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ABSTRACT 

Markov clustering (MCL) is an effective unsupervised pattern 

recognition algorithm for data clustering in high-dimensional feature 

space that simulates stochastic flows on a network of sample 

similarities to detect the structural organization of clusters in the data. 

However, it presents two main drawbacks: (1) its community detection 

performance in complex networks has been demonstrating results far 

from the state-of-the-art methods such as Infomap and Louvain, and 

(2) it has never been generalized to deal with data nonlinearity.  

In this work both aspects, although closely related, are taken as 

separated issues and addressed as such.  

Regarding the community detection, field under the network science 

ceiling, the crucial issue is to convert the unweighted network topology 

into a ‘smart enough’ pre-weighted connectivity that adequately steers 

the stochastic flow procedure behind Markov clustering. Here a 

conceptual innovation is introduced and discussed focusing on how to 

leverage network latent geometry notions in order to design similarity 

measures for pre-weighting the adjacency matrix used in Markov 

clustering community detection. The results demonstrate that the 

proposed strategy improves Markov clustering significantly, to the 

extent that it is often close to the performance of current state-of-the-

art methods for community detection. These findings emerge 

considering both synthetic ‘realistic’ networks (with known ground-

truth communities) and real networks (with community metadata), 

even when the real network connectivity is corrupted by noise 

artificially induced by missing or spurious links. 
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Regarding the nonlinearity aspect, the development of algorithms for 

unsupervised pattern recognition by nonlinear clustering is a notable 

problem in data science. Minimum Curvilinearity (MC) is a principle 

that approximates nonlinear sample distances in the high-dimensional 

feature space by curvilinear distances, which are computed as 

transversal paths over their minimum spanning tree, and then stored in 

a kernel. Here, a nonlinear MCL algorithm termed MC-MCL is 

proposed, which is the first nonlinear kernel extension of MCL and 

exploits Minimum Curvilinearity to enhance the performance of MCL 

in real and synthetic high-dimensional data with underlying nonlinear 

patterns. Furthermore, improvements in the design of the so-called 

MC-kernel by applying base modifications to better approximate the 

data hidden geometry have been evaluated with positive outcomes. 

Thus, different nonlinear MCL versions are compared with baseline 

and state-of-art clustering methods, including DBSCAN, K-means, 

affinity propagation, density peaks, and deep-clustering. As result, the 

design of a suitable nonlinear kernel provides a valuable framework to 

estimate nonlinear distances when its kernel is applied in combination 

with MCL. Indeed, nonlinear-MCL variants overcome classical MCL 

and even state-of-art clustering algorithms in different nonlinear 

datasets. 

This dissertation discusses the enhancements and the generalized 

understanding of how network geometry plays a fundamental role in 

designing algorithms based on network navigability. 
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Part I. INTRODUCTION 

This first part will deliver glances about concepts and algorithms 

needed to understand the work realized starting from Part II. It will 

clarify concepts such as clustering, community detection, and it will 

present algorithms related to such strategies from a qualitative and 

mathematical perspective. Some notions about their advantages and 

limits will be discussed to finalize with the motivation to realize the 

here presented work.     

1. Clustering 

Clustering can be seen as one of the oldest strategies to understand and 

to interpret pattern formation in our world: indeed, in daily life, people 

express their intelligence also in the action to group objects, items, or 

even time-series events in relation to the similarity or dissimilarity 

between their features [1]. Specifically, the term Clustering refers to an 

unsupervised pattern recognition methodology which, given an 

ensemble of objects or data, aims to recognize their organization in 

groups and subgroups starting from their features, such as the three 

groups detected in Figure 1. Nowadays, in artificial intelligence, 

clustering is defined as the automatic and unsupervised identification 

of groups of observations that are similar to one another and different 

from other groups in a dataset [2]. Indeed, clustering aims mainly to 

identify distributions and patterns in the underlying data, generating a 

partitioning of a given dataset into different groups called clusters [3]. 

In this sense, the patterns of the observations that are grouped in the 

same cluster should be similar (in the feature space) to each other, 

while patterns of observations that result in different clusters should 

not. 
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Figure 1. Basic clustering example. Features are given by shapes and colours. 

1.1. The era of big data 

Nowadays, in the era of Big Data, there is a tremendous amount of 

high-dimensional data available due to the progress in storage 

procedures, and the ubiquitous growth and exploitation of technologies 

that generate high-dimensional datasets; trends that will persist in the 

next decades [4]. Reason that evidence the successful employment of 

clustering algorithms in diverse areas of applications which comprises, 

but are not limited to, image processing [5]–[7], pattern recognition 

[8]–[10], market research [11], [12], etc. However, in fields such as 

systems biology and molecular medicine, the realization of controlled 

experiments that can provide observations or samples to investigate a 

scientific hypothesis can be very time-consuming (recruitment of 

patients, lab experiments etc.) and also expensive [13]. For such a 

reason, in these fields, pilot studies that generate a few samples, in 

order to test the validity of a scientific hypothesis before making the 

decision to scale to the big numbers, is a frequent practice [13]. 

Therefore, it is important under this context to account for diverse 

algorithms which focus to tackle certain aspects of a data problem.    

1.2. Types of clustering 

Many clustering strategies have been developed to deal with specific 

obstacles that might arise in data, that can be related to their shape 

(concave vs non- concave), dimensionality, denseness, between cluster 

interaction (linear vs nonlinear), etc. and each of them can be 

encapsulated in a clustering category [14]. Although many categories 
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might exist, special attention will be drawn here towards five of them: 

partitioning, hierarchical, density-based, graph-based, and deep-based 

methods. Note that some categories might enclose another.  

1.2.1.  Partitioning methods 

Clustering methods based on partitioning are characterized by 

grouping the data samples into k groups or partitions in the space. The 

k groups are usually specified a priori by the user. The quality of the 

partitions is iteratively improved by a specific objective function that 

the algorithm attempts to maximize or minimize, depending on the 

clustering method.  

K-means 

K-means – introduced as an idea by Steinhaus [15] in 1956 and termed 

K-means by MacQueen [16] in 1967 –  is a well-known and one of the 

oldest data clustering algorithms still widely used due to its simplicity 

and effectiveness. K-means’ strategy to find clusters consist of splitting 

the data into a set of k desired clusters, defined a priori by the user as 

aforementioned. It starts with an initial random partition of the data, to 

use consequently an iterative control strategy to optimize the objective 

function J: average squared Euclidean distance (1).  

 

𝐽 =  ∑ ∑‖𝑥𝑖
(𝑗)

− 𝐶𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 
(1) 
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Each cluster is represented by the 

gravity center of cluster C. In other 

words, it determines k representatives 

(centers) by minimizing the objective 

function J, then it assigns each 

sample 𝑥 to the cluster with its closest 

representative (Figure 2). A major 

restriction is that the shapes of the 

clusters found by this algorithm are 

convex (linear data). 

 

1.2.2. Hierarchical methods 

Different from partitioning methods, 

hierarchical methods do not need as input 

the k number of clusters, but it is rather 

inferred from a dendrogram (Figure 3), a 

tree-based graphical representation of 

clusters, which can be constructed from a 

distance matrix. The k can be determined 

depending on the ‘cut’ applied to the 

dendrogram. Generally, there are two types 

of approaches for tree realization: 

Agglomerative (bottom-up) and divisive 

(top-down) [17]. The agglomerative 

method starts from the leaves (each single 

data sample) to join into couples the closest 

samples together. Subsequently continues 

to join close groups until it arrives at the root of the dendrogram. On 

the contrary, divisive methods start from the root containing the whole 

universe of data samples to split it into two nodes afterwards. This 

Figure 3. Dendrogram 

example in hierarchical 

clustering. 

Figure 2. Partitioning of three 

clusters K-means example. The lines 
denote the partitions whilst the 

pentagons the respective cluster’s 

centers.  
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process is repeated for each new node until the single data samples (or 

leaves) are reached.  

Single-linkage 

An example of an agglomerative hierarchical algorithm is the method 

single-linkage [18], [19]. Hierarchical methods are one of the oldest 

clustering approaches. Particularly, Single linkage that was already 

presented in the 1950s [19]. Single linkage consists of iteratively 

joining leaves (in the first iteration) or clusters (in the subsequent 

iterations) with the smallest minimum pairwise distance. The output of 

this clustering also corresponds to an approximate and weighted 

minimum spanning tree (MST; for more details please refer to the 

section 1.2.4 Graph-based methods). Between the drawbacks of this 

method, the misinterpretation of the dendrogram and closeness 

misrepresentation of points in clusters are common [20].     

1.2.3. Density-based methods 

Similar to the hierarchical methods, density-based algorithms infer the 

number of clusters directly from the data. The rationale behind it states 

that clusters are formed by data samples in a contiguous region of high 

density and separated from the rest of the clusters by regions of lesser 

density. Usually, samples in lower density regions are considered as 

noise [21].  

Density based spatial clustering of applications with noise 

Density based spatial clustering of applications with noise (DBSCAN) 

- introduced by Ester et al. in 1996 [22]- is one of the most successful 

density-based clustering algorithms. It is a method that requires two 

density input parameters: MinPts and Eps. If selected any point j in the 

space, MinPts is the minimum number of points inside a 

neighbourhood (of the selected point j) defined as a circle of radius 

Eps. DBSCAN defines as core points all the points that have at least 

MinPts points (including itself) in their Eps neighbourhood. If a point 
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is reachable by a core point but does not satisfy the MinPts in its Eps 

neighbourhood, it is called a border point. The main idea behind this 

algorithm is that a group of points that are mutually reachable through 

core points (because they are included in the neighbourhood of radius 

Eps of core points) forms a cluster. All points not reachable from core 

points and that do not satisfy the MinPts and Eps parameters are 

outliers or noise points (Figure 4). 

As commented above, this algorithm does not need to input the desired 

number of clusters. Instead, it finds them automatically according to 

the tuning of the two above mentioned parameters. Nevertheless, the 

finding of these correct parameters MinPts and Eps is a nontrivial 

problem [23]. Moreover, in datasets with varying densities, DBSCAN 

can phase problems to detect meaningful clusters [24].  

 

Figure 4. DBSCAN illustration. A represent core points, B and C represent border 

points and N represent an outlier or noise. By Chire - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=17045963. 

Density peaks 

Density peaks is a relatively recent algorithm proposed by Rodriguez 

et al. [25].  The algorithm has its basis in the assumptions that cluster 

centers (a.k.a. density peaks) are relatively far away from other cluster 

centers, and that they are generally surrounded by points with lower 

local density (Figure 5). With this in notion, the primordial step in this 

https://commons.wikimedia.org/w/index.php?curid=17045963
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method is to select the density peaks. This is accomplished by 

computing two values: (a) the local density ρ and (b) the distance to 

higher density points δ. ρ is calculated for each data point by counting 

the elements of its surrounding area given a certain threshold (Figure 

5A), and δ is the minimum distance of a point to any other element of 

higher density. These two values are latterly employed to construct a 

density peak decision graph (Figure 5B) used, as the name suggests, to 

select the cluster centers or density peaks. Finally, points are assigned 

to the clusters from the closest density peak. An exception can be 

evidence in outliers, which present in the decision graph a relatively 

high δ but a low ρ.    

 

Figure 5. Density peaks exemplification. (A) 2D data representation. Points are labeled 

according to their densities (ρ) in ascending order. (B) Density peaks decision graph. 

Points 1 and 10 are selected as the density peaks (centers) of two different clusters. 
Points 26 27 and 28 are designated as outliers or noise.  Image extracted from [25]. 

Shortest path-based density peaks 

An improvement to this technique was provided in 2019 by Pizzagalli 

and colleagues [26]. In this study, the authors argue that one main 

drawback of the density peaks algorithm is the strategy to designate the 

data points to each cluster after selecting the centers. The fact that the 

cluster assignation of all data points is given by their closeness to a 

density peak in the Euclidean space (Figure 6A) neglects one of the 

principles of density based clustering, which is to uncover successfully 

clusters of arbitrary shapes (as in the case of DBSCAN). In this 

circumstance, if another large non-globular cluster is close to another 
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globular one, the classical density peaks may assign points of the non-

globular cluster to its neighbor cluster (Figure 6B). Now, Pizzagalli 

and colleagues introduced a shortest path strategy for the point-class 

member assignation that follows a minimax path-cost function (Figure 

6C). This action is translated as following paths with more points but 

tinier gaps between points, instead of fewer points and bigger gaps. 

Such an approach conserves the density property by correctly detecting 

clusters of different shapes (Figure 6D).    

 

Figure 6. Classical density peaks vs shortest path density peaks. (A) Classical cluster 

assignation through the Euclidean space. (B) Clustering result of the classical approach. 

(C) Cluster assignation through the shortest path. (D) Clustering result of shortest path 
approach. Image extracted from [26]. 

1.2.4. Graph-based methods 

This type of algorithms represent data into graphs, where nodes 

correspond to the data samples and the edges between nodes 

correspond to their relation measured as similarities or distances in the 

feature space. The clusters are thus obtained by selecting strongly 

interconnected sub-graphs respective to a given criterion. The 

advantage of these type of methods relies on the ability to detect 

clusters of diverse shapes and sizes (when clearly separated).   
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Affinity Propagation 

AP – introduced by Frey et al. in 2007 [27] – is a clustering algorithm 

based on a message-passing procedure that takes as input a similarity 

value (in general codified as negative distance/dissimilarity values) 

between pairs of data points or samples. The messages are propagated 

between data points until a high-quality set of exemplars (data points 

selected as centers of clusters) and corresponding clusters gradually 

appear [27]. The AP algorithm does not take as input the predefined 

number of clusters, but requires for each data sample a real number 

termed “preference”. Samples with larger preferences are more likely 

to be chosen as exemplars to form a cluster. The values of the input 

preferences influence the number of identified exemplars (lastly the 

number of clusters), but also emerges from the message passing 

procedure [27]. If a priori, all samples are equally suitable as 

exemplars, the preferences should be set to a common value. This value 

can be varied to produce different numbers of clusters. The shared 

preference value could be the maximum of the input similarities 

(resulting in a large number of clusters) or their minimum (resulting in 

a small number of clusters). One drawback of this method, and as it 

naturally may come to mind, is the need to specify the preference 

values a-priori, which is translated on having a bit of prior knowledge 

to select probable exemplars [28]. The algorithm also may fail to 

converge into the respective clusters. However, this can be avoided by 

setting a maximum number of iterations for message passing if 

convergence is never reached.  
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MST-based clustering 

Other graph-based clustering methods are based on the minimum 

spanning tree (MST). An acyclic subgraph that contains all graph 

vertices is known as a spanning tree. If the edges of a graph are 

weighted, an MST is the spanning tree with minimum edge-weights 

(Figure 7). MST-based clustering strategy focuses on finding clusters 

by removing “inconsistent edges” from the MST followed by an 

“inconsistent measure” [29]. An example is the Euclidean MST 

(EMST) method [30] that, based on an MST  whose edges are weighted 

by Euclidean distances, detects clusters by minimizing intra-cluster 

distance and maximizing inter-cluster distance. MST-based clustering 

approaches have emerged from EMST, such as standard EMST 

(SEMST), the Zahn’s EMST (ZEMST) and the maximum standard 

deviation reduction (MSDR), 

whose difference relies on the 

inconsistency measure used to 

remove edges in the constructed 

MST. Whilst the SEMST strategy 

sorts the edges according to weights 

and starts to remove them by the 

highest weighted edge, the ZEMST 

strategy is based in Zahn’s 

inconsistency measure1 [30], and 

the MSDR tries to find a local 

minimum of the standard deviation 

reduction function [29].  

                                                           
1 The Zahn’s inconsistency measure consists in deleting edges of an MST, whose 

weights are significantly larger than the average weights of nearby edges. 

Figure 7. MST subgraph 

representation. The MST is highlighted 

in purple. 
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Cluster center initialization MST 

A recent MST-based method termed cluster center initialization MST 

(cciMST) was proposed with the aim to improve the definition of 

inconsistency edges using a strategy similar to the classical density 

peaks with certain adjusted to be able to find clusters of arbitrary 

shapes [31]. In this study, the authors employed geodesic distances and 

dual densities in order to initialize the cluster’ centers. Then, the 

inconsistent edges are removed by means of a shortest path strategy 

[31].  

One of the drawbacks of MST-based clustering methods is the 

possibility to create “islands” when removing inconsistent edges. 

Special care should be taken for datasets of clusters with different 

densities.  

Markov clustering 

Finally, the last here presented graph-based clustering algorithm is 

termed Markov Clustering (MCL). MCL [32] – introduced by Stijn van 

Dongen in 2000 - is an algorithm for data clustering based on 

simulations of stochastic flows (random walks) in networks. A random 

walk is defined as a mathematical procedure that describes a 

succession of random steps through a mathematical space, consisting 

in this case of a network. The possible paths to ‘walk’ through are its 

edges, which are weighted with certain probabilities to pass through 

them.  MCL works with an iterative process by alternating two 
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operators called expansion and inflation. The 

expansion operator corresponds to the 

computation of random walks of higher length 

(many steps), which associates new probabilities 

between each pair of nodes. In practice, the 

expansion serves to associate higher 

probabilities to paths within clusters rather than 

in between clusters, because in general, there are 

more ways to go from one node to another in the 

same cluster. In contrast, the inflation operator 

has the effect of boosting intra-cluster walk 

probabilities and lowering inter-cluster walks. In 

practice, the inflation is the MCL parameter that 

serves to detect clustering patterns on different 

scales of granularity.  

For clustering samples of a multidimensional 

dataset, the workflow starts with the 

computation of similarities (generally Pearson 

correlations) between the samples, by creating 

an edge between each pair, where the edge-

weight assumes the value of the respective 

pairwise sample similarity. This produces the 

weighted similarity network upon which to 

simulate stochastic flows and detect the 

structural organization of clusters in the data. 

Limitations of this technique discussed by the 

same creator include its difficulties in clustering 

tree graphs in sparse networks where the 

cardinality (or number) of the edges is close to 

the number of nodes and/or in graphs with a large diameter of natural 

clusters [32]. 

Figure 8. MCL 

workflow. Edges 
weights intra-clusters 

are enhanced while 

inter-clusters are 
weaken. The weights 

relate with the random 

walks probabilities for 
network navigation. 
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1.2.5. Deep-based methods 

Deep clustering with sample-assignment invariance prior 

With the popularization of deep learning, different fields have taken 

advantages of such algorithms for their successful usage in data 

analysis.  

Between the many data types that can be analyzed with it, linguistics 

with natural language processing, numeric with Multilayer perceptron 

and Images with Convolutional Neural Networks, are of popular 

choice. Following the huge increase in deep learning methods, some 

algorithms were generated not only for supervised or reinforcement 

learning but also for unsupervised analysis. The autoencoder is a type 

Figure 9. Deep clustering Illustration. The autoencoder, composed by an 
encoder and a decoder, is trained on images X for their reconstructions in X’. 

The bottleneck represented as Z is the latent space created by the encoder, 
which can be exploited by clustering algorithms. 
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of artificial neural network exploited in clustering analyses due to its 

ability to data-reconstruction. It is able to transform the data feature 

space into a latent space thanks to an encoder, which is then 

transformed back as close as possible to the original space thanks to a 

decoder [33]. After the autoencoder network is trained, the latent space, 

output of the encoder, serves as input for clustering algorithms, such 

as K-means. The workflow idea is illustrated in Error! Reference 

ource not found..  

Recently, different methods from the same family were proposed 

considering the aforementioned autoencoder principle [34]. Following 

the workflow of Peng et al. algorithm, a denoising autoencoder is 

firstly pre-trained on noisy data with the aim to reconstruct the same 

data without noise. After pre-training, the algorithm evolves and 

replace the decoder side with another module. This new module applies 

clustering directly to the latent space created from the encoder. The 

module takes this new space and generates different probabilities 

distributions (clustering memberships) according to different distance 

measures and with respect to certain clusters centers. Then, a function 

(in this case, a Kullback-Leibler (KL) divergence loss) tries to 

minimize the distances between the probabilities distribution. In other 

words, clustering is being applied to the latent space using different 

distance measures and the same cluster centers (obtained with K-

means). Each of these clustering with a certain distance will give a 

cluster memberships to each data point. The minimization function will 

try to generate an agreement as close as possible with respect to the 

clusters assignments. The result of this function minimization results 

in the so called sample-assignment invariance. In this context, the 

network is trained to learn better representations on the data (encoder) 

and at the same time improve the assignment of cluster memberships 

to each data point. In Figure 10 appears the representation of the 

network structured used by Peng et al.      
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Figure 10. Network structure illustration used in Peng et al. The first module (left side) 
consists of an encoder. The second module (right side) considers the latent space h 

generated by the encoder and creates different clustering memberships assignments, 

also called probabilities distribution (P1 and P2). With a minimization function, it aims 

to match both as close as possible until convergence is reached. Image extracted from 

[34]. 

Here, x represents a data point (one image), h the latent space 

representation of the encoder, P1 and P2 the clustering membership 

distributions to be matched as close as possible by the KL divergence 

loss function.  The deep-clustering algorithm names are HOMO, HOE, 

HIT, and HOT. Their difference relies on the distance to utilize being 

Euclidean distance, Cosine distance, city-block distance, and Pearson 

correlation-based distance, respectively.   
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2. Community detection 

Introduced in network science, community detection is synonymous of 

clustering and refers to the well-known task in which complex 

networks are partitioned into communities. Like clusters, a community 

is an ensemble of nodes that are more likely to be interconnected 

between each other rather than to out-connect to other groups of nodes  

[35]. Why is this important? The reason is that many real-world 

systems are expressed as a network in different domains, like protein-

protein interactions in biology, communication networks like airport 

interactions, social networks like Facebook, etc.  Many of these 

networks have inherent and hidden communities, information that can 

be exploited depending on the interests of the analyst. Moreover, the 

detection of communities has grown into an essential and highly 

pertinent problem in network science with several applications. First, 

it allows unveiling the existence of a non-trivial internal network 

organization at a higher level, which permits us to infer special 

relationships between nodes that might not be able to emerge from 

direct empirical tests easily. Second, it helps to perceive better 

properties of processes occurring in a network [36]. A didactic example 

pertinent to our times is the spreading processes of a pandemic disease 

highly affected by the community structure of the graph. There is a 

logic why states around the world tried to break direct contact 

communities into smaller pieces during the years 2020 and 2021.  

Naturally, graph-based clustering methods, such as MCL, also work as 

community detection algorithms. However, in this study, they are 

going to be seen as separate problems, where in clustering, we refer to 

the ability to analyze multidimensional datasets. In contrast, in 

community detection, we are going to concentrate on real and synthetic 

networks.  

There are algorithms tailored specifically for this purpose. Two of the 

most successful methods are Infomap [37] and Louvain [38]. They 
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have demonstrated high performances in synthetic benchmarks and 

small- and large-size real networks [39]–[42]. 

2.1. Infomap 

The Infomap algorithm [37] finds the community structure by 

minimizing the expected description length (MDL) of a random walk 

trajectory using the Huffman coding process [43], [44]. This coding 

process is used to assign codewords to nodes to describe them in 

relation to a random walk path (Figure 11A). It works by assigning 

short codewords to common events (regular paths in this case) and long 

codes to uncommon ones. In other words, the Huffman coding process 

assigns a code to a node derived from the node visit frequency in 

relation to the random walk. After complete network encoding, a 

description specified in bits can be computed (Figure 11B). 

Furthermore, when a random walk enters a community, it tends to stay 

inside the community for a long time. Using prefix codes with the 

Huffman coding process, one can determine certain regions 

(community) in the network and then use a unique code for each node 

inside the community (Figure 11C). Note that nodes from different 

communities can be assigned the same Huffman codeword. Applying 

this modality, a new description computation (in bits) can be 

calculated. Consequently, the algorithm aims to optimize the MDL. 

Infomap uses the hierarchical map equation [37], further development 

of the map equation, to detect community structures on more than one 

level. The hierarchical map equation indicates the theoretical limit of 

how concisely a network path can be specified using a given partition 

structure. In order to calculate the optimal partition (community) 

structure, this limit can be computed for different partitions, and the 

community annotation that gives the shortest path length is chosen.  
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Figure 11. Detecting communities by compressing the description of information flows 

on networks. (A) Description of a random walk trajectory on the network. The magenta 
line shows one sample trajectory. (B) The idea is to assign a code to each single node 

such that important structures have unique names. The Huffman code illustrated here is 

an efficient way to do so. The 314 bits under the network describe the sample trajectory 
in A, starting with 1111100 for the first node on the walk in the upper left corner, and 

ending with 00011 for the last node on the walk in the lower right corner. (C) A two-

level description of the random walk, in which major clusters receive unique names, but 
the names of nodes within clusters are reused, yields on average a 32% shorter 

description for this network. The codes naming the modules and the codes used to 

indicate an exit from each module are shown to the left and the right of the arrows under 
the network, respectively. Using this code, we can describe the walk in A by only 243 

bits, shown under the network in C. The first three bits 111 indicate that the walk begins 

in the red module, the code 0000 specifies the first node on the walk, etc. (D) Reporting 
only the module names, and not the locations within the modules, provides an efficient 

coarse graining of the network [44].  
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2.2. Louvain 

The Louvain algorithm [38] is separated into two phases, which are 

repeated iteratively. At first, every node in the (weighted) network 

represents a community in itself. In the first phase, for each node i, it 

considers its neighbours j and evaluates the gain in modularity2 that 

would take place by removing i from its community and placing it in 

the community of j. The node i is then placed in the community j for 

which this gain is maximum, but only if the gain is positive. If no gain 

is possible node i stays in its original community. This process is 

applied until no further improvement can be achieved. In the second 

phase, the algorithm builds a new network whose nodes are the 

communities found in the first phase, whereas the weights of the links 

between the new nodes are given by the sum of the weight of the links 

between nodes in the corresponding two communities. For unweighted 

networks, the weights between new nodes translate into the number of 

links from one community to another. Links between nodes of the same 

previous community structure lead to self-loops of weight 2n, where n 

is the weighted sum of the links or number of links inside the original 

community for unweighted graphs (Figure 12). Once the new network 

has been built, the two-phase process is iterated until there are no more 

changes and maximum modularity has been obtained. The number of 

iterations determines the height of the hierarchy of communities 

detected by the algorithm. 

                                                           
2 Modularity is a measure related to network structure that quantifies the strength of the 

division of a graph into modules (a.k.a. communities) in relation with the number of 

edges inside and outside the community [93]. 
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3. Motivation 

Up to this point, a clarification on concepts like clustering, community 

detection, and different strategies to address such problems have been 

presented. However, no notion about the title of this work has been 

mentioned. This chapter will explain the motivation for the here 

proposed novel algorithms and the rationale behind them.  

This journey starts with a biological dataset about gastric mucosa 

microbiomes from patients suffering from dyspepsia (please refer to 

chapter 10.1. ‘High dimensional dataset description’ for more details). 

This type of biological datasets are regularly analyzed by linear 

algorithms, followed by conclusions and statements drawn from 

Figure 12. Visualization of the steps of Louvain’s algorithm. Each pass is made of two 
phases: (1) the modularity is optimized by allowing only local changes of communities; 

(2) the communities found are aggregated in order to build a new network of 

communities. The passes are repeated iteratively until no increase of modularity is 
possible. 
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Figure 13. Dimension reduction techniques applied to the gastric mucosa dataset. The plots 

represent the best dimension reduction results based on PSI-PR and PSI-ROC projection-

based separability indices (PSI) for the three different labels (P-treated, untreated H+ and 
untreated H-), evaluated in the 2D embedding space. Dimensionality reductions applied: (a) 

PCA; (b) MDS with Bray-Curtis dissimilarity (MDSbc); (c) MDS with weighted UniFrac 

distance (MDSwUF); (d) non-metric MDS with Sammon Mapping (NMDS); (e) MCE. Blue 
dots represent PPI-treated samples, while magenta and green dots are the untreated samples 

which resulted either negative (magenta) or positive (green) to the H. pylori test. (f) The 

curves in three different colours (magenta, blue and green) highlight the different 
distributions of the three groups on the second dimension for the MCE plot (e) [51].   
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their results and published in scientific journals. With the aim to 

corroborate such conclusions, the dataset was analyzed by means of 

different dimensionality reduction techniques, linear and nonlinear 

based, and their results were compared with a separability measured 

termed projection separability index (PSI). 

Dimensionality reduction refers to unsupervised learning algorithms 

whose aim is to decrease the number of dimensions of a dataset into a 

meaningful lower space, ideally with the intention to represent as close 

as possible the intrinsic dimensionality3 [45]. Two famous and widely 

employed linear dimensionality reduction techniques are called 

principal component analysis (PCA) [46], [47] (Figure 13A) and 

Multidimensional scaling (MDS) [48]–[50] (Figure 13B-D). 

Thus, the different algorithm embedding results from linear (PCA, 

MDS) and nonlinear algorithms (MCE) were compared (Figure 13). 

Evidently, the nonlinear algorithm MCE could detect a pattern not 

visible with the linear techniques and could segregate PPI naïve 

patients without H. pylori (H-) infection from the patients with PPI 

intake (P) along the second dimension of embedding (Figure 13E, F). 

These results can be translated into very different conclusions 

compared with the results of the linear algorithm versions and 

therefore, the need of more investigations in this directions was 

considered. Important to note, is that the MCE algorithm is in reality a 

nonlinear version from the PCA algorithm, whose principle is based in 

the computation of an MST-based kernel termed minimum 

curvilinearity (MC) (Please refer to the chapter 7.1. ‘Minimum 

curvilinearity’ for more details).   

As next, the following question arises: can these results be 

demonstrated as well in clustering analyses? To this aim, the efforts 

                                                           
3 The intrinsic dimensionality of data is the minimum number of parameters needed to 

account for the observed properties of the data [94]. 
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were focused on the MCL clustering algorithm due to its success in the 

field. Moreover, since it is known that the functionality of MCL is 

based on stochastic flows (random walks) through a network, it is here 

hypothesized that a well-defined network that approximates the hidden 

network geometry as input to MCL can boost its performance thanks 

to the principles behind network geometry and network navigability. 

This was proved in an article analyzing the nonlinear pattern of the gut 

microbiota dataset [51], as well as in other studies included in this 

dissertation related to the tasks of clustering with general high 

dimensional datasets (where the MC principle was already proven to 

increase performance of other machine learning algorithms in the 

unsupervised scenario for nonlinear data-pattern analysis [52], [53]), 

and to the task of community detection, with many real and synthetic 

networks. 

All points discussed in this chapter will be presented in more detail 

below.    
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Part II. ENHANCED MARKOV 

CLUSTERING  

Now that the notions of clustering, community detection, and related 

algorithms have been clarified together with the motivation of the 

current dissertation, this second part will present the work applied to 

the clustering algorithm MCL for its improvement as a pre-processing 

step of data within a network perspective.  

4. Markov clustering 

As commented in the Introduction Chapter 1.2.4 Graph-based 

(clustering) methods, Markov clustering (MCL) algorithm applies a 

strategy termed random walk for navigating the network and finding 

clusters in it. It works with two input parameters: expansion and 

inflation. Although in practice, the inflation is the parameter that 

regulates the cluster pattern findings at different scales of granularity 

(number of clusters). In the MCL website (https://micans.org/mcl), the 

MCL author Dr. van Dongen suggests applying inflation values 

between [1.1,10], with starting points to try 1.4, 2 and 6. In principle, 

MCL is a clustering algorithm that does not need the number of clusters 

to search as input parameter, different from other clustering methods 

like KNN, but it rather suggests them to the user influenced by the 

inflation parameter. Nevertheless, due to evaluations purposes in the 

here presented study, and since the number of clusters in the different 

analyzed datasets is known, an integration of a binary search was 

implemented. Therefore, the inflation parameter is automatically 

https://micans.org/mcl
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obtained by binary search, where the search stops when the correct 

number of clusters are found. Precisely, the value of inflation is 

searched in this case between the range of [1.1, 20] at different 

resolutions or steps [0.1, 0.01 and 0.001] to ensure the finding of the 

correct number of clusters. Suppose the first resolution (0.1) is not 

enough. In that case, the search continues at a lower resolution between 

the last two searched bounds until obtaining the desired number of 

clusters or arriving at the lowest resolution. The range of search 

between 1.1 and 20 is defined in order to span a large values interval 

(compared to the one suggested by the author of the algorithm, which 

is between 1.1 and 10) that accounts for the different scales of 

granularity of possible analyzed datasets. 

As commented in Chapter 1.2.4 graph-based methods, MCL receives 

as input a similarity network for the clustering calculation. In this case, 

Pearson correlation, Spearman correlation and Euclidean similarities 

(ES) were employed. ES was defined according to the function in 

equation (2): 

 𝐸𝑆(𝑥) = (1 − 𝑥/max (𝑥)) (2) 

 

Where x is a variable that indicates the Euclidean distance between a 

pair of samples and max(x) is the largest Euclidean distance between 

all pairs of samples.  

As suggested in the MCL user manual (https://micans.org/mcl/MCL), 

a network construction and reduction step usually improves the 

clustering. It means that a sparsification of the weighted similarity 

matrix - that shapes (construction phase) a network topology by 

pruning (reduction phase) links with low similarity - is recommended 

before starting the clustering procedure.  For example, the authors 

mention in their user guide to arbitrarily threshold and then discharge 

similarities lower than 0.7. After, they suggest rescaling the remaining 

https://micans.org/mcl/MCL
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value between [0,0.3]. This should be intended as a rescaling between 

zero and the maximum similarity value in the similarity matrix minus 

the threshold because the rescaling ensures stability in the stochastic 

flow clustering procedure. However, there are no indications for a 

general strategy to follow. In practice, there is a free parameter to tune 

for the similarity threshold, and there is no automatic procedure 

available. Unlikely, this threshold value should be arbitrarily specified 

by the user.  

4.1. Enforcing network sparsity in Markov 

clustering 

In order to overcome the network threshold issue described at the end 

of the previous paragraph, a simple but effective technical innovation 

to enforce sparsity of the similarity network is introduced. For the here 

presented MCL implementation, a strategy is proposed, according to 

which the threshold selection is done automatically by progressively 

pruning and rescaling the similarity network at increasing similarity 

threshold values (the unique values of the network weights are ranked 

and, starting from the lowest value in the list, they are increasingly 

tested as threshold). The function used for pruning and rescaling is 

expressed in equation (3): 

 𝑓(𝑥) = 𝑅𝑒𝐿𝑈(𝑥 − 𝑡) = (𝑥 − 𝑡)+ = max [0, (𝑥 − 𝑡)] (3) 

 

Where x is the similarity matrix and t is the threshold (with values 

including 0 and lower than 1) tested at a certain iteration of the 

progressive pruning. When the network loses its topological integrity 

and separates in a number of components larger than one, the procedure 

stops, and this last threshold value is discharged, while the second last 

threshold value is selected to prune and to rescale the similarity values. 

In brief, this is a strategy to maximize sparsification of the network 

topology while retaining its one-component connectivity. The 
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MATLAB code implementation (Code 1) for enforcing network 

sparsity is displayed hereunder:  

function [x,nc]=choose_cut(x, max_nc) 

    % Inputs:  

    % x: input network 

    % max_nc: max number of components allowed 

 

    % Outputs: 

    % x: sparsified network 

    % nc: number of components of the network 

 

    uniq_weigths = unique(round(x,2)); 

    idxs = find(uniq_weigths>0); 

  

    for i=1:length(idxs) 

     

        cutoff = uniq_weigths(idxs(i)); 

     

        tmp_x1 = x1; 

        tmp_x1(tmp_x1<cutoff) = 0; 

        tmp_x1(tmp_x1>=cutoff) = tmp_x1(tmp_x1>=cutoff)-

cutoff; 

     

        S=sparse(tmp_x1); 

        [nc,~]=graphconncomp(S,'Directed', false); 

 

        if nc > max_nc 

         

            if i == 1 

                warning('For the first cutoff the number 

of components %d is already greater than %d',nc,max_nc);  
                break; 

            end 

            cutoff = uniq_weigths(idxs(i-1)); 

            tmp_x = x; 

            tmp_x(tmp_x<cutoff) = 0; 

            tmp_x(tmp_x>=cutoff) = tmp_x(tmp_x>=cutoff)-

cutoff; 

         

            S=sparse(tmp_x); 

            [nc,~]=graphconncomp(S,'Directed', false); 

            Break; 

        end 

    end 

  

    x(x<cutoff) = 0; 

    x(x>=cutoff) = x(x>=cutoff)-cutoff;  

end 
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Code 1. Enforcing network sparsity function. The function takes as input a network and 

an integer related to the maximum number of components allowed while searching for 
the threshold (cutoff). max_nc is in this case 1.  

5. Network navigability  

One of the most fundamental and difficult problems in complex 

networks is the challenge to understand the relation between a network 

structure and its function [54].  The structure of the network refers not 

only to its visible topology, but also to its ‘hidden metric space’. The 

power of understanding the hidden network topology is transformed 

into a more effective fashion to navigate through the network applying 

local knowledge rather than by using the global network information. 

In Boguñá et al. [54], the authors highlight two important properties of 

real complex networks, upon which the network navigability depends: 

(1) scale-free node degree (power-law) distribution (heterogeneous 

node degree), and (2) the number of triangles (clustering) in the 

network. Previous to Boguñá, Kleinberg [55] gave notions about what 

a model of navigable network requires. First, the network should 

contain (mostly) short paths between pairs of nodes. Secondly, nodes 

need partial knowledge about their structure network environment 

(which relates with the local information for efficient navigability of 

Boguñá) because too much information could cause a considerable 

volume of traffic.  

It is here hypothesized that a boost in performance for clustering and 

community detection problems should be evidenced for MCL if the 

topology of the network being analyzed can efficiently approximate its 

hidden metric geometry space. This is achieved by favouring paths 

over others through MCL random walk following a greedy routing 

process over a network based on distance similarities between the 

nodes because they should approximate the hidden nonlinear manifold 

of the graph geometry.    
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6. Latent geometry inspired Markov 

clustering 

As discussed in Chapter 4. ‘Network navigability’, the proposed 

rationale states that, in order to favour the simulation of random walks 

in MCL, the graph similarities (or dissimilarities) should approximate 

the closeness (or distances) on the hidden nonlinear manifold that 

characterizes the graph geometry [54], [56]. Indeed, in many networks, 

the information can efficiently flow according to a greedy routing 

procedure because their topology is emerging from this hidden 

geometry [54], whose hyperbolic and tree-like structure facilitates the 

greedy propagation [53], [54], [56]–[58]. Recently, Muscoloni et al. 

[59], [60] proposed two latent geometry-based pre-weighting 

techniques (one local and one global) as valuable strategies for 

approximating the pairwise geometrical distances between connected 

nodes of an unweighted network. In a later study of the same authors, 

the clustering algorithm affinity propagation was applied to the 

community detection task adopting two related dissimilarity matrices, 

containing dissimilarity values both for connected and disconnected 

nodes, which proved to simulate a more navigable geometry than other 

kernels previously designed for this purpose [61]. Here, in the context 

of community detection and according to the MCL algorithm 

requirements, the previous pre-weighting techniques are converted into 

similarity measures giving birth to an enhanced technique termed 

Latent Geometry Inspired - Markov Clustering (LGI-MCL). The 

converted similarities contain and merge two fundamental properties 

that characterize the hidden geometry of many real complex networks 

and thus might serve to improve stochastic flow simulations: node 

similarity (proximity or homophily), related with the network 

clustering and the concept of local attraction between common 

neighbours, and node popularity (centrality), related with the node 

degree [56]. 
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The first approach - which is called the repulsion-attraction rule (RA) 

[59], [60] – assigns an edge weight adopting only the local information 

related to its adjacent nodes (neighbourhood topological information). 

The repulsive part behind RA involves that adjacent nodes with a high 

external degree (where the external degree is computed considering the 

number of neighbours not in common) should be geometrically far. 

Indeed, they represent hubs without neighbours in common, which - 

according to the theory of navigability of complex networks presented 

by Boguñá et al. [54] - tend to dominate geometrically distant regions. 

On the contrary, the attractive part of RA exploits that adjacent nodes 

sharing a high number of common neighbours should be geometrically 

close because, most likely, they have many things in common and 

therefore are similar. Thus, the RA (see below for the precise 

mathematical formula) is a simple and efficient approach that 

quantifies the trade-off between hub repulsion and common-

neighbours-based attraction [59], [60]. The algorithm to compute the 

RA similarity for each link (i, j) in the network is the following (note 

that the dissimilarity value is marked with an asterisk): 

I. Compute the RA pre-weighting as in equation (4) [59], [60]: 

 
𝑅𝐴𝑖𝑗

∗ =  
1 + 𝑒𝑖 + 𝑒𝑗

1 + 𝑐𝑛𝑖𝑗
 (4) 

 

ei is the number of external links of the node i (links that do not connect 

either to common neighbours with j or to j), ej is the same for the node 

j; cnij is the number of common neighbours of the link (i, j). 

II. Convert into a similarity value as in equation (5): 

 
𝑅𝐴𝑖𝑗 = 1 + 

1

1 + 𝑅𝐴𝑖𝑗
∗  (5) 
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Although inspired by the same rationale, the second similarity is global 

(exploits the entire network topology to compute each similarity value 

between pairs of nodes). In fact, as a first step, it makes a global-

information-based pre-weighting of the links, using the edge-

betweenness-centrality (EBC) to approximate distances between nodes 

and regions of the network [60]. EBC is indeed a global topological 

network measure that assigns to each link a value of centrality related 

to its importance in propagating information across different network 

regions. The assumption is that central edges are bridges that tend to 

connect geometrically distant regions of the network, while peripheral 

edges tend to connect nodes in the same neighbourhood. The higher 

the EBC value of a network link, the more information will pass 

through that link. The algorithm to compute the EBC similarity for 

each link (i, j) in the network is the following: 

I. Compute the EBC pre-weighting as in equation (6) [60]: 

 
𝐸𝐵𝐶𝑖𝑗

∗ =  ∑
𝜎(𝑠, 𝑡|𝑒𝑖𝑗)

𝜎(𝑠, 𝑡)
𝑠,𝑡

 (6) 

 

s,t is any combination of network nodes; σ(s,t) is the number of shortest 

paths between s and t; σ(s,t\eij) is the number of shortest paths between 

s and t passing through the link (i, j). 

II. Convert into a similarity value as in equation (7): 

 
𝐸𝐵𝐶𝑖𝑗 = 1 +  

1

1 + 𝐸𝐵𝐶𝑖𝑗
∗  (7) 

 

A novel similarity measure (ER) that merges the previous ones (EBC 

and RA) for each link (i, j) in the network is also introduced as follows: 

I. Compute the pre-weightings 𝑅𝐴𝑖𝑗
∗  and 𝐸𝐵𝐶𝑖𝑗

∗ . 
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II. Convert into a unique similarity value as in equation (8): 

 
𝐸𝑅𝑖𝑗 = 1 +  

1

1 + 𝑅𝐴𝑖𝑗
∗ +

1

1 + 𝐸𝐵𝐶𝑖𝑗
∗  (8) 

 

6.1. Software availability 

The LGI-MCL code is freely available under the Github repository: 

https://github.com/biomedical-cybernetics/LGI-MCL.  

7. Minimum curvilinear Markov clustering 

7.1. Minimum curvilinearity 

Minimum Curvilinearity (MC) [57] – introduced by Cannistraci et al. 

in 2010 - was invented with the aim to reveal nonlinear patterns in data, 

especially in the case of datasets with few samples and many features. 

Nonlinearity is often driven by hierarchy and - under the hypothesis 

that at least part of data nonlinearity is associated to a generative 

process that forces sample hierarchy - the basic idea behind MC is to 

exploit the hierarchical organization and structure of the samples in the 

feature space to approximate their pairwise nonlinear relationship. 

Indeed, the MC principle suggests that nonlinear curvilinear distances 

between samples can be estimated as transversal paths over their 

Minimum Spanning Tree (MST), which is constructed according to a 

certain distance (Euclidean, correlation-based, etc.) in a 

multidimensional feature space. The illustration in Figure 14 reflects a 

case where the computation of the Euclidean distance between points 

in the space might be impossible to compute due to certain energetic 

constraints, which means that points will never lay in the zone of the 

purple line between points P1 and P2 and therefore the Euclidean 

distance does not reflect the real distance between those points (Figure 

14A). Contrarily, when computing the distance between points P1 and 

P2 as a function of the MST edge weights (calculated previously with 

a specific distance function), it allows exploiting the data organization 

https://github.com/biomedical-cybernetics/LGI-MCL
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and structure to estimate nonlinear relationships avoiding the possible 

data constraints (Figure 14B).   

In this work, Pearson-correlation-based, Spearman-correlation-based 

and Euclidean-based distances to compute the MST are considered. 

The collection of all MC pairwise distances forms a distance matrix 

called the MC-distance matrix or MC-kernel, which can be used as 

input in algorithms for dimensionality reduction, clustering, 

classification and generally in any type of machine learning [53], [57]. 

7.2. From a linear to a nonlinear approach 

With the purpose of creating and testing a nonlinear variant of the MCL 

algorithm in a clustering framework, a method termed minimum 

curvilinear Markov clustering (MC-MCL) is here proposed. The idea 

is the following: the MC-kernel (refer to Chapter 7.1. Minimum 

curvilinearity for more details) is a nonlinear kernel that expresses the 

pairwise relations between samples as a value of distance: a small 

samples distance indicates high sample similarity, while a large 

samples distance indicates low sample similarity. As anticipated in 

Chapter 7.1 Minimum curvilinear, in this study, three different 

Figure 14. Illustration of MC-kernel computation. (A) Issues to compute Euclidean 

distance between points due to data constraints, i.e.. zone energetically inaccessible by 

data points. (B) Distance computation between points following a greedy routing 
through the MST.  
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distances (Pearson-correlation-based, Spearman-correlation-based and 

Euclidean-based) are considered to build the MST to construct the MC-

kernel. Two different procedures to derive the MC-similarity kernels 

are described below, considering correlation-based distances and the 

Euclidean distance. In case the MST and the associated MC-distance 

kernel are built with Pearson-correlation-distance or Spearman-

correlation-distance, the MC-distance kernel is inverted to get a MC-

similarity kernel, and all negative values (in case of t=0) or all values 

lower than a threshold t are put to 0, where t ϵ [0,1), using the function 

in equation (9): 

 
𝑓(𝑥) = 𝑅𝑒𝐿𝑈(1 − 𝑥 − 𝑡) = (1 − 𝑥 − 𝑡)+ =  

 max [0, (1 − 𝑥 − 𝑡)] 
(4) 

 

Where: x is the original value of the pairwise MC distance; t is the same 

threshold defined in equation (3) in Chapter 4.1. Enforcing network 

sparsity in Markov clustering to enforce the network sparsity (and it is 

automatically detected using the same strategy described in that 

Chapter); and f(x) is the derived value of the pairwise MC similarity. 

Therefore, small f(x) values (close to zero) indicate low sample 

similarity, and large f(x) values (close to one) indicate high sample 

similarity.  

Now, a clarification to an important property of the MC-similarity 

defined in equation (9) is highlighted, together with the reason of why 

this inversion is well-posed. The MST is computed on a correlation-

based distance (CD) that is defined as in equation (10): 

 0 ≤ 𝐶𝐷(𝑦) = (1 − 𝑦) ≤ 2, 𝑤𝑖𝑡ℎ − 1 ≤ 𝑦 ≤ 1 (10) 

 

Where y is the original Pearson correlation value and CD = 0 means 

high similarity, CD = 1 means random similarity, and CD = 2 means 

anti-similarity (nothing can be more dissimilar than the opposite trend). 
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As a consequence of this mathematical codification of CD, any MC 

distance that is larger than 1 tends to overcome an intrinsic threshold 

of random similarity. Hence MC distances larger than one can be 

interpreted as less significant than random. This mechanism, which 

seems naïve, is in reality refined and allows directly to assess that any 

MC-distance smaller than 1 is under the natural threshold of random 

sample similarity association (and should be accepted); therefore any 

MC-distance larger than 1 can be neglected because is less significant 

than random similarity. And this is actually what is defined 

mathematically with the ReLU function applied after the 1-x-t 

inversion in (9). For example: if we fix t = 0, a MC-distance x = 1.2 is 

larger than 1 and therefore should be neglected as MC-similarity, 

indeed f(x) = ReLU(1 - 1.2) = 0. More in general, the equation (9) 

suggests that we can learn a similarity threshold t ≥ 0 (on the weights 

of the network), which preserves the network structure and discharge 

links that are not significant to preserve the integrity of the network 

flows (because they do not disconnect the network). If t = 0, sample 

similarities (links) that are less significant than random similarities are 

discharged. If t > 0, also sample similarities (links) that are not 

significant to preserve the stochastic flows are discharged. This naïve 

strategy allows to induce sparsity in the MC-similarity kernel by means 

of an intrinsic and self-adaptive thresholding mechanism that neglects 

connectivity with similarity worse than random and, as a matter of fact, 

it avoids that the stochastic flows of MCL run on network branches or 

zones that would suffer unreliable connectivity.     

In case the MST and the associated MC-distance kernel are built with 

Euclidean-distance, the MC-distance kernel is inverted to get an MC-

similarity kernel according to the following function in equation (11): 

 𝑓(𝑥) = 𝑅𝑒𝐿𝑈 (1 −
𝑥

𝑚𝑎𝑥(𝑥)
− 𝑡) =  

(1 −
𝑥

𝑚𝑎𝑥(𝑥)
− 𝑡)

+

= 𝑚𝑎𝑥 [0, (1 −
𝑥

𝑚𝑎𝑥(𝑥)
− 𝑡)] 

(11) 
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Where x is a variable that indicates the Euclidean-based MC-distance 

between a pair of samples; max(x) is the largest Euclidean-based MC-

distance between all the pairs of samples; and t is the same threshold 

defined in equation (3) in Chapter 4.1. Enforcing network sparsity in 

Markov clustering, to enforce the network sparsity (and it is 

automatically detected using the same strategy described there). A 

technical detail is that for the computation of the MC-distance kernel 

(hence before the inversion procedures described in equation (2)), three 

alternatives are used: 1) original distances in the MC-kernel (MC-

MCLo), 2) their square root x1/2 (MC-MCLs), or 3) their logarithm 

log(1 + 𝑥) (MC-MCLl). As already investigated in [57], the square 

root and the log operators can attenuate the estimation of large 

distances and, on the contrary, amplifies the estimation of short 

distances. Consequently, they help to regularize the nonlinear distances 

inferred over the MST in order to use them for message passing [57] 

(such as for AP) or stochastic flow simulation (such as for MCL) 

clustering algorithms (for more details on the MC-similarity 

construction, please refer to the MATLAB code in Code 2). 

The final steps are the same automatic threshold selection described in 

Chapter 4.1 in order to build the sparse similarity network for the 

classical MCL, and then to run the standard MCL algorithm on the 

MC-similarity sparse network. In practice, this new algorithm for 

clustering is a nonlinear and sparse version of the classical MCL, 

where the nonlinearity is MC-driven and the sparsity is self-learned 

using the threshold that maximizes pruning without losing the one-

component similarity network connectivity (refer to Chapter 4.1. 

‘Enforcing network sparsity in Markov clustering’ for more details). 
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% dist refers to the distance used for the MST calculation 

% e.g. Euclidean, Pearson correlation-based, etc. 

 

if factor==1 

    matr=squareform(pdist(x,dist));  

elseif factor==2 

    matr=sqrt(1+squareform(pdist(x,dist)));  

elseif factor==3 

    matr=log(1+squareform(pdist(x,dist)));  

end 

         

xx = 

graphallshortestpaths(adjacence(minspantree(graph(matr),'m

ethod','sparse')),'directed','false'); 

if strcmp(dist,'euclidean') 

    x = xx./max(max(xx)); 

end 

x = 1-xx;         

Code 2. MC-Similarity kernel construction. The MATLAB build-in function minspantree 

receives as input and delivers as output a graph object. The custom adjacence function 

transform the graph object into a sparse matrix, which is the needed input for the 
MATLAB built-in function graphallshortestpaths, in charge of computing the pairwise 

node distances along the MST. The expression 1 – xx transforms the values from 

dissimilarities to similarities.          

7.3. Minimum curvilinear Markov clustering 

multi-MST variants 

In order to enhance the proposed MC-MCL algorithm, several MC-

MCL variants based on different topological properties were here 

tested, so as to improve the stochastic random walk through the 

approximation of the network’s hidden geometry, thus improving 

network navigability (refer to Chapter 5. ‘Network navigability’ for 

more details). Wherefore, the efforts were put into alternative 

constructions for the MC-kernel. All variants are based on the 

generation of the base MST with the union of an alternate MST aiming 

to enhance the local connectivity of the network.  

7.3.1. MC-MCL - MST high degree removal 

This MC-MCL strategy, here referred as to MC-MCLhdr, assumes that 

by removing hubs from the MST, new paths will link neighbors of the 
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hub, thus increasing the shortest paths possibilities between nodes 

through zones with high traffic, yet preserving the idea that the node 

pairwise distances over the minimum spanning tree approximates the 

hidden and nonlinear network geometry space (Figure 15A-C). This 

variant introduces the necessity of specifying a parameter to determine 

high degree nodes in the graph, whose value will depend on the data-

MST topology. This value is entered as the quantile of high degree 

nodes that will be removed for the computation of the second MST. As 

illustration, the pink arrow in Figure 15A denotes the node with a high 

degree (4 links) to be removed. Subsequently, a second MST without 

the removed node(s) is computed (Figure 15B), to formerly apply the 

union between both MSTs and compute the MC kernel (Figure 15C). 

In Code 3 is displayed the function for the MC-MCLhdr kernel 

computation. It receives as input two parameters: the pairwise distance 

matrix from the samples and the quantile parameter value to determine 

which ‘high degree’ nodes to remove. It gives as output the MChdr-

distance kernel, which will be later transformed into the so-called MC-

similarity (Please refer to Chapter 7.2. ‘From a linear to a nonlinear 

approach’ for details on the MC-similarity computation).  

function xx = MSTHighDegreeRemoval(matr,q) 

    % first MST computation 

    mst = 

adjacence(minspantree(graph(matr),'method','sparse')); 

 

    % getting the degree of each node in MST 

    dgrs = degree(graph(mst,'lower')); 

 

    % getting idx of the high degree node(s) as function 

of q 

    highDegreeN = dgrs >= quantile(dgrs,1-q); 

     

    % calculating MST without highest degree nodes 

    numbSamples = size(matr,1); 

    tempMst = sparse(numbSamples,numbSamples); 

    tempMst(~highDegreeN,~highDegreeN) = 

adjacence(minspantree(graph(matr(~highDegreeN,~highDegreeN

)),'method','sparse')); 

 

    % union of MSTs 
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    [val,idxMst] = setdiff(tempMst,mst); 

    for j = 1:length(idxMst) 

        mst(idxMst(j)) = val(j); 

    end 

 

    % kernel computation 

    xx = graphallshortestpaths(mst,'directed','false'); 

    clear mst tempMst matr 

end 

Code 3. Computation of the MC-MCLhdr kernel. The function receives as input the full 
distance matrix between nodes and the quantile parameter. It gives as output the MC-

dissimilarity kernel.    

7.3.2. MC-MCL – MST high NBC removal 

Similar to the MST high degree removal, this strategy, here termed 

MC-MCLhnr, seeks to decrease the traffic in zones of high information 

movements. This is achieved by calculating the node-betweenness-

centrality (NBC) of each node, and removing those with high values. 

NBC is a measure of centrality based on shortest paths. Nodes with 

higher betweenness-centrality values tend to dominate the network 

because more information passes through them.  Equivalently to the 

high degree removal variant, a parameter for determining high NBCs 

needs to be specified, whose value is dataset dependent.  

The procedure starts by selecting the node(s) with high NBC values to 

be removed, green arrow in Figure 15D. Subsequently, a second MST 

without the removed node(s) is computed (Figure 15D), to formerly 

apply the union between both MSTs and compute the MC kernel 

(Figure 15E). 

In Code 4 is displayed the function for the MC-MCLhnr kernel 

computation. As for MC-MCLhnr, it receives as input two parameters: 

the pairwise distance matrix from the samples and the quantile 

parameter value to determine which ‘high NBC’ ranked nodes to 

remove. It gives as output the MChnr-distance kernel, which will be 

later transformed into the so-called MC-similarity (Please refer to 
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Chapter 7.2. ‘From a linear to a nonlinear approach’ for details on the 

MC-similarity computation). 

function xx = MSTHighNBCRemoval(matr,q) 

    % first MST computation 

    mst = 

adjacence(minspantree(graph(matr),'method','sparse')); 

 

    % getting the NBC value of each node in MST 

    NBC = betweenness_centrality(mst); 

 

    % getting idx of the high NBC node(s) as function of q 

    highNBCN = NBC >= quantile(NBC,1-q); 

     

    % calculating MST without highest NBC ranked nodes 

    numbSamples = size(matr,1); 

    tempMst = sparse(numbSamples,numbSamples); 

    tempMst(~highNBCN,~highNBCN) = 

adjacence(minspantree(graph(matr(~highNBCN,~highNBCN)),'me

thod','sparse')); 

 

    % union of MSTs 

    [val,idxMst] = setdiff(tempMst,mst); 

    for j = 1:length(idxMst) 

        mst(idxMst(j)) = val(j); 

    end 

 

    % kernel computation 

    xx = graphallshortestpaths(mst,'directed','false'); 

    clear mst tempMst matr 

end 

Code 4. Computation of the MC-MCLhnr kernel. The function receives as input the full 

distance matrix between nodes and the quantile parameter. It gives as output the MC-

dissimilarity kernel.    

7.3.3. MC-MCL Dual 

The last strategy for MC-kernel improvement considers the here so-

called dual MST, and therefore termed MC-MCLdual. The dual term 

refers to the generation of a second MST with the constraint that all 

edges from the first one cannot be accessed by the construction of the 

new MST (Figure 15F). This process can be repeated many times 

where, in every new MST construction, the edges from all previous 

MST networks are blocked and cannot be used. Finally, the union of 

all (original and dual) MSTs generated is employed to calculate the 
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MC kernel (Figure 15G). Naturally, the parameter to select is the 

number of dual MSTs to generate, which can be data-dependent. 

Although regularly, this value to consider is low. The function to 

compute the kernel of MC-MCLdual is provided in Code 5. 

function [xx,mst] = dualMST(matr,exh) 

    % first MST computation 

    mst = 

adjacence(minspantree(graph(matr),'method','sparse')); 

         

    for i = 1:exh 

        % deleting distances from nodes in input distance 

matrix ‘matr’ for dual MST generation 

        tempMst = mst; 

        ind = find(tempMst~=0); 

        [row,col] = ind2sub(size(tempMst),ind); 

        indInv = sub2ind(size(tempMst),col,row); 

 

        % deleting in lower part of matrix 

        matr(ind) = 0;  

 

        % deleting in upper part of matrix for symmetry 

        matr(indInv) = 0;  

 

        % computing the dual MST 

        tempMst =  

adjacence(minspantree(graph(matr),'method','sparse')); 

 

        % check if Dual MST gives more than one unique 

component 

        if graphconncomp(tempMst,'Directed', false) ~= 1  

            break; 

        end 

 

        % union of MSTs 

        [val,idxMst] = setdiff(tempMst,mst); 

        for j = 1:length(idxMst) 

            mst(idxMst(j)) = val(j); 

        end 

    end 

     

    xx = graphallshortestpaths(mst,'directed','false'); 

    clear mst tempMst matr 

end 

Code 5. Computation of the MC-MCLdual kernel. The function receives as input the full 
distance matrix between nodes and the number of dual MSTs to generate. It gives as 

output the MC-dissimilarity kernel.     
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Figure 15. Ilustration of the three MC kernel multi-MST variants for MC-MCL. Hdr in 
magenta, hbr in green and dual in orange.. The arrows between panels point to the union of 

original MST (panel A) and a variant (panels B, D or F) and the resulting network from the 

union used for the MC-kernel computation (panels C, E or G)  (A) original MST from where 

to construct the MC original kernel. (B) Second MST originated after removing the high 

degree node (the pink arrow points toward the removed node). (C) Union of original and 

hdr-based MST for the MC hdr-kernel computation. (D) Second MST originated after 
removing the high NBC ranked node (the green arrow points toward the removed node). (E) 

Union of original and hbr-based MST for the MC hbr-kernel computation. (F) dual MST 

representation originated after blocking the original MST (grey) links. (G) Union of original 
and dual MST for the MC dual-kernel computation.  
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7.4. Isomap-inspired Markov clustering 

Isomap [62] is an algorithm tailored for dimensionality reduction, an 

unsupervised learning technique that aims to decrease the number of 

dimensions of a dataset into a meaningful lower space (please refer to 

chapter 3. ‘Motivation’ for more details). A famous and widely 

employed linear dimensionality reduction technique is called principal 

component analysis (PCA) [46], [47]. Unlike PCA, Isomap is a 

nonlinear technique that focuses on estimating the hidden geometrical 

data manifold through neighbourhood connections. It needs a 

parameter k to determine the number of connections of each node with 

its closest neighbours for constructing the so-called proximity network. 

Then, it computes the pairwise shortest path (distance) between the 

nodes, to finally apply the embedding into a lower dimension.  

Taking inspiration from Isomap, the presented MCL variant, termed 

isoMCL, takes advantage of the neighbourhood network connectivity 

(Figure 16). As for Isomap, it constructs the iso-kernel by creating a 

proximity graph where each node is connected to the k closest 

neighbours without losing the 1 unique component connectivity (e.g. 

regularly k = 1 creates a network with many separated modules, and 

therefore k needs to be higher) (Figure 16A). Then, the computation of 

Figure 16. Illustration if the isoMCL kernel computation. (A) Proximity network 

construction inspired from the Isomap algorithm with k = 5. (B) Construction of the 
isoMCL kernel by pairwise node distance over the proximity network.     
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all node pairwise distances is calculated (Figure 16B). The 

dissimilarity iso-kernel is transformed to similarities following the 

same strategy utilized as for the MC kernel (Please refer to Chapter 

7.2. ‘From a linear to a nonlinear approach’ for more details).  The 

function to compute the kernel of isoMCL is provided in Code 6. 

function  [xx,nc] = isoKernel(x, k,norm) 

    %Maps the high-dimensional samples in 'x' to a low 

dimensional space using 

    %Isomap or ISO (coded 5-FEBRUARY-2011 by Gregorio 

Alanis-Lobato) – Modified by Claudio Durán 10-NOVEMBER-

2020 

  

    %INPUT 

    %   x => Matrix with samples on rows and features on 

columns 

    %   k => Number of nearest neighbours to construct the 

proximity graph 

    %   norm => type of norm to compute the distance 

    %OUTPUT 

    %   xx => isoMCL dissimilarity kernel 

    %   nc => number of components 

  

    %Number of samples 

    samples = size(x, 1); 

    dist = pdist2(x, x, norm); 

     

    %Trick so that the diagonal 0 distances are not 

considered 

    dist(logical(eye(samples))) = Inf;  

  

    % Allocate space for the proximity graph and construct 

it 

    graph = sparse(samples,samples); 

  

    for i = 1:samples 

        %Find the k nearest neighbours of sample i and 

connect them to i in the proximity graph 

        [~, idx] = sort(dist(i, :)); idx=idx(1:end-1); 

        for j = 1:k 

            graph(i, idx(j)) = dist(i, idx(j)); 

        end 

    end 

  

    % creating symmetrical matrix  

    graph = max(graph, graph');  

  

    % kernel computation 

    xx = graphallshortestpaths(graph, 'directed', 

'false'); 
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    % number of graph components (it should always be 1) 

    nc = graphconncomp(graph,'Directed',false); 

    if nc > 1 

        warning('The number of component in the network is 

greater than 1'); 

    end 

end 

Code 6. Computation of the isoMCL  kernel. The function receives as input the matrix 

with samples in the high dimensional space, the k value for the neighbourhood proximity 
network and the norm (i.e. Euclidean) of the distance calculation. It gives as output the 

isoMCL-dissimilarity kernel and the number of components of the proximity network 

generated.     

7.5. Nonlinear MCL time complexities 

Because the new variants are the design of similarity kernels that goes 

into MCL, the first step to clarify their time complexity is by 

calculating the complexity of MCL alone. Stjin van Dongen, the author 

of MCL, claims that the complexity time of this algorithm is O(N k2), 

where N is the number of nodes in the graph, and k is the number of 

resources allocated per node. Regarding k, it is also stated that ‘the 

maximum number of resources allocated per node directly translates to 

the maximum number of nonzero entries kept per column’ due to a use 

of a sparse matrix, explaining his time complexity. Therefore, k is 

actually related to the edges of the network. For this reason, we denote 

the time complexity of MCL as O(N E2). This time complexity is 

achieved with regular MCL when given a sparse network, and a certain 

unique inflation parameter. Here, two previous steps are added in order 

to make MCL automatic. First, since it is worked with high 

dimensional data, regularly the computation of the similarity between 

nodes ends up with a full (and not sparse) matrix. Therefore, as 

aforementioned, a sparcification on the network is applied. This step is 

governed by the amount of positive similarity values (edge weights > 

0 are kept in the network). Thus, the minimum positive weighted edges 

are pruned one by one until the one unique component is broken. 

Therefore, this step has a linear time complexity of O(E), where E is 

related to the number of edges in the network. Note that in practice, the 
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one unique component needs a certain amount of edges in the network 

and therefore the mentioned time complexity will never be achieved. 

Secondly, since the number of clusters to find is known, the inflation 

(a parameter that defines the cluster membership outputs of MCL at 

different granularities) is automatically explored by a binary search 

strategy. Therefore, this second step would have a time complexity of 

O(log I), being I the inflations to search where the correct number 

of clusters is found. Nonetheless, I in this case is a constant, because 

we search through a specific range for I. Finally, taking into account 

all time complexities previously discussed, the time complexity of the 

automatic MCL remains as O(N E2) followed by the fact that the 

runtime is always dominated by the highest power. 

Regarding the nonlinear variants, for the MC kernel versions, the time 

complexity of this kernel is governed mainly by two steps: The 

generation of the MST, and the calculation of the distances (shortest 

paths) over the MST. The MST calculation is done by means of the 

kruskal’s algorithm, whose time complexity is O(E log N), where E 

refers to the number of edges and N the number of nodes. In the case 

of the calculation of all shortest paths over the MST, the Johnson’s 

algorithm is applied, whose time complexity is O(N*log(N)+N*E), 

bein E the number of edges and N the number of nodes. Thus, the time 

complexity of MC-MCL remains with the highest power O(N E2). 

Similarly, in the case of isoMCL, the kernel computation is governed 

by the number of nodes, and the k closest neighbours to add to each 

node. For the ‘closest’ neighbours, sorting the distances from one node 

to the rest is needed, being its time complexity of O(E log N), where 

N is the number of nodes. Therefore its time complexity is O(N^2 

log N). Thus, the time complexity of isoMCL remains as well as 

O(N E2). 
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7.6. Software availability 

The MC-MCL code is freely available in a github repository under: 

https://github.com/biomedical-cybernetics/minimum-curvilinear-

Markov-clustering.   
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Part III. CASE STUDIES 

8. Evaluation framework 

The evaluations for community detection and clustering problems 

slightly differ. For community detection, a measure widely employed 

and here adopted is termed normalize mutual information (NMI), 

whereas for clustering, besides NMI, the measures accuracy and 

adjusted rand index (ARI) were additionally adopted.   

NMI is based on entropy, which can be defined as the information 

contained in a distribution p(x) as in equation (12): 

 𝐻(𝑋) = ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

 (12) 

 

The mutual information is the shared information between two 

distributions (equation (13)): 

 
𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log (

𝑝(𝑥, 𝑦)

𝑝1(𝑥)𝑝2(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 (13) 

 

To normalize the value between 0 and 1 the formula in equation (14) 

can be applied: 

 
𝑁𝑀𝐼 =

𝐼(𝑋, 𝑌)

√𝐻(𝑋)𝐻(𝑌)
 (14) 
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Considering a partition of the nodes in communities as a distribution 

(probability of one node falling into one community), the previous 

equations (12, 13, 14) allow computing the matching between the 

annotations obtained by the community detection algorithm and the 

ground-truth communities of a network. A MATLAB implementation 

available at http://commdetect.weebly.com was here used. As 

suggested in the code, when 
𝑁

𝐶
≤ 100, where N represents the number 

of nodes and C the number of communities, the NMI should be 

adjusted in order to correct for chance [63], [64]. 

Accuracy (Acc in tables) is a common measure that evaluates the 

number of correctly predicted labels with respect to the total number 

of predictions. Given a set of S of n elements, and two partitions of 

those elements, namely X = {X1, X2, …, Xr} and Y = {Y1, Y2, …, Ys}, 

the accuracy can be computed by counting the agreements between 

both partitions and dividing it by the number of elements of those 

partitions as in equation (15). 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

|𝑋 ∩ 𝑌|

𝑛
 

(15) 

 

Adjusted Rand Index (ARI) [65], [66], like NMI, assesses the 

agreement between two partitions, in this case between the true labels 

of the data and the labels assigned by the clustering algorithm. The 

rationale behind ARI is related to pair counting measures, which are 

calculated based on the cluster and class membership of pairs of data 

points agreement. The overlap information between the two partitions 

can be written as a contingency table.  

Given a set of S of n elements, and two partitions of those elements, 

namely X = {X1, X2, …, Xr} and Y = {Y1, Y2, …, Ys}, the overlap 

between X and Y can be expressed as a contingency table where each 

entry nij denotes the number of agreements (intersection) between X 

and Y (Table 1) [65].  

http://commdetect.weebly.com/
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X         Y Y1 Y2 … Ys sum 

X1 n11 n12 … n1s a1 

X2 n21 n22 … n2s a2 

…
 

…
 

…
 … 

…
 

…
 

Xr nr1 nr2 … nrs ar 

sum b1 b2 … bs  

Table 1. Contingency table expressing the overlap between two partition X and Y.  

Consequently, ARI is calculated employing the values in Table 1 as in 

equation (16). 
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In the case of the clustering methods, the results reported in each table 

for each dataset are the best results considering the most effective 

combination of normalization, distance options (including factors) and 

optimal parameter (if applied). Best meaning the result that offers the 

highest values according to a mean rank taking into account accuracy, 

ARI and NMI.   

9. Community detection analysis 

In the next section, after describing the procedure behind MCL (please 

refer to chapter 4. ‘Markov clustering’ for more details), and recall a 

collection of network science notions, at the interface between network 

topology and network geometry [56], [59], [60], [67]–[69], based on 

which the proposed LGI rationale can guide the steps to design 

similarity measures to boost algorithms based on network navigability 

protocols (please refer to chapter 6. ‘Latent geometry inspired Markov 
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clustering’ for more details), the respective community detection 

analysis starts. Here, the aim is to investigate the extent to which LGI 

measures can be employed to improve MCL community detection. The 

analyses performed in this chapter compare the LGI-MCL variants 

against the original MCL and the state of the art methods Infomap and 

Louvain. After presenting the results of wide evaluations both on real 

networks, real networks with noisy information and on a large 

benchmark of synthetic ‘realistic’ networks, finally, a discussion with 

advantages and limitations of the LGI-MCL approach will be 

addressed. 

9.1. Real network datasets 

The community detection methods have been tested on 8 real networks, 

which represent differing systems: Karate; Opsahl_8; Opsahl_9; 

Opsahl_10; Opsahl_11; Polbooks; Football; Polblogs. The networks 

have been transformed into undirected, unweighted, without self-

loops, and only the largest connected component has been considered. 

The information of some basic statistics is available in Table 2. N is 

the number of nodes. E is the number of edges. The parameter m refers 

to half of the average node degree, and it is also equal to the ratio E/N. 

Cl is the average clustering coefficient, computed for each node as the 

number of links between its neighbours over the number of possible 

links [42]. The parameter γ is the exponent of the power-law degree 

distribution, fitted from the observed degree sequence using the 

maximum likelihood4 procedure developed by Clauset et al. [70] and 

released at http://tuvalu.santafe.edu/~aaronc/powerlaws/. C is the 

number of ground-truth communities. 

 

                                                           
4 A maximum likelihood estimation is a method for estimating the parameters of a 

probability distribution by maximizing a likelihood function, so that under the assumed 

statistical model the observed data is most probable. 
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 N E m Cl γ C 

karate 34 78 2.3 0.59 2.1 2 

opsahl 8 43 193 4.5 0.61 8.2 7 

opsahl 9 44 348 7.9 0.68 5.9 7 

opsahl 10 77 518 6.7 0.66 5.1 4 

opsahl 11 77 1088 14.1 0.72 4.9 4 

polbooks 105 441 4.2 0.49 2.6 3 

football 115 613 5.3 0.40 9.1 12 

polblogs 1222 16714 13.7 0.36 2.4 2 

Table 2. Statistics of real networks. Number of nodes N, number of edges E, half of 
average node degree m, clustering coefficient Cl, power-law degree distribution 

exponent γ, number of communities C. 

Karate Club 

The first network is about the Zachary’s Karate Club [71], it represents 

the friendship between the members of a university karate club in US. 

The communities are formed by a split of the club into two parts, each 

following one trainer. 

Opsahl 

The networks from the second to the fifth (Table 2) are intra-

organisational networks from [72] and can be downloaded at 

https://toreopsahl.com/datasets/#Cross_Parker. Opsahl_8 and 

Opsahl_9 come from a consulting company, and nodes represent 

employees. In Opsahl_8 employees were asked to indicate how often 

they have turned to a co-worker for work-related information in the 

past, where the answers range from: 0 - I don’t know that person; 1 - 

Never; 2 - Seldom; 3 - Sometimes; 4 - Often; 5 - Very often. Directions 

were ignored. The data was turned into an unweighted network by 

setting a link only between employees that have at least asked for 

information seldom (2). 
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In the Opsahl_9 network, the same employees were asked to indicate 

how valuable the information they gained from their co-worker was. 

They were asked to show how strongly they agree or disagree with the 

following statement: “In general, this person has expertise in areas that 

are important in the kind of work I do.” The weights in this network 

are also based on the following scale: 0 - Do Not Know This Person; 1 

- Strongly Disagree; 2 - Disagree; 3 - Neutral; 4 - Agree; 5 - Strongly 

Agree. A link was set if there was an agreement (4) or strong agreement 

(5). Directions were ignored. 

The Opsahl_10 and Opsahl_11 networks come from the research team 

of a manufacturing company, and nodes represent employees. The 

annotated communities indicate the company locations (Paris, 

Frankfurt, Warsaw and Geneva). For Opsahl_10 the researchers were 

asked to indicate the extent to which their co-workers provide them 

with the information they use to accomplish their work. The answers 

were on the following scale: 0 – I do not know this person / I never met 

this person; 1 – Very infrequently; 2 – Infrequently; 3 – Somewhat 

frequently; 4 – Frequently; 5 – Very frequently. An undirected link was 

set when there was at least a weight of 4. 

For Opsahl_11 the employees were asked about their awareness of 

each other’s knowledge (“I understand this person’s knowledge and 

skills. This does not necessarily mean that I have these skills and am 

knowledgeable in these domains, but I understand what skills this 

person has and domains they are knowledgeable in.”). The weighting 

was on the scale: 0 – I do not know this person / I have never met this 

person; 1 – Strongly disagree; 2 – Disagree; 3 – Somewhat disagree; 4 

– Somewhat agree; 5 – Agree; 6 – Strongly agree. A link was set when 

there was at least a 4, ignoring directions. 

Polbooks 

The Polbooks network represents frequent co-purchases of books 

concerning US politics on amazon.com. Ground-truth communities are 
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given by the political orientation of the books as either conservative, 

neutral or liberal. The network is unpublished but can be downloaded 

at http://www-personal.umich.edu/~mejn/netdata/, as well as with the 

Karate, Football and Polblogs networks. 

Football 

The Football network [35] presents games between division IA 

colleges during regular season fall 2000. Ground-truth communities 

are the conferences that each team belongs to. 

Polblogs 

The Polblogs [73]  network consists of links between blogs about the 

politics in the 2004 US presidential election. The ground-truth 

communities represent the political opinions of the blogs 

(right/conservative and left/liberal).  

9.2. Synthetic networks generated by the 

nPSO model 

The Popularity-Similarity-Optimization (PSO) model [56] is a 

generative network model recently introduced in order to describe how 

random geometric graphs grow in the hyperbolic space. In this model, 

the networks evolve optimizing a trade-off between node popularity, 

abstracted by the radial coordinate, and similarity, represented by the 

angular distance. The PSO model can reproduce many structural 

properties of real networks: clustering, small-worldness (concurrent 

low characteristic path length and high clustering), node degree 

heterogeneity with power-law degree distribution and rich-clubness5. 

However, being the nodes uniformly distributed over the angular 

coordinate, the model lacks a non-trivial community structure. 

                                                           
5 Rich-clubness refers to nodes with large number of edges that tend to be well connected 

between each other and form a compact group [95]. 
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The nonuniform PSO (nPSO) model [74], [75] is a variation of the PSO 

model that exploits a nonuniform distribution of nodes over the angular 

coordinate in order to generate networks characterized by 

communities, with the possibility to tune their number, size and mixing 

property. The adoption of a Gaussian mixture distribution of angular 

coordinates, with communities that emerge in correspondence with the 

different Gaussians, and the parameter setting suggested in the original 

study [74], [75] was considered. Given the number of components C, 

they have means equidistantly arranged over the angular space, 𝜇𝑖 =
2𝜋

𝐶
∙ (𝑖 − 1), the same standard deviation fixed to 1/6 of the distance 

between two adjacent means, 𝜎𝑖 =
1

6
∙

2𝜋

𝐶
, and equal mixing 

proportions, 𝜌𝑖 =
1

𝐶
 (𝑖 = 1 … 𝐶). The community memberships are 

assigned considering for each node the component whose mean is the 

closest in the angular space. The other parameters of the model are the 

number of nodes N, half of the average node degree m, the network 

temperature T6 (inversely related to the clustering) and the exponent γ 

of the power-law degree distribution. Given the parameters (N, m, T, γ, 

C), for details on the generative procedure, please refer to the original 

study [74], [75]. 

9.3. Real network analysis results 

In Table 3 the performance comparison of MCL in its original form, 

the three LGI-MCL variants (EBC, RA and ER) and the state of the art 

methods for community detection Infomap and Louvain are reported. 

In addition, two in-silico experiments were made to test the robustness 

of the techniques in the case of noise injection in the real topologies. 

In the first case, the network structure was perturbed by the random 

deletion of 10% of the links. This procedure was repeated for 100 

realizations, and the average results are reported in Table 4. This 

                                                           
6 The temperature of a network regulates its clustering. At T = 0, the clustering is 

maximized, with T close to 1, the network can be seeing as one unique cluster [96]. 
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experiment simulates the behaviour of the algorithms in case of partial 

(10%) missing topological information. In the second case, the network 

structure was perturbed by the random addition of 10% of the links. 

This procedure was repeated for 100 realizations, and the average 

results are reported in Table 5. This experiment simulates the 

behaviour of the algorithms in the case of partial (10%) addition of 

wrong topological information. 

 Infomap Louvain 

LGI-

MCL 

ER 

LGI-

MCL 

RA 

LGI-

MCL 

EBC 

MCL 

karate 0.55 0.46 0.83 0.83 0.73 0.73 

opsahl 8 0.69 0.55 0.59 0.55 0.55 0.55 

opsahl 9 0.47 0.41 0.39 0.40 0.40 0.43 

opsahl 10 1.00 1.00 1.00 1.00 1.00 1.00 

opsahl 11 1.00 0.96 0.96 0.75 0.75 0.68 

polbooks 0.52 0.50 0.57 0.57 0.57 0.57 

football 0.92 0.93 0.93 0.93 0.93 0.93 

polblogs 0.52 0.64 0.00 0.00 0.00 0.00 

mean NMI 0.71 0.68 0.66 0.63 0.62 0.61 

mean ranking 3.06 3.69 3.19 3.56 3.81 3.69 

Table 3. Community detection on real networks. The table reports the Normalized 
Mutual Information (NMI) computed between the ground truth communities and the ones 

detected by every community detection algorithm for 8 real networks. NMI = 1 indicates 

a perfect match between the two partitions of the nodes. The methods are ranked by mean 
NMI over the dataset. The best result for each network, as well as the best mean results, 

are marked in bold. 

As a first key result, LGI-MCL outperforms the original MCL in all 

three scenarios. Remarkably, LGI-MCL ER displays a higher mean 

NMI than the other LGI-MCL variants in the original topologies and 

in the random removal experiment, whereas they equally perform in 

the random addition framework. Furthermore, LGI-MCL ER reaches a 

mean NMI close to the state of the art method Louvain and a better 
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mean ranking, highlighting the importance of merging the RA and 

EBC measures in a unique combined similarity. Lastly, Infomap attains 

overall the best result in the original topologies and in case of missing 

information. However, it turns out to be the most unstable when 

spurious links are added, since in two cases (Opsahl_9, Opsahl_11) it 

detects the whole network as a unique community (NMI = 0). 

 

 

 
Infomap Louvain 

LGI-

MCL 

ER 

LGI-

MCL 

RA 

LGI-

MCL 

EBC 

MCL 

karate 0.54 0.49 0.72 0.73 0.72 0.74 

opsahl 8 0.55 0.51 0.56 0.56 0.56 0.56 

opsahl 9 0.49 0.42 0.38 0.39 0.39 0.41 

opsahl 10 1.00 1.00 1.00 1.00 1.00 1.00 

opsahl 11 0.96 0.96 0.90 0.82 0.79 0.63 

polbooks 0.50 0.49 0.57 0.57 0.57 0.57 

football 0.92 0.90 0.92 0.92 0.92 0.92 

polblogs 0.51 0.63 0.00 0.00 0.00 0.00 

mean NMI 0.68 0.68 0.63 0.62 0.62 0.60 

mean ranking 3.25 4.00 3.56 3.31 3.63 3.25 

Table 4. Community detection on real networks perturbed with random removal of 

links. For each real network, 100 perturbed networks have been generated removing at 
random the 10% of links. The table reports the Normalized Mutual Information (NMI) 

computed between the ground-truth communities and the ones detected by every 

community detection algorithm for the 8 real networks, averaged over the 100 
repetitions. NMI = 1 indicates a perfect match between the two partitions of the nodes. 

The methods are ranked by mean NMI over the dataset. The best result for each network 
as well as the best mean results are marked in bold. 
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 Louvain 

LGI-

MCL 

RA 

LGI-

MCL 

ER 

LGI-

MCL 

EBC 

MCL Infomap 

karate 0.45 0.76 0.75 0.70 0.68 0.53 

opsahl 8 0.51 0.53 0.54 0.54 0.55 0.55 

opsahl 9 0.42 0.39 0.38 0.40 0.41 0.00 

opsahl 10 0.98 0.98 0.98 0.98 0.98 0.98 

opsahl 11 0.96 0.73 0.76 0.69 0.53 0.00 

polbooks 0.49 0.57 0.57 0.57 0.57 0.50 

football 0.90 0.93 0.93 0.92 0.92 0.92 

polblogs 0.41 0.08 0.07 0.19 0.20 0.31 

mean NMI 0.64 0.62 0.62 0.62 0.61 0.47 

mean ranking 3.81 3.19 3.25 3.44 3.19 4.13 

Table 5. Community detection on real networks perturbed with random addition of 

links. For each real network, 100 perturbed networks have been generated adding at 

random the 10% of links. The table reports the Normalized Mutual Information (NMI) 

computed between the ground-truth communities and the ones detected by every 
community detection algorithm for the 8 real networks, averaged over the 100 

repetitions. NMI = 1 indicates a perfect match between the two partitions of the nodes. 

The methods are ranked by mean NMI over the dataset. The best result for each network 
as well as the best mean results are marked in bold. 

9.4. Synthetic network analysis results 

In order to provide additional and more detailed results regarding the 

behaviour of the clustering methods, a comparative test was performed 

on artificial networks produced by the nonuniform Popularity-

Similarity-Optimization (nPSO) model [74], [75]. Indeed, the nPSO is 

an efficient generative model recently proposed to grow realistic 

complex networks, which not only are clustered, small-word, scale-

free and rich-club, but also present communities whose number and 

size can be a priory defined (please refer to chapter 9.2. ‘Synthetic 

networks generated by the nPSO model’ for more details). These 

artificial networks with known community structure offer the ground-
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truth to build a valid benchmark to test the performance of algorithms 

for community detection.  

The results of wide-range simulations (Figure 17-Figure 20 and 

Appendix Figure A. 1-Figure A. 9) - where synthetic networks were 

obtained by tuning several parameter combinations of the nPSO model 

- highlight similarities with respect to the results on real networks. 

First, LGI-MCL, compared to MCL, improves significantly the 

Figure 17. Community detection on nPSO networks (1st setting: T fixed; N, γ, m and 

C changing). Synthetic networks have been generated using the nPSO model with 

parameters N = [100, 500] (network size) γ = [2, 3] (power-law degree distribution 

exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = 0.1 (temperature, 
inversely related to the clustering coefficient) and C = [6, 9, 12] (number of 

communities). For each combination of parameters, 10 networks have been generated. 

For each network the community detection methods have been executed and the 
communities detected have been compared to the annotated ones computing the 

Normalized Mutual Information (NMI). The plots report for each parameter 

combination the mean NMI and standard error over the random repetitions and show 
that LGI-MCL, compared to MCL, significantly improves the performance for small N 

and low T, regardless of γ changes. Instead, for middle-size networks, this is mainly true 

for large C, large m and low γ. 
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community detection performance for small-size networks (N = 100) 

and high clustering (T = 0.1), regardless of γ changes. Instead, for 

middle-size networks (N = 500), this is mainly true when there are 

more communities (larger C), higher average degree (m) and γ = 2. The 

ranking of the performance of the LGI-MCL variants, from the highest 

to lowest, is generally LGI-MCL ER, LGI-MCL RA and LGI-MCL 

EBC (Figure 17), similarly to the real networks. Second, the 

performance of MCL increases and stabilizes with increasing network 

size (N) at γ = 3, independently from changes in temperature (T) and 

the number of communities (C), achieving performances close to the 

Figure 18. Community detection on nPSO networks (2nd setting: γ fixed; N, m, T and 

C changing). Synthetic networks have been generated using the nPSO model with 
parameters N = [100, 500, 1000] (network size) γ = 3 (power-law degree distribution 

exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = [0.1, 0.5] 

(temperature, inversely related to the clustering coefficient) and C = [6, 12] (number of 
communities). For each combination of parameters, 10 networks have been generated. 

For each network the community detection methods have been executed and the 

communities detected have been compared to the annotated ones computing the 
Normalized Mutual Information (NMI). The plots report for each parameter 

combination the mean NMI and standard error over the random repetitions and show 

that the MCL performance increases and stabilizes with larger network size at γ = 3, 

independently from changes in T and C. 

Figure 19. Community detection on nPSO networks (3rd setting: C fixed; N, γ, m and 

T changing). Synthetic networks have been generated using the nPSO model with 

parameters N = [500, 1000] (network size) γ = [2, 2.5, 3] (power-law degree distribution 

exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = [0.1, 0.5] 
(temperature, inversely related to the clustering coefficient) and C = 9 (number of 

communities). For each combination of parameters, 10 networks have been generated. 

For each network the community detection methods have been executed and the 
communities detected have been compared to the annotated ones computing the 

Normalized Mutual Information (NMI). The plots report for each parameter 

combination the mean NMI and standard error over the random repetitions and show 
that MCL improves its performance with the increase of γ for middle and large size 

networks. 
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state of the art algorithms Louvain and Infomap (Figure 18). In this 

parameter setting, it can be noticed that Infomap attains a slightly 

higher NMI than Louvain in several cases, but, on the other side, it 

drastically drops to NMI = 0 when the network is too dense (low N and 

high m), as already pointed out by the experiments of random link 

addition on real topologies. Third, MCL presents problems to correctly 

detect the communities in networks of middle (N = 500) and large (N 

= 1000) size at γ = 2, but improves and stabilizes the performance for 

increasing γ (Figure 19). An exception to this situation is found at a 

very low average degree (mostly m = 2) (Figure 20), where there is a 

Figure 20. Community detection on nPSO networks (4th setting: γ fixed; N, m, T and 

C changing). Synthetic networks have been generated using the nPSO model with 
parameters N = [500, 1000] (network size) γ = 2 (power-law degree distribution 

exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = [0.1, 0.5] 

(temperature, inversely related to the clustering coefficient) and C = [6, 9, 12] (number 
of communities). For each combination of parameters, 10 networks have been generated. 

For each network the community detection methods have been executed and the 

communities detected have been compared to the annotated ones computing the 
Normalized Mutual Information (NMI). The plots report for each parameter 

combination the mean NMI and standard error over the random repetitions and show 

that, at low γ, the MCL performance is close to state of the art methods for low m, 
whereas it decreases for higher m. 
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peak of performance for the middle (N = 500) and large size (N = 1000) 

networks. 

9.5. Advantages and limitations of LGI-MCL 

The eight considered real networks represent a benchmark with 

ground-truth annotation generally adopted to test algorithms for non-

overlapping community detection on real network topologies. 

However, the results here obtained suggest that this benchmark, 

collecting networks of different size (from tenths to thousands of 

nodes), seems enough complete and diversified to adequately 

investigate the performance of each method suggested in this work. In 

fact, LGI-MCL should offer better results than pure MCL, because the 

similarity pre-weighting is derived from dissimilarity measures that 

approximate a network geometry. This theoretical expectation is 

confirmed not only on the original real networks, but also when their 

topology is perturbed by noise simulated by random deletion of links 

(missing topological information) or random addition of links 

(spurious topological information), where the three LGI-MCL variants 

achieve a greater mean NMI than the unweighted MCL, corroborating 

the rationale on how to design similarity measures that favour the 

stochastic simulation procedure of MCL. On the other hand, when 

considering the synthetic networks as ground-truth benchmark, LGI-

MCL clearly improves the performance compared to MCL in certain 

scenarios, mostly for small (N = 100) and medium (N = 500) size 

networks, whereas for large size networks (N = 1000) the improvement 

is often missing or less notorious. 

Despite the improvements that LGI measures can bring to MCL, the 

method is still affected by certain types of network topologies. For 

example, in Figure 19, at low γ the MCL performance is dramatically 

reduced and far from state of the art. This can be explained because 

with lower γ there is a stronger presence of hubs, central nodes with a 

large degree acting as bridges between different regions of the network, 
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which increases the likelihood for a random walk to move from one 

cluster to another one, and therefore makes more difficult for MCL to 

correctly infer the boundaries of the clusters. Similarly, the peak of 

MCL performance at low average degree (Figure 20) can be explained 

because the network topology is very sparse and therefore, it is less 

likely for a random walk to reach a hub and later move to another 

cluster. One goal of the wide experiments was indeed to point out the 

topological configurations affecting the MCL inference, so that further 

studies might investigate how to improve the performance in the 

presence of these structural patterns and make the method more robust. 

10. Clustering analysis 

In the next section, after describing the procedure behind MCL (please 

refer to chapter 3. ‘Markov clustering’ for more details), and recall a 

collection of network science notions, at the interface between network 

topology and network geometry [56], [59], [60], [67]–[69], with the 

purpose to design similarity measures to boost algorithms based on 

network navigability protocols (please refer to chapter 6. ‘Minimum 

curvilinear Markov clustering’ for more details), with respect to 

clustering analysis starts. Here, it is exhibited a performance 

comparison between nonlinear MCL with baseline and more advanced 

clustering algorithms such as classical MCL [32], AP [27], its 

nonlinear version MC-AP [57], density-based spatial clustering of 

applications with noise (DBSCAN) [22], density peaks shortest path-

based (DPSP) [26], single linkage [18], [19], cciMST [31], K-means 

[16] and deep clustering-based algorithms [34] for the MNIST and 

CIFAR datasets (please refer to chapter 1. ‘Clustering’ for more details 

on the different clustering methods). They have been compared both 

on real and synthetic high-dimensional datasets and using different 

metrics (Accuracy, NMI and ARI, please refer to chapter 8. 

‘Evaluation framework’ for more details) to evaluate their 

performances. Finally, a discussion with advantages and limitations of 

the MC-MCL approaches (including variants) will be addressed. 
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10.1. Clustering case studies and algorithm 

performance comparison. 

Six different high-dimensional and nonlinear datasets were analyzed in 

order to perform a comparative analysis of the clustering methods.  

Gastric mucosa microbiome 

The dataset was generated by 

Paroni Sterbini and colleagues 

[76] and it consists of 24 biopsy 

specimens of the gastric antrum 

from 24 individuals who were 

referred to the Department of 

Gastroenterology of Gemelli 

Hospital (Rome) with 

dyspepsia symptoms (i.e. 

heartburn, nausea, epigastric 

pain and discomfort, bloating, 

and regurgitation). Twelve of 

these individuals had been taking PPIs (P) for at least 12 months, while 

the others were not being treated (naïve) or had stopped treatment at 

least 12 months before sample collection. In addition, 9 (5 treated and 

4 untreated) were positive for H. pylori infection (Figure 21), where H. 

pylori positivity (H+) or negativity (H-) was determined by histology 

and rapid urease tests. The number of features is 187 and indicates 

different microbial abundance. The metagenomics sequence data were 

processed, replicating the bioinformatics workflow followed by Paroni 

Sterbini et al. [76], in order to obtain the dataset for the clustering 

algorithms. This dataset was analyzed for three clusters: H+ (n=5), H- 

(n=7) and P (n=12). The PPI (P) patients with (P&H+) and without 

(P&H-) the presence of H. pylori are considered a unique class, 

because it is known from previous studies [77], [78] that PPI 

significantly changes the gastric environment and covers the effect of 

Figure 21. Electron micrograph of 
Helicobacter pylori bacterium. Picture from 

Professor Yukata Tsutsumi, Department of 

Pathology Fujita, Health University School of 
Medicine. 
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other factors such as H. pylori presence. Furthermore, Durán et al. [51] 

evidenced in a recent study that, taken into account the dimensionality 

reduction and clustering analysis, the idea of three groups in the dataset 

seems more congruous than for the four groups case.  

The data is publicly available in the NCBI Sequence Read Archive 

(SRA) (http://www.ncbi.nlm.nih.gov/sra, accession number 

SRP060417). 

As commented in Chapter 3. ‘Motivation’, the dataset that implanted 

the idea for a nonlinear MCL was the gastric mucosa dataset from 

Sterbini et al. [76]. It all started from the need to express in numbers, 

what could be already appreciated by eyes in the segregation of groups 

with nonlinear patterns (Figure 13), a problem that persisted with 

different clustering techniques. Note that the clustering algorithms 

analyzed the datasets in the HD space directly, without considering the 

embeddings presented in Figure 13.  

Methods Best dist Factor Norm Acc ARI NMI Mean rank 

MC-MCL hdr euc SQRT LOG 0.75 0.36 0.37 1.33 

isoMCL corr  LOG 0.75 0.33 0.31 2.00 

MC-MCL hbr corr - LOG 0.71 0.29 0.31 3.33 

MC-MCL dual corr - LOG 0.71 0.29 0.31 3.33 

MC-MCL corr - LOG 0.71 0.29 0.31 3.33 

cciMST corr  - 0.71 0.24 0.26 5.67 

DBSCAN corr  - 0.58 0.28 0.38 6.00 

Kmeans corr  LOG 0.67 0.20 0.26 7.33 

MC-AP corr  LOG 0.67 0.20 0.24 8.00 

AP corr  LOG 0.67 0.20 0.24 8.00 

MCL corr  LOG 0.67 0.19 0.21 9.67 

DPSP corr  - 0.54 0.15 0.21 11.67 

Single linkage euc  LOG 0.50 0.01 0.01 13.00 

Table 6. Clustering performance in Gastric mucosa microbiome data. Accuracy (Acc), 

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and mean rank 
(according to the previously mentioned measures) are reported for each clustering 

method together with the best distance approach (Pearson correlation [corr], Spearman 

correlation [spea] or Euclidean [euc]), factor (for MC-MCL-variants) and 

http://www.ncbi.nlm.nih.gov/sra
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normalization (Norm) applied. The methods are sorted by mean rank from the highest 

(top) to the lowest (bottom) performance. Methods in red are nonlinear MCL variants 
with one hyperparameter to optimize. Note that the parameter(s) to consider the number 

of clusters is/are not taken into account because it is an initialization parameter that all 

methods require.  

As theoretically expected, all MC-kernel variations clearly improve the 

performances of MCL and move it from one of the last places to 

leading positions, particularly for MC-MCL hdr variant, first in rank 

performance between all 13 methods (Table 6). Interestingly, the 

isomap inspired MCL also demonstrates good performances and is 

situated as the second-best clustering method. Remarkably, all MST-

based methods, including cciMST and the MCL variants, achieve the 

highest mean rank using 5/6 of the highest places, demonstrating the 

successful MST property to approximate the hidden data geometry 

correctly.   

DBSCAN seems to have problems in accuracy with a value rather low 

(0.58), but in ARI and NMI the situation differ, where its ARI value is 

close to the new MCL variants, and surprisingly outperform all the rest 

of the method in NMI (0.38), closely followed by the here proposed 

MC-MCL hdr (0.37). K-means, MCL, AP and MC-AP have low 

performances with accuracy of ~0.67, ARI of ~0.2 and NMI between 

0.21 and 2.6. Surprisingly, Single linkage could not find the three 

proposed clusters having the lowest performance in the three measures. 

The improved density peaks version (DPSP) also had troubles being 

the second-lowest. 
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As mentioned in chapters 7.3 ‘Minimum curvilinear Markov clustering 

multi-MST variants’ and 7.4 ‘Isomap-inspired MCL’, the different 

proposed MCL algorithms introduce the need to select parameters. For 

each variant, 50 values of their respective parameters were searched, 

and the best results were placed in the respective table performance 

comparison (Table 6). The parameter search simulation for the gastric 

mucosa dataset can be found in Figure 22 for the LOG normalization 

(Note that one plot is generated for each normalization [LOG and no 

normalization], just one of both plots, LOG normalized, is here 

presented, whereas the no normalized can be found in the Appendix 

section Figure A. 10). Consider that the x-axis represents a different 

unit depending on the MCL variant: for MC-MCL hbr (blue) and hdr 

(green), is the percentile of high betweenness centrality/degree nodes 

to be removed for the computation of the second MST. For MC-MCL 

dual (orange) it corresponds to the number of dual MSTs to construct 

Figure 22. Parameter search for MC-MCL and isoMCL variants in gastric mucosa 

dataset with LOG normalization.  Accuracy, ARI and NMI performances. The x axis (from 

1 to 50) represents different units depending on the MCL variant: for MC-MCL hbr (blue) 

and hdr (green), is the percentile of high betweenness centrality/degree nodes to be 
removed for the computation of the second MST. For MC-MCL dual (orange) it 

corresponds to the number of dual MSTs to construct and ensemble with the original MST. 

For isoMCL (purple) it consists in the k value to create the proximity graph.    
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and ensemble with the original MST. For isoMCL (purple) it consists 

in the k value to create the proximity graph. 

Regarding the best distance and factor applied, the best performing 

MCL variants were compared to evince the parameter influence on 

their performances.  Depending of the parameter value, a great 

fluctuation exists in the MCL variant performances (Figure 22), being 

the MC-MCL hdr the most notorious (green line), where from 0.55 in 

accuracy with 5% percentile, the value can rise to 0.75 with ~20% 

percentile. A similar trend also occurs in the case of the ARI and NMI 

measures.  

This important performance fluctuation could be partially explained by 

the gastric mucosa dataset reduced sample size with only 24 

observations. Removing a small portion of samples can be translated 

into a great MST topological change, i.e. by connecting distant regions 

in the graph.  

Radar signal 

The data is composed of 350 radar signals targeting free electrons in 

the ionosphere, where each radar signal consisted of 34 features that 

are measurements of electromagnetic pulses. It was collected by the 

Space Physics Group of the Johns Hopkins University Applied Physics 

Laboratory [79]. The two groups are defined as: (1) 225 good radar 
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signals, characterized by those signals that returned evidence of free 

electrons in the ionosphere, and (2) 125 bad radar signals which were 

those signals that passed through the ionosphere and returned 

background noise (Figure 23). Hence, good radar signals are similar, and 

bad radar signals might be dissimilar. 

Table 7 exhibits the performance comparison between the clustering 

algorithms for this dataset. MC kernel shows an improvement in 

performance compared to its linear algorithm MCL, being the dual 

variant the highest performer obtaining the first place in mean ranking 

with an accuracy of 0.78, ARI of 0.29 and NMI of 0.32, followed by 

the hbr variant with performances of 0.80, 0.35 and 0.25 in accuracy, 

ARI and NMI respectively (Table 7). 

 

 

 

 

 

 

Figure 23. Radar signal illustration. Good radar signals returned evidence of free 
electrons from the ionosphere, whereas bad radar signals passed through the ionosphere 

and returned noise.  
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Methods Best dist Factor Norm Acc ARI NMI Mean rank 

MC-MCL dual spea LOG - 0.78 0.29 0.32 1.67 

MC-MCL hbr euc SQRT - 0.80 0.35 0.25 2.00 

MC-MCL hdr spea LOG - 0.77 0.25 0.28 2.67 

isoMCL spea  - 0.77 0.25 0.28 2.67 

Kmeans euc  - 0.71 0.18 0.13 5.33 

AP euc  - 0.71 0.17 0.13 5.67 

MC-MCL euc LOG - 0.71 0.17 0.12 6.33 

DBSCAN corr  - 0.68 0.10 0.14 7.67 

MC-AP euc  - 0.69 0.14 0.09 8.33 

DPSP corr  - 0.65 0.02 0.03 10.67 

MCL euc  - 0.60 0.04 0.06 11.00 

cciMST euc  - 0.64 0.00 0.01 11.67 

Single linkage euc  - 0.64 0.00 0.01 11.67 

Table 7. Clustering performance in Radar (two clusters) data. Accuracy (Acc), 

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and mean rank 
(according to the previously mentioned measures) are reported for each clustering 

method together with the best distance approach (Pearson correlation [corr], Spearman 

correlation [spea] or Euclidean [euc]), factor (for MC-MCL-variants) and 
normalization (Norm) applied. The methods are sorted by mean rank from the highest 

(top) to the lowest (bottom) performance. Methods in red are nonlinear MCL variants 

with one hyperparameter to optimize. Note that the parameter(s) to consider the number 
of clusters is/are not taken into account because it is an initialization parameter that all 

methods require. 

Curiously, Kmeans and AP perform comparable and even slightly 

better than the MC-MCL algorithm using the regular MC kernel. The 

MC-based nonlinear version of AP, MCAP, performed lower than its 

counterpart; and DPSP, MCL, cciMST and single linkage could not 

effectively find the two clusters and assign the sample majority to one 

unique class. Note that cciMST, although based in the MST alike the 

MC-MCL variant, was rather far away from their performance, 

suggesting that the MST alone does not always correctly approximate 

the hidden geometrical data space. This is evidenced as well by the fact 

that the ‘multiple MST’ MC-MCL variants outperform the MC-MCL 

employing the original MC kernel.  
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The parameter search simulation for the Radar dataset can be found in 

Figure 24 without normalization application. The performances across 

parameters seem more stable in the accuracy measurement compared 

to ARI and NMI, whose values greatly fluctuate from 0 to ~0.30. The 

most evident fluctuation is exhibited by the variant MC-MCL hbr, 

which achieves the highest accuracy (0.80) and ARI (0.35) values and 

is only outperformed in NMI by the rest of the nonlinear-MCL 

variants. A curious trend can be appreciated for both MC-MCL dual 

and isoMCL, where their pick performances are achieved with a low 

parameter value (number of MST duals to construct and k number of 

neighbors for the proximity graph construction respectively) and then 

are rapidly decreased until arriving to a plateau.  

 

 

Figure 24. Parameter search for MC-MCL and isoMCL variants in Radar dataset (2 

clusters) without normalization.  Accuracy, ARI and NMI performances. The x axis 
(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL 

hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree 

nodes to be removed for the computation of the second MST. For MC-MCL dual 
(orange) it corresponds to the number of dual MSTs to construct and ensemble with the 

original MST. For isoMCL (purple) it consists in the k value to create the proximity 

graph.    
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Methods Best dist Factor Norm Acc ARI NMI Mean rank 

MC-MCL hdr spea LOG - 0.74 0.35 0.32 2.00 

MC-MCL dual spea - - 0.75 0.34 0.30 2.33 

MC-MCL hbr spea - - 0.74 0.34 0.32 2.33 

MC-MCL corr SQRT - 0.74 0.27 0.38 3.00 

isoMCL spea  - 0.75 0.32 0.28 3.33 

AP euc  - 0.66 0.23 0.25 6.00 

Kmeans euc  - 0.62 0.16 0.15 8.33 

cciMST euc  - 0.62 0.15 0.14 9.00 

MC-AP corr  - 0.56 0.08 0.22 9.33 

DPSP corr  - 0.65 0.02 0.03 9.67 

DBSCAN corr  - 0.64 0.01 0.02 10.67 

Single linkage euc  - 0.64 0.01 0.02 10.67 

MCL euc  - 0.42 0.03 0.05 11.00 

Table 8. Clustering performance in Radar (three clusters) data. Accuracy (Acc), 

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and mean rank 
(according to the previously mentioned measures) are reported for each clustering 

method together with the best distance approach (Pearson correlation [corr], Spearman 

correlation [spea] or Euclidean [euc]), factor (for MC-MCL-variants) and 
normalization (Norm) applied. The methods are sorted by mean rank from the highest 

(top) to the lowest (bottom) performance. Methods in red are nonlinear MCL variants 

with one hyperparameter to optimize. Note that the parameter(s) to consider the number 
of clusters is/are not taken into account because it is an initialization parameter that all 

methods require. 

In the study of Cannistraci et al. [53], it was suggested that, actually, 

the bad radar signals might be segregated into two different groups 

(given by the result of a nonlinear dimensionality reduction 

embedding). Therefore, the dataset is additionally analyzed for three 

clusters (Table 8). 

From this analysis, the method that benefits the most from this new 

grouping is the MC-MCL algorithm with original MC, and it is moved 

from a 7th place to a 4th just after the MC-MCL variants using multiple 

MSTs in their kernels. It increases its performance from 0.71, 0.17 and 

0.12 to 0.74, 0.27 and 0.38 in accuracy, ARI and NMI, respectively, 

achieving the highest NMI compared to all other methods. Overall, this 
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new grouping seems to negatively affect the accuracy of the best-

performing methods (MC-MCL multi MST variants), and curiously 

increases the ARI and NMI performances for the majority of the 

clustering methods, with few exceptions. A clear exception is 

DBSCAN, which is evidently negatively affected by this grouping, 

decreasing its performance from 0.68, 0.10 and 0.14 to 0.64, 0.01 and 

0.02 in accuracy, ARI and NMI, respectively (Table 8). AP still 

outperforms its nonlinear counterpart on the three measures, and 

DPSP, single linkage, and MCL join DBSCAN with their low 

performances. 

The parameter search simulation for the Radar dataset with three 

clusters can be found in Figure 25 without normalization application. 

The line trends here are certainly similar to Radar’s case with two 

clusters, being an exception the noticeable boost of ARI and NMI for 

the MC-MCL hdr (green) variant after the ~30% percentile.   

Figure 25. Parameter search for MC-MCL and isoMCL variants in Radar dataset (3 

clusters) without normalization.  Accuracy, ARI and NMI performances. The x axis 

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL 
hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes 

to be removed for the computation of the second MST. For MC-MCL dual (orange) it 

corresponds to the number of dual MSTs to construct and ensemble with the original 
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.    



75 

 

As for the suggestion of Cannistraci and colleagues [53] about the 

adequate grouping of the radar dataset, the idea seems to be congruous 

due to the general increase in ARI and NMI measures across the 

clustering methods. Nonetheless, the change in performance is not so 

notorious when comparing the best-performing methods in each 

grouping case (the MC-MCL variants), and therefore an affirmation 

that the radar dataset should be analyzed by a three grouping problem 

rather than a two one is still not strongly supported.   

Tripartite-Swiss-Roll 

In order to ‘objectively’ (using a ground 

truth) test how the clustering algorithms 

could detect nonlinear relationships, we 

additionally performed an analysis on 

the Tripartite-Swiss-Roll dataset 

(Figure 26): an artificial dataset 

characterized by evident nonlinear 

patterns and generated as a 

discretization of the manifold associated 

to a Swiss-Roll function [62] in a three-

dimensional (3D) space. Indeed, it is a 

synthetic dataset composed by 723 

points obtained as the partition in three 

sections of a discrete Swiss-Roll 

manifold depicted in three-dimensional 

space [62]. It reproduces the typical 

nonlinearity (given by the Swiss-Roll 

shape) and the discontinuity (given by 

the tripartition of the manifold, and therefore three clusters), that might 

be often hidden in the multidimensional representation of data samples. 

However, it is important to clarify that this dataset, contrarily to all the 

other ones used in this chapter, has significantly fewer features than 

Figure 26. Tripartite-Swiss-Roll 
scatter plot evidencing the three 

nonlinear shaped clusters. 



76 

 

samples. Therefore it cannot be considered a multidimensional dataset. 

Yet, it is a very useful benchmark for nonlinear clustering.  

The Tripartite-Swiss-Roll possesses three main features: (1) it has a 

clear nonlinear shape; (2) each cluster is clearly separated (not fuzzy) 

from the neighbour clusters; and (3) each cluster is dense.  

Methods Best dist Factor Norm Acc ARI NMI Mean rank 

MC-MCL dual euc - - 1.00 1.00 1.00 1.00 

MC-MCL hbr euc - - 1.00 1.00 1.00 1.00 

MC-MCL hdr euc - - 1.00 1.00 1.00 1.00 

isoMCL euc  - 1.00 1.00 1.00 1.00 

MC-MCL euc - - 1.00 1.00 1.00 1.00 

DBSCAN euc  - 1.00 1.00 1.00 1.00 

MCL euc  - 1.00 1.00 1.00 1.00 

cciMST euc  - 1.00 1.00 1.00 1.00 

Single linkage euc  - 1.00 1.00 1.00 1.00 

DPSP euc  - 0.85 0.87 0.82 10.00 

MC-AP euc  - 0.64 0.47 0.58 11.00 

Kmeans euc  - 0.56 0.10 0.20 12.00 

AP euc  - 0.54 0.09 0.19 13.00 

Table 9. Clustering performance in Tripartite-Swiss-Roll data. Accuracy (Acc), 
Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and mean rank 

(according to the previously mentioned measures) are reported for each clustering 

method together with the best distance approach (Pearson correlation [corr], Spearman 
correlation [spea] or Euclidean [euc]), factor (for MC-MCL-variants) and 

normalization (Norm) applied. The methods are sorted by mean rank from the highest 

(top) to the lowest (bottom) performance. Methods in red are nonlinear MCL variants 
with one hyperparameter to optimize. Note that the parameter(s) to consider the number 

of clusters is/are not taken into account because it is an initialization parameter that all 

methods require. 

The performances of each algorithm are shown in Table 9. Many 

clustering algorithms are able to find the three clusters as indicated by 

the perfect performance segregations value of 1 in the three measures. 

These methods are MCL, isoMCL, all MC-MCL variants, DBSCAN, 

cciMST and Single linkage. As theoretical expected, the linear 
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techniques AP and Kmeans cannot detect the nonlinear patterns and 

perform poorly in this dataset, obtaining the last positions. 

Surprisingly, DPSP and MC-AP, although outperforming the linear 

algorithms  AP and Kmenas, are not able to successfully find the three 

clusters.  

This synthetic dataset is the only case in the present study where, in the 

presence of a nonlinear clustering structure, classical MCL can achieve 

comparable performance to MC-MCL (Table 9). Indeed, in all the 

three real datasets previously analyzed, MCL was one of the worst 

algorithms between the 13 different types tested. These findings, on 

one side, suggest the utility to adopt synthetic data because yet on this 

example, linear clustering algorithms such as AP and K-means result, 

as theoretically expected, the worst. On the other side, the same results 

suggest that simple synthetic datasets with many samples and few 

dimensions, although they are an interesting and useful benchmark, 

might be too ‘naïvely’ designed. They might miss other crucial aspects 

of data nonlinearity that emerge in the case of curse of dimensionality7. 

Altogether, after this didactic example, we can conclude that it is 

important to expose the tested algorithms to different data scenarios in 

which nonlinearity emerges from different data sources. 

In the case of parameter search for the nonlinear MCL variants (Figure 

27), independently from the parameter to choose, all algorithms 

achieve the perfect segregation with values of one in all measures, 

except when isoMCL presents a multiple component graph (at low k). 

                                                           
7 Course of dimensionality refers to when the number of features is substantially larger 

than the number of samples. 
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Till now, the tests were made in unsupervised recognition of nonlinear 

patterns that emerge from metagenomics, radar signal and synthetic 

backgrounds, but always the scenario of a few numbers of expected 

clusters was considered. It is now time to confront these algorithms on 

a more challenging benchmark, commonly applied in artificial 

intelligence for supervised and unsupervised tasks, to test their 

nonlinear pattern recognition performance. 

Figure 27. Parameter search for MC-MCL and isoMCL variants in Tripartite-Swiss-

Roll dataset without normalization.  Accuracy, ARI and NMI performances. The x axis 

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL 

hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes 
to be removed for the computation of the second MST. For MC-MCL dual (orange) it 

corresponds to the number of dual MSTs to construct and ensemble with the original 

MST. For isoMCL (purple) it consists in the k value to create the proximity graph.    
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MNIST 

MNIST [80] is one of the most used datasets in machine learning. This 

is a large dataset that consists of 28x28 pixel images of handwritten 

digits. Every image can be thought of as a 784-dimensional array, 

where each value represents each pixel’s intensity in a gray scale. The 

different sample groups are numbers between 0 and 9, for a total of 10 

clusters (Figure 28). Since this is a very large dataset (70000 samples), 

three datasets were constructed from it. First, 300 samples were 

randomly selected for each digit, resulting in a sub-dataset with 3000 

samples. Secondly, the MNIST test side (10000 samples) from the 

Kaggle competition was used. Finally, the full MNIST data was also 

used for testing the performances of the clustering algorithms. 

Therefore, three MNIST data employed are composed of a total of 

3000, 10000 and 70000 samples, 784 features and 10 groups. 

 

 

Figure 28. Sample images from the MNIST dataset. By Josef Steppan - Own work, CC 

BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64810040. 
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Methods Best dist Factor Norm Acc ARI NMI Mean rank 

MC-MCL hdr spea LOG - 0.82 0.74 0.81 1.67 

MC-MCL dual euc - LOG 0.85 0.73 0.79 1.67 

isoMCL euc  LOG 0.85 0.73 0.78 2.00 

MC-MCL hbr corr LOG LOG 0.79 0.69 0.78 3.67 

MC-MCL euc - LOG 0.75 0.62 0.70 5.33 

MC-AP euc  LOG 0.75 0.58 0.68 6.00 

cciMST corr  LOG 0.69 0.57 0.72 6.33 

Kmeans corr  LOG 0.57 0.40 0.53 8.33 

AP corr  LOG 0.56 0.39 0.51 9.33 

MCL corr  LOG 0.48 0.25 0.55 9.33 

DPSP euc  - 0.27 0.08 0.31 11.33 

DBSCAN corr  LOG 0.26 0.00 0.43 11.67 

Single linkage euc  - 0.10 0.00 0.01 12.67 

Table 10. Clustering performance in MNIST 3000 data. Accuracy (Acc), Adjusted Rand 

Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the 
previously mentioned measures) are reported for each clustering method together with 

the best distance approach (Pearson correlation [corr], Spearman correlation [spea] or 

Euclidean [euc]), factor (for MC-MCL-variants) and normalization (Norm) applied. The 
methods are sorted by mean rank from the highest (top) to the lowest (bottom) 

performance. Methods in red are nonlinear MCL variants with one hyperparameter to 

optimize. Note that the parameter(s) to consider the number of clusters is/are not taken 
into account because it is an initialization parameter that all methods require. 

The evaluation on the first MNIST dataset with 3000 samples exhibits 

a great improvement of the MC-MCL and isoMCL compared to the 

original method, where the performances rose from 0.48, 0.25 and 0.55 

to values greater than 0.80, 0.70 and 0.75 in accuracy, ARI and NMI 

respectively. Interestingly, and leaving aside isoMCL, all MC variants 

(including the MC-AP) perform better than the non-MC. From the non-

MC-based algorithms, cciMST is the better performing, followed by 

Kmeans, AP and MCL. On the other hand, DPSP, DBSCAN and 

Single linkage proportioned lacklustre performances.   
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Methods Best dist Factor Norm Acc ARI NMI Mean rank 

isoMCL euc  LOG 0.91 0.82 0.84 1.67 

MC-MCL dual corr - - 0.86 0.81 0.86 2.00 

MC-MCL hbr corr LOG - 0.85 0.80 0.85 3.33 

MC-MCL hdr corr - - 0.85 0.79 0.84 4.00 

HOE-CNN cos  - 0.91 0.76 0.78 4.00 

MC-MCL euc - - 0.86 0.73 0.77 5.33 

cciMST corr  - 0.80 0.71 0.80 7.67 

HOT corr  - 0.82 0.65 0.69 8.33333 

HOMO euc  - 0.82 0.65 0.68 8.66667 

HOE cos  - 0.82 0.65 0.68 8.66667 

HIT cit  - 0.82 0.65 0.68 8.66667 

MC-AP corr  - 0.75 0.69 0.77 9.00 

Kmeans corr  LOG 0.57 0.42 0.55 13.33 

MCL euc  LOG 0.54 0.38 0.56 13.67 

AP corr  - 0.41 0.33 0.53 15.33 

DPSP spea  - 0.31 0.31 0.54 15.67 

DBSCAN euc  - 0.11 0.00 0.00 17.00 

Single linkage euc  - 0.11 0.00 0.00 17.00 

Table 11. Clustering performance in MNIST test data. Accuracy (Acc), Adjusted Rand 
Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the 

previously mentioned measures) are reported for each clustering method together with 

the best distance (Best dist) approach (Pearson correlation [corr], Spearman 
correlation [spea] or Euclidean [euc]; only in case of deep clustering algorithms: cosine 

distance [cos] and cityblock distance [cit]), factor (for MC-MCL-variants) and 

normalization (Norm) applied. The methods are sorted by mean rank from the highest 
(top) to the lowest (bottom) performance. Methods in red are algorithms with one 

hyperparameter to optimize. Note that the parameter(s) to consider the number of 

clusters is/are not taken into account because it is an initialization parameter that all 
methods require. 

From now on, starting from MNIST test and for the subsequent 

datasets to consider, deep clustering algorithms are included in the 

comparison tables as the state-of-the-art algorithms. The inclusion of 

these methods was not possible for smaller datasets due to the small 

size problem and complications concerning the code provided by the 

authors [34]. Deep networks, such as the deep autoencoder used in the 
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methods from Peng et al. [34], usually need thousands of samples to 

successfully being trained in nontrivial scenarios (the algorithm is not 

trying to separate simply black from white images). Workarounds can 

be applied in a small-size data scenario, i.e. data augmentation8. 

However, for the sake of clustering methods comparison under ‘real’ 

circumstances, the deep clustering algorithms are applied starting from 

this point. 

Results for MNIST test in Table 11 demonstrated that the new 

nonlinear MCL variants could outperform even ‘complex’ state-of-art 

deep-clustering algorithms. Taking a step back, in the study of Peng 

and colleagues, a deep clustering algorithm based on autoencoder and 

invariances sample assignments was presented (refer to chapter 1.2.5. 

‘Deep-based methods’ for more details). The authors mentioned that 

their baseline algorithms (HOMO, HIT, HOT and HOE) could be 

further improved by changing the deep autoencoder architecture with 

other types of layers, i.e. by using convolutional (CNN) layers instead 

of fully connected ones; and further demonstrated the improvement in 

performance for the MNIST data (HOE-CNN). CNN layers are 

designed to follow vision processing from the visual cortex of living 

organisms, thus being aid for its application on image analysis [81]. 

Therefore, its use in the autoencoder and posterior performance 

improvement made sense for the study of Peng et al. On account of it, 

the outperforming values of the nonlinear MCL variants over the CNN 

deep clustering algorithm variant, aid for image datasets, is a nontrivial 

achievement accomplished purely by network geometry and 

navigability theory. The improvement of MC-MCL and isoMCL over 

the deep-clustering methods is completely conferred to network theory, 

considering that original MCL achieves low performances, with 

                                                           
8 Data augmentation refers to the generation of new data samples, referred as to latent 

data, from known samples [97].  
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accuracy (0.54), ARI (0.38) and NMI (0.56) even under Kmeans values 

(0.57, 0.42 and 0.55 in accuracy, ARI and NMI respectively). 

isoMCL and MC-MCL dual are the best performing methods (Table 

11) followed by MC-MCL hbr, MC-MCL hdr, HOE-CNN and MC-

MCL. Interestingly, cciMST achieves a better mean ranking than the 

deep-clustering methods with fully connected layers. On the other 

hand, MC-AP improves in performance compared to its linear version 

by an important extent. Finally, DPSP, DBSCAN and single linkage 

are the worst-performing methods.   

The parameter search simulation for the MNIST test dataset can be 

found in Figure 29 without normalization application (The rest of the 

parameter search plots for MNIST datasets can be found in the 

Appendix section Figure A. 11-Figure A. 13, including the figure where 

isoMCL achieves its maximum values from Table 11). As appreciated, 

Figure 29. Parameter search for MC-MCL and isoMCL variants in MNIST test dataset 

without normalization.  Accuracy, ARI and NMI performances. The x axis (from 1 to 50) 

represents different units depending on the MCL variant: for MC-MCL hbr (blue) and hdr 

(green), is the percentile of high betweenness centrality/degree nodes to be removed for 
the computation of the second MST. For MC-MCL dual (orange) it corresponds to the 

number of dual MSTs to construct and ensemble with the original MST. For isoMCL 

(purple) it consists in the k value to create the proximity graph.    



84 

 

the maximum possible values of the different variances are close to 

each other. MC-MCL dual is the method with less performance 

fluctuation achieving less than 0.1 units of difference between the 

lowest and highest performances for the three measures, demonstrating 

to be a stabile algorithm. All other methods fluctuate more in 

performance, but generally with strong outcomes (values above 0.7 in 

most of the cases).  

Methods Best dist Factor Norm Acc ARI NMI Mean rank 

MC-MCL dual corr - - 0.91 0.89 0.90 2.00 

MC-MCL hbr corr LOG - 0.92 0.89 0.89 2.00 

isoMCL euc  LOG 0.94 0.88 0.88 2.67 

MC-MCL hdr corr - - 0.90 0.87 0.89 3.67 

HOE-CNN cos  - 0.93 0.82 0.86 4.00 

HOE cos  - 0.87 0.74 0.76 6.67 

cciMST corr  - 0.81 0.78 0.83 7.33 

HOMO euc  - 0.86 0.72 0.74 7.67 

HOT corr  - 0.86 0.72 0.74 7.67 

HIT cit  - 0.86 0.72 0.74 7.67 

MC-MCL euc - - 0.60 0.58 0.74 10.33 

MCL euc  LOG 0.66 0.51 0.67 11.67 

Kmeans corr  LOG 0.56 0.40 0.53 13.00 

DBSCAN euc  - 0.11 0.00 0.00 14.00 

Single linkage euc  - 0.11 0.00 0.00 14.00 

Table 12. Clustering performance in MNIST full data. Accuracy (Acc), Adjusted Rand 

Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the 

previously mentioned measures) are reported for each clustering method together with 
the best distance approach (Pearson correlation [corr], Spearman correlation [spea] or 

Euclidean [euc]; only in case of deep clustering algorithms: cosine distance [cos] and 

cityblock distance [cit]), factor (for MC-MCL-variants) and normalization (Norm) 
applied. The methods are sorted by mean rank from the highest (top) to the lowest 

(bottom) performance. Methods in red are algorithms with one hyperparameter to 

optimize. Note that the parameter(s) to consider the number of clusters is/are not taken 
into account because it is an initialization parameter that all methods require. 

In the case of the full MNIST dataset (Table 12), most of the 

algorithm’s performances are improved, with the exception of 
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DBSCAN and Single linkage, which are not able to figure out the 

patterns inside it. Note that the algorithms AP, MCAP and DPSP do 

not appear here due to errors thrown by their respective codes (issues 

with the code’s implementation). Once again, almost all nonlinear 

MCL variants outperform in a great fashion their linear counterpart 

MCL, and even the CNN-based deep clustering HOE-CNN, where 

accuracies are close to one another but the ARI and NMI performances 

are much stronger within the here presented algorithms. The exception 

comes with MC-MCL with the original kernel that slightly increased 

the performance of MCL and even decreased a bit in accuracy. 

Curiously the cciMST algorithm achieves as well a noticeable 

performance, and although it does not outperform HOE-CNN, it does 

compared to the deep-clusterings based on fully connected layers 

HOMO, HOT and HIT in the mean rank. 

Due to the size of this dataset, and time constraints, there was no 

evaluation on parameter search for the MC-MCL multi-MST variants 

and isoMCL. The parameters selected for them were the same as for 

the best parameters found in the MNIST test dataset. Therefore, take 

into considerations that the performances of Table 12 might not be the 

final and even better performances can be obtained.  

CIFAR 

CIFAR [82], alike MNIST, is a widely employed dataset for artificial 

intelligence benchmarks composed of ‘tiny’ colour images of 32x32 

pixels. They are a labelled subset of the ’80 million tiny images’ dataset 

collected by Krizhevsky, Nair and Hinton (and pulled offline during 

2020 for ‘teaching AI systems to use racist, misogynistic slurs’).  From 

these 80 million tiny images, two datasets, namely CIFAR10 and 

CIFAR100 were extracted.  

The CIFAR10 dataset consists of 60000 images and 10 classes with 

6000 images each class. The classes encapsulate images of: airplanes, 

automobiles, birds, cats, deers, dogs, frogs, horses, ships and trucks 
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(Figure 30). Regularly, in AI benchmarks, this dataset is divided into a 

training set (50000 images) and a test set (10000 images). Here, the 

test batch was used for clustering analysis, which contains 1000 images 

for each of the ten classes. Note that the CIFAR10 images are here in 

grey scale.  

On the other hand, CIFAR100 is a dataset that contains 100 classes, 

with 600 images each class, which can be categorized into 20 ‘super 

classes’. Here, just one superclass is utilized termed ‘aquatic 

mammals’, which naturally consists of aquatic mammals images from 

5 different classes: beaver, dolphin, otter, seal and whale. As such, this 

dataset comprises a total of 3000 colour images, 600 for each of the 

five classes. 

Both datasets are challenging for cluster algorithms, demonstrated by 

the low performances that the clustering methods achieve. In the case 

Figure 30. Subset of the CIFAR10 image dataset. Image extracted from Krizhevsky 
webpage: https://www.cs.toronto.edu/~kriz/cifar.html 
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of CIFAR100 (Table 13), the best performing methods are the deep 

clustering. Particularly, HOE obtains the highest values with 0.36, 

0.12, and 0.14 in accuracy, ARI and NMI respectively. Despite the 

difficulty of this dataset, MC and isoMCL variants still improve their 

performance in comparison with MCL. Remarkably, AP obtains better 

performance than its nonlinear counterpart MC-AP, and together with 

Kmeans get the 6th and 7th position respectively out of 17 methods. 

From the MC-MCL variants, the hdr version is the closest to state-of-

art performance. Oppositely, DBSCAN, MCL, DPSP, and Single 

linkage are the methods that present more troubles in assigning class 

memberships to samples, and achieve ARI values of 0 and NMI values 

close to 0. 

Methods Best dist Factor Norm Acc ARI NMI Mean rank 

HOE cos  - 0.36 0.12 0.14 1.666667 

HOT corr  - 0.36 0.11 0.14 2.333333 

HOMO euc  - 0.35 0.11 0.14 3.333333 

HIT cit  - 0.35 0.11 0.14 3.333333 

MC-MCL hdr corr - LOG 0.36 0.11 0.13 3.67 

AP spea  - 0.34 0.13 0.15 3.67 

Kmeans corr  - 0.35 0.12 0.13 4.00 

MC-MCL hbr corr - LOG 0.35 0.10 0.11 6.67 

MC-MCL corr SQRT LOG 0.35 0.08 0.10 8.00 

MC-AP spea  - 0.34 0.09 0.10 9.00 

MC-MCL dual euc LOG LOG 0.33 0.09 0.10 9.67 

isoMCL corr  - 0.30 0.06 0.07 12.00 

cciMST corr  - 0.22 0.00 0.02 13.00 

DBSCAN corr  LOG 0.20 0.00 0.02 13.67 

MCL euc  LOG 0.21 0.00 0.01 14.00 

DPSP euc  - 0.20 0.00 0.01 14.33 

Single linkage euc  - 0.20 0.00 0.00 15.00 

Table 13. Clustering performance in CIFAR100 data. Accuracy (Acc), Adjusted Rand 

Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the 
previously mentioned measures) are reported for each clustering method together with 
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the best distance approach (Pearson correlation [corr], Spearman correlation [spea] or 

Euclidean [euc]; only in case of deep clustering algorithms: cosine distance [cos] and 
cityblock distance [cit]), factor (for MC-MCL-variants) and normalization (Norm) 

applied. The methods are sorted by mean rank from the highest (top) to the lowest 

(bottom) performance. Methods in red are algorithms with one hyperparameter to 
optimize. Note that the parameter(s) to consider the number of clusters is/are not taken 

into account because it is an initialization parameter that all methods require. 

It seems that CIFAR10 is even more challenging than CIFAR100 by 

the general poor performances from all clustering algorithm. The main 

reason might be the increase in the number of samples to assign, from 

5 in CIFAR100 to 10 in CIFAR10. As in CIFAR100, the top-

performing methods are the deep clustering algorithms achieving a 

mean rank of 1 for the four of them, meaning equal performance across 

deep-clustering method independently from the distance used in the 

model (Table 14). 

Methods Best dist Factor Norm Acc ARI NMI Mean rank 

HOE cos  - 0.22 0.04 0.07 1.00 

HOT corr  - 0.22 0.04 0.07 1.00 

HOMO euc  - 0.22 0.04 0.07 1.00 

HIT cit  - 0.22 0.04 0.07 1.00 

isoMCL corr  LOG 0.18 0.04 0.07 4.33 

Kmeans euc  - 0.20 0.03 0.07 4.67 

MC-MCL dual euc LOG - 0.18 0.04 0.06 6.33 

AP euc  - 0.20 0.03 0.06 6.67 

MCL corr  LOG 0.17 0.04 0.06 7.00 

MC-MCL hdr euc LOG - 0.19 0.03 0.05 8.67 

MC-MCL hbr euc LOG - 0.19 0.03 0.05 8.67 

MC-MCL euc LOG - 0.19 0.03 0.05 8.67 

MC-AP euc  LOG 0.19 0.03 0.05 8.67 

cciMST corr  - 0.14 0.02 0.03 14.00 

DBSCAN euc  - 0.10 0.00 0.00 15.00 

DPSP euc  - 0.10 0.00 0.00 15.00 

Single linkage euc  - 0.10 0.00 0.00 15.00 
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Table 14. Clustering performance in CIFAR10 data. Accuracy (Acc), Adjusted Rand 

Index (ARI), Normalized Mutual Information (NMI), and mean rank (according to the 
previous mentioned measures) are reported for each clustering method together with the 

best distance approach (Pearson correlation [corr], Spearman correlation [spea] or 

Euclidean [euc]; only in case of deep clustering algorithms: cosine distance [cos] and 
cityblock distance [cit]), factor (for MC-MCL-variants) and normalization (Norm) 

applied. The methods are sorted by mean rank from the highest (top) to the lowest 

(bottom) performance. Methods in red are algorithms with one hyperparameter to 
optimize. Note that the parameter(s) to consider the number of clusters is/are not taken 

into account because is an initialization parameter that all methods require. 

Curiously, MCL achieves better ranking performance than its 

nonlinear variants except for MC-MCL dual and isoMCL. AP shows 

once again to perform better than its MC-AP in mean rank (Table 14). 

Kmeans performs competitively as well in this dataset achieving a 6th 

position, and DBSCAN, DPSP and single linkage have troubles trying 

to assign class memberships by interpreting the CIFAR10 dataset as 

one unique cluster, explaining the 0 values in ARI and NMI.  

Leaving aside the values of mean ranking, the majority of algorithms 

perform really close to each other and with low performances, making 

this dataset the most difficult to cluster from all data up to this point. 

As MNIST, CIFAR consists of tiny images, although the patterns 

inside both data seem to differ greatly in simplicity. Black and white 

numbers may offer clearer patterns to be analyzed than objects/animal 

images. Moreover, while MNIST backgrounds are black, different 

colours (for CIFAR100) and shapes can be found in CIFAR 

backgrounds.  
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The parameter search simulation for the CIFAR10 test dataset can be 

found in Figure 31 without normalization application (The rest of the 

parameter search plots for CIFAR datasets can be found in the 

Appendix section Figure A. 14-Figure A. 16, including the plot where 

isoMCL achieves its maximum values from Table 14). A curiously 

different trend is observed in the CIFAR10 line plot (Figure 31), where 

all nonlinear MCL variants start improving their performances with 

higher parameter values (previously, there was a diverse performance 

line trend depending on the clustering variant and the dataset 

analyzed). Nevertheless, the performance values are maintained at a 

low level for all algorithm variants, and the threshold of 0.20, 0.05 and 

0.10 is never reached for accuracy, ARI and NMI, respectively.  

Figure 31. Parameter search for MC-MCL and isoMCL variants in CIFAR10 dataset 

without normalization.  Accuracy, ARI and NMI performances. The x axis (from 1 to 50) 

represents different units depending on the MCL variant: for MC-MCL hbr (blue) and 
hdr (green), is the percentile of high betweenness centrality/degree nodes to be removed 

for the computation of the second MST. For MC-MCL dual (orange) it corresponds to 

the number of dual MSTs to construct and ensemble with the original MST. For isoMCL 
(purple) it consists in the k value to create the proximity graph.    
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10.2. General clustering performance – an 

overview  

This section provides the performance overview for all clustering 

algorithm across all datasets by a summary table of the NMI measure 

(Table 15), accuracy and ARI summary tables can be found in the 

appendix section (Table A. 1 & Table A. 2).    

It is clearly appreciated that in general, the nonlinear MCL versions 

(red), namely MC-MCL (M2-M5) and isoMCL (M1), improve the 

performance of classical MCL (green)(M6) in all datasets and turns 

MCL into one of the best clustering methods for nonlinear data among 

the compared algorithms. In general, all nonlinear MCL variants 

perform similarly. However, MC-MCL with original MC kernel (M5) 

tends to perform lower, as exhibited in the Radar dataset with two 

clusters (D2), and MNIST datasets (D5, D8 and D9), this trend presents 

an exception on the Radar with three clusters (D3), where MC-MCL 

(M5) outperforms all the rest of the methods with an NMI value of 

0.38. The use of the MC- or iso- kernel improve to a great degree the 

MCL performance outperforming even ‘complicated’ algorithms such 

as the deep clustering methods (M14 – M18) in the MNIST datasets 

(D8, D9), with one particular deep-clustering variant tailored for the 

analysis of MNIST data given by its autoencoder architecture (M18).  

NMI D1 D2 D3 D4 D5 D6 D7 D8 D9 

M1 0.31 0.28 0.28 1.00 0.78 0.07 0.07 0.84 0.88 

M2 0.31 0.32 0.30 1.00 0.79 0.10 0.06 0.86 0.90 

M3 0.31 0.25 0.32 1.00 0.78 0.11 0.05 0.85 0.89 

M4 0.37 0.28 0.32 1.00 0.81 0.13 0.05 0.84 0.89 

M5 0.31 0.12 0.38 1.00 0.70 0.10 0.05 0.77 0.74 

M6 0.21 0.06 0.05 1.00 0.55 0.01 0.06 0.56 0.67 

M7 0.26 0.01 0.14 1.00 0.72 0.02 0.03 0.80 0.83 

M8 0.24 0.09 0.22 0.58 0.68 0.10 0.05 0.77 - 

M9 0.24 0.13 0.25 0.19 0.51 0.15 0.06 0.53 - 
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M10 0.21 0.03 0.03 0.82 0.31 0.01 0.00 0.54 - 

M11 0.38 0.14 0.02 1.00 0.43 0.02 0.00 0.00 0.00 

M12 0.26 0.13 0.15 0.20 0.53 0.13 0.07 0.55 0.53 

M13 0.01 0.01 0.02 1.00 0.01 0.00 0.00 0.00 0.00 

M14 - - - - - 0.14 0.07 0.69 0.74 

M15 - - - - - 0.14 0.07 0.68 0.74 

M16 - - - - - 0.14 0.07 0.68 0.76 

M17 - - - - - 0.14 0.07 0.68 0.74 

M18 - - - - - - - 0.78 0.86 

Table 15. NMI performance summary of all clustering methods M across all datasets 

D. Methods list: M1: isoMCL; M2:MC-MCL dual; M3: MC-MCL hbr; M4: MC-MCL 

hdr; M5: MC-MCL; M6: MCL; M7: cciMST; M8: MC-AP; M9: AP; M10: DPSP; M11: 

DBSCAN; M12: Kmeans; M13: Single linkage; M14: HOT; M15: HOMO; M16: HOE; 
M17: HIT; M18: HOE-CNN. Data list: D1: Gastric mucosa; D2: Radar 2C; D3: Radar 

3C; D4: Tripartite-Swiss-Roll; D5 MNIST3000; D6: CIFAR100; D7: CIFAR10; D8: 

MNIST test; D9: MNIST full. Nonlinear MCL variants are marked with red, whereas the 
original MCL algorithm is marked in green. 

The algorithm cciMST (M7), based in the MST network as the MC-

MCL variants, perform relatively good in several datasets with mean 

ranking usually after the here proposed nonlinear MCL methods, it 

even outperformed the deep-clustering methods (M14-M18) on the 

MNIST data (D8 and D9) (Table 15). However, this method evidenced 

some troubles for the Radar 2 clusters (D2) and CIFAR (D6, D7) data. 

Furthermore, considering if MC can as well improve the performance 

of other clustering algorithms, such as AP (M9), with MC-AP (M8), 

the results do not display a clear improvement with the use of the MC 

kernel with the exception of the particular cases of the Tripartite-

Swiss-Roll (D4) and the MNIST datasets (D5 and D8). Although, in 

the Tripartite-Swiss-Roll dataset, MC-AP was not able to find perfectly 

the three clusters (only 4 methods from 13 failed to do so). Notice that 

both AP and MC-AP also had troubles in computing clustering for the 

MNIST full data, this time regarding their code implementation; an 

issue that persisted with the method DPSP (M10).    
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In the case of the density-based clustering, DPSP (M10) and DBSCAN 

(M11) did not show outstanding performances, with the exception of 

DBSCAN in the gastric mucosa dataset (D1), where it achieves the 

highest NMI. Curiously, DBSCAN reduced its performances 

significantly in the MNIST datasets from the tiniest MNIST3000 (D5), 

to the biggest ones (D8 and D9), triggered by the nontrivial task of its 

two-parameter search under fuzzy clusters. A method that proved to be 

ineffective in its generic form is the recent proposed DPSP (M10), with 

low performances across all datasets. As aforementioned, it had 

troubles with the MNIST full (D9) cluster membership computation, 

and it was not able to retrieve the three clusters from the Tripartite-

Swiss-Roll dataset (D4). This unsuccessful pattern under the analyzed 

datasets could be related to the fact that the density peaks were 

automatically selected by the algorithm, but with manually selected 

density peaks, the algorithm might perform better in the clustering task.  

Kmeans (M12), on the other side, as theoretically expected, perform 

low in these nonlinear datasets. Nonetheless, it presents comparable 

NMI values to the best-performing methods for both CIFAR data (D6 

and D7). These results, far from impressive, highlight the onerous 

patterns from the CIFAR datasets, where a possible explanation to the 

poor clustering performances - and different from MNIST - are the 

complex shapes of objects looked from different perspectives and 

distances, added to the different shapes and colour tones from the 

backgrounds. One class image, i.e. dogs, can vary tremendously noise-

wise in its background, if the image was taken on a beach, mountains 

or at home; patterns very different from each other and difficult to 

discern with unsupervised tasks.   

For the hierarchical clustering method, Single linkage (M13), all NMI 

performances were close to 0, proving the inability of this algorithm 

for these dataset types, with the exception of the Tripartite-Swiss-Roll 

(D4), where it was able to perfectly assign all class memberships, 

achieving a 1 in NMI performance.   
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Regarding the last type of algorithms, the state-of-art methods using 

deep-clustering (M14-M17) evidenced strong performances in CIFAR 

(D6 and D7), having the highest performances (Table 15), yet 

achieving this podium with low values. With respect to MNIST (D8 

and D9), the same methods presented strong performances, 

outperformed by its deep-clustering cousin with the convolutional 

variant (M18). However, these techniques performed lower than the 

nonlinear MCL methods.    

Lastly, addressing the time complexity of each MC-MCL variant, most 

of them are similar and need the generation of one or two networks 

(MST or proximity-based) that later are unified for the kernel 

construction. An exception is MC-MCL dual, which could unify many 

dual MSTs, depending on the input parameter value (number of dual 

MSTs to construct). In this work, 50 was the maximum value tried, and 

by analyzing the results on different datasets, a general trend was 

observed. Usually, rather a low input value was needed to obtain 

already high performances, as displayed in Figure 32 (All other dataset 

plots can be found in the appendix Figure A. 17-Figure A. 28). Meaning 

Figure 32. Illustration of the peak performance zone on MNIST3000. Accuracy, ARI 
and NMI performances from different input parameter values for the method MC-MCL 

dual (right). Distribution plot from the different performances achieved through the 
different evaluation measures (left). The magenta line represents the 95 highest 

performance percentile and is marked both in the distribution and performance plots.  
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that it is regularly enough to use a few dual MSTs for the kernel 

computation, which already obtain high significant performances when 

comparing with a more (computationally) expensive kernel. A 

summary of parameter analysis, including all nonlinear MCL variants, 

can be found in Figure A. 29.    

10.3. Advantages and limitations of MC-MCL 

and isoMCL 

The nine considered datasets represent a benchmark with ground-truth 

annotation, including generally adopted data (CIFAR and MNIST) to 

test algorithms for clustering tasks. These are considered to be enough 

complete and diverse to adequately investigate the performance in 

nonlinear problems of each method suggested. In fact, nonlinear MCL 

should offer better results than pure MCL, because the similarity kernel 

is derived from dissimilarity distances that approximate a network 

geometry, either by use of the MST, or the proximity graph (refer to 

chapters 7.3. ‘Minimum curvilinear Markov clustering multi-MST 

variants’ and 7.4. ‘Isomap-inspired Markov clustering’ for more 

information). This theoretical expectation is confirmed on all datasets, 

where the five nonlinear MCL variants achieve a greater mean rank 

than the kernel-less MCL, corroborating the rationale on how to design 

similarity kernels that favour the stochastic simulation procedure of 

MCL. 

MC-MCL and isoMCL demonstrated clear superior performance not 

only over MCL, but overall the here presented clustering algorithms, 

achieving always leading mean rank positions in these complex 

nonlinear scenarios.   

Notwithstanding the big improvements reached by these MCL 

variants, reduced performances could be appreciated in the CIFAR 

datasets. Despite close to the state-of-art performance, the engineering 

network geometry and navigability improvement for the MCL random 
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walk was not enough to catch the complex patterns behind the CIFAR 

datasets. As above-mentioned in chapter 10.2. ‘General clustering 

performance – an overview’, CIFARs objects plains, and different 

backgrounds (acting like noise) make it difficult for MCL to catch 

certain patterns from the object to be clustered, and such patterns do 

not simply emerge through the kernels here constructed (by means of 

MSTs or proximity networks). Although this seems to be a limitation 

tangent to all clustering methods, the issue does not persist in the 

supervised scenario, where several algorithms achieve close to perfect 

classification in CIFAR10 and CIFAR100 [83]–[89]. Therefore, more 

strategies regarding these limitations could pinpoint to a general 

improvement in clustering performance not only in CIFAR, but also in 

many real datasets.  
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Part IV. CONCLUSION 

In conclusion, this dissertation introduces a rationale on how to design 

similarity measures for MCL, which try to approximate the hidden 

geometry of the manifold that generates the data network topology, 

either in the framework of community detection or clustering tasks. For 

the community detection scenario, since the hidden geometry of many 

real complex networks is hyperbolic and tree-like [90], [91], its 

congruous approximation can favour the stochastic simulation 

procedure of MCL. The empirical and numerical results provided in 

this work support the rationale, and the derived similarity measures 

EBC, RA, and ER seem to boost MCL both in real and synthetic 

networks.  

On the other hand, following the idea that many real complex data 

follow a tree-like structure, its approximation, inspired by network 

geometry and navigability, and derived from multidimensional 

datasets through the MC and Isomap inspired network-based similarity 

kernels, is supported by the important boost given to MCL in many 

nonlinear and real multidimensional data scenarios. Such 

improvements could outperform, by an important gap, even 

‘complicated’ deep-clustering-based algorithms in AI benchmark 

datasets like MNIST, where the architecture of the deep algorithm 

(autoencoder) is tailored exclusively for that type of data. On the 

contrary, the here proposed nonlinear kernels can work in a 

comprehensive list of datatypes, and no need for changes is required to 

be directly applied in different datasets.  

In the case of CIFAR, the proposed methods could perform close to 

state-of-art methods, although a collective clustering-wise issue is 

appreciated, where all performance values, through all evaluation 
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measurements, are rather small. A possible solution to this, inspired by 

the deep-clustering methods, could be to embed the data through a 

certain technique, prior to clustering membership assignments (like an 

autoencoder or a dimensionality reduction algorithm). The new data 

coordinates could hypothetically lead to prior segregation between 

classes, that clustering algorithms could easily catch, as already 

demonstrated in the study of Peng et al. [34]. Under this circumstance, 

a deep learning approach could enhance greatly the performances of 

the here proposed methods, with the drawback of designing different 

deep architectures depending on the dataset to be analyzed, adding the 

additional ‘stress’ of data augmentation in the case of small-size 

datasets, if necessary.  

Regarding the nonlinear MCL variants for the multidimensional 

datasets, remarkably, the methods that better perform were the MC-

multi-MSTs and Isomap-inspired kernels. This improvement over the 

original MC kernel could be explained by the increase in the local 

connectivity of the MST to a point where it can alleviate paths with 

high traffic (central nodes connecting the network), but avoiding 

‘multiple possible paths’ from one point to another (many edges). 

Indeed, the parameter values that obtain the highest performances in 

the case of the MC-MCL dual and isoMCL variants are, in general, 

rather low.  

To summarize, network geometry was already shown to facilitate 

greedy routing [61], [92], and affinity propagation [61], and to the best 

of the collected knowledge in this dissertation, this is the first time that 

the strategy is applied to better guide random-walk (stochastic flow) 

based simulations. Therefore, the results displayed in this dissertation 

provide further confirmation that network geometry can be adopted to 

make information flow processes more efficient and therefore pave the 

way for the generalized understanding of the impact of network 

geometry on algorithms based on network navigability. 
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APPENDIX 

 

Figure A. 1. Community detection on nPSO networks: N = 100 and γ = 2. Synthetic 

networks have been generated using the nPSO model with parameters N = 100 (network 

size) γ = 2 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] 

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the 

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 
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(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 

 

 

Figure A. 2. Community detection on nPSO networks: N = 100 and γ = 2.5. Synthetic 

networks have been generated using the nPSO model with parameters N = 100 (network 

size) γ = 2.5 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] 

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the 

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 
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Figure A. 3. Community detection on nPSO networks: N = 100 and γ = 3. Synthetic 

networks have been generated using the nPSO model with parameters N = 100 (network 

size) γ = 3 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] 

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the 

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 
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Figure A. 4. Community detection on nPSO networks: N = 500 and γ = 2. Synthetic 

networks have been generated using the nPSO model with parameters N = 500 (network 

size) γ = 2 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] 

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the 

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 
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Figure A. 5. Community detection on nPSO networks: N = 500 and γ = 2.5. Synthetic 

networks have been generated using the nPSO model with parameters N = 500 (network 

size) γ = 2.5 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] 

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the 

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 
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Figure A. 6. Community detection on nPSO networks: N = 500 and γ = 3. Synthetic 

networks have been generated using the nPSO model with parameters N = 500 (network 

size) γ = 3 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] 

(half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the 

clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 

 

  



105 

 

 

Figure A. 7. Community detection on nPSO networks: N = 1000 and γ = 2. Synthetic 

networks have been generated using the nPSO model with parameters N = 1000 

(network size) γ = 2 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 

14, 16] (half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related 

to the clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 
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Figure A. 8. Community detection on nPSO networks: N = 1000 and γ = 2.5. Synthetic 

networks have been generated using the nPSO model with parameters N = 1000 

(network size) γ = 2.5 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 

14, 16] (half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related 

to the clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 
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Figure A. 9. Community detection on nPSO networks: N = 1000 and γ = 3. Synthetic 

networks have been generated using the nPSO model with parameters N = 1000 

(network size) γ = 3 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 

14, 16] (half of average degree), T = [0.1, 0.3, 0.5, 0.7] (temperature, inversely related 

to the clustering coefficient) and C = [3, 6, 9, 12] (number of communities). For each 

combination of parameters, 10 networks have been generated. For each network the 

community detection methods have been executed and the communities detected have 

been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard 

error over the random repetitions. 
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Figure A. 10. Parameter search for MC-MCL and isoMCL variants in gastric mucosa 

dataset without normalization.  Accuracy, ARI and NMI performances. The x axis (from 
1 to 50) represents different units depending on the MCL variant: for MC-MCL hbr 

(blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes to 

be removed for the computation of the second MST. For MC-MCL dual (orange) it 
corresponds to the number of dual MSTs to construct and ensemble with the original 

MST. For isoMCL (purple) it consists in the k value to create the proximity graph.  
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Figure A. 11. Parameter search for MC-MCL and isoMCL variants in MNIST 3000 

dataset without normalization.  Accuracy, ARI and NMI performances. The x axis (from 
1 to 50) represents different units depending on the MCL variant: for MC-MCL hbr 

(blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes to 

be removed for the computation of the second MST. For MC-MCL dual (orange) it 
corresponds to the number of dual MSTs to construct and ensemble with the original 

MST. For isoMCL (purple) it consists in the k value to create the proximity graph.  
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Figure A. 12. Parameter search for MC-MCL and isoMCL variants in MNIST 3000 

dataset with LOG normalization.  Accuracy, ARI and NMI performances. The x axis 

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL 
hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes 

to be removed for the computation of the second MST. For MC-MCL dual (orange) it 

corresponds to the number of dual MSTs to construct and ensemble with the original 
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.   
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Figure A. 13. Parameter search for MC-MCL and isoMCL variants in MNIST test 

dataset with LOG normalization.  Accuracy, ARI and NMI performances. The x axis 

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL 

hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes 
to be removed for the computation of the second MST. For MC-MCL dual (orange) it 

corresponds to the number of dual MSTs to construct and ensemble with the original 

MST. For isoMCL (purple) it consists in the k value to create the proximity graph.   
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Figure A. 14. Parameter search for MC-MCL and isoMCL variants in CIFAR100 

dataset without normalization.  Accuracy, ARI and NMI performances. The x axis (from 

1 to 50) represents different units depending on the MCL variant: for MC-MCL hbr 
(blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes to 

be removed for the computation of the second MST. For MC-MCL dual (orange) it 

corresponds to the number of dual MSTs to construct and ensemble with the original 
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.   
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Figure A. 15. Parameter search for MC-MCL and isoMCL variants in CIFAR100 

dataset with LOG normalization.  Accuracy, ARI and NMI performances. The x axis 

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL 
hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes 

to be removed for the computation of the second MST. For MC-MCL dual (orange) it 

corresponds to the number of dual MSTs to construct and ensemble with the original 
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.   
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Figure A. 16. Parameter search for MC-MCL and isoMCL variants in CIFAR10 

dataset with LOG normalization.  Accuracy, ARI and NMI performances. The x axis 

(from 1 to 50) represents different units depending on the MCL variant: for MC-MCL 
hbr (blue) and hdr (green), is the percentile of high betweenness centrality/degree nodes 

to be removed for the computation of the second MST. For MC-MCL dual (orange) it 

corresponds to the number of dual MSTs to construct and ensemble with the original 
MST. For isoMCL (purple) it consists in the k value to create the proximity graph.   
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Figure A. 17. Illustration of the peak performance zone on gastric mucosa dataset 

without normalization. Accuracy, ARI and NMI performances from different input 

parameter values for the method MC-MCL dual (right). Distribution plot from the 
different performances achieved through the different evaluation measures (left). The 

magenta line represents the 95 highest performance percentile and is marked both in the 

distribution and performance plots. 

 

Figure A. 18. Illustration of the peak performance zone on gastric mucosa dataset with 

LOG normalization. Accuracy, ARI and NMI performances from different input 

parameter values for the method MC-MCL dual (right). Distribution plot from the 

different performances achieved through the different evaluation measures (left). The 

magenta line represents the 95 highest performance percentile and is marked both in the 
distribution and performance plots. 
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Figure A. 19. Illustration of the peak performance zone on radar (two clusters) dataset 

without normalization. Accuracy, ARI and NMI performances from different input 

parameter values for the method MC-MCL dual (right). Distribution plot from the 
different performances achieved through the different evaluation measures (left). The 

magenta line represents the 95 highest performance percentile and is marked both in the 

distribution and performance plots. 

 

Figure A. 20. Illustration of the peak performance zone on radar (three clusters) 

dataset without normalization. Accuracy, ARI and NMI performances from different 

input parameter values for the method MC-MCL dual (right). Distribution plot from the 

different performances achieved through the different evaluation measures (left). The 

magenta line represents the 95 highest performance percentile and is marked both in the 
distribution and performance plots. 
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Figure A. 21. Illustration of the peak performance zone on tripartite-swiss-roll dataset 

without normalization. Accuracy, ARI and NMI performances from different input 

parameter values for the method MC-MCL dual (right). Distribution plot from the 
different performances achieved through the different evaluation measures (left). The 

magenta line represents the 95 highest performance percentile and is marked both in the 

distribution and performance plots. 

 

Figure A. 22. Illustration of the peak performance zone on MNIST 3000 dataset with 

LOG normalization. Accuracy, ARI and NMI performances from different input 

parameter values for the method MC-MCL dual (right). Distribution plot from the 

different performances achieved through the different evaluation measures (left). The 

magenta line represents the 95 highest performance percentile and is marked both in the 
distribution and performance plots. 
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Figure A. 23. Illustration of the peak performance zone on MNIST test dataset without 

normalization. Accuracy, ARI and NMI performances from different input parameter 

values for the method MC-MCL dual (right). Distribution plot from the different 
performances achieved through the different evaluation measures (left). The magenta 

line represents the 95 highest performance percentile and is marked both in the 

distribution and performance plots. 

 

Figure A. 24. Illustration of the peak performance zone on MNIST test dataset with 

LOG normalization. Accuracy, ARI and NMI performances from different input 

parameter values for the method MC-MCL dual (right). Distribution plot from the 

different performances achieved through the different evaluation measures (left). The 

magenta line represents the 95 highest performance percentile and is marked both in the 
distribution and performance plots. 
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Figure A. 25. Illustration of the peak performance zone on CIFAR100 dataset without 

normalization. Accuracy, ARI and NMI performances from different input parameter 

values for the method MC-MCL dual (right). Distribution plot from the different 
performances achieved through the different evaluation measures (left). The magenta 

line represents the 95 highest performance percentile and is marked both in the 

distribution and performance plots. 

 

Figure A. 26. Illustration of the peak performance zone on CIFAR100 dataset with 

LOG normalization. Accuracy, ARI and NMI performances from different input 

parameter values for the method MC-MCL dual (right). Distribution plot from the 

different performances achieved through the different evaluation measures (left). The 

magenta line represents the 95 highest performance percentile and is marked both in the 
distribution and performance plots. 
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Figure A. 27. Illustration of the peak performance zone on CIFAR10 dataset without 

normalization. Accuracy, ARI and NMI performances from different input parameter 

values for the method MC-MCL dual (right). Distribution plot from the different 
performances achieved through the different evaluation measures (left). The magenta 

line represents the 95 highest performance percentile and is marked both in the 

distribution and performance plots. 

 

Figure A. 28. Illustration of the peak performance zone on CIFAR10 dataset with LOG 

normalization. Accuracy, ARI and NMI performances from different input parameter 

values for the method MC-MCL dual (right). Distribution plot from the different 

performances achieved through the different evaluation measures (left). The magenta 

line represents the 95 highest performance percentile and is marked both in the 
distribution and performance plots. 
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Figure A. 29. Peak performance zone hit ratio for each parameter value for MC-MCL 

and isoMCL variants across all datasets. For each measure, Accuracy (Acc), ARI and 

NMI, the bars display the hit ratio of each parameter value in which its performance 
across the different data was on the so-called peak performance zone (highest 

performances according to a 95 percentile). The first subplot columns shows the hit 

frequence for the MC-MCL-hbr variant, the second of MC-MCL dual variant, the third 
for the MC-MCL hdr variant and the last column for isoMCL variant. 
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Acc D1 D2 D3 D4 D5 D6 D7 D8 D9 

M1 0.75 0.77 0.75 1.00 0.85 0.30 0.18 0.91 0.94 

M2 0.71 0.78 0.75 1.00 0.85 0.33 0.18 0.86 0.91 

M3 0.71 0.80 0.74 1.00 0.79 0.35 0.19 0.85 0.92 

M4 0.75 0.77 0.74 1.00 0.82 0.36 0.19 0.85 0.90 

M5 0.71 0.71 0.74 1.00 0.75 0.35 0.19 0.86 0.60 

M6 0.67 0.60 0.42 1.00 0.48 0.21 0.17 0.54 0.66 

M7 0.71 0.64 0.62 1.00 0.69 0.22 0.14 0.80 0.81 

M8 0.67 0.69 0.56 0.64 0.75 0.34 0.19 0.75 - 

M9 0.67 0.71 0.66 0.54 0.56 0.34 0.20 0.41 - 

M10 0.54 0.65 0.65 0.85 0.27 0.20 0.10 0.31 - 

M11 0.58 0.68 0.64 1.00 0.26 0.20 0.10 0.11 0.11 

M12 0.67 0.71 0.62 0.56 0.57 0.35 0.20 0.57 0.56 

M13 0.50 0.64 0.64 1.00 0.10 0.20 0.10 0.11 0.11 

M14 - - - - - 0.36 0.22 0.82 0.86 

M15 - - - - - 0.35 0.22 0.82 0.86 

M16 - - - - - 0.36 0.22 0.82 0.87 

M17 - - - - - 0.35 0.22 0.82 0.86 

M18 - - - - - - - 0.91 0.93 

Table A. 1. Accuracy (acc) performance summary of all clustering methods M across 

all datasets D. Methods list: M1: isoMCL; M2:MC-MCL dual; M3: MC-MCL hbr; M4: 

MC-MCL hdr; M5: MC-MCL; M6: MCL; M7: cciMST; M8: MC-AP; M9: AP; M10: 
DPSP; M11: DBSCAN; M12: Kmeans; M13: Single linkage; M14: HOT; M15: HOMO; 

M16: HOE; M17: HIT; M18: HOE-CNN. Data list: D1: Gastric mucosa; D2: Radar 

2C; D3: Radar 3C; D4: Tripartite-Swiss-Roll; D5 MNIST3000; D6: CIFAR100; D7: 
CIFAR10; D8: MNIST test; D9: MNIST full. Nonlinear MCL variants are marked with 

red, whereas the original MCL algorithm is marked in green. 

 

 

 

 

 



123 

 

ARI D1 D2 D3 D4 D5 D6 D7 D8 D9 

M1 0.33 0.25 0.32 1.00 0.73 0.06 0.04 0.82 0.88 

M2 0.29 0.29 0.34 1.00 0.73 0.09 0.04 0.81 0.89 

M3 0.29 0.35 0.34 1.00 0.69 0.10 0.03 0.80 0.89 

M4 0.36 0.25 0.35 1.00 0.74 0.11 0.03 0.79 0.87 

M5 0.29 0.17 0.27 1.00 0.62 0.08 0.03 0.73 0.58 

M6 0.19 0.04 0.03 1.00 0.25 0.00 0.04 0.38 0.51 

M7 0.24 0.00 0.15 1.00 0.57 0.00 0.02 0.71 0.78 

M8 0.20 0.14 0.08 0.47 0.58 0.09 0.03 0.69 - 

M9 0.20 0.17 0.23 0.09 0.39 0.13 0.03 0.33 - 

M10 0.15 0.02 0.02 0.87 0.08 0.00 0.00 0.31 - 

M11 0.28 0.10 0.01 1.00 0.00 0.00 0.00 0.00 0.00 

M12 0.20 0.18 0.16 0.10 0.40 0.12 0.03 0.42 0.40 

M13 0.01 0.00 0.01 1.00 0.00 0.00 0.00 0.00 0.00 

M14 - - - - - 0.11 0.04 0.65 0.72 

M15 - - - - - 0.11 0.04 0.65 0.72 

M16 - - - - - 0.12 0.04 0.65 0.74 

M17 - - - - - 0.11 0.04 0.65 0.72 

M18 - - - - - - - 0.76 0.82 

Table A. 2. ARI performance summary of all clustering methods M across all datasets 

D. Methods list: M1: isoMCL; M2:MC-MCL dual; M3: MC-MCL hbr; M4: MC-MCL 

hdr; M5: MC-MCL; M6: MCL; M7: cciMST; M8: MC-AP; M9: AP; M10: DPSP; M11: 
DBSCAN; M12: Kmeans; M13: Single linkage; M14: HOT; M15: HOMO; M16: HOE; 

M17: HIT; M18: HOE-CNN. Data list: D1: Gastric mucosa; D2: Radar 2C; D3: Radar 

3C; D4: Tripartite-Swiss-Roll; D5 MNIST3000; D6: CIFAR100; D7: CIFAR10; D8: 
MNIST test; D9: MNIST full. Nonlinear MCL variants are marked with red, whereas the 

original MCL algorithm is marked in green. 
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Gastric Mucosa Acc ARI NMI Norm 

MCMCLeuc_hdr_Fsqrt (1) 0.75 0.36 0.37 LOG 

MCMCLeuc_hdr_Flog (1) 0.75 0.36 0.37 LOG 

isoMCLcorr (1) 0.75 0.33 0.31 LOG 

MCMCLspea_hdr_Flog (1) 0.75 0.33 0.31 LOG 

MCMCLcorr_hbr (1) 0.71 0.29 0.31 LOG 

MCMCLcorr_hbr_Flog (1) 0.71 0.29 0.31 LOG 

MCMCLcorr_dual (1) 0.71 0.29 0.31 LOG 

MCMCLcorr_dual_Flog (1) 0.71 0.29 0.31 LOG 

MCMCLcorr_hdr (1) 0.71 0.29 0.31 LOG 

MCMCLcorr_hdr_Flog (1) 0.71 0.29 0.31 LOG 

MC-MCLl corr 0.71 0.29 0.31 LOG 

MC-MCL corr 0.71 0.29 0.31 LOG 

MC-MCLs corr 0.71 0.26 0.31 LOG 

isoMCLcorr (1) 0.71 0.25 0.26 - 

MCMCLspea_hdr_Flog (1) 0.71 0.25 0.26 noNorm 

cciMSTcorr 0.71 0.24 0.26 - 

Kmeans corr 0.67 0.20 0.26 LOG 

MCAP corr 0.67 0.20 0.24 LOG 

AP corr 0.67 0.20 0.24 LOG 

cciMSTeuc 0.67 0.20 0.24 LOG 

cciMSTcorr 0.67 0.20 0.24 LOG 

cciMSTeuc 0.67 0.22 0.23 - 

DBSCAN corr 0.58 0.28 0.38 - 

MCL corr 0.67 0.19 0.23 - 

MCMCLcorr_dual (1) 0.67 0.19 0.23 noNorm 

MCMCLcorr_dual_Flog (1) 0.67 0.19 0.23 noNorm 

MCMCLeuc_dual_Fsqrt (1) 0.58 0.23 0.28 noNorm 

MCL corr 0.67 0.19 0.21 LOG 

MC-MCLs corr 0.67 0.18 0.23 - 

MCMCLeuc_hdr_Flog (1) 0.63 0.15 0.24 noNorm 

MCMCLeuc_hbr (1) 0.63 0.14 0.27 LOG 

MCMCLeuc_hbr_Fsqrt (1) 0.63 0.14 0.27 LOG 
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MCMCLeuc_hbr_Flog (1) 0.63 0.14 0.27 LOG 

MCAP eucl 0.63 0.15 0.22 - 

MC-MCLl corr 0.54 0.21 0.30 - 

isoMCLeuc (1) 0.63 0.15 0.20 LOG 

MCMCLeuc_dual_Fsqrt (1) 0.63 0.15 0.20 LOG 

MCMCLeuc_dual_Flog (1) 0.63 0.15 0.20 LOG 

MCMCLspea_hdr_Flog (1) 0.63 0.15 0.20 LOG 

MC-MCLs eucl 0.63 0.15 0.20 LOG 

MC-MCLl eucl 0.63 0.15 0.20 LOG 

MCAP eucl 0.63 0.15 0.20 LOG 

MCMCLeuc_hbr_Flog (1) 0.63 0.13 0.21 noNorm 

MCMCLeuc_hdr (1) 0.63 0.13 0.21 LOG 

MCAP corr 0.63 0.14 0.21 - 

MCMCLspea_hdr (1) 0.63 0.15 0.14 noNorm 

MCMCLspea_hdr_Fsqrt (1) 0.63 0.15 0.14 noNorm 

MCMCLspea_hdr_Flog (1) 0.63 0.15 0.14 noNorm 

MCMCLspea_hdr (1) 0.63 0.15 0.14 LOG 

MCMCLspea_hdr_Fsqrt (1) 0.63 0.15 0.14 LOG 

MCMCLspea_hdr_Flog (1) 0.63 0.15 0.14 LOG 

MC-MCL corr 0.54 0.15 0.22 - 

DPSPeuc 0.54 0.15 0.21 - 

DPSPcorr 0.54 0.15 0.21 - 

MCMCLeuc_dual (1) 0.63 0.12 0.14 LOG 

AP corr 0.00 0.19 0.24 - 

MC-MCLs eucl 0.54 0.18 0.18 - 

MCMCLeuc_hbr_Fsqrt (1) 0.54 0.18 0.18 noNorm 

MCMCLeuc_hdr_Fsqrt (1) 0.54 0.18 0.18 noNorm 

Kmeans corr 0.58 0.15 0.17 - 

MCMCLcorr_hbr (1) 0.58 0.10 0.18 noNorm 

MCMCLcorr_hbr_Flog (1) 0.58 0.10 0.18 noNorm 

MCMCLeuc_dual_Flog (1) 0.58 0.10 0.18 noNorm 

MCMCLcorr_hdr (1) 0.58 0.10 0.18 noNorm 

MCMCLcorr_hdr_Flog (1) 0.58 0.10 0.18 noNorm 
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MCMCLspea_hbr (1) 0.58 0.10 0.12 noNorm 

MCMCLspea_hbr_Flog (1) 0.58 0.10 0.12 noNorm 

MCMCLspea_dual (1) 0.58 0.10 0.12 noNorm 

MCMCLspea_dual_Flog (1) 0.58 0.10 0.12 noNorm 

MCMCLspea_hbr (1) 0.58 0.10 0.12 LOG 

MCMCLspea_hbr_Flog (1) 0.58 0.10 0.12 LOG 

MCMCLspea_dual (1) 0.58 0.10 0.12 LOG 

MCMCLspea_dual_Flog (1) 0.58 0.10 0.12 LOG 

MC-MCLl eucl 0.58 0.10 0.18 - 

MC-MCL eucl 0.54 0.12 0.09 LOG 

cciMSTspear 0.54 0.05 0.12 - 

cciMSTspear 0.54 0.05 0.12 LOG 

MCMCLspea_hbr_Fsqrt (1) 0.54 0.05 0.12 noNorm 

MCMCLspea_dual_Fsqrt (1) 0.54 0.05 0.12 noNorm 

MCMCLspea_hbr_Fsqrt (1) 0.54 0.05 0.12 LOG 

MCMCLspea_dual_Fsqrt (1) 0.54 0.05 0.12 LOG 

isoMCLspear (1) 0.54 0.06 0.06 - 

isoMCLspear (1) 0.54 0.06 0.06 LOG 

MCMCLspea_hdr_Flog (1) 0.54 0.06 0.06 noNorm 

MCMCLspea_hdr_Flog (1) 0.54 0.06 0.06 LOG 

DBSCAN corr 0.54 0.02 0.06 LOG 

Single linkage 0.50 0.01 0.01 LOG 

Single linkage 0.50 0.01 0.01 - 

DBSCAN eucl 0.50 0.01 0.01 - 

AP eucl 0.50 0.01 0.01 - 

DBSCAN eucl 0.50 0.01 0.01 LOG 

Kmeans eucl 0.42 0.01 0.06 LOG 

isoMCLeuc (1) 0.50 0.01 -0.02 - 

MCMCLeuc_hbr (1) 0.50 0.01 -0.02 noNorm 

MCMCLeuc_dual (1) 0.50 0.01 -0.02 noNorm 

MCMCLeuc_hdr (1) 0.50 0.01 -0.02 noNorm 

MCMCLspea_hdr_Flog (1) 0.50 0.01 -0.02 noNorm 

MCL eucl 0.00 0.00 0.00 LOG 
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AP eucl 0.00 0.00 0.00 LOG 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.00 noNorm 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.00 noNorm 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.00 noNorm 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.00 LOG 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.00 LOG 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.00 LOG 

MC-MCL eucl 0.00 0.01 -0.02 - 

MCL eucl 0.00 0.01 -0.02 - 

Kmeans eucl 0.46 -0.03 -0.04 - 

DPSPspear 0.42 -0.06 -0.05 - 

DPSPspear 0.42 -0.06 -0.05 LOG 

DPSPeuc 0.42 -0.06 -0.05 LOG 

DPSPcorr 0.42 -0.06 -0.05 LOG 

Table A. 3. Clustering performance in Gastric mucosa microbiome data. Accuracy 

(Acc), Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), are reported 
for each clustering method and variant. The distances, specified alongside the methods 

name and factor (if applied) corresponds to Pearson correlation (corr), Spearman 

correlation (spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified 
as Fsqrt for square root or Flog for logarithm. The last column display the normalization 

(Norm). The value in parenthesis besides the method’s name represents the number of 

hyperparameters for the clustering method, without taking into consideration the 
parameters needed to find the number of clusters. Results are ordered according to rank 

performance (rank value not shown) from the highest (top) to the lowest (bottom). 
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Radar (two clusters) Acc ARI NMI Norm 

MCMCLspea_dual_Flog (1) 0.78 0.29 0.32 - 

MCMCLspea_hbr_Flog (1) 0.77 0.27 0.30 - 

MCMCLspea_dual (1) 0.77 0.27 0.30 - 

MCMCLeuc_hbr_Fsqrt (1) 0.80 0.35 0.25 - 

MCMCLcorr_dual_Flog (1) 0.77 0.26 0.29 - 

isoMCLspear (1) 0.77 0.25 0.28 - 

MCMCLspea_hdr_Flog (1) 0.77 0.25 0.28 - 

isoMCLcorr (1) 0.76 0.24 0.27 - 

MCMCLspea_hdr_Flog (1) 0.76 0.24 0.27 - 

MCMCLspea_hbr (1) 0.75 0.22 0.26 - 

MCMCLspea_hdr_Flog (1) 0.75 0.22 0.26 - 

MCMCLcorr_hdr_Flog (1) 0.75 0.22 0.25 - 

MCMCLeuc_hdr_Flog (1) 0.75 0.25 0.16 - 

MCMCLcorr_dual (1) 0.75 0.20 0.24 - 

MCMCLeuc_hbr_Flog (1) 0.74 0.23 0.15 - 

MCMCLcorr_hdr (1) 0.73 0.17 0.21 - 

MCMCLspea_dual_Fsqrt (1) 0.73 0.16 0.20 - 

MCMCLspea_hdr (1) 0.72 0.15 0.19 - 

Kmeans eucl 0.71 0.18 0.13 - 

AP eucl 0.71 0.17 0.13 - 

MCMCLeuc_dual_Flog (1) 0.71 0.17 0.13 - 

MC-MCLl eucl 0.71 0.17 0.12 - 

MCMCLspea_hbr_Fsqrt (1) 0.70 0.11 0.15 - 

MCMCLcorr_hbr (1) 0.70 0.09 0.13 - 

MCMCLcorr_hbr_Flog (1) 0.70 0.09 0.13 - 

isoMCLeuc (1) 0.70 0.15 0.11 - 

MCMCLspea_hdr_Flog (1) 0.70 0.15 0.11 - 

DBSCAN corr 0.68 0.10 0.14 - 

MCMCLeuc_dual_Fsqrt (1) 0.69 0.14 0.11 - 

MC-MCLs corr 0.69 0.09 0.13 - 

MCAP eucl 0.69 0.14 0.09 - 
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MCMCLspea_hdr_Fsqrt (1) 0.69 0.08 0.12 - 

MC-MCLl corr 0.69 0.08 0.12 - 

MCMCLeuc_dual (1) 0.68 0.13 0.08 - 

MC-MCL corr 0.68 0.07 0.11 - 

MCMCLeuc_hdr_Fsqrt (1) 0.65 0.08 0.09 - 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.20 - 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.20 - 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.20 - 

MCMCLeuc_hbr (1) 0.66 0.03 0.05 - 

MCMCLeuc_hdr (1) 0.66 0.02 0.04 - 

cciMSTspear 0.62 0.06 0.06 - 

DPSPcorr 0.65 0.02 0.03 - 

MCL eucl 0.60 0.04 0.06 - 

DPSPspear 0.65 0.01 0.02 - 

DPSPeuc 0.65 0.01 0.02 - 

cciMSTeuc 0.64 0.00 0.01 - 

Single linkage 0.64 0.00 0.01 - 

DBSCAN eucl 0.64 0.00 0.01 - 

Kmeans corr 0.59 0.02 0.01 - 

AP corr 0.57 0.01 0.00 - 

cciMSTcorr 0.52 -0.02 0.03 - 

MCAP corr 0.52 -0.03 0.02 - 

MC-MCLs eucl 0.00 0.00 0.00 - 

MC-MCL eucl 0.00 0.00 0.00 - 

MCL corr 0.00 0.00 0.00 - 

Table A. 4. Clustering performance in radar (two clusters) data. Accuracy (Acc), 

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), are reported for 

each clustering method and variant. The distances, specified alongside the methods 

name and factor (if applied) corresponds to Pearson correlation (corr), Spearman 

correlation (spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified 

as Fsqrt for square root or Flog for logarithm. The last column display the normalization 
(Norm). The value in parenthesis besides the method’s name represents the number of 

hyperparameters for the clustering method, without taking into consideration the 

parameters needed to find the number of clusters. Results are ordered according to rank 
performance (rank value not shown) from the highest (top) to the lowest (bottom). 
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Radar (three clusters) Acc ARI NMI Norm 

MCMCLcorr_dual_Flog (1) 0.74 0.36 0.33 - 

MCMCLspea_dual (1) 0.75 0.34 0.30 - 

MCMCLspea_hdr_Flog (1) 0.74 0.35 0.32 - 

MCMCLspea_hbr (1) 0.74 0.34 0.32 - 

isoMCLspear (1) 0.75 0.32 0.28 - 

MCMCLspea_dual_Flog (1) 0.75 0.32 0.29 - 

MCMCLspea_hdr_Flog (1) 0.75 0.32 0.28 - 

MCMCLspea_hbr_Flog (1) 0.74 0.33 0.31 - 

MC-MCLs corr 0.74 0.27 0.38 - 

MCMCLcorr_hdr_Flog (1) 0.73 0.27 0.33 - 

MCMCLeuc_hbr_Fsqrt (1) 0.75 0.32 0.25 - 

MCMCLspea_hdr (1) 0.73 0.31 0.30 - 

MCMCLcorr_hbr_Flog (1) 0.72 0.24 0.35 - 

isoMCLcorr (1) 0.72 0.28 0.28 - 

MCMCLspea_hdr_Flog (1) 0.72 0.28 0.28 - 

MCMCLcorr_hbr (1) 0.72 0.22 0.34 - 

MC-MCLl corr 0.70 0.20 0.35 - 

MCMCLcorr_hdr (1) 0.70 0.26 0.28 - 

MCMCLcorr_dual (1) 0.70 0.26 0.28 - 

MC-MCL corr 0.70 0.18 0.32 - 

isoMCLeuc (1) 0.66 0.24 0.24 - 

MCMCLeuc_dual (1) 0.66 0.24 0.24 - 

MCMCLspea_hdr_Flog (1) 0.66 0.24 0.24 - 

MCMCLeuc_hdr_Flog (1) 0.70 0.24 0.18 - 

AP eucl 0.66 0.23 0.25 - 

MCMCLeuc_hbr_Flog (1) 0.69 0.21 0.17 - 

MCMCLeuc_hdr (1) 0.67 0.21 0.17 - 

MCMCLspea_hbr_Fsqrt (1) 0.66 0.08 0.14 - 

MCMCLeuc_dual_Flog (1) 0.66 0.15 0.13 - 

Kmeans eucl 0.62 0.16 0.15 - 

MCMCLeuc_hbr (1) 0.66 0.05 0.07 - 
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MCAP corr 0.56 0.08 0.22 - 

cciMSTeuc 0.62 0.15 0.14 - 

cciMSTcorr 0.52 0.06 0.20 - 

MCMCLspea_dual_Fsqrt (1) 0.59 0.07 0.13 - 

MC-MCLl eucl 0.00 0.15 0.13 - 

MCMCLspea_hdr_Fsqrt (1) 0.58 0.06 0.11 - 

DPSPcorr 0.65 0.02 0.03 - 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.24 - 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.24 - 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.24 - 

cciMSTspear 0.57 0.04 0.07 - 

DPSPspear 0.64 0.01 0.02 - 

DPSPeuc 0.64 0.01 0.02 - 

Single linkage 0.64 0.01 0.02 - 

DBSCAN eucl 0.64 0.01 0.02 - 

DBSCAN corr 0.64 0.01 0.02 - 

MCAP eucl 0.52 0.04 0.10 - 

Kmeans corr 0.52 0.05 0.03 - 

AP corr 0.54 0.04 0.02 - 

MCL eucl 0.42 0.03 0.05 - 

MCMCLeuc_dual_Fsqrt (1) 0.64 0.00 0.00 - 

MCMCLeuc_hdr_Fsqrt (1) 0.64 0.00 0.00 - 

MC-MCLs eucl 0.00 0.00 0.00 - 

MC-MCL eucl 0.00 0.00 0.00 - 

MCL corr 0.00 0.00 0.00 - 

Table A. 5. Clustering performance in radar (three clusters) data. Accuracy (Acc), 

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), are reported for 

each clustering method and variant. The distances, specified alongside the methods 

name and factor (if applied) corresponds to Pearson correlation (corr), Spearman 

correlation (spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified 

as Fsqrt for square root or Flog for logarithm. The last column display the normalization 
(Norm). The value in parenthesis besides the method’s name represents the number of 

hyperparameters for the clustering method, without taking into consideration the 

parameters needed to find the number of clusters. Results are ordered according to rank 
performance (rank value not shown) from the highest (top) to the lowest (bottom). 
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Tripartite-Swiss-Roll Acc ARI NMI Norm 

Single linkage euc 1.00 1.00 1.00 - 

MC-MCLl eucl 1.00 1.00 1.00 - 

MC-MCL eucl 1.00 1.00 1.00 - 

MCL eucl 1.00 1.00 1.00 - 

isoMCLeuc (1) 1.00 1.00 1.00 - 

DBSCAN eucl 1.00 1.00 1.00 - 

cciMSTeuc 1.00 1.00 1.00 - 

MCMCLeuc_hbr (1) 1.00 1.00 1.00 - 

MCMCLeuc_hbr_Fsqrt (1) 1.00 1.00 1.00 - 

MCMCLeuc_hbr_Flog (1) 1.00 1.00 1.00 - 

MCMCLeuc_dual (1) 1.00 1.00 1.00 - 

MCMCLeuc_dual_Fsqrt (1) 1.00 1.00 1.00 - 

MCMCLeuc_dual_Flog (1) 1.00 1.00 1.00 - 

MCMCLeuc_hdr (1) 1.00 1.00 1.00 - 

MCMCLeuc_hdr_Flog (1) 1.00 1.00 1.00 - 

MCMCLspea_hdr_Flog (1) 1.00 1.00 1.00 - 

DPSPeuc 0.85 0.87 0.82 - 

MCMCLeuc_hdr_Fsqrt (1) 0.78 0.43 0.62 - 

MCAP eucl 0.64 0.47 0.58 - 

DPSPspear 0.63 0.22 0.24 - 

MC-MCLs eucl 0.00 0.47 0.63 - 

cciMSTspear 0.54 0.13 0.17 - 

MCMCLspea_hbr_Fsqrt (1) 0.54 0.13 0.17 - 

MCMCLspea_dual_Fsqrt (1) 0.54 0.13 0.17 - 

Kmeans corr 0.52 0.13 0.18 - 

Kmeans eucl 0.56 0.10 0.20 - 

isoMCLspear (1) 0.43 0.11 0.20 - 

MCMCLspea_hbr (1) 0.43 0.11 0.20 - 

MCMCLspea_dual (1) 0.43 0.11 0.20 - 

MCMCLspea_hdr_Flog (1) 0.43 0.11 0.20 - 

AP corr 0.00 0.13 0.23 - 
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AP eucl 0.54 0.09 0.19 - 

isoMCLcorr (1) 0.66 0.04 0.04 - 

MCMCLcorr_hbr (1) 0.66 0.04 0.04 - 

MCMCLcorr_hbr_Flog (1) 0.66 0.04 0.04 - 

MCMCLcorr_dual (1) 0.66 0.04 0.04 - 

MCMCLcorr_dual_Flog (1) 0.66 0.04 0.04 - 

MCMCLcorr_hdr (1) 0.66 0.04 0.04 - 

MCMCLcorr_hdr_Flog (1) 0.66 0.04 0.04 - 

MCMCLspea_hdr_Flog (1) 0.66 0.04 0.04 - 

MC-MCLl corr 0.66 0.04 0.04 - 

MC-MCL corr 0.66 0.04 0.04 - 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.23 - 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.23 - 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.23 - 

MCMCLspea_hbr_Flog (1) 0.59 0.00 0.05 - 

MCMCLspea_dual_Flog (1) 0.59 0.00 0.05 - 

cciMSTcorr 0.46 0.00 0.04 - 

MC-MCLs corr 0.46 0.00 0.04 - 

MCL corr 0.46 0.00 0.04 - 

MCAP corr 0.43 -0.01 0.12 - 

DPSPcorr 0.43 -0.01 0.12 - 

DBSCAN corr 0.00 0.00 0.03 - 

MCMCLspea_hdr (1) 0.00 0.00 0.00 - 

MCMCLspea_hdr_Fsqrt (1) 0.00 0.00 0.00 - 

MCMCLspea_hdr_Flog (1) 0.00 0.00 0.00 - 

Table A. 6. Clustering performance in tripartite-swiss-roll data. Accuracy (Acc), 

Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), are reported for 

each clustering method and variant. The distances, specified alongside the methods 

name and factor (if applied) corresponds to Pearson correlation (corr), Spearman 

correlation (spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified 

as Fsqrt for square root or Flog for logarithm. The last column display the normalization 
(Norm). The value in parenthesis besides the method’s name represents the number of 

hyperparameters for the clustering method, without taking into consideration the 

parameters needed to find the number of clusters. Results are ordered according to rank 
performance (rank value not shown) from the highest (top) to the lowest (bottom). 
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MNIST 3000 Acc ARI NMI Norm 

MCMCLspea_hdr_Flog (1) 0.82 0.74 0.81 - 

MCMCLspea_hdr_Flog (1) 0.82 0.74 0.81 LOG 

MCMCLcorr_dual_Flog (1) 0.82 0.73 0.81 - 

MCMCLeuc_dual (1) 0.85 0.73 0.79 LOG 

MCMCLeuc_dual_Fsqrt (1) 0.81 0.73 0.79 LOG 

isoMCLeuc (1) 0.85 0.73 0.78 LOG 

MCMCLeuc_dual_Flog (1) 0.84 0.72 0.78 LOG 

MCMCLcorr_hdr (1) 0.75 0.70 0.80 - 

MCMCLcorr_hdr_Flog (1) 0.80 0.70 0.78 LOG 

MCMCLeuc_dual (1) 0.80 0.71 0.78 - 

MCMCLcorr_hdr_Flog (1) 0.75 0.70 0.79 - 

MCMCLcorr_hbr_Flog (1) 0.79 0.69 0.78 LOG 

MCMCLeuc_dual_Flog (1) 0.79 0.69 0.77 - 

MCMCLspea_hdr (1) 0.74 0.67 0.80 - 

MCMCLspea_hdr (1) 0.74 0.67 0.80 LOG 

MCMCLeuc_dual_Fsqrt (1) 0.79 0.69 0.77 - 

MCMCLspea_dual_Flog (1) 0.74 0.67 0.80 - 

MCMCLspea_dual_Flog (1) 0.74 0.67 0.80 LOG 

MCMCLspea_hbr_Flog (1) 0.74 0.68 0.78 - 

MCMCLspea_hbr_Flog (1) 0.74 0.68 0.78 LOG 

isoMCLspear (1) 0.74 0.66 0.79 - 

isoMCLspear (1) 0.74 0.66 0.79 LOG 

MCMCLspea_hdr_Flog (1) 0.74 0.66 0.79 - 

MCMCLcorr_hbr_Flog (1) 0.74 0.67 0.77 - 

MCMCLeuc_hdr (1) 0.78 0.67 0.75 LOG 

MCMCLcorr_hbr (1) 0.74 0.67 0.77 - 

MCMCLspea_dual_Fsqrt (1) 0.73 0.65 0.78 - 

MCMCLspea_dual_Fsqrt (1) 0.73 0.65 0.78 LOG 

MCMCLeuc_hdr_Fsqrt (1) 0.76 0.64 0.73 LOG 

MCMCLcorr_hbr (1) 0.74 0.64 0.76 LOG 

MCMCLcorr_dual_Flog (1) 0.73 0.61 0.78 LOG 
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isoMCLcorr (1) 0.73 0.61 0.77 LOG 

isoMCLcorr (1) 0.73 0.61 0.77 - 

MCMCLspea_hdr_Flog (1) 0.73 0.61 0.77 - 

MC-MCL eucl 0.75 0.62 0.70 LOG 

MCMCLeuc_hbr (1) 0.75 0.62 0.70 LOG 

MCMCLcorr_hdr (1) 0.72 0.64 0.76 LOG 

MCMCLspea_hbr_Fsqrt (1) 0.75 0.61 0.72 - 

MCMCLspea_hbr_Fsqrt (1) 0.75 0.61 0.72 LOG 

MCMCLcorr_dual (1) 0.73 0.61 0.77 LOG 

MC-MCLl corr 0.72 0.64 0.75 - 

MCMCLspea_hdr_Fsqrt (1) 0.73 0.64 0.74 - 

MCMCLspea_hdr_Fsqrt (1) 0.73 0.64 0.74 LOG 

MCMCLeuc_hbr_Fsqrt (1) 0.75 0.61 0.70 LOG 

MC-MCLs eucl 0.75 0.61 0.70 LOG 

MCMCLcorr_dual 0.71 0.60 0.76 - 

MCAP corr 0.71 0.61 0.73 - 

MCMCLspea_hbr 0.70 0.59 0.77 - 

MCMCLspea_hbr 0.70 0.59 0.77 LOG 

MCMCLeuc_hbr 0.73 0.61 0.71 - 

MCAP eucl 0.75 0.58 0.68 LOG 

cciMSTcorr 0.66 0.63 0.74 - 

MCMCLspea_dual 0.67 0.57 0.76 - 

MCMCLspea_dual 0.67 0.57 0.76 LOG 

MC-MCL corr 0.66 0.60 0.73 - 

MCMCLeuc_hdr 0.71 0.60 0.69 - 

cciMSTcorr 0.69 0.57 0.72 LOG 

MC-MCLl corr 0.68 0.57 0.71 LOG 

MCAP corr 0.68 0.56 0.70 LOG 

isoMCLeuc (1) 0.68 0.54 0.70 - 

MCMCLspea_hdr_Flog (1) 0.68 0.54 0.70 - 

MC-MCLs corr 0.62 0.57 0.71 LOG 

MCMCLeuc_hbr_Flog (1) 0.71 0.53 0.66 LOG 

MC-MCLs corr 0.67 0.53 0.68 - 
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MC-MCLl eucl 0.66 0.55 0.66 LOG 

MCMCLeuc_hbr_Fsqrt (1) 0.67 0.52 0.66 - 

MCMCLeuc_hdr_Flog (1) 0.66 0.51 0.65 LOG 

MCAP eucl 0.65 0.48 0.63 - 

MC-MCL corr 0.57 0.51 0.68 LOG 

cciMSTeuc 0.64 0.48 0.62 - 

MCMCLeuc_hdr_Fsqrt (1) 0.63 0.48 0.62 - 

cciMSTspear 0.57 0.45 0.68 - 

cciMSTspear 0.57 0.45 0.68 LOG 

MCMCLeuc_hdr_Flog (1) 0.64 0.45 0.59 - 

MCMCLeuc_hbr_Flog (1) 0.62 0.44 0.59 - 

MC-MCL eucl 0.58 0.45 0.58 - 

Kmeans corr 0.57 0.40 0.53 LOG 

cciMSTeuc 0.52 0.38 0.59 LOG 

Kmeans corr 0.55 0.40 0.53 - 

MC-MCLs eucl 0.52 0.40 0.55 - 

Kmeans eucl 0.55 0.40 0.52 LOG 

AP corr 0.56 0.39 0.51 LOG 

AP eucl 0.56 0.37 0.47 LOG 

Kmeans eucl 0.52 0.35 0.50 - 

MCL corr 0.48 0.25 0.55 LOG 

MC-MCLl eucl 0.46 0.35 0.51 - 

AP corr 0.51 0.33 0.48 - 

MCL corr 0.41 0.18 0.46 - 

AP eucl 0.48 0.25 0.38 - 

MCL eucl 0.35 0.12 0.42 LOG 

DPSPeuc 0.27 0.08 0.31 - 

DPSPspear 0.20 0.09 0.30 - 

DPSPspear 0.20 0.09 0.30 LOG 

MCL eucl 0.26 0.06 0.30 - 

DBSCAN corr 0.26 0.00 0.43 LOG 

DPSPcorr 0.18 0.03 0.17 LOG 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.45 - 
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MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.45 - 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.45 - 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.45 LOG 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.45 LOG 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.45 LOG 

DPSPcorr 0.16 0.02 0.17 - 

DPSPeuc 0.10 0.00 0.01 LOG 

DBSCAN corr 0.10 0.00 0.02 - 

Single linkage euc 0.10 0.00 0.01 - 

DBSCAN eucl 0.10 0.00 0.01 - 

Single linkage euc 0.10 0.00 0.01 LOG 

DBSCAN eucl 0.10 0.00 0.01 LOG 

Table A. 7. Clustering performance in MNIST 3000 data. Accuracy (Acc), Adjusted 
Rand Index (ARI), Normalized Mutual Information (NMI), are reported for each 

clustering method and variant. The distances, specified alongside the methods name and 
factor (if applied) corresponds to Pearson correlation (corr), Spearman correlation 

(spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for 

square root or Flog for logarithm. The last column display the normalization (Norm). 
The value in parenthesis besides the method’s name represents the number of 

hyperparameters for the clustering method, without taking into consideration the 

parameters needed to find the number of clusters. Results are ordered according to rank 
performance (rank value not shown) from the highest (top) to the lowest (bottom). 
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MNIST test Acc ARI NMI Norm 

isoMCLeuc (1) 0.91 0.82 0.84 LOG 

MCMCLcorr_dual_Flog (1) 0.86 0.81 0.86 - 

isoMCLcorr (1) 0.88 0.80 0.84 LOG 

MCMCLcorr_dual (1) 0.86 0.81 0.86 - 

MCMCLcorr_hbr_Flog (1) 0.85 0.80 0.85 - 

isoMCLspear (1) 0.88 0.79 0.84 - 

isoMCLspear (1) 0.88 0.79 0.84 LOG 

isoMCLcorr (1) 0.87 0.80 0.84 - 

MCMCLcorr_hdr (1) 0.85 0.79 0.84 - 

MCMCLspea_hdr (1) 0.85 0.78 0.83 - 

MCMCLspea_hdr (1) 0.85 0.78 0.83 LOG 

MCMCLeuc_dual (1) 0.84 0.78 0.84 LOG 

isoMCLeuc (1) 0.85 0.78 0.83 - 

MCMCLcorr_hdr_Flog (1) 0.84 0.78 0.83 - 

MCMCLcorr_hbr_Flog (1) 0.85 0.78 0.83 LOG 

MCMCLspea_dual_Flog (1) 0.83 0.77 0.83 - 

MCMCLspea_dual_Flog (1) 0.83 0.77 0.83 LOG 

HOE-CNN (1) 0.91 0.76 0.78 - 

MCMCLeuc_hbr (1) 0.87 0.75 0.79 LOG 

MCMCLcorr_dual_Flog (1) 0.78 0.75 0.84 LOG 

MCMCLspea_hbr_Flog (1) 0.83 0.74 0.82 - 

MCMCLspea_hbr_Flog (1) 0.83 0.74 0.82 LOG 

MCMCLcorr_dual (1) 0.78 0.75 0.83 LOG 

MCMCLeuc_hdr (1) 0.82 0.75 0.80 - 

MCMCLeuc_dual_Flog (1) 0.81 0.74 0.82 - 

MCMCLeuc_hbr (1) 0.86 0.73 0.77 - 

MCMCL_eucl 0.86 0.73 0.77 - 

MCMCLspea_dual (1) 0.78 0.74 0.83 - 

MCMCLspea_dual (1) 0.78 0.74 0.83 LOG 

MCMCLeuc_dual (1) 0.78 0.74 0.83 - 

MCMCLcorr_hbr (1) 0.77 0.74 0.83 - 

MCMCLspea_hdr_Flog (1) 0.81 0.72 0.81 - 
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MCMCLspea_hdr_Flog (1) 0.81 0.72 0.81 LOG 

MCMCLcorr_hdr_Flog (1) 0.78 0.74 0.82 LOG 

MCMCLcorr_hdr (1) 0.78 0.73 0.81 LOG 

MCMCLcorr_hbr (1) 0.77 0.74 0.82 LOG 

MCMCLeuc_dual_Fsqrt (1) 0.80 0.72 0.80 - 

cciMSTcorr 0.80 0.71 0.80 - 

MCMCLeuc_hdr (1) 0.80 0.72 0.79 LOG 

MCMCLeuc_dual_Fsqrt (1) 0.80 0.71 0.79 LOG 

MCMCLspea_hbr_Fsqrt (1) 0.82 0.69 0.75 - 

MCMCLspea_hbr_Fsqrt (1) 0.82 0.69 0.75 LOG 

MCMCLeuc_hdr_Fsqrt (1) 0.79 0.70 0.78 LOG 

MCMCLeuc_hbr_Fsqrt (1) 0.81 0.68 0.75 LOG 

MCMCLspea_dual_Fsqrt (1) 0.76 0.67 0.81 - 

MCMCLspea_hbr (1) 0.76 0.66 0.81 - 

MCMCLspea_hbr (1) 0.76 0.66 0.81 LOG 

MCMCLeuc_dual_Flog (1) 0.76 0.69 0.79 LOG 

MCMCLspea_hdr_Fsqrt (1) 0.79 0.67 0.74 - 

MCMCLspea_hdr_Fsqrt (1) 0.79 0.67 0.74 LOG 

MCAP corr 0.75 0.69 0.77 - 

HOT (1) 0.82 0.65 0.69 - 

HOMO (1) 0.82 0.65 0.68 - 

HOE (1) 0.82 0.65 0.68 - 

HIT (1) 0.82 0.65 0.68 - 

MCMCLspea_dual_Fsqrt (1) 0.70 0.65 0.81 LOG 

MCMCLeuc_hdr_Flog (1) 0.72 0.66 0.75 LOG 

MCMCLl_corr 0.72 0.62 0.77 LOG 

MCMCLeuc_hbr_Flog (1) 0.75 0.63 0.73 LOG 

MCMCL_corr 0.74 0.63 0.74 - 

MCAP eucl 0.73 0.63 0.73 LOG 

cciMSTcorr 0.70 0.61 0.73 LOG 

MCMCLeuc_hbr_Fsqrt (1) 0.73 0.60 0.72 - 

MCMCLeuc_hdr_Flog (1) 0.70 0.62 0.72 - 

MCMCL_corr 0.66 0.58 0.75 LOG 
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MCAP corr 0.66 0.62 0.73 LOG 

MCMCLeuc_hbr_Flog (1) 0.72 0.59 0.71 - 

MCMCLs_corr 0.68 0.57 0.72 - 

MCAP spea 0.65 0.60 0.71 - 

MCAP spea 0.65 0.60 0.71 LOG 

MCAP eucl 0.70 0.59 0.70 - 

MCMCL_eucl 0.69 0.58 0.71 LOG 

cciMSTeuc 0.65 0.55 0.73 LOG 

MCMCLeuc_hdr_Fsqrt (1) 0.71 0.56 0.69 - 

cciMSTeuc 0.71 0.51 0.66 - 

MCMCLs_corr 0.66 0.53 0.68 LOG 

cciMSTspear 0.60 0.52 0.68 - 

cciMSTspear 0.60 0.52 0.68 LOG 

MCMCLl_eucl 0.63 0.52 0.66 LOG 

MCMCLspea 0.54 0.50 0.70 - 

MCMCLspea 0.54 0.50 0.70 LOG 

MCMCLs_eucl 0.60 0.44 0.66 LOG 

MCMCLl_corr 0.55 0.45 0.66 - 

Kmeans corr 0.57 0.42 0.55 LOG 

MCMCLl_eucl 0.54 0.38 0.58 - 

MCL_corr 0.52 0.42 0.62 - 

Kmeans corr 0.55 0.41 0.53 - 

MCL_eucl 0.54 0.38 0.56 LOG 

Kmeans eucl 0.54 0.39 0.51 - 

Kmeans eucl 0.53 0.39 0.52 LOG 

MCMCLs_eucl 0.50 0.31 0.57 - 

AP corr 0.41 0.33 0.53 - 

AP spea 0.41 0.33 0.52 - 

AP spea 0.41 0.33 0.52 LOG 

AP corr 0.38 0.33 0.54 LOG 

DPSPspear 0.31 0.31 0.54 - 

DPSPspear 0.31 0.31 0.54 LOG 

DPSPcorr 0.32 0.29 0.54 LOG 



141 

 

MCL_corr 0.43 0.20 0.50 LOG 

AP eucl 0.41 0.26 0.44 - 

AP eucl 0.38 0.31 0.49 LOG 

DPSPeuc 0.34 0.17 0.46 - 

DPSPcorr 0.31 0.11 0.40 - 

MCL_eucl 0.30 0.09 0.35 - 

Single linkage euc 0.11 0.00 0.00 LOG 

DBSCAN eucl 0.11 0.00 0.00 LOG 

DBSCAN corr 0.11 0.00 0.00 LOG 

DBSCAN corr 0.11 0.00 0.00 - 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.40 - 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.40 - 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.40 - 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.40 LOG 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.40 LOG 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.40 LOG 

DPSPeuc 0.11 0.00 0.00 LOG 

Single linkage euc 0.11 0.00 0.00 - 

DBSCAN eucl 0.11 0.00 0.00 - 

Table A. 8. Clustering performance in MNIST test data. Accuracy (Acc), Adjusted Rand 
Index (ARI), Normalized Mutual Information (NMI), are reported for each clustering 

method and variant. The distances, specified alongside the methods name and factor (if 

applied) corresponds to Pearson correlation (corr), Spearman correlation (spea) or 
Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for square 

root or Flog for logarithm. The last column display the normalization (Norm). The value 

in parenthesis besides the method’s name represents the number of hyperparameters for 
the clustering method, without taking into consideration the parameters needed to find 

the number of clusters. Results are ordered according to rank performance (rank value 

not shown) from the highest (top) to the lowest (bottom). 
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MNIST full Acc ARI NMI Norm 

MCMCLcorr_dual (1) 0.91 0.89 0.90 - 

MCMCL_corr_hbr_Flog (1) 0.92 0.89 0.89 - 

isoMCLeuc (1) 0.94 0.88 0.88 LOG 

HOE-CNN (1) 0.93 0.82 0.86 - 

MCMCLcorr_hdr (1) 0.90 0.87 0.89 - 

HOE (1) 0.87 0.74 0.76 - 

cciMSTcorr 0.81 0.78 0.83 - 

HOMO (1) 0.86 0.72 0.74 - 

HOT (1) 0.86 0.72 0.74 - 

HIT (1) 0.86 0.72 0.74 - 

cciMSTspear 0.80 0.69 0.77 - 

cciMSTspear 0.80 0.69 0.77 LOG 

cciMSTcorr 0.67 0.61 0.75 LOG 

MCMCLeuc 0.60 0.58 0.74 - 

MCLeuc 0.66 0.51 0.67 LOG 

cciMSTeuc 0.62 0.44 0.68 LOG 

Kmeans corr 0.56 0.40 0.53 LOG 

cciMSTeuc 0.56 0.37 0.65 - 

Kmeans eucl 0.55 0.39 0.51 - 

Kmeans eucl 0.55 0.38 0.50 LOG 

Kmeans corr 0.51 0.37 0.50 - 

DBSCAN corr 0.11 0.00 0.00 - 

DBSCAN eucl 0.11 0.00 0.00 LOG 

Single linkage 0.11 0.00 0.00 LOG 

DBSCAN corr 0.11 0.00 0.00 LOG 

DBSCAN eucl 0.11 0.00 0.00 - 

Single linkage 0.11 0.00 0.00 - 

Table A. 9. Clustering performance in MNIST full data. Accuracy (Acc), Adjusted Rand 
Index (ARI), Normalized Mutual Information (NMI), are reported for each clustering 

method and variant. The distances, specified alongside the methods name and factor (if 
applied) corresponds to Pearson correlation (corr), Spearman correlation (spea) or 

Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for square 

root or Flog for logarithm. The last column display the normalization (Norm). The value 
in parenthesis besides the method’s name represents the number of hyperparameters for 

the clustering method, without taking into consideration the parameters needed to find 
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the number of clusters. Results are ordered according to rank performance (rank value 

not shown) from the highest (top) to the lowest (bottom). 

CIFAR100 Acc ARI NMI Norm 

HOE (1) 0.36 0.12 0.14 - 

HOT (1) 0.36 0.11 0.14 - 

HOMO (1) 0.35 0.11 0.14 - 

HIT (1) 0.35 0.11 0.14 - 

AP spea 0.34 0.13 0.15 LOG 

AP spea 0.34 0.13 0.15 - 

MCMCLcorr_hdr (1) 0.36 0.11 0.13 LOG 

Kmeans corr 0.35 0.12 0.13 - 

MCMCLcorr_hdr_Flog (1) 0.35 0.11 0.12 LOG 

Kmeans corr 0.34 0.11 0.13 LOG 

MCMCLcorr_hbr (1) 0.35 0.10 0.11 LOG 

MCMCLeuc_hbr_Fsqrt (1) 0.35 0.09 0.11 - 

MCMCLcorr_hbr_Flog (1) 0.34 0.10 0.12 LOG 

Kmeans eucl 0.33 0.09 0.14 LOG 

MCAP spea 0.34 0.09 0.10 LOG 

MCAP spea 0.34 0.09 0.10 - 

MCMCLcorr_hbr (1) 0.33 0.09 0.11 - 

MCMCLs_corr 0.35 0.08 0.10 LOG 

MCMCLeuc_dual_Flog (1) 0.33 0.09 0.10 LOG 

AP corr 0.32 0.11 0.13 LOG 

AP corr 0.31 0.11 0.13 - 

MCAP corr 0.32 0.10 0.11 LOG 

MCMCLspea_hbr_Flog (1) 0.33 0.08 0.10 - 

MCMCLspea_hbr_Flog (1) 0.33 0.08 0.10 LOG 

Kmeans eucl 0.33 0.08 0.11 - 

MCMCLspea_hbr (1) 0.33 0.08 0.10 - 

MCMCLspea_hbr (1) 0.33 0.08 0.10 LOG 

MCMCLcorr_hbr_Flog (1) 0.32 0.08 0.10 - 

MCMCLcorr_dual_Flog (1) 0.32 0.08 0.09 LOG 

MCMCLspea_hdr (1) 0.32 0.07 0.10 - 
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MCMCLspea_hdr (1) 0.32 0.07 0.10 LOG 

MCMCLs_corr 0.32 0.08 0.10 - 

MCAP corr 0.32 0.08 0.09 - 

MCMCLeuc_hbr_Flog (1) 0.32 0.06 0.09 - 

MCMCLl_eucl 0.31 0.08 0.09 LOG 

MCMCLeuc_hdr_Flog (1) 0.31 0.08 0.09 LOG 

MCMCLeuc_hbr_Flog (1) 0.31 0.08 0.09 LOG 

MCMCLeuc_hdr_Flog (1) 0.32 0.06 0.09 - 

MCMCLspea_hbr_Fsqrt (1) 0.32 0.07 0.09 - 

MCMCLspea_hbr_Fsqrt (1) 0.32 0.07 0.09 LOG 

AP eucl 0.32 0.05 0.10 LOG 

MCMCLcorr_hdr (1) 0.31 0.07 0.09 - 

MCMCLspea_hdr_Flog (1) 0.32 0.06 0.08 - 

MCMCLspea_hdr_Flog (1) 0.32 0.06 0.08 LOG 

MCMCLcorr_hdr_Flog (1) 0.32 0.06 0.09 - 

MCMCL_corr 0.32 0.06 0.08 LOG 

MCMCLcorr_dual 0.31 0.07 0.09 - 

MCMCLl_corr 0.32 0.06 0.07 LOG 

MCAP eucl 0.32 0.05 0.07 - 

MCMCLeuc_hdr_Fsqrt (1) 0.31 0.05 0.09 - 

AP eucl 0.32 0.05 0.09 - 

MCMCLspea_dual (1) 0.30 0.05 0.08 - 

MCMCLspea_dual (1) 0.30 0.05 0.08 LOG 

MCMCLcorr_dual_Flog (1) 0.30 0.06 0.07 - 

isoMCLcorr (1) 0.30 0.06 0.07 - 

isoMCLcorr (1) 0.30 0.05 0.08 LOG 

MCMCLl_eucl 0.31 0.04 0.07 - 

MCMCLspea_dual_Flog (1) 0.29 0.05 0.07 - 

isoMCLspear (1) 0.29 0.05 0.07 - 

isoMCLspear (1) 0.29 0.05 0.07 LOG 

MCMCLspea_hdr_Fsqrt (1) 0.29 0.04 0.08 - 

MCMCLspea_hdr_Fsqrt (1) 0.29 0.04 0.08 LOG 

MCAP eucl 0.30 0.05 0.06 LOG 
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MCMCLcorr_dual 0.28 0.04 0.07 LOG 

MCMCLs_eucl 0.29 0.04 0.05 LOG 

MCMCLeuc_hdr_Fsqrt (1) 0.29 0.04 0.05 LOG 

MCMCLeuc_hbr_Fsqrt (1) 0.29 0.04 0.05 LOG 

MCMCLl_corr 0.29 0.04 0.07 - 

MCMCL_corr 0.27 0.03 0.06 - 

MCMCLeuc_dual_Fsqrt (1) 0.28 0.02 0.06 - 

MCMCLspea_dual_Flog (1) 0.27 0.02 0.06 LOG 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.33 - 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.33 LOG 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.33 - 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.33 LOG 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.33 - 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.33 LOG 

cciMSTeuc 0.27 0.02 0.03 - 

isoMCLeuc (1) 0.24 0.00 0.04 LOG 

MCMCLs_eucl 0.26 0.01 0.04 - 

MCMCLeuc_dual (1) 0.23 0.00 0.04 LOG 

MCMCLeuc_hbr (1) 0.23 0.00 0.04 LOG 

cciMSTcorr 0.22 0.00 0.03 LOG 

cciMSTcorr 0.22 0.00 0.02 - 

cciMSTspear 0.22 0.00 0.02 - 

cciMSTspear 0.22 0.00 0.02 LOG 

MCMCLeuc_hdr (1) 0.22 0.00 0.03 - 

MCMCLeuc_hbr (1) 0.22 0.00 0.03 - 

MCMCL_eucl 0.22 0.00 0.03 - 

isoMCLeuc (1) 0.22 0.00 0.02 - 

MCMCLeuc_dual_Fsqrt (1) 0.21 0.00 0.02 LOG 

MCMCLeuc_dual_Flog (1) 0.21 0.00 0.01 - 

MCMCLspea_dual_Fsqrt (1) 0.21 0.00 0.01 - 

MCMCLspea_dual_Fsqrt (1) 0.21 0.00 0.01 LOG 

MCL_eucl 0.21 0.00 0.01 LOG 

MCMCLeuc_hdr (1) 0.21 0.00 0.01 LOG 
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MCMCL_eucl 0.21 0.00 0.01 LOG 

MCL_eucl 0.20 0.00 0.01 - 

MCMCLeuc_dual (1) 0.21 0.00 0.01 - 

MCL_corr 0.20 0.00 0.01 - 

DPSPeuc 0.20 0.00 0.01 - 

MCL_corr 0.20 0.00 0.01 LOG 

DBSCAN corr 0.20 0.00 0.02 LOG 

DPSPcorr 0.20 0.00 0.00 - 

cciMSTeuc 0.20 0.00 0.00 LOG 

DBSCAN corr 0.19 0.00 0.03 - 

DPSPcorr 0.20 0.00 0.00 LOG 

DPSPspear 0.20 0.00 0.00 - 

DPSPspear 0.20 0.00 0.00 LOG 

Single linkage euc 0.20 0.00 0.00 LOG 

Single linkage spea 0.20 0.00 0.00 LOG 

Single linkage spea 0.20 0.00 0.00 - 

DBSCAN eucl 0.20 0.00 0.00 LOG 

DBSCAN spea 0.20 0.00 0.00 LOG 

DBSCAN spea 0.20 0.00 0.00 - 

Single linkage corr 0.20 0.00 0.00 LOG 

Single linkage euc 0.20 0.00 0.00 - 

Single linkage corr 0.20 0.00 0.00 - 

DBSCAN eucl 0.20 0.00 0.00 - 

DPSPeuc 0.20 0.00 0.00 LOG 

Table A. 10. Clustering performance in CIFAR100 data. Accuracy (Acc), Adjusted 
Rand Index (ARI), Normalized Mutual Information (NMI), are reported for each 

clustering method and variant. The distances, specified alongside the methods name and 
factor (if applied) corresponds to Pearson correlation (corr), Spearman correlation 

(spea) or Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for 

square root or Flog for logarithm. The last column display the normalization (Norm). 
The value in parenthesis besides the method’s name represents the number of 

hyperparameters for the clustering method, without taking into consideration the 

parameters needed to find the number of clusters. Results are ordered according to rank 
performance (rank value not shown) from the highest (top) to the lowest (bottom). 
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CIFAR10 Acc ARI NMI Norm 

HOT (1) 0.22 0.04 0.07 - 

HOMO (1) 0.22 0.04 0.07 - 

HOE (1) 0.22 0.04 0.07 - 

HIT (1) 0.22 0.04 0.07 - 

Kmeans corr 0.20 0.03 0.06 LOG 

isoMCLcorr (1) 0.18 0.04 0.07 LOG 

Kmeans corr 0.20 0.03 0.06 - 

Kmeans eucl 0.20 0.03 0.06 LOG 

Kmeans eucl 0.20 0.03 0.07 - 

AP eucl 0.20 0.03 0.06 - 

MCMCLeuc_dual_Flog (1) 0.18 0.04 0.06 - 

AP eucl 0.19 0.03 0.06 LOG 

MCMCLeuc_dual_Fsqrt (1) 0.18 0.03 0.06 - 

MCL_corr 0.17 0.04 0.06 LOG 

MCAP eucl 0.19 0.03 0.05 LOG 

MCMCLeuc_hbr_Fsqrt (1) 0.18 0.03 0.05 - 

MCMCLeuc_hdr_Fsqrt (1) 0.18 0.03 0.05 - 

MCMCLs_eucl 0.18 0.03 0.05 - 

MCMCLl_eucl 0.19 0.03 0.05 - 

MCMCLeuc_hbr_Flog (1) 0.19 0.03 0.05 - 

MCMCLeuc_hdr_Flog (1) 0.19 0.03 0.05 - 

isoMCLcorr (1) 0.17 0.03 0.05 - 

MCMCLeuc_hbr_Fsqrt (1) 0.17 0.03 0.05 LOG 

MCMCLeuc_hdr_Fsqrt (1) 0.17 0.03 0.05 LOG 

MCAP eucl 0.17 0.03 0.05 - 

MCAP corr 0.18 0.02 0.06 LOG 

MCMCLcorr_hbr (1) 0.18 0.03 0.05 - 

MCMCLcorr_hdr (1) 0.18 0.03 0.05 - 

MCMCL_corr 0.18 0.03 0.05 - 



148 

 

MCAP corr 0.18 0.02 0.05 - 

MCMCLs_corr 0.18 0.02 0.05 - 

MCMCLs_corr 0.17 0.03 0.05 LOG 

MCMCLspea_hdr_Flog (1) 0.16 0.02 0.05 - 

MCMCLspea_hdr_Flog (1) 0.16 0.02 0.05 LOG 

MCMCLspea_dual_Fsqrt (1) 0.16 0.02 0.05 LOG 

MCMCLspea_hdr (1) 0.16 0.03 0.05 - 

MCMCLspea_hdr (1) 0.16 0.03 0.05 LOG 

MCMCLspea_dual_Flog (1) 0.16 0.02 0.04 LOG 

MCMCLcorr_hbr_Flog (1) 0.16 0.02 0.05 LOG 

MCMCLspea_dual_Flog (1) 0.16 0.02 0.04 - 

MCMCLspea_dual_Fsqrt (1) 0.16 0.02 0.05 - 

MCMCLcorr_hdr (1) 0.16 0.02 0.05 LOG 

AP corr 0.00 0.03 0.06 - 

MCMCLcorr_hdr_Flog (1) 0.16 0.02 0.05 LOG 

AP corr 0.00 0.03 0.06 LOG 

MCMCLl_corr 0.16 0.02 0.05 LOG 

isoMCLeuc (1) 0.16 0.01 0.06 - 

isoMCLspear (1) 0.16 0.02 0.04 - 

isoMCLspear (1) 0.16 0.02 0.04 LOG 

MCMCLspea_dual (1) 0.16 0.02 0.04 - 

MCMCLspea_dual (1) 0.16 0.02 0.04 LOG 

MCMCLs_eucl 0.15 0.02 0.05 LOG 

MCMCLcorr_hbr_Flog (1) 0.16 0.02 0.04 - 

MCMCLcorr_hdr_Flog (1) 0.16 0.02 0.04 - 

MCMCLspea_hbr_Fsqrt (1) 0.16 0.02 0.04 - 

MCMCLspea_hbr_Fsqrt (1) 0.16 0.02 0.04 LOG 

MCMCLl_corr 0.16 0.02 0.04 - 

MCMCLcorr_dual_Flog (1) 0.15 0.02 0.04 - 

MCMCL_corr 0.15 0.02 0.04 LOG 

MCMCLcorr_hbr (1) 0.15 0.02 0.04 LOG 

MCMCLspea_hdr_Fsqrt (1) 0.16 0.02 0.04 - 

MCMCLspea_hdr_Fsqrt (1) 0.16 0.02 0.04 LOG 
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MCMCLcorr_dual (1) 0.15 0.02 0.04 - 

MCMCLspea_hbr_Flog (1) 0.16 0.02 0.04 - 

MCMCLspea_hbr_Flog (1) 0.16 0.02 0.04 LOG 

MCMCLcorr_dual (1) 0.15 0.02 0.04 LOG 

MCMCLcorr_dual_Flog (1) 0.15 0.02 0.04 LOG 

MCMCLspea_hbr (1) 0.15 0.02 0.04 - 

MCMCLspea_hbr (1) 0.15 0.02 0.04 LOG 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.40 - 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.40 - 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.40 - 

MCMCLcorr_hbr_Fsqrt (1) 0.00 0.00 0.40 LOG 

MCMCLcorr_dual_Fsqrt (1) 0.00 0.00 0.40 LOG 

MCMCLcorr_hdr_Fsqrt (1) 0.00 0.00 0.40 LOG 

MCMCLeuc 0.14 0.01 0.04 - 

MCMCLeuc_hbr (1) 0.14 0.01 0.04 - 

MCMCLeuc_hdr (1) 0.14 0.01 0.04 - 

MCL_corr 0.15 0.02 0.03 - 

MCMCL_eucl 0.14 0.01 0.04 - 

cciMSTcorr 0.14 0.02 0.03 - 

MCMCLspea 0.14 0.01 0.03 - 

cciMSTspear 0.14 0.01 0.03 - 

cciMSTspear 0.14 0.01 0.03 LOG 

cciMSTcorr 0.14 0.01 0.03 LOG 

MCMCLeuc_hbr_Flog (1) 0.13 0.01 0.03 LOG 

MCMCLeuc_hdr_Flog (1) 0.13 0.01 0.03 LOG 

MCMCLl_eucl 0.13 0.01 0.03 LOG 

MCMCLeuc_dual_Flog (1) 0.13 0.00 0.03 LOG 

MCMCLeuc_dual_Fsqrt (1) 0.12 0.00 0.02 LOG 

MCMCLeuc_dual (1) 0.12 0.00 0.03 - 

MCMCLeuc_hbr (1) 0.10 0.00 0.01 LOG 

isoMCLeuc (1) 0.11 0.00 0.01 LOG 

MCMCLeuc_hdr (1) 0.10 0.00 0.01 LOG 

MCMCLeuc_dual (1) 0.10 0.00 0.01 LOG 
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MCMCL_eucl 0.10 0.00 0.01 LOG 

MCL_eucl 0.10 0.00 0.00 LOG 

DPSPeuc 0.10 0.00 0.00 LOG 

DPSPcorr 0.10 0.00 0.00 LOG 

DPSPeuc 0.10 0.00 0.00 - 

DBSCAN corr 0.06 0.00 0.02 LOG 

DPSPcorr 0.10 0.00 0.00 - 

Single linkage euc 0.10 0.00 0.00 - 

DBSCAN eucl 0.10 0.00 0.00 - 

DPSPspear 0.10 0.00 0.00 - 

DPSPspear 0.10 0.00 0.00 LOG 

Single linkage euc 0.10 0.00 0.00 LOG 

DBSCAN eucl 0.10 0.00 0.00 LOG 

cciMSTeuc 0.10 0.00 0.00 - 

MCL_eucl 0.10 0.00 0.00 - 

cciMSTeuc 0.10 0.00 0.00 LOG 

DBSCAN corr 0.00 0.00 0.00 - 

Table A. 11. Clustering performance in CIFAR10 data. Accuracy (Acc), Adjusted Rand 

Index (ARI), Normalized Mutual Information (NMI), are reported for each clustering 

method and variant. The distances, specified alongside the methods name and factor (if 
applied) corresponds to Pearson correlation (corr), Spearman correlation (spea) or 

Euclidean (euc), the factors (for MC-MCL-variants) are specified as Fsqrt for square 

root or Flog for logarithm. The last column display the normalization (Norm). The value 
in parenthesis besides the method’s name represents the number of hyperparameters for 

the clustering method, without taking into consideration the parameters needed to find 

the number of clusters. Results are ordered according to rank performance (rank value 
not shown) from the highest (top) to the lowest (bottom). 
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