
Sparse Similarity and Network

Navigability for Markov Clustering

Enhancement

DISSERTATION

to achieve the academic degree

Doktoringenieur (Dr.-Ing.)

Technische Universität Dresden

Faculty of Computer Science

Presented by

Claudio Patricio Durán Cancino

Dipl. Bioinformatics Engineer

1st Supervisor: Prof. Dr. Michael Schroeder (Technische Universität Dresden)

2nd Supervisor: Prof. Dr.-Ing. Carlo Vittorio Cannistraci (Former: Technische

Universität Dresden. Current: Tsinghua University)

Dresden, 2021

○$ This work was principally funded by the Deutscher Akademischer

Austauschdienst (DAAD) promotion program number 57299294.

I

ACKNOWLEDGEMENTS

First, I want to thank my supervisor Dr. Carlo Vittorio Cannistraci to

trust me to become one of his pupils. Without his tremendous support

during my entire period as a Ph.D. student, I could not have achieved

such a fruitful Ph.D. His constants words of advice and suggestions,

not only about work but also about life, have grown in me and helped

me pay my way to a luminous future.

Many thanks to Prof. Dr. Michael Schroeder for his support and critical

advice, which undoubtedly helped me improve. His wise words always

opened a box in me, whose sides are made of intriguing questions.

I want to thank my colleagues and friends, who accompanied me

during the Ph.D. period, Aldo, Alessandro, Alberto, and Ilyes. And also

to all my friends around the world, who made this experience easier.

I want to thank my biophysics professor from UTALCA, Dr. Wendy

Gonzalez, who encouraged me to apply for a DAAD scholarship, travel

a few kilometers to another continent, and learn some German.

A big thank you to my parents, who have always encouraged me and

believed in me. To my siblings, Ricardo, Javiera, Carolina, Amparo,

and Gonzalo, and my whole family for always having my back.

And last but not least, my partner of life, Melissa Adasme. We

embarked on this trip together, and during the whole process, she has

helped and supported me. She will surely continue doing so in the

projects ahead of us together with our small family conformed by her,

our dog Becks and me.

II

III

PUBLICATIONS

Included in this dissertation

1. Nonlinear machine learning pattern recognition and bacteria-

metabolite multilayer network analysis of perturbed gastric

microbiome.

Claudio Durán, Sara Ciucci, Alessandra Palladini, et al.

Nature Communications (2021).

Contributions: C. Durán is the main contributor to this publication.

He realized the majority of the unsupervised data analysis,

including the programming of the novel algorithms PSI and MC-

MCL. He realized the figures and tables, and wrote part of the

article.

Thesis: Chapter 3 is based on this publication.

2. Geometrical inspired pre-weighting enhances Markov clustering

community detection in complex networks.

Claudio Durán, Alessandro Muscoloni & Carlo Vittorio

Cannistraci.

Applied Network Science (2021).

Contributions: C. Durán is the main contributor to this publication.

He realized the data analysis pipeline, the figures and tables, and

wrote the majority of the article.

Thesis: Chapters 6 and 9 are based on this publication.

3. Nonlinear Markov clustering by minimum curvilinear sparse

similarity.

Claudio Durán, Aldo Acevedo, Sara Ciucci, Alessandro

Muscoloni & Carlo Vittorio Cannistraci.

ArXiv (2019) (Under Review in IEEE Access).

Contributions: C. Durán is the main contributor to this publication.

He realized the experiment analysis, implemented the code the

IV

presented algorithm, realized the figures and tables and wrote most

of the article.

Thesis: Chapters 4, 7 and 10 are principally based on this

publication.

Excluded from this dissertation (off-topic)

Peer reviewed

4. Use of steroid profiling combined with machine learning for

identification and subtype classification in primary aldosteronism.

Graeme Eisenhofer, Claudio Durán, Carlo Vittorio Cannistraci, et

al.

JAMA network open (2020).

Contributions: C. Durán analyzed the dataset with a machine

learning pipeline, realized part of the statistical analysis and the

figures pertinent to the machine learning topic. He wrote part of

the article.

5. Steroid metabolomics: machine learning and multidimensional

diagnostics for adrenal cortical tumors, hyperplasias, and related

disorders.

Graeme Eisenhofer, Claudio Durán, Triantafyllos Chavakis, et al.

Current Opinion in Endocrine and Metabolic Research (2019).

Contributions: C. Durán realized the machine learning pipeline

figure and wrote the machine learning section of the article.

6. Cell mechanics based computational classification of red blood

cells via unsupervised machine intelligence applied to morpho-

rheological markers.

Yan Ge, Philipp Rosenddahl, Claudio Durán, et al.

IEEE/ACM Transactions on Computational Biology and

Bioinformatics (2019).

Contributions: C. Durán implemented and realized the supervised

machine learning section. He wrote the pertinent section in the

article.

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

V

7. Pioneering topological methods for network-based drug–target

prediction by exploiting a brain-network self-organization theory.

Claudio Durán, Simone Daminelli, Josephine M. Thomas, et al.

Briefings in bioinformatics (2018).

Contributions: C. Durán is the main contributor to this publication.

He realized the analyses of the LCP-based, matrix factorization

and supervised algorithms for bipartite link prediction in all

datasets. He realized the majority of the figures and tables, and

wrote part of the article.

8. Lipidomics in major depressive disorder.

Andreas Walther, Carlo Vittorio Cannistraci, Kai Simons, Claudio

Durán, et al.

Frontiers in psychiatry (2018).

Contributions: C. Durán had intellectual discussions with the main

author of the manuscript. He also worked and added comments on

the first draft of the article.

9. Enlightening discriminative network functional modules behind

Principal Component Analysis separation in differential-omic

science studies.

Sara Ciucci, Yan Ge, Claudio Durán, et al.

Nature Scientific reports (2017).

Contributions: C. Durán is first shared author with Yan Ge and

Sara Ciucci. He implemented the majority of the automatic code

released upon article publication both in MATLAB and R

versions. He corrected and gave input for the article drafts.

Archive

10. Measuring group-separability in geometrical space for evaluation

of pattern recognition and embedding algorithms.

Aldo Acevedo, Sara Ciucci, Ming-Ju Kuo, , Claudio Durán &

Carlo Vittorio Cannistraci.

ArXiv (2019) (Under review in IEEE Access).

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

VI

Contributions: C. Durán realized the basic MATLAB code from

this new concept of separability. He helped with the data analysis

and with the generation of the figures as well as for concept-related

aspect of the article. He wrote part of the article and corrected the

general draft.

11. LIPEA: lipid pathway enrichment analysis.

Aldo Acevedo, Claudio Durán, Sara Ciucci, et al.

BioRxiv (2018)

Contributions: C. Durán implemented the source code of the

algorithm. He helped in the implementation of the lipid mapping,

gave suggestions for the LIPEA webpage and wrote part of the

article.

javascript:void(0)

VII

ABSTRACT

Markov clustering (MCL) is an effective unsupervised pattern

recognition algorithm for data clustering in high-dimensional feature

space that simulates stochastic flows on a network of sample

similarities to detect the structural organization of clusters in the data.

However, it presents two main drawbacks: (1) its community detection

performance in complex networks has been demonstrating results far

from the state-of-the-art methods such as Infomap and Louvain, and

(2) it has never been generalized to deal with data nonlinearity.

In this work both aspects, although closely related, are taken as

separated issues and addressed as such.

Regarding the community detection, field under the network science

ceiling, the crucial issue is to convert the unweighted network topology

into a ‘smart enough’ pre-weighted connectivity that adequately steers

the stochastic flow procedure behind Markov clustering. Here a

conceptual innovation is introduced and discussed focusing on how to

leverage network latent geometry notions in order to design similarity

measures for pre-weighting the adjacency matrix used in Markov

clustering community detection. The results demonstrate that the

proposed strategy improves Markov clustering significantly, to the

extent that it is often close to the performance of current state-of-the-

art methods for community detection. These findings emerge

considering both synthetic ‘realistic’ networks (with known ground-

truth communities) and real networks (with community metadata),

even when the real network connectivity is corrupted by noise

artificially induced by missing or spurious links.

VIII

Regarding the nonlinearity aspect, the development of algorithms for

unsupervised pattern recognition by nonlinear clustering is a notable

problem in data science. Minimum Curvilinearity (MC) is a principle

that approximates nonlinear sample distances in the high-dimensional

feature space by curvilinear distances, which are computed as

transversal paths over their minimum spanning tree, and then stored in

a kernel. Here, a nonlinear MCL algorithm termed MC-MCL is

proposed, which is the first nonlinear kernel extension of MCL and

exploits Minimum Curvilinearity to enhance the performance of MCL

in real and synthetic high-dimensional data with underlying nonlinear

patterns. Furthermore, improvements in the design of the so-called

MC-kernel by applying base modifications to better approximate the

data hidden geometry have been evaluated with positive outcomes.

Thus, different nonlinear MCL versions are compared with baseline

and state-of-art clustering methods, including DBSCAN, K-means,

affinity propagation, density peaks, and deep-clustering. As result, the

design of a suitable nonlinear kernel provides a valuable framework to

estimate nonlinear distances when its kernel is applied in combination

with MCL. Indeed, nonlinear-MCL variants overcome classical MCL

and even state-of-art clustering algorithms in different nonlinear

datasets.

This dissertation discusses the enhancements and the generalized

understanding of how network geometry plays a fundamental role in

designing algorithms based on network navigability.

IX

CONTENTS
ACKNOWLEDGEMENTS ... I

PUBLICATIONS ... III

Included in this dissertation .. III

Excluded from this dissertation (off-topic) IV

Peer reviewed ... IV

Archive .. V

ABSTRACT .. VII

Part I. INTRODUCTION ... 1

1. Clustering .. 1

1.1. The era of big data .. 2

1.2. Types of clustering.. 2

2. Community detection .. 16

2.1. Infomap ... 17

2.2. Louvain ... 19

3. Motivation ... 20

Part II. ENHANCED MARKOV CLUSTERING 25

4. Markov clustering .. 25

4.1. Enforcing network sparsity in Markov clustering 27

5. Network navigability ... 29

6. Latent geometry inspired Markov clustering 30

X

6.1. Software availability ... 33

7. Minimum curvilinear Markov clustering 33

7.1. Minimum curvilinearity .. 33

7.2. From a linear to a nonlinear approach 34

7.3. Minimum curvilinear Markov clustering multi-MST

variants ... 38

7.4. Isomap-inspired Markov clustering 44

7.5. Nonlinear MCL time complexities 46

7.6. Software availability ... 48

Part III. CASE STUDIES .. 49

8. Evaluation framework .. 49

9. Community detection analysis ... 51

9.1. Real network datasets .. 52

9.2. Synthetic networks generated by the nPSO model 55

9.3. Real network analysis results 56

9.4. Synthetic network analysis results 59

9.5. Advantages and limitations of LGI-MCL 63

10. Clustering analysis ... 64

10.1. Clustering case studies and algorithm performance

comparison. ... 65

10.2. General clustering performance – an overview 91

10.3. Advantages and limitations of MC-MCL and isoMCL

 …….. ... 95

Part IV. CONCLUSION ... 97

APPENDIX ... 99

XI

BIBLIOGRAPHY .. 151

1

Part I. INTRODUCTION

This first part will deliver glances about concepts and algorithms

needed to understand the work realized starting from Part II. It will

clarify concepts such as clustering, community detection, and it will

present algorithms related to such strategies from a qualitative and

mathematical perspective. Some notions about their advantages and

limits will be discussed to finalize with the motivation to realize the

here presented work.

1. Clustering

Clustering can be seen as one of the oldest strategies to understand and

to interpret pattern formation in our world: indeed, in daily life, people

express their intelligence also in the action to group objects, items, or

even time-series events in relation to the similarity or dissimilarity

between their features [1]. Specifically, the term Clustering refers to an

unsupervised pattern recognition methodology which, given an

ensemble of objects or data, aims to recognize their organization in

groups and subgroups starting from their features, such as the three

groups detected in Figure 1. Nowadays, in artificial intelligence,

clustering is defined as the automatic and unsupervised identification

of groups of observations that are similar to one another and different

from other groups in a dataset [2]. Indeed, clustering aims mainly to

identify distributions and patterns in the underlying data, generating a

partitioning of a given dataset into different groups called clusters [3].

In this sense, the patterns of the observations that are grouped in the

same cluster should be similar (in the feature space) to each other,

while patterns of observations that result in different clusters should

not.

2

Figure 1. Basic clustering example. Features are given by shapes and colours.

1.1. The era of big data

Nowadays, in the era of Big Data, there is a tremendous amount of

high-dimensional data available due to the progress in storage

procedures, and the ubiquitous growth and exploitation of technologies

that generate high-dimensional datasets; trends that will persist in the

next decades [4]. Reason that evidence the successful employment of

clustering algorithms in diverse areas of applications which comprises,

but are not limited to, image processing [5]–[7], pattern recognition

[8]–[10], market research [11], [12], etc. However, in fields such as

systems biology and molecular medicine, the realization of controlled

experiments that can provide observations or samples to investigate a

scientific hypothesis can be very time-consuming (recruitment of

patients, lab experiments etc.) and also expensive [13]. For such a

reason, in these fields, pilot studies that generate a few samples, in

order to test the validity of a scientific hypothesis before making the

decision to scale to the big numbers, is a frequent practice [13].

Therefore, it is important under this context to account for diverse

algorithms which focus to tackle certain aspects of a data problem.

1.2. Types of clustering

Many clustering strategies have been developed to deal with specific

obstacles that might arise in data, that can be related to their shape

(concave vs non- concave), dimensionality, denseness, between cluster

interaction (linear vs nonlinear), etc. and each of them can be

encapsulated in a clustering category [14]. Although many categories

3

might exist, special attention will be drawn here towards five of them:

partitioning, hierarchical, density-based, graph-based, and deep-based

methods. Note that some categories might enclose another.

1.2.1. Partitioning methods

Clustering methods based on partitioning are characterized by

grouping the data samples into k groups or partitions in the space. The

k groups are usually specified a priori by the user. The quality of the

partitions is iteratively improved by a specific objective function that

the algorithm attempts to maximize or minimize, depending on the

clustering method.

K-means

K-means – introduced as an idea by Steinhaus [15] in 1956 and termed

K-means by MacQueen [16] in 1967 – is a well-known and one of the

oldest data clustering algorithms still widely used due to its simplicity

and effectiveness. K-means’ strategy to find clusters consist of splitting

the data into a set of k desired clusters, defined a priori by the user as

aforementioned. It starts with an initial random partition of the data, to

use consequently an iterative control strategy to optimize the objective

function J: average squared Euclidean distance (1).

𝐽 = ∑ ∑‖𝑥𝑖
(𝑗)

− 𝐶𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

(1)

4

Each cluster is represented by the

gravity center of cluster C. In other

words, it determines k representatives

(centers) by minimizing the objective

function J, then it assigns each

sample 𝑥 to the cluster with its closest

representative (Figure 2). A major

restriction is that the shapes of the

clusters found by this algorithm are

convex (linear data).

1.2.2. Hierarchical methods

Different from partitioning methods,

hierarchical methods do not need as input

the k number of clusters, but it is rather

inferred from a dendrogram (Figure 3), a

tree-based graphical representation of

clusters, which can be constructed from a

distance matrix. The k can be determined

depending on the ‘cut’ applied to the

dendrogram. Generally, there are two types

of approaches for tree realization:

Agglomerative (bottom-up) and divisive

(top-down) [17]. The agglomerative

method starts from the leaves (each single

data sample) to join into couples the closest

samples together. Subsequently continues

to join close groups until it arrives at the root of the dendrogram. On

the contrary, divisive methods start from the root containing the whole

universe of data samples to split it into two nodes afterwards. This

Figure 3. Dendrogram

example in hierarchical

clustering.

Figure 2. Partitioning of three

clusters K-means example. The lines
denote the partitions whilst the

pentagons the respective cluster’s

centers.

5

process is repeated for each new node until the single data samples (or

leaves) are reached.

Single-linkage

An example of an agglomerative hierarchical algorithm is the method

single-linkage [18], [19]. Hierarchical methods are one of the oldest

clustering approaches. Particularly, Single linkage that was already

presented in the 1950s [19]. Single linkage consists of iteratively

joining leaves (in the first iteration) or clusters (in the subsequent

iterations) with the smallest minimum pairwise distance. The output of

this clustering also corresponds to an approximate and weighted

minimum spanning tree (MST; for more details please refer to the

section 1.2.4 Graph-based methods). Between the drawbacks of this

method, the misinterpretation of the dendrogram and closeness

misrepresentation of points in clusters are common [20].

1.2.3. Density-based methods

Similar to the hierarchical methods, density-based algorithms infer the

number of clusters directly from the data. The rationale behind it states

that clusters are formed by data samples in a contiguous region of high

density and separated from the rest of the clusters by regions of lesser

density. Usually, samples in lower density regions are considered as

noise [21].

Density based spatial clustering of applications with noise

Density based spatial clustering of applications with noise (DBSCAN)

- introduced by Ester et al. in 1996 [22]- is one of the most successful

density-based clustering algorithms. It is a method that requires two

density input parameters: MinPts and Eps. If selected any point j in the

space, MinPts is the minimum number of points inside a

neighbourhood (of the selected point j) defined as a circle of radius

Eps. DBSCAN defines as core points all the points that have at least

MinPts points (including itself) in their Eps neighbourhood. If a point

6

is reachable by a core point but does not satisfy the MinPts in its Eps

neighbourhood, it is called a border point. The main idea behind this

algorithm is that a group of points that are mutually reachable through

core points (because they are included in the neighbourhood of radius

Eps of core points) forms a cluster. All points not reachable from core

points and that do not satisfy the MinPts and Eps parameters are

outliers or noise points (Figure 4).

As commented above, this algorithm does not need to input the desired

number of clusters. Instead, it finds them automatically according to

the tuning of the two above mentioned parameters. Nevertheless, the

finding of these correct parameters MinPts and Eps is a nontrivial

problem [23]. Moreover, in datasets with varying densities, DBSCAN

can phase problems to detect meaningful clusters [24].

Figure 4. DBSCAN illustration. A represent core points, B and C represent border

points and N represent an outlier or noise. By Chire - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=17045963.

Density peaks

Density peaks is a relatively recent algorithm proposed by Rodriguez

et al. [25]. The algorithm has its basis in the assumptions that cluster

centers (a.k.a. density peaks) are relatively far away from other cluster

centers, and that they are generally surrounded by points with lower

local density (Figure 5). With this in notion, the primordial step in this

https://commons.wikimedia.org/w/index.php?curid=17045963

7

method is to select the density peaks. This is accomplished by

computing two values: (a) the local density ρ and (b) the distance to

higher density points δ. ρ is calculated for each data point by counting

the elements of its surrounding area given a certain threshold (Figure

5A), and δ is the minimum distance of a point to any other element of

higher density. These two values are latterly employed to construct a

density peak decision graph (Figure 5B) used, as the name suggests, to

select the cluster centers or density peaks. Finally, points are assigned

to the clusters from the closest density peak. An exception can be

evidence in outliers, which present in the decision graph a relatively

high δ but a low ρ.

Figure 5. Density peaks exemplification. (A) 2D data representation. Points are labeled

according to their densities (ρ) in ascending order. (B) Density peaks decision graph.

Points 1 and 10 are selected as the density peaks (centers) of two different clusters.
Points 26 27 and 28 are designated as outliers or noise. Image extracted from [25].

Shortest path-based density peaks

An improvement to this technique was provided in 2019 by Pizzagalli

and colleagues [26]. In this study, the authors argue that one main

drawback of the density peaks algorithm is the strategy to designate the

data points to each cluster after selecting the centers. The fact that the

cluster assignation of all data points is given by their closeness to a

density peak in the Euclidean space (Figure 6A) neglects one of the

principles of density based clustering, which is to uncover successfully

clusters of arbitrary shapes (as in the case of DBSCAN). In this

circumstance, if another large non-globular cluster is close to another

8

globular one, the classical density peaks may assign points of the non-

globular cluster to its neighbor cluster (Figure 6B). Now, Pizzagalli

and colleagues introduced a shortest path strategy for the point-class

member assignation that follows a minimax path-cost function (Figure

6C). This action is translated as following paths with more points but

tinier gaps between points, instead of fewer points and bigger gaps.

Such an approach conserves the density property by correctly detecting

clusters of different shapes (Figure 6D).

Figure 6. Classical density peaks vs shortest path density peaks. (A) Classical cluster

assignation through the Euclidean space. (B) Clustering result of the classical approach.

(C) Cluster assignation through the shortest path. (D) Clustering result of shortest path
approach. Image extracted from [26].

1.2.4. Graph-based methods

This type of algorithms represent data into graphs, where nodes

correspond to the data samples and the edges between nodes

correspond to their relation measured as similarities or distances in the

feature space. The clusters are thus obtained by selecting strongly

interconnected sub-graphs respective to a given criterion. The

advantage of these type of methods relies on the ability to detect

clusters of diverse shapes and sizes (when clearly separated).

9

Affinity Propagation

AP – introduced by Frey et al. in 2007 [27] – is a clustering algorithm

based on a message-passing procedure that takes as input a similarity

value (in general codified as negative distance/dissimilarity values)

between pairs of data points or samples. The messages are propagated

between data points until a high-quality set of exemplars (data points

selected as centers of clusters) and corresponding clusters gradually

appear [27]. The AP algorithm does not take as input the predefined

number of clusters, but requires for each data sample a real number

termed “preference”. Samples with larger preferences are more likely

to be chosen as exemplars to form a cluster. The values of the input

preferences influence the number of identified exemplars (lastly the

number of clusters), but also emerges from the message passing

procedure [27]. If a priori, all samples are equally suitable as

exemplars, the preferences should be set to a common value. This value

can be varied to produce different numbers of clusters. The shared

preference value could be the maximum of the input similarities

(resulting in a large number of clusters) or their minimum (resulting in

a small number of clusters). One drawback of this method, and as it

naturally may come to mind, is the need to specify the preference

values a-priori, which is translated on having a bit of prior knowledge

to select probable exemplars [28]. The algorithm also may fail to

converge into the respective clusters. However, this can be avoided by

setting a maximum number of iterations for message passing if

convergence is never reached.

10

MST-based clustering

Other graph-based clustering methods are based on the minimum

spanning tree (MST). An acyclic subgraph that contains all graph

vertices is known as a spanning tree. If the edges of a graph are

weighted, an MST is the spanning tree with minimum edge-weights

(Figure 7). MST-based clustering strategy focuses on finding clusters

by removing “inconsistent edges” from the MST followed by an

“inconsistent measure” [29]. An example is the Euclidean MST

(EMST) method [30] that, based on an MST whose edges are weighted

by Euclidean distances, detects clusters by minimizing intra-cluster

distance and maximizing inter-cluster distance. MST-based clustering

approaches have emerged from EMST, such as standard EMST

(SEMST), the Zahn’s EMST (ZEMST) and the maximum standard

deviation reduction (MSDR),

whose difference relies on the

inconsistency measure used to

remove edges in the constructed

MST. Whilst the SEMST strategy

sorts the edges according to weights

and starts to remove them by the

highest weighted edge, the ZEMST

strategy is based in Zahn’s

inconsistency measure1 [30], and

the MSDR tries to find a local

minimum of the standard deviation

reduction function [29].

1 The Zahn’s inconsistency measure consists in deleting edges of an MST, whose

weights are significantly larger than the average weights of nearby edges.

Figure 7. MST subgraph

representation. The MST is highlighted

in purple.

11

Cluster center initialization MST

A recent MST-based method termed cluster center initialization MST

(cciMST) was proposed with the aim to improve the definition of

inconsistency edges using a strategy similar to the classical density

peaks with certain adjusted to be able to find clusters of arbitrary

shapes [31]. In this study, the authors employed geodesic distances and

dual densities in order to initialize the cluster’ centers. Then, the

inconsistent edges are removed by means of a shortest path strategy

[31].

One of the drawbacks of MST-based clustering methods is the

possibility to create “islands” when removing inconsistent edges.

Special care should be taken for datasets of clusters with different

densities.

Markov clustering

Finally, the last here presented graph-based clustering algorithm is

termed Markov Clustering (MCL). MCL [32] – introduced by Stijn van

Dongen in 2000 - is an algorithm for data clustering based on

simulations of stochastic flows (random walks) in networks. A random

walk is defined as a mathematical procedure that describes a

succession of random steps through a mathematical space, consisting

in this case of a network. The possible paths to ‘walk’ through are its

edges, which are weighted with certain probabilities to pass through

them. MCL works with an iterative process by alternating two

12

operators called expansion and inflation. The

expansion operator corresponds to the

computation of random walks of higher length

(many steps), which associates new probabilities

between each pair of nodes. In practice, the

expansion serves to associate higher

probabilities to paths within clusters rather than

in between clusters, because in general, there are

more ways to go from one node to another in the

same cluster. In contrast, the inflation operator

has the effect of boosting intra-cluster walk

probabilities and lowering inter-cluster walks. In

practice, the inflation is the MCL parameter that

serves to detect clustering patterns on different

scales of granularity.

For clustering samples of a multidimensional

dataset, the workflow starts with the

computation of similarities (generally Pearson

correlations) between the samples, by creating

an edge between each pair, where the edge-

weight assumes the value of the respective

pairwise sample similarity. This produces the

weighted similarity network upon which to

simulate stochastic flows and detect the

structural organization of clusters in the data.

Limitations of this technique discussed by the

same creator include its difficulties in clustering

tree graphs in sparse networks where the

cardinality (or number) of the edges is close to

the number of nodes and/or in graphs with a large diameter of natural

clusters [32].

Figure 8. MCL

workflow. Edges
weights intra-clusters

are enhanced while

inter-clusters are
weaken. The weights

relate with the random

walks probabilities for
network navigation.

13

1.2.5. Deep-based methods

Deep clustering with sample-assignment invariance prior

With the popularization of deep learning, different fields have taken

advantages of such algorithms for their successful usage in data

analysis.

Between the many data types that can be analyzed with it, linguistics

with natural language processing, numeric with Multilayer perceptron

and Images with Convolutional Neural Networks, are of popular

choice. Following the huge increase in deep learning methods, some

algorithms were generated not only for supervised or reinforcement

learning but also for unsupervised analysis. The autoencoder is a type

Figure 9. Deep clustering Illustration. The autoencoder, composed by an
encoder and a decoder, is trained on images X for their reconstructions in X’.

The bottleneck represented as Z is the latent space created by the encoder,
which can be exploited by clustering algorithms.

14

of artificial neural network exploited in clustering analyses due to its

ability to data-reconstruction. It is able to transform the data feature

space into a latent space thanks to an encoder, which is then

transformed back as close as possible to the original space thanks to a

decoder [33]. After the autoencoder network is trained, the latent space,

output of the encoder, serves as input for clustering algorithms, such

as K-means. The workflow idea is illustrated in Error! Reference

ource not found..

Recently, different methods from the same family were proposed

considering the aforementioned autoencoder principle [34]. Following

the workflow of Peng et al. algorithm, a denoising autoencoder is

firstly pre-trained on noisy data with the aim to reconstruct the same

data without noise. After pre-training, the algorithm evolves and

replace the decoder side with another module. This new module applies

clustering directly to the latent space created from the encoder. The

module takes this new space and generates different probabilities

distributions (clustering memberships) according to different distance

measures and with respect to certain clusters centers. Then, a function

(in this case, a Kullback-Leibler (KL) divergence loss) tries to

minimize the distances between the probabilities distribution. In other

words, clustering is being applied to the latent space using different

distance measures and the same cluster centers (obtained with K-

means). Each of these clustering with a certain distance will give a

cluster memberships to each data point. The minimization function will

try to generate an agreement as close as possible with respect to the

clusters assignments. The result of this function minimization results

in the so called sample-assignment invariance. In this context, the

network is trained to learn better representations on the data (encoder)

and at the same time improve the assignment of cluster memberships

to each data point. In Figure 10 appears the representation of the

network structured used by Peng et al.

15

Figure 10. Network structure illustration used in Peng et al. The first module (left side)
consists of an encoder. The second module (right side) considers the latent space h

generated by the encoder and creates different clustering memberships assignments,

also called probabilities distribution (P1 and P2). With a minimization function, it aims

to match both as close as possible until convergence is reached. Image extracted from

[34].

Here, x represents a data point (one image), h the latent space

representation of the encoder, P1 and P2 the clustering membership

distributions to be matched as close as possible by the KL divergence

loss function. The deep-clustering algorithm names are HOMO, HOE,

HIT, and HOT. Their difference relies on the distance to utilize being

Euclidean distance, Cosine distance, city-block distance, and Pearson

correlation-based distance, respectively.

16

2. Community detection

Introduced in network science, community detection is synonymous of

clustering and refers to the well-known task in which complex

networks are partitioned into communities. Like clusters, a community

is an ensemble of nodes that are more likely to be interconnected

between each other rather than to out-connect to other groups of nodes

[35]. Why is this important? The reason is that many real-world

systems are expressed as a network in different domains, like protein-

protein interactions in biology, communication networks like airport

interactions, social networks like Facebook, etc. Many of these

networks have inherent and hidden communities, information that can

be exploited depending on the interests of the analyst. Moreover, the

detection of communities has grown into an essential and highly

pertinent problem in network science with several applications. First,

it allows unveiling the existence of a non-trivial internal network

organization at a higher level, which permits us to infer special

relationships between nodes that might not be able to emerge from

direct empirical tests easily. Second, it helps to perceive better

properties of processes occurring in a network [36]. A didactic example

pertinent to our times is the spreading processes of a pandemic disease

highly affected by the community structure of the graph. There is a

logic why states around the world tried to break direct contact

communities into smaller pieces during the years 2020 and 2021.

Naturally, graph-based clustering methods, such as MCL, also work as

community detection algorithms. However, in this study, they are

going to be seen as separate problems, where in clustering, we refer to

the ability to analyze multidimensional datasets. In contrast, in

community detection, we are going to concentrate on real and synthetic

networks.

There are algorithms tailored specifically for this purpose. Two of the

most successful methods are Infomap [37] and Louvain [38]. They

17

have demonstrated high performances in synthetic benchmarks and

small- and large-size real networks [39]–[42].

2.1. Infomap

The Infomap algorithm [37] finds the community structure by

minimizing the expected description length (MDL) of a random walk

trajectory using the Huffman coding process [43], [44]. This coding

process is used to assign codewords to nodes to describe them in

relation to a random walk path (Figure 11A). It works by assigning

short codewords to common events (regular paths in this case) and long

codes to uncommon ones. In other words, the Huffman coding process

assigns a code to a node derived from the node visit frequency in

relation to the random walk. After complete network encoding, a

description specified in bits can be computed (Figure 11B).

Furthermore, when a random walk enters a community, it tends to stay

inside the community for a long time. Using prefix codes with the

Huffman coding process, one can determine certain regions

(community) in the network and then use a unique code for each node

inside the community (Figure 11C). Note that nodes from different

communities can be assigned the same Huffman codeword. Applying

this modality, a new description computation (in bits) can be

calculated. Consequently, the algorithm aims to optimize the MDL.

Infomap uses the hierarchical map equation [37], further development

of the map equation, to detect community structures on more than one

level. The hierarchical map equation indicates the theoretical limit of

how concisely a network path can be specified using a given partition

structure. In order to calculate the optimal partition (community)

structure, this limit can be computed for different partitions, and the

community annotation that gives the shortest path length is chosen.

18

Figure 11. Detecting communities by compressing the description of information flows

on networks. (A) Description of a random walk trajectory on the network. The magenta
line shows one sample trajectory. (B) The idea is to assign a code to each single node

such that important structures have unique names. The Huffman code illustrated here is

an efficient way to do so. The 314 bits under the network describe the sample trajectory
in A, starting with 1111100 for the first node on the walk in the upper left corner, and

ending with 00011 for the last node on the walk in the lower right corner. (C) A two-

level description of the random walk, in which major clusters receive unique names, but
the names of nodes within clusters are reused, yields on average a 32% shorter

description for this network. The codes naming the modules and the codes used to

indicate an exit from each module are shown to the left and the right of the arrows under
the network, respectively. Using this code, we can describe the walk in A by only 243

bits, shown under the network in C. The first three bits 111 indicate that the walk begins

in the red module, the code 0000 specifies the first node on the walk, etc. (D) Reporting
only the module names, and not the locations within the modules, provides an efficient

coarse graining of the network [44].

19

2.2. Louvain

The Louvain algorithm [38] is separated into two phases, which are

repeated iteratively. At first, every node in the (weighted) network

represents a community in itself. In the first phase, for each node i, it

considers its neighbours j and evaluates the gain in modularity2 that

would take place by removing i from its community and placing it in

the community of j. The node i is then placed in the community j for

which this gain is maximum, but only if the gain is positive. If no gain

is possible node i stays in its original community. This process is

applied until no further improvement can be achieved. In the second

phase, the algorithm builds a new network whose nodes are the

communities found in the first phase, whereas the weights of the links

between the new nodes are given by the sum of the weight of the links

between nodes in the corresponding two communities. For unweighted

networks, the weights between new nodes translate into the number of

links from one community to another. Links between nodes of the same

previous community structure lead to self-loops of weight 2n, where n

is the weighted sum of the links or number of links inside the original

community for unweighted graphs (Figure 12). Once the new network

has been built, the two-phase process is iterated until there are no more

changes and maximum modularity has been obtained. The number of

iterations determines the height of the hierarchy of communities

detected by the algorithm.

2 Modularity is a measure related to network structure that quantifies the strength of the

division of a graph into modules (a.k.a. communities) in relation with the number of

edges inside and outside the community [93].

20

3. Motivation

Up to this point, a clarification on concepts like clustering, community

detection, and different strategies to address such problems have been

presented. However, no notion about the title of this work has been

mentioned. This chapter will explain the motivation for the here

proposed novel algorithms and the rationale behind them.

This journey starts with a biological dataset about gastric mucosa

microbiomes from patients suffering from dyspepsia (please refer to

chapter 10.1. ‘High dimensional dataset description’ for more details).

This type of biological datasets are regularly analyzed by linear

algorithms, followed by conclusions and statements drawn from

Figure 12. Visualization of the steps of Louvain’s algorithm. Each pass is made of two
phases: (1) the modularity is optimized by allowing only local changes of communities;

(2) the communities found are aggregated in order to build a new network of

communities. The passes are repeated iteratively until no increase of modularity is
possible.

21

Figure 13. Dimension reduction techniques applied to the gastric mucosa dataset. The plots

represent the best dimension reduction results based on PSI-PR and PSI-ROC projection-

based separability indices (PSI) for the three different labels (P-treated, untreated H+ and
untreated H-), evaluated in the 2D embedding space. Dimensionality reductions applied: (a)

PCA; (b) MDS with Bray-Curtis dissimilarity (MDSbc); (c) MDS with weighted UniFrac

distance (MDSwUF); (d) non-metric MDS with Sammon Mapping (NMDS); (e) MCE. Blue
dots represent PPI-treated samples, while magenta and green dots are the untreated samples

which resulted either negative (magenta) or positive (green) to the H. pylori test. (f) The

curves in three different colours (magenta, blue and green) highlight the different
distributions of the three groups on the second dimension for the MCE plot (e) [51].

22

their results and published in scientific journals. With the aim to

corroborate such conclusions, the dataset was analyzed by means of

different dimensionality reduction techniques, linear and nonlinear

based, and their results were compared with a separability measured

termed projection separability index (PSI).

Dimensionality reduction refers to unsupervised learning algorithms

whose aim is to decrease the number of dimensions of a dataset into a

meaningful lower space, ideally with the intention to represent as close

as possible the intrinsic dimensionality3 [45]. Two famous and widely

employed linear dimensionality reduction techniques are called

principal component analysis (PCA) [46], [47] (Figure 13A) and

Multidimensional scaling (MDS) [48]–[50] (Figure 13B-D).

Thus, the different algorithm embedding results from linear (PCA,

MDS) and nonlinear algorithms (MCE) were compared (Figure 13).

Evidently, the nonlinear algorithm MCE could detect a pattern not

visible with the linear techniques and could segregate PPI naïve

patients without H. pylori (H-) infection from the patients with PPI

intake (P) along the second dimension of embedding (Figure 13E, F).

These results can be translated into very different conclusions

compared with the results of the linear algorithm versions and

therefore, the need of more investigations in this directions was

considered. Important to note, is that the MCE algorithm is in reality a

nonlinear version from the PCA algorithm, whose principle is based in

the computation of an MST-based kernel termed minimum

curvilinearity (MC) (Please refer to the chapter 7.1. ‘Minimum

curvilinearity’ for more details).

As next, the following question arises: can these results be

demonstrated as well in clustering analyses? To this aim, the efforts

3 The intrinsic dimensionality of data is the minimum number of parameters needed to

account for the observed properties of the data [94].

23

were focused on the MCL clustering algorithm due to its success in the

field. Moreover, since it is known that the functionality of MCL is

based on stochastic flows (random walks) through a network, it is here

hypothesized that a well-defined network that approximates the hidden

network geometry as input to MCL can boost its performance thanks

to the principles behind network geometry and network navigability.

This was proved in an article analyzing the nonlinear pattern of the gut

microbiota dataset [51], as well as in other studies included in this

dissertation related to the tasks of clustering with general high

dimensional datasets (where the MC principle was already proven to

increase performance of other machine learning algorithms in the

unsupervised scenario for nonlinear data-pattern analysis [52], [53]),

and to the task of community detection, with many real and synthetic

networks.

All points discussed in this chapter will be presented in more detail

below.

24

25

Part II. ENHANCED MARKOV

CLUSTERING

Now that the notions of clustering, community detection, and related

algorithms have been clarified together with the motivation of the

current dissertation, this second part will present the work applied to

the clustering algorithm MCL for its improvement as a pre-processing

step of data within a network perspective.

4. Markov clustering

As commented in the Introduction Chapter 1.2.4 Graph-based

(clustering) methods, Markov clustering (MCL) algorithm applies a

strategy termed random walk for navigating the network and finding

clusters in it. It works with two input parameters: expansion and

inflation. Although in practice, the inflation is the parameter that

regulates the cluster pattern findings at different scales of granularity

(number of clusters). In the MCL website (https://micans.org/mcl), the

MCL author Dr. van Dongen suggests applying inflation values

between [1.1,10], with starting points to try 1.4, 2 and 6. In principle,

MCL is a clustering algorithm that does not need the number of clusters

to search as input parameter, different from other clustering methods

like KNN, but it rather suggests them to the user influenced by the

inflation parameter. Nevertheless, due to evaluations purposes in the

here presented study, and since the number of clusters in the different

analyzed datasets is known, an integration of a binary search was

implemented. Therefore, the inflation parameter is automatically

https://micans.org/mcl

26

obtained by binary search, where the search stops when the correct

number of clusters are found. Precisely, the value of inflation is

searched in this case between the range of [1.1, 20] at different

resolutions or steps [0.1, 0.01 and 0.001] to ensure the finding of the

correct number of clusters. Suppose the first resolution (0.1) is not

enough. In that case, the search continues at a lower resolution between

the last two searched bounds until obtaining the desired number of

clusters or arriving at the lowest resolution. The range of search

between 1.1 and 20 is defined in order to span a large values interval

(compared to the one suggested by the author of the algorithm, which

is between 1.1 and 10) that accounts for the different scales of

granularity of possible analyzed datasets.

As commented in Chapter 1.2.4 graph-based methods, MCL receives

as input a similarity network for the clustering calculation. In this case,

Pearson correlation, Spearman correlation and Euclidean similarities

(ES) were employed. ES was defined according to the function in

equation (2):

 𝐸𝑆(𝑥) = (1 − 𝑥/max (𝑥)) (2)

Where x is a variable that indicates the Euclidean distance between a

pair of samples and max(x) is the largest Euclidean distance between

all pairs of samples.

As suggested in the MCL user manual (https://micans.org/mcl/MCL),

a network construction and reduction step usually improves the

clustering. It means that a sparsification of the weighted similarity

matrix - that shapes (construction phase) a network topology by

pruning (reduction phase) links with low similarity - is recommended

before starting the clustering procedure. For example, the authors

mention in their user guide to arbitrarily threshold and then discharge

similarities lower than 0.7. After, they suggest rescaling the remaining

https://micans.org/mcl/MCL

27

value between [0,0.3]. This should be intended as a rescaling between

zero and the maximum similarity value in the similarity matrix minus

the threshold because the rescaling ensures stability in the stochastic

flow clustering procedure. However, there are no indications for a

general strategy to follow. In practice, there is a free parameter to tune

for the similarity threshold, and there is no automatic procedure

available. Unlikely, this threshold value should be arbitrarily specified

by the user.

4.1. Enforcing network sparsity in Markov

clustering

In order to overcome the network threshold issue described at the end

of the previous paragraph, a simple but effective technical innovation

to enforce sparsity of the similarity network is introduced. For the here

presented MCL implementation, a strategy is proposed, according to

which the threshold selection is done automatically by progressively

pruning and rescaling the similarity network at increasing similarity

threshold values (the unique values of the network weights are ranked

and, starting from the lowest value in the list, they are increasingly

tested as threshold). The function used for pruning and rescaling is

expressed in equation (3):

 𝑓(𝑥) = 𝑅𝑒𝐿𝑈(𝑥 − 𝑡) = (𝑥 − 𝑡)+ = max [0, (𝑥 − 𝑡)] (3)

Where x is the similarity matrix and t is the threshold (with values

including 0 and lower than 1) tested at a certain iteration of the

progressive pruning. When the network loses its topological integrity

and separates in a number of components larger than one, the procedure

stops, and this last threshold value is discharged, while the second last

threshold value is selected to prune and to rescale the similarity values.

In brief, this is a strategy to maximize sparsification of the network

topology while retaining its one-component connectivity. The

28

MATLAB code implementation (Code 1) for enforcing network

sparsity is displayed hereunder:

function [x,nc]=choose_cut(x, max_nc)

 % Inputs:

 % x: input network

 % max_nc: max number of components allowed

 % Outputs:

 % x: sparsified network

 % nc: number of components of the network

 uniq_weigths = unique(round(x,2));

 idxs = find(uniq_weigths>0);

 for i=1:length(idxs)

 cutoff = uniq_weigths(idxs(i));

 tmp_x1 = x1;

 tmp_x1(tmp_x1<cutoff) = 0;

 tmp_x1(tmp_x1>=cutoff) = tmp_x1(tmp_x1>=cutoff)-

cutoff;

 S=sparse(tmp_x1);

 [nc,~]=graphconncomp(S,'Directed', false);

 if nc > max_nc

 if i == 1

 warning('For the first cutoff the number

of components %d is already greater than %d',nc,max_nc);
 break;

 end

 cutoff = uniq_weigths(idxs(i-1));

 tmp_x = x;

 tmp_x(tmp_x<cutoff) = 0;

 tmp_x(tmp_x>=cutoff) = tmp_x(tmp_x>=cutoff)-

cutoff;

 S=sparse(tmp_x);

 [nc,~]=graphconncomp(S,'Directed', false);

 Break;

 end

 end

 x(x<cutoff) = 0;

 x(x>=cutoff) = x(x>=cutoff)-cutoff;

end

29

Code 1. Enforcing network sparsity function. The function takes as input a network and

an integer related to the maximum number of components allowed while searching for
the threshold (cutoff). max_nc is in this case 1.

5. Network navigability

One of the most fundamental and difficult problems in complex

networks is the challenge to understand the relation between a network

structure and its function [54]. The structure of the network refers not

only to its visible topology, but also to its ‘hidden metric space’. The

power of understanding the hidden network topology is transformed

into a more effective fashion to navigate through the network applying

local knowledge rather than by using the global network information.

In Boguñá et al. [54], the authors highlight two important properties of

real complex networks, upon which the network navigability depends:

(1) scale-free node degree (power-law) distribution (heterogeneous

node degree), and (2) the number of triangles (clustering) in the

network. Previous to Boguñá, Kleinberg [55] gave notions about what

a model of navigable network requires. First, the network should

contain (mostly) short paths between pairs of nodes. Secondly, nodes

need partial knowledge about their structure network environment

(which relates with the local information for efficient navigability of

Boguñá) because too much information could cause a considerable

volume of traffic.

It is here hypothesized that a boost in performance for clustering and

community detection problems should be evidenced for MCL if the

topology of the network being analyzed can efficiently approximate its

hidden metric geometry space. This is achieved by favouring paths

over others through MCL random walk following a greedy routing

process over a network based on distance similarities between the

nodes because they should approximate the hidden nonlinear manifold

of the graph geometry.

30

6. Latent geometry inspired Markov

clustering

As discussed in Chapter 4. ‘Network navigability’, the proposed

rationale states that, in order to favour the simulation of random walks

in MCL, the graph similarities (or dissimilarities) should approximate

the closeness (or distances) on the hidden nonlinear manifold that

characterizes the graph geometry [54], [56]. Indeed, in many networks,

the information can efficiently flow according to a greedy routing

procedure because their topology is emerging from this hidden

geometry [54], whose hyperbolic and tree-like structure facilitates the

greedy propagation [53], [54], [56]–[58]. Recently, Muscoloni et al.

[59], [60] proposed two latent geometry-based pre-weighting

techniques (one local and one global) as valuable strategies for

approximating the pairwise geometrical distances between connected

nodes of an unweighted network. In a later study of the same authors,

the clustering algorithm affinity propagation was applied to the

community detection task adopting two related dissimilarity matrices,

containing dissimilarity values both for connected and disconnected

nodes, which proved to simulate a more navigable geometry than other

kernels previously designed for this purpose [61]. Here, in the context

of community detection and according to the MCL algorithm

requirements, the previous pre-weighting techniques are converted into

similarity measures giving birth to an enhanced technique termed

Latent Geometry Inspired - Markov Clustering (LGI-MCL). The

converted similarities contain and merge two fundamental properties

that characterize the hidden geometry of many real complex networks

and thus might serve to improve stochastic flow simulations: node

similarity (proximity or homophily), related with the network

clustering and the concept of local attraction between common

neighbours, and node popularity (centrality), related with the node

degree [56].

31

The first approach - which is called the repulsion-attraction rule (RA)

[59], [60] – assigns an edge weight adopting only the local information

related to its adjacent nodes (neighbourhood topological information).

The repulsive part behind RA involves that adjacent nodes with a high

external degree (where the external degree is computed considering the

number of neighbours not in common) should be geometrically far.

Indeed, they represent hubs without neighbours in common, which -

according to the theory of navigability of complex networks presented

by Boguñá et al. [54] - tend to dominate geometrically distant regions.

On the contrary, the attractive part of RA exploits that adjacent nodes

sharing a high number of common neighbours should be geometrically

close because, most likely, they have many things in common and

therefore are similar. Thus, the RA (see below for the precise

mathematical formula) is a simple and efficient approach that

quantifies the trade-off between hub repulsion and common-

neighbours-based attraction [59], [60]. The algorithm to compute the

RA similarity for each link (i, j) in the network is the following (note

that the dissimilarity value is marked with an asterisk):

I. Compute the RA pre-weighting as in equation (4) [59], [60]:

𝑅𝐴𝑖𝑗

∗ =
1 + 𝑒𝑖 + 𝑒𝑗

1 + 𝑐𝑛𝑖𝑗
 (4)

ei is the number of external links of the node i (links that do not connect

either to common neighbours with j or to j), ej is the same for the node

j; cnij is the number of common neighbours of the link (i, j).

II. Convert into a similarity value as in equation (5):

𝑅𝐴𝑖𝑗 = 1 +

1

1 + 𝑅𝐴𝑖𝑗
∗ (5)

32

Although inspired by the same rationale, the second similarity is global

(exploits the entire network topology to compute each similarity value

between pairs of nodes). In fact, as a first step, it makes a global-

information-based pre-weighting of the links, using the edge-

betweenness-centrality (EBC) to approximate distances between nodes

and regions of the network [60]. EBC is indeed a global topological

network measure that assigns to each link a value of centrality related

to its importance in propagating information across different network

regions. The assumption is that central edges are bridges that tend to

connect geometrically distant regions of the network, while peripheral

edges tend to connect nodes in the same neighbourhood. The higher

the EBC value of a network link, the more information will pass

through that link. The algorithm to compute the EBC similarity for

each link (i, j) in the network is the following:

I. Compute the EBC pre-weighting as in equation (6) [60]:

𝐸𝐵𝐶𝑖𝑗

∗ = ∑
𝜎(𝑠, 𝑡|𝑒𝑖𝑗)

𝜎(𝑠, 𝑡)
𝑠,𝑡

 (6)

s,t is any combination of network nodes; σ(s,t) is the number of shortest

paths between s and t; σ(s,t\eij) is the number of shortest paths between

s and t passing through the link (i, j).

II. Convert into a similarity value as in equation (7):

𝐸𝐵𝐶𝑖𝑗 = 1 +

1

1 + 𝐸𝐵𝐶𝑖𝑗
∗ (7)

A novel similarity measure (ER) that merges the previous ones (EBC

and RA) for each link (i, j) in the network is also introduced as follows:

I. Compute the pre-weightings 𝑅𝐴𝑖𝑗
∗ and 𝐸𝐵𝐶𝑖𝑗

∗ .

33

II. Convert into a unique similarity value as in equation (8):

𝐸𝑅𝑖𝑗 = 1 +

1

1 + 𝑅𝐴𝑖𝑗
∗ +

1

1 + 𝐸𝐵𝐶𝑖𝑗
∗ (8)

6.1. Software availability

The LGI-MCL code is freely available under the Github repository:

https://github.com/biomedical-cybernetics/LGI-MCL.

7. Minimum curvilinear Markov clustering

7.1. Minimum curvilinearity

Minimum Curvilinearity (MC) [57] – introduced by Cannistraci et al.

in 2010 - was invented with the aim to reveal nonlinear patterns in data,

especially in the case of datasets with few samples and many features.

Nonlinearity is often driven by hierarchy and - under the hypothesis

that at least part of data nonlinearity is associated to a generative

process that forces sample hierarchy - the basic idea behind MC is to

exploit the hierarchical organization and structure of the samples in the

feature space to approximate their pairwise nonlinear relationship.

Indeed, the MC principle suggests that nonlinear curvilinear distances

between samples can be estimated as transversal paths over their

Minimum Spanning Tree (MST), which is constructed according to a

certain distance (Euclidean, correlation-based, etc.) in a

multidimensional feature space. The illustration in Figure 14 reflects a

case where the computation of the Euclidean distance between points

in the space might be impossible to compute due to certain energetic

constraints, which means that points will never lay in the zone of the

purple line between points P1 and P2 and therefore the Euclidean

distance does not reflect the real distance between those points (Figure

14A). Contrarily, when computing the distance between points P1 and

P2 as a function of the MST edge weights (calculated previously with

a specific distance function), it allows exploiting the data organization

https://github.com/biomedical-cybernetics/LGI-MCL

34

and structure to estimate nonlinear relationships avoiding the possible

data constraints (Figure 14B).

In this work, Pearson-correlation-based, Spearman-correlation-based

and Euclidean-based distances to compute the MST are considered.

The collection of all MC pairwise distances forms a distance matrix

called the MC-distance matrix or MC-kernel, which can be used as

input in algorithms for dimensionality reduction, clustering,

classification and generally in any type of machine learning [53], [57].

7.2. From a linear to a nonlinear approach

With the purpose of creating and testing a nonlinear variant of the MCL

algorithm in a clustering framework, a method termed minimum

curvilinear Markov clustering (MC-MCL) is here proposed. The idea

is the following: the MC-kernel (refer to Chapter 7.1. Minimum

curvilinearity for more details) is a nonlinear kernel that expresses the

pairwise relations between samples as a value of distance: a small

samples distance indicates high sample similarity, while a large

samples distance indicates low sample similarity. As anticipated in

Chapter 7.1 Minimum curvilinear, in this study, three different

Figure 14. Illustration of MC-kernel computation. (A) Issues to compute Euclidean

distance between points due to data constraints, i.e.. zone energetically inaccessible by

data points. (B) Distance computation between points following a greedy routing
through the MST.

35

distances (Pearson-correlation-based, Spearman-correlation-based and

Euclidean-based) are considered to build the MST to construct the MC-

kernel. Two different procedures to derive the MC-similarity kernels

are described below, considering correlation-based distances and the

Euclidean distance. In case the MST and the associated MC-distance

kernel are built with Pearson-correlation-distance or Spearman-

correlation-distance, the MC-distance kernel is inverted to get a MC-

similarity kernel, and all negative values (in case of t=0) or all values

lower than a threshold t are put to 0, where t ϵ [0,1), using the function

in equation (9):

𝑓(𝑥) = 𝑅𝑒𝐿𝑈(1 − 𝑥 − 𝑡) = (1 − 𝑥 − 𝑡)+ =

 max [0, (1 − 𝑥 − 𝑡)]
(4)

Where: x is the original value of the pairwise MC distance; t is the same

threshold defined in equation (3) in Chapter 4.1. Enforcing network

sparsity in Markov clustering to enforce the network sparsity (and it is

automatically detected using the same strategy described in that

Chapter); and f(x) is the derived value of the pairwise MC similarity.

Therefore, small f(x) values (close to zero) indicate low sample

similarity, and large f(x) values (close to one) indicate high sample

similarity.

Now, a clarification to an important property of the MC-similarity

defined in equation (9) is highlighted, together with the reason of why

this inversion is well-posed. The MST is computed on a correlation-

based distance (CD) that is defined as in equation (10):

 0 ≤ 𝐶𝐷(𝑦) = (1 − 𝑦) ≤ 2, 𝑤𝑖𝑡ℎ − 1 ≤ 𝑦 ≤ 1 (10)

Where y is the original Pearson correlation value and CD = 0 means

high similarity, CD = 1 means random similarity, and CD = 2 means

anti-similarity (nothing can be more dissimilar than the opposite trend).

36

As a consequence of this mathematical codification of CD, any MC

distance that is larger than 1 tends to overcome an intrinsic threshold

of random similarity. Hence MC distances larger than one can be

interpreted as less significant than random. This mechanism, which

seems naïve, is in reality refined and allows directly to assess that any

MC-distance smaller than 1 is under the natural threshold of random

sample similarity association (and should be accepted); therefore any

MC-distance larger than 1 can be neglected because is less significant

than random similarity. And this is actually what is defined

mathematically with the ReLU function applied after the 1-x-t

inversion in (9). For example: if we fix t = 0, a MC-distance x = 1.2 is

larger than 1 and therefore should be neglected as MC-similarity,

indeed f(x) = ReLU(1 - 1.2) = 0. More in general, the equation (9)

suggests that we can learn a similarity threshold t ≥ 0 (on the weights

of the network), which preserves the network structure and discharge

links that are not significant to preserve the integrity of the network

flows (because they do not disconnect the network). If t = 0, sample

similarities (links) that are less significant than random similarities are

discharged. If t > 0, also sample similarities (links) that are not

significant to preserve the stochastic flows are discharged. This naïve

strategy allows to induce sparsity in the MC-similarity kernel by means

of an intrinsic and self-adaptive thresholding mechanism that neglects

connectivity with similarity worse than random and, as a matter of fact,

it avoids that the stochastic flows of MCL run on network branches or

zones that would suffer unreliable connectivity.

In case the MST and the associated MC-distance kernel are built with

Euclidean-distance, the MC-distance kernel is inverted to get an MC-

similarity kernel according to the following function in equation (11):

 𝑓(𝑥) = 𝑅𝑒𝐿𝑈 (1 −
𝑥

𝑚𝑎𝑥(𝑥)
− 𝑡) =

(1 −
𝑥

𝑚𝑎𝑥(𝑥)
− 𝑡)

+

= 𝑚𝑎𝑥 [0, (1 −
𝑥

𝑚𝑎𝑥(𝑥)
− 𝑡)]

(11)

37

Where x is a variable that indicates the Euclidean-based MC-distance

between a pair of samples; max(x) is the largest Euclidean-based MC-

distance between all the pairs of samples; and t is the same threshold

defined in equation (3) in Chapter 4.1. Enforcing network sparsity in

Markov clustering, to enforce the network sparsity (and it is

automatically detected using the same strategy described there). A

technical detail is that for the computation of the MC-distance kernel

(hence before the inversion procedures described in equation (2)), three

alternatives are used: 1) original distances in the MC-kernel (MC-

MCLo), 2) their square root x1/2 (MC-MCLs), or 3) their logarithm

log(1 + 𝑥) (MC-MCLl). As already investigated in [57], the square

root and the log operators can attenuate the estimation of large

distances and, on the contrary, amplifies the estimation of short

distances. Consequently, they help to regularize the nonlinear distances

inferred over the MST in order to use them for message passing [57]

(such as for AP) or stochastic flow simulation (such as for MCL)

clustering algorithms (for more details on the MC-similarity

construction, please refer to the MATLAB code in Code 2).

The final steps are the same automatic threshold selection described in

Chapter 4.1 in order to build the sparse similarity network for the

classical MCL, and then to run the standard MCL algorithm on the

MC-similarity sparse network. In practice, this new algorithm for

clustering is a nonlinear and sparse version of the classical MCL,

where the nonlinearity is MC-driven and the sparsity is self-learned

using the threshold that maximizes pruning without losing the one-

component similarity network connectivity (refer to Chapter 4.1.

‘Enforcing network sparsity in Markov clustering’ for more details).

38

% dist refers to the distance used for the MST calculation

% e.g. Euclidean, Pearson correlation-based, etc.

if factor==1

 matr=squareform(pdist(x,dist));

elseif factor==2

 matr=sqrt(1+squareform(pdist(x,dist)));

elseif factor==3

 matr=log(1+squareform(pdist(x,dist)));

end

xx =

graphallshortestpaths(adjacence(minspantree(graph(matr),'m

ethod','sparse')),'directed','false');

if strcmp(dist,'euclidean')

 x = xx./max(max(xx));

end

x = 1-xx;

Code 2. MC-Similarity kernel construction. The MATLAB build-in function minspantree

receives as input and delivers as output a graph object. The custom adjacence function

transform the graph object into a sparse matrix, which is the needed input for the
MATLAB built-in function graphallshortestpaths, in charge of computing the pairwise

node distances along the MST. The expression 1 – xx transforms the values from

dissimilarities to similarities.

7.3. Minimum curvilinear Markov clustering

multi-MST variants

In order to enhance the proposed MC-MCL algorithm, several MC-

MCL variants based on different topological properties were here

tested, so as to improve the stochastic random walk through the

approximation of the network’s hidden geometry, thus improving

network navigability (refer to Chapter 5. ‘Network navigability’ for

more details). Wherefore, the efforts were put into alternative

constructions for the MC-kernel. All variants are based on the

generation of the base MST with the union of an alternate MST aiming

to enhance the local connectivity of the network.

7.3.1. MC-MCL - MST high degree removal

This MC-MCL strategy, here referred as to MC-MCLhdr, assumes that

by removing hubs from the MST, new paths will link neighbors of the

39

hub, thus increasing the shortest paths possibilities between nodes

through zones with high traffic, yet preserving the idea that the node

pairwise distances over the minimum spanning tree approximates the

hidden and nonlinear network geometry space (Figure 15A-C). This

variant introduces the necessity of specifying a parameter to determine

high degree nodes in the graph, whose value will depend on the data-

MST topology. This value is entered as the quantile of high degree

nodes that will be removed for the computation of the second MST. As

illustration, the pink arrow in Figure 15A denotes the node with a high

degree (4 links) to be removed. Subsequently, a second MST without

the removed node(s) is computed (Figure 15B), to formerly apply the

union between both MSTs and compute the MC kernel (Figure 15C).

In Code 3 is displayed the function for the MC-MCLhdr kernel

computation. It receives as input two parameters: the pairwise distance

matrix from the samples and the quantile parameter value to determine

which ‘high degree’ nodes to remove. It gives as output the MChdr-

distance kernel, which will be later transformed into the so-called MC-

similarity (Please refer to Chapter 7.2. ‘From a linear to a nonlinear

approach’ for details on the MC-similarity computation).

function xx = MSTHighDegreeRemoval(matr,q)

 % first MST computation

 mst =

adjacence(minspantree(graph(matr),'method','sparse'));

 % getting the degree of each node in MST

 dgrs = degree(graph(mst,'lower'));

 % getting idx of the high degree node(s) as function

of q

 highDegreeN = dgrs >= quantile(dgrs,1-q);

 % calculating MST without highest degree nodes

 numbSamples = size(matr,1);

 tempMst = sparse(numbSamples,numbSamples);

 tempMst(~highDegreeN,~highDegreeN) =

adjacence(minspantree(graph(matr(~highDegreeN,~highDegreeN

)),'method','sparse'));

 % union of MSTs

40

 [val,idxMst] = setdiff(tempMst,mst);

 for j = 1:length(idxMst)

 mst(idxMst(j)) = val(j);

 end

 % kernel computation

 xx = graphallshortestpaths(mst,'directed','false');

 clear mst tempMst matr

end

Code 3. Computation of the MC-MCLhdr kernel. The function receives as input the full
distance matrix between nodes and the quantile parameter. It gives as output the MC-

dissimilarity kernel.

7.3.2. MC-MCL – MST high NBC removal

Similar to the MST high degree removal, this strategy, here termed

MC-MCLhnr, seeks to decrease the traffic in zones of high information

movements. This is achieved by calculating the node-betweenness-

centrality (NBC) of each node, and removing those with high values.

NBC is a measure of centrality based on shortest paths. Nodes with

higher betweenness-centrality values tend to dominate the network

because more information passes through them. Equivalently to the

high degree removal variant, a parameter for determining high NBCs

needs to be specified, whose value is dataset dependent.

The procedure starts by selecting the node(s) with high NBC values to

be removed, green arrow in Figure 15D. Subsequently, a second MST

without the removed node(s) is computed (Figure 15D), to formerly

apply the union between both MSTs and compute the MC kernel

(Figure 15E).

In Code 4 is displayed the function for the MC-MCLhnr kernel

computation. As for MC-MCLhnr, it receives as input two parameters:

the pairwise distance matrix from the samples and the quantile

parameter value to determine which ‘high NBC’ ranked nodes to

remove. It gives as output the MChnr-distance kernel, which will be

later transformed into the so-called MC-similarity (Please refer to

41

Chapter 7.2. ‘From a linear to a nonlinear approach’ for details on the

MC-similarity computation).

function xx = MSTHighNBCRemoval(matr,q)

 % first MST computation

 mst =

adjacence(minspantree(graph(matr),'method','sparse'));

 % getting the NBC value of each node in MST

 NBC = betweenness_centrality(mst);

 % getting idx of the high NBC node(s) as function of q

 highNBCN = NBC >= quantile(NBC,1-q);

 % calculating MST without highest NBC ranked nodes

 numbSamples = size(matr,1);

 tempMst = sparse(numbSamples,numbSamples);

 tempMst(~highNBCN,~highNBCN) =

adjacence(minspantree(graph(matr(~highNBCN,~highNBCN)),'me

thod','sparse'));

 % union of MSTs

 [val,idxMst] = setdiff(tempMst,mst);

 for j = 1:length(idxMst)

 mst(idxMst(j)) = val(j);

 end

 % kernel computation

 xx = graphallshortestpaths(mst,'directed','false');

 clear mst tempMst matr

end

Code 4. Computation of the MC-MCLhnr kernel. The function receives as input the full

distance matrix between nodes and the quantile parameter. It gives as output the MC-

dissimilarity kernel.

7.3.3. MC-MCL Dual

The last strategy for MC-kernel improvement considers the here so-

called dual MST, and therefore termed MC-MCLdual. The dual term

refers to the generation of a second MST with the constraint that all

edges from the first one cannot be accessed by the construction of the

new MST (Figure 15F). This process can be repeated many times

where, in every new MST construction, the edges from all previous

MST networks are blocked and cannot be used. Finally, the union of

all (original and dual) MSTs generated is employed to calculate the

42

MC kernel (Figure 15G). Naturally, the parameter to select is the

number of dual MSTs to generate, which can be data-dependent.

Although regularly, this value to consider is low. The function to

compute the kernel of MC-MCLdual is provided in Code 5.

function [xx,mst] = dualMST(matr,exh)

 % first MST computation

 mst =

adjacence(minspantree(graph(matr),'method','sparse'));

 for i = 1:exh

 % deleting distances from nodes in input distance

matrix ‘matr’ for dual MST generation

 tempMst = mst;

 ind = find(tempMst~=0);

 [row,col] = ind2sub(size(tempMst),ind);

 indInv = sub2ind(size(tempMst),col,row);

 % deleting in lower part of matrix

 matr(ind) = 0;

 % deleting in upper part of matrix for symmetry

 matr(indInv) = 0;

 % computing the dual MST

 tempMst =

adjacence(minspantree(graph(matr),'method','sparse'));

 % check if Dual MST gives more than one unique

component

 if graphconncomp(tempMst,'Directed', false) ~= 1

 break;

 end

 % union of MSTs

 [val,idxMst] = setdiff(tempMst,mst);

 for j = 1:length(idxMst)

 mst(idxMst(j)) = val(j);

 end

 end

 xx = graphallshortestpaths(mst,'directed','false');

 clear mst tempMst matr

end

Code 5. Computation of the MC-MCLdual kernel. The function receives as input the full
distance matrix between nodes and the number of dual MSTs to generate. It gives as

output the MC-dissimilarity kernel.

43

Figure 15. Ilustration of the three MC kernel multi-MST variants for MC-MCL. Hdr in
magenta, hbr in green and dual in orange.. The arrows between panels point to the union of

original MST (panel A) and a variant (panels B, D or F) and the resulting network from the

union used for the MC-kernel computation (panels C, E or G) (A) original MST from where

to construct the MC original kernel. (B) Second MST originated after removing the high

degree node (the pink arrow points toward the removed node). (C) Union of original and

hdr-based MST for the MC hdr-kernel computation. (D) Second MST originated after
removing the high NBC ranked node (the green arrow points toward the removed node). (E)

Union of original and hbr-based MST for the MC hbr-kernel computation. (F) dual MST

representation originated after blocking the original MST (grey) links. (G) Union of original
and dual MST for the MC dual-kernel computation.

44

7.4. Isomap-inspired Markov clustering

Isomap [62] is an algorithm tailored for dimensionality reduction, an

unsupervised learning technique that aims to decrease the number of

dimensions of a dataset into a meaningful lower space (please refer to

chapter 3. ‘Motivation’ for more details). A famous and widely

employed linear dimensionality reduction technique is called principal

component analysis (PCA) [46], [47]. Unlike PCA, Isomap is a

nonlinear technique that focuses on estimating the hidden geometrical

data manifold through neighbourhood connections. It needs a

parameter k to determine the number of connections of each node with

its closest neighbours for constructing the so-called proximity network.

Then, it computes the pairwise shortest path (distance) between the

nodes, to finally apply the embedding into a lower dimension.

Taking inspiration from Isomap, the presented MCL variant, termed

isoMCL, takes advantage of the neighbourhood network connectivity

(Figure 16). As for Isomap, it constructs the iso-kernel by creating a

proximity graph where each node is connected to the k closest

neighbours without losing the 1 unique component connectivity (e.g.

regularly k = 1 creates a network with many separated modules, and

therefore k needs to be higher) (Figure 16A). Then, the computation of

Figure 16. Illustration if the isoMCL kernel computation. (A) Proximity network

construction inspired from the Isomap algorithm with k = 5. (B) Construction of the
isoMCL kernel by pairwise node distance over the proximity network.

45

all node pairwise distances is calculated (Figure 16B). The

dissimilarity iso-kernel is transformed to similarities following the

same strategy utilized as for the MC kernel (Please refer to Chapter

7.2. ‘From a linear to a nonlinear approach’ for more details). The

function to compute the kernel of isoMCL is provided in Code 6.

function [xx,nc] = isoKernel(x, k,norm)

 %Maps the high-dimensional samples in 'x' to a low

dimensional space using

 %Isomap or ISO (coded 5-FEBRUARY-2011 by Gregorio

Alanis-Lobato) – Modified by Claudio Durán 10-NOVEMBER-

2020

 %INPUT

 % x => Matrix with samples on rows and features on

columns

 % k => Number of nearest neighbours to construct the

proximity graph

 % norm => type of norm to compute the distance

 %OUTPUT

 % xx => isoMCL dissimilarity kernel

 % nc => number of components

 %Number of samples

 samples = size(x, 1);

 dist = pdist2(x, x, norm);

 %Trick so that the diagonal 0 distances are not

considered

 dist(logical(eye(samples))) = Inf;

 % Allocate space for the proximity graph and construct

it

 graph = sparse(samples,samples);

 for i = 1:samples

 %Find the k nearest neighbours of sample i and

connect them to i in the proximity graph

 [~, idx] = sort(dist(i, :)); idx=idx(1:end-1);

 for j = 1:k

 graph(i, idx(j)) = dist(i, idx(j));

 end

 end

 % creating symmetrical matrix

 graph = max(graph, graph');

 % kernel computation

 xx = graphallshortestpaths(graph, 'directed',

'false');

46

 % number of graph components (it should always be 1)

 nc = graphconncomp(graph,'Directed',false);

 if nc > 1

 warning('The number of component in the network is

greater than 1');

 end

end

Code 6. Computation of the isoMCL kernel. The function receives as input the matrix

with samples in the high dimensional space, the k value for the neighbourhood proximity
network and the norm (i.e. Euclidean) of the distance calculation. It gives as output the

isoMCL-dissimilarity kernel and the number of components of the proximity network

generated.

7.5. Nonlinear MCL time complexities

Because the new variants are the design of similarity kernels that goes

into MCL, the first step to clarify their time complexity is by

calculating the complexity of MCL alone. Stjin van Dongen, the author

of MCL, claims that the complexity time of this algorithm is O(N k2),

where N is the number of nodes in the graph, and k is the number of

resources allocated per node. Regarding k, it is also stated that ‘the

maximum number of resources allocated per node directly translates to

the maximum number of nonzero entries kept per column’ due to a use

of a sparse matrix, explaining his time complexity. Therefore, k is

actually related to the edges of the network. For this reason, we denote

the time complexity of MCL as O(N E2). This time complexity is

achieved with regular MCL when given a sparse network, and a certain

unique inflation parameter. Here, two previous steps are added in order

to make MCL automatic. First, since it is worked with high

dimensional data, regularly the computation of the similarity between

nodes ends up with a full (and not sparse) matrix. Therefore, as

aforementioned, a sparcification on the network is applied. This step is

governed by the amount of positive similarity values (edge weights >

0 are kept in the network). Thus, the minimum positive weighted edges

are pruned one by one until the one unique component is broken.

Therefore, this step has a linear time complexity of O(E), where E is

related to the number of edges in the network. Note that in practice, the

47

one unique component needs a certain amount of edges in the network

and therefore the mentioned time complexity will never be achieved.

Secondly, since the number of clusters to find is known, the inflation

(a parameter that defines the cluster membership outputs of MCL at

different granularities) is automatically explored by a binary search

strategy. Therefore, this second step would have a time complexity of

O(log I), being I the inflations to search where the correct number

of clusters is found. Nonetheless, I in this case is a constant, because

we search through a specific range for I. Finally, taking into account

all time complexities previously discussed, the time complexity of the

automatic MCL remains as O(N E2) followed by the fact that the

runtime is always dominated by the highest power.

Regarding the nonlinear variants, for the MC kernel versions, the time

complexity of this kernel is governed mainly by two steps: The

generation of the MST, and the calculation of the distances (shortest

paths) over the MST. The MST calculation is done by means of the

kruskal’s algorithm, whose time complexity is O(E log N), where E

refers to the number of edges and N the number of nodes. In the case

of the calculation of all shortest paths over the MST, the Johnson’s

algorithm is applied, whose time complexity is O(N*log(N)+N*E),

bein E the number of edges and N the number of nodes. Thus, the time

complexity of MC-MCL remains with the highest power O(N E2).

Similarly, in the case of isoMCL, the kernel computation is governed

by the number of nodes, and the k closest neighbours to add to each

node. For the ‘closest’ neighbours, sorting the distances from one node

to the rest is needed, being its time complexity of O(E log N), where

N is the number of nodes. Therefore its time complexity is O(N^2

log N). Thus, the time complexity of isoMCL remains as well as

O(N E2).

48

7.6. Software availability

The MC-MCL code is freely available in a github repository under:

https://github.com/biomedical-cybernetics/minimum-curvilinear-

Markov-clustering.

https://github.com/biomedical-cybernetics/minimum-curvilinear-Markov-clustering
https://github.com/biomedical-cybernetics/minimum-curvilinear-Markov-clustering

49

Part III. CASE STUDIES

8. Evaluation framework

The evaluations for community detection and clustering problems

slightly differ. For community detection, a measure widely employed

and here adopted is termed normalize mutual information (NMI),

whereas for clustering, besides NMI, the measures accuracy and

adjusted rand index (ARI) were additionally adopted.

NMI is based on entropy, which can be defined as the information

contained in a distribution p(x) as in equation (12):

 𝐻(𝑋) = ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

 (12)

The mutual information is the shared information between two

distributions (equation (13)):

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log (

𝑝(𝑥, 𝑦)

𝑝1(𝑥)𝑝2(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 (13)

To normalize the value between 0 and 1 the formula in equation (14)

can be applied:

𝑁𝑀𝐼 =

𝐼(𝑋, 𝑌)

√𝐻(𝑋)𝐻(𝑌)
 (14)

50

Considering a partition of the nodes in communities as a distribution

(probability of one node falling into one community), the previous

equations (12, 13, 14) allow computing the matching between the

annotations obtained by the community detection algorithm and the

ground-truth communities of a network. A MATLAB implementation

available at http://commdetect.weebly.com was here used. As

suggested in the code, when
𝑁

𝐶
≤ 100, where N represents the number

of nodes and C the number of communities, the NMI should be

adjusted in order to correct for chance [63], [64].

Accuracy (Acc in tables) is a common measure that evaluates the

number of correctly predicted labels with respect to the total number

of predictions. Given a set of S of n elements, and two partitions of

those elements, namely X = {X1, X2, …, Xr} and Y = {Y1, Y2, …, Ys},

the accuracy can be computed by counting the agreements between

both partitions and dividing it by the number of elements of those

partitions as in equation (15).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

|𝑋 ∩ 𝑌|

𝑛

(15)

Adjusted Rand Index (ARI) [65], [66], like NMI, assesses the

agreement between two partitions, in this case between the true labels

of the data and the labels assigned by the clustering algorithm. The

rationale behind ARI is related to pair counting measures, which are

calculated based on the cluster and class membership of pairs of data

points agreement. The overlap information between the two partitions

can be written as a contingency table.

Given a set of S of n elements, and two partitions of those elements,

namely X = {X1, X2, …, Xr} and Y = {Y1, Y2, …, Ys}, the overlap

between X and Y can be expressed as a contingency table where each

entry nij denotes the number of agreements (intersection) between X

and Y (Table 1) [65].

http://commdetect.weebly.com/

51

X Y Y1 Y2 … Ys sum

X1 n11 n12 … n1s a1

X2 n21 n22 … n2s a2

…

…

…
 …

…

…

Xr nr1 nr2 … nrs ar

sum b1 b2 … bs

Table 1. Contingency table expressing the overlap between two partition X and Y.

Consequently, ARI is calculated employing the values in Table 1 as in

equation (16).

𝐴𝑅𝐼 =

∑ (
𝑛𝑖𝑗

2
) − [∑ (𝑎𝑖

2
)𝑖 ∑ (

𝑏𝑗

2
)𝑗] (𝑛

2
)⁄𝑖𝑗

1
2

[∑ (𝑎𝑖
2

)𝑖 + ∑ (
𝑏𝑗

2
)𝑗] − [∑ (𝑎𝑖

2
)𝑖 ∑ (

𝑏𝑗

2
)𝑗] (𝑛

2
)⁄

(16)

In the case of the clustering methods, the results reported in each table

for each dataset are the best results considering the most effective

combination of normalization, distance options (including factors) and

optimal parameter (if applied). Best meaning the result that offers the

highest values according to a mean rank taking into account accuracy,

ARI and NMI.

9. Community detection analysis

In the next section, after describing the procedure behind MCL (please

refer to chapter 4. ‘Markov clustering’ for more details), and recall a

collection of network science notions, at the interface between network

topology and network geometry [56], [59], [60], [67]–[69], based on

which the proposed LGI rationale can guide the steps to design

similarity measures to boost algorithms based on network navigability

protocols (please refer to chapter 6. ‘Latent geometry inspired Markov

52

clustering’ for more details), the respective community detection

analysis starts. Here, the aim is to investigate the extent to which LGI

measures can be employed to improve MCL community detection. The

analyses performed in this chapter compare the LGI-MCL variants

against the original MCL and the state of the art methods Infomap and

Louvain. After presenting the results of wide evaluations both on real

networks, real networks with noisy information and on a large

benchmark of synthetic ‘realistic’ networks, finally, a discussion with

advantages and limitations of the LGI-MCL approach will be

addressed.

9.1. Real network datasets

The community detection methods have been tested on 8 real networks,

which represent differing systems: Karate; Opsahl_8; Opsahl_9;

Opsahl_10; Opsahl_11; Polbooks; Football; Polblogs. The networks

have been transformed into undirected, unweighted, without self-

loops, and only the largest connected component has been considered.

The information of some basic statistics is available in Table 2. N is

the number of nodes. E is the number of edges. The parameter m refers

to half of the average node degree, and it is also equal to the ratio E/N.

Cl is the average clustering coefficient, computed for each node as the

number of links between its neighbours over the number of possible

links [42]. The parameter γ is the exponent of the power-law degree

distribution, fitted from the observed degree sequence using the

maximum likelihood4 procedure developed by Clauset et al. [70] and

released at http://tuvalu.santafe.edu/~aaronc/powerlaws/. C is the

number of ground-truth communities.

4 A maximum likelihood estimation is a method for estimating the parameters of a

probability distribution by maximizing a likelihood function, so that under the assumed

statistical model the observed data is most probable.

53

 N E m Cl γ C

karate 34 78 2.3 0.59 2.1 2

opsahl 8 43 193 4.5 0.61 8.2 7

opsahl 9 44 348 7.9 0.68 5.9 7

opsahl 10 77 518 6.7 0.66 5.1 4

opsahl 11 77 1088 14.1 0.72 4.9 4

polbooks 105 441 4.2 0.49 2.6 3

football 115 613 5.3 0.40 9.1 12

polblogs 1222 16714 13.7 0.36 2.4 2

Table 2. Statistics of real networks. Number of nodes N, number of edges E, half of
average node degree m, clustering coefficient Cl, power-law degree distribution

exponent γ, number of communities C.

Karate Club

The first network is about the Zachary’s Karate Club [71], it represents

the friendship between the members of a university karate club in US.

The communities are formed by a split of the club into two parts, each

following one trainer.

Opsahl

The networks from the second to the fifth (Table 2) are intra-

organisational networks from [72] and can be downloaded at

https://toreopsahl.com/datasets/#Cross_Parker. Opsahl_8 and

Opsahl_9 come from a consulting company, and nodes represent

employees. In Opsahl_8 employees were asked to indicate how often

they have turned to a co-worker for work-related information in the

past, where the answers range from: 0 - I don’t know that person; 1 -

Never; 2 - Seldom; 3 - Sometimes; 4 - Often; 5 - Very often. Directions

were ignored. The data was turned into an unweighted network by

setting a link only between employees that have at least asked for

information seldom (2).

54

In the Opsahl_9 network, the same employees were asked to indicate

how valuable the information they gained from their co-worker was.

They were asked to show how strongly they agree or disagree with the

following statement: “In general, this person has expertise in areas that

are important in the kind of work I do.” The weights in this network

are also based on the following scale: 0 - Do Not Know This Person; 1

- Strongly Disagree; 2 - Disagree; 3 - Neutral; 4 - Agree; 5 - Strongly

Agree. A link was set if there was an agreement (4) or strong agreement

(5). Directions were ignored.

The Opsahl_10 and Opsahl_11 networks come from the research team

of a manufacturing company, and nodes represent employees. The

annotated communities indicate the company locations (Paris,

Frankfurt, Warsaw and Geneva). For Opsahl_10 the researchers were

asked to indicate the extent to which their co-workers provide them

with the information they use to accomplish their work. The answers

were on the following scale: 0 – I do not know this person / I never met

this person; 1 – Very infrequently; 2 – Infrequently; 3 – Somewhat

frequently; 4 – Frequently; 5 – Very frequently. An undirected link was

set when there was at least a weight of 4.

For Opsahl_11 the employees were asked about their awareness of

each other’s knowledge (“I understand this person’s knowledge and

skills. This does not necessarily mean that I have these skills and am

knowledgeable in these domains, but I understand what skills this

person has and domains they are knowledgeable in.”). The weighting

was on the scale: 0 – I do not know this person / I have never met this

person; 1 – Strongly disagree; 2 – Disagree; 3 – Somewhat disagree; 4

– Somewhat agree; 5 – Agree; 6 – Strongly agree. A link was set when

there was at least a 4, ignoring directions.

Polbooks

The Polbooks network represents frequent co-purchases of books

concerning US politics on amazon.com. Ground-truth communities are

55

given by the political orientation of the books as either conservative,

neutral or liberal. The network is unpublished but can be downloaded

at http://www-personal.umich.edu/~mejn/netdata/, as well as with the

Karate, Football and Polblogs networks.

Football

The Football network [35] presents games between division IA

colleges during regular season fall 2000. Ground-truth communities

are the conferences that each team belongs to.

Polblogs

The Polblogs [73] network consists of links between blogs about the

politics in the 2004 US presidential election. The ground-truth

communities represent the political opinions of the blogs

(right/conservative and left/liberal).

9.2. Synthetic networks generated by the

nPSO model

The Popularity-Similarity-Optimization (PSO) model [56] is a

generative network model recently introduced in order to describe how

random geometric graphs grow in the hyperbolic space. In this model,

the networks evolve optimizing a trade-off between node popularity,

abstracted by the radial coordinate, and similarity, represented by the

angular distance. The PSO model can reproduce many structural

properties of real networks: clustering, small-worldness (concurrent

low characteristic path length and high clustering), node degree

heterogeneity with power-law degree distribution and rich-clubness5.

However, being the nodes uniformly distributed over the angular

coordinate, the model lacks a non-trivial community structure.

5 Rich-clubness refers to nodes with large number of edges that tend to be well connected

between each other and form a compact group [95].

56

The nonuniform PSO (nPSO) model [74], [75] is a variation of the PSO

model that exploits a nonuniform distribution of nodes over the angular

coordinate in order to generate networks characterized by

communities, with the possibility to tune their number, size and mixing

property. The adoption of a Gaussian mixture distribution of angular

coordinates, with communities that emerge in correspondence with the

different Gaussians, and the parameter setting suggested in the original

study [74], [75] was considered. Given the number of components C,

they have means equidistantly arranged over the angular space, 𝜇𝑖 =
2𝜋

𝐶
∙ (𝑖 − 1), the same standard deviation fixed to 1/6 of the distance

between two adjacent means, 𝜎𝑖 =
1

6
∙

2𝜋

𝐶
, and equal mixing

proportions, 𝜌𝑖 =
1

𝐶
 (𝑖 = 1 … 𝐶). The community memberships are

assigned considering for each node the component whose mean is the

closest in the angular space. The other parameters of the model are the

number of nodes N, half of the average node degree m, the network

temperature T6 (inversely related to the clustering) and the exponent γ

of the power-law degree distribution. Given the parameters (N, m, T, γ,

C), for details on the generative procedure, please refer to the original

study [74], [75].

9.3. Real network analysis results

In Table 3 the performance comparison of MCL in its original form,

the three LGI-MCL variants (EBC, RA and ER) and the state of the art

methods for community detection Infomap and Louvain are reported.

In addition, two in-silico experiments were made to test the robustness

of the techniques in the case of noise injection in the real topologies.

In the first case, the network structure was perturbed by the random

deletion of 10% of the links. This procedure was repeated for 100

realizations, and the average results are reported in Table 4. This

6 The temperature of a network regulates its clustering. At T = 0, the clustering is

maximized, with T close to 1, the network can be seeing as one unique cluster [96].

57

experiment simulates the behaviour of the algorithms in case of partial

(10%) missing topological information. In the second case, the network

structure was perturbed by the random addition of 10% of the links.

This procedure was repeated for 100 realizations, and the average

results are reported in Table 5. This experiment simulates the

behaviour of the algorithms in the case of partial (10%) addition of

wrong topological information.

 Infomap Louvain

LGI-

MCL

ER

LGI-

MCL

RA

LGI-

MCL

EBC

MCL

karate 0.55 0.46 0.83 0.83 0.73 0.73

opsahl 8 0.69 0.55 0.59 0.55 0.55 0.55

opsahl 9 0.47 0.41 0.39 0.40 0.40 0.43

opsahl 10 1.00 1.00 1.00 1.00 1.00 1.00

opsahl 11 1.00 0.96 0.96 0.75 0.75 0.68

polbooks 0.52 0.50 0.57 0.57 0.57 0.57

football 0.92 0.93 0.93 0.93 0.93 0.93

polblogs 0.52 0.64 0.00 0.00 0.00 0.00

mean NMI 0.71 0.68 0.66 0.63 0.62 0.61

mean ranking 3.06 3.69 3.19 3.56 3.81 3.69

Table 3. Community detection on real networks. The table reports the Normalized
Mutual Information (NMI) computed between the ground truth communities and the ones

detected by every community detection algorithm for 8 real networks. NMI = 1 indicates

a perfect match between the two partitions of the nodes. The methods are ranked by mean
NMI over the dataset. The best result for each network, as well as the best mean results,

are marked in bold.

As a first key result, LGI-MCL outperforms the original MCL in all

three scenarios. Remarkably, LGI-MCL ER displays a higher mean

NMI than the other LGI-MCL variants in the original topologies and

in the random removal experiment, whereas they equally perform in

the random addition framework. Furthermore, LGI-MCL ER reaches a

mean NMI close to the state of the art method Louvain and a better

58

mean ranking, highlighting the importance of merging the RA and

EBC measures in a unique combined similarity. Lastly, Infomap attains

overall the best result in the original topologies and in case of missing

information. However, it turns out to be the most unstable when

spurious links are added, since in two cases (Opsahl_9, Opsahl_11) it

detects the whole network as a unique community (NMI = 0).

Infomap Louvain

LGI-

MCL

ER

LGI-

MCL

RA

LGI-

MCL

EBC

MCL

karate 0.54 0.49 0.72 0.73 0.72 0.74

opsahl 8 0.55 0.51 0.56 0.56 0.56 0.56

opsahl 9 0.49 0.42 0.38 0.39 0.39 0.41

opsahl 10 1.00 1.00 1.00 1.00 1.00 1.00

opsahl 11 0.96 0.96 0.90 0.82 0.79 0.63

polbooks 0.50 0.49 0.57 0.57 0.57 0.57

football 0.92 0.90 0.92 0.92 0.92 0.92

polblogs 0.51 0.63 0.00 0.00 0.00 0.00

mean NMI 0.68 0.68 0.63 0.62 0.62 0.60

mean ranking 3.25 4.00 3.56 3.31 3.63 3.25

Table 4. Community detection on real networks perturbed with random removal of

links. For each real network, 100 perturbed networks have been generated removing at
random the 10% of links. The table reports the Normalized Mutual Information (NMI)

computed between the ground-truth communities and the ones detected by every

community detection algorithm for the 8 real networks, averaged over the 100
repetitions. NMI = 1 indicates a perfect match between the two partitions of the nodes.

The methods are ranked by mean NMI over the dataset. The best result for each network
as well as the best mean results are marked in bold.

59

 Louvain

LGI-

MCL

RA

LGI-

MCL

ER

LGI-

MCL

EBC

MCL Infomap

karate 0.45 0.76 0.75 0.70 0.68 0.53

opsahl 8 0.51 0.53 0.54 0.54 0.55 0.55

opsahl 9 0.42 0.39 0.38 0.40 0.41 0.00

opsahl 10 0.98 0.98 0.98 0.98 0.98 0.98

opsahl 11 0.96 0.73 0.76 0.69 0.53 0.00

polbooks 0.49 0.57 0.57 0.57 0.57 0.50

football 0.90 0.93 0.93 0.92 0.92 0.92

polblogs 0.41 0.08 0.07 0.19 0.20 0.31

mean NMI 0.64 0.62 0.62 0.62 0.61 0.47

mean ranking 3.81 3.19 3.25 3.44 3.19 4.13

Table 5. Community detection on real networks perturbed with random addition of

links. For each real network, 100 perturbed networks have been generated adding at

random the 10% of links. The table reports the Normalized Mutual Information (NMI)

computed between the ground-truth communities and the ones detected by every
community detection algorithm for the 8 real networks, averaged over the 100

repetitions. NMI = 1 indicates a perfect match between the two partitions of the nodes.

The methods are ranked by mean NMI over the dataset. The best result for each network
as well as the best mean results are marked in bold.

9.4. Synthetic network analysis results

In order to provide additional and more detailed results regarding the

behaviour of the clustering methods, a comparative test was performed

on artificial networks produced by the nonuniform Popularity-

Similarity-Optimization (nPSO) model [74], [75]. Indeed, the nPSO is

an efficient generative model recently proposed to grow realistic

complex networks, which not only are clustered, small-word, scale-

free and rich-club, but also present communities whose number and

size can be a priory defined (please refer to chapter 9.2. ‘Synthetic

networks generated by the nPSO model’ for more details). These

artificial networks with known community structure offer the ground-

60

truth to build a valid benchmark to test the performance of algorithms

for community detection.

The results of wide-range simulations (Figure 17-Figure 20 and

Appendix Figure A. 1-Figure A. 9) - where synthetic networks were

obtained by tuning several parameter combinations of the nPSO model

- highlight similarities with respect to the results on real networks.

First, LGI-MCL, compared to MCL, improves significantly the

Figure 17. Community detection on nPSO networks (1st setting: T fixed; N, γ, m and

C changing). Synthetic networks have been generated using the nPSO model with

parameters N = [100, 500] (network size) γ = [2, 3] (power-law degree distribution

exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = 0.1 (temperature,
inversely related to the clustering coefficient) and C = [6, 9, 12] (number of

communities). For each combination of parameters, 10 networks have been generated.

For each network the community detection methods have been executed and the
communities detected have been compared to the annotated ones computing the

Normalized Mutual Information (NMI). The plots report for each parameter

combination the mean NMI and standard error over the random repetitions and show
that LGI-MCL, compared to MCL, significantly improves the performance for small N

and low T, regardless of γ changes. Instead, for middle-size networks, this is mainly true

for large C, large m and low γ.

61

community detection performance for small-size networks (N = 100)

and high clustering (T = 0.1), regardless of γ changes. Instead, for

middle-size networks (N = 500), this is mainly true when there are

more communities (larger C), higher average degree (m) and γ = 2. The

ranking of the performance of the LGI-MCL variants, from the highest

to lowest, is generally LGI-MCL ER, LGI-MCL RA and LGI-MCL

EBC (Figure 17), similarly to the real networks. Second, the

performance of MCL increases and stabilizes with increasing network

size (N) at γ = 3, independently from changes in temperature (T) and

the number of communities (C), achieving performances close to the

Figure 18. Community detection on nPSO networks (2nd setting: γ fixed; N, m, T and

C changing). Synthetic networks have been generated using the nPSO model with
parameters N = [100, 500, 1000] (network size) γ = 3 (power-law degree distribution

exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = [0.1, 0.5]

(temperature, inversely related to the clustering coefficient) and C = [6, 12] (number of
communities). For each combination of parameters, 10 networks have been generated.

For each network the community detection methods have been executed and the

communities detected have been compared to the annotated ones computing the
Normalized Mutual Information (NMI). The plots report for each parameter

combination the mean NMI and standard error over the random repetitions and show

that the MCL performance increases and stabilizes with larger network size at γ = 3,

independently from changes in T and C.

Figure 19. Community detection on nPSO networks (3rd setting: C fixed; N, γ, m and

T changing). Synthetic networks have been generated using the nPSO model with

parameters N = [500, 1000] (network size) γ = [2, 2.5, 3] (power-law degree distribution

exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = [0.1, 0.5]
(temperature, inversely related to the clustering coefficient) and C = 9 (number of

communities). For each combination of parameters, 10 networks have been generated.

For each network the community detection methods have been executed and the
communities detected have been compared to the annotated ones computing the

Normalized Mutual Information (NMI). The plots report for each parameter

combination the mean NMI and standard error over the random repetitions and show
that MCL improves its performance with the increase of γ for middle and large size

networks.

62

state of the art algorithms Louvain and Infomap (Figure 18). In this

parameter setting, it can be noticed that Infomap attains a slightly

higher NMI than Louvain in several cases, but, on the other side, it

drastically drops to NMI = 0 when the network is too dense (low N and

high m), as already pointed out by the experiments of random link

addition on real topologies. Third, MCL presents problems to correctly

detect the communities in networks of middle (N = 500) and large (N

= 1000) size at γ = 2, but improves and stabilizes the performance for

increasing γ (Figure 19). An exception to this situation is found at a

very low average degree (mostly m = 2) (Figure 20), where there is a

Figure 20. Community detection on nPSO networks (4th setting: γ fixed; N, m, T and

C changing). Synthetic networks have been generated using the nPSO model with
parameters N = [500, 1000] (network size) γ = 2 (power-law degree distribution

exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = [0.1, 0.5]

(temperature, inversely related to the clustering coefficient) and C = [6, 9, 12] (number
of communities). For each combination of parameters, 10 networks have been generated.

For each network the community detection methods have been executed and the

communities detected have been compared to the annotated ones computing the
Normalized Mutual Information (NMI). The plots report for each parameter

combination the mean NMI and standard error over the random repetitions and show

that, at low γ, the MCL performance is close to state of the art methods for low m,
whereas it decreases for higher m.

63

peak of performance for the middle (N = 500) and large size (N = 1000)

networks.

9.5. Advantages and limitations of LGI-MCL

The eight considered real networks represent a benchmark with

ground-truth annotation generally adopted to test algorithms for non-

overlapping community detection on real network topologies.

However, the results here obtained suggest that this benchmark,

collecting networks of different size (from tenths to thousands of

nodes), seems enough complete and diversified to adequately

investigate the performance of each method suggested in this work. In

fact, LGI-MCL should offer better results than pure MCL, because the

similarity pre-weighting is derived from dissimilarity measures that

approximate a network geometry. This theoretical expectation is

confirmed not only on the original real networks, but also when their

topology is perturbed by noise simulated by random deletion of links

(missing topological information) or random addition of links

(spurious topological information), where the three LGI-MCL variants

achieve a greater mean NMI than the unweighted MCL, corroborating

the rationale on how to design similarity measures that favour the

stochastic simulation procedure of MCL. On the other hand, when

considering the synthetic networks as ground-truth benchmark, LGI-

MCL clearly improves the performance compared to MCL in certain

scenarios, mostly for small (N = 100) and medium (N = 500) size

networks, whereas for large size networks (N = 1000) the improvement

is often missing or less notorious.

Despite the improvements that LGI measures can bring to MCL, the

method is still affected by certain types of network topologies. For

example, in Figure 19, at low γ the MCL performance is dramatically

reduced and far from state of the art. This can be explained because

with lower γ there is a stronger presence of hubs, central nodes with a

large degree acting as bridges between different regions of the network,

64

which increases the likelihood for a random walk to move from one

cluster to another one, and therefore makes more difficult for MCL to

correctly infer the boundaries of the clusters. Similarly, the peak of

MCL performance at low average degree (Figure 20) can be explained

because the network topology is very sparse and therefore, it is less

likely for a random walk to reach a hub and later move to another

cluster. One goal of the wide experiments was indeed to point out the

topological configurations affecting the MCL inference, so that further

studies might investigate how to improve the performance in the

presence of these structural patterns and make the method more robust.

10. Clustering analysis

In the next section, after describing the procedure behind MCL (please

refer to chapter 3. ‘Markov clustering’ for more details), and recall a

collection of network science notions, at the interface between network

topology and network geometry [56], [59], [60], [67]–[69], with the

purpose to design similarity measures to boost algorithms based on

network navigability protocols (please refer to chapter 6. ‘Minimum

curvilinear Markov clustering’ for more details), with respect to

clustering analysis starts. Here, it is exhibited a performance

comparison between nonlinear MCL with baseline and more advanced

clustering algorithms such as classical MCL [32], AP [27], its

nonlinear version MC-AP [57], density-based spatial clustering of

applications with noise (DBSCAN) [22], density peaks shortest path-

based (DPSP) [26], single linkage [18], [19], cciMST [31], K-means

[16] and deep clustering-based algorithms [34] for the MNIST and

CIFAR datasets (please refer to chapter 1. ‘Clustering’ for more details

on the different clustering methods). They have been compared both

on real and synthetic high-dimensional datasets and using different

metrics (Accuracy, NMI and ARI, please refer to chapter 8.

‘Evaluation framework’ for more details) to evaluate their

performances. Finally, a discussion with advantages and limitations of

the MC-MCL approaches (including variants) will be addressed.

65

10.1. Clustering case studies and algorithm

performance comparison.

Six different high-dimensional and nonlinear datasets were analyzed in

order to perform a comparative analysis of the clustering methods.

Gastric mucosa microbiome

The dataset was generated by

Paroni Sterbini and colleagues

[76] and it consists of 24 biopsy

specimens of the gastric antrum

from 24 individuals who were

referred to the Department of

Gastroenterology of Gemelli

Hospital (Rome) with

dyspepsia symptoms (i.e.

heartburn, nausea, epigastric

pain and discomfort, bloating,

and regurgitation). Twelve of

these individuals had been taking PPIs (P) for at least 12 months, while

the others were not being treated (naïve) or had stopped treatment at

least 12 months before sample collection. In addition, 9 (5 treated and

4 untreated) were positive for H. pylori infection (Figure 21), where H.

pylori positivity (H+) or negativity (H-) was determined by histology

and rapid urease tests. The number of features is 187 and indicates

different microbial abundance. The metagenomics sequence data were

processed, replicating the bioinformatics workflow followed by Paroni

Sterbini et al. [76], in order to obtain the dataset for the clustering

algorithms. This dataset was analyzed for three clusters: H+ (n=5), H-

(n=7) and P (n=12). The PPI (P) patients with (P&H+) and without

(P&H-) the presence of H. pylori are considered a unique class,

because it is known from previous studies [77], [78] that PPI

significantly changes the gastric environment and covers the effect of

Figure 21. Electron micrograph of
Helicobacter pylori bacterium. Picture from

Professor Yukata Tsutsumi, Department of

Pathology Fujita, Health University School of
Medicine.

66

other factors such as H. pylori presence. Furthermore, Durán et al. [51]

evidenced in a recent study that, taken into account the dimensionality

reduction and clustering analysis, the idea of three groups in the dataset

seems more congruous than for the four groups case.

The data is publicly available in the NCBI Sequence Read Archive

(SRA) (http://www.ncbi.nlm.nih.gov/sra, accession number

SRP060417).

As commented in Chapter 3. ‘Motivation’, the dataset that implanted

the idea for a nonlinear MCL was the gastric mucosa dataset from

Sterbini et al. [76]. It all started from the need to express in numbers,

what could be already appreciated by eyes in the segregation of groups

with nonlinear patterns (Figure 13), a problem that persisted with

different clustering techniques. Note that the clustering algorithms

analyzed the datasets in the HD space directly, without considering the

embeddings presented in Figure 13.

Methods Best dist Factor Norm Acc ARI NMI Mean rank

MC-MCL hdr euc SQRT LOG 0.75 0.36 0.37 1.33

isoMCL corr LOG 0.75 0.33 0.31 2.00

MC-MCL hbr corr - LOG 0.71 0.29 0.31 3.33

MC-MCL dual corr - LOG 0.71 0.29 0.31 3.33

MC-MCL corr - LOG 0.71 0.29 0.31 3.33

cciMST corr - 0.71 0.24 0.26 5.67

DBSCAN corr - 0.58 0.28 0.38 6.00

Kmeans corr LOG 0.67 0.20 0.26 7.33

MC-AP corr LOG 0.67 0.20 0.24 8.00

AP corr LOG 0.67 0.20 0.24 8.00

MCL corr LOG 0.67 0.19 0.21 9.67

DPSP corr - 0.54 0.15 0.21 11.67

Single linkage euc LOG 0.50 0.01 0.01 13.00

Table 6. Clustering performance in Gastric mucosa microbiome data. Accuracy (Acc),

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and mean rank
(according to the previously mentioned measures) are reported for each clustering

method together with the best distance approach (Pearson correlation [corr], Spearman

correlation [spea] or Euclidean [euc]), factor (for MC-MCL-variants) and

http://www.ncbi.nlm.nih.gov/sra

67

normalization (Norm) applied. The methods are sorted by mean rank from the highest

(top) to the lowest (bottom) performance. Methods in red are nonlinear MCL variants
with one hyperparameter to optimize. Note that the parameter(s) to consider the number

of clusters is/are not taken into account because it is an initialization parameter that all

methods require.

As theoretically expected, all MC-kernel variations clearly improve the

performances of MCL and move it from one of the last places to

leading positions, particularly for MC-MCL hdr variant, first in rank

performance between all 13 methods (Table 6). Interestingly, the

isomap inspired MCL also demonstrates good performances and is

situated as the second-best clustering method. Remarkably, all MST-

based methods, including cciMST and the MCL variants, achieve the

highest mean rank using 5/6 of the highest places, demonstrating the

successful MST property to approximate the hidden data geometry

correctly.

DBSCAN seems to have problems in accuracy with a value rather low

(0.58), but in ARI and NMI the situation differ, where its ARI value is

close to the new MCL variants, and surprisingly outperform all the rest

of the method in NMI (0.38), closely followed by the here proposed

MC-MCL hdr (0.37). K-means, MCL, AP and MC-AP have low

performances with accuracy of ~0.67, ARI of ~0.2 and NMI between

0.21 and 2.6. Surprisingly, Single linkage could not find the three

proposed clusters having the lowest performance in the three measures.

The improved density peaks version (DPSP) also had troubles being

the second-lowest.

68

As mentioned in chapters 7.3 ‘Minimum curvilinear Markov clustering

multi-MST variants’ and 7.4 ‘Isomap-inspired MCL’, the different

proposed MCL algorithms introduce the need to select parameters. For

each variant, 50 values of their respective parameters were searched,

and the best results were placed in the respective table performance

comparison (Table 6). The parameter search simulation for the gastric

mucosa dataset can be found in Figure 22 for the LOG normalization

(Note that one plot is generated for each normalization [LOG and no

normalization], just one of both plots, LOG normalized, is here

presented, whereas the no normalized can be found in the Appendix

section Figure A. 10). Consider that the x-axis represents a different

unit depending on the MCL variant: for MC-MCL hbr (blue) and hdr

(green), is the percentile of high betweenness centrality/degree nodes

to be removed for the computation of the second MST. For MC-MCL

dual (orange) it corresponds to the number of dual MSTs to construct

Figure 22. Parameter search for MC-MCL and isoMCL variants in gastric mucosa

dataset with LOG normalization. Accuracy, ARI and NMI performances. The x axis (from

1 to 50) represents different units depending on the MCL variant: for MC-MCL hbr (blue)

and hdr (green), is the percentile of high betweenness centrality/degree nodes to be
removed for the computation of the second MST. For MC-MCL dual (orange) it

corresponds to the number of dual MSTs to construct and ensemble with the original MST.

For isoMCL (purple) it consists in the k value to create the proximity graph.

69

and ensemble with the original MST. For isoMCL (purple) it consists

in the k value to create the proximity graph.

Regarding the best distance and factor applied, the best performing

MCL variants were compared to evince the parameter influence on

their performances. Depending of the parameter value, a great

fluctuation exists in the MCL variant performances (Figure 22), being

the MC-MCL hdr the most notorious (green line), where from 0.55 in

accuracy with 5% percentile, the value can rise to 0.75 with ~20%

percentile. A similar trend also occurs in the case of the ARI and NMI

measures.

This important performance fluctuation could be partially explained by

the gastric mucosa dataset reduced sample size with only 24

observations. Removing a small portion of samples can be translated

into a great MST topological change, i.e. by connecting distant regions

in the graph.

Radar signal

The data is composed of 350 radar signals targeting free electrons in

the ionosphere, where each radar signal consisted of 34 features that

are measurements of electromagnetic pulses. It was collected by the

Space Physics Group of the Johns Hopkins University Applied Physics

Laboratory [79]. The two groups are defined as: (1) 225 good radar

70

signals, characterized by those signals that returned evidence of free

electrons in the ionosphere, and (2) 125 bad radar signals which were

those signals that passed through the ionosphere and returned

background noise (Figure 23). Hence, good radar signals are similar, and

bad radar signals might be dissimilar.

Table 7 exhibits the performance comparison between the clustering

algorithms for this dataset. MC kernel shows an improvement in

performance compared to its linear algorithm MCL, being the dual

variant the highest performer obtaining the first place in mean ranking

with an accuracy of 0.78, ARI of 0.29 and NMI of 0.32, followed by

the hbr variant with performances of 0.80, 0.35 and 0.25 in accuracy,

ARI and NMI respectively (Table 7).

Figure 23. Radar signal illustration. Good radar signals returned evidence of free
electrons from the ionosphere, whereas bad radar signals passed through the ionosphere

and returned noise.

71

Methods Best dist Factor Norm Acc ARI NMI Mean rank

MC-MCL dual spea LOG - 0.78 0.29 0.32 1.67

MC-MCL hbr euc SQRT - 0.80 0.35 0.25 2.00

MC-MCL hdr spea LOG - 0.77 0.25 0.28 2.67

isoMCL spea - 0.77 0.25 0.28 2.67

Kmeans euc - 0.71 0.18 0.13 5.33

AP euc - 0.71 0.17 0.13 5.67

MC-MCL euc LOG - 0.71 0.17 0.12 6.33

DBSCAN corr - 0.68 0.10 0.14 7.67

MC-AP euc - 0.69 0.14 0.09 8.33

DPSP corr - 0.65 0.02 0.03 10.67

MCL euc - 0.60 0.04 0.06 11.00

cciMST euc - 0.64 0.00 0.01 11.67

Single linkage euc - 0.64 0.00 0.01 11.67

Table 7. Clustering performance in Radar (two clusters) data. Accuracy (Acc),

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and mean rank
(according to the previously mentioned measures) are reported for each clustering

method together with the best distance approach (Pearson correlation [corr], Spearman

correlation [spea] or Euclidean [euc]), factor (for MC-MCL-variants) and
normalization (Norm) applied. The methods are sorted by mean rank from the highest

(top) to the lowest (bottom) performance. Methods in red are nonlinear MCL variants

with one hyperparameter to optimize. Note that the parameter(s) to consider the number
of clusters is/are not taken into account because it is an initialization parameter that all

methods require.

Curiously, Kmeans and AP perform comparable and even slightly

better than the MC-MCL algorithm using the regular MC kernel. The

MC-based nonlinear version of AP, MCAP, performed lower than its

counterpart; and DPSP, MCL, cciMST and single linkage could not

effectively find the two clusters and assign the sample majority to one

unique class. Note that cciMST, although based in the MST alike the

MC-MCL variant, was rather far away from their performance,

suggesting that the MST alone does not always correctly approximate

the hidden geometrical data space. This is evidenced as well by the fact

that the ‘multiple MST’ MC-MCL variants outperform the MC-MCL

employing the original MC kernel.

72

The parameter search simulation for the Radar dataset can be found in

Figure 24 without normalization application. The performances across

parameters seem more stable in the accuracy measurement compared

to ARI and NMI, whose values greatly fluctuate from 0 to ~0.30. The

most evident fluctuation is exhibited by the variant MC-MCL hbr,

which achieves the highest accuracy (0.80) and ARI (0.35) values and

is only outperformed in NMI by the rest of the nonlinear-MCL

variants. A curious trend can be appreciated for both MC-MCL dual

and isoMCL, where their pick performances are achieved with a low

parameter value (number of MST duals to construct and k number of

neighbors for the proximity graph construction respectively) and then

are rapidly decreased until arriving to a plateau.

Figure 24. Parameter search for MC-MCL and isoMCL variants in Radar dataset (2

clusters) without normalization. Accuracy, ARI and NMI performances. The x axis
(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL

hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree

nodes to be removed for the computation of the second MST. For MC-MCL dual
(orange) it corresponds to the number of dual MSTs to construct and ensemble with the

original MST. For isoMCL (purple) it consists in the k value to create the proximity

graph.

73

Methods Best dist Factor Norm Acc ARI NMI Mean rank

MC-MCL hdr spea LOG - 0.74 0.35 0.32 2.00

MC-MCL dual spea - - 0.75 0.34 0.30 2.33

MC-MCL hbr spea - - 0.74 0.34 0.32 2.33

MC-MCL corr SQRT - 0.74 0.27 0.38 3.00

isoMCL spea - 0.75 0.32 0.28 3.33

AP euc - 0.66 0.23 0.25 6.00

Kmeans euc - 0.62 0.16 0.15 8.33

cciMST euc - 0.62 0.15 0.14 9.00

MC-AP corr - 0.56 0.08 0.22 9.33

DPSP corr - 0.65 0.02 0.03 9.67

DBSCAN corr - 0.64 0.01 0.02 10.67

Single linkage euc - 0.64 0.01 0.02 10.67

MCL euc - 0.42 0.03 0.05 11.00

Table 8. Clustering performance in Radar (three clusters) data. Accuracy (Acc),

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and mean rank
(according to the previously mentioned measures) are reported for each clustering

method together with the best distance approach (Pearson correlation [corr], Spearman

correlation [spea] or Euclidean [euc]), factor (for MC-MCL-variants) and
normalization (Norm) applied. The methods are sorted by mean rank from the highest

(top) to the lowest (bottom) performance. Methods in red are nonlinear MCL variants

with one hyperparameter to optimize. Note that the parameter(s) to consider the number
of clusters is/are not taken into account because it is an initialization parameter that all

methods require.

In the study of Cannistraci et al. [53], it was suggested that, actually,

the bad radar signals might be segregated into two different groups

(given by the result of a nonlinear dimensionality reduction

embedding). Therefore, the dataset is additionally analyzed for three

clusters (Table 8).

From this analysis, the method that benefits the most from this new

grouping is the MC-MCL algorithm with original MC, and it is moved

from a 7th place to a 4th just after the MC-MCL variants using multiple

MSTs in their kernels. It increases its performance from 0.71, 0.17 and

0.12 to 0.74, 0.27 and 0.38 in accuracy, ARI and NMI, respectively,

achieving the highest NMI compared to all other methods. Overall, this

74

new grouping seems to negatively affect the accuracy of the best-

performing methods (MC-MCL multi MST variants), and curiously

increases the ARI and NMI performances for the majority of the

clustering methods, with few exceptions. A clear exception is

DBSCAN, which is evidently negatively affected by this grouping,

decreasing its performance from 0.68, 0.10 and 0.14 to 0.64, 0.01 and

0.02 in accuracy, ARI and NMI, respectively (Table 8). AP still

outperforms its nonlinear counterpart on the three measures, and

DPSP, single linkage, and MCL join DBSCAN with their low

performances.

The parameter search simulation for the Radar dataset with three

clusters can be found in Figure 25 without normalization application.

The line trends here are certainly similar to Radar’s case with two

clusters, being an exception the noticeable boost of ARI and NMI for

the MC-MCL hdr (green) variant after the ~30% percentile.

Figure 25. Parameter search for MC-MCL and isoMCL variants in Radar dataset (3

clusters) without normalization. Accuracy, ARI and NMI performances. The x axis

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL
hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes

to be removed for the computation of the second MST. For MC-MCL dual (orange) it

corresponds to the number of dual MSTs to construct and ensemble with the original
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

75

As for the suggestion of Cannistraci and colleagues [53] about the

adequate grouping of the radar dataset, the idea seems to be congruous

due to the general increase in ARI and NMI measures across the

clustering methods. Nonetheless, the change in performance is not so

notorious when comparing the best-performing methods in each

grouping case (the MC-MCL variants), and therefore an affirmation

that the radar dataset should be analyzed by a three grouping problem

rather than a two one is still not strongly supported.

Tripartite-Swiss-Roll

In order to ‘objectively’ (using a ground

truth) test how the clustering algorithms

could detect nonlinear relationships, we

additionally performed an analysis on

the Tripartite-Swiss-Roll dataset

(Figure 26): an artificial dataset

characterized by evident nonlinear

patterns and generated as a

discretization of the manifold associated

to a Swiss-Roll function [62] in a three-

dimensional (3D) space. Indeed, it is a

synthetic dataset composed by 723

points obtained as the partition in three

sections of a discrete Swiss-Roll

manifold depicted in three-dimensional

space [62]. It reproduces the typical

nonlinearity (given by the Swiss-Roll

shape) and the discontinuity (given by

the tripartition of the manifold, and therefore three clusters), that might

be often hidden in the multidimensional representation of data samples.

However, it is important to clarify that this dataset, contrarily to all the

other ones used in this chapter, has significantly fewer features than

Figure 26. Tripartite-Swiss-Roll
scatter plot evidencing the three

nonlinear shaped clusters.

76

samples. Therefore it cannot be considered a multidimensional dataset.

Yet, it is a very useful benchmark for nonlinear clustering.

The Tripartite-Swiss-Roll possesses three main features: (1) it has a

clear nonlinear shape; (2) each cluster is clearly separated (not fuzzy)

from the neighbour clusters; and (3) each cluster is dense.

Methods Best dist Factor Norm Acc ARI NMI Mean rank

MC-MCL dual euc - - 1.00 1.00 1.00 1.00

MC-MCL hbr euc - - 1.00 1.00 1.00 1.00

MC-MCL hdr euc - - 1.00 1.00 1.00 1.00

isoMCL euc - 1.00 1.00 1.00 1.00

MC-MCL euc - - 1.00 1.00 1.00 1.00

DBSCAN euc - 1.00 1.00 1.00 1.00

MCL euc - 1.00 1.00 1.00 1.00

cciMST euc - 1.00 1.00 1.00 1.00

Single linkage euc - 1.00 1.00 1.00 1.00

DPSP euc - 0.85 0.87 0.82 10.00

MC-AP euc - 0.64 0.47 0.58 11.00

Kmeans euc - 0.56 0.10 0.20 12.00

AP euc - 0.54 0.09 0.19 13.00

Table 9. Clustering performance in Tripartite-Swiss-Roll data. Accuracy (Acc),
Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and mean rank

(according to the previously mentioned measures) are reported for each clustering

method together with the best distance approach (Pearson correlation [corr], Spearman
correlation [spea] or Euclidean [euc]), factor (for MC-MCL-variants) and

normalization (Norm) applied. The methods are sorted by mean rank from the highest

(top) to the lowest (bottom) performance. Methods in red are nonlinear MCL variants
with one hyperparameter to optimize. Note that the parameter(s) to consider the number

of clusters is/are not taken into account because it is an initialization parameter that all

methods require.

The performances of each algorithm are shown in Table 9. Many

clustering algorithms are able to find the three clusters as indicated by

the perfect performance segregations value of 1 in the three measures.

These methods are MCL, isoMCL, all MC-MCL variants, DBSCAN,

cciMST and Single linkage. As theoretical expected, the linear

77

techniques AP and Kmeans cannot detect the nonlinear patterns and

perform poorly in this dataset, obtaining the last positions.

Surprisingly, DPSP and MC-AP, although outperforming the linear

algorithms AP and Kmenas, are not able to successfully find the three

clusters.

This synthetic dataset is the only case in the present study where, in the

presence of a nonlinear clustering structure, classical MCL can achieve

comparable performance to MC-MCL (Table 9). Indeed, in all the

three real datasets previously analyzed, MCL was one of the worst

algorithms between the 13 different types tested. These findings, on

one side, suggest the utility to adopt synthetic data because yet on this

example, linear clustering algorithms such as AP and K-means result,

as theoretically expected, the worst. On the other side, the same results

suggest that simple synthetic datasets with many samples and few

dimensions, although they are an interesting and useful benchmark,

might be too ‘naïvely’ designed. They might miss other crucial aspects

of data nonlinearity that emerge in the case of curse of dimensionality7.

Altogether, after this didactic example, we can conclude that it is

important to expose the tested algorithms to different data scenarios in

which nonlinearity emerges from different data sources.

In the case of parameter search for the nonlinear MCL variants (Figure

27), independently from the parameter to choose, all algorithms

achieve the perfect segregation with values of one in all measures,

except when isoMCL presents a multiple component graph (at low k).

7 Course of dimensionality refers to when the number of features is substantially larger

than the number of samples.

78

Till now, the tests were made in unsupervised recognition of nonlinear

patterns that emerge from metagenomics, radar signal and synthetic

backgrounds, but always the scenario of a few numbers of expected

clusters was considered. It is now time to confront these algorithms on

a more challenging benchmark, commonly applied in artificial

intelligence for supervised and unsupervised tasks, to test their

nonlinear pattern recognition performance.

Figure 27. Parameter search for MC-MCL and isoMCL variants in Tripartite-Swiss-

Roll dataset without normalization. Accuracy, ARI and NMI performances. The x axis

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL

hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes
to be removed for the computation of the second MST. For MC-MCL dual (orange) it

corresponds to the number of dual MSTs to construct and ensemble with the original

MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

79

MNIST

MNIST [80] is one of the most used datasets in machine learning. This

is a large dataset that consists of 28x28 pixel images of handwritten

digits. Every image can be thought of as a 784-dimensional array,

where each value represents each pixel’s intensity in a gray scale. The

different sample groups are numbers between 0 and 9, for a total of 10

clusters (Figure 28). Since this is a very large dataset (70000 samples),

three datasets were constructed from it. First, 300 samples were

randomly selected for each digit, resulting in a sub-dataset with 3000

samples. Secondly, the MNIST test side (10000 samples) from the

Kaggle competition was used. Finally, the full MNIST data was also

used for testing the performances of the clustering algorithms.

Therefore, three MNIST data employed are composed of a total of

3000, 10000 and 70000 samples, 784 features and 10 groups.

Figure 28. Sample images from the MNIST dataset. By Josef Steppan - Own work, CC

BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64810040.

80

Methods Best dist Factor Norm Acc ARI NMI Mean rank

MC-MCL hdr spea LOG - 0.82 0.74 0.81 1.67

MC-MCL dual euc - LOG 0.85 0.73 0.79 1.67

isoMCL euc LOG 0.85 0.73 0.78 2.00

MC-MCL hbr corr LOG LOG 0.79 0.69 0.78 3.67

MC-MCL euc - LOG 0.75 0.62 0.70 5.33

MC-AP euc LOG 0.75 0.58 0.68 6.00

cciMST corr LOG 0.69 0.57 0.72 6.33

Kmeans corr LOG 0.57 0.40 0.53 8.33

AP corr LOG 0.56 0.39 0.51 9.33

MCL corr LOG 0.48 0.25 0.55 9.33

DPSP euc - 0.27 0.08 0.31 11.33

DBSCAN corr LOG 0.26 0.00 0.43 11.67

Single linkage euc - 0.10 0.00 0.01 12.67

Table 10. Clustering performance in MNIST 3000 data. Accuracy (Acc), Adjusted Rand

Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the
previously mentioned measures) are reported for each clustering method together with

the best distance approach (Pearson correlation [corr], Spearman correlation [spea] or

Euclidean [euc]), factor (for MC-MCL-variants) and normalization (Norm) applied. The
methods are sorted by mean rank from the highest (top) to the lowest (bottom)

performance. Methods in red are nonlinear MCL variants with one hyperparameter to

optimize. Note that the parameter(s) to consider the number of clusters is/are not taken
into account because it is an initialization parameter that all methods require.

The evaluation on the first MNIST dataset with 3000 samples exhibits

a great improvement of the MC-MCL and isoMCL compared to the

original method, where the performances rose from 0.48, 0.25 and 0.55

to values greater than 0.80, 0.70 and 0.75 in accuracy, ARI and NMI

respectively. Interestingly, and leaving aside isoMCL, all MC variants

(including the MC-AP) perform better than the non-MC. From the non-

MC-based algorithms, cciMST is the better performing, followed by

Kmeans, AP and MCL. On the other hand, DPSP, DBSCAN and

Single linkage proportioned lacklustre performances.

81

Methods Best dist Factor Norm Acc ARI NMI Mean rank

isoMCL euc LOG 0.91 0.82 0.84 1.67

MC-MCL dual corr - - 0.86 0.81 0.86 2.00

MC-MCL hbr corr LOG - 0.85 0.80 0.85 3.33

MC-MCL hdr corr - - 0.85 0.79 0.84 4.00

HOE-CNN cos - 0.91 0.76 0.78 4.00

MC-MCL euc - - 0.86 0.73 0.77 5.33

cciMST corr - 0.80 0.71 0.80 7.67

HOT corr - 0.82 0.65 0.69 8.33333

HOMO euc - 0.82 0.65 0.68 8.66667

HOE cos - 0.82 0.65 0.68 8.66667

HIT cit - 0.82 0.65 0.68 8.66667

MC-AP corr - 0.75 0.69 0.77 9.00

Kmeans corr LOG 0.57 0.42 0.55 13.33

MCL euc LOG 0.54 0.38 0.56 13.67

AP corr - 0.41 0.33 0.53 15.33

DPSP spea - 0.31 0.31 0.54 15.67

DBSCAN euc - 0.11 0.00 0.00 17.00

Single linkage euc - 0.11 0.00 0.00 17.00

Table 11. Clustering performance in MNIST test data. Accuracy (Acc), Adjusted Rand
Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the

previously mentioned measures) are reported for each clustering method together with

the best distance (Best dist) approach (Pearson correlation [corr], Spearman
correlation [spea] or Euclidean [euc]; only in case of deep clustering algorithms: cosine

distance [cos] and cityblock distance [cit]), factor (for MC-MCL-variants) and

normalization (Norm) applied. The methods are sorted by mean rank from the highest
(top) to the lowest (bottom) performance. Methods in red are algorithms with one

hyperparameter to optimize. Note that the parameter(s) to consider the number of

clusters is/are not taken into account because it is an initialization parameter that all
methods require.

From now on, starting from MNIST test and for the subsequent

datasets to consider, deep clustering algorithms are included in the

comparison tables as the state-of-the-art algorithms. The inclusion of

these methods was not possible for smaller datasets due to the small

size problem and complications concerning the code provided by the

authors [34]. Deep networks, such as the deep autoencoder used in the

82

methods from Peng et al. [34], usually need thousands of samples to

successfully being trained in nontrivial scenarios (the algorithm is not

trying to separate simply black from white images). Workarounds can

be applied in a small-size data scenario, i.e. data augmentation8.

However, for the sake of clustering methods comparison under ‘real’

circumstances, the deep clustering algorithms are applied starting from

this point.

Results for MNIST test in Table 11 demonstrated that the new

nonlinear MCL variants could outperform even ‘complex’ state-of-art

deep-clustering algorithms. Taking a step back, in the study of Peng

and colleagues, a deep clustering algorithm based on autoencoder and

invariances sample assignments was presented (refer to chapter 1.2.5.

‘Deep-based methods’ for more details). The authors mentioned that

their baseline algorithms (HOMO, HIT, HOT and HOE) could be

further improved by changing the deep autoencoder architecture with

other types of layers, i.e. by using convolutional (CNN) layers instead

of fully connected ones; and further demonstrated the improvement in

performance for the MNIST data (HOE-CNN). CNN layers are

designed to follow vision processing from the visual cortex of living

organisms, thus being aid for its application on image analysis [81].

Therefore, its use in the autoencoder and posterior performance

improvement made sense for the study of Peng et al. On account of it,

the outperforming values of the nonlinear MCL variants over the CNN

deep clustering algorithm variant, aid for image datasets, is a nontrivial

achievement accomplished purely by network geometry and

navigability theory. The improvement of MC-MCL and isoMCL over

the deep-clustering methods is completely conferred to network theory,

considering that original MCL achieves low performances, with

8 Data augmentation refers to the generation of new data samples, referred as to latent

data, from known samples [97].

83

accuracy (0.54), ARI (0.38) and NMI (0.56) even under Kmeans values

(0.57, 0.42 and 0.55 in accuracy, ARI and NMI respectively).

isoMCL and MC-MCL dual are the best performing methods (Table

11) followed by MC-MCL hbr, MC-MCL hdr, HOE-CNN and MC-

MCL. Interestingly, cciMST achieves a better mean ranking than the

deep-clustering methods with fully connected layers. On the other

hand, MC-AP improves in performance compared to its linear version

by an important extent. Finally, DPSP, DBSCAN and single linkage

are the worst-performing methods.

The parameter search simulation for the MNIST test dataset can be

found in Figure 29 without normalization application (The rest of the

parameter search plots for MNIST datasets can be found in the

Appendix section Figure A. 11-Figure A. 13, including the figure where

isoMCL achieves its maximum values from Table 11). As appreciated,

Figure 29. Parameter search for MC-MCL and isoMCL variants in MNIST test dataset

without normalization. Accuracy, ARI and NMI performances. The x axis (from 1 to 50)

represents different units depending on the MCL variant: for MC-MCL hbr (blue) and hdr

(green), is the percentile of high betweenness centrality/degree nodes to be removed for
the computation of the second MST. For MC-MCL dual (orange) it corresponds to the

number of dual MSTs to construct and ensemble with the original MST. For isoMCL

(purple) it consists in the k value to create the proximity graph.

84

the maximum possible values of the different variances are close to

each other. MC-MCL dual is the method with less performance

fluctuation achieving less than 0.1 units of difference between the

lowest and highest performances for the three measures, demonstrating

to be a stabile algorithm. All other methods fluctuate more in

performance, but generally with strong outcomes (values above 0.7 in

most of the cases).

Methods Best dist Factor Norm Acc ARI NMI Mean rank

MC-MCL dual corr - - 0.91 0.89 0.90 2.00

MC-MCL hbr corr LOG - 0.92 0.89 0.89 2.00

isoMCL euc LOG 0.94 0.88 0.88 2.67

MC-MCL hdr corr - - 0.90 0.87 0.89 3.67

HOE-CNN cos - 0.93 0.82 0.86 4.00

HOE cos - 0.87 0.74 0.76 6.67

cciMST corr - 0.81 0.78 0.83 7.33

HOMO euc - 0.86 0.72 0.74 7.67

HOT corr - 0.86 0.72 0.74 7.67

HIT cit - 0.86 0.72 0.74 7.67

MC-MCL euc - - 0.60 0.58 0.74 10.33

MCL euc LOG 0.66 0.51 0.67 11.67

Kmeans corr LOG 0.56 0.40 0.53 13.00

DBSCAN euc - 0.11 0.00 0.00 14.00

Single linkage euc - 0.11 0.00 0.00 14.00

Table 12. Clustering performance in MNIST full data. Accuracy (Acc), Adjusted Rand

Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the

previously mentioned measures) are reported for each clustering method together with
the best distance approach (Pearson correlation [corr], Spearman correlation [spea] or

Euclidean [euc]; only in case of deep clustering algorithms: cosine distance [cos] and

cityblock distance [cit]), factor (for MC-MCL-variants) and normalization (Norm)
applied. The methods are sorted by mean rank from the highest (top) to the lowest

(bottom) performance. Methods in red are algorithms with one hyperparameter to

optimize. Note that the parameter(s) to consider the number of clusters is/are not taken
into account because it is an initialization parameter that all methods require.

In the case of the full MNIST dataset (Table 12), most of the

algorithm’s performances are improved, with the exception of

85

DBSCAN and Single linkage, which are not able to figure out the

patterns inside it. Note that the algorithms AP, MCAP and DPSP do

not appear here due to errors thrown by their respective codes (issues

with the code’s implementation). Once again, almost all nonlinear

MCL variants outperform in a great fashion their linear counterpart

MCL, and even the CNN-based deep clustering HOE-CNN, where

accuracies are close to one another but the ARI and NMI performances

are much stronger within the here presented algorithms. The exception

comes with MC-MCL with the original kernel that slightly increased

the performance of MCL and even decreased a bit in accuracy.

Curiously the cciMST algorithm achieves as well a noticeable

performance, and although it does not outperform HOE-CNN, it does

compared to the deep-clusterings based on fully connected layers

HOMO, HOT and HIT in the mean rank.

Due to the size of this dataset, and time constraints, there was no

evaluation on parameter search for the MC-MCL multi-MST variants

and isoMCL. The parameters selected for them were the same as for

the best parameters found in the MNIST test dataset. Therefore, take

into considerations that the performances of Table 12 might not be the

final and even better performances can be obtained.

CIFAR

CIFAR [82], alike MNIST, is a widely employed dataset for artificial

intelligence benchmarks composed of ‘tiny’ colour images of 32x32

pixels. They are a labelled subset of the ’80 million tiny images’ dataset

collected by Krizhevsky, Nair and Hinton (and pulled offline during

2020 for ‘teaching AI systems to use racist, misogynistic slurs’). From

these 80 million tiny images, two datasets, namely CIFAR10 and

CIFAR100 were extracted.

The CIFAR10 dataset consists of 60000 images and 10 classes with

6000 images each class. The classes encapsulate images of: airplanes,

automobiles, birds, cats, deers, dogs, frogs, horses, ships and trucks

86

(Figure 30). Regularly, in AI benchmarks, this dataset is divided into a

training set (50000 images) and a test set (10000 images). Here, the

test batch was used for clustering analysis, which contains 1000 images

for each of the ten classes. Note that the CIFAR10 images are here in

grey scale.

On the other hand, CIFAR100 is a dataset that contains 100 classes,

with 600 images each class, which can be categorized into 20 ‘super

classes’. Here, just one superclass is utilized termed ‘aquatic

mammals’, which naturally consists of aquatic mammals images from

5 different classes: beaver, dolphin, otter, seal and whale. As such, this

dataset comprises a total of 3000 colour images, 600 for each of the

five classes.

Both datasets are challenging for cluster algorithms, demonstrated by

the low performances that the clustering methods achieve. In the case

Figure 30. Subset of the CIFAR10 image dataset. Image extracted from Krizhevsky
webpage: https://www.cs.toronto.edu/~kriz/cifar.html

87

of CIFAR100 (Table 13), the best performing methods are the deep

clustering. Particularly, HOE obtains the highest values with 0.36,

0.12, and 0.14 in accuracy, ARI and NMI respectively. Despite the

difficulty of this dataset, MC and isoMCL variants still improve their

performance in comparison with MCL. Remarkably, AP obtains better

performance than its nonlinear counterpart MC-AP, and together with

Kmeans get the 6th and 7th position respectively out of 17 methods.

From the MC-MCL variants, the hdr version is the closest to state-of-

art performance. Oppositely, DBSCAN, MCL, DPSP, and Single

linkage are the methods that present more troubles in assigning class

memberships to samples, and achieve ARI values of 0 and NMI values

close to 0.

Methods Best dist Factor Norm Acc ARI NMI Mean rank

HOE cos - 0.36 0.12 0.14 1.666667

HOT corr - 0.36 0.11 0.14 2.333333

HOMO euc - 0.35 0.11 0.14 3.333333

HIT cit - 0.35 0.11 0.14 3.333333

MC-MCL hdr corr - LOG 0.36 0.11 0.13 3.67

AP spea - 0.34 0.13 0.15 3.67

Kmeans corr - 0.35 0.12 0.13 4.00

MC-MCL hbr corr - LOG 0.35 0.10 0.11 6.67

MC-MCL corr SQRT LOG 0.35 0.08 0.10 8.00

MC-AP spea - 0.34 0.09 0.10 9.00

MC-MCL dual euc LOG LOG 0.33 0.09 0.10 9.67

isoMCL corr - 0.30 0.06 0.07 12.00

cciMST corr - 0.22 0.00 0.02 13.00

DBSCAN corr LOG 0.20 0.00 0.02 13.67

MCL euc LOG 0.21 0.00 0.01 14.00

DPSP euc - 0.20 0.00 0.01 14.33

Single linkage euc - 0.20 0.00 0.00 15.00

Table 13. Clustering performance in CIFAR100 data. Accuracy (Acc), Adjusted Rand

Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the
previously mentioned measures) are reported for each clustering method together with

88

the best distance approach (Pearson correlation [corr], Spearman correlation [spea] or

Euclidean [euc]; only in case of deep clustering algorithms: cosine distance [cos] and
cityblock distance [cit]), factor (for MC-MCL-variants) and normalization (Norm)

applied. The methods are sorted by mean rank from the highest (top) to the lowest

(bottom) performance. Methods in red are algorithms with one hyperparameter to
optimize. Note that the parameter(s) to consider the number of clusters is/are not taken

into account because it is an initialization parameter that all methods require.

It seems that CIFAR10 is even more challenging than CIFAR100 by

the general poor performances from all clustering algorithm. The main

reason might be the increase in the number of samples to assign, from

5 in CIFAR100 to 10 in CIFAR10. As in CIFAR100, the top-

performing methods are the deep clustering algorithms achieving a

mean rank of 1 for the four of them, meaning equal performance across

deep-clustering method independently from the distance used in the

model (Table 14).

Methods Best dist Factor Norm Acc ARI NMI Mean rank

HOE cos - 0.22 0.04 0.07 1.00

HOT corr - 0.22 0.04 0.07 1.00

HOMO euc - 0.22 0.04 0.07 1.00

HIT cit - 0.22 0.04 0.07 1.00

isoMCL corr LOG 0.18 0.04 0.07 4.33

Kmeans euc - 0.20 0.03 0.07 4.67

MC-MCL dual euc LOG - 0.18 0.04 0.06 6.33

AP euc - 0.20 0.03 0.06 6.67

MCL corr LOG 0.17 0.04 0.06 7.00

MC-MCL hdr euc LOG - 0.19 0.03 0.05 8.67

MC-MCL hbr euc LOG - 0.19 0.03 0.05 8.67

MC-MCL euc LOG - 0.19 0.03 0.05 8.67

MC-AP euc LOG 0.19 0.03 0.05 8.67

cciMST corr - 0.14 0.02 0.03 14.00

DBSCAN euc - 0.10 0.00 0.00 15.00

DPSP euc - 0.10 0.00 0.00 15.00

Single linkage euc - 0.10 0.00 0.00 15.00

89

Table 14. Clustering performance in CIFAR10 data. Accuracy (Acc), Adjusted Rand

Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the
previous mentioned measures) are reported for each clustering method together with the

best distance approach (Pearson correlation [corr], Spearman correlation [spea] or

Euclidean [euc]; only in case of deep clustering algorithms: cosine distance [cos] and
cityblock distance [cit]), factor (for MC-MCL-variants) and normalization (Norm)

applied. The methods are sorted by mean rank from the highest (top) to the lowest

(bottom) performance. Methods in red are algorithms with one hyperparameter to
optimize. Note that the parameter(s) to consider the number of clusters is/are not taken

into account because is an initialization parameter that all methods require.

Curiously, MCL achieves better ranking performance than its

nonlinear variants except for MC-MCL dual and isoMCL. AP shows

once again to perform better than its MC-AP in mean rank (Table 14).

Kmeans performs competitively as well in this dataset achieving a 6th

position, and DBSCAN, DPSP and single linkage have troubles trying

to assign class memberships by interpreting the CIFAR10 dataset as

one unique cluster, explaining the 0 values in ARI and NMI.

Leaving aside the values of mean ranking, the majority of algorithms

perform really close to each other and with low performances, making

this dataset the most difficult to cluster from all data up to this point.

As MNIST, CIFAR consists of tiny images, although the patterns

inside both data seem to differ greatly in simplicity. Black and white

numbers may offer clearer patterns to be analyzed than objects/animal

images. Moreover, while MNIST backgrounds are black, different

colours (for CIFAR100) and shapes can be found in CIFAR

backgrounds.

90

The parameter search simulation for the CIFAR10 test dataset can be

found in Figure 31 without normalization application (The rest of the

parameter search plots for CIFAR datasets can be found in the

Appendix section Figure A. 14-Figure A. 16, including the plot where

isoMCL achieves its maximum values from Table 14). A curiously

different trend is observed in the CIFAR10 line plot (Figure 31), where

all nonlinear MCL variants start improving their performances with

higher parameter values (previously, there was a diverse performance

line trend depending on the clustering variant and the dataset

analyzed). Nevertheless, the performance values are maintained at a

low level for all algorithm variants, and the threshold of 0.20, 0.05 and

0.10 is never reached for accuracy, ARI and NMI, respectively.

Figure 31. Parameter search for MC-MCL and isoMCL variants in CIFAR10 dataset

without normalization. Accuracy, ARI and NMI performances. The x axis (from 1 to 50)

represents different units depending on the MCL variant: for MC-MCL hbr (blue) and
hdr (green), is the percentile of high betweenness centrality/degree nodes to be removed

for the computation of the second MST. For MC-MCL dual (orange) it corresponds to

the number of dual MSTs to construct and ensemble with the original MST. For isoMCL
(purple) it consists in the k value to create the proximity graph.

91

10.2. General clustering performance – an

overview

This section provides the performance overview for all clustering

algorithm across all datasets by a summary table of the NMI measure

(Table 15), accuracy and ARI summary tables can be found in the

appendix section (Table A. 1 & Table A. 2).

It is clearly appreciated that in general, the nonlinear MCL versions

(red), namely MC-MCL (M2-M5) and isoMCL (M1), improve the

performance of classical MCL (green)(M6) in all datasets and turns

MCL into one of the best clustering methods for nonlinear data among

the compared algorithms. In general, all nonlinear MCL variants

perform similarly. However, MC-MCL with original MC kernel (M5)

tends to perform lower, as exhibited in the Radar dataset with two

clusters (D2), and MNIST datasets (D5, D8 and D9), this trend presents

an exception on the Radar with three clusters (D3), where MC-MCL

(M5) outperforms all the rest of the methods with an NMI value of

0.38. The use of the MC- or iso- kernel improve to a great degree the

MCL performance outperforming even ‘complicated’ algorithms such

as the deep clustering methods (M14 – M18) in the MNIST datasets

(D8, D9), with one particular deep-clustering variant tailored for the

analysis of MNIST data given by its autoencoder architecture (M18).

NMI D1 D2 D3 D4 D5 D6 D7 D8 D9

M1 0.31 0.28 0.28 1.00 0.78 0.07 0.07 0.84 0.88

M2 0.31 0.32 0.30 1.00 0.79 0.10 0.06 0.86 0.90

M3 0.31 0.25 0.32 1.00 0.78 0.11 0.05 0.85 0.89

M4 0.37 0.28 0.32 1.00 0.81 0.13 0.05 0.84 0.89

M5 0.31 0.12 0.38 1.00 0.70 0.10 0.05 0.77 0.74

M6 0.21 0.06 0.05 1.00 0.55 0.01 0.06 0.56 0.67

M7 0.26 0.01 0.14 1.00 0.72 0.02 0.03 0.80 0.83

M8 0.24 0.09 0.22 0.58 0.68 0.10 0.05 0.77 -

M9 0.24 0.13 0.25 0.19 0.51 0.15 0.06 0.53 -

92

M10 0.21 0.03 0.03 0.82 0.31 0.01 0.00 0.54 -

M11 0.38 0.14 0.02 1.00 0.43 0.02 0.00 0.00 0.00

M12 0.26 0.13 0.15 0.20 0.53 0.13 0.07 0.55 0.53

M13 0.01 0.01 0.02 1.00 0.01 0.00 0.00 0.00 0.00

M14 - - - - - 0.14 0.07 0.69 0.74

M15 - - - - - 0.14 0.07 0.68 0.74

M16 - - - - - 0.14 0.07 0.68 0.76

M17 - - - - - 0.14 0.07 0.68 0.74

M18 - - - - - - - 0.78 0.86

Table 15. NMI performance summary of all clustering methods M across all datasets

D. Methods list: M1: isoMCL; M2:MC-MCL dual; M3: MC-MCL hbr; M4: MC-MCL

hdr; M5: MC-MCL; M6: MCL; M7: cciMST; M8: MC-AP; M9: AP; M10: DPSP; M11:

DBSCAN; M12: Kmeans; M13: Single linkage; M14: HOT; M15: HOMO; M16: HOE;
M17: HIT; M18: HOE-CNN. Data list: D1: Gastric mucosa; D2: Radar 2C; D3: Radar

3C; D4: Tripartite-Swiss-Roll; D5 MNIST3000; D6: CIFAR100; D7: CIFAR10; D8:

MNIST test; D9: MNIST full. Nonlinear MCL variants are marked with red, whereas the
original MCL algorithm is marked in green.

The algorithm cciMST (M7), based in the MST network as the MC-

MCL variants, perform relatively good in several datasets with mean

ranking usually after the here proposed nonlinear MCL methods, it

even outperformed the deep-clustering methods (M14-M18) on the

MNIST data (D8 and D9) (Table 15). However, this method evidenced

some troubles for the Radar 2 clusters (D2) and CIFAR (D6, D7) data.

Furthermore, considering if MC can as well improve the performance

of other clustering algorithms, such as AP (M9), with MC-AP (M8),

the results do not display a clear improvement with the use of the MC

kernel with the exception of the particular cases of the Tripartite-

Swiss-Roll (D4) and the MNIST datasets (D5 and D8). Although, in

the Tripartite-Swiss-Roll dataset, MC-AP was not able to find perfectly

the three clusters (only 4 methods from 13 failed to do so). Notice that

both AP and MC-AP also had troubles in computing clustering for the

MNIST full data, this time regarding their code implementation; an

issue that persisted with the method DPSP (M10).

93

In the case of the density-based clustering, DPSP (M10) and DBSCAN

(M11) did not show outstanding performances, with the exception of

DBSCAN in the gastric mucosa dataset (D1), where it achieves the

highest NMI. Curiously, DBSCAN reduced its performances

significantly in the MNIST datasets from the tiniest MNIST3000 (D5),

to the biggest ones (D8 and D9), triggered by the nontrivial task of its

two-parameter search under fuzzy clusters. A method that proved to be

ineffective in its generic form is the recent proposed DPSP (M10), with

low performances across all datasets. As aforementioned, it had

troubles with the MNIST full (D9) cluster membership computation,

and it was not able to retrieve the three clusters from the Tripartite-

Swiss-Roll dataset (D4). This unsuccessful pattern under the analyzed

datasets could be related to the fact that the density peaks were

automatically selected by the algorithm, but with manually selected

density peaks, the algorithm might perform better in the clustering task.

Kmeans (M12), on the other side, as theoretically expected, perform

low in these nonlinear datasets. Nonetheless, it presents comparable

NMI values to the best-performing methods for both CIFAR data (D6

and D7). These results, far from impressive, highlight the onerous

patterns from the CIFAR datasets, where a possible explanation to the

poor clustering performances - and different from MNIST - are the

complex shapes of objects looked from different perspectives and

distances, added to the different shapes and colour tones from the

backgrounds. One class image, i.e. dogs, can vary tremendously noise-

wise in its background, if the image was taken on a beach, mountains

or at home; patterns very different from each other and difficult to

discern with unsupervised tasks.

For the hierarchical clustering method, Single linkage (M13), all NMI

performances were close to 0, proving the inability of this algorithm

for these dataset types, with the exception of the Tripartite-Swiss-Roll

(D4), where it was able to perfectly assign all class memberships,

achieving a 1 in NMI performance.

94

Regarding the last type of algorithms, the state-of-art methods using

deep-clustering (M14-M17) evidenced strong performances in CIFAR

(D6 and D7), having the highest performances (Table 15), yet

achieving this podium with low values. With respect to MNIST (D8

and D9), the same methods presented strong performances,

outperformed by its deep-clustering cousin with the convolutional

variant (M18). However, these techniques performed lower than the

nonlinear MCL methods.

Lastly, addressing the time complexity of each MC-MCL variant, most

of them are similar and need the generation of one or two networks

(MST or proximity-based) that later are unified for the kernel

construction. An exception is MC-MCL dual, which could unify many

dual MSTs, depending on the input parameter value (number of dual

MSTs to construct). In this work, 50 was the maximum value tried, and

by analyzing the results on different datasets, a general trend was

observed. Usually, rather a low input value was needed to obtain

already high performances, as displayed in Figure 32 (All other dataset

plots can be found in the appendix Figure A. 17-Figure A. 28). Meaning

Figure 32. Illustration of the peak performance zone on MNIST3000. Accuracy, ARI
and NMI performances from different input parameter values for the method MC-MCL

dual (right). Distribution plot from the different performances achieved through the
different evaluation measures (left). The magenta line represents the 95 highest

performance percentile and is marked both in the distribution and performance plots.

95

that it is regularly enough to use a few dual MSTs for the kernel

computation, which already obtain high significant performances when

comparing with a more (computationally) expensive kernel. A

summary of parameter analysis, including all nonlinear MCL variants,

can be found in Figure A. 29.

10.3. Advantages and limitations of MC-MCL

and isoMCL

The nine considered datasets represent a benchmark with ground-truth

annotation, including generally adopted data (CIFAR and MNIST) to

test algorithms for clustering tasks. These are considered to be enough

complete and diverse to adequately investigate the performance in

nonlinear problems of each method suggested. In fact, nonlinear MCL

should offer better results than pure MCL, because the similarity kernel

is derived from dissimilarity distances that approximate a network

geometry, either by use of the MST, or the proximity graph (refer to

chapters 7.3. ‘Minimum curvilinear Markov clustering multi-MST

variants’ and 7.4. ‘Isomap-inspired Markov clustering’ for more

information). This theoretical expectation is confirmed on all datasets,

where the five nonlinear MCL variants achieve a greater mean rank

than the kernel-less MCL, corroborating the rationale on how to design

similarity kernels that favour the stochastic simulation procedure of

MCL.

MC-MCL and isoMCL demonstrated clear superior performance not

only over MCL, but overall the here presented clustering algorithms,

achieving always leading mean rank positions in these complex

nonlinear scenarios.

Notwithstanding the big improvements reached by these MCL

variants, reduced performances could be appreciated in the CIFAR

datasets. Despite close to the state-of-art performance, the engineering

network geometry and navigability improvement for the MCL random

96

walk was not enough to catch the complex patterns behind the CIFAR

datasets. As above-mentioned in chapter 10.2. ‘General clustering

performance – an overview’, CIFARs objects plains, and different

backgrounds (acting like noise) make it difficult for MCL to catch

certain patterns from the object to be clustered, and such patterns do

not simply emerge through the kernels here constructed (by means of

MSTs or proximity networks). Although this seems to be a limitation

tangent to all clustering methods, the issue does not persist in the

supervised scenario, where several algorithms achieve close to perfect

classification in CIFAR10 and CIFAR100 [83]–[89]. Therefore, more

strategies regarding these limitations could pinpoint to a general

improvement in clustering performance not only in CIFAR, but also in

many real datasets.

97

Part IV. CONCLUSION

In conclusion, this dissertation introduces a rationale on how to design

similarity measures for MCL, which try to approximate the hidden

geometry of the manifold that generates the data network topology,

either in the framework of community detection or clustering tasks. For

the community detection scenario, since the hidden geometry of many

real complex networks is hyperbolic and tree-like [90], [91], its

congruous approximation can favour the stochastic simulation

procedure of MCL. The empirical and numerical results provided in

this work support the rationale, and the derived similarity measures

EBC, RA, and ER seem to boost MCL both in real and synthetic

networks.

On the other hand, following the idea that many real complex data

follow a tree-like structure, its approximation, inspired by network

geometry and navigability, and derived from multidimensional

datasets through the MC and Isomap inspired network-based similarity

kernels, is supported by the important boost given to MCL in many

nonlinear and real multidimensional data scenarios. Such

improvements could outperform, by an important gap, even

‘complicated’ deep-clustering-based algorithms in AI benchmark

datasets like MNIST, where the architecture of the deep algorithm

(autoencoder) is tailored exclusively for that type of data. On the

contrary, the here proposed nonlinear kernels can work in a

comprehensive list of datatypes, and no need for changes is required to

be directly applied in different datasets.

In the case of CIFAR, the proposed methods could perform close to

state-of-art methods, although a collective clustering-wise issue is

appreciated, where all performance values, through all evaluation

98

measurements, are rather small. A possible solution to this, inspired by

the deep-clustering methods, could be to embed the data through a

certain technique, prior to clustering membership assignments (like an

autoencoder or a dimensionality reduction algorithm). The new data

coordinates could hypothetically lead to prior segregation between

classes, that clustering algorithms could easily catch, as already

demonstrated in the study of Peng et al. [34]. Under this circumstance,

a deep learning approach could enhance greatly the performances of

the here proposed methods, with the drawback of designing different

deep architectures depending on the dataset to be analyzed, adding the

additional ‘stress’ of data augmentation in the case of small-size

datasets, if necessary.

Regarding the nonlinear MCL variants for the multidimensional

datasets, remarkably, the methods that better perform were the MC-

multi-MSTs and Isomap-inspired kernels. This improvement over the

original MC kernel could be explained by the increase in the local

connectivity of the MST to a point where it can alleviate paths with

high traffic (central nodes connecting the network), but avoiding

‘multiple possible paths’ from one point to another (many edges).

Indeed, the parameter values that obtain the highest performances in

the case of the MC-MCL dual and isoMCL variants are, in general,

rather low.

To summarize, network geometry was already shown to facilitate

greedy routing [61], [92], and affinity propagation [61], and to the best

of the collected knowledge in this dissertation, this is the first time that

the strategy is applied to better guide random-walk (stochastic flow)

based simulations. Therefore, the results displayed in this dissertation

provide further confirmation that network geometry can be adopted to

make information flow processes more efficient and therefore pave the

way for the generalized understanding of the impact of network

geometry on algorithms based on network navigability.

99

APPENDIX

Figure A. 1. Community detection on nPSO networks: N = 100 and γ = 2. Synthetic

networks have been generated using the nPSO model with parameters N = 100 (network

size) γ = 2 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16]

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

100

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

Figure A. 2. Community detection on nPSO networks: N = 100 and γ = 2.5. Synthetic

networks have been generated using the nPSO model with parameters N = 100 (network

size) γ = 2.5 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16]

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

101

Figure A. 3. Community detection on nPSO networks: N = 100 and γ = 3. Synthetic

networks have been generated using the nPSO model with parameters N = 100 (network

size) γ = 3 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16]

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

102

Figure A. 4. Community detection on nPSO networks: N = 500 and γ = 2. Synthetic

networks have been generated using the nPSO model with parameters N = 500 (network

size) γ = 2 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16]

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

103

Figure A. 5. Community detection on nPSO networks: N = 500 and γ = 2.5. Synthetic

networks have been generated using the nPSO model with parameters N = 500 (network

size) γ = 2.5 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16]

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

104

Figure A. 6. Community detection on nPSO networks: N = 500 and γ = 3. Synthetic

networks have been generated using the nPSO model with parameters N = 500 (network

size) γ = 3 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16]

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

105

Figure A. 7. Community detection on nPSO networks: N = 1000 and γ = 2. Synthetic

networks have been generated using the nPSO model with parameters N = 1000

(network size) γ = 2 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12,

14, 16] (half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related

to the clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

106

Figure A. 8. Community detection on nPSO networks: N = 1000 and γ = 2.5. Synthetic

networks have been generated using the nPSO model with parameters N = 1000

(network size) γ = 2.5 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12,

14, 16] (half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related

to the clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

107

Figure A. 9. Community detection on nPSO networks: N = 1000 and γ = 3. Synthetic

networks have been generated using the nPSO model with parameters N = 1000

(network size) γ = 3 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12,

14, 16] (half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related

to the clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each

combination of parameters, 10 networks have been generated. For each network the

community detection methods have been executed and the communities detected have

been compared to the annotated ones computing the Normalized Mutual Information

(NMI). The plots report for each parameter combination the mean NMI and standard

error over the random repetitions.

108

Figure A. 10. Parameter search for MC-MCL and isoMCL variants in gastric mucosa

dataset without normalization. Accuracy, ARI and NMI performances. The x axis (from
1 to 50) represents different units depending on the MCL variant: for MC-MCL hbr

(blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes to

be removed for the computation of the second MST. For MC-MCL dual (orange) it
corresponds to the number of dual MSTs to construct and ensemble with the original

MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

109

Figure A. 11. Parameter search for MC-MCL and isoMCL variants in MNIST 3000

dataset without normalization. Accuracy, ARI and NMI performances. The x axis (from
1 to 50) represents different units depending on the MCL variant: for MC-MCL hbr

(blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes to

be removed for the computation of the second MST. For MC-MCL dual (orange) it
corresponds to the number of dual MSTs to construct and ensemble with the original

MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

110

Figure A. 12. Parameter search for MC-MCL and isoMCL variants in MNIST 3000

dataset with LOG normalization. Accuracy, ARI and NMI performances. The x axis

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL
hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes

to be removed for the computation of the second MST. For MC-MCL dual (orange) it

corresponds to the number of dual MSTs to construct and ensemble with the original
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

111

Figure A. 13. Parameter search for MC-MCL and isoMCL variants in MNIST test

dataset with LOG normalization. Accuracy, ARI and NMI performances. The x axis

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL

hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes
to be removed for the computation of the second MST. For MC-MCL dual (orange) it

corresponds to the number of dual MSTs to construct and ensemble with the original

MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

112

Figure A. 14. Parameter search for MC-MCL and isoMCL variants in CIFAR100

dataset without normalization. Accuracy, ARI and NMI performances. The x axis (from

1 to 50) represents different units depending on the MCL variant: for MC-MCL hbr
(blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes to

be removed for the computation of the second MST. For MC-MCL dual (orange) it

corresponds to the number of dual MSTs to construct and ensemble with the original
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

113

Figure A. 15. Parameter search for MC-MCL and isoMCL variants in CIFAR100

dataset with LOG normalization. Accuracy, ARI and NMI performances. The x axis

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL
hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes

to be removed for the computation of the second MST. For MC-MCL dual (orange) it

corresponds to the number of dual MSTs to construct and ensemble with the original
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

114

Figure A. 16. Parameter search for MC-MCL and isoMCL variants in CIFAR10

dataset with LOG normalization. Accuracy, ARI and NMI performances. The x axis

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL
hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes

to be removed for the computation of the second MST. For MC-MCL dual (orange) it

corresponds to the number of dual MSTs to construct and ensemble with the original
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.

115

Figure A. 17. Illustration of the peak performance zone on gastric mucosa dataset

without normalization. Accuracy, ARI and NMI performances from different input

parameter values for the method MC-MCL dual (right). Distribution plot from the
different performances achieved through the different evaluation measures (left). The

magenta line represents the 95 highest performance percentile and is marked both in the

distribution and performance plots.

Figure A. 18. Illustration of the peak performance zone on gastric mucosa dataset with

LOG normalization. Accuracy, ARI and NMI performances from different input

parameter values for the method MC-MCL dual (right). Distribution plot from the

different performances achieved through the different evaluation measures (left). The

magenta line represents the 95 highest performance percentile and is marked both in the
distribution and performance plots.

116

Figure A. 19. Illustration of the peak performance zone on radar (two clusters) dataset

without normalization. Accuracy, ARI and NMI performances from different input

parameter values for the method MC-MCL dual (right). Distribution plot from the
different performances achieved through the different evaluation measures (left). The

magenta line represents the 95 highest performance percentile and is marked both in the

distribution and performance plots.

Figure A. 20. Illustration of the peak performance zone on radar (three clusters)

dataset without normalization. Accuracy, ARI and NMI performances from different

input parameter values for the method MC-MCL dual (right). Distribution plot from the

different performances achieved through the different evaluation measures (left). The

magenta line represents the 95 highest performance percentile and is marked both in the
distribution and performance plots.

117

Figure A. 21. Illustration of the peak performance zone on tripartite-swiss-roll dataset

without normalization. Accuracy, ARI and NMI performances from different input

parameter values for the method MC-MCL dual (right). Distribution plot from the
different performances achieved through the different evaluation measures (left). The

magenta line represents the 95 highest performance percentile and is marked both in the

distribution and performance plots.

Figure A. 22. Illustration of the peak performance zone on MNIST 3000 dataset with

LOG normalization. Accuracy, ARI and NMI performances from different input

parameter values for the method MC-MCL dual (right). Distribution plot from the

different performances achieved through the different evaluation measures (left). The

magenta line represents the 95 highest performance percentile and is marked both in the
distribution and performance plots.

118

Figure A. 23. Illustration of the peak performance zone on MNIST test dataset without

normalization. Accuracy, ARI and NMI performances from different input parameter

values for the method MC-MCL dual (right). Distribution plot from the different
performances achieved through the different evaluation measures (left). The magenta

line represents the 95 highest performance percentile and is marked both in the

distribution and performance plots.

Figure A. 24. Illustration of the peak performance zone on MNIST test dataset with

LOG normalization. Accuracy, ARI and NMI performances from different input

parameter values for the method MC-MCL dual (right). Distribution plot from the

different performances achieved through the different evaluation measures (left). The

magenta line represents the 95 highest performance percentile and is marked both in the
distribution and performance plots.

119

Figure A. 25. Illustration of the peak performance zone on CIFAR100 dataset without

normalization. Accuracy, ARI and NMI performances from different input parameter

values for the method MC-MCL dual (right). Distribution plot from the different
performances achieved through the different evaluation measures (left). The magenta

line represents the 95 highest performance percentile and is marked both in the

distribution and performance plots.

Figure A. 26. Illustration of the peak performance zone on CIFAR100 dataset with

LOG normalization. Accuracy, ARI and NMI performances from different input

parameter values for the method MC-MCL dual (right). Distribution plot from the

different performances achieved through the different evaluation measures (left). The

magenta line represents the 95 highest performance percentile and is marked both in the
distribution and performance plots.

120

Figure A. 27. Illustration of the peak performance zone on CIFAR10 dataset without

normalization. Accuracy, ARI and NMI performances from different input parameter

values for the method MC-MCL dual (right). Distribution plot from the different
performances achieved through the different evaluation measures (left). The magenta

line represents the 95 highest performance percentile and is marked both in the

distribution and performance plots.

Figure A. 28. Illustration of the peak performance zone on CIFAR10 dataset with LOG

normalization. Accuracy, ARI and NMI performances from different input parameter

values for the method MC-MCL dual (right). Distribution plot from the different

performances achieved through the different evaluation measures (left). The magenta

line represents the 95 highest performance percentile and is marked both in the
distribution and performance plots.

121

Figure A. 29. Peak performance zone hit ratio for each parameter value for MC-MCL

and isoMCL variants across all datasets. For each measure, Accuracy (Acc), ARI and

NMI, the bars display the hit ratio of each parameter value in which its performance
across the different data was on the so-called peak performance zone (highest

performances according to a 95 percentile). The first subplot columns shows the hit

frequence for the MC-MCL-hbr variant, the second of MC-MCL dual variant, the third
for the MC-MCL hdr variant and the last column for isoMCL variant.

122

Acc D1 D2 D3 D4 D5 D6 D7 D8 D9

M1 0.75 0.77 0.75 1.00 0.85 0.30 0.18 0.91 0.94

M2 0.71 0.78 0.75 1.00 0.85 0.33 0.18 0.86 0.91

M3 0.71 0.80 0.74 1.00 0.79 0.35 0.19 0.85 0.92

M4 0.75 0.77 0.74 1.00 0.82 0.36 0.19 0.85 0.90

M5 0.71 0.71 0.74 1.00 0.75 0.35 0.19 0.86 0.60

M6 0.67 0.60 0.42 1.00 0.48 0.21 0.17 0.54 0.66

M7 0.71 0.64 0.62 1.00 0.69 0.22 0.14 0.80 0.81

M8 0.67 0.69 0.56 0.64 0.75 0.34 0.19 0.75 -

M9 0.67 0.71 0.66 0.54 0.56 0.34 0.20 0.41 -

M10 0.54 0.65 0.65 0.85 0.27 0.20 0.10 0.31 -

M11 0.58 0.68 0.64 1.00 0.26 0.20 0.10 0.11 0.11

M12 0.67 0.71 0.62 0.56 0.57 0.35 0.20 0.57 0.56

M13 0.50 0.64 0.64 1.00 0.10 0.20 0.10 0.11 0.11

M14 - - - - - 0.36 0.22 0.82 0.86

M15 - - - - - 0.35 0.22 0.82 0.86

M16 - - - - - 0.36 0.22 0.82 0.87

M17 - - - - - 0.35 0.22 0.82 0.86

M18 - - - - - - - 0.91 0.93

Table A. 1. Accuracy (acc) performance summary of all clustering methods M across

all datasets D. Methods list: M1: isoMCL; M2:MC-MCL dual; M3: MC-MCL hbr; M4:

MC-MCL hdr; M5: MC-MCL; M6: MCL; M7: cciMST; M8: MC-AP; M9: AP; M10:
DPSP; M11: DBSCAN; M12: Kmeans; M13: Single linkage; M14: HOT; M15: HOMO;

M16: HOE; M17: HIT; M18: HOE-CNN. Data list: D1: Gastric mucosa; D2: Radar

2C; D3: Radar 3C; D4: Tripartite-Swiss-Roll; D5 MNIST3000; D6: CIFAR100; D7:
CIFAR10; D8: MNIST test; D9: MNIST full. Nonlinear MCL variants are marked with

red, whereas the original MCL algorithm is marked in green.

123

ARI D1 D2 D3 D4 D5 D6 D7 D8 D9

M1 0.33 0.25 0.32 1.00 0.73 0.06 0.04 0.82 0.88

M2 0.29 0.29 0.34 1.00 0.73 0.09 0.04 0.81 0.89

M3 0.29 0.35 0.34 1.00 0.69 0.10 0.03 0.80 0.89

M4 0.36 0.25 0.35 1.00 0.74 0.11 0.03 0.79 0.87

M5 0.29 0.17 0.27 1.00 0.62 0.08 0.03 0.73 0.58

M6 0.19 0.04 0.03 1.00 0.25 0.00 0.04 0.38 0.51

M7 0.24 0.00 0.15 1.00 0.57 0.00 0.02 0.71 0.78

M8 0.20 0.14 0.08 0.47 0.58 0.09 0.03 0.69 -

M9 0.20 0.17 0.23 0.09 0.39 0.13 0.03 0.33 -

M10 0.15 0.02 0.02 0.87 0.08 0.00 0.00 0.31 -

M11 0.28 0.10 0.01 1.00 0.00 0.00 0.00 0.00 0.00

M12 0.20 0.18 0.16 0.10 0.40 0.12 0.03 0.42 0.40

M13 0.01 0.00 0.01 1.00 0.00 0.00 0.00 0.00 0.00

M14 - - - - - 0.11 0.04 0.65 0.72

M15 - - - - - 0.11 0.04 0.65 0.72

M16 - - - - - 0.12 0.04 0.65 0.74

M17 - - - - - 0.11 0.04 0.65 0.72

M18 - - - - - - - 0.76 0.82

Table A. 2. ARI performance summary of all clustering methods M across all datasets

D. Methods list: M1: isoMCL; M2:MC-MCL dual; M3: MC-MCL hbr; M4: MC-MCL

hdr; M5: MC-MCL; M6: MCL; M7: cciMST; M8: MC-AP; M9: AP; M10: DPSP; M11:
DBSCAN; M12: Kmeans; M13: Single linkage; M14: HOT; M15: HOMO; M16: HOE;

M17: HIT; M18: HOE-CNN. Data list: D1: Gastric mucosa; D2: Radar 2C; D3: Radar

3C; D4: Tripartite-Swiss-Roll; D5 MNIST3000; D6: CIFAR100; D7: CIFAR10; D8:
MNIST test; D9: MNIST full. Nonlinear MCL variants are marked with red, whereas the

original MCL algorithm is marked in green.

124

Gastric Mucosa Acc ARI NMI Norm

MCMCLeuc_hdr_Fsqrt (1) 0.75 0.36 0.37 LOG

MCMCLeuc_hdr_Flog (1) 0.75 0.36 0.37 LOG

isoMCLcorr (1) 0.75 0.33 0.31 LOG

MCMCLspea_hdr_Flog (1) 0.75 0.33 0.31 LOG

MCMCLcorr_hbr (1) 0.71 0.29 0.31 LOG

MCMCLcorr_hbr_Flog (1) 0.71 0.29 0.31 LOG

MCMCLcorr_dual (1) 0.71 0.29 0.31 LOG

MCMCLcorr_dual_Flog (1) 0.71 0.29 0.31 LOG

MCMCLcorr_hdr (1) 0.71 0.29 0.31 LOG

MCMCLcorr_hdr_Flog (1) 0.71 0.29 0.31 LOG

MC-MCLl corr 0.71 0.29 0.31 LOG

MC-MCL corr 0.71 0.29 0.31 LOG

MC-MCLs corr 0.71 0.26 0.31 LOG

isoMCLcorr (1) 0.71 0.25 0.26 -

MCMCLspea_hdr_Flog (1) 0.71 0.25 0.26 noNorm

cciMSTcorr 0.71 0.24 0.26 -

Kmeans corr 0.67 0.20 0.26 LOG

MCAP corr 0.67 0.20 0.24 LOG

AP corr 0.67 0.20 0.24 LOG

cciMSTeuc 0.67 0.20 0.24 LOG

cciMSTcorr 0.67 0.20 0.24 LOG

cciMSTeuc 0.67 0.22 0.23 -

DBSCAN corr 0.58 0.28 0.38 -

MCL corr 0.67 0.19 0.23 -

MCMCLcorr_dual (1) 0.67 0.19 0.23 noNorm

MCMCLcorr_dual_Flog (1) 0.67 0.19 0.23 noNorm

MCMCLeuc_dual_Fsqrt (1) 0.58 0.23 0.28 noNorm

MCL corr 0.67 0.19 0.21 LOG

MC-MCLs corr 0.67 0.18 0.23 -

MCMCLeuc_hdr_Flog (1) 0.63 0.15 0.24 noNorm

MCMCLeuc_hbr (1) 0.63 0.14 0.27 LOG

MCMCLeuc_hbr_Fsqrt (1) 0.63 0.14 0.27 LOG

125

MCMCLeuc_hbr_Flog (1) 0.63 0.14 0.27 LOG

MCAP eucl 0.63 0.15 0.22 -

MC-MCLl corr 0.54 0.21 0.30 -

isoMCLeuc (1) 0.63 0.15 0.20 LOG

MCMCLeuc_dual_Fsqrt (1) 0.63 0.15 0.20 LOG

MCMCLeuc_dual_Flog (1) 0.63 0.15 0.20 LOG

MCMCLspea_hdr_Flog (1) 0.63 0.15 0.20 LOG

MC-MCLs eucl 0.63 0.15 0.20 LOG

MC-MCLl eucl 0.63 0.15 0.20 LOG

MCAP eucl 0.63 0.15 0.20 LOG

MCMCLeuc_hbr_Flog (1) 0.63 0.13 0.21 noNorm

MCMCLeuc_hdr (1) 0.63 0.13 0.21 LOG

MCAP corr 0.63 0.14 0.21 -

MCMCLspea_hdr (1) 0.63 0.15 0.14 noNorm

MCMCLspea_hdr_Fsqrt (1) 0.63 0.15 0.14 noNorm

MCMCLspea_hdr_Flog (1) 0.63 0.15 0.14 noNorm

MCMCLspea_hdr (1) 0.63 0.15 0.14 LOG

MCMCLspea_hdr_Fsqrt (1) 0.63 0.15 0.14 LOG

MCMCLspea_hdr_Flog (1) 0.63 0.15 0.14 LOG

MC-MCL corr 0.54 0.15 0.22 -

DPSPeuc 0.54 0.15 0.21 -

DPSPcorr 0.54 0.15 0.21 -

MCMCLeuc_dual (1) 0.63 0.12 0.14 LOG

AP corr 0.00 0.19 0.24 -

MC-MCLs eucl 0.54 0.18 0.18 -

MCMCLeuc_hbr_Fsqrt (1) 0.54 0.18 0.18 noNorm

MCMCLeuc_hdr_Fsqrt (1) 0.54 0.18 0.18 noNorm

Kmeans corr 0.58 0.15 0.17 -

MCMCLcorr_hbr (1) 0.58 0.10 0.18 noNorm

MCMCLcorr_hbr_Flog (1) 0.58 0.10 0.18 noNorm

MCMCLeuc_dual_Flog (1) 0.58 0.10 0.18 noNorm

MCMCLcorr_hdr (1) 0.58 0.10 0.18 noNorm

MCMCLcorr_hdr_Flog (1) 0.58 0.10 0.18 noNorm

126

MCMCLspea_hbr (1) 0.58 0.10 0.12 noNorm

MCMCLspea_hbr_Flog (1) 0.58 0.10 0.12 noNorm

MCMCLspea_dual (1) 0.58 0.10 0.12 noNorm

MCMCLspea_dual_Flog (1) 0.58 0.10 0.12 noNorm

MCMCLspea_hbr (1) 0.58 0.10 0.12 LOG

MCMCLspea_hbr_Flog (1) 0.58 0.10 0.12 LOG

MCMCLspea_dual (1) 0.58 0.10 0.12 LOG

MCMCLspea_dual_Flog (1) 0.58 0.10 0.12 LOG

MC-MCLl eucl 0.58 0.10 0.18 -

MC-MCL eucl 0.54 0.12 0.09 LOG

cciMSTspear 0.54 0.05 0.12 -

cciMSTspear 0.54 0.05 0.12 LOG

MCMCLspea_hbr_Fsqrt (1) 0.54 0.05 0.12 noNorm

MCMCLspea_dual_Fsqrt (1) 0.54 0.05 0.12 noNorm

MCMCLspea_hbr_Fsqrt (1) 0.54 0.05 0.12 LOG

MCMCLspea_dual_Fsqrt (1) 0.54 0.05 0.12 LOG

isoMCLspear (1) 0.54 0.06 0.06 -

isoMCLspear (1) 0.54 0.06 0.06 LOG

MCMCLspea_hdr_Flog (1) 0.54 0.06 0.06 noNorm

MCMCLspea_hdr_Flog (1) 0.54 0.06 0.06 LOG

DBSCAN corr 0.54 0.02 0.06 LOG

Single linkage 0.50 0.01 0.01 LOG

Single linkage 0.50 0.01 0.01 -

DBSCAN eucl 0.50 0.01 0.01 -

AP eucl 0.50 0.01 0.01 -

DBSCAN eucl 0.50 0.01 0.01 LOG

Kmeans eucl 0.42 0.01 0.06 LOG

isoMCLeuc (1) 0.50 0.01 -0.02 -

MCMCLeuc_hbr (1) 0.50 0.01 -0.02 noNorm

MCMCLeuc_dual (1) 0.50 0.01 -0.02 noNorm

MCMCLeuc_hdr (1) 0.50 0.01 -0.02 noNorm

MCMCLspea_hdr_Flog (1) 0.50 0.01 -0.02 noNorm

MCL eucl 0.00 0.00 0.00 LOG

127

AP eucl 0.00 0.00 0.00 LOG

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.00 noNorm

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.00 noNorm

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.00 noNorm

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.00 LOG

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.00 LOG

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.00 LOG

MC-MCL eucl 0.00 0.01 -0.02 -

MCL eucl 0.00 0.01 -0.02 -

Kmeans eucl 0.46 -0.03 -0.04 -

DPSPspear 0.42 -0.06 -0.05 -

DPSPspear 0.42 -0.06 -0.05 LOG

DPSPeuc 0.42 -0.06 -0.05 LOG

DPSPcorr 0.42 -0.06 -0.05 LOG

Table A. 3. Clustering performance in Gastric mucosa microbiome data. Accuracy

(Acc), Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), are reported
for each clustering method and variant. The distances, specified alongside the methods

name and factor (if applied) corresponds to Pearson correlation (corr), Spearman

correlation (spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified
as Fsqrt for square root or Flog for logarithm. The last column display the normalization

(Norm). The value in parenthesis besides the method’s name represents the number of

hyperparameters for the clustering method, without taking into consideration the
parameters needed to find the number of clusters. Results are ordered according to rank

performance (rank value not shown) from the highest (top) to the lowest (bottom).

128

Radar (two clusters) Acc ARI NMI Norm

MCMCLspea_dual_Flog (1) 0.78 0.29 0.32 -

MCMCLspea_hbr_Flog (1) 0.77 0.27 0.30 -

MCMCLspea_dual (1) 0.77 0.27 0.30 -

MCMCLeuc_hbr_Fsqrt (1) 0.80 0.35 0.25 -

MCMCLcorr_dual_Flog (1) 0.77 0.26 0.29 -

isoMCLspear (1) 0.77 0.25 0.28 -

MCMCLspea_hdr_Flog (1) 0.77 0.25 0.28 -

isoMCLcorr (1) 0.76 0.24 0.27 -

MCMCLspea_hdr_Flog (1) 0.76 0.24 0.27 -

MCMCLspea_hbr (1) 0.75 0.22 0.26 -

MCMCLspea_hdr_Flog (1) 0.75 0.22 0.26 -

MCMCLcorr_hdr_Flog (1) 0.75 0.22 0.25 -

MCMCLeuc_hdr_Flog (1) 0.75 0.25 0.16 -

MCMCLcorr_dual (1) 0.75 0.20 0.24 -

MCMCLeuc_hbr_Flog (1) 0.74 0.23 0.15 -

MCMCLcorr_hdr (1) 0.73 0.17 0.21 -

MCMCLspea_dual_Fsqrt (1) 0.73 0.16 0.20 -

MCMCLspea_hdr (1) 0.72 0.15 0.19 -

Kmeans eucl 0.71 0.18 0.13 -

AP eucl 0.71 0.17 0.13 -

MCMCLeuc_dual_Flog (1) 0.71 0.17 0.13 -

MC-MCLl eucl 0.71 0.17 0.12 -

MCMCLspea_hbr_Fsqrt (1) 0.70 0.11 0.15 -

MCMCLcorr_hbr (1) 0.70 0.09 0.13 -

MCMCLcorr_hbr_Flog (1) 0.70 0.09 0.13 -

isoMCLeuc (1) 0.70 0.15 0.11 -

MCMCLspea_hdr_Flog (1) 0.70 0.15 0.11 -

DBSCAN corr 0.68 0.10 0.14 -

MCMCLeuc_dual_Fsqrt (1) 0.69 0.14 0.11 -

MC-MCLs corr 0.69 0.09 0.13 -

MCAP eucl 0.69 0.14 0.09 -

129

MCMCLspea_hdr_Fsqrt (1) 0.69 0.08 0.12 -

MC-MCLl corr 0.69 0.08 0.12 -

MCMCLeuc_dual (1) 0.68 0.13 0.08 -

MC-MCL corr 0.68 0.07 0.11 -

MCMCLeuc_hdr_Fsqrt (1) 0.65 0.08 0.09 -

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.20 -

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.20 -

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.20 -

MCMCLeuc_hbr (1) 0.66 0.03 0.05 -

MCMCLeuc_hdr (1) 0.66 0.02 0.04 -

cciMSTspear 0.62 0.06 0.06 -

DPSPcorr 0.65 0.02 0.03 -

MCL eucl 0.60 0.04 0.06 -

DPSPspear 0.65 0.01 0.02 -

DPSPeuc 0.65 0.01 0.02 -

cciMSTeuc 0.64 0.00 0.01 -

Single linkage 0.64 0.00 0.01 -

DBSCAN eucl 0.64 0.00 0.01 -

Kmeans corr 0.59 0.02 0.01 -

AP corr 0.57 0.01 0.00 -

cciMSTcorr 0.52 -0.02 0.03 -

MCAP corr 0.52 -0.03 0.02 -

MC-MCLs eucl 0.00 0.00 0.00 -

MC-MCL eucl 0.00 0.00 0.00 -

MCL corr 0.00 0.00 0.00 -

Table A. 4. Clustering performance in radar (two clusters) data. Accuracy (Acc),

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), are reported for

each clustering method and variant. The distances, specified alongside the methods

name and factor (if applied) corresponds to Pearson correlation (corr), Spearman

correlation (spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified

as Fsqrt for square root or Flog for logarithm. The last column display the normalization
(Norm). The value in parenthesis besides the method’s name represents the number of

hyperparameters for the clustering method, without taking into consideration the

parameters needed to find the number of clusters. Results are ordered according to rank
performance (rank value not shown) from the highest (top) to the lowest (bottom).

130

Radar (three clusters) Acc ARI NMI Norm

MCMCLcorr_dual_Flog (1) 0.74 0.36 0.33 -

MCMCLspea_dual (1) 0.75 0.34 0.30 -

MCMCLspea_hdr_Flog (1) 0.74 0.35 0.32 -

MCMCLspea_hbr (1) 0.74 0.34 0.32 -

isoMCLspear (1) 0.75 0.32 0.28 -

MCMCLspea_dual_Flog (1) 0.75 0.32 0.29 -

MCMCLspea_hdr_Flog (1) 0.75 0.32 0.28 -

MCMCLspea_hbr_Flog (1) 0.74 0.33 0.31 -

MC-MCLs corr 0.74 0.27 0.38 -

MCMCLcorr_hdr_Flog (1) 0.73 0.27 0.33 -

MCMCLeuc_hbr_Fsqrt (1) 0.75 0.32 0.25 -

MCMCLspea_hdr (1) 0.73 0.31 0.30 -

MCMCLcorr_hbr_Flog (1) 0.72 0.24 0.35 -

isoMCLcorr (1) 0.72 0.28 0.28 -

MCMCLspea_hdr_Flog (1) 0.72 0.28 0.28 -

MCMCLcorr_hbr (1) 0.72 0.22 0.34 -

MC-MCLl corr 0.70 0.20 0.35 -

MCMCLcorr_hdr (1) 0.70 0.26 0.28 -

MCMCLcorr_dual (1) 0.70 0.26 0.28 -

MC-MCL corr 0.70 0.18 0.32 -

isoMCLeuc (1) 0.66 0.24 0.24 -

MCMCLeuc_dual (1) 0.66 0.24 0.24 -

MCMCLspea_hdr_Flog (1) 0.66 0.24 0.24 -

MCMCLeuc_hdr_Flog (1) 0.70 0.24 0.18 -

AP eucl 0.66 0.23 0.25 -

MCMCLeuc_hbr_Flog (1) 0.69 0.21 0.17 -

MCMCLeuc_hdr (1) 0.67 0.21 0.17 -

MCMCLspea_hbr_Fsqrt (1) 0.66 0.08 0.14 -

MCMCLeuc_dual_Flog (1) 0.66 0.15 0.13 -

Kmeans eucl 0.62 0.16 0.15 -

MCMCLeuc_hbr (1) 0.66 0.05 0.07 -

131

MCAP corr 0.56 0.08 0.22 -

cciMSTeuc 0.62 0.15 0.14 -

cciMSTcorr 0.52 0.06 0.20 -

MCMCLspea_dual_Fsqrt (1) 0.59 0.07 0.13 -

MC-MCLl eucl 0.00 0.15 0.13 -

MCMCLspea_hdr_Fsqrt (1) 0.58 0.06 0.11 -

DPSPcorr 0.65 0.02 0.03 -

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.24 -

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.24 -

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.24 -

cciMSTspear 0.57 0.04 0.07 -

DPSPspear 0.64 0.01 0.02 -

DPSPeuc 0.64 0.01 0.02 -

Single linkage 0.64 0.01 0.02 -

DBSCAN eucl 0.64 0.01 0.02 -

DBSCAN corr 0.64 0.01 0.02 -

MCAP eucl 0.52 0.04 0.10 -

Kmeans corr 0.52 0.05 0.03 -

AP corr 0.54 0.04 0.02 -

MCL eucl 0.42 0.03 0.05 -

MCMCLeuc_dual_Fsqrt (1) 0.64 0.00 0.00 -

MCMCLeuc_hdr_Fsqrt (1) 0.64 0.00 0.00 -

MC-MCLs eucl 0.00 0.00 0.00 -

MC-MCL eucl 0.00 0.00 0.00 -

MCL corr 0.00 0.00 0.00 -

Table A. 5. Clustering performance in radar (three clusters) data. Accuracy (Acc),

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), are reported for

each clustering method and variant. The distances, specified alongside the methods

name and factor (if applied) corresponds to Pearson correlation (corr), Spearman

correlation (spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified

as Fsqrt for square root or Flog for logarithm. The last column display the normalization
(Norm). The value in parenthesis besides the method’s name represents the number of

hyperparameters for the clustering method, without taking into consideration the

parameters needed to find the number of clusters. Results are ordered according to rank
performance (rank value not shown) from the highest (top) to the lowest (bottom).

132

Tripartite-Swiss-Roll Acc ARI NMI Norm

Single linkage euc 1.00 1.00 1.00 -

MC-MCLl eucl 1.00 1.00 1.00 -

MC-MCL eucl 1.00 1.00 1.00 -

MCL eucl 1.00 1.00 1.00 -

isoMCLeuc (1) 1.00 1.00 1.00 -

DBSCAN eucl 1.00 1.00 1.00 -

cciMSTeuc 1.00 1.00 1.00 -

MCMCLeuc_hbr (1) 1.00 1.00 1.00 -

MCMCLeuc_hbr_Fsqrt (1) 1.00 1.00 1.00 -

MCMCLeuc_hbr_Flog (1) 1.00 1.00 1.00 -

MCMCLeuc_dual (1) 1.00 1.00 1.00 -

MCMCLeuc_dual_Fsqrt (1) 1.00 1.00 1.00 -

MCMCLeuc_dual_Flog (1) 1.00 1.00 1.00 -

MCMCLeuc_hdr (1) 1.00 1.00 1.00 -

MCMCLeuc_hdr_Flog (1) 1.00 1.00 1.00 -

MCMCLspea_hdr_Flog (1) 1.00 1.00 1.00 -

DPSPeuc 0.85 0.87 0.82 -

MCMCLeuc_hdr_Fsqrt (1) 0.78 0.43 0.62 -

MCAP eucl 0.64 0.47 0.58 -

DPSPspear 0.63 0.22 0.24 -

MC-MCLs eucl 0.00 0.47 0.63 -

cciMSTspear 0.54 0.13 0.17 -

MCMCLspea_hbr_Fsqrt (1) 0.54 0.13 0.17 -

MCMCLspea_dual_Fsqrt (1) 0.54 0.13 0.17 -

Kmeans corr 0.52 0.13 0.18 -

Kmeans eucl 0.56 0.10 0.20 -

isoMCLspear (1) 0.43 0.11 0.20 -

MCMCLspea_hbr (1) 0.43 0.11 0.20 -

MCMCLspea_dual (1) 0.43 0.11 0.20 -

MCMCLspea_hdr_Flog (1) 0.43 0.11 0.20 -

AP corr 0.00 0.13 0.23 -

133

AP eucl 0.54 0.09 0.19 -

isoMCLcorr (1) 0.66 0.04 0.04 -

MCMCLcorr_hbr (1) 0.66 0.04 0.04 -

MCMCLcorr_hbr_Flog (1) 0.66 0.04 0.04 -

MCMCLcorr_dual (1) 0.66 0.04 0.04 -

MCMCLcorr_dual_Flog (1) 0.66 0.04 0.04 -

MCMCLcorr_hdr (1) 0.66 0.04 0.04 -

MCMCLcorr_hdr_Flog (1) 0.66 0.04 0.04 -

MCMCLspea_hdr_Flog (1) 0.66 0.04 0.04 -

MC-MCLl corr 0.66 0.04 0.04 -

MC-MCL corr 0.66 0.04 0.04 -

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.23 -

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.23 -

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.23 -

MCMCLspea_hbr_Flog (1) 0.59 0.00 0.05 -

MCMCLspea_dual_Flog (1) 0.59 0.00 0.05 -

cciMSTcorr 0.46 0.00 0.04 -

MC-MCLs corr 0.46 0.00 0.04 -

MCL corr 0.46 0.00 0.04 -

MCAP corr 0.43 -0.01 0.12 -

DPSPcorr 0.43 -0.01 0.12 -

DBSCAN corr 0.00 0.00 0.03 -

MCMCLspea_hdr (1) 0.00 0.00 0.00 -

MCMCLspea_hdr_Fsqrt (1) 0.00 0.00 0.00 -

MCMCLspea_hdr_Flog (1) 0.00 0.00 0.00 -

Table A. 6. Clustering performance in tripartite-swiss-roll data. Accuracy (Acc),

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), are reported for

each clustering method and variant. The distances, specified alongside the methods

name and factor (if applied) corresponds to Pearson correlation (corr), Spearman

correlation (spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified

as Fsqrt for square root or Flog for logarithm. The last column display the normalization
(Norm). The value in parenthesis besides the method’s name represents the number of

hyperparameters for the clustering method, without taking into consideration the

parameters needed to find the number of clusters. Results are ordered according to rank
performance (rank value not shown) from the highest (top) to the lowest (bottom).

134

MNIST 3000 Acc ARI NMI Norm

MCMCLspea_hdr_Flog (1) 0.82 0.74 0.81 -

MCMCLspea_hdr_Flog (1) 0.82 0.74 0.81 LOG

MCMCLcorr_dual_Flog (1) 0.82 0.73 0.81 -

MCMCLeuc_dual (1) 0.85 0.73 0.79 LOG

MCMCLeuc_dual_Fsqrt (1) 0.81 0.73 0.79 LOG

isoMCLeuc (1) 0.85 0.73 0.78 LOG

MCMCLeuc_dual_Flog (1) 0.84 0.72 0.78 LOG

MCMCLcorr_hdr (1) 0.75 0.70 0.80 -

MCMCLcorr_hdr_Flog (1) 0.80 0.70 0.78 LOG

MCMCLeuc_dual (1) 0.80 0.71 0.78 -

MCMCLcorr_hdr_Flog (1) 0.75 0.70 0.79 -

MCMCLcorr_hbr_Flog (1) 0.79 0.69 0.78 LOG

MCMCLeuc_dual_Flog (1) 0.79 0.69 0.77 -

MCMCLspea_hdr (1) 0.74 0.67 0.80 -

MCMCLspea_hdr (1) 0.74 0.67 0.80 LOG

MCMCLeuc_dual_Fsqrt (1) 0.79 0.69 0.77 -

MCMCLspea_dual_Flog (1) 0.74 0.67 0.80 -

MCMCLspea_dual_Flog (1) 0.74 0.67 0.80 LOG

MCMCLspea_hbr_Flog (1) 0.74 0.68 0.78 -

MCMCLspea_hbr_Flog (1) 0.74 0.68 0.78 LOG

isoMCLspear (1) 0.74 0.66 0.79 -

isoMCLspear (1) 0.74 0.66 0.79 LOG

MCMCLspea_hdr_Flog (1) 0.74 0.66 0.79 -

MCMCLcorr_hbr_Flog (1) 0.74 0.67 0.77 -

MCMCLeuc_hdr (1) 0.78 0.67 0.75 LOG

MCMCLcorr_hbr (1) 0.74 0.67 0.77 -

MCMCLspea_dual_Fsqrt (1) 0.73 0.65 0.78 -

MCMCLspea_dual_Fsqrt (1) 0.73 0.65 0.78 LOG

MCMCLeuc_hdr_Fsqrt (1) 0.76 0.64 0.73 LOG

MCMCLcorr_hbr (1) 0.74 0.64 0.76 LOG

MCMCLcorr_dual_Flog (1) 0.73 0.61 0.78 LOG

135

isoMCLcorr (1) 0.73 0.61 0.77 LOG

isoMCLcorr (1) 0.73 0.61 0.77 -

MCMCLspea_hdr_Flog (1) 0.73 0.61 0.77 -

MC-MCL eucl 0.75 0.62 0.70 LOG

MCMCLeuc_hbr (1) 0.75 0.62 0.70 LOG

MCMCLcorr_hdr (1) 0.72 0.64 0.76 LOG

MCMCLspea_hbr_Fsqrt (1) 0.75 0.61 0.72 -

MCMCLspea_hbr_Fsqrt (1) 0.75 0.61 0.72 LOG

MCMCLcorr_dual (1) 0.73 0.61 0.77 LOG

MC-MCLl corr 0.72 0.64 0.75 -

MCMCLspea_hdr_Fsqrt (1) 0.73 0.64 0.74 -

MCMCLspea_hdr_Fsqrt (1) 0.73 0.64 0.74 LOG

MCMCLeuc_hbr_Fsqrt (1) 0.75 0.61 0.70 LOG

MC-MCLs eucl 0.75 0.61 0.70 LOG

MCMCLcorr_dual 0.71 0.60 0.76 -

MCAP corr 0.71 0.61 0.73 -

MCMCLspea_hbr 0.70 0.59 0.77 -

MCMCLspea_hbr 0.70 0.59 0.77 LOG

MCMCLeuc_hbr 0.73 0.61 0.71 -

MCAP eucl 0.75 0.58 0.68 LOG

cciMSTcorr 0.66 0.63 0.74 -

MCMCLspea_dual 0.67 0.57 0.76 -

MCMCLspea_dual 0.67 0.57 0.76 LOG

MC-MCL corr 0.66 0.60 0.73 -

MCMCLeuc_hdr 0.71 0.60 0.69 -

cciMSTcorr 0.69 0.57 0.72 LOG

MC-MCLl corr 0.68 0.57 0.71 LOG

MCAP corr 0.68 0.56 0.70 LOG

isoMCLeuc (1) 0.68 0.54 0.70 -

MCMCLspea_hdr_Flog (1) 0.68 0.54 0.70 -

MC-MCLs corr 0.62 0.57 0.71 LOG

MCMCLeuc_hbr_Flog (1) 0.71 0.53 0.66 LOG

MC-MCLs corr 0.67 0.53 0.68 -

136

MC-MCLl eucl 0.66 0.55 0.66 LOG

MCMCLeuc_hbr_Fsqrt (1) 0.67 0.52 0.66 -

MCMCLeuc_hdr_Flog (1) 0.66 0.51 0.65 LOG

MCAP eucl 0.65 0.48 0.63 -

MC-MCL corr 0.57 0.51 0.68 LOG

cciMSTeuc 0.64 0.48 0.62 -

MCMCLeuc_hdr_Fsqrt (1) 0.63 0.48 0.62 -

cciMSTspear 0.57 0.45 0.68 -

cciMSTspear 0.57 0.45 0.68 LOG

MCMCLeuc_hdr_Flog (1) 0.64 0.45 0.59 -

MCMCLeuc_hbr_Flog (1) 0.62 0.44 0.59 -

MC-MCL eucl 0.58 0.45 0.58 -

Kmeans corr 0.57 0.40 0.53 LOG

cciMSTeuc 0.52 0.38 0.59 LOG

Kmeans corr 0.55 0.40 0.53 -

MC-MCLs eucl 0.52 0.40 0.55 -

Kmeans eucl 0.55 0.40 0.52 LOG

AP corr 0.56 0.39 0.51 LOG

AP eucl 0.56 0.37 0.47 LOG

Kmeans eucl 0.52 0.35 0.50 -

MCL corr 0.48 0.25 0.55 LOG

MC-MCLl eucl 0.46 0.35 0.51 -

AP corr 0.51 0.33 0.48 -

MCL corr 0.41 0.18 0.46 -

AP eucl 0.48 0.25 0.38 -

MCL eucl 0.35 0.12 0.42 LOG

DPSPeuc 0.27 0.08 0.31 -

DPSPspear 0.20 0.09 0.30 -

DPSPspear 0.20 0.09 0.30 LOG

MCL eucl 0.26 0.06 0.30 -

DBSCAN corr 0.26 0.00 0.43 LOG

DPSPcorr 0.18 0.03 0.17 LOG

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.45 -

137

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.45 -

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.45 -

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.45 LOG

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.45 LOG

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.45 LOG

DPSPcorr 0.16 0.02 0.17 -

DPSPeuc 0.10 0.00 0.01 LOG

DBSCAN corr 0.10 0.00 0.02 -

Single linkage euc 0.10 0.00 0.01 -

DBSCAN eucl 0.10 0.00 0.01 -

Single linkage euc 0.10 0.00 0.01 LOG

DBSCAN eucl 0.10 0.00 0.01 LOG

Table A. 7. Clustering performance in MNIST 3000 data. Accuracy (Acc), Adjusted
Rand Index (ARI), Normalized Mutual Information (NMI), are reported for each

clustering method and variant. The distances, specified alongside the methods name and
factor (if applied) corresponds to Pearson correlation (corr), Spearman correlation

(spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for

square root or Flog for logarithm. The last column display the normalization (Norm).
The value in parenthesis besides the method’s name represents the number of

hyperparameters for the clustering method, without taking into consideration the

parameters needed to find the number of clusters. Results are ordered according to rank
performance (rank value not shown) from the highest (top) to the lowest (bottom).

138

MNIST test Acc ARI NMI Norm

isoMCLeuc (1) 0.91 0.82 0.84 LOG

MCMCLcorr_dual_Flog (1) 0.86 0.81 0.86 -

isoMCLcorr (1) 0.88 0.80 0.84 LOG

MCMCLcorr_dual (1) 0.86 0.81 0.86 -

MCMCLcorr_hbr_Flog (1) 0.85 0.80 0.85 -

isoMCLspear (1) 0.88 0.79 0.84 -

isoMCLspear (1) 0.88 0.79 0.84 LOG

isoMCLcorr (1) 0.87 0.80 0.84 -

MCMCLcorr_hdr (1) 0.85 0.79 0.84 -

MCMCLspea_hdr (1) 0.85 0.78 0.83 -

MCMCLspea_hdr (1) 0.85 0.78 0.83 LOG

MCMCLeuc_dual (1) 0.84 0.78 0.84 LOG

isoMCLeuc (1) 0.85 0.78 0.83 -

MCMCLcorr_hdr_Flog (1) 0.84 0.78 0.83 -

MCMCLcorr_hbr_Flog (1) 0.85 0.78 0.83 LOG

MCMCLspea_dual_Flog (1) 0.83 0.77 0.83 -

MCMCLspea_dual_Flog (1) 0.83 0.77 0.83 LOG

HOE-CNN (1) 0.91 0.76 0.78 -

MCMCLeuc_hbr (1) 0.87 0.75 0.79 LOG

MCMCLcorr_dual_Flog (1) 0.78 0.75 0.84 LOG

MCMCLspea_hbr_Flog (1) 0.83 0.74 0.82 -

MCMCLspea_hbr_Flog (1) 0.83 0.74 0.82 LOG

MCMCLcorr_dual (1) 0.78 0.75 0.83 LOG

MCMCLeuc_hdr (1) 0.82 0.75 0.80 -

MCMCLeuc_dual_Flog (1) 0.81 0.74 0.82 -

MCMCLeuc_hbr (1) 0.86 0.73 0.77 -

MCMCL_eucl 0.86 0.73 0.77 -

MCMCLspea_dual (1) 0.78 0.74 0.83 -

MCMCLspea_dual (1) 0.78 0.74 0.83 LOG

MCMCLeuc_dual (1) 0.78 0.74 0.83 -

MCMCLcorr_hbr (1) 0.77 0.74 0.83 -

MCMCLspea_hdr_Flog (1) 0.81 0.72 0.81 -

139

MCMCLspea_hdr_Flog (1) 0.81 0.72 0.81 LOG

MCMCLcorr_hdr_Flog (1) 0.78 0.74 0.82 LOG

MCMCLcorr_hdr (1) 0.78 0.73 0.81 LOG

MCMCLcorr_hbr (1) 0.77 0.74 0.82 LOG

MCMCLeuc_dual_Fsqrt (1) 0.80 0.72 0.80 -

cciMSTcorr 0.80 0.71 0.80 -

MCMCLeuc_hdr (1) 0.80 0.72 0.79 LOG

MCMCLeuc_dual_Fsqrt (1) 0.80 0.71 0.79 LOG

MCMCLspea_hbr_Fsqrt (1) 0.82 0.69 0.75 -

MCMCLspea_hbr_Fsqrt (1) 0.82 0.69 0.75 LOG

MCMCLeuc_hdr_Fsqrt (1) 0.79 0.70 0.78 LOG

MCMCLeuc_hbr_Fsqrt (1) 0.81 0.68 0.75 LOG

MCMCLspea_dual_Fsqrt (1) 0.76 0.67 0.81 -

MCMCLspea_hbr (1) 0.76 0.66 0.81 -

MCMCLspea_hbr (1) 0.76 0.66 0.81 LOG

MCMCLeuc_dual_Flog (1) 0.76 0.69 0.79 LOG

MCMCLspea_hdr_Fsqrt (1) 0.79 0.67 0.74 -

MCMCLspea_hdr_Fsqrt (1) 0.79 0.67 0.74 LOG

MCAP corr 0.75 0.69 0.77 -

HOT (1) 0.82 0.65 0.69 -

HOMO (1) 0.82 0.65 0.68 -

HOE (1) 0.82 0.65 0.68 -

HIT (1) 0.82 0.65 0.68 -

MCMCLspea_dual_Fsqrt (1) 0.70 0.65 0.81 LOG

MCMCLeuc_hdr_Flog (1) 0.72 0.66 0.75 LOG

MCMCLl_corr 0.72 0.62 0.77 LOG

MCMCLeuc_hbr_Flog (1) 0.75 0.63 0.73 LOG

MCMCL_corr 0.74 0.63 0.74 -

MCAP eucl 0.73 0.63 0.73 LOG

cciMSTcorr 0.70 0.61 0.73 LOG

MCMCLeuc_hbr_Fsqrt (1) 0.73 0.60 0.72 -

MCMCLeuc_hdr_Flog (1) 0.70 0.62 0.72 -

MCMCL_corr 0.66 0.58 0.75 LOG

140

MCAP corr 0.66 0.62 0.73 LOG

MCMCLeuc_hbr_Flog (1) 0.72 0.59 0.71 -

MCMCLs_corr 0.68 0.57 0.72 -

MCAP spea 0.65 0.60 0.71 -

MCAP spea 0.65 0.60 0.71 LOG

MCAP eucl 0.70 0.59 0.70 -

MCMCL_eucl 0.69 0.58 0.71 LOG

cciMSTeuc 0.65 0.55 0.73 LOG

MCMCLeuc_hdr_Fsqrt (1) 0.71 0.56 0.69 -

cciMSTeuc 0.71 0.51 0.66 -

MCMCLs_corr 0.66 0.53 0.68 LOG

cciMSTspear 0.60 0.52 0.68 -

cciMSTspear 0.60 0.52 0.68 LOG

MCMCLl_eucl 0.63 0.52 0.66 LOG

MCMCLspea 0.54 0.50 0.70 -

MCMCLspea 0.54 0.50 0.70 LOG

MCMCLs_eucl 0.60 0.44 0.66 LOG

MCMCLl_corr 0.55 0.45 0.66 -

Kmeans corr 0.57 0.42 0.55 LOG

MCMCLl_eucl 0.54 0.38 0.58 -

MCL_corr 0.52 0.42 0.62 -

Kmeans corr 0.55 0.41 0.53 -

MCL_eucl 0.54 0.38 0.56 LOG

Kmeans eucl 0.54 0.39 0.51 -

Kmeans eucl 0.53 0.39 0.52 LOG

MCMCLs_eucl 0.50 0.31 0.57 -

AP corr 0.41 0.33 0.53 -

AP spea 0.41 0.33 0.52 -

AP spea 0.41 0.33 0.52 LOG

AP corr 0.38 0.33 0.54 LOG

DPSPspear 0.31 0.31 0.54 -

DPSPspear 0.31 0.31 0.54 LOG

DPSPcorr 0.32 0.29 0.54 LOG

141

MCL_corr 0.43 0.20 0.50 LOG

AP eucl 0.41 0.26 0.44 -

AP eucl 0.38 0.31 0.49 LOG

DPSPeuc 0.34 0.17 0.46 -

DPSPcorr 0.31 0.11 0.40 -

MCL_eucl 0.30 0.09 0.35 -

Single linkage euc 0.11 0.00 0.00 LOG

DBSCAN eucl 0.11 0.00 0.00 LOG

DBSCAN corr 0.11 0.00 0.00 LOG

DBSCAN corr 0.11 0.00 0.00 -

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.40 -

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.40 -

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.40 -

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.40 LOG

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.40 LOG

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.40 LOG

DPSPeuc 0.11 0.00 0.00 LOG

Single linkage euc 0.11 0.00 0.00 -

DBSCAN eucl 0.11 0.00 0.00 -

Table A. 8. Clustering performance in MNIST test data. Accuracy (Acc), Adjusted Rand
Index (ARI), Normalized Mutual Information (NMI), are reported for each clustering

method and variant. The distances, specified alongside the methods name and factor (if

applied) corresponds to Pearson correlation (corr), Spearman correlation (spea) or
Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for square

root or Flog for logarithm. The last column display the normalization (Norm). The value

in parenthesis besides the method’s name represents the number of hyperparameters for
the clustering method, without taking into consideration the parameters needed to find

the number of clusters. Results are ordered according to rank performance (rank value

not shown) from the highest (top) to the lowest (bottom).

142

MNIST full Acc ARI NMI Norm

MCMCLcorr_dual (1) 0.91 0.89 0.90 -

MCMCL_corr_hbr_Flog (1) 0.92 0.89 0.89 -

isoMCLeuc (1) 0.94 0.88 0.88 LOG

HOE-CNN (1) 0.93 0.82 0.86 -

MCMCLcorr_hdr (1) 0.90 0.87 0.89 -

HOE (1) 0.87 0.74 0.76 -

cciMSTcorr 0.81 0.78 0.83 -

HOMO (1) 0.86 0.72 0.74 -

HOT (1) 0.86 0.72 0.74 -

HIT (1) 0.86 0.72 0.74 -

cciMSTspear 0.80 0.69 0.77 -

cciMSTspear 0.80 0.69 0.77 LOG

cciMSTcorr 0.67 0.61 0.75 LOG

MCMCLeuc 0.60 0.58 0.74 -

MCLeuc 0.66 0.51 0.67 LOG

cciMSTeuc 0.62 0.44 0.68 LOG

Kmeans corr 0.56 0.40 0.53 LOG

cciMSTeuc 0.56 0.37 0.65 -

Kmeans eucl 0.55 0.39 0.51 -

Kmeans eucl 0.55 0.38 0.50 LOG

Kmeans corr 0.51 0.37 0.50 -

DBSCAN corr 0.11 0.00 0.00 -

DBSCAN eucl 0.11 0.00 0.00 LOG

Single linkage 0.11 0.00 0.00 LOG

DBSCAN corr 0.11 0.00 0.00 LOG

DBSCAN eucl 0.11 0.00 0.00 -

Single linkage 0.11 0.00 0.00 -

Table A. 9. Clustering performance in MNIST full data. Accuracy (Acc), Adjusted Rand
Index (ARI), Normalized Mutual Information (NMI), are reported for each clustering

method and variant. The distances, specified alongside the methods name and factor (if
applied) corresponds to Pearson correlation (corr), Spearman correlation (spea) or

Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for square

root or Flog for logarithm. The last column display the normalization (Norm). The value
in parenthesis besides the method’s name represents the number of hyperparameters for

the clustering method, without taking into consideration the parameters needed to find

143

the number of clusters. Results are ordered according to rank performance (rank value

not shown) from the highest (top) to the lowest (bottom).

CIFAR100 Acc ARI NMI Norm

HOE (1) 0.36 0.12 0.14 -

HOT (1) 0.36 0.11 0.14 -

HOMO (1) 0.35 0.11 0.14 -

HIT (1) 0.35 0.11 0.14 -

AP spea 0.34 0.13 0.15 LOG

AP spea 0.34 0.13 0.15 -

MCMCLcorr_hdr (1) 0.36 0.11 0.13 LOG

Kmeans corr 0.35 0.12 0.13 -

MCMCLcorr_hdr_Flog (1) 0.35 0.11 0.12 LOG

Kmeans corr 0.34 0.11 0.13 LOG

MCMCLcorr_hbr (1) 0.35 0.10 0.11 LOG

MCMCLeuc_hbr_Fsqrt (1) 0.35 0.09 0.11 -

MCMCLcorr_hbr_Flog (1) 0.34 0.10 0.12 LOG

Kmeans eucl 0.33 0.09 0.14 LOG

MCAP spea 0.34 0.09 0.10 LOG

MCAP spea 0.34 0.09 0.10 -

MCMCLcorr_hbr (1) 0.33 0.09 0.11 -

MCMCLs_corr 0.35 0.08 0.10 LOG

MCMCLeuc_dual_Flog (1) 0.33 0.09 0.10 LOG

AP corr 0.32 0.11 0.13 LOG

AP corr 0.31 0.11 0.13 -

MCAP corr 0.32 0.10 0.11 LOG

MCMCLspea_hbr_Flog (1) 0.33 0.08 0.10 -

MCMCLspea_hbr_Flog (1) 0.33 0.08 0.10 LOG

Kmeans eucl 0.33 0.08 0.11 -

MCMCLspea_hbr (1) 0.33 0.08 0.10 -

MCMCLspea_hbr (1) 0.33 0.08 0.10 LOG

MCMCLcorr_hbr_Flog (1) 0.32 0.08 0.10 -

MCMCLcorr_dual_Flog (1) 0.32 0.08 0.09 LOG

MCMCLspea_hdr (1) 0.32 0.07 0.10 -

144

MCMCLspea_hdr (1) 0.32 0.07 0.10 LOG

MCMCLs_corr 0.32 0.08 0.10 -

MCAP corr 0.32 0.08 0.09 -

MCMCLeuc_hbr_Flog (1) 0.32 0.06 0.09 -

MCMCLl_eucl 0.31 0.08 0.09 LOG

MCMCLeuc_hdr_Flog (1) 0.31 0.08 0.09 LOG

MCMCLeuc_hbr_Flog (1) 0.31 0.08 0.09 LOG

MCMCLeuc_hdr_Flog (1) 0.32 0.06 0.09 -

MCMCLspea_hbr_Fsqrt (1) 0.32 0.07 0.09 -

MCMCLspea_hbr_Fsqrt (1) 0.32 0.07 0.09 LOG

AP eucl 0.32 0.05 0.10 LOG

MCMCLcorr_hdr (1) 0.31 0.07 0.09 -

MCMCLspea_hdr_Flog (1) 0.32 0.06 0.08 -

MCMCLspea_hdr_Flog (1) 0.32 0.06 0.08 LOG

MCMCLcorr_hdr_Flog (1) 0.32 0.06 0.09 -

MCMCL_corr 0.32 0.06 0.08 LOG

MCMCLcorr_dual 0.31 0.07 0.09 -

MCMCLl_corr 0.32 0.06 0.07 LOG

MCAP eucl 0.32 0.05 0.07 -

MCMCLeuc_hdr_Fsqrt (1) 0.31 0.05 0.09 -

AP eucl 0.32 0.05 0.09 -

MCMCLspea_dual (1) 0.30 0.05 0.08 -

MCMCLspea_dual (1) 0.30 0.05 0.08 LOG

MCMCLcorr_dual_Flog (1) 0.30 0.06 0.07 -

isoMCLcorr (1) 0.30 0.06 0.07 -

isoMCLcorr (1) 0.30 0.05 0.08 LOG

MCMCLl_eucl 0.31 0.04 0.07 -

MCMCLspea_dual_Flog (1) 0.29 0.05 0.07 -

isoMCLspear (1) 0.29 0.05 0.07 -

isoMCLspear (1) 0.29 0.05 0.07 LOG

MCMCLspea_hdr_Fsqrt (1) 0.29 0.04 0.08 -

MCMCLspea_hdr_Fsqrt (1) 0.29 0.04 0.08 LOG

MCAP eucl 0.30 0.05 0.06 LOG

145

MCMCLcorr_dual 0.28 0.04 0.07 LOG

MCMCLs_eucl 0.29 0.04 0.05 LOG

MCMCLeuc_hdr_Fsqrt (1) 0.29 0.04 0.05 LOG

MCMCLeuc_hbr_Fsqrt (1) 0.29 0.04 0.05 LOG

MCMCLl_corr 0.29 0.04 0.07 -

MCMCL_corr 0.27 0.03 0.06 -

MCMCLeuc_dual_Fsqrt (1) 0.28 0.02 0.06 -

MCMCLspea_dual_Flog (1) 0.27 0.02 0.06 LOG

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.33 -

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.33 LOG

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.33 -

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.33 LOG

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.33 -

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.33 LOG

cciMSTeuc 0.27 0.02 0.03 -

isoMCLeuc (1) 0.24 0.00 0.04 LOG

MCMCLs_eucl 0.26 0.01 0.04 -

MCMCLeuc_dual (1) 0.23 0.00 0.04 LOG

MCMCLeuc_hbr (1) 0.23 0.00 0.04 LOG

cciMSTcorr 0.22 0.00 0.03 LOG

cciMSTcorr 0.22 0.00 0.02 -

cciMSTspear 0.22 0.00 0.02 -

cciMSTspear 0.22 0.00 0.02 LOG

MCMCLeuc_hdr (1) 0.22 0.00 0.03 -

MCMCLeuc_hbr (1) 0.22 0.00 0.03 -

MCMCL_eucl 0.22 0.00 0.03 -

isoMCLeuc (1) 0.22 0.00 0.02 -

MCMCLeuc_dual_Fsqrt (1) 0.21 0.00 0.02 LOG

MCMCLeuc_dual_Flog (1) 0.21 0.00 0.01 -

MCMCLspea_dual_Fsqrt (1) 0.21 0.00 0.01 -

MCMCLspea_dual_Fsqrt (1) 0.21 0.00 0.01 LOG

MCL_eucl 0.21 0.00 0.01 LOG

MCMCLeuc_hdr (1) 0.21 0.00 0.01 LOG

146

MCMCL_eucl 0.21 0.00 0.01 LOG

MCL_eucl 0.20 0.00 0.01 -

MCMCLeuc_dual (1) 0.21 0.00 0.01 -

MCL_corr 0.20 0.00 0.01 -

DPSPeuc 0.20 0.00 0.01 -

MCL_corr 0.20 0.00 0.01 LOG

DBSCAN corr 0.20 0.00 0.02 LOG

DPSPcorr 0.20 0.00 0.00 -

cciMSTeuc 0.20 0.00 0.00 LOG

DBSCAN corr 0.19 0.00 0.03 -

DPSPcorr 0.20 0.00 0.00 LOG

DPSPspear 0.20 0.00 0.00 -

DPSPspear 0.20 0.00 0.00 LOG

Single linkage euc 0.20 0.00 0.00 LOG

Single linkage spea 0.20 0.00 0.00 LOG

Single linkage spea 0.20 0.00 0.00 -

DBSCAN eucl 0.20 0.00 0.00 LOG

DBSCAN spea 0.20 0.00 0.00 LOG

DBSCAN spea 0.20 0.00 0.00 -

Single linkage corr 0.20 0.00 0.00 LOG

Single linkage euc 0.20 0.00 0.00 -

Single linkage corr 0.20 0.00 0.00 -

DBSCAN eucl 0.20 0.00 0.00 -

DPSPeuc 0.20 0.00 0.00 LOG

Table A. 10. Clustering performance in CIFAR100 data. Accuracy (Acc), Adjusted
Rand Index (ARI), Normalized Mutual Information (NMI), are reported for each

clustering method and variant. The distances, specified alongside the methods name and
factor (if applied) corresponds to Pearson correlation (corr), Spearman correlation

(spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for

square root or Flog for logarithm. The last column display the normalization (Norm).
The value in parenthesis besides the method’s name represents the number of

hyperparameters for the clustering method, without taking into consideration the

parameters needed to find the number of clusters. Results are ordered according to rank
performance (rank value not shown) from the highest (top) to the lowest (bottom).

147

CIFAR10 Acc ARI NMI Norm

HOT (1) 0.22 0.04 0.07 -

HOMO (1) 0.22 0.04 0.07 -

HOE (1) 0.22 0.04 0.07 -

HIT (1) 0.22 0.04 0.07 -

Kmeans corr 0.20 0.03 0.06 LOG

isoMCLcorr (1) 0.18 0.04 0.07 LOG

Kmeans corr 0.20 0.03 0.06 -

Kmeans eucl 0.20 0.03 0.06 LOG

Kmeans eucl 0.20 0.03 0.07 -

AP eucl 0.20 0.03 0.06 -

MCMCLeuc_dual_Flog (1) 0.18 0.04 0.06 -

AP eucl 0.19 0.03 0.06 LOG

MCMCLeuc_dual_Fsqrt (1) 0.18 0.03 0.06 -

MCL_corr 0.17 0.04 0.06 LOG

MCAP eucl 0.19 0.03 0.05 LOG

MCMCLeuc_hbr_Fsqrt (1) 0.18 0.03 0.05 -

MCMCLeuc_hdr_Fsqrt (1) 0.18 0.03 0.05 -

MCMCLs_eucl 0.18 0.03 0.05 -

MCMCLl_eucl 0.19 0.03 0.05 -

MCMCLeuc_hbr_Flog (1) 0.19 0.03 0.05 -

MCMCLeuc_hdr_Flog (1) 0.19 0.03 0.05 -

isoMCLcorr (1) 0.17 0.03 0.05 -

MCMCLeuc_hbr_Fsqrt (1) 0.17 0.03 0.05 LOG

MCMCLeuc_hdr_Fsqrt (1) 0.17 0.03 0.05 LOG

MCAP eucl 0.17 0.03 0.05 -

MCAP corr 0.18 0.02 0.06 LOG

MCMCLcorr_hbr (1) 0.18 0.03 0.05 -

MCMCLcorr_hdr (1) 0.18 0.03 0.05 -

MCMCL_corr 0.18 0.03 0.05 -

148

MCAP corr 0.18 0.02 0.05 -

MCMCLs_corr 0.18 0.02 0.05 -

MCMCLs_corr 0.17 0.03 0.05 LOG

MCMCLspea_hdr_Flog (1) 0.16 0.02 0.05 -

MCMCLspea_hdr_Flog (1) 0.16 0.02 0.05 LOG

MCMCLspea_dual_Fsqrt (1) 0.16 0.02 0.05 LOG

MCMCLspea_hdr (1) 0.16 0.03 0.05 -

MCMCLspea_hdr (1) 0.16 0.03 0.05 LOG

MCMCLspea_dual_Flog (1) 0.16 0.02 0.04 LOG

MCMCLcorr_hbr_Flog (1) 0.16 0.02 0.05 LOG

MCMCLspea_dual_Flog (1) 0.16 0.02 0.04 -

MCMCLspea_dual_Fsqrt (1) 0.16 0.02 0.05 -

MCMCLcorr_hdr (1) 0.16 0.02 0.05 LOG

AP corr 0.00 0.03 0.06 -

MCMCLcorr_hdr_Flog (1) 0.16 0.02 0.05 LOG

AP corr 0.00 0.03 0.06 LOG

MCMCLl_corr 0.16 0.02 0.05 LOG

isoMCLeuc (1) 0.16 0.01 0.06 -

isoMCLspear (1) 0.16 0.02 0.04 -

isoMCLspear (1) 0.16 0.02 0.04 LOG

MCMCLspea_dual (1) 0.16 0.02 0.04 -

MCMCLspea_dual (1) 0.16 0.02 0.04 LOG

MCMCLs_eucl 0.15 0.02 0.05 LOG

MCMCLcorr_hbr_Flog (1) 0.16 0.02 0.04 -

MCMCLcorr_hdr_Flog (1) 0.16 0.02 0.04 -

MCMCLspea_hbr_Fsqrt (1) 0.16 0.02 0.04 -

MCMCLspea_hbr_Fsqrt (1) 0.16 0.02 0.04 LOG

MCMCLl_corr 0.16 0.02 0.04 -

MCMCLcorr_dual_Flog (1) 0.15 0.02 0.04 -

MCMCL_corr 0.15 0.02 0.04 LOG

MCMCLcorr_hbr (1) 0.15 0.02 0.04 LOG

MCMCLspea_hdr_Fsqrt (1) 0.16 0.02 0.04 -

MCMCLspea_hdr_Fsqrt (1) 0.16 0.02 0.04 LOG

149

MCMCLcorr_dual (1) 0.15 0.02 0.04 -

MCMCLspea_hbr_Flog (1) 0.16 0.02 0.04 -

MCMCLspea_hbr_Flog (1) 0.16 0.02 0.04 LOG

MCMCLcorr_dual (1) 0.15 0.02 0.04 LOG

MCMCLcorr_dual_Flog (1) 0.15 0.02 0.04 LOG

MCMCLspea_hbr (1) 0.15 0.02 0.04 -

MCMCLspea_hbr (1) 0.15 0.02 0.04 LOG

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.40 -

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.40 -

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.40 -

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.40 LOG

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.40 LOG

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.40 LOG

MCMCLeuc 0.14 0.01 0.04 -

MCMCLeuc_hbr (1) 0.14 0.01 0.04 -

MCMCLeuc_hdr (1) 0.14 0.01 0.04 -

MCL_corr 0.15 0.02 0.03 -

MCMCL_eucl 0.14 0.01 0.04 -

cciMSTcorr 0.14 0.02 0.03 -

MCMCLspea 0.14 0.01 0.03 -

cciMSTspear 0.14 0.01 0.03 -

cciMSTspear 0.14 0.01 0.03 LOG

cciMSTcorr 0.14 0.01 0.03 LOG

MCMCLeuc_hbr_Flog (1) 0.13 0.01 0.03 LOG

MCMCLeuc_hdr_Flog (1) 0.13 0.01 0.03 LOG

MCMCLl_eucl 0.13 0.01 0.03 LOG

MCMCLeuc_dual_Flog (1) 0.13 0.00 0.03 LOG

MCMCLeuc_dual_Fsqrt (1) 0.12 0.00 0.02 LOG

MCMCLeuc_dual (1) 0.12 0.00 0.03 -

MCMCLeuc_hbr (1) 0.10 0.00 0.01 LOG

isoMCLeuc (1) 0.11 0.00 0.01 LOG

MCMCLeuc_hdr (1) 0.10 0.00 0.01 LOG

MCMCLeuc_dual (1) 0.10 0.00 0.01 LOG

150

MCMCL_eucl 0.10 0.00 0.01 LOG

MCL_eucl 0.10 0.00 0.00 LOG

DPSPeuc 0.10 0.00 0.00 LOG

DPSPcorr 0.10 0.00 0.00 LOG

DPSPeuc 0.10 0.00 0.00 -

DBSCAN corr 0.06 0.00 0.02 LOG

DPSPcorr 0.10 0.00 0.00 -

Single linkage euc 0.10 0.00 0.00 -

DBSCAN eucl 0.10 0.00 0.00 -

DPSPspear 0.10 0.00 0.00 -

DPSPspear 0.10 0.00 0.00 LOG

Single linkage euc 0.10 0.00 0.00 LOG

DBSCAN eucl 0.10 0.00 0.00 LOG

cciMSTeuc 0.10 0.00 0.00 -

MCL_eucl 0.10 0.00 0.00 -

cciMSTeuc 0.10 0.00 0.00 LOG

DBSCAN corr 0.00 0.00 0.00 -

Table A. 11. Clustering performance in CIFAR10 data. Accuracy (Acc), Adjusted Rand

Index (ARI), Normalized Mutual Information (NMI), are reported for each clustering

method and variant. The distances, specified alongside the methods name and factor (if
applied) corresponds to Pearson correlation (corr), Spearman correlation (spea) or

Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for square

root or Flog for logarithm. The last column display the normalization (Norm). The value
in parenthesis besides the method’s name represents the number of hyperparameters for

the clustering method, without taking into consideration the parameters needed to find

the number of clusters. Results are ordered according to rank performance (rank value
not shown) from the highest (top) to the lowest (bottom).

151

BIBLIOGRAPHY

[1] R. Xu and D. WunschII, “Survey of Clustering Algorithms,” IEEE

Trans. Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005, doi:

10.1109/TNN.2005.845141.

[2] C. Fraley and A. E. Raftery, “Model-Based Clustering, Discriminant

Analysis, and Density Estimation,” J. Am. Stat. Assoc., vol. 97, no.

458, pp. 611–631, Jun. 2002, doi: 10.1198/016214502760047131.

[3] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On Clustering

Validation Techniques,” J. Intell. Inf. Syst., vol. 17, no. 2/3, pp. 107–

145, 2001, doi: 10.1023/A:1012801612483.

[4] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern

Recognit. Lett., vol. 31, no. 8, pp. 651–666, Jun. 2010, doi:

10.1016/J.PATREC.2009.09.011.

[5] G. B. Coleman and H. C. Andrews, “Image segmentation by

clustering,” Proc. IEEE, vol. 67, no. 5, pp. 773–785, 1979, doi:

10.1109/PROC.1979.11327.

[6] M. Omran, A. P. Engelbrecht, and A. Salman, “Particle swarm

optimization method for image clustering,” Int. J. Pattern Recognit.

Artif. Intell., vol. 19, no. 3, pp. 297–321, 2005, doi:

10.1142/S0218001405004083.

[7] H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, and W. L. Nowinski,

“Medical image segmentation using k-means clustering and improved

watershed algorithm,” Proc. IEEE Southwest Symp. Image Anal.

Interpret., vol. 2006, pp. 61–65, 2006, doi:

10.1109/ssiai.2006.1633722.

[8] A. Baraldi and P. Blonda, “A survey of fuzzy clustering algorithms

for pattern recognition - Part I,” IEEE Trans. Syst. Man, Cybern. Part

B Cybern., vol. 29, no. 6, pp. 778–785, 1999, doi:

10.1109/3477.809032.

[9] D. Horn and A. Gottlieb, “Algorithm for Data Clustering in Pattern

Recognition Problems Based on Quantum Mechanics,” Phys. Rev.

Lett., vol. 88, no. 1, p. 4, 2002, doi: 10.1103/PhysRevLett.88.018702.

152

[10] H. He and Y. Tan, “Automatic pattern recognition of ECG signals

using entropy-based adaptive dimensionality reduction and

clustering,” Appl. Soft Comput. J., vol. 55, pp. 238–252, 2017, doi:

10.1016/j.asoc.2017.02.001.

[11] R. J. Calantone and C. A. Benedetto, “Clustering product launches by

price and launch strategy,” J. Bus. Ind. Mark., vol. 22, no. 1, pp. 4–

19, 2007, doi: 10.1108/08858620710722789.

[12] G. Arimond and A. Elfessi, “A clustering method for categorical data

in tourism market segmentation research,” J. Travel Res., vol. 39, no.

4, pp. 391–397, 2001, doi: 10.1177/004728750103900405.

[13] S. Ciucci et al., “Enlightening discriminative network functional

modules behind Principal Component Analysis separation in

differential-omic science studies,” no. October 2016, pp. 1–24, 2017,

doi: 10.1038/srep43946.

[14] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering : A

Review,” vol. 31, no. 3, pp. 264–323, 1999, doi: 10.1007/978-3-319-

09156-3.

[15] H. Steinhaus, “Sur la division del corps matériels en parties,” Bull.

l’Académie Pol. del Sci. - Cl. III, vol. IV, no. 12, pp. 801–804, 1956.

[16] J. MacQueen, Some methods for classification and analysis of

multivariate observations. 1967.

[17] F. Nielsen, “Hierarchical Clustering,” in Handbook of Cluster

Analysis, no. February, 2016, pp. 195–211.

[18] R. Sibson, “SLINK: An optimally efficient algorithm for the single-

link cluster method,” Comput. J., vol. 16, no. 1, pp. 30–34, 1973, doi:

10.1093/comjnl/16.1.30.

[19] L. L. McQuitty, “Elementary Linkage Analysis for Isolating

Orthogonal and Oblique Types and Typal Relevancies,” Educ.

Psychol. Meas., vol. 17, no. 2, pp. 207–229, Jul. 1957, doi:

10.1177/001316445701700204.

[20] H. K. Seifoddini, “Single linkage versus average linkage clustering in

machine cells formation applications,” Comput. Ind. Eng., vol. 16, no.

3, pp. 419–426, 1989, doi: 10.1016/0360-8352(89)90160-5.

[21] J. Sander, “Density-Based Clustering,” in Encyclopedia of Machine

Learning, Springer Science+Business Media LLC 2011, 2011.

153

[22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based

algorithm for discovering clusters in large spatial databases with

noise,” Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining. AAAI Press, pp. 226–231,

1996.

[23] A. Karami and R. Johansson, “Choosing DBSCAN Parameters

Automatically using Differential Evolution,” Int. J. Comput. Appl.,

vol. 91, no. 7, pp. 1–11, 2014, doi: 10.5120/15890-5059.

[24] K. Khan, S. U. Rehman, K. Aziz, S. Fong, S. Sarasvady, and A.

Vishwa, “DBSCAN: Past, present and future,” 2014, doi:

10.1109/ICADIWT.2014.6814687.

[25] A. Rodriguez and A. Laio, “Clustering by fast search and find of

density peaks,” Science (80-.)., vol. 344, no. 6191, pp. 1492–1496,

2014, doi: 10.1126/science.1242072.

[26] D. U. Pizzagalli, S. F. Gonzalez, and R. Krause, “A trainable

clustering algorithm based on shortest paths from density peaks,” Sci.

Adv., vol. 5, no. 10, pp. 1–11, 2019, doi: 10.1126/sciadv.aax3770.

[27] B. J. Frey and D. Dueck, “Clustering by Passing Messages Between

Data Points,” Science (80-.)., vol. 315, no. 5814, pp. 972–976, 2007,

doi: 10.1126/science.1136800.

[28] M. J. Brusco, D. Steinley, J. Stevens, and J. D. Cradit, “Affinity

propagation: An exemplar-based tool for clustering in psychological

research,” Br. J. Math. Stat. Psychol., vol. 72, no. 1, pp. 155–182,

2019, doi: 10.1111/bmsp.12136.

[29] O. Grygorash, Z. Yan, and Z. Jorgensen, “Minimum spanning tree

based clustering algorithms,” Proc. - Int. Conf. Tools with Artif. Intell.

ICTAI, pp. 73–81, 2006, doi: 10.1109/ICTAI.2006.83.

[30] C. T. Zahn, “Graph-Theoretical Methods for Detecting and

Describing Gestalt Clusters,” IEEE Trans. Comput., 1971, doi:

10.1109/T-C.1971.223083.

[31] X. Lv, Y. Ma, X. He, H. Huang, and J. Yang, “CciMST: A Clustering

Algorithm Based on Minimum Spanning Tree and Cluster Centers,”

Math. Probl. Eng., vol. 2018, 2018, doi: 10.1155/2018/8451796.

[32] S. van Dongen, “Graph clustering by flow simulation,” Graph Stimul.

by flow Clust., 2000, doi: 10.1016/j.cosrev.2007.05.001.

[33] M. A. Kramer, “Nonlinear principal component analysis using

154

autoassociative neural networks,” AIChE J., vol. 37, no. 2, pp. 233–

243, 1991, doi: 10.1002/aic.690370209.

[34] X. Peng, H. Zhu, J. Feng, C. Shen, H. Zhang, and J. T. Zhou, “Deep

Clustering with Sample-Assignment Invariance Prior,” IEEE Trans.

Neural Networks Learn. Syst., vol. 31, no. 11, pp. 4857–4868, 2020,

doi: 10.1109/TNNLS.2019.2958324.

[35] M. Girvan and M. E. J. Newman, “Community structure in social and

biological networks,” PNAS, vol. 99, no. 12, pp. 7821–7826, 2002,

doi: 10.1073/pnas.122653799.

[36] A. Lancichinetti, J. Saramäki, M. Kivelä, and S. Fortunato,

“Characterizing the community structure of complex networks,”

PLoS One, 2010, doi: 10.1371/journal.pone.0011976.

[37] M. Rosvall and C. T. Bergstrom, “Multilevel compression of random

walks on networks reveals hierarchical organization in large

integrated systems,” PLoS One, vol. 6, no. 4, p. e18209, 2011, doi:

10.1371/journal.pone.0018209.

[38] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast

unfolding of communities in large networks,” J. Stat. Mech Theory

Exp., vol. 2008, no. 10, p. 10008, 2008, doi: 10.1088/1742-

5468/2008/10/P10008.

[39] A. Lancichinetti and S. Fortunato, “Community detection algorithms:

A comparative analysis,” Phys. Rev. E, vol. 80, no. 5, p. 056117,

2009, doi: 10.1103/PhysRevE.80.056117.

[40] Z. Yang, R. Algesheimer, and C. J. Tessone, “A Comparative

Analysis of Community Detection Algorithms on Artificial

Networks,” Sci. Rep., vol. 6, p. 30750, 2016, doi: 10.1038/srep30750.

[41] G. K. Orman and V. Labatut, “A Comparison of Community

Detection Algorithms on Artificial Networks,” in Discovery science,

2009, pp. 242–256.

[42] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’

networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998, doi:

10.1038/30918.

[43] D. A. Huffman, “A Method for the Construction of Minimum-

Redundancy Codes,” Proc. IRE, 1952, doi:

10.1109/JRPROC.1952.273898.

[44] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex

155

networks reveal community structure,” Proc. Natl. Acad. Sci. U. S.

A., vol. 105, no. 4, pp. 1118–1123, 2008, doi:

10.1073/pnas.0706851105.

[45] L. van der Maaten, E. Postma, and J. van den Herik, “Dimensionality

Reduction: A Comparative Review,” J. Mach. Learn. Res., vol. 10,

no. February, pp. 1–41, 2009, doi: 10.1080/13506280444000102.

[46] I. T. Jolliffe, “Principal Component Analysis,” Springer Ser. Stat.,

vol. 98, p. 487, 2002, doi: 10.1007/b98835.

[47] Ringnér, “What is principal component analysis?,” Nat. Biotechnol.,

vol. 26, no. 3, pp. 303–304, Mar. 2008, doi: doi:10.1038/nbt0308-303.

[48] R. N. Shepard, “The analysis of proximities: Multidimensional

scaling with an unknown distance function. I.,” Psychometrika, vol.

27, no. 2, pp. 125–140, Jun. 1962, doi: 10.1007/BF02289630.

[49] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of

fit to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–

27, Mar. 1964, doi: 10.1007/BF02289565.

[50] E. W. Beals, “Bray-curtis ordination: An effective strategy for

analysis of multivariate ecological data,” in Advances in Ecological

Research, vol. 14, no. C, 1984, pp. 1–55.

[51] C. Durán et al., “Nonlinear machine learning pattern recognition and

bacteria-metabolite multilayer network analysis of perturbed gastric

microbiome,” Nat. Commun., no. 12, p. 1926, 2021, doi:

10.1038/s41467-021-22135-x.

[52] C. V. Cannistraci, T. Ravasi, F. M. Montevecchi, T. Ideker, and M.

Alessio, “Nonlinear dimension reduction and clustering by minimum

curvilinearity unfold neuropathic pain and tissue embryological

classes,” Bioinformatics, vol. 26, no. 18, pp. 531–539, 2010, doi:

10.1093/bioinformatics/btq376.

[53] C. V. Cannistraci, G. Alanis-Lobato, and T. Ravasi, “Minimum

curvilinearity to enhance topological prediction of protein interactions

by network embedding,” Bioinformatics, vol. 29, no. 13, pp. 199–209,

2013, doi: 10.1093/bioinformatics/btt208.

[54] M. Boguñá, D. Krioukov, and K. C. Claffy, “Navigability of complex

networks,” Nat. Phys., vol. 5, no. 1, pp. 74–80, 2008, doi:

10.1038/nphys1130.

[55] J. Kleinberg, “Small-world phenomena and the dynamics of

156

information,” Adv. Neural Inf. Process. Syst., pp. 1–14, 2002, doi:

10.7551/mitpress/1120.003.0060.

[56] F. Papadopoulos, M. Kitsak, M. A. Serrano, M. Boguñá, and D.

Krioukov, “Popularity versus similarity in growing networks,”

Nature, vol. 489, no. 7417, pp. 537–540, 2012, doi:

10.1038/nature11459.

[57] C. V. Cannistraci, T. Ravasi, F. M. Montevecchi, T. Ideker, and M.

Alessio, “Nonlinear dimension reduction and clustering by Minimum

Curvilinearity unfold neuropathic pain and tissue embryological

classes,” Bioinformatics, vol. 26, pp. i531–i539, 2010.

[58] A. Muscoloni and C. V. Cannistraci, “Navigability evaluation of

complex networks by greedy routing efficiency,” vol. 116, no. 5, pp.

1468–1469, 2019, doi: 10.1073/pnas.1817880116.

[59] A. Muscoloni and C. V. Cannistraci, “Minimum curvilinear automata

with similarity attachment for network embedding and link prediction

in the hyperbolic space,” ArXiv:1802.01183, 2018.

[60] A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V.

Cannistraci, “Machine learning meets complex networks via

coalescent embedding in the hyperbolic space,” Nat. Commun., vol.

8, no. 1, p. 1615, 2017.

[61] C. V. Cannistraci and A. Muscoloni, “Latent Geometry Inspired

Graph Dissimilarities Enhance Affinity Propagation Community

Detection in Complex Networks,” ArXiv: 1804.04566, vol.

20:063022, 2018, [Online]. Available:

http://arxiv.org/abs/1804.04566.

[62] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric

framework for nonlinear dimensionality reduction.,” Science, vol.

290, pp. 2319–23, 2000, doi: 10.1126/science.290.5500.2319.

[63] N. X. Vinh, J. Epps, and J. Bailey, “Information Theoretic Measures

for Clusterings Comparison: Variants, Properties, Normalization and

Correction for Chance,” J. Mach. Learn. Res., vol. 11, pp. 2837–2854,

Dec. 2010.

[64] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing

community structure identification,” J. Stat. Mech. Theory Exp., vol.

P09008, pp. 1–10, 2005.

[65] L. Hubert and P. Arabie, “Comparing partitions,” J. Classif., vol. 2,

no. 1, pp. 193–218, Dec. 1985, doi: 10.1007/BF01908075.

157

[66] W. M. Rand, “Objective criteria for the evaluation of clustering

methods,” J. Am. Stat. Assoc., vol. 66, no. 336, pp. 846–850, 1971,

doi: 10.1080/01621459.1971.10482356.

[67] M. Á. Serrano, D. Krioukov, and M. Boguñá, “Self-similarity of

complex networks and hidden metric spaces,” Phys. Rev. Lett., vol.

100, no. 7, pp. 1–4, 2008, doi: 10.1103/PhysRevLett.100.078701.

[68] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M.

Boguñá, “Hyperbolic geometry of complex networks,” Phys. Rev. E -

Stat. Nonlinear, Soft Matter Phys., vol. 82, no. 3, p. 036106, 2010,

doi: 10.1103/PhysRevE.82.036106.

[69] M. Jalili and M. Perc, “Information cascades in complex networks,”

J. Complex Networks, vol. 5, no. 5, pp. 665–693, 2017, doi:

10.1093/comnet/cnx019.

[70] A. Clauset, C. Rohilla Shalizi, and M. E. J. Newman, “Power-Law

Distributions in Empirical Data,” SIAM Rev., vol. 51, no. 4, pp. 661–

703, 2009, doi: 10.1214/13-AOAS710.

[71] W. W. Zachary, “An Information Flow Model for Conflict and

Fission in Small Groups,” J. Anthropol. Res., vol. 33, no. 4, pp. 452–

473, 1977, doi: 10.2307/3629752.

[72] R. Cross and A. Parker, The Hidden Power of Social Networks.

Harvard Business School Press, 2004.

[73] L. A. Adamic and N. Glance, “The Political Blogosphere and the 2004

U.S. Election: Divided They Blog,” LinkKDD 2005, pp. 36–43, 2005.

[74] A. Muscoloni and C. V. Cannistraci, “A nonuniform popularity-

similarity optimization (nPSO) model to efficiently generate realistic

complex networks with communities,” New J. Phys., vol. 20, p.

052002, 2018, doi: https://doi.org/10.1088/1367-2630/aac06f.

[75] A. Muscoloni and C. V. Cannistraci, “Leveraging the nonuniform

PSO network model as a benchmark for performance evaluation in

community detection and link prediction,” New J. Phys., vol. 20, no.

063022, p. 063022, 2018.

[76] F. Paroni Sterbini et al., “Effects of Proton Pump Inhibitors on the

Gastric Mucosa-Associated Microbiota in Dyspeptic Patients.,” Appl.

Environ. Microbiol., vol. 82, no. 22, pp. 6633–6644, Nov. 2016, doi:

10.1128/AEM.01437-16.

[77] Z. Li et al., “Effect of long-term proton pump inhibitor administration

158

on gastric mucosal atrophy: A meta-analysis,” Saudi Journal of

Gastroenterology. 2017, doi: 10.4103/sjg.SJG_573_16.

[78] S. C. Nasser, M. Slim, J. G. Nassif, and S. M. Nasser, “Influence of

proton pump inhibitors on gastritis diagnosis and pathologic gastric

changes,” World J. Gastroenterol., vol. 21, no. 15, pp. 4599–4606,

2015, doi: 10.3748/wjg.v21.i15.4599.

[79] V. G. Sigillito, S. P. Wing, L. V Hutton, and K. B. Baker,

“CLASSIFICATION OF RADAR RETURNS FROM THE,” vol. 10,

no. 3, 1989.

[80] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proc. IEEE, vol. 86, no.

11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,” Commun.

ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386.

[82] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny

Images,” 2009.

[83] A. Kolesnikov et al., “Big Transfer (BiT): General Visual

Representation Learning,” 2020, pp. 491–507.

[84] Y. Huang et al., “GPipe: Efficient training of giant neural networks

using pipeline parallelism,” Adv. Neural Inf. Process. Syst., vol. 32,

no. NeurIPS, 2019.

[85] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for

convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML

2019, vol. 2019-June, pp. 10691–10700, 2019.

[86] M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural

architecture search,” arXiv, 2019.

[87] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,

“Autoaugment: Learning augmentation strategies from data,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-

June, no. Section 3, pp. 113–123, 2019, doi:

10.1109/CVPR.2019.00020.

[88] N. Nayman, A. Noy, T. Ridnik, I. Friedman, R. Jin, and L. Zelnik-

Manor, “XNAS: Neural architecture search with expert advice,”

arXiv, 2019.

159

[89] N. H. Phong and B. Ribeiro, “Rethinking Recurrent Neural Networks

and other improvements for image classification,” arXiv, pp. 1–16,

2020.

[90] D. Hric, R. K. Darst, and S. Fortunato, “Community detection in

networks: Structural communities versus ground truth,” Phys. Rev. E

- Stat. Nonlinear, Soft Matter Phys., vol. 90, no. 6, 2014, doi:

10.1103/PhysRevE.90.062805.

[91] A. Muscoloni and C. V. Cannistraci, “Minimum curvilinear automata

with similarity attachment for network embedding and link prediction

in the hyperbolic space,” Feb. 2018.

[92] S. Athanassopoulos, C. Kaklamanis, I. Laftsidis, and E. Papaioannou,

“An Experimental Study of Greedy Routing Algorithms,” Proc. Int.

Conf. High Perform. Comput. Simul., pp. 150–156, 2010, doi:

10.1109/HPCS.2010.5547143.

[93] M. E. J. Newman and M. Girvan, “Finding and evaluating community

structure in networks,” Phys. Rev. E - Stat. Nonlinear, Soft Matter

Phys., vol. 69, no. 2 2, pp. 1–15, 2004, doi:

10.1103/PhysRevE.69.026113.

[94] K. Fukunaga, Introduction to Statistical Pattern Recognition.

Academic Press, 2013.

[95] A. Muscoloni and C. V. Cannistraci, “Rich-clubness test: How to

determine whether a complex network has or doesn’t have a rich-

club?,” arXiv, 2017.

[96] D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguñá,

“Curvature and temperature of complex networks,” Phys. Rev. E -

Stat. Nonlinear, Soft Matter Phys., vol. 80, no. 3, 2009, doi:

10.1103/PhysRevE.80.035101.

[97] M. A. Tanner and W. H. Wong, “The calculation of posterior

distributions by data augmentation,” J. Am. Stat. Assoc., vol. 82, no.

398, pp. 528–540, 1987, doi: 10.1080/01621459.1987.10478458.

