α: Γ y (Ω, µ) on a standard probability space. Let A := L∞(Ω, µ) and write again α for the

corresponding action on A. Let π: Γ→ U(H) be the GNS representation of τ .
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Lemma 4.1. Let ϕ be an i.r.p.d.f. with E[ϕ] = τ and for each ω ∈ Ω let (πω, Hω, ξω) be

the GNS construction of ϕω. Let

Hϕ :=

∫ ⊕
Ω
Hω dµ(ω)

be the direct integral of Hilbert spaces, ξ = (ξω)ω∈Ω ∈ Hϕ and

πϕ =

∫ ⊕
Ω
πω dµ(ω): Γ→ B(Hϕ)

the direct integral of representations. Then πϕ(Γ)′′ ∼= π(Γ)′′ with isomorphism taking πϕ(γ)

to π(γ) for all γ ∈ Γ.

Proof. Let p ∈ B(Hϕ) be the orthogonal projection onto the cyclic representation of ξ.

Then p ∈ πϕ(Γ)′. As E[ϕ] = τ we have

〈πϕ(γ)ξ, ξ〉 =

∫
Ω
〈πω(γ)ξω, ξω〉 dµ(ω) =

∫
Ω
ϕω(γ) dµ(ω) = τ(γ)

for all γ ∈ Γ. So (p(Hϕ), πϕ, ξ) is a GNS triple for τ and therefore by uniqueness of the GNS

construction

π(Γ)′′ ∼= (p πϕ(Γ) p)′′ = p(πϕ(Γ))′′

with isomorphism taking π(γ) to pπϕ(γ) for all γ ∈ Γ. Now we show that

Φ: (πϕ(Γ))′′ → p(πϕ(Γ))′′, x 7→ px,

is an isomorphism. It is clearly a surjective homomorphism. For injectivity let x ∈ (πϕ(Γ))′′

with Φ(x∗x) = px∗xp = 0. Then for all a ∈ CΓ we have

0 = 〈x∗xπϕ(a)ξ, πϕ(a)ξ〉 =

∫
Ω
〈(x∗x)ωπω(a)ξω, πω(a)ξω〉 dµ(ω)

and therefore 〈(x∗x)ωπω(a)ξω, πω(a)ξω〉 = 0 for almost all ω ∈ Ω. But πω(CΓ)ξω is dense in

Hω, so (x∗x)ω = 0 for almost all ω. Hence x = 0 and Φ is injective.

Composing the two isomorphisms we get π(Γ)′′ ∼= pπϕ(Γ)′′ ∼= πϕ(Γ)′′ with isomorphism

mapping π(γ) to πϕ(γ). �

Lemma 4.2. Let M := (A∪πϕ(Γ))′′ =
∫ ⊕

Ω πω(Γ)′′dµ(ω). Then M is a finite von Neumann

algebra.

Proof. Let u ∈M be such that u∗u = 1. By the Kaplansky Density Theorem we find a

sequence of finite sums

tn =
∑
i

pn,ixn,i

converging to u in the strong∗ topology such that ‖tn‖≤ 1 for all n, pn,i ∈ A are mutually

orthogonal projections for fixed n and xn,i ∈ πϕ(Γ)′′. We then have t∗ntn
s∗→ 1 since the strong*

topology is jointly continuous on bounded sets. Hence |tn|
s∗→ 1 by [Tak02, Lemma II.4.6].
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Letting

f(t) :=

1− 2t, 0 6 t 6 1/2,

0, 1/2 6 t 6 1,

we obtain (again by [Tak02, Lemma II.4.6]) f(|tn|)
s∗→ 0, and therefore |tn|+f(|tn|)

s∗→ 1.

However, as 1/2 6 t+ f(t) 6 1 on [0, 1], we also have 1/2 6 |tn|+f(|tn|) 6 1.

Let tn = un|tn| be the polar decomposition of tn. Then we have

un(|tn|+f(|tn|))
s∗→ u

because f(|tn|)
s∗→ 0. On the other hand, |tn|+f(|tn|) is invertible with the inverse bounded

by 2 and (|tn|+f(|tn|))−1 s∗→ 1 again by [Tak02, Lemma II.4.6]. Therefore,

un = un(|tn|+f(|tn|))(|tn|+f(|tn|))−1 s∗→ u.(4.1)

Let xn,i = vn,i|xn,i| be the polar decomposition of xn,i. Then

un =
∑
i

pn,ivn,i(4.2)

because using that A commutes with πϕ(Γ)′′ and that the pn,i are mutually orthogonal we

get that

|tn|=
∑
i

pn,i|xn,i|,

and hence (∑
i

pn,ivn,i

)
|tn|=

∑
i

pn,ivn,i|xn,i|=
∑
i

pn,ixn,i = tn.

Now (4.2) and (4.1) imply that

u∗nun =
∑
i

pn,iv
∗
n,ivn,i

s∗→ 1,

and therefore ∑
i

pn,i
s∗→ 1.(4.3)

Since πϕ(Γ)′′ ∼= π(Γ)′′ is finite, there exist partial isometries wn,i ∈ πϕ(Γ)′′ such that

un,i = vn,i+wn,i are unitaries. Let qn,i := w∗n,iwn,i be the source projections of the wn,i. Then∑
i

pn,iqn,i =
∑
i

pn,i(1− v∗n,ivn,i) ≤ 1−
∑
i

pn,iv
∗
n,ivn,i = 1− u∗nun

s∗→ 0,

and therefore ∑
i

pn,iwn,i =

(∑
i

pn,iwn,i

)(∑
i

pn,iqn,i

)
s∗→ 0.
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Thus by (4.2) ∑
i

pn,iun,i = un +
∑
i

pn,iwn,i
s∗→ u,

and therefore, since the un,i are unitaries,∑
i

pn,i =
∑
i

pn,iun,iu
∗
n,i

s∗→ uu∗.

Hence uu∗ = 1 by (4.3), which means that M is finite. �

Lemma 4.3. If τ is extremal, we have M ∼= A⊗πϕ(Γ)′′ with isomorphism taking xa ∈M
to a⊗ x ∈ A⊗πϕ(Γ)′′ for all a ∈ A and x ∈ πϕ(Γ)′′.

Proof. Since M is finite by the previous lemma, there exists a normal faithful conditional

expectation E:M → πϕ(Γ)′′. Since πϕ(Γ)′′ and A commute and E is πϕ(Γ)′′-linear,

E(a) = E(πϕ(γ)aπϕ(γ−1)) = πϕ(γ)E(a)πϕ(γ−1)

for all γ ∈ Γ and a ∈ A. Thus, E(A) is contained in the center of πϕ(Γ)′′ ∼= π(Γ)′′, which is

equal to C since τ is extremal. Now the claim follows from [Str81, Theorem 9.12]. �

On M resp. L1(M) we define a Γ-action θ by

θγ(a⊗m) = αγ(a)⊗ π(γ)mπ(γ−1).

By M θ resp. L1(M)θ we denote the elements that are invariant under θ.

Proposition 4.4. Given an ergodic action and an extremal character τ ∈ Ch(Γ) there

is a one-to-one correspondence between i.r.p.d.f.’s ϕ: Ω → PD(Γ) with E[ϕ] = τ and positive

selfadjoint elements f ∈ L1(M)θ with
∫

Ω fω dµ(ω) = 1 such that

ϕω(γ) = τ(π(γ)fω).

Proof. By Lemma 4.1 and Lemma 4.3, we have π(Γ)′′ ∼= πω(Γ)′′ for a.e. ω ∈ Ω with the

canonical isomorphism sending π(γ) to πω(γ) for each γ ∈ Γ. As ϕω(γ) = 〈πω(γ)ξω, ξω〉, we

can extend it to

ϕω:πω(Γ)′′ → C, x 7→ 〈xξω, ξω〉 ,

which is a positive normal functional on πω(Γ)′′ and therefore on π(Γ)′′. So by [Tak03, Lemma

IX.2.12] there exists a unique positive element fω ∈ L1(π(Γ)′′, τ) such that ϕω(x) = τ(xfω)

for all x ∈ π(Γ)′′. Let f : Ω→ L1(π(Γ)′′), ω 7→ fω. To see that f is θ-invariant, we calculate

τ(π(γ)fαγ′ (ω)) = ϕαγ′ (ω)(γ) = ϕ(γ′
−1
γγ′) = τ(π(γ)π(γ′)fωπ(γ′

−1
)),

so α−1
γ′ (f)ω = fαγ′ (ω) = π(γ′)fωπ(γ′−1) for all γ′ ∈ Γ by uniqueness of f , hence θ(f) = f . It

follows that ‖fω‖1 is Γ-invariant and hence constant, so f ∈ L1(M)θ. We have for all γ ∈ Γ

τ

(
π(γ)

∫
fω dµ(ω)

)
=

∫
τ (π(γ)fω) dµ(ω) =

∫
ϕω(γ) dµ(ω) = τ(π(γ)),
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hence
∫
fω dµ(ω) = 1. By [Lüc02, Lemma 8.3 (3)], f is a selfadjoint operator.

Conversely it is easy to check that such an f defines an i.r.p.d.f. ϕ with E(ϕ) = τ by

ϕω(γ) = τ(π(γ)fω). �

Remark 4.5.

(i) If ϕ is as in Example 3.5 with Γ big enough so that ϕ is extremal, we have f :S →
Mn(C) with fξ the orthogonal projection on span(ξ).

(ii) Similarly, if Γ in Example 3.7 is dense and π irreducible, we find f :G → Mn(C)

where fg is the orthogonal projection on span(π(g)ξ).

(iii) The i.r.p.d.f. in Example 3.6 is not of the form as in Proposition 4.4. Hence the

ergodicity and extremality assumptions are necessary (or at least one of them is).

Lemma 4.6. In fact, for f ∈ L1(M)θ as in Proposition 4.4 the condition that
∫

Ω fω dµ(ω) =

1 is equivalent to τM (f) = 1, where τM =
∫

Ω⊗ τ is the trace on M .

Proof. Let f be constructed from ϕ as above. Then

τM (f) =

∫
Ω
τ(fω) dµ(ω) =

∫
Ω
ϕω(e) dµ(ω) =

∫
Ω

1 dµ(ω) = 1.

For the other direction let first p ∈M θ be a projection. Then

τ(γ) = τ

(
π(γ)

∫
pω dµ(ω)

)
+ τ

(
π(γ)

∫
(1− p)ω dµ(ω)

)
is a convex decomposition into two characters. So by extremality of τ ,∫

pω dµ(ω) = τM (p) · 1.

Now let f ∈ L1(M)θ be positive selfadjoint with τM (f) = 1. Then it follows from the above

and the spectral theorem for f that
∫
fω dµ(ω) = τM (f) · 1 = 1. �

Lemma 4.7. For τ extremal and α ergodic the extremal i.r.p.d.f.’s ϕ given α and E[ϕ] = τ

correspond to minimal projections in M θ. M θ is a direct sum of matrix algebras.

Proof. Let ϕ: Ω → PD(Γ) be an extremal i.r.p.d.f. and f ∈ L1(M)θ as in Proposition

4.4 such that τ(fωπ(γ)) = ϕω(γ) for a.e. ω ∈ Ω and all γ ∈ Γ. Assume that f is not a scalar

multiple of a projection. Then there is a c ∈ R+ such that

f<c := χ([0, c))f and f≥c := χ([c,∞))f,

are both nonzero with χ(I) denoting the spectral projection on I. These are again positive

elements in M θ hence τM (f<c)−1f<c and τM (f≥c)−1f≥c define two different i.r.p.d.f.’s ϕ<c

and ϕ≥c such that

ϕ = τM (f<c)ϕ<c + τM (f≥c)ϕ≥c
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contradicting the extremality of ϕ. So f = τM (p)−1p for some projection p ∈M θ. If p is not

minimal in M θ, say q < p and q ∈M θ, then again q and p− q define two i.r.p.d.f.’s such that

a convex combination gives ϕ, which contradicts extremality.

Conversely every minimal projection p ∈M θ gives an extremal i.r.p.d.f. ϕ because if there

was a decomposition ϕ = cϕ1 + (1− c)ϕ2 for some 0 < c < 1 and different i.r.p.d.f.’s ϕi, this

would give different positive elements f1, f2 ∈M θ such that τM (p)−1p = cf1 +(1−c)f2, which

is not possible for a minimal projection p.

Since the set of i.r.p.d.f.’s is the closed convex hull of its extremal points, every positive

trace 1 element of M θ is a convex integral of minimal projections. This means M θ is generated

by its minimal projections, hence it is of type I with no diffuse part, i.e., Z(M θ) = L∞(X,µ)

such that every point in X has positive mass. Since it is also finite, it follows that M θ is a

(maybe infinite) direct sum of matrix algebras. �

Remark 4.8. Let τ ∈ Ch(Γ) be an extremal character, α: Γ y Ω an ergodic action and θ

corresponding to α and τ as in Proposition 4.4. Then, for i.r.p.d.f.’s associated to α, we have

the following observations.

(i) As M θ is a direct sum of matrix algebras every i.r.p.d.f. ϕ with E[ϕ] = τ is a convex

combination of countably many extremal ones.

(ii) M θ = C iff the constant i.r.p.d.f. τ is the only one with E[ϕ] = τ . It is also

equivalent to the constant τ being an extremal i.r.p.d.f.. If this is true for all α, τ

is disintegration rigid.

(iii) M θ is abelian iff the decomposition of i.r.p.d.f.’s with E[ϕ] = τ into extremal ones

is unique.

(iv) M θ is finite-dimensional iff every i.r.p.d.f. is a finite convex sum of extremal ones.

5. Disintegration rigidity of the regular character on i.c.c. groups

In this section we show the following theorem.

Theorem 5.1. Let Γ be a group with infinite conjugacy classes. Let ϕ: Ω→ PD(Γ) be an

i.r.p.d.f. on Γ with E[ϕ] = δe. Then ϕ(ω) = δe for almost every ω ∈ Ω.

Definition 5.2. If the conclusion of the theorem holds, we say (Γ, δe) is disintegration

rigid.

Remark 5.3. Theorem 2.6, Remark 2.7 and Theorem 3.8 show that the regular character,

the trivial character and the alternating character are the only disintegration rigid characters

on S∞. Indeed, if S∞ y (Ω,mα,β) is the action from Theorem 3.8 such that τα,β is none of

these three characters, we have 0 < α1 < 1 or 0 < β1 < 1. Assume w.l.o.g. that 0 < α1 < 1.
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Then for every nontrivial g ∈ S∞ and j ∈ supp(g) = {j| g(j) 6= j}

0 < mα,β ({ω ∈ Ω|ωi = 1 ∈ N+ ∀i ∈ supp(g)})

≤ mα,β ({ω ∈ Ω| g.ω = ω})

≤ 1−mα,β ({ω ∈ Ω|ωj = 1 ∈ N+, g.ωj 6= 1 ∈ N+}) < 1.

Hence the ϕ in Theorem 2.8 is non-constant with E[ϕ] = τα,β .

The trivial and the alternating character are clearly disintegration rigid because every

positive definite function takes values in the unit disk, and thus, if an i.r.p.d.f. intergrates to

a character which takes values only on the boundary of the unit disk, the i.r.p.d.f. has to be

constant.

Definition 5.4. A trace-preserving action on a finite von Neumann algebra Γ→ Aut(M)

is called weakly mixing if C · 1 is the only finite-dimensional, Γ-invariant subspace in M .

The following lemma might be known to experts but we give a proof for the sake of

completeness.

Lemma 5.5. Let Γ be an i.c.c. group. Then the conjugation action on LΓ is weakly mixing.

Proof. Let Γ = {γj | j ∈ N} be an enumeration of Γ. Assume H ⊂ LΓ ⊂ `2(Γ) is an

Γ-invariant, finite-dimensional subspace and let {ξ1, . . . , ξn} be an orthonormal basis of H

such that ξ1 /∈ Cδe. Then for every ε > 0 there is a K ∈ N such that∥∥∥∥∥ξj −
K∑
i=1

〈ξj , δγi〉 δγi

∥∥∥∥∥ < ε for all j = 1, . . . , n.(5.1)

Let F = {γ1, . . . , γK}. Then by [CSU16, Proposition 3.4] there exists a γ ∈ Γ such that

γFγ−1 ∩ F ⊂ {e}.(5.2)

Let HF := span(F ) and PF the orthogonal projection on HF .

As {γξ1γ
−1, . . . , γξnγ

−1} is again an orthonormal basis of H we have cj ∈ C with∑n
j=1|cj |2= 1 such that

ξ1 =

n∑
j=1

cjγξjγ
−1 =

n∑
j=1

cj

(
K∑
i=1

〈ξj , δγi〉 δγγiγ−1 +

∞∑
i=K+1

〈ξj , δγi〉 δγγiγ−1

)
.
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We have
∑K

i=1 〈ξj , δγi〉 δγγiγ−1 ∈ H⊥F +Cδe because of (5.2), which together with (5.1) implies

‖PF (ξ1)‖ ≤ |〈ξ1, δe〉 |+

∥∥∥∥∥∥PF
 n∑
j=1

cj

∞∑
i=K+1

〈ξj , δγi〉 δγγiγ−1

∥∥∥∥∥∥
≤ |〈ξ1, δe〉 |+ε

n∑
j=1

|cj |

≤ |〈ξ1, δe〉 |+nε.

Since ‖PF (ξ1)‖> 1− ε by (5.1), we get a contradiction when choosing ε < n−1(1− |〈ξ1, δe〉 |).
�

Definition 5.6. We call an extremal character conjugation weakly mixing if the conju-

gation action on its GNS construction is weakly mixing.

Question 5.7. Which other characters are conjugation weakly mixing?

The following statement contains Theorem 5.1 as a special case.

Theorem 5.8. Let τ be a conjugation weakly mixing character on Γ. Then (Γ, τ) is

disintegration rigid.

Proof. We first assume that α is ergodic. An action on a finite von Neumann algebra

σ: Γ y N is weakly mixing if and only if for every action α: Γ y A on a finite von Neumann

algebra one has (A⊗N)(α⊗σ) = Aα ⊗ 1 [Vae07, Proposition D.2]. So if we take A = L∞(Ω)

as in Section 4 and N = π(Γ)′′, Lemma 5.5 implies that

M θ = (A⊗N)(α⊗conj(π)) = Aα = C.

τ is extremal because if the conjugation action is weakly mixing, it must be ergodic, hence

the GNS construction is a factor. Hence by Proposition 4.4 every i.r.p.d.f. ϕ with E[ϕ] = τ is

given by an element in M θ, which proves the statement in the ergodic case.

The general case follows by ergodic decomposition: Let ϕ be an i.r.p.d.f. with E[ϕ] = τ .

Then the restriction to the ergodic components are ergodic i.r.p.d.f.’s. The expectation values

of these ergodic i.r.p.d.f.’s integrate to τ and are therefore by extremality µ-almost surely equal

to τ . Hence we can apply the statement to them and get that they are equal to τ ν-almost

surely, which implies that ϕ is equal τ µ-almost surely. �
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CHAPTER 8

A rigidity result for normalized subfactors

Abstract

We show a rigidity result for subfactors that are normalized by a representation of a lattice

Γ in a higher rank simple Lie group with trivial center into a finite factor. This implies that

every subfactor of LΓ which is normalized by the natural copy of Γ is trivial or of finite index.

1. Introduction

It seems like a natural generalization of Margulis’ Normal Subgroup Theorem to ask

wheter every regular subfactor of the group von Neumann algebra of a lattice in a higher-

rank simple Lie group with trivial center is trivial or of finite index.

In this article we make a small step into the direction of answering this question by

looking at the special case where a subfactor N ⊂ LΓ is actually normalized by a unitary

representation π: Γ→ U(LΓ) such that N and π(Γ) generate M . We use methods developed

by Jesse Peterson for the proof of his character rigidity theorem to prove the following theorem.

Theorem 1.1 (Theorem 4.7). Let Γ be a lattice in a simple real Lie group G which has

trivial center and real rank at least 2. Let M be a finite factor, N ⊂ M a subfactor and

π: Γ → NM (N) a unitary representation of Γ into the normalizer of N such that the action

Γ y M given by αγ(x) = π(γ)xπ(γ−1) is ergodic and M = (N ∪ π(Γ))′′. Then M 6= N o Γ

or [M : N ] <∞.

Peterson’s proof is inspired by Margulis’ proof in the sense that the proof of the normal

subgroup theorem is based on the fact that an amenable discrete group with property (T)

is finite, whereas the proof of character rigidity is based on the fact that an amenable factor

with property (T) is finite-dimensional.

We adjust Peterson’s proof to the situation of subfactors described above by putting

coefficients in N into it. Then we use that if an inclusion N ⊂ M is both coamenable and

corigid and the relative commutant is finite-dimensional, the inclusion is of finite index.

Another approach to the result above would be to study the character γ 7→ ‖EN (π(γ))‖22.

If this happens to be extremal, the above theorem follows directly from character rigidity

[Pet16, Theorem C]: if the GNS construction of this character generates a finite dimensional

von Neumann algebra, then the index is finite; if it is the regular character, then M is the

crossed product N oΓ. However, as we observe in the last section, no direct reduction to the

145
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extremal case seems possible: the above character happens to be extremal if and only if it is

the regular character.

Acknlowledgements. We would like to thank Sayan Das, Jesse Peterson and Andreas

Thom for helpful comments on an earlier version of this text.

2. Preliminaries

Let M for the rest of this text be a finite factor with trace τ , N ⊂M a subfactor and let

Γ be a discrete group. With NM (N) := {u ∈ U(M)|uNu∗ = N} we denote the normalizer of

N inside M . [M : N ] := dimN (L2M) is the index of N ⊂M . We denote by J the antilinear,

bounded operator on L2(M) that extends x 7→ x∗ for x ∈M .

2.1. Coamenability and Corigidity of inclusions of von Neumann algebras.

Amenability and property (T) of M in Peterson’s proof will be replaced by coamenability

and corigidity of the inclusion N ⊂M .

Definition 2.1 ([Pop86, 3.2.3 (ii)]). Let M be a factor and N a von Neumann subal-

gebra. Then N ⊂ M is coamenable if there exists a conditional expectation E:B(L2M) ∩
(JNJ)′ →M .

Definition 2.2 ([Pop06]). Let M be a factor and N a von Neumann subalgebra. Then

N ⊂ M is called corigid if every M -bimodule H with N -central norm one vectors ξn ∈ H
such that ‖xξn − ξnx‖→ 0 for all x ∈M contains a non-zero M -central vector.

Note that in [Pop86] coamenability is called amenability and corigidity is called rigidity.

Theorem 2.3 ([Pop86, 4.1.8 (iv)]). If an inclusion N ⊂ M is coamenable and corigid

and N ′ ∩M is finite dimensional, then the inclusion is of finite index.

2.2. Actions on von Neumann algebras.

Definition 2.4. An action σ: Γ → Aut(M) of a group on a von Neumann algebra is

ergodic if the fixed point algebra is C.

Let us recall the definition und some properties of induced actions on von Neumann

algebras.

Definition 2.5. Let Γ ⊂ G be a closed subgroup of a locally compact group and θ: Γ→
Aut(M) a continuous action. Pick a Borel section s:G/Γ → G and let χ:G × G/Γ → Γ be

the cocycle given by χ(g, x) = s(gx)−1gs(x).

Then the induced action θ̃ of G on L∞(G/Γ)⊗M , which we view as bounded functions

from G/Γ to M , is given by

θ̃g(f)(x) := θχ(g,g−1x)f(g−1x),

for g ∈ G, f ∈ L∞(G/Γ)⊗M and x ∈ G/Γ.
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Remark 2.6. Let R be the G-action on L∞(G) given by right multiplication. Then

Ψ:L∞(G/Γ)⊗M → (L∞(G)⊗M)(R⊗θ)(Γ), Ψ(f)(g) = θs(Γ)χ(g,gΓ)(f(gΓ))

is an isomorphism and

Ψ(θ̃g(f)) = L⊗ id(g)Ψ(f),

where L is the G-action on L∞(G) given by left multiplication.

Lemma 2.7. (L∞(G/Γ)⊗M)θ̃(G) ∼= 1⊗M θ(Γ). In particular, θ̃ is ergodic iff θ is.

Proof. By Remark 2.6,

(L∞(G/Γ)⊗M)θ̃(G) ∼= (L∞(G)⊗M)(R⊗θ)(Γ)∪(L⊗id)(G) = 1⊗M θ(Γ),

hence (L∞(G/Γ)⊗M)θ̃(G) = C if and only if M θ(Γ) = C. �

3. A question about regular subfactors of the von Neumann algebra of lattices

in higher-rank groups

We want to study possible analogues of Margulis’ Normal Subgroup Theorem [Mar91,

Theorem IX.5.3] in the setting of subfactors.

Theorem 3.1 (Margulis’ Normal Subgroup Theorem). Let Γ be an irreducible lattice in

a higher-rank simple Lie group G with trivial center. Then every normal subgroup of Γ is

trivial or of finite index.

A typical example of such a group is PSL(n,Z) ⊂ PSL(n,R) for n ≥ 3. Margulis’ Theorem

was generalized by J. Peterson in [Pet14] as follows.

Theorem 3.2 (Peterson). Let G be a property (T) semi-simple Lie group with trivial

center, no compact factors, and real rank at leasdt 2, and let Γ < G be an irreducible lattice

in G. Then for every unitary representation π of Γ such that π(Γ)′′ is a finite factor π extends

to an isomorphism LΓ→ π(Γ)′′ or π(Γ)′′ is finite-dimensional.

It should be possible to do everything in this article with the same assumptions on Γ as in

the above theorem. We restrict ourselves to the simple real case to avoid some technicalities.

When replacing groups by factors the analogue of a normal subgroup is a regular subfactor.

Definition 3.3. An inclusion of von Neumann algebras N ⊂M is regular if the normal-

izer of N generates M , i.e., NM (N)′′ = M .

Question 3.4. Is it true that if Γ is as above and N ⊂ LΓ a regular subfactor then

N = C or [LΓ : N ] <∞?

This question has probably been asked before, but we couldn’t find it in the literature.

In the following we restrict our attention to the situation where the image of Γ is not

only in NM (N)′′, but even in NM (N) in order to make the question accessible to Peterson’s
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methods from the proof of character rigidity. We allow subfactors in von Neumann algebras

a bit more general than LΓ.

Assumption. For the rest of this article let Γ be a lattice in a simple real Lie group G

which has trivial center and real rank at least 2. Let M be a finite factor with trace τ , N ⊂M
a subfactor and π: Γ→ NM (N) a representation of Γ into the normalizer of N such that the

action Γ yM given by αγ(x) = π(γ)xπ(γ−1) is ergodic and M = (N ∪ π(Γ))′′.

Example 3.5. M = LΓ with λ : Γ → LΓ the left regular representation and N ⊂ LΓ

a subfactor which is normalized by λ(Γ) is as in the assumption. M is a factor and the

conjugation action is ergodic because Γ is i.c.c..

4. Peterson machine with coefficients

In this section we adjust the proof of Peterson’s character rigidity theorem in [Pet14] and

[Pet16] to the situation described above by putting coefficients in N into it. Setting N = C
gives back the proof of character rigidity.

We will need a bunch of subgroups, which we first define in the case of G = SL(n,R).

Example 4.1. For G = SL(n,R) let P be the subgroup of upper triangular matrices

and V the subgroup of upper triangular matrices with 1 on the diagonal. Fix numbers

0 = j0 < j1 < j2 < · · · < jk = n. We define now subgroups consisting each of all block

matrices in SL(n,R) of a certain structure:

P0 :=




A11 A12 . . . A1k

0 A22 . . . A2k

...
...

. . .
...

0 0 . . . Akk


 , V0 :=




1 A12 . . . A1k

0 1 . . . A2k

...
...

. . .
...

0 0 . . . 1


 ,

R0 :=




A11 0 . . . 0

0 A22 . . . 0
...

...
. . .

...

0 0 . . . Akk


 , L0 :=




V11 0 . . . 0

0 V22 . . . 0
...

...
. . .

...

0 0 . . . Vkk


 ,

where Ail are arbitrary matrices of size (ji − ji−1) × (jl − jl−1), Vii are upper triangular

matrices with 1 on the diagonal and 1 is an identity matrix of fitting size.

For each of these subgroups we denote by P , V , ect. the corresponding transposed sub-

group.

Definition 4.2. For general G, let S be an R-split maximal torus, P a minimal parabolic

subgroup containing S and V < P its unipotent radical. Let P be the opposite parabolic

and V its unipotent radical. Let P0 be another parabolic subgroup s.t. P < P0 � G. Let V0

be the unipotent radical of P0 and P0, V0 the corresponding opposite subgroups. Let R0 be
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the reductive component of P0 containing S so that P0 = R0 o V0 and L0 = R0 ∩ V . Then

V = V0 o L0. See [Mar91, I.1.2] for the definitions.

We have the following commuting diagram:

V = V0 o L0 V0

G/P G/P0.

(v,l) 7→v

v 7→vP v 7→vP0

gP 7→gP0

Lemma 4.3. The vertical maps map measures in the class of the Haar measure to G-

quasiinvariant measures. They are measure isomorphisms when equipping the quotient spaces

with these measures.

Proof. Let µV be a left Haar measure on V and let λ ∈ M(G/P ) be the image of µV .

This defines by [Bou04, Proposition VII.2.1.4] a measure λ# on G given by∫
G
fdλ# =

∫
G/P

∫
P
f(gp)dµP (p)dλ(gP ),

where µP is a left Haar measure on P . By [Mar91, Lemma IV.2.2], the map (V × P, µV ⊗
µP ) → (G,µG), (v, p) 7→ vp−1, is a homeomorphism onto the image and a measure iso-

morphism, µG being a suitably normalized left Haar measure on G. This implies that

λ# = (1V ⊗∆P ) ·µG, where ∆P is the modular function on P . It follows by [Bou04, Lemma

VII.2.5.4] that λ is G-quasiinvariant. Now the same follows for the images of measures that

are strongly equivalent to Haar measure and analogously for such measures on V0.

The vertical maps are then measure isomorphisms because they map the measures to each

other and are injective. �

Let ν and ρ be probability measures on V0 resp. L0 in the class of the Haar measure; the

image of ν on G/P0 is still denoted by ν. We equip V = V0 o L0 with the product measure

ν × ρ.

Let G act on V and V0 in the way that makes the above diagram G-equivariant. This

transforms the action of V on G/P to left multiplication on V and the action of R0 on G/P

to the action induced by conjugation on V .

Let σ be the corresponding action of Γ on L∞(G/P ) and σ0 the corresponding Koopman

representation on L2(G/P ). Let

P1 := 1⊗ P1̂ ∈ L
∞(G/P )⊗B(L2M),

where P1̂ is the orthogonal projection on C1̂ ⊂ L2M with M as in the assumption. Let

B := (L∞(G/P )⊗B(L2M)) ∩ {σγ ⊗ (Jπ(γ)J)|γ ∈ Γ}′ ∩ (1⊗ JNJ)′.

Lemma 4.4. There exists a conditional expectation

E: (L∞(G/P )⊗B(L2M)) ∩ (1⊗ JNJ)′ → B.



150 8. A RIGIDITY RESULT FOR NORMALIZED SUBFACTORS

Proof. Let H = L2(M) and let θ: Γ → Aut(B(H)) be conjugation with Jπ(·)J . Let θ̃

be the induced action of G on L∞(G/Γ)⊗B(H) as in Definition 2.5 with a section s:G/Γ→ G

and χ:G×G/Γ→ Γ given by χ(g, x) = s(gx)−1gs(x). θ̃ is also well-defined on L∞(G/Γ)⊗B(H)∩
(1 ⊗ JNJ)′, which we view as bounded functions from G/Γ to B(H) ∩ (JNJ)′. To see this

let f ∈ L∞(G/Γ)⊗(B(H) ∩ (JNJ)′), x ∈ G/Γ, n ∈ N , g ∈ G, γ = χ(g, g−1x) and calculate

θ̃g(f)(x)JnJ = Jπ(γ)Jf(g−1x)Jπ(γ−1)JJnJ

= Jπ(γ)Jf(g−1x)Jαγ−1(n)JJπ(γ−1)J

= Jπ(γ)JJαγ−1(n)Jf(g−1x)Jπ(γ−1)J

= JnJJπ(γ)Jf(g−1x)Jπ(γ−1)J

= JnJθ̃g(f)(x).

P is amenable [Mar91, IV.4.4], hence [Pet16, Theorem 7.4] gives that there is a condi-

tional expectation

E:L∞(G/Γ)⊗ (B(H) ∩ (JNJ)′)→ (L∞(G/Γ)⊗ (B(H) ∩ (JNJ)′))θ̃(P )

= (L∞(G/Γ)⊗B(H))θ̃(P ) ∩ (1⊗ JNJ)′.

But

(L∞(G/Γ)⊗B(H))θ̃(P ) ∼= (L∞(G)⊗B(H))(L⊗id(P ))×(R⊗θ(Γ))

∼= (L∞(G)⊗B(H))(R⊗id(P ))×(L⊗θ(Γ))

∼= (L∞(G/P )⊗B(H))σ⊗θ(Γ).

Here the first isomorphism is the map Ψ given in Remark 2.6 and the second isomorphism is

f 7→ (g 7→ f(g−1)). Thus

(L∞(G/Γ)⊗B(H))θ̃(P ) ∩ (JNJ)′ = (L∞(G/P )⊗B(H))σ⊗θ(Γ) ∩ (1⊗ JNJ)′ = B.

�

The following lemma is [Pet14, Lemma 4.4], only with different B, which does not change

the proof. We give it anyway in order to provide more details.

Lemma 4.5. Let

x = x∗ ∈ B ⊂ L∞(G/P )⊗B(L2M) = L∞(V0)⊗L∞(L0)⊗B(L2M)

and view it as a function from V0 to L∞(L0)⊗B(L2M). Let

x0 ∈ L∞(L0)⊗B(L2M)

be in the SOT-essential range of x. Then there exists a y = y∗ ∈ B such that yP1 ∈
L∞(L0)⊗B(L2M) and P1yP1 = P1x0P1.
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Proof. That x0 is in the SOT-essential range of x means that there are subsets Ej ⊂ V0

of positive measure such that for all η ∈ L2(M), ξL ∈ L2(L0) and ε > 0 there exists an N

with ∫
L0

‖(x(v, l)− x0(l))η‖2|ξL(l)|2 dρ(l) < ε(4.1)

for all j > N and all v ∈ Ej . By the proof of [Pet14, Lemma 4.3] there are γj ∈ Γ and

hj ∈ V0oZ(R0) such that γjh
−1
j → e and ν(hjEj)→ 1. We first show that these can be chosen

in a way that σγj (x) → x0 in SOT. Take a countable SOT-basis of neighborhoods of zero in

the unit ball of L∞(V0)⊗L∞(L0)⊗B(L2M), denoted by {Uj}j∈N, such that Uj ↘ {0}. As the

action σ is strongly continuous, there are numbers k(j) ∈ N and neighborhoods e ∈ Oj ⊂ G

such that Oj ⊂ Oi if j > i and

σg(x0 + Uk(j)) ⊂ x0 + Uj ∀g ∈ Oj .(4.2)

We can choose the γj in [Pet14, Lemma 4.3] in a way that γjh
−1
j ∈ Oj for all j. We will

show now first that σγj (x)→ x0 if σhj (x)→ x0 and then that σhj (x)→ x0, all in SOT.

So assume that σhj (x) → x0, hence ∀j ∃N : σhi(x) ∈ x0 + Uk(j) for all i > N . Then by

(4.2) σγi(x0) = σγih−1
i
σhi(x0) ∈ x0 + Uj for all i > max{N, j} because γih

−1
i ∈ Oj . So then

σγj (x)→ x0.

To show that σhj (x) → x0 let η ∈ L2M, ξL ∈ L2(L0), ξV ∈ L2(V0). Then, as the hj ∈
V0 o Z(R0) act trivially on L0 and using (4.1),

‖1hjEj (σhj (x)− x0)(ξV ⊗ ξL ⊗ η)‖2

=

∫
hjEj×L0

‖(σhj (x)(v, l)− x0(l))η‖2|ξV (v)ξL(l)|2 dν(v)dρ(l)

=

∫
hjEj×L0

‖(x(h−1
j v, l)− x0(l))η‖2|ξV (v)ξL(l)|2 dν(v)dρ(l)

=

∫
Ej×L0

‖(x(v, l)− x0(l))η‖2|ξV (hjv)ξL(l)|2 d((h−1
j )∗ν)(v)dρ(l)

=

∫
Ej

(∫
L0

‖(x(v, l)− x0(l))η‖2|ξL(l)|2dl
)
|ξV (hjv)|2 d((h−1

j )∗ν)(v)

<

∫
hjEj

ε|ξV (v)|2 dν(v) ≤ ε‖ξV ‖2.

So 1hjEj (σhj (x)− x0)→ 0 in SOT, and since ν(hjEj)→ 1, also σhj (x)− x0 → 0 in SOT.

Let y be a WOT cluster point of the set {π(γj)xπ(γ−1
j )}. Then y ∈ B because x ∈ B

and conjugation with JNJ and Jπ(Γ)J commutes with conjugation with π(Γ). Also yP1 is
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a WOT cluster point of

{π(γj)xπ(γ−1
j )P1} ={π(γj)(Jπ(γj)J)(Jπ(γ−1

j )J)x(Jπ(γj)J)P1}

={π(γj)(Jπ(γj)J)σγj (x)P1}

Since σγj (x)→ x0 in SOT, yP1 must then also be a WOT cluster point of

{π(γj)(Jπ(γj)J)x0P1} ⊂ L∞(L0)⊗B(L2M),

so yP1 ∈ L∞(L0)⊗B(L2M). P1yP1 is a WOT cluster point of

{P1π(γj)xπ(γ−1
j )P1} = {P1(Jπ(γj)J)x(Jπ(γ−1

j )J)P1} = {P1σγ(x)P1}.

So again since σγj (x)→ x0, P1yP1 = P1x0P1. �

Proposition 4.6. If M is not isomorphic to N o Γ with isomorphism extending π, then

B = M , hence N ⊂M is coamenable.

Proof. Assume that M is not isomorphic to NoΓ with isomorphism extending π. Then

there is a γ0 ∈ Γ \ {e} and an n ∈ N such that c0 := τ(π(γ0)n) 6= 0.

Let x, x0 and y be as in the above lemma. We want to show that x is a constant function.

Let θ: Γ → Aut(M), different as in the proof of Lemma 4.4, be conjugation by π(·) and the

induced action θ̃:Gy L∞(G/Γ)⊗M as in Definition 2.5.

θ is ergodic by assumption, hence θ̃ is ergodic by Lemma 2.7. It is still ergodic when

restricted to V0 o Z(R0) because V0 o Z(R0) is not compact and hence every V0 o Z(R0)-

invariant vector must also be G-invariant by the Howe-Moore property of G [HM79, Theorem

5.2]. Now [Pet14, Lemma 3.2] gives us that for every neighborhood e ∈ O ⊂ G and ΓO =

Γ ∩O(V0 o Z(R0)) we have

τ(π(γ0)n) = Jτ(π(γ0)n)J ∈ convSOT {Jπ(γ−1)π(γ0)nπ(γ)J | γ ∈ ΓO}.(4.3)

We want to show now that [σ0
γ0
⊗ c0, P1x0P1] is zero. By Lemma 4.5 [σ0

γ0
⊗ c0, P1x0P1] =

[σ0
γ0
⊗ c0, P1yP1]. The approximation (4.3) of τ(π(γ0)n) gives for every O an approximation

[σ0
γ0
⊗ c0, P1yP1]

SOT∼
k∑
i=1

ciP1 [σ0
γ0
⊗ Jπ(γ−1

i γ0)nπ(γi)J, y]P1

with γi ∈ ΓO and
∑k

i=1 ci = 1.

Now write γi = gihi where gi ∈ O and hi ∈ V0 o Z(R0). We have σhi(yP1) = yP1

and σhi(P1y) = P1y since yP1, P1y ∈ L∞(L0)⊗B(L2M) and taking O small enough we get

σγi(y)P1 = σγi(yP1) ∼ yP1 and P1σhi(y) = σhi(P1y) ∼ P1y in SOT. Then

[σ0
γ0
⊗ c0, P1x0P1]

WOT∼
k∑
i=1

ciP1 [σ0
γ0
⊗ Jπ(γ−1

i γ0)nπ(γi)J, σγi(y)]P1
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=
k∑
i=1

ciP1 [σ0
γ0
⊗ Jπ(γ−1

i γ0γi)J, σγi(y)] (Jαγ−1
i

(n)J)P1

=
k∑
i=1

ciP1 [σ0
γ0
⊗ Jπ(γ−1

i γ0γi)J, (σ
0
γi ⊗ 1)y(σ0

γ−1
i
⊗ 1)] (Jαγ−1

i
(n)J)P1

=
k∑
i=1

ciP1(σ0
γi ⊗ 1) [σ0

γ−1
i γ0γi

⊗ Jπ(γ−1
i γ0γi)J, y](σ0

γ−1
i
⊗ 1) (Jαγ−1

i
(n)J)P1

=0.

In the second step we used that y and hence also σγi(y) commutes with JNJ . In the last

step we used that [σ0
γ−1
i γ0γi

⊗ Jπ(γ−1
i γ0γi)J, y] = 0 because y ∈ B. So we found [σ0

γ0
⊗

c0, P1x0P1] = 0 and hence σγ0(P1x0P1) = P1x0P1. Since τ(π(γ0)n) = τ(π(γ)π(γ0)nπ(γ−1)) =

τ(π(γγ0γ
−1)αγ(n)), we get σγ(P1x0P1) = P1x0P1 for all γ ∈ 〈〈γ0〉〉 in the normal closure of γ0.

By [Pet16, Theorem 10.10] the action of 〈〈γ0〉〉 on L∞(G/P ) is ergodic, so P1x0P1 ∈ C1⊗P1̂.

Since x0 was arbitrary in the range of x, we conclude that P1xP1 ∈ L∞(V0) ⊗ P1̂ and hence

P1BP1 ⊂ L∞(V0) ⊗ P1̂. This means B ⊂ L∞(V0)⊗B(L2M) because if x ∈ B and a, b ∈ M ,

we have 〈
xâ, b̂

〉
=
〈
(b∗xa)1̂, 1̂

〉
=
〈
(P1b

∗xaP1)1̂, 1̂
〉
∈ L∞(V0)

since b∗xa ∈ B. But V0 = G/P0 and G is generated by the P0’s [Mar91, Proposition I.1.2.2],

so we get

B = B(L2M) ∩ (Jπ(Γ)J ∪ JNJ)′ = M.

Now N ⊂M is coamenable by Lemma 4.4. �

Theorem 4.7. Let Γ be a lattice in a simple real Lie group G which has trivial center

and real rank at least 2. Let M be a finite factor, N ⊂ M a subfactor and π: Γ→ NM (N) a

representation of Γ into the normalizer of N such that the action Γ y M given by αγ(x) =

π(γ)xπ(γ−1) is ergodic and M = (N ∪ π(Γ))′′.

Then M is isomorphic to N o Γ with isomorphism extending π or [M : N ] <∞.

Proof. If π does not extend to an isomorphism M ∼= N o Γ, the inclusion N ⊂ M

is coamenable by Proposition 4.6. Then by the proof of [BMO19, Lemma 2.1] there is a

nonzero projection q ∈ N ′ ∩M such that q(N ′ ∩M)q is completely atomic. Hence the center

of N ′ ∩M is atomic since the conjugation action of Γ on it is ergodic and the existence of

q implies that it is not diffuse. Since the action is also trace preserving, it is finite. N ′ ∩M
must be of type I since it contains a minimal projection and the action is ergodic, hence it is

finite dimensional.

N ⊂M is also corigid because Γ has property (T) [Pop86, 4.1.7 (ii)]. So the inclusion is

of finite index by Theorem 2.3. �
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In the case where M = LΓ and π is the left regular representation we have M ∼= N o Γ

with isomorphism extending π if and only if N = C. Hence we get

Corollary 4.8. Let Γ be a lattice in a simple real Lie group G which has trivial center

and real rank at least 2. Let N ⊂ LΓ a subfactor which is normalized by the natural copy of

Γ in LΓ. Then N = C or [LΓ : N ] <∞.

Corollary 4.8 can also be obtained without Theorem 4.7 from [CD19, Theorem 3.15 1)]

and [Bru18, Section 4.3]. In [CD19] similar results are proven for groups with positive `2-

Betti numbers and acylindrically hyperbolic groups. S. Das brought to our attention that S.

Popa observed that in the above situation the index is an integer as is always true for regular

subfactors with finite index, see also [CS06, Theorem 4.5].

5. On deducing the theorem from character rigidity

It seems natural to try to deduce Theorem 4.7 from character rigidity [Pet16, Theorem

C] by applying it to the character γ 7→ ‖EN (π(γ))‖22. The following connection is easy to

deduce:

Lemma 5.1. Let N ⊂ M and π be as above and let ϕ(γ) = ‖EN (π(γ))‖22. If the GNS

construction of this character generates a finite dimensional von Neumann algebra, then [M :

N ] <∞. If it is the regular character, then M = N o Γ.

Proof. If ϕ is the regular character,

EN (π(γ)) =

0 γ 6= e

1 γ = e
,

hence M = N o Γ.

We now describe the GNS construction of ϕ. Let eN ∈ B(L2M) be the orthogonal

projection onto N and 〈M,N〉 := {
∑n

k=1 xkeNyk|n ∈ N, xk, yk ∈ M}′′ ⊂ B(L2M) the basic

construction with semifinite trace given by Tr(xeNy) = τ(xy). From this we get a Hilbert

space H := L2(〈M,N〉, T r) as the completion of the finite elements of 〈M,N〉 with the norm

‖x‖2= Tr(x∗x)
1
2 . Define a unitary representation θ: Γ→ U(H) by

θγ(xeNy) = π(γ)xeNyπ(γ)∗.

Then, using eNxeN = EN (x)eN for all x ∈M , we get

〈θγ(eN ), eN 〉 = 〈π(γ)eNπ(γ)∗, eN 〉 = Tr(eNπ(γ)eNπ(γ)∗eN ) = Tr(EN (π(γ))eNπ(γ)∗eN )

= Tr(EN (π(γ))eNEN (π(γ)∗)) = τM (EN (π(γ))EN (π(γ))∗) = τ(γ),

hence Hϕ := span{σγ(eN )|γ ∈ Γ} ⊂ H, eN , and σ form a GNS triple for ϕ.



5. ON DEDUCING THE THEOREM FROM CHARACTER RIGIDITY 155

Assume σ(Γ)′′ ⊂ B(Hϕ) is finite dimensional. Say it is generated as a vector space by

σγ1 , . . . , σγn . Then for all x, y ∈ N

π(γ)xeNyπ(γ′) = π(γ)eNxyπ(γ)∗π(γγ′) = θγ(eNxy)π(γγ′) =

n∑
i=1

ciπ(γi)eNxyπ(γi)
∗π(γγ′)

for some ci ∈ C. So since M is generated by N and π(Γ), 〈M,N〉 is generated over M by

π(γ1)eN , . . . , π(γn)eN . Hence [M : N ] = [〈M,N〉 : M ] <∞. �

In particular, if we knew that ϕ was extremal or could reduce the situation to the extremal

case, the theorem would follow. However, things are more complicated.

Definition 5.2. A trace-preserving action on a finite von Neumann algebra σ: Γ y M

that leaves a von Neumann subalgebra N ⊂ M invariant is called weakly mixing relative to

N if for any finite set F ⊂ M with EN (x) = 0 for all x ∈ F there exist γn ∈ Γ such that for

all η, η′ ∈ F , ‖EN (η∗σγn(η′))‖2→ 0 for n→∞.

Lemma 5.3. The following are equivalent.

(i) ϕ is extremal.

(ii) σγ(x) = π(γ)xπ(γ)∗ is weakly mixing relative to N .

(iii) M = N o Γ.

Proof. ϕ is extremal if and only if θ(Γ)′′ ⊂ B(L2(〈M,N〉 , T r)) is a factor. We have a

dense inclusion θ(Γ)′′ ⊂ L2(θ(Γ)′′) ∼= Hϕ sending θ(γ) ∈ θ(Γ)′′ to π(γ)eNπ(γ)∗ ∈ Hϕ such

that the conjugation action on θ(Γ)′′ translates to the action σN on Hϕ given by

σNγ (xeNy) = π(γ)xπ(γ)∗eNπ(γ)yπ(γ)∗.

So ϕ is extremal iff every σN -invariant vector in Hϕ is trivial. Since Nσ = C this is equivalent

to

(Hϕ)σ
N ⊂ L2(NeN ).(5.1)

Condition (5.1) is equivalent to σ being weakly mixing because it is implied by (iii) in [Pop07,

Lemma 2.10] and implies (i) with the same proof as for (iii) ⇒ (i). Hence i) and ii) are

equivalent.

If ϕ is extremal, then M = N oΓ or [M : N ] by character rigidity and Lemma 5.1. In the

second case, since N is a factor, L2(M) has a finite orthogonal basis η1, . . . , ηk over N with

‖η‖2=
∑k

i=1‖EN (η∗i η)‖2 for and all η ∈ L2(M) (see [ADP, 8.4-8.6]). Then for all γ ∈ Γ,

k∑
i=1

‖EN (η∗i σγ(η)‖2= ‖σγ(η)‖2= ‖η‖2,

hence ‖EN (η∗i σγn(η))‖2 cannot go to zero for some γn and all i = 1, . . . , k. �
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Example 5.4. If Λ /Γ is a normal subgroup, π: Γ→ LΓ = M the left regular representa-

tion and N = LΛ, then ϕ is the regular character on Γ/Λ which is not extremal if the index is

finite. The decomposition into extremal characters corresponds to the decomposition of the

left regular representation of Γ/Λ into irreducible representations, which doesn’t seem to be

nicely reflected in the situation of Γ y N ⊂M .
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CHAPTER 9

On representation theory of topological full groups of étale

groupoids

1. Inverse semigroups, groupoids and their C∗-algebras

1.1. A brief introduction to semigroup theory. We consider the general text by

Lawson [Law98] for a complete introduction to inverse semigroup theory, and recall the

basic notions with references below. Recall that a semigroup is a set S, together with an

associative binary operation. If additionally it has a unit element, then we say it is a monoid.

Definition 1.1. Let S be a semigroup. We say S is inverse if there exists a unary

operation ∗ : S → S satisfying the following identities:

(i) (s∗)∗ = s.

(ii) ss∗s = s and s∗ss∗ = s∗ for all s ∈ S.

(iii) ef = fe for all idempotents e, f ∈ S.

An element e ∈ S satisfying e2 = e is called an idempotent, and the set of idempotents is

denoted E(S) - in an inverse semigroup this is a (commutative) subsemigroup. Inverse semi-

groups also carry a natural partial order, one induced from the subsemigroup of idempotents.

Definition 1.2. Two elements s and t in an inverse semigroup S (with zero) are compat-

ible if st and st are elements of E(S), and orthogonal if s∗t = st∗ = 0. A finite set of elements

F ⊂ S is a compatible (resp. orthogonal) set if each pair of elements s, t ∈ F are compatible

(resp. orthogonal).

A fundamental example of such an object is the symmetric inverse monoid on any set X,

denoted by I(X). This is defined equipping the collection of all partial bijections of X to itself

equipped the composition defined on common intersections. The Wagner–Preston theorem

[Law98, Section 1.5, Theorem 1], the analogue of Cayley’s theorem for inverse semigroups,

says that every abstract inverse semigroup can be realised as a subsemigroup of I(X) for

some set X. The natural order, s ≤ t then says that t extends s on a larger domain, and the

compatibility condition says that s and t agree on the intersection of their domain, and that

their inverses agree on the intersection of their ranges.

In this situation the function, s ∨ t, defined by doing both s and t simultaneously on

the union of their domains, is well defined and belongs to I(X). A subsemigroup of I(X) is

distributive if, given any compatible subset F ⊂ S, the join over F :
∨
s∈F s also belongs to S.

159
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1.2. Groupoids by example. For groupoids in the context in which we are studying

them, a useful reference is [Exe08]. Topological groupoids are elementary models for ‘non-

commutative spaces’ and appear throughout noncommutative geometry, index theory and

operator algebras as a primary source of examples.

Definition 1.3. A groupoid is a set G equipped with the following information:

(i) A subset G(0) consisting of the objects of G, denote the inclusion map by i : G(0) ↪→ G.

(ii) Two maps, r and s : G→ G(0) such that r ◦ i = s ◦ i = Id .

(iii) An involution map −1 : G→ G such that s(g) = r(g−1).

(iv) A partial product G(2) → G denoted (g, h) 7→ gh, with G(2) = {(g, h) ∈ G× G|s(g) =

r(h)} ⊆ G× G being the set of pairs it is possible to compose.

Moreover we ask the following:

• The product is associative where it is defined in the sense that for any pairs:

(g, h), (h, k) ∈ G(2) we have (gh)k and g(hk) are defined and equal.

• For all g ∈ G we have r(g)g = gs(g) = g.

A groupoid is principal if (r, s) : G→ G(0)×G(0) is injective. A groupoid G is a topological

groupoid if both G and G(0) are topological spaces, and the maps r, s,−1 and the composition

are all continuous. A Hausdorff, locally compact topological groupoid G is proper if (r, s)

is a proper map and étale or r-discrete if the map r is a local homeomorphism. When G

is étale, s and the product are also local homeomorphisms, and G(0) is an open subset of G

[Exe08, Section 3].

Definition 1.4. A bisection in G is a subset U ⊂ G such that the range (or source) map

U 7→ r(U) is a bijection. The set of open bisections Go forms a basis for the topology, in the

case G is étale. We say that an étale groupoid is ample if the set of compact open bisections

Ga is a basis for the topology of G (this follows more along the lines of the definition given in

Paterson [Pat99] or Renault [Ren80].

Convention. From now on, all groupoids considered in this paper will be assumed ample

and with compact base space G(0).

Example 1.5. Let G be a discrete group and let X be a compact, Hausdorff topological

G-space. Then the product G ×X can be equipped with a groupoid structure that encodes

the action of G on X, as follows, with product given by (g, x)(h, y) = (gh, y) whenever x = hy,

inverse (g, x)−1 = (g−1, gx) and source and range maps s(g, x) = x, r(g, x) = gx. We can

topologise this by considering the sets (g, U) = {(g, x) | x ∈ U}, where U is a open subset of

X. This topological groupoid is denoted by X oG and is called the action groupoid.

In the above example stabilisers may occur. To produce a principal groupoid, one uses

the groupoid of germs construction.
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Definition 1.6. Let f, g be partial homeomorphisms of X and let x ∈ X be in the

domain of both f and g. Then f and g have the same germ at x, denoted f ∼x g, if there is

some neighbourhood U of x on which f and g agree.

Thus we can define, for any étale groupoid G a corresponding groupoid of germs Germs(G)

by considering the semigroup of ample bisections Ga and letting Germs(G) be the set of

equivalence classes of germs of bisections. This inherits the product, inverse, range and

source maps from the semigroup Ga, and is a surjective groupoid image of G, by mapping

an element γ ∈ G to the germ of any bisection containing γ at s(γ). By the remark above,

this map is surjective (as every element is contained in some bisection) but not injective in

general.

Germs(G) can be given a topology in the following way: for a (cl)open set U ∈ G(0) =

Germs(G)(0), and an element in A ∈ Ga we can consider the sets OA = {[Ax] | x ∈ s(A)},
and note that by declaring these sets be clopen when appropriate shows immediately that the

map G→ Germs(G) defined above is open.

Definition 1.7. An ample étale groupoid G is

• a groupoid of germs or effective, if for every non-identity g ∈ G and every bisection

A ∈ Ga containing g, there is an element h ∈ A such that s(h) 6= r(h),

• essentially principal or topologically principal if the set of points with trivial isotropy

is dense in the unit space of G,

• minimal if the only non-empty closed invariant subset of G(0) is G(0).

The following is a standard result (see [Nek17, Proposition 2.1], [LM15], or [BCFS14,

Lemma 3.1]):

Proposition 1.8. Let G be a topologically principal, Hausdorff ample étale groupoid, then

it is a groupoid of germs. If G is second countable, Hausdorff groupoid of germs, then G is

topologically principal. �

1.3. Boolean inverse monoids and full groups. In this section we give specifics

concerning the semigroup structure on bisections, and the reconstruction techniques that

make noncommutative Stone duality work.

The set of ample bisections Ga is a distibutive inverse semigroup under composition of

bisections – if A and B are bisections, then the set product AB is also a bisection, as is A−1

and A ∪B whenever A and B are compatible bisections. Note that the idempotent elements

in Ga are clopen subsets of G(0).

If G(0) is compact, then E(Ga) is a Boolean algebra, and Ga is a Boolean inverse monoid

[LL13], that is an distributive inverse monoid with a Boolean algebra of idempotents. These

have been studied in the context of Stone dualities in the noncommutative setting [LL13]
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Definition 1.9. Let G be a second countable ample étale groupoid with compact base

space. Then the subgroup of bijections of Ga, denoted F (G), is called the topological full

group of G.

The relationship of the full group to the original groupoid is described below.

Lemma 1.10. Let F (G) be the full group of an ample topologically principal, Hausdorff

étale groupoid G with compact base space X. Then Germs(F (G) y X) is a closed subgroupoid

of G.

Proof. The subgroupoid G(0)oF (G) is closed in G(0)oGa (when Ga is given the discrete

topology), and because the germ topology coincides with the quotient topology when G is

Hausdorff, and this quotient map is in fact closed. �

We can improve this precisely when the full group completely describes the local structure

of Ga in the following sense.

Definition 1.11. Ga is piecewise factorisable if for every A ∈ Ga there are orthogonal

idempotents e1, ..., en ∈ E(Ga) and group elements g1, ..., gn ∈ F (G) such that A = ∨ni=1eigi.

Using [Law15, Theorem 2.2], we can strengthen Lemma 1.10 to the following statement:

Proposition 1.12. Let F (G) be the full group of an ample essentially principal, Hausdorff

étale groupoid G with compact base space X such that Ga is piecewise factorisable. Then

Germs(F (G) y X) is homeomorphic to G. �

For instance, this will occur for topologically free actions of discrete groups, because the

original group will belong to the full group as a subgroup in that case.

2. Representations of inverse semigroups, groupoids and their full groups

In this section we recall the construction of a groupoid C∗-algebras. Following this, we

illustrate that the groupoid representation associated to a full group (or certain subgroups

of a full group) appears naturally as a reduction of the left regular representation of the

associated Boolean inverse monoid of clopen bisections. This allows us to also formulate a

clean connection between the “rigid” stabilisers of clopens and the groupoid representation

being considered.

2.1. Groupoids associated to inverse semigroups. For any inverse semigroup S, it

is possible to manufacture a variety of ample étale groupoids from S that satisfy different

purposes. We first recall some definitions, following the notation from [Exe08] and [Sta16].

Definition 2.1. A filter in E(S) is a non-empty subset η ⊂ E(S) such that:

(i) 0 6∈ η,

(ii) if e, f ∈ η, then ef ∈ η and,



2. REPRESENTATIONS OF INVERSE SEMIGROUPS, GROUPOIDS AND THEIR FULL GROUPS 163

(iii) e ∈ η and e ≤ f , then f ∈ η.

The set of filters is denoted Ê(S), and can be viewed as a subspace of 2E(S). For finite sets

X,Y ⊂ E(S), let

U(X,Y ) = {η ∈ Ê(S) | X ⊂ η, Y ∩ η = ∅}.

The sets of this form are clopen and generate the topology on Ê(S), as X and Y are varied

over all finite subsets of E(S). With this topology, the space Ê(S) is called the spectrum of

E(S).

Recall that an ultrafilter is a filter that is not properly contained in any other filter. The

set of ultrafilters is denoted by Ê∞(S), and as a subspace of Ê(S) this may not be closed.

Let Êtight(S) denote the closure of Ê∞(S) in the topology of Ê(S) – when E(S) is a Boolean

algebra, we know immediately that Êtight(S) = Ê∞(S) by Stone duality.

The second definition we recall is that of an inverse semigroup action:

Definition 2.2. An action of an inverse semigroup S on a locally compact space X is a

semigroup homomorphism α : S → I(X) such that:

(i) α(s) is continuous for each s ∈ S,

(ii) the domain of α(s) is open for each s ∈ S, and

(iii) the union of the domains of the α(s), s ∈ S is equal to X.

If α is an action of S on X, then as with group actions, we will write α : S y X. The above

implies that α(s)−1 = α(s∗), and that each α(s) is a partial homemorphism of X. For each

e ∈ E(S), the map α(e) is the identity on some open subset Dα
e , and one easily sees that the

domain of α(s) is Dα
s∗s, and the range is Dα

ss∗ , that is:

α(s) : Dα
s∗s → Dα

ss∗ .

We can now introduce the two groupoids we will associate to any inverse semigroup S,

and recall some facts concerning them from the literature that we will need in the sequel.

Example 2.3. There is a natural action of S on Ê(S), and the universal groupoid of S,

denoted G(S), is the groupoid of germs of this action. This was introduced by Paterson in

[Pat99], and appears in Exel [Exe08] and has alternative descriptions, for instance found

inLawson–Lenz [LL13].

Example 2.4. In addition to the universal groupoid, there is the tight reduction Gtight(S),

which is the reduction of G(S) to the invariant subspace Êtight(S). This was introduced by

Exel [Exe08], and various of its properties have been studied in [Exe09] and [Exe10] –

an alternative description of this groupoid would be to consider the natural action of S on

Êtight(S) and then take the groupoid of germs of this (following for instance the ideas of Exel

[Exe10]).
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In [Exe10], Exel proved a reconstruction theorem, which is useful in this context, which

states that if one begins with an ample étale groupoid G, then Gtight(G
a) ∼= G via the procedure

above applied to S = Ga. More generally, this is an example of a noncommutative Stone duality

[Law15], and has been studied in much more generality for classes of inverse semigroups by

Lawson–Lenz [LL13] – it has even been improved to a categorical notion. For an inverse

semigroup, we remark that the above procedure performed in a loop provides:

Gtight(Gtight(S)a) ∼= Gtight(S)

for any inverse semigroup S.

2.2. Inverse semigroup C∗-algebras. In this section we study from the perspective

of the inverse monoid associated representations of the group of invertible elements, with the

examples from the previous section in mind. First we recall the construction, and then discuss

the notions of induction and restriction in this context.

Let S be an inverse monoid. Following [Pat99, Section 2.1], we define the monoid algebra

CS by extending the multiplication on S linearly and the inversion antilinearly:(∑
s∈S

ass

)(∑
t∈S

att

)
=
∑
s,t∈S

asbt · st,

(∑
s∈S

ass

)∗
=
∑
s∈S

ass
∗.

This makes CS a ∗-algebra, and every element s ∈ S is a partial isometry in CS. There-

fore, we can define the universal C∗-algebra of S by completing CS with respect to the norm

‖a‖ = sup‖π(a)‖,

where the supremum is taken over all ∗-representations of CS. Similar to the case of dis-

crete groups, ∗-representation of S are in one-to-one correspondence with ∗-representations

of C∗(S) := CS‖.‖.
We denote by `2S the Hilbert space with basis S and let

λ:S → B(`2S)

λ(s)δt :=

δst, tt∗ 6 s∗s,

0, otherwise

be the left regular representation of S; it extends to an injective representation of CS (in

fact, by a Theorem of Wordingham [Wor82], it extends to a injective representation of `1S).

Observe that if G ⊂ S is a subgroup of S that shares the unit of S, then λ(G) consists of

unitaries. The reduced C∗-algebra of S is then defined as C∗r (S) := λ(CS) ⊂ B(`2S).
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If S has a zero element o ∈ S, then Io := C · o is an ideal in CS and we have

λ(o)δs = 0, s 6= o, λ(s)δo = δo, s ∈ S.

We remark that o gives rise to a central projection in any ∗-representation of S and so if we

consider the algebras:

C∗o (S) = C∗(S)/Io,

C∗r,o(S) = C∗r (S)/λ(Io)

we obtain a decomposition C∗−(S) ∼= C∗−,o(S) ⊕ Io, where − is a place holder for maximal

or reduced respectively. We call C∗o (S) and C∗r,o(S) the truncated universal and reduced

C∗-algebras of S.

Notice that in discussing properties like nuclearity or exactness it does not matter whether

to work with the truncated or full version of inverse monoid C∗-algebras. It is also easy to

see that ∗-representations of C∗o (S) correspond to ∗-representations of S where o acts as the

zero operator.

2.3. Groupoid C∗-algebras and some representation theory. Let G be a locally

compact étale groupoid. Then the algebra of continuous, compactly supported functions

Cc(G) = {f : G→ C | supp f compact}

is a ∗-algebra under convolution and pointwise conjugation. It admits a maximal norm

[Pat99,Ren80] satisfying the usual universal property. Denote the completion in this max-

imal norm by C∗G when there is no ambiguity. In addition to this maximal norm, there also

a reduced norm, defined as follows:

‖f‖r:= sup
x∈G(0)

‖λx(f)‖,

where λx : Cc(G)→ B(`2(Gx)) is the natural left regular representation of G on the orbit of x

given by... Denote the completion of Cc(G) in this norm by C∗r (G), the reduced C∗-algebra of

G. Note that by the universal property of C∗(G), there is a surjective quotient homomorphism

C∗G→ C∗r (G).

Given a closed subset C ⊂ G(0), we define the restriction groupoid G|C by s−1(C)∩r−1(C),

and note that if C is invariant under G then this is a closed subgroupoid of G, and that there is

a natural restriction map from Cc(G) to Cc(G|C), which extends continuously to both maximal

and regular representations.

Applying this construction to the groupoids attached to an inverse semigroup S, we obtain

a natural surjective homomorphism C∗−(G(S)) → C∗−(Gtight(S)) (where − is a placeholder

for maximal or reduced), because Êtight is a closed invariant subset of Ê, for every inverse

semigroup S [Exe08].
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Finally, we can relate this construction directly to C∗−(S) defined in the previous section.

By the work of Paterson [Pat99], Exel [Exe08] and Khoskham–Skandalis [KS02] , we have

the following isomorphism:

C∗−(S) ∼= C∗−(G(S)).

More is known concerning the connection between representations of S and those of G(S):

in [Exe08], Exel showed that representations of S by partial isometries are in one-to-one

correspondence with representations of Cc(G(S)), and that tight representations of S are in

one-to-one correspondence with representations of Cc(Gtight(S)), i.e those that factor through

the canonical quotient map Cc(G(S)) → Cc(Gtight(S)). We will make use of this fact in the

next section.

2.4. Groupoid and Koopman representations of F (G). We begin this section with

a construction fundamental to later aspects of this paper.

Let Ga be the Boolean inverse semigroup attached to a ample étale groupoid G. Then by

appealing to Exel’s reconstruction theorem [Exe10], or one of the various non-commutative

Stone dualities [LL13], the groupoid Gtight(G
a) is topologically isomorphic to G, and so the

restriction of functions coupled with the identification of groupoid and semigroup C∗-algebras

described in the previous section induces a quotient homomorphism π : CGa → Cc(G), which

maps a compact open bisection U to its characteristic function 1U ∈ Cc(G).

Definition 2.5. The canonical representation π : F (G)→ U(Cc(G)) obtained by restrict-

ing the construction above is called the canonical groupoid representation of F (G).

A representation π:F (G)→ U(H) is a groupoid representation of F (G) if it factors through

the canonical groupoid representation π. If θ:Cc(G) → B(H) is any representation of G, we

denote the corresponding groupoid representation of F (G) by πθ := θ ◦ π.

Remark 2.6. This definition of a groupoid representation is nothing but a representation

of F (G) that comes from a tight completion of Boolean inverse monoid Ga. This follows from

[Exe08, Theorem 13.3] and the identifications from the previous section.

As remarked above, Lemma 1.12 shows that F (G) has the same orbits as G when acting

on X. This makes the quasi-regular representations:

ρx : F (G)→ B(`2(Gx)

important in determining the structure of the groupoid representation associated to the reg-

ular representation of G.

These sorts of representation were studied independently by Birget [Bir04] and Nekrasheyvch

[Nek04] in a particular example (which will will study in detail in the next section) and ap-

pear in [DG17] in the context of weakly branch groups.
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Another key example of a representation is the Koopman representation of F (G). Let µ be

a F (G)-quasi-invariant measure on G(0) and let κ:F (G)→ U(L2(G(0), µ)) be the representation

defined in the following way:

κ(g)(f)(x) =

√
dµ(g−1(x)

dµ(x)
f(g−1x), f ∈ L2(G(0), µ)

This representation is extended to compact open bisections U ∈ Ga, acting now by partial

isometries rather than unitaries by the similar formula:

κ(U)(f)(x) =

√
dµ(U∗(x)

dµ(x)
f(U∗x).

Lemma 2.7. The Koopman representation κ : Ga → B(L2(G(0), µ) defined above is a tight

representation of Ga, thus induces a groupoid representation of F (G) in the sense of Definition

2.5.

Proof. As E(Ga) is a Boolean algebra by [Exe08, Proposition 11.9] it suffices to check

that the representation induces a Boolean algebra homomorphism. This is true, since the

idempotents are mapped precisely to characteristic functions of clopens via this representa-

tion. �

2.5. Representations associated to subgroups of inverse semigroups. For an

inverse monoid S there is no relationship between the reduced C∗-algebra of a inverse sub-

monoid T of S and C∗r (S) in general. What we show in the following Proposition is that if T

is a group, then some connection exists.

Proposition 2.8. Let S be an inverse monoid and U ⊂ S be a subgroup of S with the

same identity element. Then C∗r (U) is a subquotient of C∗r (S).

Proof. Let λ:CS → B(`2S) denote the left regular representation of S and let

A = λ(CU) ⊂ C∗r (S) ⊂ B(`2S).

Consider the orthogonal projection p: `2S → `2U and observe that for every g ∈ U

pλ(g)p = λg: `
2U → `2U,

where λg denotes the left regular representation of U applied to g ∈ U . Moreover, for each

g ∈ U , we know that `2U ⊂ `2S is an invariant subspace for the unitary λ(g), hence p

commutes with λ(g) for all g ∈ U and the map

π:A→ C∗r (U),

a 7→ pap,

is a ∗-homomorphism of C∗-algebras; it is surjective because it has dense range. Thus, C∗r (U)

is a quotient of A. �
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2.6. Induction of representations. Denote by ResUS π the representation obtained by

restricting π to a group representation of the unit subgroup U .

Proposition 2.9. Let S be an inverse monoid, and U the group of units of S. For every

unitary representation π : U → B(H) there is a representation IndSU : S → B(H ′) such that π

is contained in ResUS IndSU π.

Proof. We construct a representation as follows. Observe that U acts on S by bijections,

and thus the orbit space S/U is well defined, let p : S → S/U be the map that assigns each

s ∈ S it’s U -orbit sU . We note that unlike the group case, these might not give bijective

copies of U – denote by Us the stabiliser subgroup for each s ∈ S. Now consider the space of

functions:

F := {f : S → H | f(su) = π(u)−1f(s) and p(supp f) is finite}.

As with group induction, our goal is to construct an inner product on this space. Let f, f ′ ∈ F,

and define:

〈f, f ′〉 :=
∑
x∈S/U

〈f(x), f ′(x)〉H .

This is well defined, since the map

x 7→ 〈f(x), f ′(x)〉

is constant on the right U -orbits. Take H ′ to the Hilbert space completion of F using this

inner product, and define the map IndSU π(s) using the left action of S on itself:

IndSU π(s)f(x) := f(s∗x).

This is clearly a homomorphism of S, and each IndSU π(s) is a partial isometry as it defines

a linear map between the subspaces: H ′s∗s and H ′ss∗ , where H ′e is the closure in H ′ of all the

functions containing the orbit of e in their support.

The final claim concerning the restriction ResUS IndSU π : U → U(H ′) follows by restricting

the representation to the U -invariant subspace H ′1S , this has a free U -action, in particular

this gives rise to a multiple of original representation π.

�

In the case of the representation λS we can describe the weak equivalence class of π =

ResUS λS .

Proposition 2.10. π = ResUS λS is weakly equivalent to
⊕

e∈E(S)/U λU/Ue, where λU/Ue
is the quasiregular representation of U on `2(U/Ue).

Proof. Splitting S into right U -orbits we decompose `2(S) into ⊕s∈S/U`2(sU). Letting

Us be the stabiliser of sU under the left action, we obtain that the restriction of λS decomposes

as
⊕

s∈S/U λU/Us , however, we note that since Us = Uss∗ , that this summand is weakly

equivalent to the one in the claim. �
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3. Comparing some natural representations of the full group

The goal of this section is to relate these representations of F (G) following the ideas of

[DG17] and [DG15] where the corresponding theory was developed in the weakly branch

case. The main result is the following:

Theorem 3.1. Let G be an ample étale groupoid of germs and let F (G) be its topological

full group. Let λ be the left regular representation of G. Then for the representations πλ, πκ

and ρx defined above we have:

(i) If G is minimal then

(a) πλ ∼ ρx for every x ∈ X.

(b) ρx is irreducible for each x ∈ X.

(c) For x, y ∈ X, with x and y in distinct G-orbits, ρx and ρy are not unitarily

equivalent.

(ii) If G is topologically amenable, then πκ ≺ πλ.

(iii) If G is minimal and topologically amenable, then πκ ∼ πλ.

Proof of (i) a), (ii) and (iii). For (i) a), we observe that ‖π(g)‖r is the reduced groupoid

norm of the element g ∈ Cc(G), and thus it bounds above the norm ‖λx(π(g))‖ for each x.

Note that the representation λx ◦ π agrees with the quasi-regular representation ρx of F (G).

By a result of Khoshkam and Skandalis [KS02, Corollary 2.4], it is sufficient to compute the

supremum over a dense subset of the unit space, such as any single G-orbit. But by Lemma

1.12, these are precisely the F (G)-orbits.

For (ii), we observe that as G is amenable, the reduced C∗-algebra C∗r (G) is isomorphic

to the maximal C∗-algebra C∗(G), and so it satisfies the universal property of the maximal

completion. By Lemma 2.7, the representation κ is a groupoid representation of F (G), thus

it is obtained through some completion of Cc(G) [Exe08, Theorem 13.3]. Then ‖κ(g)‖=
‖π(g)‖B(L2(X,µ))6 ‖π(g)‖λ= ‖πλ(g)‖, where the middle inequality follows from the fact that

the reduced norm and maximal norm on Cc(G) agree. Thus πκ ≺ πλ.

(iii) follows from (ii) and the fact that C∗r (G) is a simple C∗-algebra when G is minimal. �

To show (i) b) and c) we use Mackey’s criterion for irreducibility and disjointness of

quasi-regular representations in terms of commensurators of subgroups and the notion of

quasi-conjugacy.

Definition 3.2. Recall that H,K < G are commensurable if H ∩K has finite index in

H and K and are quasi-conjugate if Hg := gHg−1 is commensurate with K for some g ∈ G.

the commensurator is defined, for H 6 G, as:

CommH(G) := {g ∈ G | H ∩Hg has finite index in H and Hg}

Let us recall Mackey’s criterion:
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Theorem 3.3 ([Mac76, Corollary 7]). Let G be a countable discrete group, H, K be

subgroups of G.

(i) The quasi-regular representation ρG/H is irreducible if and only if CommG(H) = H.

(ii) The quasi-regular representations ρG/H and ρG/K are unitarily equivalent if and

only if H and K are quasi-conjugate in G.

�

Definition 3.4. Let U ⊆ G(0) be clopen. The rigid stabiliser F (G)(U) of U is the subgroup

of F (G) consisting of all elements which act trivially on G(0) \ U .

The following technical lemma will be used in the sequel.

Lemma 3.5. Let G be a minimal groupoid of germs. Then

(i) each rigid stabiliser F (G)(U) is isomorphic to the full group F (G|U ) of the restriction

of G to U .

(ii) for every pair of non-empty clopen subsets U, V 6= G(0) and every point x ∈ V there

exists a g ∈ F (G) such that x ∈ g(U) ∩ V (in particular, g(U) ∩ V 6= ∅).

Proof. To show (i), we observe that for every non-empty clopen U ⊂ G(0), the restriction

groupoid G|U is also a groupoid of germs, and the rigid stabilisers F (G)(U) are precisely the

groups F (G|U ) extended trivially on the complement of U . By [BG00, Lemma 3.1], these

contain arbitrarily long finite orbits, thus F (G)(U) is infinite.

For (ii): Notice that due to the minimality of the groupoid, for every non-empty clopen

U , the union
⋃
g∈F (G) g(U) is equal to G(0), thus one of them contains x. This proves (ii). �

The following Lemmas are modifications of the work of Bartholdi–Grigorchuk [BG00]

and Dudko–Grigochuk [DG15] into the setting of full groups.

Lemma 3.6. Let G be a minimal groupoid of germs, Γ = F (G) its topological full group,

x ∈ G(0) and Sx = Stab(x) < Γ. Then CommΓ(Sx) = Sx.

Proof. Let g ∈ Γ \ Sx. We will show the subgroup Sgx ∩ Sx has infinite index in Sgx by

showing that the orbit Sgx · x is infinite.

First we observe that as the base space is Hausdorff and totally disconnected, there

is a clopen neighbourhood U of x such that g(U) ∩ U = ∅. Now (Sgx)(U) = F (G)(U) since

g(U) ⊂ G(0)\U by assumption, wherefore any element of F (G) that fixes G(0)\U pointwise must

fix g(U) pointwise, thus belonging to Sgx = Sgx. Hence we have (Sx∩Sgx)(U) = Sx∩F (G)(U) =

(Sx)(U).

The orbit of F (G)(U) · x is infinite by Lemma 3.5 (i) and minimality of the resctriction

groupoid. As moreover F (G)(U) 6 Sgx, the orbit Sgx · x also follows infinite, which concludes

the proof. �
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Lemma 3.7. If x, y ∈ X belong to distinct G-orbits, then Sx and Sy are not quasi-conjugate

in G.

Proof. Our goal is to show that Sxy and Syx are infinite, which is equivalent to quasi-

conjugacy after replacing x by gx for some appropriate g. This follows from the definition

3.2.

Let {Wi}i∈N be a nested family of neighbourhoods of x with ∩iWi = {x}. Then, pick an i

large enough such that y 6∈Wi, and find a clopen neighbourhood V 3 y such that V ∩Wi = ∅
(which can be done because X is regular).

Now we will make repeated use of Lemma 3.5 (ii) to complete the proof. Let h ∈ F (G)Wi

be some element that is not trivial, and then for each j ≥ i, find a kj such that kj(supp(h))∩Wj

contains x, and is thus not empty. Let Vj denote k−1
j (kj(supp(h) ∩Wj).

Set, for each j, Zj = Wj+1 \Wj , which is clopen as all the Wj are. Then again, apply

Lemma 3.5 (ii) to obtain a zj such that zj(Zj)∩h(Vj) is not empty and contains hk−1
j x. Then

the elements z−1
j hk−1

j does not stabilise x (so it is not trivial), belongs to F (G)Wi (and thus

Sy, since y 6∈Wi) and maps x into Zj .

Note that for each j, l ∈ N, the sets Zj and Zl have empty intersection, so the points

z−1
j hk−1

j x are all distinct, and this provides infinitely many distinct points in the orbit Syx.

By symmetry, we can construct an infinite subset of the orbit Sxy. �

Now, parts (i) b), c) of Theorem 3.1 follow from Mackey’s criterion directly.

4. Amenability and C∗-simplicity of F (G)

4.1. Invariant means and amenability.

Definition 4.1. Let S be a Boolean inverse semigroup (such as Ga). Then S has an

invariant mean if there is a function µ : E(S)→ [0,∞) such that:

(i) for any s ∈ S, we have that µ(s∗s) = µ(ss∗),

(ii) if e and f are orthogonal idempotents, then µ(e ∨ f) = µ(e) + µ(f).

A mean µ is normalised at e ∈ E(S) if µ(e) = 1. By convention, if we don’t mention any

normalisation then we suppose µ(1) = 1, and faithful if µ(e) = 0 implies e = 0.

The existence of invariant means on Boolean inverse monoids is investigated by Kudryavtseva–

Lawson–Lenz–Resende in [KLLR16], and we will go into detail into the ideas in that work

in the next section. Additionally in the context of an ample groupoid G, Starling [Sta16]

addressed the existence of invariant means on Ga in the context of both invariant measures

on the base space of G and traces on the reduced C∗-algebra C∗r (G).

Theorem 4.2. Suppose G is an ample Hausdorff étale groupoid, then the following sets

are in bijection:

• IM(G) := {µ ∈ Prob(G(0)) | µ(s(U)) = µ(r(U)) ∀U ∈ Ga}
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• M(Ga) := {m | m a mean on E(Ga)}.
• T (C∗r (G)) = {traces on C∗r (G)}.

However, asking that the groupoid G preserves a measure on its own base space G(0) is not

the only possible notion of amenability one could consider – the other is topological amenability

[ADR00]. We now relate the existence of an invariant mean on Ga to the amenability of F (G)

in the minimal case, partly addressing Remark 2.25 in [KLLR16].

Theorem 4.3. Let G be a minimal ample Hausdorff étale groupoid of germs. Then F (G)

is amenable if and only if the following three conditions are satisfied:

(i) Ga admits an invariant mean,

(ii) G is topologically amenable and

(iii) the stabiliser F (G)U is amenable for each clopen subset U ⊂ G(0).

Proof. Suppose F (G) is amenable, then it is immediate that (iii) holds, since subgroups

of amenable groups are amenable. To conclude (ii), we appeal to minimality: as G minimal,

we can apply Lemma 1.12 to conclude that G = Germs(F (G) y G(0)) is a groupoid quo-

tient of F (G) y G(0). Since F (G) is amenable, the transformation groupoid F (G) y G(0)

is topologically amenable. By applying Proposition 5.1.2 from [ADR00], which states that

topological amenability is groupoid extension closed, we can conclude that G is topologically

amenable. Finally, i) is Proposition 2.24 in [KLLR16] (which was the original motivation

for considering this problem).

We now show the other direction by supposing conditions (i), (ii) and (iii). We will appeal

to representation theory to conclude the result. We analyse groupoid representations of F (G):

the first step is to use group to inverse semigroup induction to understand the natural groupoid

representation in C∗r (G), and the second step involves studying the Koopman representation

of F (G). We combine these using Theorem 3.1 using assumption ii).

Let π := ResG
a

F (G) λGa be the representation of F (G) obtained by completing CF (G) in

C∗r (Ga). By Proposition 2.10 π̃ is weakly equivalent to ⊕UλF (G)/F (GU ). However, since each

F (G)U is amenable, each representation λF (G)/F (GU ) is weakly contained in the left regular

representation λF (G), so we know that π is weakly equivalent to λF (G).

Consider the groupoid representation πλ of F (G) in C∗r (G). This representation πλ is

weakly contained in π, since the algebraic map:

CGa → Cc(G)

extends surjectively to reduced completions, so for any g ∈ F (G), there is an inequality of

norms ‖πλ(g)‖≤ ‖π(g)‖. Appealing to a result of Dixmier (here referenced as Theorem F.4.4

from Bekka–de la Harpe–Valette [BdlHV08]) this is equivalent to weak containment of πλ

in π.

The second step is to analyse the Koopman representation of F (G), which is also a

groupoid representation by Lemma 2.7. As Ga admits an invariant mean, G admits an invariant
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measure by Corollary 4.12 in [Sta16]. Note that this measure is automatically F (G)-invariant,

and so by Theorem 5.7 in [Bek16], the representation πκ has almost invariant vectors; this

means exactly that 1F (G) is weakly contained in πκ.

Since G is topologically amenable, we can apply part (iii) of Theorem 3.1 to obtain the

following chain of weak containments and equivalences:

1F (G) ≺ πκ ∼ πλ ≺ π ∼ λF (G).

Thus F (G) is amenable (since weakly containment of the trivial representation in the left

regular representation is a characterisation). �

We remark that it is possible for F (G) to be non-amenable, whilst Ga admits an invariant

mean – due to results of Starling [Sta16] and Kerr–Nowak [KN12], it is the case for any

residually finite action of a free group (or more generally, an action of a non-amenable group

preserving a probability measure on the Cantor set).

This also connects with the work of Haagerup–Olesen [HKO16] part of which is concerned

with C∗-simplicty of Thompson’s group T and the amenability of F .

Lemma 4.4. Let G be a minimal ample étale groupoid with Cantor set base space X.

Then the representation π : G → Cc(G) does not extend faithfully to CG for any subgroup

of F (G) with non-trivial rigid stabilisers. Thus it is not injective for any faithful groupoid

representation of G.

Proof. Note that by minimality, for every clopen subset U ⊂ X, the subgroup F (G|U )

is infinite - so choose a partition of X into U and U c, and then consider g1 ∈ F (G|U ) and

g2 ∈ F (G|Uc). These elements are faithfully represented in Cc(G) via the construction at the

beginning of section 2.4, and satisfy the formula:

1 + g1g2 = g1 + g2.

Thus, the element a = g1g2 − g1 − g2 + 1 = 0 in any faithful groupoid representation of F (G)

extended linearly to CF (G). �

Theorem 4.5. Let G be a minimal ample étale groupoid of germs with Cantor set base

space X. If the stabiliser F (G)U is amenable for every clopen subset U , then the group F (G)

is not C∗-simple.

Proof. This uses part of the argument for Theorem 4.5, but we repeat it here. Let

π := ResG
a

F (G) λGa be the representation of F (G) obtained by completing CF (G) in C∗r (Ga).

By Proposition 2.10 π̃ is weakly equivalent to ⊕UλF (G)/F (GU ). However, since each F (G)U is

amenable, each representation λF (G)/F (GU ) is weakly contained in the left regular representa-

tion λF (G) (by induction), so we know that the groupoid representation πλ is weakly contained

in λF (G). However, the representation πλ has an algebraic kernel by Lemma 4.4, so C∗πλ(F (G)

is a proper quotient of C∗r (F (G)), which completes the proof. �
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This theorem can be regarded as a conceptualisation of the ideas of Haagerup–Oleson

[HKO16], which appears also in the work of Nekrasheyvch [Nek04] and Birget [Bir04].
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CHAPTER 10

Maximal amenable subgroups of arithmetic groups

1. Preliminaries

The main goal of this work is to study maximal amenable subgroups of S-arithmetic

groups. Already from the definition of an S-arithmetic group it’s clear that here it is indis-

pensable to study groups up to commensurability, because an arithmetic group is defined up

to commensurability. Passing to a commensurable group, while preserving amenability, can

interfere with maximality: a finite group Z/6 is maximal amenable in SL2(Z). Therefore,

we’ll first study maximal amenable commensurability classes, whose representatives we’ll call

commensurably maximal amenable subgroups.

We primarily follow the notation and conventions of [Mar91], occasionally using some

results on algebraic groups from other sources. In particular, we freely use results on

• algebraic groups, tori and parabolic subgroups [Mar91, 0.20–0.29]

• local and global fields [Mar91, 0.31–0.34]

• algebraic groups over local and global fields and their arithmetic subgroups [Mar91,

I.1–I.3]

Let G be a semisimple algebraic group defined over a global field K of characteristic

zero, R the set of (equivalence classes of) its nonequivalent valuations, R∞ ⊂ R the set of

Archimedean valuations; let T ⊂ R be the subset of valuations for which G is anisotropic.

Fix a subset S ⊂ R containing R∞ \ T and let K(S) be the ring of S-integral elements of

K.For a K-subgroup H < GLn, we set H(K(S)) := H ∩GLn(K(S)).

In view of [Mar91, Lemma I.3.1.1] if we change the K-embedding H < GLn, the group

H(K(S)) changes to a commensurable one. In view of this the following notion does not

depend on the choice of the K-embedding H < GLn:

Definition 1.1. A subgroup of H is called S-arithmetic if it is commensurable to H(K(S)).

We’ll often need to neglect a passage to a finite index sub/overgroup, so the statements

as stated now have to be taken up to commensurability; we’ll use ≺ and ' for inclusions up

to finite index resp. commensurability.

2. Classification of commensurably maximal amenable subgroups

Throughout this section, we’ll fix a reductive K-subgroup G < GLn and set Γ :=

G(K(S)).

177
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Lemma 2.1. Let Λ0 < Γ be amenable. Then, there is a finite index subgroup Λ < Λ0 such

that

(i) Λu = {g ∈ Λ | g unipotent} is a normal subgroup of Λ and

(ii) [Λ,Λ] 6 Λu; in particular, if Λu = 1, then Λ is abelian.

Proof. In view of the Tits alternative [Tit72], we can assume Λ to be solvable. Therefore

it is contained in a Borel subgroup B < G [Bor12, Corollary 11.17 (ii)]. Then Λu = {g ∈
Λ | g unipotent} is a normal subgroup of Λ. The second statement follows because [B,B] is

unipotent by the Lie–Kolchin theorem [Bor12, Corollary 10.5].

�

Proposition 2.2. Let Λ < Γ be commensurably maximal amenable. The following prop-

erties are equivalent:

(i) Λ contains a unipotent element,

(ii) there is a proper parabolic subgroup Q < G defined over Q such that Λ ≺ Q(K(S))

and Λu ' U(K(S)).

Proof. Let’s prove that (ii) implies (i). Suppose that Λ ⊆ Q(K(S)) but Λu = 1.

Consider the unipotent radical R := Ru(Q); it is defined over K. Then the group generated by

Λ and R(K(S)) is still amenable, but contains Λ with infinite index, contradicting maximality.

This finishes the proof of (ii) ⇒ (i).

To show that (i) implies (ii), suppose that Λu 6= 1. Consider U = Λu, the Zariski closure

of Λu; it is a unipotent K-subgroup of G by a result of Margulis [Zim84, Proposition 3.1.18].

Consider its normaliser Q := NG(U), it’s also defined over K. As Λ normalizes Λu and is

contained in Γ = G(K(S)), Λ < Q(K(S)).

We now claim that Q is parabolic. To this end, we have to show that U is equal to the

unipotent radical R := Ru(Q) of Q [Hum75, Corollary 30.3.B]. By (the proof of) Borel–Tits

theorem [MT11, Theorem 17.10], U 6 R. If now U 6= R, then the group Λ1 := R(K(S)) < Γ

is nilpotent and contains Λu as a subgroup of infinite index. Passing to a subgroup of finite

index of Λ if necessary, we may assume that Λ normalises Λ1. Then the group Λ′ := 〈Λ,Λ1〉 <
Γ is a quotient of the amenable subgroup ΛnΛ1 and therefore amenable; however, it contains

Λ with infinite index, contradicting maximality of the latter. Thus U = Ru(Q) and therefore

Q is parabolic. Now, U(K(S)) is normalised by Q(K(S)), so by maximality Λu ' U(K(S)).

This finishes the proof of (i) ⇒ (ii). �

Let Λ < Q(K(S)) be commensurably maximal amenable; by the previous proposition

we can assume that Λu = U(K(S)). If Q = L n U is the Levi decomposition of Q, then

Q(K(S)) has finite index in U(K(S))oL(K(S)) by [Mar91, Lemma I.3.1.1 (iv)]. Therefore

Λ is commensurable to U(K(S)) o Λ′, where Λ′ 6 L(K(S)) is commensurably maximal

amenable because Λ is. By construction, Λ′ does not contain unipotent elements. Therefore
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the previous proposition reduces the study of commensurably maximal amenable subgroups

to the abelian case.

Proposition 2.3. Let Λ < Γ be abelian and commensurably maximal amenable such that

T = Λ is connected and let L = CG(T) = CG(Λ) be the centraliser of Λ. Then

(i) rkK L = 0,

(ii) for every v ∈ S, rkKv L = rkKv T.

Proof. T is a K-torus in G by [Zim84, Proposition 3.1.8], and thus L = CG(T) is a

Levi subgroup of G defined over K [MT11, Proposition 12.10].

If rkK L > 0, then L contains a non-trivial K-torus S. Now, [Mar91, Proposition I.1.1.3]

provides the existence of a unipotent K-subgroup U < G which is normalised by CG(S).

But then Λ < CG(S) is contained in the Levi subgroup of the parabolic subgroup which

normalises U(K(S)); hence Λ and U(K(S)) generate an amenable subgroup in which Λ has

infinite index, contradicting maximality. This shows that rkK L = 0, proving (i).

As Λ < Γ is commensurably maximal amenable, the inclusion Λ < L(K(S)) has to be of

finite index. Decomposing L ' T×L′, we therefore obtain that L′(K(S)) must be finite. As

it is a lattice in L′S [Mar91, Theorem I.3.2.5], the latter must be compact which implies (ii).

�

Collecting the above considerations together, we now have

Theorem 2.4. Let G < GLn be a reductive algebraic group defined over a global field

K of characteristic zero, S ⊂ R a subset of valuations of K, Γ := G(K(S)). A subgroup

Λ < Γ is commensurably maximal amenable if and only if there exists a K-parabolic subgroup

Q 6 G such that Λ is commensurable to

ΛTnU = (TnU)(K(S)) ' T(K(S))nU(K(S)),

where U = Ru(Q) is the unipotent radical of Q and T < L′ is a K-anisotropic maximal torus

in the Levi subgroup L of Q. Moreover, for every v ∈ S, rkKv L = rkKv T.

3. Toral subgroups

From the previous considerations we see that every commensurably maximal amenable

subgroup decomposes into the unipotent part and a part associated to a maximal torus in a

reductive group. This motivates the following definition.

Definition 3.1. A subgroup Λ < Γ is called toral if it is commensurable to T(K(S)),

where T is a K-anisotropic maximal torus in G.

Lemma 3.2. Let Λ < Γ be a toral maximal amenable subgroup with corresponding torus

T. Then T(K(S)) is a normal subgroup of Λ. Moreover, the quotient Λ/T(K(S)) embeds

into the K-points of the Weyl group W (T,G)(K) = NG(T)(K)/CG(T)(K) of T.
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Proof. Let Λ0 := Λ∩T(K(S)); by assumption, it has finite index in both Λ and T(K(S)).

Consider g ∈ Γ. We claim that if g /∈ NG(T), then the group Γ0 generated by g and Λ0 is not

amenable. Supposing otherwise, we first observe that since Λ is toral, it is commensurably

maximal amenable, so no finite index subgroup of Λ can normalize a unipotent element and

therefore Γ0 has no unipotent elements. Hence Γ0 is virtually abelian wherefore its Zariski

closure has T as the connected component of identity; the lemma follows. �

Lemma 3.3. Let v ∈ S, k = Kv and Λ < Γ be a toral maximal amenable subgroup with

corresponding torus T. Let Ts be the k-split part of T, M = CG(Ts) and let P be the

corresponding k-parabolic subgroup of G. Consider the action G(k) y G(k)/P(k).

Then FixT(k)(G(k)/P(k)) = W (Ts,G)(k)[P(k)].

Proof. Take an element g ∈ G(k) satisfying g−1T(k)g ⊂ P(k). Then there exists a

unipotent element u ∈ Ru(P)(k) such that T′ := u−1g−1Tgu 6M; thus, T′ commutes with

Ts. Consider now L := CG(T) 6M and L′ := u−1g−1Lgu = CG(T′); in particular, Ts 6 L′.

Now, by Proposition 2.3, rkk L = rkk T = dim Ts = rkk T′ = rkk L′. Thus, Ts is a maximal

k-split torus of L′ which by construction and rank properties of L′ is unique and central; thus,

T′s = Ts. Now, gu ∈ NG(Ts)(k); as u ∈ P(k), the claim follows.

�

We recall the definition of singular subgroups from [BC15].

Definition 3.4. Let Γ be a discrete group. An amenable subgroup Λ < Γ is called

singular if there exists a compact Γ-space X such that for every Λ-invariant probability

measure µ on X and for every g ∈ Γ \ Λ we have g∗µ ⊥ µ.

Note that singularity is a strenghtening of maximal amenability. The main application of

singularity is the following theorem [BC15, Theorem A]:

Theorem 3.5. Let Γ be a countable discrete group and Λ < Γ be an amenable singular

subgroup. Then for any trace preserving action Γ y (Q, τ) on a finite amenable von Neumann

algebra, Qo Λ is maximal amenable inside Qo Γ.

Proposition 3.6. A toral maximal amenable subgroup Λ is singular.

Proof. Let

X =
∏
v∈S

G(Kv)/Pv(Kv),

where Pv is the parabolic subgroup whose Levi subgroup is the centraliser CG(Tv,s) of the

Kv-split part of T as in Lemma 3.3. We will show that Λ is singular in Γ with respect to X.

First we observe that the action of Γ on X is algebraic and in particular smooth and thus

every probability measure preserved by Λ is supported on a finite orbit. Also observe that as

T is connected, every finite subset of X invariant by T(K(S)) is actually pointwise invariant.
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Let γ ∈ Γ and assume that γ FixT(X)∩FixT(X) is not empty. Without loss of generality,

we can assume that
∏
v∈S γPv(Kv) ∈ FixT(X), so γ−1T(Kv)γ ⊂ Pv(Kv) for all v ∈ S. But by

the Lemma 3.3, the Kv-parabolic in which the torus γ−1Tγ lies is uniquely determined by it

up to the Weyl group of Tv,s. Therefore γ−1Tv,sγ = Tv,s for all v ∈ S, so γ ∈ NG(T)(K(S));

by Lemma 3.2, γ ∈ Λ.

�

Theorem 3.7. A commensurably maximal amenable subgroup Λ ' (TnU)(K(S)) whose

toral part T(K(S)) is maximal amenable in L(K(S)), where L is the corresponding Levi

subgroup, is singular.

Sketch of proof. Use the Kv-parabolic subgroup P whose central torus is generated

by Z(L) and T
(s)
v and prove that the action of (ToU)(Kv) on G(Kv)/P(Kv) has only “Weyl

many” fixed points. This is achieved by reducing to the toral case as follows. Take g ∈ G(Kv)

such that g(T nU)(Kv)g
−1 ⊂ P(Kv). First, observing that P 6 Q, we get the following:

if U 6 gPg−1 6 gQg−1, then U 6 gQg−1 ∩ Q. Now, [BT65, Corollaire 4.5] ensures that

gQg−1 = Q and as Q is self-normalizing, g ∈ Q; in particular, g−1Ug = U, and hence

U < P. The rest follows as in Lemma 3.3. �

Combined with Theorem 3.5, this provides a vast class of new examples of maximal

amenable inclusions of von Neumann algebras.

4. Constructing toral subgroups

In this section we provide a very explicit method for completely describing toral max-

imal amenable subgrops of SL(n,Z), because the Q-anisotropic tori there have a very nice

description: every such torus corresponds to a number field E with [E : Q] = n.

Proposition 4.1. Let E be a number field of degree n over Q. Take an integral basis of

E over Q and consider the corresponding multiplication representation µ:E → Mn(Q). Let

E×1 := {α ∈ E | N(α) = 1} be the subset of norm 1 elements. Then µ(E×1 ) is the set of

Q-points of a Q-anisotropic torus T in SLn, and every Q-anisotropic torus in SLn arises in

this way.

Moreover, in this case T(Z) = µ(O×1 ), where O is the ring of integers of E, and the image

of the integral points of the normaliser NSLn(T)(Z) in the Weyl group is isomorphic to the

automorphism group Aut(E/Q).

Proof. The first assertion is well-known, see, for instance [PR13, Section 9]. Now, every

automorphism σ ∈ Aut(E/Q) is represented by an integral matrix in the integral basis of E

and therefore correponds to an element of NSLn(T)(Z). On the other hand, every element

in the normaliser clearly induces an automorphism of E by conjugating the image of the

embedding µ:E ↪→Mn(Q); the assertion follows. �
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Example 4.2. Taking the number field K = Q[x]/〈x3 + x − 1〉, we obtain a maximal

amenable subgroup of SL(3,Z) isomorphic to Z generated by

g =

0 0 1

1 0 −1

0 1 0

 .

There are no integral elements in the Weyl group because Aut(E/Q) = {1}.the Galois group

is isomorphic to S3.

Example 4.3. Consider the torus in SL(n) associated to the number field K = Q[x]/〈x4−
8x3+20x2−16x+1〉. Its integer points are generated by the central element c = diag(−1,−1,−1,−1)

and

g1 =


0 −1 −2 −4

8 16 31 62

−6 −12 −24 −49

1 2 4 8

 , g2 =


−1 −1 −2 −5

9 15 31 78

−6 −11 −25 −69

1 2 5 15

 , g3 =


−4 −1 −1 −1

13 12 15 15

−7 −7 −8 −5

1 1 1 0

 .

Here the Galois group Gal(K/Q) ∼= Z/2× Z/2, and there is an integral element

w =


1 0 0 0

−16 −1 −4 −16

16 0 1 8

−4 0 0 −1


which is nontrivial in the Weyl group.

The subject of our forthcoming research which is currently in progress is the explicit

algorithmic construction of maximal amenable subgroups in all classical arithmetic groups

(using the computer algebra system Magma to desribe generators of toral subgroups and

their unipotent complements; in fact, both examples above were constructed using computer

algebra systems).
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