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Abbreviations 
A-T Ataxia telangiectasia 
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1. Introduction 

1.1 Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS) was first described by the French neurologist Jean-Martin 

Charcot in 1869 and is still considered as one of the most severe neurodegenerative diseases.  

Its characteristics are defined by a relatively selective and progressive loss of motor neurons 

(MN), which is mirrored by the clinical symptoms of the affected patients: The involvement of 

both, cortical and spinal motor neurons (sMNs) leads to characteristic symptoms such as 

spasticity, flaccid paralysis, muscle atrophy and fasciculations, which can occur simultaneously 

in different muscle groups. In general, the patients experience a progressive weakness of their 

voluntary muscle functions, which usually leads to death by respiratory failure about 2-5 years 

after disease onset (Rowland & Shneider, 2001; Zarei et al., 2015). It occurred with a constant 

incidence over the last decade of approximately 2.7-5/100000, which more or less equals the 

prevalence data due to the short survival time (Al-Chalabi & Hardiman, 2013; Hardiman et al., 

2017; Kiernan et al., 2011; Mehta et al., 2018). About 70% of patients initially present with a 

spinal or limb onset of symptoms whereas only 25-30% have initial bulbar symptoms such as 

dysphagia or dysarthria resulting in shorter survival time compared to the former (Kiernan et 

al., 2011). On the other hand, ALS can be categorized with regards to its genetic background. 

In Western European ALS populations approximately 10% report a positive family history, 

while all other cases are considered sporadic. As a result, the term “familial ALS (fALS)” has 

been introduced. Mutations have been identified in more than 38 genes that are causative in 

a monogenetic way (Brenner & Weishaupt, 2019; Renton, Chiò, & Traynor, 2014).  

Homozygous and heterozygous mutations in SOD1 were first identified to cause monogenetic 

ALS  and account for 20% of genetic ALS cases, resulting in the establishment of several 

animal models, including preclinical pharmacological studies (Rosen et al., 1993). Ever since, 

a growing number of genes have been discovered coding for very different functional proteins. 

Hence, it was hypothesized that the pathophysiological pattern of ALS involves the dysfunction 

of a wide range of cellular pathways: Reactive oxygen species (ROS) accumulation, impaired 

autophagy, cellular transport defects, disbalance in RNA/DNA metabolism, mitochondrial 

dysfunction, impaired DNA damage response and insufficient degradation of cytoplasmatic 

proteins. The latter is of particular importance as it has been discovered that cytoplasmatic, 

ubiquitin-positive aggregates in MNs are found post mortem in all ALS patients. In more than 

90% of all cases, they consist mainly of hyperphosphorylated TAR-DNA binding protein 43 

(TDP-43) and have therefore become the pathohistological hallmark of sporadic and of most 

genetic ALS cases (Neumann et al., 2006). Thus, the discussion arose whether pathological 

protein aggregates per se might cause MN degeneration, similar to pathophysiological theories 
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on other neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease (Hardy & 

Higgins, 1992; Spillantini et al., 1997).   

Interestingly, mutations in TARDBP itself can cause ALS but only account for ~4% of genetic 

cases (Kabashi et al., 2008; Sreedharan et al., 2008). However, the most common mutation in 

genetic ALS is a hexanucleotide repeat expansion in C9ORF72 (40-50%), followed by SOD1 

(20-25%), FUS (5%) and TARDBP (Ghasemi & Brown, 2018; Taylor, Brown, & Cleveland, 

2016). Fused in sarcoma (FUS), another gene with very similar structure and functions on the 

protein level as TDP-43, was found to be mutated in a few families with an abundance of ALS 

cases in their pedigrees in 2009 (Kwiatkowski et al., 2009; Vance, Rogelj, Hortobágyi, et al., 

2009). This supports the idea of a central involvement of DNA/RNA-binding proteins in the 

pathology of familial and sporadic ALS, because both, FUS and TDP-43 share the nucleic acid 

binding capacity. However, despite the considerable efforts and success in unravelling the 

disease mechanisms, it is still not clear what mediates the MN degeneration, which is one 

reason why therapeutic options are still very limited. The established drug in the treatment of 

ALS, Riluzole, prolongs the survival by 2-3 months on average (Miller, Mitchell, Lyon, & Moore, 

2003). There is no causal therapy because of the still existing lack of pathophysiological 

knowledge about disease development and of reliable disease models.  

 

1.2 Fused in Sarcoma 

Screening for novel therapeutic options to alleviate ALS has been challenging in the last 

decades. One of the complicating factors might have been the fact that most of the tested 

drugs resulted from research based on genetic ALS models with mutations in SOD1 

(Cudkowicz et al., 2010). It is speculative whether these models also reflect general sporadic 

ALS disease, considering that many other genetic variations in genes encoding for DNA/RNA- 

binding proteins associated with genetic ALS have been discovered in recent years. One of 

the affected genes is FUS, which is located on chromosome 16p11.2 (Kwiatkowski et al., 2009; 

Vance, Rogelj, Hortobagyi, et al., 2009). Because of the structural and functional similarity of 

FUS to TDP-43 it has been intensively studied in the last decade in the context of motoneuronal 

pathology, but it has been primarily described in malignant liposarcoma. Therein, fusion of FUS 

with the dominant negative transcription factor CHOP (C/EBP homologous protein) by 

chromosomal translocation was found to promote oncogenic transformation (Crozat, Aman, 

Mandahl, & Ron, 1993; Rabbitts, Forster, Larson, & Nathan, 1993). The FUS gene consists of 

15 exons with a length of ~14.9 Kb. Its translated gene product contains 526 amino acids with 

several functional domains. The N-terminal domain comprises a Q/G/S/Y-rich region (1-165), 

which makes it a low complexity region also called a “prion-like-domain” (PLD) because of its 
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similarity to the yeast prion protein (King, Gitler, & Shorter, 2012). Furthermore, it contains an 

arginine-rich RNA-recognition-motif, two RGG-repeat regions, one zinc-finger motif and at the 

C-terminal site a non-conventional proline-tyrosine nuclear localisation sequence (PY-NLS) 

(Shang & Huang, 2016). Mutations in FUS have been detected in 1% of sporadic and up to 

5% of familial cases making it the third most common genetic ALS form in Germany (Brenner 

& Weishaupt, 2019). Disease-relevant genetic alterations are mainly located in the C-terminal 

PY-NLS region of the protein resulting more frequently in a more severe disease course 

compared to sporadic ALS (Conte et al., 2012; Müller et al., 2018; Waibel et al., 2013), which 

was substantiated by the finding that FUS mutations are most prevalent in young onset ALS 

patients in Germany in general (Hübers et al., 2015). In contrast, others reported on strikingly 

old patients with evident FUS mutation (Akiyama et al., 2016; Shang & Huang, 2016) making 

individual disease prognosis an impossible task for the consulting physician.  

As a molecular consequence of mutations in the NLS, the FUS protein shuttling is impaired, 

which impacts on the cellular localisation of the FUS protein and lowers its physiological 

nuclear abundance. Different types of NLS mutations lead to a very distinct extent of this 

pathological cytoplasmatic shift in various cell models (Bosco et al., 2010; Dormann et al., 

2010; Vance, Rogelj, Hortobágyi, et al., 2009). This has also been shown to be correlated with 

the clinical disease onset (Dormann et al., 2010; Waibel et al., 2013), suggesting an influence 

of the cytosolic FUS localisation on the clinical disease severity. It remains to be demonstrated 

how these different mutations in the same gene affect MN biology and survival. Nonetheless, 

the pathological cytoplasmatic distribution and aggregation of FUS have become the disease 

hallmark of FUS-ALS clearly separating it from TDP43-ALS forms. It has been shown that the 

protein mislocalization is caused by impaired nucleocytoplasmic shuttling via at least two main 

pathways. First, it was found that the Transportin 1 (TRN)/Karyopherin-beta-2 mediated 

nuclear import of FUS across the nuclear pore complex is perturbed by FUS-NLS mutations 

(Dormann et al., 2010) and that its binding to TRN is modulated by arginine methylation of the 

RGG domain adjacent to the PY-NLS. As a consequence, cytoplasmatic and methylated 

inclusions were found in post mortem specimens of FUS-ALS patients (Dormann et al., 2012). 

Recently, a human stem cell derived cell model of cortical neurons could reflect the same 

pattern in vitro (Japtok et al., 2015). Moreover, studies in mice with differently generated FUS-

NLS mutations could reproduce the MN phenotype (Devoy et al., 2017; Scekic-Zahirovic et al., 

2017). Second, an active mechanism of exclusion from the nucleus of FUS was demonstrated. 

This involved N-terminal phosphorylation at 12 different putative serine/threonine residues 

followed by glutamine (S/T-Q), which was mediated by the DNA-protein kinase (DNA-PK) 

functioning downstream in the Non-homologous end joining (NHEJ) DNA double strand break 

repair pathway (Deng et al., 2014). This study offered an explanation for the phenomenon that 

WT-FUS aggregates were found in post mortem specimens of neurons in the frontal lobe in a 
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subset of patients with frontotemporal dementia (FTD) without germline mutations in FUS 

(Neumann et al., 2009).  

Of note is that the presented genotype-phenotype correlation of impaired nucleocytoplasmic 

transport of FUS due to NLS mutations did not cover all aspects of FUS-ALS genetics. To a 

much lesser extent, mutations are also found within the N-terminal PLD or RGG domains 

without diminishing the nuclear presence of FUS (Dormann et al., 2012; Dormann et al., 2010). 

Recently, it has been shown that these N-terminal mutations might negatively influence the 

process of phase-separation (Murakami et al., 2015). This term describes the particular 

characteristics of some proteins to form tight molecular assemblies that change their physical 

properties. However, internally disordered, low complexity domains with an abundance of polar 

amino acids as they are found in the PLD of FUS are needed to fulfil this task. Tight 

intermolecular assembly between PLDs allows the creation of higher-order structures, which 

are membrane-less compartments within the cell with different physical properties reminiscent 

of an oil in water droplet (Murthy et al., 2019). It is currently assumed that such structures are 

highly advantageous for many biological processes like transcription, DNA damage repair or 

cellular stress response as they allow temporal and spatial control of involved proteins (Nott, 

Craggs, & Baldwin, 2016). However, this process might also give rise to the formation of 

pathological protein aggregates in neurons in case disassembly is impaired or the 

corresponding stress does not disappear (King et al., 2012). Therefore, the theory of 

PLD/phase separation has become an emerging research area in the field of 

neurodegenerative diseases in general. 

FUS performs its function as a DNA/RNA binding protein and is centrally implicated in splicing 

regulation, stress granule formation and DNA repair (Bosco et al., 2010; Lattante, Rouleau, & 

Kabashi, 2013; Shang & Huang, 2016). More than 20 years ago it was demonstrated to 

promote homologous DNA-pairing and D-loop formation (Baechtold et al., 1999; Bertrand, 

Akhmedov, Delacote, Durrbach, & Lopez, 1999). However, clear evidence for an important 

role in the DNA damage repair process has only been found in recent years. Following 

oxidative DNA damage FUS was shown to be recruited to the DNA damage site (DDS) within 

seconds after the activation of Poly-[ADP-ribose]-polymerase 1 (PARP1), presumably by 

binding to Poly-[ADP-ribose] (PAR) chains via its RGG2 domain (Mastrocola, Kim, Trinh, 

Rodenkirch, & Tibbetts, 2013a; Rulten et al., 2014). The function of PARP1 is mainly explained 

by producing a molecular scaffold of negatively charged PAR as a posttranslational 

modification on itself and a variety of other proteins, thus providing the basis for efficient 

recruitment of factors of the DNA damage response (DDR) by chromatin modulation (Pascal, 

2018). Given that PARP1 is regarded as a sensor of a variety of occurring DNA damage 

entities including DNA single and double-strand breaks implies a central role for FUS in the 
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early DDR (Beck, Robert, Reina-San-Martin, Schreiber, & Dantzer, 2014). Another important 

finding was its close relationship to the Histone Deacetylase 1 (HDAC1) in the DDR for both 

DNA single-strand and double-strand break repair. This was shown to be disturbed by FUS-

NLS mutations (in that particular case, the R521C mutation), possibly by impairing chromatin 

dynamics or histone acetylation regulation (W. Y. Wang et al., 2013). Considering that FUS -

/- mice and murine embryonic fibroblasts display abundant chromosomal instability and 

increased radiation sensitivity, underlines the importance of FUS in the context of DNA damage 

repair (Hicks et al., 2000; Kuroda et al., 2000).  

 

1.3 A Human Model System for ALS  

The investigation of heterozygous, FUS mutation-related ALS human cell models was set as 

the scientific perspective of this dissertation, which was realised by using the human-induced 

pluripotent stem-cell (hiPSC) technique as the novel gold standard of disease modelling. The 

hiPSC cell culture was established in 2006 for murine cells (Takahashi & Yamanaka, 2006) 

and 2007 for human cells (Takahashi et al., 2007) and has been reproduced and applied in a 

wide variety of different biochemical experiments and scientific work. Disease modelling has 

become one key adaptation of this technique because it offers the unique opportunity to 

potentially create any cell type of the human body derived from stem cell status without the 

necessity to perform hazardous biopsies, thus enabling for the first time ever the in-vitro 

cultivation and investigation of living human patient-derived MN. It also circumvents major 

ethical objections to the use of human embryonic stem cells.   

The procedure of reprogramming was performed on patient cells that had been collected by 

skin biopsy prior to the presented work. Only ALS patients with evident heterozygous mutations 

in FUS detected by Sanger sequencing/next-generation sequencing were selected. 

Furthermore, healthy adult individuals were randomly selected to provide age- and gender-

matched controls. Genetic testing was performed on them, and they were only included if this 

was negative for mutations in the four main ALS genes C9ORF72, SOD1, FUS, and TDP43. 

Moreover, no objections are given regarding the pathogenicity of the individual mutations as is 

the case with non-human or non-neurological models when artificially introducing the genetic 

modification.  

To optimize the control conditions, an isogenic cell pair was generated using the CRISPR-

Cas9n technique on an hiPSC line derived from a FUS-NLS patient with an R521C mutation. 

The original mutation was removed and either a new pathogenic P525L mutation or the 

physiological information for arginine was included at the locus 521. In both cell lines, a 9bp-

linking DNA sequence was added after the C-terminal end, extended by a GFP tag to facilitate 
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the imaging of living cells. The correct genotype for both cell lines was confirmed by PCR, 

which revealed the heterozygous presence of either FUS-WT-GFP or FUS-P525L-GFP and 

endogenous FUS-WT, respectively.   

However, it is important to note that the cells generated by the above steps were provided for 

the scientific work of this dissertation, but their creation was not part of this work.  
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2. Aims of the thesis 
The scientific perspectives of this dissertation were defined as follows: The initial aim was to 

establish a patient-derived human neuronal cell model of FUS-associated ALS in order to gain 

new pathophysiological insights into the still elusive disease mechanisms of spinal motor 

neuron demise. Importantly, in order to pursue in-depth biomolecular studies using this model 

system, it was primarily necessary to validate it by comparison with existing non-human 

models. Subsequently, hypothesis-driven assessments of pathophysiological changes were 

performed by comparing with WT control cells, which included therapeutic drug testing. Finally, 

the aim was to clinically translate the previously obtained results by extrapolating the 

biomolecular data to the FUS-ALS patient characteristics.  
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3. Results 

3.1 Establishment of an In-Vitro Patient-Derived Cell Model of FUS-ALS to 
Investigate Pathological Pathways of Motor Neuron Degeneration 

The following sections refer to the first publication on which this dissertation is based: 

Naumann M, Pal A, Goswami A, Lojewski X, Japtok J, Vehlow A, Naujock M, 

Günther R, Jin M, Stanslowski N, Reinhardt P, Sterneckert J, Frickenhaus M, Pan-

Montojo F, Storkebaum E, Poser I, Freischmidt A, Weishaupt JH, Holzmann K, 

Troost D, Ludolph AC, Boeckers TM, Liebau S, Petri S, Cordes N, Hyman A, Wegner 

F, Grill S, Weis J, Storch A, Hermann A. Impaired DNA damage response signaling 

by FUS-NLS mutations leads to neurodegeneration and aggregation formation. 

Nature Communications (2018), 9:335. DOI: 10.1038/s41467-017-02299-1 

The first important step was the stable establishment of the sMN culture in our laboratory 

relying on the original protocol of Reinhardt et al. 2013. The basis for this procedure was the 

cell culture of neuronal progenitor cells, which were derived from patient-specific and control 

hiPScs from healthy donors. A total of 5 cell lines from 3 FUS-ALS patients, 4 control cell lines, 

and the isogenic pair generated by CRISPR-Cas9n were included in the project (Table 1, 

Naumann & Pal et al. 2018).  

The original Reinhardt protocol described the fast and efficient differentiation of NPC, which 

served as a resource for the production of sMNs (Reinhardt et al., 2013). This was facilitated 

by a differentiation step with pumorphamine, a sonic hedgehog agonist, and retinoic acid. 

Thereafter, neuronal maturation was required by adding neurotrophic factors. In between, it 

was possible to split the cells, which had the advantage that other cell culture application 

formats could be defined for different experimental approaches with NPCs in patterning. 

Moreover, to a certain extent it allowed a purification of matured neurons. The detailed protocol 

is shown in Figure 1a (Naumann & Pal et al. 2018). It was possible to keep the cells in this 

maturation medium for over 100 days.  

Importantly, the neurons were positive for a range of specific markers of neuronal 

development. First, the neural progenitor cells showed immunocytochemical (ICC) staining for 

SOX2 and Nestin. In the same way, Hb9 (Homeobox gene 9) and Islet1 (Figure 1e; Naumann 

& Pal et al. 2018), which are early sMN markers, could be detected in differentiation after a 

few days. Prolonged cultivation with selected growth factors finally yielded mature sMNs as 

indicated by positive staining for Map2, Beta-III-Tubulin, and SMI32 (Figure 1b, Naumann & 

Pal et al 2018). Furthermore, all SMI32-positive neurons were co-stained for the enzyme 

choline acetyltransferase (ChAt), proving that the culture produced contained spinal MN, in 

contrast to cortical MN, which lack this protein. It is important to note that due to the absence 
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of a GFAP-ICC signal, no glial cells were detectable and that approximately 50% of all neurons 

were positive for specific MN markers.  

Fourteen days after the start of differentiation, no clear difference was detectable between 

mutant and control cells regarding the ratio of sMNs over all neurons. The same was evident 

for the rate of spontaneous necrotic cell death observed in the staining for propidium iodide 

and Hoechst arguing against an early loss of MN. At that time, the cellular localisation of the 

FUS protein, which is known to be shifted into the cytoplasm in other FUS-ALS disease 

models, was normal in the FUS mutated neurons with the R521C or R521L amino acid change. 

However, extended culturing over a longer time span revealed the spontaneous appearance 

of FUS-immunoreactive dots in the cytoplasm and axons exclusively of mutated sMNs. This 

indicated a gradual development of pathological changes, which is perfectly consistent with 

the nature of a neurodegenerative disease. 

A disadvantage of the established cell culture was its heterogeneous structure, which made it 

difficult to delineate anatomical changes during the expected disease progress. The cell bodies 

and large axons formed a complex network that made it impossible to adequately assess axon 

retraction or integrity. Therefore, a system was designed that ensured the directed growth of 

axons in a cell culture dish. This was realised by applying the microfluidic chamber (MFC) 

technique, which allowed the integration of small silicon chambers into the cell culture system, 

which required a special surface coating procedure in order to ensure MFC adherence with a 

given coating. The background was that the neurons in patterning were detached from their 

original culture plate and re-seeded into one side of the chamber system. However, the 

neuronal cell bodies were too large to grow within the microfluidic channels that connected one 

so-called main channel to the other. Only axons were capable of penetrating in this way, 

resulting in selective axonal sprouting at the exit site of the microchannels. In order to improve 

the rate of axonal sprouting, a growth factor gradient in favour of the exit site was designed 

serving as a guidance stimulus. By using a defined length of microchannels, contamination 

with dendrites was prevented, which allowed selective observation of different axonal 

compartments of the sMNs. Subsequent ICC within the MFC dish confirmed this by an 

exclusively positive signal for axonal proteins in the distal compartment (Figure 2 a,b; 

Naumann & Pal et al. 2018). Since its establishment in conjunction with primary neuronal 

mouse culture this was the first time the technique has been used for a human neuronal cell 

culture. Importantly, the application of the MFC technique facilitated the assessment of a 

purified axonal culture for more focussed experiments with sMN axons as the presumed mainly 

affected cellular compartment in ALS pathology. 
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3.2 Application of the Established Model System for Pathophysiological Studies  

3.2.1 Axonopathy and “Dying-Back” pathology is the prominent phenotype in FUS-
ALS 

The following sections refer to:  

Naumann M, Pal A, Goswami A, Lojewski X, Japtok J, Vehlow A, Naujock M, 

Günther R, Jin M, Stanslowski N, Reinhardt P, Sterneckert J, Frickenhaus M, Pan-

Montojo F, Storkebaum E, Poser I, Freischmidt A, Weishaupt JH, Holzmann K, 

Troost D, Ludolph AC, Boeckers TM, Liebau S, Petri S, Cordes N, Hyman A, Wegner 

F, Grill S, Weis J, Storch A, Hermann A. Impaired DNA damage response signaling 

by FUS-NLS mutations leads to neurodegeneration and aggregation formation. 

Nature Communications (2018), 9:335. DOI: 10.1038/s41467-017-02299-1  

Pal A, Glaß H, Naumann M, Kreiter N, Japtok J, Sczech R, Hermann A. High content 

organelle trafficking enables disease state profiling as powerful tool for disease 

modelling. Sci Data. 2018 Nov 13;5:180241. 

Remarkably, within the MFC dish time lapse assessment over several weeks revealed a 

continuous retraction of primarily well-grown axons from mutated neurons in comparison to 

controls, which were also characterized by axonal swellings and later axonal fragmentation. 

However, it was much later that significant neuronal cell loss was detected in conjunction with 

increased cleaved caspase 3 signal suggesting a primary event leading to axonal degeneration 

and secondary cell body demise (Figure 2c-I; Naumann & Pal et al. 2018).  

It was therefore asked whether functional impairments of the axons occurred prior to structural 

changes. Indeed, axonal transport deficits have been discussed earlier as a theory for the 

pathogenesis of ALS (De Vos & Hafezparast, 2017). A convenient way to monitor such 

features was the live-cell microscopy of transported organelles like mitochondria or lysosomes. 

Fluorescent dyes (MitoTrackerTM/ LysoTrackerTM) are available for both, which enable quick 

and easy fluorescence staining with low toxicity. 

Similar to the previously demonstrated temporal change in pathological features, a gradual 

loss of mitochondria and lysosomes and a virtual standstill in distal axons was observed in 

FUS-mutated sMNs (Figure 4a; Naumann & Pal et al. 2018). These results were already 

detectable on day in-vitro (DIV) 21, but organelle size and movement were normal on DIV 9. It 

is important that the findings occurred before any structural changes in the axons could be 

detected.  Furthermore, on closer examination, the mitochondria showed a reduced length and 

an abolished mitochondrial membrane potential (MMP) selectively in the distal compartment 

of the microchannels. The MMP was analysed separately by the special mitochondrial 
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fluorescent probe JC-1, which emits light of different wavelength, depending on the MMP. This 

observation could be made for all different FUS mutations, including the P525L produced by 

CRISPR-Cas9n, whose counterpart, the isogenic control, was unremarkable. Importantly, the 

readout was semiautomated, which allowed the high-content assessment and quantification 

of a large number of organelle features beyond size and count. In this way, specific signatures 

of combined characteristics for different cell lines could be established, e.g. enabling high-

throughput drug screening (Pal et al., 2018).   

Together with the axonal retraction, these results also indicated a pathological involvement of 

the distal axons in FUS mutant sMNs. Neuropathological examinations of FUS-ALS patient 

material conducted by cooperation partners were in line with these findings and showed a 

denervated and severely degenerated skeletal musculature with a less pronounced loss of 

alpha-motor neuron cell soma, which suggested a primary axonopathy (Figure 3; Naumann & 

Pal et al. 2018).  

 

3.2.2 Increased DNA damage is seen in FUS-ALS sMNs and induction of DNA 
damage mimics FUS-ALS distal axonopathy 

The following sections refer to parts of:  

Naumann M, Pal A, Goswami A, Lojewski X, Japtok J, Vehlow A, Naujock M, 

Günther R, Jin M, Stanslowski N, Reinhardt P, Sterneckert J, Frickenhaus M, Pan-

Montojo F, Storkebaum E, Poser I, Freischmidt A, Weishaupt JH, Holzmann K, 

Troost D, Ludolph AC, Boeckers TM, Liebau S, Petri S, Cordes N, Hyman A, Wegner 

F, Grill S, Weis J, Storch A, Hermann A. Impaired DNA damage response signaling 

by FUS-NLS mutations leads to neurodegeneration and aggregation formation. 

Nature Communications (2018), 9:335. DOI: 10.1038/s41467-017-02299-1  

Based on the initially stated important role of FUS in relation to the DDR, the hypothesis was 

made that FUS mutations might play a role in this setting, as previously demonstrated in murine 

neurons (W. Y. Wang et al., 2013) and that this might be related to the axonal phenotype. ICC 

staining of histone gamma-H2A.X phosphorylated by kinases such as Ataxia telangiectasia 

mutated protein kinase (ATM) or DNA-PK on Serine-139 as part of the DNA damage response 

pathway has been widely used for the quantitative assessment of DNA double-strand break 

(DSB) foci. As a control, 53BP1 was labelled in the same way, which is another protein in the 

DSB repair cascade and showed a similar localisation as gamma-H2A.X (Figure 5a, b, g; 

Naumann & Pal et al. 2018). 
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An increased signal and an increased amount of gamma-H2A.X dots could already be detected 

in NPC with different FUS-mutations compared to controls. The same was true for sMN DIV 

14, which implied a generally elevated DDR as an early key element of FUS-mediated 

pathology. Etoposide was used as a positive control, which promoted the production of DSBs 

due to abortive transcription by irreversible binding and inhibition of the topoisomerase II. In 

fact, etoposide also significantly increased the gamma-H2A.X signal in the controls (Figure 5a-

g; Naumann & Pal et al. 2018). Next, the hypothesis was put forward that the DNA damage 

itself is sufficient to cause axonal demise in MN. For this, etoposide was selectively added to 

the proximal compartment of the MFC (=soma side) containing healthy donor-derived sMNs. 

In fact, a pattern very similar to the results of FUS mutant sMNs was observed, including a 

lack of organelle movement and loss of MMP in distal axons, suggesting nucleo-axonal 

crosstalk (Figure 5h; Naumann & Pal et al. 2018). This implied DNA damage as an upstream 

event in the lethal cascade of FUS-ALS, which is why this pathway was studied in more detail.  

 

3.2.3 Effect of FUS-NLS mutations on DNA repair mechanisms in patient-derived 
cells. 

The following sections refer to parts of:  

Naumann M, Pal A, Goswami A, Lojewski X, Japtok J, Vehlow A, Naujock M, 

Günther R, Jin M, Stanslowski N, Reinhardt P, Sterneckert J, Frickenhaus M, Pan-

Montojo F, Storkebaum E, Poser I, Freischmidt A, Weishaupt JH, Holzmann K, 

Troost D, Ludolph AC, Boeckers TM, Liebau S, Petri S, Cordes N, Hyman A, Wegner 

F, Grill S, Weis J, Storch A, Hermann A. Impaired DNA damage response signaling 

by FUS-NLS mutations leads to neurodegeneration and aggregation formation. 

Nature Communications (2018), 9:335. DOI: 10.1038/s41467-017-02299-1  

Martinez-Macias MI, Moore DA, Green RL, Gomez-Herreros F, Naumann M, 

Hermann A, Van Damme P, Hafezparast M, Caldecott KW. FUS (fused in sarcoma) 

is a component of the cellular response to topoisomerase I-induced DNA breakage 

and transcriptional stress. Life Sci Alliance. 2019 Feb 26;2(2). 

Since the repair of DNA damage is a fast and strictly regulated process, a different approach 

was needed to monitor rapid changes in neurons. It has been shown previously that FUS is 

rapidly recruited within seconds to the site of DNA damage induced by UV laser irradiation 

(Mastrocola, Kim, Trinh, Rodenkirch, & Tibbetts, 2013b; Rulten et al., 2014). Using a very 

similar laser ablation microscope as described in the publications mentioned above, these 

results could be confirmed for human FUS-GFP hiPSC-derived sMNs (Figure 6a; Naumann & 

Pal et al. 2018). UV laser irradiation through a laser ablation microscope with a spinning disc 
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module allowed the precise induction of spatially and temporally controlled DNA damage, 

although it was not possible to clearly distinguish between different qualities of DNA damage. 

The human FUS-WT-GFP was recruited to the DNA damage site (DDS) within seconds, which 

was not the case with the FUS-P525L-GFP variant in the mutated cell line. Most of the FUS-

P525L-GFP signal was detected outside the nucleus, suggesting a redistribution problem to 

be causative for the aborted DDS recruitment (Figure 6a; Naumann & Pal et al. 2018). 

Therefore, experimental conditions were necessary to intervene in the relevant DDR pathways 

FUS is involved in in order to gradually reflect the pathological changes. It has been shown 

that FUS is recruited secondarily to the activity of PARP1 (Rulten et al., 2014).  The addition 

of an inhibitor of PARP to the control cell lines confirmed these findings in human sMNs. Not 

only a complete loss of FUS-WT-GFP recruitment was observed but also a shift of the FUS-

WT-GFP into the cytoplasm. On the other hand, blocking the activity of the main PAR-cleaving 

enzyme poly (ADP-ribose) glycohydrolase (PARG) with a selective inhibitor resulted in a partial 

redistribution of FUS-P525L-GFP into the nucleus in the mutated cells. This was accompanied 

by an improvement in the recruitment to the DDS in the mutated cells. Inhibition of DNA-PK 

activity with a selective inhibitor similarly caused a redistribution into the nucleus of FUS-

P525L-GFP and restored its recruitment at DNA damage sites (Figure 6c, e; Naumann & Pal 

et al. 2018). In accordance with these results, the treatment of control cells with etoposide led 

to a shift of nuclear FUS-WT-GFP into the cytoplasm, probably due to the DNA-PK activity 

induced by the DNA damage occurring. However, the observation was different from that for 

the use of the PARP inhibitor (Figure 7; Naumann & Pal et al. 2018). Etoposide needed several 

hours to change the balance of FUS in favour of the cytoplasm, and only then FUS-WT-GFP 

could no longer be recruited to the irradiated DDS. In contrast, PARP inhibition primarily 

inhibited the DDS recruitment and later led to a cytoplasmic shift of FUS-WT-GFP. Importantly, 

double treatment experiments with DNA-PK inhibition and either PARP inhibitor or etoposide 

revealed the preservation of nuclear FUS-WT-GFP in both mutant and control cell lines when 

incubated primarily with the DNA-PK inhibiting factor.   

Furthermore, the mechanism presented in the last section also had an influence on the axonal 

integrity of the treated neurons. It was hypothesized that the functional conservation of the 

mutant FUS-P525L-GFP in the nucleus could also have an influence on the axonal phenotype 

previously observed in this work and, on the contrary, if the same could be reproduced when 

abrogating FUS-WT-GFP in the nucleus. In fact, both etoposide and PARP inhibition treatment 

in the proximal compartment of MFCs led to a stillstand of lysosomes and mitochondria and 

loss of the MMP in distal axons of WT sMNs (Figure 6g; Naumann & Pal et al. 2018). On the 

other hand, in the FUS mutated sMNs, this phenotype could be prevented by the addition of 

the PARG1 or DNA-PK inhibitors to the proximal site of the MFCs, resulting in a condition 

indistinguishable from the WT control. 
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In summary, the presented results provide evidence for a novel pathomechanism in mutated 

FUS neurons: a primary nuclear dysfunction of FUS due to reduced nuclear import as a result 

of ALS-associated NLS mutations leads to a secondary distal axonopathy and a progressive 

axonal retraction. Furthermore, the aggregate formation of cytoplasmic FUS could be 

modulated by intervening in the important DDR pathways in both FUS-WT and FUS-P525L, 

suggesting that this is a downstream event.  

In addition to this work, the role of FUS in transcription-associated DNA damage was 

investigated, which was done in collaboration with the laboratory of Prof. Dr. Keith Caldecott 

(Martinez-Macias et al., 2019). In particular, transcription-associated stress is a major source 

of DNA damage in neurons, considering their high transcriptional activity (McKinnon, 2017), 

and FUS was previously implicated in the repair of transcription-associated DNA damage (Hill 

et al., 2016). The arrest of mRNA transcription either by direct inhibition of RNA Pol II or by 

inhibition of the topoisomerase I, which produced transcription-associated SSB, led to a shift 

of FUS from the transcription site to the nucleolus, irrespective of its usual dependence on 

PAR production. This process was not abrogated by the presence of FUS-P525L-GFP. 

However, fibroblasts from patients with various FUS-NLS mutations, including the P525L 

amino acid alteration, showed a reduced survival when exposed to topoisomerase I inhibition 

compared to control cells. 
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between the nucleus and cytoplasm is essential for physiological cell function. However, the

initial event in the pathophysiology of FUS-ALS remains enigmatic. Using human induced

pluripotent stem cell (hiPSCs)-derived motor neurons (MNs), we show that impairment of

poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response (DDR) signaling

due to mutations in the FUS nuclear localization sequence (NLS) induces additional cyto-
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formation. Our work suggests that a key pathophysiologic event in ALS is upstream of

aggregate formation. Targeting DDR signaling could lead to novel therapeutic routes for

ameliorating ALS.
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Amyotrophic lateral sclerosis (ALS) is a devastating neu-
rodegenerative disease leading to death within 2–5 years
of symptom onset. Fused in Sarcoma (FUS) is one of the

most frequently mutated genes in familial ALS (fALS), being
responsible for approx. 5% of fALS and up to 1% of sporadic ALS
(sALS)1,2 cases. Autosomal-dominant mutations within the
nuclear localization signal (NLS) region of FUS are by far
the most prevalent mutations and clearly pathogenic3, with the
R521C and R521H point mutations being the most common2.
While physiological FUS function depends on proper shuttling
between the nucleus and cytoplasm, cytoplasmic FUS aggregates
are a pathological hallmark of FUS-ALS.
FUS mislocalization due to nucleo-cytoplasmic shuttling4

depends on two main pathways. First, Transportin (TRN)-
mediated nuclear import of FUS is known to be disrupted by
FUS-NLS mutations4–6. Arginine methylation of the PY-NLS
domain modulates TRN binding to FUS and its nuclear import.
Inhibition of arginine methylation is known to restore TRN-
mediated nuclear import in FUS-NLS mutant HeLa cell culture
models5. Similarly, FUS+ aggregates in ALS postmortem speci-
mens contain methylated FUS5, which was also recently reported
for iPSC-derived cortical neurons7. Second, Deng and colleagues
reported DNA-damage-induced FUS phosphorylation by the
DNA-dependent protein kinase (DNA-PK), leading to nuclear
export of FUS8.

Previous reports on human motor neuronal cell culture models
of FUS-ALS showed the acquirement of typical neuropathology,
such as cytoplasmic mislocalization of mutant FUS as well as
appearance of FUS+ cytoplasmic inclusions7,9–11. However,
mechanistic insights into how these events cause neurodegen-
eration and about upstream events are still lacking.
FUS is physiologically involved in RNA metabolism (tran-

scription, splicing, and export to cytoplasm) and DNA repair3.
Recent data suggest a significant role in DNA damage response
(DDR) downstream of poly(ADP-ribose) polymerase (PARP)
not involving ATM or DNA-dependent protein kinase
(DNA-PK)12–14. DNA damage is the primary activator of PAR
polymerase 1 (PARP1) that catalyzes the reaction of poly(ADP-
ribosylation) (for review see ref. 15). Previous studies showed that
FUS is rapidly recruited to DNA damage sites (DDS) in a PAR-
dependent manner13,14,16. Indeed, PARP1 arrives within seconds
of DNA damage followed immediately by FUS17. PAR is degra-
ded by poly(ADP-ribose) glycohydrolase (PARG)18 and PARG
inhibition leads to prolonged recruitment of FUS to DDS17. In
addition, an interaction of FUS and Histone deacetylase 1
(HDAC1) was reported to be diminished by FUS NLS mutations
resulting in impairment of proper DDR14,19. FUS directly inter-
acts with PAR13 and PARylation was shown to induce additional
PARP1 recruitment to DDS20.

Wang and colleagues reported two FUS-NLS cases that
exhibited increased DNA damage in the postmortem motor
cortex14. In addition, increased levels of oxidative DNA damage
were reported in the spinal cord of both sporadic and familial
ALS patients21. While mice carrying FUS NLS mutations also
showed signs of increased DNA damage19, FUS−/− mice have
obvious signs of genetic instability22.

Recent studies suggest that PARP is involved in forming liquid
compartments of FUS at DDS, and that aberrant phase transition
of the liquid compartments to solid-like aggregates could be
involved in the onset of the disease17,23–25. However, the rela-
tionship between DNA damage and the formation of cytoplasmic
aggregates and to neurodegeneration is unknown. Here, we (i)
develop a human MN model of FUS-ALS with endogenously
tagged protein, (ii) investigate DNA damage in MNs and (iii) link
DDR signaling to aggregate formation and neurodegeneration.
Moreover, we report a neuronopathy with distal axon

degeneration as the major phenotype of FUS-ALS prior to FUS
aggregation. Furthermore, we show that inappropriate DDR sig-
naling due to FUS NLS mutations is a key upstream event in
FUS-ALS enhancing/inducing a vicious cycle by increasing
cytoplasmic FUS shuttling. This study suggests that targeting
DNA damage could be a new therapeutic strategy for ALS.

Results
Patient-specific FUSmt motor neurons reproduce key pathol-
ogy. To develop a human MN model of FUS-ALS, we generated
human induced pluripotent stem cells (hiPSCs), by classical ret-
roviral “Yamanaka-factor” reprogramming, from three different
FUS-ALS patients carrying diverse NLS mutations (R521C,
R521L, R495QfsX527; Fig. 1, Table 1). Additionally, we generated
isogenic iPSC lines by CRISPR/Cas9n from one clone of the
R521C hiPSC lines by generating both a wildtype and a new
(P525L) mutation carrying an additional c-terminal GFP tag
(Supplementary Fig. 1). We included only fully characterized
hiPSC with a normal karyotype and confirmed mutations in our
study (see Methods). We generated fully functional MNs and
then tested for acquisition of hallmark pathology (Fig. 1a–e)26.
Spinal MN differentiation yielded ≈50% MNs with no difference
between healthy controls and FUS-ALS patient lines (Fig. 1c).
MNs expressed typical markers for spinal MNs, including HB9,
Islet, SMI32 and ChAt (Fig. 1b, e)27. We neither observed
increased cell death nor pathological FUS aggregation in the early
stages of MN differentiation (Fig. 1c, f). Electrophysiology
revealed the presence of voltage-gated sodium and potassium
channels (Fig. 1g, h, l), firing of evoked and spontaneous action
potentials (Fig. 1i, j) and periodical spontaneous increases of
intracellular calcium (Fig. 1k), providing evidence of neuronal
function28. Interestingly, we show a hypoexcitability in FUSmt
MNs that was abolished by genotype correction (Fig. 1m–p).
After extended maturation (>30 days of differentiation), FUS-
ALS—but not control-derived—spinal MNs increasingly showed
cytoplasmic FUS translocation and spontaneous appearance of
cytoplasmic FUS inclusions (Fig. 1f). Those inclusions were
also positive for methylated FUS as typically seen in FUS-ALS
(Fig. 1f)5,7. Immunoblot analysis of spinal MNs further confirmed
Triton-x insoluble FUS aggregates (dot blot) and increased
polyubiquitinylation in R521C FUS MNs (Fig. 1d, Supplementary
Fig. 11). Taken together, we have developed an iPSC-based
human spinal MN disease model of FUS-ALS showing normal
differentiation into fully functional spinal MNs with subsequent
acquisition of hallmark pathology—including neuronal dysfunc-
tion and protein aggregation—during cellular aging. This model
is ideal for pathophysiological studies.

Mutant FUS predominantly affects distal axons. To further
characterize the FUSmt MNs, we focused on structural changes in
the MNs during in vitro maturation and aging. MNs were
observed using microfluidic chambers (MFCs) (Fig. 2a, b). There
was no obvious structural phenotype after 21 days of maturation
(Fig. 2c–i), but this changed during longer in vitro aging
(Fig. 2c–i). First, we identified significant increased axonal swel-
ling followed by complete loss of motor axons at the distal exit
site in FUSmt only (Fig. 2c, d). Following complete degeneration
of distal axons, there was still no corresponding neuron loss at the
proximal MFC site until 60 DIV (Fig. 2e–g); however, there were
significantly increased caspase3-positive MNs (Fig. 2j–l, Supple-
mentary Fig. S10). This was caused by the underlying FUS
mutation as isogenic lines generated using the CRISPR/Cas9n
technique showed significantly higher numbers of caspase3-
positive MNs in FUSmt during cellular aging (Fig. 2l,
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Supplementary Fig. S10). Cultivation for additional 50 days
yielded an increased MN loss in FUS mutants (Fig. 2g–i).
Consistently, human postmortem tissue from FUS-ALS

patients exhibited severe atrophy of skeletal muscles and

replacement of skeletal muscle parenchyma by connective and
fat tissue (Fig. 3c) indicative of almost complete loss of skeletal
muscle innervation. There was also considerable but not complete
loss of lumbar spinal cord α-MNs with the presence of FUS
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aggregates in surviving α-MNs (Fig. 3a, b-, e, f), and
corresponding partial degeneration of ventral root axons (Fig. 3d).
These data suggest that the neurodegenerative processes pre-
dominantly, however not exclusively, affected the distal axons,
consistent with the results obtained with our in vitro model
(Fig. 2). Thus, the data presented here with our iPSC-derived MN
model are in agreement with a prominent distal axonopathy
combined with a less severe neuronopathy in FUS ALS patients.
We next looked for early events in this neurodegenerative

cascade. We performed live cell imaging of lysosomes and
mitochondria between days 9–30 of maturation (Fig. 4), prior to
the appearance of a structural phenotype (Fig. 2). We detected an
overall reduction in organelle number (data not shown). In
compartmentalized MN cultures using microfluidic chambers
(MFCs), we observed the appearance of an axonal phenotype in

FUS-ALS with a virtual arrest of mitochondria and lysosomes
distally as opposed to normal motility proximally (Fig. 4a–i,
Supplementary Movies 1–3, for detailed statistics of all box plots
refer to Supplementary Tables 1–17). These axon trafficking
defects were not detected in very early time points (9 DIV) but
became obvious from 21 DIV onwards (Fig. 4a–c, Supplementary
Movies 1 and 2). Analysis of Mitotracker JC-1—revealing the
mitochondrial membrane potential—showed a loss of membrane
potential only in the distal axon (Fig. 4d, g, Supplementary
Movie 3) along with reduced mitochondria length (Fig. 4h),
consistent with a recent report on non-neuronal cell models29.
Lysosomes, however, remained normal in size (Fig. 4i). We
confirmed that all control and FUS lines were phenotypically
similar, thereby excluding clonal variability (Supplementary
Figs. 2–9). The phenotypes were caused by the underlying FUS

Table 1 Patient/proband characteristics

Sex Age at biopsy
(years)

Mutation Age at disease
onset

Clinical
phenotype

Disease duration
(months)

Controls hiPSC
Female 48 – – – –
Male 60 – – – –
Female 45 – – – –
Female 50 – – – –

Autopsies Female 71 – – – –
Male 70 – – – –
Male 81 – – – –
Male 80 – – – –
Male 54 – – – –
Male 67 – – – –

FUS-ALS hiPSC
Female 58 R521C 57 Spinal 7
Isogenic control WT-GFP
Isogenic
mutant

P525L-GFP

Female 65 R521L 61 Spinal 60
Male 29 R495QfsX527 n.d. Spinal n.d.

Autopsies Male 40 R521C n.d. Spinal n.d.
Female 70 R521C n.d. Spinal n.d.
Female 35 Y526C49 n.d. Spinal/bulbar n.d.

n.d.: no data

Fig. 1 Basal characterization of iPSC-derived FUS spinal MNs from ALS patients and controls. a Differentiation scheme of FUS and control MNs. b ICC of
maturation markers (Map2, βIII-Tubulin, SMI32) highlighting MNs, bar: 50 µm. c Top: quantification of (b), bottom: quantification of cell death in mutant
FUS versus WT controls, counts of pyknotic nuclei (ratio Propidium Iodide/Hoechst), N= 3, error bars= STDEV. d Western blots and dot blot analysis of
WT (left lane) and FUS mutant (right lane; R521C), iPSC-derived MNs. Cell lysates were either subjected to dot blot analysis for FUS aggregates (top), or
immunoblot analysis and probed with antibodies against FUS, ubiquitin, and tubulin. Note the augmented ubiquitination and aggregation of FUS in FUS
MNs over WT. e Same as b but for more markers to further confirm MN identity: SMI32 (Neurofilament H), Hb9 (Homeobox gene 9),
Cholinacetyltransferase (ChAt), Islet1 (ISL LIM homeobox 1). No glial cells were present in this cell culture indicated by the lack of GFAP- (glial fibrillary
acid protein) positive cells, bar: 100 µm. f Aged FUS MNs displayed cytoplasmic, methylated FUS aggregates (white arrowheads), bar: 10 µm. g–p FUS
mutant iPSC-derived MNs were functional and spontaneously active. g Illustration of stepwise depolarization in increments of 10mV from a holding
potential of −70 to 40mV. h The potassium outward currents and sodium inward currents were normalized for the cell capacitance (mutant FUS cell line
R521L, n= 21). i Recorded in the current-clamp mode during week 7 of differentiation, a majority of mutant FUS iPSC-derived MNs fired a single action
potential (sAP; 90.7± 9.3%; 19 out of 21 cells) upon stepwise depolarization or repetitive action potentials (rAP; 32.7± 4.3%; 7 out of 21 cells). j Mutant
FUS iPSC-derived MNs (48.5± 1.5%) were also spontaneously firing APs in varying frequencies (0.77± 0.19 Hz). k Calcium-imaging analysis revealed the
periodical spontaneous rise of intracellular calcium. l Patch clamp recordings of MN’s. After recording, cells were filled with alexa 488, then labeled with
neurofilament marker SMI32 validating MN identity. m–p Whole-cell patch-clamp data of MN recordings from healthy control (left bars, N= 213), mutant
FUS (R521C.2, green middle bars, N= 24) and corresponding genetically corrected isogenic control line (R521C.2 corrected, right bars, N= 16) confirm the
hypoexcitability phenotype of mutant FUS and suggest a functional recovery of the isogenic controls to healthy control level in terms of repetitive (m) and
spontaneous APs (n), the frequency of post synaptic currents (PSCs) (o) as well as the Na+/K+-ratio (p). Data are plotted as mean, statistical comparison
of healthy and isogenic control with mutant FUS using an unpaired t-test, *, **, ***P values of 0.05, 0.01, and 0.001, respectively, error bars= STDEV (c) or
SEM (h, m–p)
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mutation as isogenic controls generated using the CRISPR/Cas9n
technique presented a normal phenotype (Supplementary Fig. 1,
Fig. 4e, Supplementary Movie 3).

DNA damage causes neurodegeneration in FUS-ALS iPSC
MNs. Recent evidence suggests that DNA damage occurs in
animal models of FUS19 and in patients with FUS-ALS14.
Therefore, we tested for the occurence of DNA double strand

breaks (DSBs) in our hiPSC-derived FUS-ALS MN model.
Immunofluorescence analysis suggested significantly increased
DSBs (γH2AX immunoreactivity) in FUS-ALS-derived neuronal
cells (Fig. 5a–d), in fact increased DSBs were evident in both
mature spinal MNs and in the neural progenitor cells (Fig. 5a–d),
suggesting that these observations correspond to an early event in
the FUS-ALS pathophysiology. This is strengthened by the fact
that increased DSBs were already visible in MNs on DIV14
(Fig. 5b) prior to cytoplasmic FUS mislocalization (Fig. 1f). There
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were significantly more DSBs in the P525L line compared to the
isogenic control line (Fig. 5e). Similar to untreated conditions,
DSBs were significantly increased in P525L neurons compared to
isogenic controls 24 h after treating with etoposide for 1 h
(Fig. 5e). Interestingly, P525L neurons were still able to repair
DNA damage as shown by recovery experiments after etoposide
treatment (Fig. 5e, f).
α-MNs of lumbar spinal cord from FUS-ALS patients (Table 1)

consistently showed DNA DSBs as suggested by a robust
immunoreactivity of γH2AX in the nucleus (Figs. 3f and 5n,
black arrows). Surprisingly, however, a few α-MNs from one
patient (Y526C) showed increased γH2AX labeling both in the
nucleus (Fig. 3f; black arrows) as well as in the cytoplasm (Fig. 3f;
white arrows). Immunofluorescence analysis confirmed the
aberrant co-localization of γH2AX accumulations with FUS
aggregates in the cytoplasm of surviving α-MNs (Fig. 5o, yellow
arrow) in the lumbar spinal cord of this particular patient. Taken
together, our results support the notion that DNA damage is
probably an early event in FUS-ALS.
We next asked whether DNA damage is the cause or

consequence of FUS-ALS pathophysiology30. First, we induced
DNA damage in spinal MNs derived from healthy controls.
Proximal (soma site) etoposide treatment increased DNA DSBs in
controls dramatically (Fig. 5b, d). In addition, this caused a loss of
mitochondrial and lysosomal motility in distal axons (Fig. 5h–j,
Supplementary Movies 4 and 5), a drop in mitochondrial
membrane potential (Fig. 5h, k, Supplementary Movie 4) and

mitochondrial fragmentation (Fig. 5l). These effects were absent
in the proximal axon parts (Supplementary Figs. 3–5, Supple-
mentary Movies 4 and 5), thus mimicking the FUS-ALS
phenotype (Fig. 4). Importantly these effects were also absent
when etoposide or arsenite was added to distal axons only
(Supplementary Figs. 3–5, Supplementary Movies 4 and 5).
Finally, etoposide treatment of hiPSC-derived MNs leads to FUS
mislocalization with the appearance of cytosolic FUS inclusions
(Figs. 5b and 6e), confirming that the DNA damage is upstream
of neurodegeneration and aggregate formation.

Impaired FUS shuttling is the upstream event in FUS-ALS. To
further substantiate the link between DDR, FUS aggregation and
neurodegeneration, we investigated various aspects of DNA repair
signaling in hiPSC-derived MNs (Figs. 6 and 7). At first, we asked
whether NLS mutations in the FUS gene are sufficient to impair
recruitment to DDS in patient-derived human MNs, as recently
reported in heterologous (over-)expression models12–14,19. For
this, we generated isogenic iPSCs with a carboxyterminal GFP tag
on the endogenous FUS protein (wildtype (wt) and mutant (mt)
P525L) (Supplementary Fig. 1, Table 1). Laser microirradiation
caused fast and transient recruitment of FUS-GFP to DNA
damage sites in wt MNs (Fig. 6a, b, Supplementary Movie 6),
however, this process of FUS recruitment was diminished in FUS-
NLS mutant lines (Fig. 6a, b, Supplementary Movie 6) consistent
with the recently reported studies using heterologous expression in
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HeLa cells12,13,17, U2OS cells and murine primary neurons14. In
fact, this inhibition was already observed in neural progenitor cells
(NPCs) (Supplementary Movie 7), implying that this is an early
upstream event. Thus, FUS-NLS mutations also impair FUS
recruitment to DDS in patient-derived MNs.
We next asked whether interfering with nucleo-cytoplasmic

shuttling of FUS is sufficient to impair DNA damage sensing by
FUS. Earlier work has shown that FUS mislocalization depends
on nucleo-cytoplasmic shuttling4 which in turn depends on two
main pathways: Transportin (TRN)-mediated nuclear import of

FUS, known to be disrupted in FUS-NLS mutations4–6, and
DNA-PK mediated nuclear export secondary to DNA damage
induction8. Arginine methylation of the PY-NLS domain
modulates TRN binding to FUS and its nuclear import and
inhibition of arginine methylation is known to restore
TRN-mediated nuclear import in FUS-NLS mutant HeLa
models5. FUS+ aggregates in ALS postmortem specimens were
reported to contain methylated FUS5, consistent with our iPSC-
derived MNs (Fig. 1f). To test whether restoration of nuclear
import of FUS can rescue its impaired recruitment to DDS, we
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performed chemical inhibition of arginine methylation using
adenosine-2,3-dialdehyde (AdOx)5. Indeed, AdOx rescued FUS
mislocalization (Fig. 6e, f) and recruitment to DDS (Fig. 6c, d,
Supplementary Movie 6), but also distal axon trafficking (Fig. 6g–l,

Supplementary Movies 8 and 9). Nuclear export of FUS depends
on DNA-damage-induced FUS phosphorylation by DNA-PK8.
Consistently, inhibition of DNA-PK (NU7441) also restored FUS
cytosolic mislocalization (Fig. 6e, f), recruitment to DDS (Fig. 6c,
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d, Supplementary Movie 6) and distal axon trafficking (Fig. 6g–l,
Supplementary Movies 8 and 9). Taken together, these results
provide strong evidence that impairment of nucleo-cytoplasmic
shuttling is responsible for aggregate formation, the impairment
of FUS-dependent DDR and neurodegeneration.

FUS NLS pathology relies on PARP-dependent FUS-mediated
DDR. We next asked whether induction of DNA damage is
sufficient to induce cytoplasmic mislocalization of FUS. Chemi-
cally inducing or increasing DNA damage by either by etoposide
or arsenite (the latter known as a ROS-mediated DNA damage
inducer) in untagged (Fig. 5b, d) or GFP-tagged human MNs
(Fig. 6e, f) actually augmented cytoplasmic FUS mislocalization
consistent with our above observations. These findings also cor-
respond with recent data on murine cells showing an accumu-
lation of FUS in the cytoplasm after DNA damage induction due
to activation of DNA-PK8. Consistently, we also observed inhi-
bition of FUS recruitment to DDS due to etoposide/arsenite
treatment of control MNs (Fig. 6c, d, Supplementary Movie 6).
PARylation is a crucial event in DNA repair. DNA damage is the
primary activator of PARP1 that catalyzes the reaction of poly
(ADP-ribosylation) (for review see ref. 15). We thus investigated if
the observed FUS NLS phenotypes rely on the PARP-dependent
DDR signaling12–14,17. Indeed, PARP1 inhibition caused a
reduction of FUS recruitment to DDS in control cells (Fig. 6c, d,
Supplementary Movie 6) as previously reported for HeLa cells17.
Furthermore, PARP1 inhibition also led to cytoplasmic FUS
aggregation (Fig. 6e, f) and defects in distal axonal trafficking
(Fig. 5g–l, Supplementary Movies 8 and 9), thereby faithfully
mimicking FUS-NLS-mutant phenotypes.
PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG)18

and PARG inhibition leads to prolonged persistence of FUS at
DDS17. In our experimental setup, PARG inhibition restored FUS
recruitment to DDS in FUSmt MN (Fig. 6c, d, Supplementary
Movie 6). Moreover, PARG inhibition was sufficient to prevent
FUS aggregate formation (Fig. 6e, f) and completely restored the
defective distal axon trafficking phenotype (Fig. 6g–l, Supplemen-
tary Movies 8 and 9). It is unlikely that NLS mutations impair
binding to PAR since the RGG domain was recently identified as
being responsible for PAR binding to FUS13,25. We confirmed
these findings and showed that prolonged PAR activity by PARG
inhibition restored the NLS mutant phenotypes (Fig. 6g–l). These
results are consistent with the idea that the FUS NLS pathophy-
siology actually relies on the PAR-dependent FUS-mediated DDR
signaling subsequently leading to cytoplasmic FUS aggregation and
neurodegeneration.

Only treatment (PARP1-, PARG inhibitor, etoposide, arsenite)
at the proximal soma site, and not at the distal axon, induced or
reversed the defective distal trafficking phenotype (Supplemen-
tary Figs. 3–9, Supplementary Movies 4, 5, 8 and 9). Compounds
added exclusively to the proximal site cannot migrate to the distal
site because the microflow in the microfluidic chambers is
directed from distal to proximal (due to the higher distal liquid
level, Fig. 2a and Methods). Therefore, the impact of the proximal
treatments on distal axon trafficking occurred in the physical
absence of these compounds, thereby excluding the possibilities of
a local mode of action.
To further strengthen these observations, we tried to induce

local (distal) axonal trafficking inhibition by either nocodazole
(known to depolymerize microtubules) or oligomycin A treat-
ment (complex 5 inhibitor). Both treatments caused local axonal
trafficking arrest and axonal swelling (Fig. 6m, Supplementary
Movies 10 and 11), but neither of them leads to deficits in FUS
recruitment to DSBs nor FUS cytoplasmic mislocalization and
aggregation formation (Fig. 6n, o). In conclusion, the mimic/
rescue of distal axonal phenotypes must be due to remote,
upstream manipulation of DNA repair mechanisms, arguing
against a pure axonopathy and in favor of a neuronopathy with
prominent and early axonal degeneration (see also Figs. 2c–i and
4a–c) as starting point of the neurodegenerative disease process.

DNA damage enhances FUS mislocalization and neurodegen-
eration. Given that DNA damage recruits FUS and that FUS
mislocalization disrupts DDR signaling, we hypothesized that
FUS-NLS mutations induce a vicious cycle whereby DNA damage
subsequently induces additional cytoplasmic FUS mislocalization
which in turn results in aggravated DDR signaling through a
consecutive loss of nuclear function. Time lapse experiments
showed time-dependent cytosolic FUS mislocalization and
appearance of cytoplasmic FUS inclusions after interference with
DDR signaling (PARP1 inhib.) or DNA damage induction (eto-
poside) (Fig. 7a). While recruitment to DDS was blocked before
the appearance of cytosolic FUS mislocalization by PARP1
inhibition in FUSwt MNs (Fig. 7a–c, Supplementary Movie 12),
this was seen by etoposide treatment only after the appearance of
cytosolic FUS mislocalization (Fig. 7a–c, Supplementary
Movie 12). To further test the vicious cycle hypothesis, we per-
formed several co-treatments. While DNA-PK inhibition or
AdOX was able to restore the lack of FUS recruitment to DDS
and FUS mislocalization by etoposide or arsenite (Fig. 7d, e,
Supplementary Movie 13), DNA-PK inhibition did not rescue
FUS recruitment to DDS during PARP1 inhibition (Fig. 7d, e) but
did completely restore cytoplasmic mislocalization (Fig. 7f). This

Fig. 5 DDR signaling is involved in FUS-NLS pathophysiology. a IF of SOX2 staining (green) validated NPC identity for DSB counting (by γH2AX, red) in (c). b
DNA DSBs in iPSC-derived FUS R521C spinal MNs (right) versus WT control cells (Ctrl1 left, Table 1) by ICC for nuclear γH2AX foci (red) at 14 and 30 DIV,
bar: 10 µm. More DSB foci (white arrowheads) were observed in FUS mutants (right) already at 14 DIV and increased in controls (left) and FUS mutants after
Etoposide treatment. In addition, cytoplasmic FUS inclusions in FUS mutants increased after etoposide treatment (green, hollow arrowheads). c, d Both, FUS-
NPCs (c) and mature–MNs (d) showed more DSBs per nucleus over controls (N= 3). e Untreated mature FUS-GFP P525L (FUS) MN showed increased
nuclear DSB foci over isogenic control cells, consistent with untagged FUS lines in (d). 1 h etoposide treatment and 24 h withdrawal led to a similar response
compared to control cells (i.e. transient increase of DSB foci and reversion to basal levels indicative of successful DSB repair). f Same as e but expressed as
fold change over respective untreated control (N= 4). Statistics c–f: data are plotted as mean, unpaired t-test (only c) or one-way ANOVA (d–f) with post-
hoc Bonferroni test (*, **, ***P values of 0.05, 0.01, and 0.001, respectively, error bars= STDEV). g Validation of the anti-γH2AX antibody in FUS-GFP P525L
MNs (without etoposide) by costaining with anti-53BP1, a second marker for DSBs. Note the prominent colocalization (merge, yellow overlapping). h Live
imaging of MN at 21 DIV shown as maximum intensity projections: distal loss of organelle motility and mitochondrial membrane potential in FUS mimicked
through proximal etoposide or arsenite addition to control, bar: 10 µm (Supplementary Movies 4, 5). i–m Organelle tracking (i, j), mitochondrial membrane
potential (k) and shape (l, m) analyses of (h) as box plots, batch analysis of Ctrl1-3 (Ctrl) and FUS R521C, R521L, R495QfsX527 (FUS) as described in
Table 1, exception: arsenite treatment only on FUS corrected R521C (FUS-GFPWT). n ICC showing augmented DSBs (γH2AX) in ALS-FUS case over healthy
control person, bar: 20 µm. o ICC showing FUS aggregation in the cytoplasm (white arrows) of a typical ALS-FUS case with R521C mutation (mid gallery
row) in the NLS along with augmented γH2AX occurrence in the nucleus (gray arrows) as opposed to an atypical, peculiar case (Y526C, bottom gallery row)
with cytoplasmic co-aggregation of FUS and γH2AX (yellow arrow), bar: 20 µm
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shows that DNA-PK is downstream of DNA damage response
signaling induction. It further suggests that DNA-PK’s strongest
effect in FUS-ALS is the regulation of FUS nucleo-cytoplasmic
shuttling8.
To gain further insights into possible downstream mechanisms

in DDR by FUS we analyzed the two major pathways of DDR in
postmitotic cells, namely classical non-homologous end joining
(c-NHEJ) and alternative non-homologous end joining (a-NHEJ).
While c-NHEJ depends on DNA-PK activation, a-NHEJ pathway
is downstream of PARP131. Within the c-NHEJ pathway, we
found significant higher levels of total DNA-PK consistent with
increased basal DDS in FUSmt MNs with no changes in phospho/
total-DNA-PK, and no differences in KU70/KU80 (Fig. 7g, h,
Supplementary Fig. 12). There was also no significant difference
in the levels of a-NHEJ proteins (LIG1, PARP1) (Fig. 7g, h,
Supplementary Fig. 12). DNA damage induction (etoposide) in
FUSwt and FUSmt MNs resulted in a similar increase of
phospho-/total DNA-PK and cleaved /full-length PARP1 ratio
(Fig. 7g, i, Supplementary Fig. 12) suggesting no major
disturbance of the downstream DNA damage response machin-
ery in FUSmts (Fig. 5d, e). In turn, DNA-PK inhibition led to
decreased phospho/total DNA-PK ratio but increased full length
PARP1 (Fig. 7g, i, Supplementary Fig. 12), consistent with more
active PARP1 in FUSmt MNs as if treated with PARG inhibition.
These data underpin that DNA-PK serves mainly in FUS nucleo-
cytoplasmic shuttling and that DDR mainly relies on poly(ADP-
ribose) dependent a-NHEJ. In summary, we show that DNA
damage is a key event in FUS-ALS which leads to DNA-PK
activation. In turn, DNA-PK activation enhances cytoplasmic
localization of FUS, thereby closing the vicious cycle by
additionally depleting nuclear FUS, which is already the case in
ALS-causing FUS-NLS mutations by impaired TRN-mediated
nuclear import.

Discussion
Using human iPSC-derived MNs and human postmortem spe-
cimens we show that FUS-ALS is caused by impairment of proper
DNA damage response signaling subsequently leading to neuro-
degeneration and aggregate formation. Currently, there is much
attention given to mechanisms of protein aggregation and to their
clearance17,23,24. In contrast, our work suggests the need of novel
therapeutic pathways upstream of aggregate formation involving
modulation of DNA damage pathways. Some of these compounds

modulating DDR are already in clinical trials for cancer therapy
and could thus rapidly be adapted to ALS.
There have been hints that DNA damage is apparent in FUS-

ALS and that FUS-NLS mutations impair recruitment of FUS to
DNA damage sites12, while others report only marginal13 or no
obvious phenotype14 in DNA damage recruitment by NLS
mutations. These differences most likely arise from the different
cell types used in the respective studies (hiPSC-derived MNs were
only used in our study) but might also be due to the technique of
FUS expression (ectopic expression compared to endogenous
expression, the latter used for the first time in the current study),
although the expression levels were carefully controlled in the
previous studies14.

Furthermore, PARP is involved in forming liquid compart-
ments of FUS at sites of DNA damage, and aberrant phase
transition of the liquid compartments to solid-like aggregates
could be involved in the onset of the disease17,23,24. However, the
exact relationship between DNA damage and the formation of
cytoplasmic aggregates as well as neurodegeneration was lacking.
Here, we show that DNA damage enhances cytoplasmic FUS
mislocalization, thereby inducing a vicious cycle, in which failure
of DNA damage repair signaling further enhances FUS mis-
localization and induces aggregation and neurodegeneration.
Our study thus adds FUS-ALS to the class of neurodegenera-

tive diseases with impaired DDR signaling, such as Ataxia tele-
angiectatica, AOA1 and SCA3. Interestingly, FUS−/− mice suffer
from genomic instability22 and enhanced radiation sensitivity32.
Whether this holds true for FUS-ALS patients is currently
unknown. Furthermore, Parp1−/− mice were reported to suffer
from high energy expenditure and decreased body fat mass
similar to ALS patients (for review see ref. 33). This might be
clinically relevant in many respects. For example, PARP1 inhi-
bition has recently been suggested as a therapeutic strategy for
neurodegenerative diseases (for review see ref. 15). In contrast,
our data strongly argue against PARP1 inhibition in FUS-ALS,
but suggest PARG or DNA-PK inhibition as promising treatment
strategies.
Another link connecting FUS and DDR came from two reports

on the interaction of FUS and HDAC1. Both reports showed that
FUS directly interacted with HDAC1 and that this interaction is
important for proper DDR. Consistently, FUS-NLS mutations
showed a diminished interaction with HDAC114,19. Furthermore,
FUS-NLS mutant mice showed shortened dendrites at least in
part due to BDNF signaling deficiency mediated by DNA damage

Fig. 6 DDR signaling impairment in FUS-NLS mutations is upstream of neurodegeneration and aggregation formation. a Mutant P525L FUS failed to be
recruited to DNA damage sites. Recruitment-withdrawal to Laser cuts in MN nuclei (boxed area) expressing normal (WT) or mutant P525L (Mut) FUS-
GFP was imaged live at 21 DIV (Supplementary Movie 6). b Quantification of a, FUS-GFP at cut over time. c Chemical modulation of nuclear FUS impacted
on recruitment of FUS-GFP to cuts in WT cells (top gallery) treated 24 h mock, with PARP1 inhib., etoposide or arsenite or in mutant cells (bottom gallery)
treated 24 h mock, with PARG, DNA-PK inhibitors or AdOx (Supplementary Movie 6). d Quantification of c. e Compounds impacted on nuclear FUS-GFP
levels in MNs: treatments WT versus Mut as for c, bars: 10 µm. f Quantification of e, ratio FUS-GFP amount nucleus/cytosol (left) or total FUS amount in
cytoplasmic aggregates (right). Data are plotted as mean, error bars= STDEV, one-way ANOVA with post-hoc Bonferroni test (*, **, ***P values of 0.05,
0.01, and 0.001, respectively, N= 3). g Proximal compound addition impacted on distal axonal trafficking at 21 DIV depicted as maximum intensity
projections: PAPR1 inhib. mimicked mtFUS-phenotype whereas PARG, DNA-PK inibitors and AdOx rescued mtFUS phenotype (Supplementary Movies 8,
9). Shown are representative examples of Ctrl1 and R521L, see Table 1. h–l Organelle tracking (h, i), mitochondrial membrane potential (j) and shape (k, l)
analyses of G as box plots, batch analysis of Ctrl1-3 (Ctrl: Mock, PARP1 inhib.) and FUS R521C, R521L, R495QfsX527 (FUS: PARG inhib.) as described in
Table 1, exception: DNA-PK and AdOx inhib. only on FUS R521L. m Left column: impact of microtubule disruption (24 h nocodazole, 5 µM, mid) or
respiratory inhibition (24 h oligomycin A, 10 µM, bottom) on the recruitment of WT FUS-GFP to the Laser cut in nuclei (boxed areas) in
uncompartmentalized MN at 21 DIV (Supplementary Movie 10). Note the unaltered FUS recruitment (green) despite the severe disruption of the
mitochondria network (mitotracker deep red FM, LUT red hot) along with loss of processive motility in the treated cells (maximum intensity projection of
movies). Mid and right column: ditto for treatment exclusively at the distal exit site of 900 µm-MFCs (Supplementary Movie 11). Note the unaltered FUS
recruitment (proximal entry, boxed areas) despite the severe disruption of the mitochondria network along with loss of processive motility at the distal site,
bar: 10 µm. n Quantification of FUS-GFP recruitment in m. o Nocodazole or oligomycin A treatment in m did not alter the normal nuclear FUS-GFP
localization
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induction19. FUS-NLS mutations most likely do not cause a
complete loss of function of FUS protein since treatment with
PARG is sufficient to restore FUS recruitment to DNA damage
sites, cytoplasmic mislocalization and axon trafficking phenotypes
(Fig. 6c, e, g). These findings are actually consistent with the study

by Wang et al. showing that mutant FUS proteins are still—at
least in part—recruited to DDS, but were also impaired in the
later steps of assembly or stabilization of the repair complex14.

FUS was shown to be required for DSB repair by homologous
recombination (HR) or non-homologous end joining (NHEJ) and
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FUS knockdown reduced both HR and NHEJ efficacy13,14. Fur-
thermore, NHEJ efficacy was reduced by overexpression of FUS
R521C but not by wtFUS protein in murine primary cortical
neurons14. Interestingly, FUS knockdown affected neither the c-
NHEJ factors KU70 and DNA-PK nor ATM substrates, such as
53BP113, consistent with our data suggesting poly(ADP-ribose)
mediated a-NHEJ as the DDR pathway downstream of FUS.
Moreover, FUS was reported to directly interact with PAR13 and
PARylation was shown to induce additional PARP1 recruitment
to DDS20. Thus, it might be possible that FUS mutations interfere
with this interaction and might impair this feed-forward loop.
However, the detailed downstream pathways for FUS mediated
DDR signaling and its possible disturbance by FUS mutations
needs further examination.
FUS was initially characterized as an oncogene (fused in

sarcoma)34. FUS-CHOP fusion proteins lacks the c-terminal region,
including RGG and NLS domain13 and are responsible for PAR
binding13 and DNA DSB repair (14,19 and our study). Interestingly
enough, FUS-CHOP-positive myxoid liposarcoma are radio-
sensitive35 and FUS knockdown increases radiosensitivity13. Fur-
thermore, Ews−/−mice, another protein of the FET family (of which
FUS is a member), are also highly sensitive to irradiation36. This is of
immense clinical impact; currently, radiation is used on salivary
glands as a treatment of pseudohypersalivation in ALS patients.
For dynamic measurement of FUS mislocalization, DNA

recruitment and protein aggregation we generated isogenic iPSC
lines with GFP-tags of the endogenous FUS protein using
CRISPR/Cas9n. Thus, the results obtained herein are clearly due
to underlying FUS mutations. Furthermore, by using both GFP-
tagged and untagged isogenic lines, there is currently no evidence
that the GFP-tagging biased the observed phenotypes.
We show a stepwise acquirement of degenerative phenotypes

starting with impaired distal axonal organelle trafficking followed
by distal axon degeneration and finally motor neuron cell death
(Figs. 2 and 4). While post mortem analysis revealed clear motor
neuron loss in the spinal cord of the advanced FUS-ALS cases
studied (Fig. 3a, b), the in vitro data showed only minor signs of
neuronal cell body degeneration at time points of severe distal
axon degeneration (Fig. 2g–i), suggesting a dying-back process as
typically seen in a distal axonopathy37. hiPSC-derived motor
neuron cultures are the only way to monitor early disease
course in human and could explain the differences with the post
mortem results. However, while DNA damage induction always
led to distal axonal phenotypes and FUS cytoplasmic mis-
localization, this was not seen when inducing a solely axonal
degeneration by nocodazole treatment or ATP depletion

(Fig. 6m–o). This suggests that FUS-ALS is a neuronopathy
rather than a pure distal axonopathy, but one with prominent and
especially early distal axonal degeneration.
One of the most intriguing questions of age-related neurode-

generative diseases is how a somatic mutation causes neurode-
generation specifically in aged individuals. Evidently, DNA
damage accumulates during aging (for review see ref. 30). Of note,
age-related motor neuron degeneration has been observed in
mice lacking the DNA repair protein ERCC excision repair 1,
endonuclease non-catalytic subunit38,39. However, whether
mutation severity, age of onset, amount of DNA DSBs, appear-
ance of neurodegenerative phenotypes and FUS aggregation do
correlate remains to be shown in future studies.

Methods
Patient characteristics. We included cell lines carrying “benign” (R521C, L) and
“malign” (R495QfsX527, P525L) FUS mutations and systematically compared them
to three control iPSC lines from healthy volunteers and to isogenic lines (Table 1).
All procedures were in accordance with the Helsinki convention and approved by
the Ethical Committee of the Technische Universität Dresden (EK45022009,
EK393122012) and by the ethical committee of the University of Ulm (Nr. 0148/
2009) and patients and controls gave their written consent prior to skin biopsy.

Generation and expansion of iPSC lines. Fibroblast or keratinocytes lines were
established from skin biopsies or hair follicle cells obtained from familial ALS
patients and healthy controls28. The generation and characterization of control
iPSC lines was reported previously28,40. Fibroblast lines were reprogrammed as
previously described28,40,41. Briefly, patient fibroblasts were reprogrammed using
pMX-based retroviral vectors encoding the human cDNAs of OCT4, SOX2, KLF4
and cMYC (pMX vectors). Vectors were co-transfected with packaging-defective
helper plasmids into 293T cells using Fugene 6 transfection reagent (Roche).
Fibroblasts were plated at a density of 50,000 cells/well on 0.1% gelatin-coated 6-
well plates and infected three times with a viral cocktail containing vectors
expressing OCT4:SOX2:KLF4:cMYC in a 2:1:1:1 ratio in the presence of 6 µg/ml
protamine sulfate (Sigma Aldrich) and 5 ng/ml FGF2 (Peprotech). Infected fibro-
blasts were plated onto mitomycin C (MMC, Tocris) inactivated CF-1 mouse
embryonic fibroblasts (in-lab preparation) at a density of 900 cells/cm2 in fibroblast
media. The next day media was exchanged to ES medium containing 78% Knock-
out DMEM, 20% Knock-out serum replacement, 1% non-essential amino acids, 1%
penicillin/streptomycin/glutamine and 50 µM β-Mercaptoethanol (all from Invi-
trogen) supplemented with 5 ng/ml FGF2 and 1mM valproic acid (Sigma Aldrich).
Media was changed every day to the same conditions. iPSC-like clusters started to
appear at day 7 post infection, were manually picked 14 days post-infection and
plated onto CF-1 feeder cells in regular ES-Media containing 5 ng/ml FGF2. Stable
clones were routinely passaged onto MMC-treated CF-1 feeder cells (Globalstem)
using 1 mg/ml collagenase type IV (Invitrogen) and addition of 10 µM Y-27632
(Ascent Scientific) for the first 48 h after passaging. Media change with addition of
fresh FGF2 was performed every day.

iPSC lines from human hair keratinocytes were generated as described in
refs. 42–44 by a lentivirus containing a polycistronic expression cassette encoding
for Oct4, Sox2, Klf4, and c-Myc PMID19096035 produced in 70% confluent 10 cm
dishes with Lenti-X 293T cells (Clontech, Mountain View, CA) by cotransfection of

Fig. 7 Impairment of nucleo-cytoplasmatic FUS shuttling leads to DNA damage, neurodegeneration and aggregate formation. a Time course of nuclear FUS
withdrawal after addition of PARP1 inhib. (top gallery) or etoposide (eto, bottom gallery) in WT FUS-GFP MNs at 21 DIV. b Distinct inhibitory kinetics of
FUS-dependent DNA repair through etoposide and PARP1 inhib: recruitment-withdrawal of FUS-GFP to nuclear laser cuts as for Fig. 6a on WT FUS-GFP
MNs after PARP1 inhibitor (top) or etoposide (bottom) addition at indicated time points, i.e. before and after loss of nuclear FUS (corresponding red boxes
in a), bars: 10 µm (Supplementary Movie 12). c Quantification of b. d FUS-GFP recruited to Laser cut in MNs double-treated 24 h with compounds as
indicated (Supplementary Movie 13). Note the inhibition of recruitment to the cut (boxed areas) in mutant FUS-GFP P525L cells (far left) through double
treatment with DNA-PKi and PARP1i whereas DNA-PKi alone led to a rescue (Fig. 6c, Supplementary Movie 6), suggesting that PARP1 functions upstream
of DNA-PK in DNA damage response. Furthermore, note that inhibiton of recruitment through etoposide or arsenite in WT FUS-GFP (Fig. 6c,
Supplementary Movie 6) was reverted through double treatment with either DNA-PKi or AdOx, suggesting a potent counterbalancing of etoposide/
arsenite-driven displacement of FUS from the nucleus, thereby rescuing FUS recruitment to the cut (boxed areas). e Quantification of d. f Compounds
impacted on nuclear FUS-GFP levels in MNs: double treatments Mut versus WT as for d. Note how DNA-PK inhib. or AdOx drove FUS-GFP back into the
nucleus under conditions that normally lead to nuclear export of FUS (i.e. PARP1, etoposide or arsenite treatment, Fig. 6e). gWestern blot (WB) analysis of
markers for c-NHEJ DNA damage response (phospho and total DNA-PK, KU70 & KU80) and a-NHEJ (LIG1, PARP1 total and cleaved) on total lysates of
MNs treated for 72 h as indicated. GFP, β-actin served as loading controls. h Densiometric quantification of g, WT (blue) versus FUS (red), mock only.
Graphs show fold change over mean WT (mock baseline= 1) to reveal phenotypic differences of quasi untreated FUS over WT. i Densiometric
quantification of g for all treatments. Graphs show fold change over respective cell line mock to reveal the compound response of each line (WT, blue,
versus FUS, red) over its respective mock baseline (= 1). Statistics (h, i): data are plotted as mean, error bars= STDEV, one-way ANOVA with post-hoc
Bonferroni test (*, **, ***P values of 0.05, 0.01, and 0.001, respectively, N= 4)
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the polycistronic vector (8 mg), the pMD2 vector (2 mg), and the psPAX2 (5.5 mg)
vector (both Addgene, Cambridge, MA) using 100 mL of the PolyFect transfection
reagent (Qiagen, Hilden, Germany; www.qiagen.com). Viral supernatant was
collected at 48 and 96 h after transfection, concentrated using the Lenti-X
Concentrator Kit (Clontech), resuspended in EpiLife medium, and stored in
aliquots at −80 °C. For infection, up to 3 × 105 keratinocytes per well of a 6-well
plate were infected with 5 × 107 proviral genome copies in EpiLife medium
containing 8 mg/mL Polybrene (Sigma- Aldrich) at 2 sequent days. After another
24 h cells were detached using TrypLE Express (Invitrogen) and distributed onto 3
wells of a 6-well plate with already attached irradiated feeder cells (3 × 105 cells per
well irradiated with 30 Gy) in hiPS cell medium. Further on the cells were cultured
in a 5% O2 incubator. The medium was changed daily until arising colonies were
large enough for mechanical passaging at about 2–3 weeks after transduction.
Colonies displaying a clear stem cell morphology were picked and transferred onto
irradiated MEFs or Matrigel-coated plates for further passage.

Stable clones were analyzed by qRT-PCR for silencing of viral transgenes prior
to further experimental procedures.

CRISPR/Cas9 genome editing. To generate the two isogenic cell lines FUS WT-
GFP and P525L-GFP, a patient-derived iPSC clone from a female patient carrying a
heterozygous FUS R521C mutation was used (Table 1). The patient-specific FUS
mutation was corrected at its mutation site and simultaneously C-terminal tagged
with EGFP by CRISPR/Cas9-mediated genome editing via homology directed
repair (HDR)45. For that a CRISPR/Cas9D10A vector (pX335B) containing the
D10A mutant nickase version of Cas9 (Cas9n) and a pair of guide RNAs (gRNA)
were used to create a double strand break (DSB) at the target site. The pX335B
vector, containing Cas9n, was provided by the laboratory of Dr. Boris Greber, (Max
Planck Institute for Molecular Biomedicine, 48149 Münster, Germany). As a HDR
template a plasmid (pEX-K4) containing the FUS correction sequence (WT or
P525L) plus EGFP-Tag was used (Eurofins Genomics).

To target the FUS R521C mutation site, two gRNA cassettes were designed. The
gRNAs were manually selected by screening of the coding strand for suitable gRNA
target sequences upstream of R521C mutation. DNA motifs screened for were
CCN(N)19C or CCN(N)20C for target one (T1) and G(N)19NGG or G(N)20NGG
for target two (T2). Target specific gRNAs (T1- gcgagtatcttatctcaagt; T2-
gttaggtaggaggggcagat) then were cloned into the pX335B vector in two cloning
steps. Successfully cloned vectors were identified via colony PCR after each ligation
step. Positive clones were amplified, sequenced and used for transfection. The FUS
correction sequences were designed according to the WT sequence of FUS (NCBI
Ref. Seq. NC_000016.10). Homology arms covering the mutation site, and in a size
of 500 bp upstream and 400 bp downstream of the induced DSB were used. The
EGFP-Tag was added to the last exon of FUS with a 9 bp linker-DNA sequence.
The sequences for WT-EGFP and P525L-EGFP were synthesized de novo and
cloned into the pEX-K4 from Eurofins Genomics.

For gene targeting of human iPSCs, feeder-free iPSCs cultured in TeSR-E8
medium (Stemcell Technologies) were co-transfected with pX335B vector
(containing the Cas9n cassette, two gRNAs and a puromycin selection cassette) and
pEX-K4 vector (containing the FUS WT-EGFP or P525L-EGFP sequence) using
FuGENE HD transfection reagent (Promega). 24 h after transfection, cells
containing the pX335B vector were selected by treatment with 0.4 µg/µl Puromycin
(InvivoGen) for another 24 h. After selection, cells were allowed to recover for
3–7 days and then passaged onto a new plate (2000 cells per 6-well). After
10–14 days EGFP-positive clones were picked and further cultured for
characterization.

To identify successful homologous recombined clones, DNA was isolated
(DNeasy Blood&Tissue Kit, Qiagen) from these cells and PCR was performed to
confirm the presence of the EGFP-Tag within the genomic sequence of FUS. For
this a forward primer (AGTTACCAGCCTCTCCAAGC) targeting FUS upstream
of the used homology arms, and a reverse primer (CGGTGGTGCAGATGAACTT)
targeting EGFP were used. After successful PCR the genotype of clones positive for
FUS-EGFP was determined by PCR and sequencing. For the genotyping PCR, the
forward primer (CAGTTGAACAGAGGCCATAGG) and reverse primer
(CAGTTGAACAGAGGCCATAGG) were used targeting FUS up- and
downstream of EGFP, including the mutation site. Amplification results in two
PCR products (1257 bp for FUS with EGFP and 528 bp for FUS without EGFP), if
cells are heterozygous for the introduced modification. Additionally, gDNA of non-
transfected cells was amplified as negative control, resulting in the amplification of
only one PCR product (528 bp for FUS without EGFP). To confirm the genotype
by sequencing, PCR products were analyzed on a 1% agarose gel and the two
different sized bands were purified from the gel (QIAquick Gel Extraction Kit,
Qiagen). In order to identify if correction of FUS occurred on the originally
mutated allele and not on the WT allele, both purified PCR products were
sequenced (Supplementary Fig. 1d, e). The PCR product containing FUS with
EGFP (Allele A) was sequenced using the reverse primer
(CGGTGGTGCAGATGAACTT). The smaller PCR product containing FUS
without EGFP (Allele B) was sequenced using the reverse primer
(TGGGTGATCAGGAATTGGAAGG). The original genotype of the used patient-
derived iPSC line was FUS-R521C/FUS-WT. The genotype of successfully modified
clones WT-GFP and P525L-GFP is FUS-WT-EGFP/FUS-WT and FUS-P525L-
EGFP/FUS-WT, respectively (Supplementary Fig. 1d, e).

To check for possible off-target effects of Cas9n both target specific gRNAs (T1
and T2) were checked via the “CRISPR Design” online tool from Zhang laboratory
(http://crispr.mit.edu) and the “Off-spotter” tool from Pliatsika et al.46. The online
tools confirmed that there are no genomic off-targets that are targeted from both
gRNAs in combination, which could result in the introduction of a DSB at any
untargeted site.

Mycoplasma testing. We checked every new cell line when entering the lab and
after reprogramming, afterwards routinely check for mycoplasma every three to six
months. We used the Mycoplasma Detection kits for conventional PCR according
to manufacturer’s instructions (Venor GeM, No 11–1025).

In vitro differentiation of embryoid bodies. iPSC colonies were grown under
standard conditions, cleaned and treated with collagenase type IV (2 mg/ml,
Invitrogen). Floating aggregates were collected and transferred into ultra-low
attachment plates (NUNC) in regular ES-Media containing 5 µM Y-27632 (Ascent
Scientific) for meso-/endodermal differentiation or ES-Media containing 5 µM Y-
27632, 10 µM SB431542 (Tocris) and 1 µM Dorsomorphin (Tocris) for ectodermal
differentiation. Two days later the medium was changed to the same conditions
leaving out the Y-27632. After four days of EB formation, aggregates were plated
onto gelatin (0.1%, Millipore) coated wells for meso-/endodermal differentiation or
onto plates coated with MatrigelTM (BD Bioscience) for ectodermal differentiation.
EBs were differentiated for two weeks using 77.9% DMEM (high glucose, Invi-
trogen), 20% FCS (PAA), 1% non-essential amino acids (Invitrogen), 1% penicillin/
streptomycin/glutamine (Invitrogen) and 0.1% β-Mercaptoethanol (Invitrogen) for
the meso-/endodermal lineage and 50% DMEM/F12 (Invitrogen), 50% Neurobasal
(Invitrogen) containing 1:200 N2 supplement (Invitrogen), 1:100 B27 supplement
without vitamin A (Invitrogen), 1% penicillin/streptomycin/glutamine, 0.1% β-
Mercaptoethanol and 1:500 BSA Fraction V (Invitrogen) for ectodermal
differentiation.

AP staining and immunofluorescence on iPSC colonies. For pluripotency
marker stainings, iPSC colonies were passaged as described above and grown on
MatrigelTM-coated coverslips in ES medium containing, 50% MEF-conditioned
media (own preparation) supplemented with 5 ng/ml FGF2 (Sigma). Colonies were
then stained for alkaline phosphatase according to the manufacturer’s protocol
(Millipore) or were fixed with 4% paraformaldehyde (PFA) in PBS for 10 min at RT
for analysis of pluripotency markers by immunofluorescence. Fixed colonies were
incubated for 2 h in blocking solution (3% normal horse serum and 0.05–0.2%
Triton-X100 in PBS). Plates were incubated over night at 4 °C using the following
primary antibodies: rabbit anti-Nanog (1:500), rabbit anti-Oct4 (1:1000), mouse
anti-SSEA4 (1:500), mouse anti TRA-1-60 (1:500) (all from Abcam) and mouse
anti-Sox2 (1:500, R&D Systems). Differentiated EBs were stained with rabbit anti-
α-SMA (1:500, Sigma Aldrich), mouse anti-α-Fetoprotein (1:500, Abcam), rabbit
anti-GATA4 (1:500, Abcam), and mouse anti-TUJ1 (1:1000, Covance), mouse anti-
Actinin (Sigma, 1:200) and mouse anti Beta-Catenin (BD Bioscience 1:500).

Karyotyping. FUS iPSC and control cell lines were karyotyped using the
HumanCytoSNP-12v array. All clones showing pathological SNPs were excluded
(data not shown).

Genotyping. FUS iPSC lines were genotyped after all other characterization had
been finished. This was done by a diagnostic human genetic laboratory (CEGAT,
Tübingen, Germany) using diagnostic standards.

Differentiation of human NPCs to spinal MNs. The generation of human NPCs
and MNs was accomplished following the protocol from Reinhardt et al.26.

In brief, colonies of iPSCs were collected and stem cell medium, containing 10
µM SB-431542, 1 µM Dorsomorphin, 3 µM CHIR 99021 and 0.5 µM
pumorphamine (PMA), was added . After 2 days hESC medium was replaced with
N2B27 consisting of the aforementioned factors and DMEM-F12/Neurobasal 50:50
with 1:200 N2 Supplement, 1:100 B27 lacking Vitamin A and 1% penicillin /
streptomycin / glutamine. On day 4 150 µM ascorbic acid was added while
Dorsomorphin and SB-431542 were withdrawn. 2 Days later the EBs were
mechanically separated and replated on Matrigel coated dishes. For this purpose
Matrigel was diluted (1:100) in DMEM-F12 and kept on the dishes over night at
room temperature. Possessing a ventralized and caudalized character the arising so
called small molecule NPCs (smNPC) formed homogenous colonies during the
course of further cultivation. It was necessary to split them at a ratio of 1:10–1:20
once a week using Accutase for 10 min at 37 °C.

Final MN differentiation was induced by treatment with 1 µM PMA in N2B27
exclusively. After 2 days 1 µM retinoic acid (RA) was added. On day 9 another split
step was performed to seed them on a desired cell culture system. Furthermore the
medium was modified to induce neural maturation. For this purpose the
developing neurons were treated with N2B27 containing 10 ng/µl BDNF, 500 µM
dbcAMP and 10 ng/µl GDNF. Following this protocol it was possible to keep the
cells in culture for over 2 months.
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Treatments and inhibitors. Adenosine-2′,3′-dialdehyde (AdOX, arginine
methyltransferase inhibitor, Sigma-Aldrich A7154) was dissolved in water and
traces of HCl to obtain a 10 mM stock, DNA-PK inhibitor NU7441 (Tocris Cat.
No. 3712) was dissolved in DMSO to obtain a 5 mM stock, Sodium Arsenite
(Sigma-Aldrich S7400) was dissolved in water to obtain a 5 mM stock, Etoposide
(Sigma-Aldrich E1383) was dissolved in DMSO to obtain a 500 µM stock, Gallo-
tannin (PARG inhibitor, Santa Cruz Biotechnology sc-202619) was dissolved in
water to obtain a 30 mM stock and ABT-888 (PARP1 inhibitor, Santa Cruz Bio-
technology sc-202901) was dissolved in DMSO to obtain a 20 mg/ml stock. For
treatment of hiPSC-derived spinal MNs in Xona Microfluidic chambers (see
below), compounds were added either exclusively to the proximal or distal site for
locally restricted application in compartmentalized cultures, thereby allowing to
distinguish between local versus remote compound action at the distal and prox-
imal readout positions (refer also to ‘Life cell imaging’ below). Cells were incubated
for 72 h before live imaging and final concentrations were as follows: 10 µM for
AdOx, 2 µM for DNA-PK, 30 µM for PARG inhibitor, 2 µg/ml for PARP1 inhibitor
and 2 µM for Etoposide.

For uncompartmentalized cell cultures, all compounds were added only 24 h
before imaging (e.g. for the Laser cutter experiments, if not otherwise stated in time
course experiments) with final concentrations as follows: 5 µM for AdOx, 5 µM for
DNA-PK, 300 µM for PARG inhibitor, 20 µg/ml for PARP1 inhibitor, 5 µM
Sodium Arsenite and 5 µM for Etoposide. DMSO was used for Mock controls.

Microfluidic chambers. The MFCs were purchased from Xona (RD900). At first,
Nunc glass bottom dishes with an inner diameter of 27 mm were coated with Poly-
L-Ornithine (Sigma-Aldrich P4957, 0.01% stock diluted 1:3 in PBS) overnight at
37 °C. After 3 steps of washing with sterile water, they were kept under the sterile
hood for air drying. MFCs were sterilized with 70% Ethanol and also left drying.
Next, the MFCs were dropped onto the dishes and carefully pressed on the glass
surface for firm adherence. The system was then perfused with Laminin (Roche
11243217001, 0.5 mg/ml stock diluted 1:50 in PBS) for 3 h at 37 °C. For seeding
cells, the system was once washed with medium and then 10 µl containing a high
concentration of cells (3 × 107 cells/ml) were directly injected into the main channel
connecting two wells. After allowing for cell attachment over 30–60 min in the
incubator, the still empty wells were filled up with maturation medium. This
method had the advantage of increasing the density of neurons in direct juxta-
position to microchannel entries whereas the wells remained cell-free, thereby
reducing the medium turnover to a minimum. To avoid drying out, PBS was added
around the MFCs. Two days after seeding, the medium was replaced in a manner
which gave the neurons a guidance cue for growing through the microchannels.
Specifically, a growth factor gradient was established by adding 100 µl N2B27 with
500 µM dbcAMP to the proximal seeding site and 200 µl N2B27 with 500 µM
dbcAMP, 10 ng/µl BNDF, 10 ng/µl GDNF and 100 ng/µl NGF to the distal exit site.
The medium was replaced in this manner every third day. After 7 days, the first
axons began spreading out at the exit site and cells were typically maintained for up
to six weeks.

Immunofluorescence stainings. For immunofluorescence staining, cells were
washed twice with PBS without Ca2+/Mg2+ (LifeTechnologies) and fixed with 4%
PFA in PBS for 10 min at room temperature. PFA was aspirated and cells were
washed three times with PBS. Fixed cells were first permeabilized for 10 min in
0.2% Triton X solution and subsequently incubated for 1 h at RT in blocking
solution (1% BSA, 5% donkey serum, 0.3 M glycine and 0.02% Triton X in PBS).
Following blocking, primary antibodies were diluted in blocking solution and cells
were incubated with primary antibody solution overnight at 4 °C except for the
γH2A.X antibody which was kept for only 2 h at room temperature on the fixed
material. The following primary antibodies were used: chicken anti-SMI32
(1:10,000, Covance), mouse anti-FUS (1:5000, Sigma-Aldrich), rat anti-meFUS
(1:1005,), rabbit anti-beta-III-Tubulin (1:3000, Covance), mouse anti-Hb9 (1:100
Development studies Hybridoma Bank), rabbit anti-Islet (1:500, Abcam), mouse
anti-yH2A.X (1:500 Millipore), rabbit anti-ChAt (1:500, Chemicon), rabbit anti-
53BP1 (1:1000, Novusbio). Nuclei were counter stained using Hoechst
(LifeTechnologies).

Western blotting. Western blot analysis (FUS) was performed as described in
Prause et al.47. DNA damage pathway was analyzed as follows. Lysates of neuronal
cell cultures were prepared as described48 with modified RIPA buffer consisting of
50 mM Tris-HCl (pH 7.4), 1% Nonidet-P40, 0.25% sodium deoxycholate, 150 mM
NaCl, 1 mM EDTA, 1 mM NaVO4, 2 mM NaF (all Sigma-Aldrich), Complete
protease inhibitor cocktail (Roche). Protein amount was measured by BCA assay
(Thermo Fisher Scientific). After SDS–PAGE and transfer of proteins onto nitro-
cellulose membranes (GE Healthcare), specific proteins were detected using the
indicated primary antibodies and horseradish peroxidase-conjugated donkey anti-
rabbit and sheep anti-mouse antibodies (GE Healthcare). Detection of proteins on
X-ray films (GE Healthcare) was accomplished with enhanced chemiluminescent
reagent (Amersham). Antibodies were purchased as indicated: DNA-PK (#4602),
PARP1 (#9542), KU80 (#2180, Cell Signaling Technology), β-actin (A5441, Sigma),
phospho-DNA-PK S2056 (ab18192), phospho-DNA-PK S2056 (ab18192, Abcam),
LIG1 (ab177946), KU70 (ab3114), GFP (ab290, Abcam).

Live cell imaging and tracking analyses. For tracking of lysosomes and mito-
chondria, cells were double-stained live with 50 nM Lysotracker Red DND-99
(Molecular Probes Cat. No. L-7528) and 50 nM Mitotracker Deep Red FM
(Molecular Probes Cat. No. M22426). For measuring mitochondrial membrane
potential (and tracking as well), cells were stained with 200 nM Mitotracker JC-1
(Molecular Probes Cat. No. M34152). Trackers were added directly to culture
supernatants and incubated for 1 h at 37 °C. Imaging was then performed without
further washing of cells. Live imaging of compartmentalized axons in Xona
Microfluidic Chambers (MFC) was performed with a Leica HC PL APO 100 × 1.46
oil immersion objective on an inversed fluorescent Leica DMI6000 microscope
enclosed in an incubator chamber (37 °C, 5% CO2, humid air) and fitted with a 12-
bit Andor iXON 897 EMCCD camera (512×512, 16 µm pixels, 229.55 nm/pixel at
100Χ magnification). For more details, refer to https://www.biodip.de/wiki/
Bioz06_-_Leica_AFLX6000_TIRF. Excitation was performed with a TIRF Laser
module in epifluorescence (widefield) mode with lines at 488, 561 and 633 nm. Fast
dual color movies were recorded at 3.3 frames per second (fps) per channel over 2
min (400 frames in total per channel) with 115 ms exposure time as follows:
Lysotracker Red (excitation: 561 nm, emission filter TRITC 605/65 nm) and
Mitotracker Deep Red (excitation: 633 nm, emission filter Cy5 720/60 nm) or for
Mitotracker JC-1 with excitation at 488 nm and fast switching between emission
filter FITC 527/30 nm (green channel for compromised membrane potential) and
TRITC 605/65 nm (red channel for intact membrane potential). Movie acquisition
was performed at strictly standardized readout positions within the micro channels
of the micro groove barrier that separated the proximal seeding site from the distal
axonal exit as illustrated in Fig. 2a. Specifically, the readout windows were located
either just adjacent to the channel exit (distal readout) or the channel entry
(proximal readout).

Tracking analysis. Movies were analyzed with FIJI software using the TrackMate
v2.7.4 plugin for object (lysosomes and mitochondria) recognition and tracking.
Settings were as follows: pixel width: 0.23 µm, pixel height: 0.23 µm, voxel depth: 1
µm, crop settings: not applied, select a detector: DoG detector with estimated blob
size: 1.6 µm, threshold: 45, median filter: no, subpixel localization: yes, initial
thresholding: none, select view: HyperStack Displayer, set filters on spots: quality
above 45, select a tracker: linear motion LAP tracker, initial search radius: 2 µm,
search radius: 2 µm, Max. frame gap: 2, set filters on tracks: track duration ≥3 s.
Typically, 200–500 tracks per movie were obtained and analyzed with respect to
track displacement (measure for processive, i.e. straight, motility as opposed to
undirected random walks) and mean speed. Tracking is illustrated in Supple-
mentary Movie 5. Results were assembled and post-filtered (threshold for track
displacement ≥1.2 µm) in KNIME and MS Excel and bulk statistics analyzed and
displayed as box plots in GraphPad Prism 5 software (Figs. 3b, c, e–i, 4i–m and
5f–j). Box plot statistics are provided in Supplementary Tables 1–17. Box plot
settings: whiskers from 1–99%, outliers as dots, boxes from 25–75 percentile,
median as horizontal center line, mean as cross. Significant differences between
conditions (i.e. cell lines, compound treatments, etc.) were revealed with the
nonparametric Kruskal-Wallis test for non-Gaussian distributions and Dunns post
hoc test with significance level P ≤ 0.05 and 95% confidence interval. Box plots
represent batch results merged from all apparently healthy control lines (Ctrl 1–3)
or mutant ALS-FUS lines (R521C, R521L, R495QsfX527), respectively, and three
independent experiments (i.e. differentiations, refer to Fig. 1a). A minimum of 5
movies (showing 2 micro channels each) was acquired at each readout positions
(distal versus proximal) per line, condition and experiment resulting in a minimum
of 15 movies in total for the batch analysis. We confirmed that all control and FUS
lines were phenotypically indistinguishable, thereby validating our batch analysis
(Supplementary Figs. 2–9).

Static analysis of cell organelles. For analysis of organelle count and morphology
(mitochondria: elongation; lysosomes: diameter), object segmentation, threshold-
ing and shape analysis was performed with a sequence of commands in FIJI
software executed with Macro1 for mitochondria:

run(“Slice Keeper”, “first=1 last=1 increment=1”);
run(“Grays”);
run(“Subtract Background…”, “rolling=3”);
setAutoThreshold(“IsoData dark”);
//run(“Threshold…”);
run(“Convert to Mask”);
run(“Set Measurements…”, “area fit shape feret’s redirect=None decimal=5”);
run(“Analyze Particles…”, “size=4-Infinity pixel

circularity=0.00–1.00 show=Ellipses display summarize”);
and Marco2 for lysosomes:
run(“Slice Keeper”, “first=1 last=1 increment=1”);
run(“Grays”);
run(“Enhance Contrast…”, “saturated=0.1 normalize”);
run(“Subtract Background…”, “rolling=5”);
setAutoThreshold(“Yen dark”);
run(“Convert to Mask”);
run(“Set Measurements…”, “area fit shape feret’s redirect=None decimal=5”);
run(“Analyze Particles…”, “size=3-Infinity pixel

circularity=0.40–1.00 show=Ellipses display summarize”);
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These macros returned result tables containing the aspect ratio of fitted eclipses
(long:short radius) that was taken as the measure for mitochondrial elongation as
well as the outer Feret’s diameter that was taken as lysosomal diameter. The same
set of movies as for the tracking analysis (see above) was used (first frame only).
Typically, hundreds of organelles were analyzed per movie. For bulk statistics, the
same batch analysis as for the tracking analysis was performed with resultant
distributions displayed as box plots (Figs. 3h, i, 4l, m and 5i, j).

For analysis of mitochondrial membrane potential (ratio JC-1 red:green
channel), object segmentation was performed with the channel of higher intensity
(mostly the red) to generate a selection limited to mitochondria using Macro3:

resetMinAndMax();
title=getTitle();
run(“Slice Keeper”, “first=1 last=1 increment=1”);
run(“Subtract Background…”, “rolling=10”);
setAutoThreshold(“Default dark”);
//run(“Threshold…”);
run(“Convert to Mask”);
run(“Create Selection”);
The resultant selection was saved as region of interest (ROI) and applied on

both channels to reveal the total integral intensity and area of mitochondria and
background in both channels using the “Measure” command. After area
normalization and background subtraction, ratios of integral intensity red:green
were taken as mean membrane potential per movie (first frame only) and batch-
analyzed as for the tracking analysis (see above). The resultant distributions were
displayed as box plots on a log scale (Figs. 3g, 4k and 5h).

DNA damage laser cutting assay. The UV lasercutter setup utilized a passively
Q-switched solid-state 355 nm UV-A laser (Powerchip, Teem Photonics) with a
pulse energy of 15 µJ at a repetition rate of 1 kHZ. With a pulse length of <350 ps
this resulted in a peak-power of 40 kW, of which typically less than 5% was used to
cut tissues. The power was modulated using an acousto-optic modulator (AOM,
AA.MQl l0-43-UV, Pegasus Optik). The laser-beam diameter was matched to the
size of the back-aperture of the objectives by means of a variable zoom beam
expander (Sill Optics). This enabled diffraction-limited focusing while maintaining
high transmission for objectives with magnifications in the range of 20–100Χ.
Point-scanning was realized with a pair of high-speed galvanometric mirrors
(Lightning DS, Cambridge Technology). To this end, the scanning mirrors were
imaged into the image-plane of the rear port of a conventional inverted microscope
(Axio Observer Z1, Zeiss) with a telecentric f-theta objective (Jenoptik). In order to
ease adjusting parfocality between the cutter and the spinning disk and to com-
pensate for the offset between the positions of the back-planes of different objec-
tives, the scan-mirrors and the scan-optics were mounted on a common translation
stage. In the microscope reflector cube, a dichroic mirror reflected the UV light
onto the sample and transmitted the fluorescence excitation and emission light. A
UV-blocking filter in the emission path protects the camera and enables simulta-
neous imaging and ablating. The AOM, the galvanometric mirrors as well as a
motorized stage (MS 2000, ASI) with a piezo-electric actuator, on which the sample
is mounted, were computer-controlled using custom-built software (LabView,
National Instruments) enabling cutting in 3D. Diffraction-limited cutting with little
geometric distortion, high homogeneity of the intensity and good field flatness was
possible in the entire field of view of the spinning disk. The maximum depth is
limited by the free working distance of the objective used and the travel of the
piezo-actuator (100 µm). A Zeiss alpha Plan-Fluar 100 × 1.45 oil immersion
objective was used and 24 laser shots in 0.5 µm-steps were administered over a 12
µm linear cut.

Imaging and quantification of cytosolic FUS aggregation in FUS-GFP tagged
lines. Untreated, Mock- or compound-treated cells were fixed and a Z-stack of 20
images in 0.5 µm-steps was acquired with standard filter settings for GFP fluor-
escence. The Z-stack covered the full range from the bottom cytosolic to the top
nuclear focal plane to capture all FUS protein. For quantification of resultant
maximum intensity projections, the total integral GFP intensity in the nucleus,
total cytosol as well as in cytosolic aggregates only was analyzed with FIJI software.

Quantification and statistics. Randomly assigned images of different experiments
were quantified on day 14 of neuronal differentiation to evaluate MN differ-
entiation capacity. To analyze DNA damage, images of NPCs and of mature MN
30 days after differentiation initiation were examined and the mean number of
γH2AX foci representing DSBs per nucleus was determined.

A minimum of three independent experiments based on three different
differentiation pipelines were always performed. Statistical analysis was performed
using GraphPad Prism version 5.0. If not otherwise stated, one-way ANOVA was
used for all experiments with post-hoc Bonferroni post test to determine statistical
differences between groups. *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001
were considered significant. Data values represent mean ± SDTEV unless indicated
otherwise.

Electrophysiology. Patch-clamp recordings were performed as described pre-
viously28. To perform electrophysiological experiments during week 7 of total

differentiation, we seeded 300,000 cells per Matrigel-coated coverslip in a 24 well
plate on day 25. To ensure recording of MNs we selected large (>20 pF) multipolar
neurons only. Furthermore, the internal patch solution was filled with secondary
antibody alexa 488 to allow MN identification after an additional immunostaining
step using alexa 555 against SMI32 primary antibody.

Histology. Human post mortem samples (spinal cords, n = 3 of FUS mutations
(NLS mutation) and 4 for controls), were obtained from the Amsterdam Academic
Medical Center (AMC), Division of Neuropathology, Department of Pathology
ALS Bank following the guidelines of the local ethics committee. The spinal cords
of these clinically confirmed FUS-ALS patients, as well as age-matched controls
had been obtained within 6–12 h after death. Tissues were used in compliance with
the Declaration of Helsinki. All FUS-ALS patients suffered from clinical signs and
symptoms of lower and upper MN disease with the eventual involvement of
Cortex, brain stem motor nuclei. Age-matched control patients did not show any
neuropathological anomalies. Transverse paraffin sections (3–4 µm in thickness) of
human (lumbar, thoracic, cervical) spinal cord were cut on a microtome. Sections
were placed on silane-coated slides, de-waxed, rehydrated and heated in citrate
buffer for antigen retrieval. Processed sections were incubated with primary anti-
bodies (Mouse anti H2AX (Millipore), rabbit anti-FUS- (NOVUS)), each (1:100)
for 1 h at room temperature. Appropriate HRP secondary antibodies were used
(1:200, Vector Laboratories, USA) for 1 h, followed by DAB visualization (DAKO,
Denmark). For immunofluorescence secondary antibodies conjugated with Alexa
fluorophore (Invitrogen) were used. Staining patterns were visualized using a Zeiss
LSM 700 confocal microscope. The resulting confocal images were processed using
the Zeiss LSM software and Adobe Photoshop CS5. DAB immunohistochemical
sections were photographed using an Axioplan microscope (Zeiss) with an Axio
Cam HR camera using 63Χ oil immersion lens (Zeiss).

Data availability. All data related to the manuscript is included in the main text or
Supplementary Files, or available from the authors upon reasonable request.
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3.3 Clinical Translation - Malignancy Rate and Further Clinical Aspects of FUS-ALS 
Patients 

The following sections refer to the results of the second main publication of this dissertation:  

Naumann M, Peikert K, Günther R, van der Kooi AJ, Aronica E, Hübers A, Danel V, 

Corcia P, Pan-Montojo F, Cirak S, Haliloglu G, Ludolph AC, Goswami A, Andersen 

PM, Prudlo J, Wegner F, Van Damme P, Weishaupt JH, Hermann A. Phenotypes and 

malignancy risk of different FUS mutations in genetic amyotrophic lateral sclerosis. 

Ann Clin Transl Neurol. 2019 Nov 4. doi: 10.1002/acn3.50930 

In juvenile ALS patients in Germany, FUS mutations were demonstrated to be the most 

frequent among all ALS-associated gene mutations (Hübers et al., 2015). In contrast, others 

reported conspicuously old patients with evident FUS mutation (Akiyama et al., 2016; Shang 

& Huang, 2016), which makes individual disease prognosis an impossible task for the 

consulting physician.  

Furthermore, if one considers the frequency of increased DNA damage, which could be 

demonstrated in the in-vitro cell model of this thesis, in connection with the fact that FUS-

deficient mice showed increased radiation sensitivity and global genomic instability (Hicks et 

al., 2000; Kuroda et al., 2000), the question arose whether FUS-ALS patients are at risk of 

malignant diseases due to genomic instability/increased DNA damage. Therefore, a cross-

sectional, multinational, and retrospective cohort study was conducted to learn more about 

genotype-phenotype relationships and to answer the question of a potentially increased risk of 

malignant tumours in FUS-ALS patients, which would have relevant clinical implications. A 

total of 40 FUS-ALS patients with available disease histories were identified. However, only 

one patient could be found who clearly suffered from a malignant disease. During his 

childhood, he was diagnosed with acute lymphoblastic leukaemia. Afterwards, he received 

prophylactic whole-brain radiation and later he was diagnosed with meningioma and at the age 

of 31 years with motor neuron disease. This case obviously suggests increased sensitivity to 

radiation and a tendency to develop neoplasms. However, the entire cohort had a lifetime 

prevalence of only 0.025. Statistical testing using Fisher’s exact test against prevalence data 

from control cohorts of healthy individuals (Haberland, Bertz, Wolf, Ziese, & Kurth, 2010) and 

against retrospective lifetime prevalence data from sporadic ALS patients (F. Fang et al., 2013) 

revealed no significant differences, respectively. At least in this cohort, no significantly 

increased risk for malignancies in FUS-ALS patients was observed. In order to increase the 

statistical power for the genotype-phenotype correlation analysis, the data of all newly 

identified patients were combined with all available previously published FUS-ALS patients 

with evident clinical documentation. The combined cohort data confirmed previous single case 
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observations regarding the pathogenicity of individual genetic alterations. In particular, the 

modification of the amino acid P525L, which was also used in the cell culture experiments in 

the first part of this thesis, proved to be most severe and led to a mean age of onset of the 

disease below 20 years and survival time after first symptoms of 13 months. Similar but less 

drastic results were obtained for frameshift and truncating mutations leading to a complete 

structural or functional loss of the C-terminus of FUS (Figure 1 and Table 2; Naumann et al. 

2019). Remarkably, patients with one of these three genetic alterations showed surprisingly 

frequent initial bulbar/brain stem symptoms such as slurred speech or dysphagia, which are 

known to have a negative impact on survival due to the increased risk of aspiration (Figure 4D; 

Naumann et al. 2019). On the other hand, the most common genetic modification found in the 

FUS-ALS patients was a mismatch mutation at position R521. This R521 cohort showed a 

broad range of symptom onset and survival, suggesting additional disease factors that play a 

role. Regardless of the latter, the clinical site of their initial symptoms was almost exclusively 

considered to be a spinal onset, which is much more common than is known in sporadic ALS. 

In contrast to sporadic ALS, FUS-ALS patients showed a positive correlation between the age 

of onset of the disease and survival time, suggesting that FUS-ALS might be a particularly 

serious sub-disease. Taken together, the overview of individual mutations and the respective 

clinical features will be helpful for physicians in diagnosing and counselling (FUS-) ALS 

patients.  
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Abstract

Objective: Mutations in Fused in Sarcoma (FUS or TLS) are the fourth most

prevalent in Western European familial amyotrophic lateral sclerosis (ALS)

populations and have been associated with causing both early and very late dis-

ease onset. FUS aggregation, DNA repair deficiency, and genomic instability are

contributors to the pathophysiology of FUS-ALS, but their clinical significance

per se and their influence on the clinical variability have yet to be sufficiently

investigated. The aim of this study was to analyze genotype–phenotype correla-

tions and malignancy rates in a newly compiled FUS-ALS cohort. Methods: We

cross-sectionally reviewed FUS-ALS patient histories in a multicenter cohort

with 36 novel cases and did a meta-analysis of published FUS-ALS cases report-

ing the largest genotype–phenotype correlation of FUS-ALS. Results: The age of

onset (median 39 years, range 11–80) was positively correlated with the disease

duration. C-terminal domain mutations were found in 90%. Among all, P525L

and truncating/ frameshift mutations most frequently caused juvenile onset,

rapid disease progression, and atypical ALS often associated with negative fam-

ily history while the R521 mutation site was associated with late disease onset

and pure spinal phenotype. Malignancies were found in one of 40 patients.

Interpretation: We report the largest genotype–phenotype correlation of FUS-

ALS, which enables a careful prediction of the clinical course in newly
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diagnosed patients. In this cohort, FUS-ALS patients did not have an increased

risk for malignant diseases.

Introduction

Amyotrophic lateral sclerosis (ALS) is recognized as one

of the most severe neurodegenerative diseases. Progressive

muscular paresis due to motor neuron (MN) demise

leads to a rapid loss of autonomous mobility and usually

culminates in death of patients after 3–5 years.1 Approxi-

mately, 10% of all ALS patients self-report a familial pre-

disposition. Mutations in more than 38 genes were

identified to be implicated in the pathological MN degen-

eration.2 In 1% of sporadic and up to 5% of familial ALS

cases, mutations in Fused in Sarcoma (FUS) were found

to be causative,3 primarily located in the PY-nuclear

localization sequence (NLS) of the protein and are often

associated with a more severe course compared to

patients with C9ORF72, TBK1, TARDBP, or SOD1 muta-

tions. Furthermore, the severity of these genetic errors

appears to positively correlate with disease onset4 and

recently, FUS mutations were shown to have the highest

proportion of all ALS-related gene mutations in juvenile

ALS patients in Germany.5 Indeed, the youngest FUS-ALS

patient reported a disease onset at 11 years of age6 pre-

senting with the P525L mutation. In smaller case series,

bulbar disease onset was reported more often,7 which is

known to be a negative predictor for survival in sporadic

ALS.8 Others, however, reported on FUS-ALS patients

with particularly late onset.7,9,10 Altogether, the rarity and

variations of individual disease courses make appropriate

predictions about individual patient survival impossible.

FUS exerts its function as a DNA-/RNA-binding protein

primarily in the nucleus and is centrally implicated in splic-

ing regulation, stress granule formation, and DNA

repair.11,12 We and others recently reported on drastically

increased DNA damage in various cell types with FUS-NLS

mutations, which was shown to be associated with neuronal

cell death.13–15 It is, however, not known if other cells in

FUS-ALS patients are also affected by accumulated DNA

damage leading to genomic instability, which is the basis

for the multistep process of cancer development. The fact

that FUS knock-out mouse embryonic fibroblasts display

abundant chromosomal instability and enhanced radiation

sensitivity would underline this reasoning.16,17

Neurodegenerative diseases in general were reported to

correlate with an altered risk for malignant diseases. Evi-

dence exists for a lower tumor risk in Alzheimer’s, Hunt-

ington’s, and Parkinson’s diseases,18,19 whereas no

difference could be found in overall ALS patients com-

pared to the general population.20 However, due to the

low prevalence of FUS mutations, a possible cancer haz-

ard could be masked. Therefore, we identified via a multi-

center approach 36 novel patients with FUS mutations

and reviewed available medical records for the presence

of malignancies. Furthermore, we analyzed individual dis-

ease parameters in context of previously reported FUS-

ALS cases to deepen our knowledge of genotype–pheno-
type correlations in this rare disease.

Materials & Methods

The study was performed according to the Declaration of

Helsinki and approved by the local institutional review

boards (EK 393122012, EK 49022016 at the Technische

Universit€at Dresden). We performed a multicenter cross-

sectional study to identify genetically proven FUS-ALS

patients according to El-Escorial criteria21 and surveyed

all available medical records including postmortem

(n = 8) analysis for the occurrence of neoplasms (Table 1).

If applicable, informed consent was obtained from the

individuals. Documentation of benign hyperplasia or dys-

plasia was included into the table but otherwise disre-

garded because of mostly missing further pathological

information. For statistical testing, we compared with the

German cancer statistics from 200422 serving as a control

group whilst taking the negligible amount of ALS patients

therein into account.

Furthermore, all available demographic and disease-re-

lated data were obtained. To measure the individual dis-

ease course/survival more precisely, the term “onset to
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severe event” (OTSE, months, m) was designed estimating

the time from onset to the constant need for assisted ven-

tilation, tube feeding, or death, which was also the cen-

soring date for the Kaplan-Meier curve in Figure 3.

Additionally, 150 published ALS cases with FUS muta-

tion (cohort 2) were collected by searching the pubmed

database for the terms “FUS,” “ALS,” and “FUS MUTA-

TION.” Only affected patients with both existing clinical

data and known mutations status were included. Com-

bined mean or median data were likewise excluded. Using

this approach, a total of 186 patients from 44 studies

were included in our analysis (Table S1).

Table 1. Demographic data of newly reported FUS-ALS cases (=cohort 1).

Sex

AoO

(y)

Age at

death (y) Site of onset

Family

history

Amino

acid

change Tumor

Tumor in

Autopsy

Onset to

death (m) OTSE (m)

female 22 alive arms positive P525L none reported not applicable not applicable 7

female 58 58 arms positive R521L none reported NA 7 7

female 24 26 bulbar negative Y526C none reported NA 22 9

female NA 16 NA negative R495* none reported negative 10 10

female 33 35 dropped head NA Y526C cystic tumor

intraspinal

positive 16 16

female 39 40 right leg positive R521C several benign

tumors

positive 19 19

female 38 40 legs NA R521C Focal nodular

hyperplasia liver

positive 25 25

female 38 41 legs (right) positive R521H1 none reported NA 31 31

female 46 49 arms positive R521H none reported NA 37 37

female4 60 63 arms (left) positive R521H2 none reported NA 37 37

female 44 47 arms (left) positive R521H2 none reported NA 38 38

female 61 66 arms positive R521C none reported NA 60 60

female4 33 39 legs (left) positive R521H2 none reported NA 71 71

female NA NA NA NA R521H none reported NA NA NA

female NA NA NA NA R521H none reported NA NA NA

female NA NA NA NA R521H none reported NA NA NA

female NA 70 NA NA R521C none reported NA NA NA

female NA 70 NA NA R521C several benign

tumors

positive NA NA

female 17 18 bulbar negative P525L none reported NA 24 24

male 17 18 legs negative P525L none reported NA 15 15

male 31 32 bulbar positive R495Qfs*527 Acute lymphoblastic

leukemia (ALL)

NA 18 18

male 23 25 Legs right positive G478Lfs*23 none reported not applicable 19 19

male 39 40 right arm positive R521C none reported negative 20 20

male 39 41 bulbar NA R521C none reported negative 20 20

male 54 56 left (arm) positive R521C none reported negative 27 27

male 71 74 arms (left) positive R521H1 none reported NA 29 29

male 62 65 legs (left) positive R521C none reported NA 48 48

male 43 alive arms (right) positive R521H none reported not applicable not applicable 61

male 63 alive NA positive M254I none reported NA NA 72

male4 65 73 arms positive R521H2 none reported NA 86 86

male 35 49 right hand negative Q23L none reported negative 175 175

male NA NA NA NA R521H none reported NA NA NA

male NA 40 NA NA R521C none reported NA NA NA

male 27 28 arms/ shoulders positive R521C3 none reported NA 13 13

male 40 41 arms (left) positive R521C3 none reported NA 13 13

male 59 alive legs (left) positive K510R none reported not applicable not applicable not applicable

male 40 alive legs (right) NA R521H none reported not applicable not applicable not applicable

male 41 alive legs positive G509D none reported not applicable not applicable not applicable

male 13 alive arms NA Y526C none reported not applicable not applicable 30

NA, not available, 1,2,3indicate familial relation, 4indicates single patients that have been already published,30 but were included to demonstrate

familial relation to others in the table.
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Statistics

Testing for statistical significance and general descriptive

analysis was done using the IBM SPSS Statistics version

25 software. Individual tests are described beneath the

respective figures, all were carried out as two-sided test

and a P ≤ 0.05 was considered to indicate significant test

results. The median was used as main data aggregation

estimator with the median 95% confidence interval to

indicate dispersion. Testing for normality distribution was

carried out using the Shapiro-Wilk test. Normal distribu-

tion was found if not stated otherwise in the results sec-

tion allowing the usage of student t-test. However, for all

data depicted by boxplot diagrams, the null hypothesis

was rejected, hence either the Kruskal-Wallis H or Mann-

Whitney U test were used (Fig. 3A, 4B and C). Bonfer-

roni correction was applied in Figure 3A. Following

Kaplan-Meier plotting, the Log-rank test was used to esti-

mate survival differences between FUS-ALS patient sub-

groups. Pearson’s Chi-square test was carried out to

evaluate the sex difference frequency. Fisher’s exact test

was applied to compare the tumor prevalence data from

different populations. Spearman rank correlation coeffi-

cients were used to examine correlations between age of

onset (AoO) and OTSE with a correlation coefficient of

rho < 0.3 considered as a weak, rho = 0.3–0.59 a moder-

ate, and rho ≥ 0.6 a strong correlation.

Data Availability Statement

The authors state that all data are available upon individ-

ual request.

Results

Demographic and disease-related data of
identified patients with FUS mutation

We included two cohorts of FUS-ALS patients in this

study. First, we retrospectively analyzed case files in a

cross-sectional multicentric study and identified 36

unpublished FUS-ALS cases (Table 1). Additionally, we

Figure 1. Age at onset of newly acquired patients (=cohort 1) depicted as bar diagram for every case starting from the median value, n = 30.

Similarly, data of all patients (cohort 1 and 2) are shown in Figure S1.
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collected information on recently published FUS-ALS

patients for whom both relevant clinical information and

genetic testing were available (Table S1). Demographic

data are shown in Tables S2–S4.
In cohort 1, 34 patients (94%) had a C-terminal

mutation within the nuclear localization signal (NLS),

whereas the two remaining patients showed mutations

at position 23 in the Prion-like domain (PLD) or at

254 in the Glycine-rich repeats domain underlining the

previously reported abundancy of C-terminal mutations

in FUS patients. Furthermore, our cohort included

three cases with the P525L change, four patients were

found to have a truncating mutation following inclu-

sion of an early stop codon or frameshift alterations.

Male sex was slightly more frequent with a ratio of

1.18:1 (P = 0.74, Chi-square test). The median AoO

was 39 (CI 31–44) years and the median survival time

from symptom onset until either permanent necessity

for live-prolonging measures or death (OTSE) was

25 months (CI 18–31) months. Sex did neither influ-

ence AoO (P = 0.8, students t-test) nor OTSE

(P = 0.26, students t-test). Bulbar disease onset was

observed in 13.8% of patients.

Cohort 2 included recently published FUS-ALS cases

for whom clinical information was available and genetic

testing was done on the reported individual. By doing so,

we collected 150 additional cases (Table S1). C-terminal

domain mutations were found in 89% with the R521C

amino acid change being the most prevalent mutation

(17%). In general, the locus 521 had the highest abun-

dancy of different amino acid changes and was mutated

most frequently (36%). Importantly, with regard to med-

ian AoO/OTSE, we observed almost identical values in

cohort 2 (Table S3) compared to cohort 1 (Table S2),

highlighting the validity of the data (P = 0.84 and

P = 0.61, students t-test, respectively). Due to lack of data

availability, the sex influence could not be completely

evaluated.

Figure 2. (A), (B) Boxplot diagrams of disease duration (onset to severe event, OTSE) and age of onset (AoO) depending on individual mutation

sites in the combined group. The median value of the total group is drawn as broken line. Mutation sites were selected if information was

available on ≥ 2 cases. (C) Scatter blots of AoO and OTSE indicating moderate positive correlation.
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Genotype–phenotype correlations

Figure 1 demonstrates the variability of the age at onset

in cohort 1 (see Fig. S1/ DataS1 for all patients) implying

that certain mutations do result in very different pheno-

types.

As shown above, cohort 1 and 2 did not differ con-

cerning AoO and OTSE (Tables S2–S4). Therefore, we

combined the data for further analysis of genotype–phe-
notype correlations resulting in the so far largest reported

cohort of 186 FUS-ALS patients (Table S1).

Table S4 summarizes descriptive data of the combined

cohorts. Interestingly, we found a moderate but signifi-

cant positive correlation between AoO and OTSE

(Fig. 2C, Spearman q = 0.37, P < 0.001), which is con-

trary to sporadic ALS, in which late onset is associated

with faster disease progression.23,24

Figure 2 implicates that certain mutations may result in

distinct clinical disease parameters. In detail, P525L,

Y526C, and R495X led to the most striking difference com-

pared to the other groups listed in Table 2. One patient of

the new cohort 1 had a particularly early onset at the age of

13 and subsequent genome sequencing revealed the Y526C

missense mutation in his case. On examination, he showed

weakness in all extremities without obvious clinical signs of

upper MN impairment. Furthermore, he had a mild intel-

lectual disability and a cerebellar nystagmus; however, there

was no evidence for bulbar disease. His condition deterio-

rated rapidly resulting in the need for constant ventilation

support and tube feeding 30 months after onset paralleled

by locked-in syndrome.

Next, we grouped the most frequently reported amino

acid changes at the loci P525L, R521, truncating/frame-

shift mutations, and others for deeper investigation. Fig-

ure 3A demonstrates that carriers of a P525L (21 years,

CI 15–22) or truncating/frameshift (27 years, CI 23–31)
mutation had a significantly lower median age of onset

compared to the remaining carriers (47 years, CI 39–55)
and to the R521 carriers (43 years, CI 39–49, Kruskal-

Wallis H test, post hoc Bonferroni correction, P < 0.001).

Interestingly, the cumulative survival of the individual

mutation carriers was significantly different (Fig. 3B, Log-

rank Test, df = 3, P < 0.001) as indicated by the Kaplan-

Meier curves demonstrating the shortest survival for the

P525L patients.

Further analysis of the data revealed that the initial site

of disease onset is different for individual mutations

(Fig. 4A). Whereas P525L (42%) and truncation/frame-

shift (44%) carriers (44%) more frequently presented with

initial bulbar disease, only 3% of R521 mutation carriers

had such symptoms at onset. As expected, we observed a

significantly shorter median OTSE in bulbar-onset FUS-

ALS patients compared to patients with spinal onset T
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(18 m, CI 13.8–22.3 vs. 30 m, CI 31.8–44.8, P = 0.002,

Mann-Whitney U test). Surprisingly, however, the

patients with bulbar course were additionally present with

a significantly lower median age of onset (31 years, CI

24–36 vs. 40 years, CI 36–43, P = 0.025, Mann-Whitney

U test, Fig. 4B and C).

Considering that the site of initial symptoms had a sig-

nificant effect on both AoO and OTSE, one could deduce

that the higher proportion of patients with bulbar disease

might result in the decreased OTSE and earlier age at

onset for the selected groups in Figure 3. However, when

analyzing the OTSE for bulbar or spinal patients

(Fig. 4D), no clear differences became obvious suggesting

that additional modifiers might influence the disease phe-

notype, especially in the P525L group.

Analysis of malignancy burden in FUS-ALS

Recent reports show that FUS mutations cause impairment

of proper DNA damage response,13,15,25 which was most

strikingly seen in P525L, truncating mutations, and R521C.

Therefore, we hypothesized that this might be reflected by

increased abundancy of malignancies in FUS mutation carri-

ers. Data for neoplasms were available for 40 patients, most

of whom belonging to cohort 1. Among all included individ-

uals, we identified only one patient who suffered from a

malignancy prior to ALS, namely an acute lymphoblastic

leukemia (ALL), which was diagnosed during his childhood

(Table 1). This results in a prevalence for malignancies of

2.5% of the FUS-ALS patients, which is not significantly dif-

ferent from the prevalence data from control population

(1.6%) provided by data from the German cancer statistics

from 200422 (Fisher’s exact test; P = 0.477). Considering

that the study by Haberland et al. only covered a 5-year

prevalence, whereas our data can be understood as a lifetime

prevalence, we recalculated with data from a register-based

study.20 Fang and colleagues did not detect a difference in

malignancy burden between ALS cases and a healthy control

population, but the rate for tumor prevalence in ALS cases

was higher (10%) than in our study. Nevertheless, their ALS

cohort and control patients did not differ significantly from

our FUS-ALS cohort regarding cancer prevalence (Fisher’s

exact test; P = 0.18).

Interestingly, the affected patient, who had a severe

FUS frameshift mutation R495Qfs*527 leading to trunca-

tion of the NLS, received prophylactic whole-brain radia-

tion during his ALL therapy. Later on, he was diagnosed

with a meningioma and eventually with ALS.

Conclusively, our data did not indicate an increased

risk for malignancies in FUS-ALS patients.

Discussion

In this study, we provide the largest so far reported

cohort of 186 FUS-ALS patients and thereby enable a

careful prediction of the clinical course in newly

Figure 3. (A) Box plots showing the median age of onset for selected patient groups with the highest frequencies in the cohort. Statistical

testing was performed using a Kruskal-Wallis test followed by Bonferroni correction, ***P < 0.001. (B) Kaplan-Meier survival curve measuring the

OTSE. The groups were found to have significantly different cum. survival rates as demonstrated by the Log-rank test, P < 0.001.
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Figure 4. (A) Percentage of spinal vs. bulbar onset for the four most prevalent groups. Note the high rate of patients with a P525L or frameshift/

truncating mutation presenting with bulbar disease, whereas R521 carriers mostly show spinal disease course. (B) Median age of onset and (C)

OTSE grouped by spinal or bulbar disease onset. FUS-ALS patients with bulbar onset had a significantly lower age of onset and survival as

revealed by Mann-Whitney U test. (D) Median survival time for selected mutation carriers grouped by side of onset. *P < 0.05, ***P < 0.001.
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diagnosed patients and their families carrying the more

common amino acid changes. FUS-ALS patients showed a

younger disease onset (median 39 years) than sporadic

ALS patients.10,24 This was, however, driven mainly by

P525L and truncation/frameshift mutations leading to a

higher frequency of bulbar onset and shorter survival.

The less frequent Y526C mutation was also associated

with particularly young onset, rapid disease progression,

and atypical clinical signs as similarly demonstrated in a

recent case report.26 Therefore, FUS mutations should be

considered in early onset and atypical forms of MN

impairment including sporadic patients5 with negative

family history. We more often found de novo mutations

in patients with a more drastic disease course and

younger onset suggesting a possibly higher penetrance or

lower chance to inherit the genetic change.

Our work extends previous work on genotype–pheno-
type correlations7,10 by combining data from our patients

with those FUS cases from the recent literature. This

enabled us to identify patterns in the so far reported clin-

ical heterogeneity by stratifying for certain mutations

affecting the C-terminus, which once more became clear

to be the major cause of FUS-ALS. Nevertheless, our

study still lacks significant numbers of non-NLS muta-

tions to describe their phenotypes properly. Furthermore,

other modifying factors than the mutation itself must

play a role considering the sometimes very different dis-

ease parameters within families carrying the same muta-

tions (Table 1).

There is evidence for a lower risk of cancer in several

neurodegenerative disorders like Alzheimer’s, Parkinson’s,

and Huntington’s disease.18,19,27 On the other hand,

patients with the ataxia-telangiectasia (AT) syndrome pre-

sent with both neurodegeneration and higher risk for lym-

phoreticular malignancies and breast cancer. This is due to

homozygous loss-of-function mutations in the ATM gene

leading to insufficient DNA double-strand break repair,28,29

which was also reported for FUS mutations.15

Thus, we addressed the clinical relevant question if FUS-

ALS patients have a higher prevalence of malignant neo-

plasms. The retrospective assessment in our cohort revealed

a lifetime prevalence of 2.5%. This was not significantly

higher22 or lower20 than in the general population or in

sporadic ALS. Even though the sample size is small and the

study retrospective with the chance of underestimating

neoplasm incidence, we consider the available data being

sufficient to rule out an obvious co-occurrence of cancer as

it is reported for AT syndromes.28 It is important to stress

that the calculation was done using prevalence data not

considering the lifetime morbidity risk for a cancer disease,

which is strongly age-dependent.22 The retrospective data-

base analysis of Fang et al. might be more suitable when

comparing to FUS-ALS patients. FUS-ALS is otherwise

regarded to be the most frequent ALS subtype in juvenile

patients (<35 years)5 suggesting that a lower number of

cancer cases could be due to young age of affected individu-

als with aggressive disease course leading to death before

the classically increased risk for malignancies with higher

age. Therefore, it would be important to follow-up the

cases of unaffected family members of patients with evident

FUS mutations and to compare with younger control

cohorts.

Finally, there were only a few FUS mutations reported

to influence DNA repair,13–15,25 thus it is possible that the

majority of patients not carrying those were not at risk

for cancer which could not be addressed in our sample

size. However, the most frequent FUS-ALS mutation

R521C was described to impair proper DNA damage

response resulting in increased DNA double-strand breaks

evidently found in postmortem human tissue,15 but none

of our 12 R521C patients with partially late disease onset

showed evidence for neoplasms.

To our knowledge, our survey has assessed the largest

FUS-ALS patient collective so far. However, the rarity of

the disease and the retrospective style has obvious limita-

tions and warrants prospective validation. Still, we believe

that our survey provides a sufficient cohort, which should

be helpful when counseling patients and their families.
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4. Discussion 
The presented publications demonstrate the successful use of human iPSC-derived sMNs for 

the modelling of FUS-ALS, which is extended by the effort to substantiate these results with 

the most comprehensive meta-analysis of FUS-ALS patients and their clinical symptoms to 

date. The in-vitro findings suggest that FUS-ALS is caused by an impaired DNA damage 

response, which subsequently leads to neurodegeneration and aggregate formation. Based 

on the live-cell imaging inhibitor experiments, a vicious cycle of FUS-nucleocytoplasmic traffic 

could be hypothesised. FUS-NLS mutations impaired the nuclear import of FUS and lowered 

its nuclear concentration. This resulted in a nuclear loss of function, which led to chronically 

increased signs of DNA damage. Subsequently, the constantly overactive DDR led to the 

exclusion of the remaining FUS from the nucleus by DNA-PK activity, which closed the vicious 

cycle by progressively reducing the nuclear FUS pool.  

This theory of a primary nuclear dysfunction of FUS in the disease cascade challenges current 

therapeutic approaches that focus on mechanisms of protein aggregation and its clearance 

(Burke, Janke, Rhine, & Fawzi, 2015; Murakami et al., 2015; Patel et al., 2015). On the 

contrary, the work carried out implies that activation of DNA damage pathways in FUS-ALS is 

the key upstream event affecting both pathological protein aggregation and axonal trafficking. 

Therefore, intervening in DDR pathways could be more advantageous in terms of screening 

for therapeutic options. For example, inhibitors of PARP1 activity such as Olaparib have been 

approved by the FDA for the treatment of cancer with hereditary BRCA1 and BRCA2 mutations 

(Fong et al., 2009), and an inhibitor of PARG activity has recently been shown to make ovarian 

cells more susceptible to cell damage (Pillay et al., 2019). Thus, future ALS trials could benefit 

from this mutual interest in DNA damage response-interfering strategies. This could be 

clinically relevant in many ways. For example, PARP1 inhibition has recently been proposed 

as a therapeutic strategy for neurodegenerative diseases in general (Martire, Mosca, & d'Erme, 

2015). However, the role of PARP1 in neurodegeneration is not yet fully understood. The 

experimental results of this work implied the inhibition of PARP1 as a functional phenotype 

copy of the mutated FUS condition. On the other hand, PARP1 knockout mice were shown to 

be unremarkable except for higher rates of non-malignant skin diseases (Z. Q. Wang et al., 

1995), suggesting that its function could be restored by other repair factors. However, others 

reported accelerated ageing, higher rates of malignant neoplasms, and increased aneuploidy 

in other PARP1 knockout mouse strains (Piskunova et al., 2008; Simbulan-Rosenthal et al., 

1999). Indeed, there is evidence that the functional outcome of sufficient DNA damage repair 

differs between PARP1 knockout and inhibition, the latter leading to an accumulation of PARP1 

clusters at the DDS and a significant slowdown of SSB repair (Godon et al., 2008), while the 

former could lead to chromosomal aberrations. The abortive function in the SSB repair was 

recently shown for mutated FUS (H. Wang et al., 2018), suggesting that both FUS mutation 
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and PARP inhibition lead to a distal axonal phenotype via the SSB repair pathway and further 

downstream effectors in sMNs, which need to be investigated in future studies. One limitation 

of pharmacological PARP inhibition is the non-specific blockage of both PARP1 and PARP2 

enzyme activity, which, however, mutually share functions in the DDR (Beck et al., 2014). 

The strict regulation of PAR metabolism has become a new key element in the field of 

neurodegeneration in general in recent years. The pathological hyperactivity of PARP1 also 

seems to promote neuronal cell death. A growing list of rare neurodegenerative diseases has 

been shown to be characterised by PARP1 hyperactivation due to defective DNA damage 

repair mechanisms (E. F. Fang et al., 2014; Hoch et al., 2017). Furthermore, it has been shown 

to enhance the toxicity of alpha-synuclein, which adds a dysbalanced PAR metabolism to the 

pathogenesis of Parkinson’s disease (Kam et al., 2018). If some of these diseases are 

mediated by the newly formed term “Parthanatos” (David, Andrabi, Dawson, & Dawson, 2009), 

a specific variant of cell death, which is caused by the mitochondrial release of AIF as a result 

of excessive PAR production (Yu et al., 2002), remains to be studied in the future. However, 

another mechanism that was discussed was the depletion of NAD+ and acetyl-CoA following 

excessive PARP1 activity in a Xeroderma pigmentosum A cell model due to insufficient 

nucleotide excision repair (E. F. Fang et al., 2016). The authors found a reduced activity of the 

NAD+-dependant deacetylase sirtuin 1 (SIRT1), which led to lower deacetylation of the 

mitochondrial master transcription factor PGC1-alpha. PGC1-alpha has been described as a 

key regulator of mitochondrial homeostasis by indirectly modulating mitochondrial ROS and 

mitophagy, which are believed to be compromised by insufficient SIRT1-PGC1-alpha 

signalling. This mechanism would provide evidence for DNA-damage-induced nucleo-

mitochondrial crosstalk in neurons, similar to that found in Naumann & Pal et al. 2018. In line 

with these considerations, a completely abolished PGC1-alpha signalling was observed in a 

neuronal model derived from iPSC with FUS C-terminal frameshift mutation (Bayer et al., 

2017). 

Furthermore, ATM has been shown to activate SIRT1 by phosphorylation, which in turn 

deacetylates HDAC1 in neurons after the induction of DSBs (Dobbin et al., 2013). One could 

hypothesize that nucleo-axonal impairment following DNA damage mediated by FUS 

insufficiency or direct induction of DNA damage, as demonstrated in Figure 5h (Naumann & 

Pal et al. 2018) could be related to the ATM-SIRT1-PGC1-alpha mechanism. It appears 

plausible that a primary physiological mechanism could exist in neurons that ensures 

mitochondrial spatial redistribution to the vicinity of the nucleus in case of constantly high 

nuclear DNA damage, which would require energy-consuming repair. However, constant 

neglect of axonal mitochondria and axonal energy demand could eventually lead to a potential 

Wallerian-like degeneration phenotype as previously suggested (Section 3.2.1). Nonetheless, 

experimental evidence for this theory is still missing. Importantly, another recent study also 
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described an axonal phenotype in iPSC-derived neurons with FUS mutation that was partially 

reversible after inhibition of cytoplasmic HDAC6 (Guo et al., 2017), confirming the findings 

presented here.  

Taken together, both the chemical Inhibition and the excessive activation of PARP1 lead to 

cell death via different pathways. Although inhibition of PARG improved the relevant 

phenotypes in the presented human sMNs with FUS mutation (Figure 6g, Naumann & Pal et 

al. 2018), the long-term effects on cellular survival must be evaluated because of the 

hazardous effect of PAR accumulation on neuronal survival and mitophagy (E. F. Fang et al., 

2014; Hoch et al., 2017). Furthermore, more emphasis should be put on the respective PAR 

levels when intervening in its in-vitro generation or degradation. Mild PARP1 inhibition could 

have been beneficial in the sMN FUS mutant cell model as proposed for other 

neurodegenerative diseases. 

Evidence of a role in the DDR has been reported for many ALS-related proteins, but currently, 

only the importance of FUS in this setting is corroborated by a growing number of publications. 

However, the influence of FUS-NLS mutations associated with ALS on the DDR was reported 

in different ways. While the presented publication and another one (Rulten et al., 2014) argue 

for a clear pathological involvement, others saw only minor changes in FUS mutants 

(Mastrocola et al., 2013a) or no differences at all (W. Y. Wang et al., 2013). The variety of 

these observations could be explained by the application of different cell models and FUS 

overexpression methods. In particular, the study by Wang et al. (2013) was very well-

conceived, and strict control of the expression levels was given. However, their use of murine 

primary neuronal culture with ectopic expression of human FUS appears to be difficult to 

compare with endogenous FUS in human neuronal cells. This is underlined by a recent study 

based on a human neuronal model derived from hiPSC, which demonstrated the importance 

of FUS in the single-stranded DNA damage repair pathway (H. Wang et al., 2018). A role in 

homologous recombination or NHEJ pathways of DSB repair for FUS was not described in this 

study, which is in contrast to the murine-based study (W. Y. Wang et al., 2013), which 

demonstrated that FUS physically interacts with HDAC1 to ensure DSB repair. This would also 

be in line with the experimental results indicating sufficient DSB repair after etoposide 

treatment in both WT and FUS mutated neurons (Figure 5e, f; Naumann & Pal et al. 2018). 

Importantly, FUS is subject to N-terminal phosphorylation by ATM (Gardiner, Toth, 

Vandermoere, Morrice, & Rouse, 2008) and DNA-PK (Deng et al., 2014). More importantly, 

phosphorylation by DNA-PK after NHEJ activation leads to nuclear egress of the P-FUS into 

the cytoplasm. However, the biological relevance of this process is unclear to date. It is 

speculative if FUS could be important primarily for a sufficient DDR, but has to fulfil another 

task in the cytoplasm, secondary to the DNA damage induction. A major drawback of the study 

by Deng et al. (2014) was a relatively strong presence of cytoplasmic FUS in the control 
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conditions without induction of DNA damage. Although there are other reports that contradict 

a nucleo-cytoplasmatic shift of phosphorylated FUS (Rhoads et al., 2018), the data presented 

in Naumann & Pal et al. (2018) argue in favour of a cytoplasmic translocation of FUS via DNA-

PK-mediated phosphorylation. It could be shown that after treatment with etoposide, there was 

a delayed shift of FUS-WT-GFP into the cytoplasm. Of note is that upon pharmacological 

PARP inhibition, this process was visually even faster, presumably due to the disruption of its 

nuclear tether. Both conditions led to the observed axonal phenotype. On the contrary, 

pharmacological inhibition of the DNA-PK enzyme caused a shift of FUS-P525L-GFP into the 

nucleus, thus restoring sufficient recruitment to the DDS. Interestingly, under this condition, 

the signal peak was lower at the DDS but more extended than in the WT mock condition (Figure 

6d; Naumann & Pal et al. 2018), suggesting an influence of posttranslational modifications on 

local protein organisation. In parallel, the initially detected axonal mitochondrial phenotype was 

similarly reversed in the mutant sMNs after DNA-PK inhibition.  

Apart from its influence on the shuttling of FUS, it has also been reported that the N-terminal 

phosphorylation of FUS by DNA-PK attenuates liquid-liquid phase separation of multiple FUS 

proteins (Han et al., 2012; Monahan et al., 2017). This self-aggregation process, which is 

mediated by the interaction of the low-complexity domains of the respective FUS proteins, 

leads to the formation of viscous, membrane-less compartments at physiological 

concentrations (Patel et al., 2015). This formation could be related to the physiological 

processes in which FUS is involved, for instance, DNA repair and the formation of stress 

granules. However, it has been shown that FUS-ALS-associated mutations alter the 

equilibrium of the phase-separated droplets and thus induce a liquid-to-solid phase transition. 

It is assumed that the resulting irreversible aggregates have a significant influence on cellular 

survival (Patel et al., 2015). Blocking the activity of DNA-PK, which possibly dissolves the 

phase-separated FUS droplets, would therefore probably worsen the disease condition. On 

the other hand, there is growing evidence for the necessity of an active change in this phase-

separated status to facilitate physiological processes such as DNA repair. Phase separation 

of proteins has been proposed as a key condition for the shaping of the DNA damage site for 

efficient repair (Nott et al., 2016). It has been shown that the nascent droplets act as filters for 

proteins associated with DNA damage repair and that they stabilize ssDNA and melt dsDNA. 

Moreover, the seeding of the negatively charged biopolymer PAR greatly increased the phase 

separation of the FET protein family involving FUS, TAF15, and EWS at the DDS (Altmeyer et 

al., 2015), which was shown to be mediated by electrostatic interaction with the positively 

charged RGG in their N-terminal domains. The higher complexity of this compartment could 

allow the spatial and temporal control of such elemental processes as the DDR, which is 

corroborated by the dynamic exchange of constituents through posttranslational modification 

such as phosphorylation or ubiquitination (Altmeyer et al., 2015) that regulate the sequence of 
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the DDR. Thus, there is growing evidence that FUS is a very early factor in the DDR cascade. 

However, the N-terminal phosphorylation at different S/T-Q motifs would hypothetically abolish 

the PAR interaction, which would lead to the exclusion of P-FUS from the DNA damage 

compartment. That way, it would be ensured that more downstream proteins can get access 

to the DDS and perform their function. As a consequence, this could secondarily lead to a 

passive egress of FUS into the cytoplasm (Deng et al., 2014). Whether there is another 

biological purpose for P-FUS in the cytoplasm after the DDR or whether this is only a stalling 

technique needs to be investigated in future studies. Nonetheless, this reasoning would explain 

the improvement of the cytoplasmic phenotype in mutated FUS sMNs by DNA-PK inhibition. It 

suggests a possibility to break the vicious cycle caused by a less efficient nuclear import of 

mutated FUS, resulting in a diminished DNA damage repair, higher rates of DNA damage, and 

even more FUS phosphorylation. If these considerations prove plausible, two questions arise. 

(1) Phosphorylated cytoplasmatic FUS should be protected from liquid-liquid segregation and 

subsequent liquid-to-solid phase transition. Which phosphatases are responsible for the 

dephosphorylation of P-FUS and, by inhibiting them, would that prevent the formation of 

cytoplasmic FUS aggregates and even more so their spreading? (2) Would it be safe to inhibit 

DNA-PK in a long-term manner considering that DNA-PKc-deficient mice showed accelerated 

ageing (Espejel et al., 2004), or are there other post-translational modifiers that could cope 

with the loss? However, as the main component of the NHEJ, DNA-PK is likely to be 

irreplaceable for this instance, but not for its presumed function in spatially and temporally 

regulating the membrane-less DDR compartment by phosphorylation of FUS, which could be 

hypothezised considering that DNA-PK inhibition might prolong the presence of FUS-GFP at 

the DDS (Figure 6d; Naumann & Pal et al. 2018). In summary, both DNA-PK and PARG 

inhibition lead to complex and partially not well-understood biomolecular consequences, but 

they offer potential therapeutic options for (FUS)-ALS patients. At present, however, much 

more evidence of the efficacy and safety of these inhibitors must be gathered, including in 

animal models, before possible human trials can be discussed. 

To dynamically measure the extent of FUS mislocalisation, recruitment to the DDS and protein 

aggregation, isogenic iPSC-derived neuronal lines with GFP tagged FUS generated by 

CRISPR/Cas9n were applied. Thus, isogenic control conditions were given, which implied that 

the obtained results can only be explained by the underlying heterozygous FUS mutation. The 

influence of random Cas9n integration events on the results seemed less likely due to the 

strategy of designing the probes (Material & Methods, Naumann & Pal et al. 2018). At present, 

there is no evidence of a clear bias of the GFP tag as all relevant phenotypes could be 

reproduced in a similar way by using iPSC-derived neurons with endogenous FUS mutation 

from affected patients, who evidently suffered from the disease.  
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It is assumed that the classical NHEJ is the main resource for DSB repair in neurons, due to 

their post-mitotic state in contrast to the highly efficient homologous recombination through 

which cycling cells predominantly repair occurring DSBs. The latter requires the presence of 

the identical sister chromatid, which is present during late S- and G2-phases of the cell cycle, 

but allows for error-free repair. Therefore, DSBs represent a serious condition for neurons that 

are only able to perform the error-prone NHEJ or the even less accurate microhomology-

mediated end joining. Therefore, critical control and rapid repair of more benign damage 

entities like DNA single-strand nicks are essential to prevent transformation to hazardous 

DSBs as part of the genome protection for neurons. Consequently, it is widely accepted that 

mutations in DNA damage repair factors lead disproportionally often to neurological 

phenotypes. Previous reports and the presented publication (Naumann et al. 2019) thus add 

FUS-ALS to the class of neurodegenerative diseases with impaired DDR signalling, such as 

Ataxia telangiectasia (A-T), AOA1 (Ataxia oculomotor apraxia), AOA2, SCA3 (Spinocerebellar 

ataxia), SCAN1, and SCAN2 (Spinocerebellar ataxia with axonal neuropathy) (Madabhushi, 

Pan, & Tsai, 2014; Reynolds & Stewart, 2013). Of note is that the A-T syndrome is 

characterized by more than purely neurological symptoms, as it is evident in the other 

syndromes listed. Biallelic mutations of ATM in A-T are associated with a higher prevalence 

for lymphoma, leukaemia, or breast cancer (Stankovic et al., 1998). Importantly, FUS −/− mice 

were reported to exhibit high genomic instability (Hicks et al., 2000) and increased radiation 

sensitivity (Kuroda et al., 2000), which has also been reported for A-T. Moreover, it has been 

demonstrated that neurodegenerative diseases in general correlate with altered risk of cancer. 

There is evidence for lower risk in Alzheimer’s and Parkinson’s disease (Bajaj, Driver, & 

Schernhammer, 2010; Driver et al., 2012), whereas, in a register-based study, no difference 

could be found in ALS patients compared to the general population (F. Fang et al., 2013). The 

question of whether FUS-ALS patients are therefore more susceptible to the development of 

malignant disease or hypersensitive to radiation was of immense clinical importance as 

radiation of salivary glands could currently be used to treat pseudohypersalivation in ALS 

patients. However, the multicentre retrospective analysis identified only one in 40 FUS-ALS 

patients who had leukaemia in his childhood. From the genetic point of view, he harboured a 

frameshift mutation that functionally affected the C-terminal NLS of FUS. Importantly, his 

derived iPSC, neural progenitor cells, and sMNs all exhibited a clear cytoplasmatic FUS signal 

(data not shown) and dramatically increased DNA damage as indicated by staining for gamma-

H2A.X (Figure 5g; Naumann & Pal et al. 2018). On the other hand, many other studied FUS-

ALS patients showed in some cases even worse neurological symptoms and striking signs of 

DNA damage, without any documented malignant disease suggesting the influence of 

additional protective factors. However, due to the small patient cohort, it is difficult to obtain a 

statistically convincing result, but considering the prevalence of around 3-5 per 10,000,000, 
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implies the difficulty of the need for bigger cohorts. Furthermore, it appeared possible that a 

higher susceptibility to malignant cell transformations could be masked by the very limited 

survival time of patients as well as the young onset of the disease. However, from a clinical 

point of view, FUS-ALS is similar to the other neurological conditions mentioned above in that 

they are all characterized exclusively by neurological symptoms, while A-T patients additionally 

suffer from telangiectasias, pulmonary and endocrine dysfunction, immunodeficiency, and an 

increased risk of some malignant neoplasms (Verhagen et al., 2012). A possible explanation 

for the absence of malignancies in neurological disorders associated with impaired SSB nick 

repair like FUS-ALS (H. Wang et al., 2018), AOA1, AOA2, and SCAN1 (Reynolds & Stewart, 

2013) could be that in non-neuronal cells, regular ATM activity provides sufficient control of the 

cell cycle and p53-mediated apoptosis mechanisms, thereby diminishing the influence of 

accumulated DNA damage, but this is not the case in A-T due to loss of ATM function. Taken 

together, no increased risk of cancer in FUS-ALS patients could be identified in the cohort 

surveyed. Nonetheless, prospective studies are recommended, especially involving unaffected 

family members who carry the heterozygous mutation without exhibiting neurological 

symptoms. The reasons for the incomplete penetrance are not known, but it appeared that the 

clinically more benign mutations at the R521 locus were more likely associated with a familial 

pattern, while the most severe mutations such as P525L were found only sporadically, probably 

due to the young age at onset or a possible negative effect on the egg/sperm cells. The 

presented, so far most comprehensive phenotype-genotype correlation for FUS-ALS patients 

could in the future enable better counselling of newly diagnosed patients when evaluating the 

individual course of the disease.  
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5. Summary 
Background: The submitted cumulative dissertation is based on two intertwined main studies 

with biomolecular foundation and clinical perspective on FUS-ALS complemented by two 

follow-up projects. This subtype of Amyotrophic lateral sclerosis is caused by heterozygous 

mutations mainly in the NLS of the FUS gene, which interferes with the proper nuclear import 

of the gene product. To date, there is no sufficient therapy available for this devastating 

neurodegenerative disease due to an incomplete pathophysiological understanding. 

Furthermore, not much is known about the specific clinical phenotype of FUS-ALS patients, 

including the influence of distinct FUS mutations due to the rarity of the disease. FUS is a 

DNA/RNA-binding protein that is mainly located in the nucleus and has essential functions in 

splicing, mRNA transport, transcription, and DNA damage repair. 

Hypothesis:  

1. It was hypothesized that the human-induced pluripotent stem-cell technique enables 

to create a sufficient motor neuron in-vitro cell model, which should provide new insights 

into unknown pathophysiological processes compared to previous cell models of FUS-

ALS due to its patient-specific and human character. Thus, screening for potential 

therapeutic substances should be feasible using this model system.  

2. Judging from the previously demonstrated, essential function of FUS in the DNA 

damage repair, FUS mutations are expected to increase the risk of malignant diseases 

in affected patients. Moreover, specific correlations between the nature of the mutation 

and the clinical, neurological phenotype appear plausible. 

Material & methods: First, an in-vitro cell culture model of FUS-ALS was established. For this 

purpose, a patient-specific, induced pluripotent stem cell-derived sMN culture was generated, 

which contained spinal motor neurons with mutations in the gene FUS or WT control cells. The 

Microfluidic Chamber system was used for the selective analysis of axons, which enabled the 

live-cell imaging of lysosomes and mitochondria using TIRF microscopy. For the analysis of 

DNA damage and its repair, gamma-H2A.X immunofluorescence staining was used on the one 

hand and live-cell laser ablation microscopy on the other, which allowed the precise induction 

of DNA damage and the monitoring of the repair response. For this purpose, isogenic FUS-

GFP cell lines generated via CRISPR-Cas9n were used. A multicentre, retrospective cross-

sectional study was conducted to determine genotype-phenotype correlations and the 

prevalence of malignant neoplasms in FUS-ALS. Previously published FUS-ALS cases have 

been added to perform a meta-analysis of clinical features. 

Results: Primarily, correct neuronal differentiation was observed prior to neurodegenerative 

phenotypes, perfectly mimicking a neurodegenerative disease in the dish. The typical cellular 
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pathology of cytoplasmatic FUS deposition could be reproduced, making it a suitable model 

for more in-depth pathophysiological studies. Furthermore, the use of Microfluidic Chambers 

enabled the guided cultivation of neurons with somato-axonal direction of neurite outgrow 

along tiny microchannels in silico, resulting in a pure motoneuronal, axonal model. Within the 

distal axonal compartment of these channels, a loss of motility of both lysosomes and 

mitochondria was observed in parallel with a loss of the mitochondrial membrane potential, 

followed by the secondary degeneration of the distal axons of the sMNs with FUS mutation. A 

pathological increase in nuclear DNA damage has been identified as the cause of the distal-

axonal phenotypes. This was due to a reduced nuclear FUS abundance as a result of the FUS-

NLS mutation, which impaired proper nuclear import. There was evidence of a vicious cycle in 

this setting because the loss of the nuclear function of FUS disrupted the proper PAR-

dependent DNA damage response, resulting in sustained DNA damage. Moreover, the 

remaining nuclear FUS was transferred into the cytoplasm upon phosphorylation by DNA-PK 

in a DNA damage response dependent manner, which is to date a process of unclear biological 

relevance. However, pharmacological inhibition of either the degradation of the PAR 

biopolymer or DNA-PK improved the nuclear presence of mutant FUS, restored its function in 

the DNA damage response, and finally prevented the distal axonal phenotype.  

Furthermore, the multicentric cohort study included 36 newly diagnosed patients. Only one in 

40 patients was diagnosed with a malignant disease. By combining the newly diagnosed 

patients with previously published cases (186 cases in total), the so far most comprehensive 

database of FUS-ALS patients has been created. This allowed a thorough genotype-

phenotype analysis, which showed a clear correlation between individual FUS mutations and 

the clinical phenotype.  

Conclusion: The experimental results indicated a primary nuclear insufficiency of mutated 

FUS, which is due to an impaired nuclear import and leads to a secondary axonal degeneration 

and finally to neuronal demise (“Dying-Back”). Potential therapeutic options have been 

identified, but their applicability and safety must be determined in prospective studies. The 

hypothesis of a generally increased risk of malignant diseases in the analysed FUS-ALS 

patient group was rejected. However, the clinical data of the meta-analysis are helpful in the 

counselling of newly diagnosed FUS-ALS patients, including the decision making of the 

therapeutic management and clearly add FUS-ALS to the family of diseases characterised by 

deficient DNA damage repair with purely neurological phenotypes such as AOA1, AOA2, and 

SCAN1.  



 

54 
 

6. Zusammenfassung 
Hintergrund: Die vorgelegte Arbeit beinhalt die Vereinigung zweier ineinandergreifender 

Hauptprojekte mit grundlagenwissenschaftlicher Ausgangslage und klinischer Perspektive zur 

Pathophysiologie der FUS-ALS, die ergänzt werden von zwei aufbauenden 

Nachfolgeprojekten. Als Unterform der Amyotrophen Lateralsklerose wird die FUS-ALS durch 

heterozygote Mutationen in der NLS des FUS Gens verursacht, wodurch der physiologische, 

nukleäre Import des Genprodukts beeinträchtigt wird. Für diese schwere neurodegenerative 

Krankheit existiert bis heute keine zufriedenstellende Therapie aufgrund unvollständiger 

Kenntnis der pathologischen Mechanismen. Durch die Seltenheit der Krankheit ist der 

klinische Phänotyp der FUS-ALS wenig charakterisiert auch im Hinblick des Einflusses 

verschiedener FUS Mutationen. FUS ist als DNS/RNS-bindendes, primär nukleäres Protein 

essentiell beteiligt an zellbiologischen Prozessen wie Splicing, mRNA Transport oder DNS 

Schaden Reparatur. 

Hypothese:  

1. Es wurde hypothetisiert, dass die humane, induzierte pluripotente Stammzelltechnik 

die Generierung eines suffizienten in vitro Motoneuronmodells ermöglicht, welches 

neue Erkenntnisse zu bisher unbekannten pathophysiologischen Prozessen 

ermöglichen sollte im Vergleich zu bisherigen Zellmodellen der FUS-ALS aufgrund des 

Patienten-spezifischen und humanen Charakters. Unter Verwendung dieses Modells 

sollten nachfolgend Screeningverfahren zur Testung potentieller Therapeutika möglich 

sein. 

2. Basierend auf der bekannten, essentiellen Funktion von FUS im Rahmen der DNS 

Schadenreparatur ist ein generell erhöhtes Risiko an malignen Neoplasien zu 

erkranken im Falle von FUS Mutationen für betroffene Patienten zu erwarten. Weiterhin 

erscheint es plausibel, dass verschiedene FUS Mutationen assoziiert sind mit 

spezifischen, klinisch-neurologischen Phänotypen 

Material & Methoden: Im ersten Schritt wurde ein in vitro Zellkulturmodell der FUS-ALS 

etabliert. Dazu wurden Patienten-spezifische, von induzierten pluripotenten Stammzellen 

abgeleitet, spinale Motoneurone mit heterozygoten Mutationen im FUS Gen generiert. Zur 

selektiven Analyse von Axonen gelang die Kultivierung in Microfluidic Chambers. Darin wurden 

mittels live-cell-imaging TIRF Mikroskopie Lysosomen und Mitochondrien visualisiert. Zur 

Analyse von DNS Schäden wurde zum einen die gamma-H2A.X Immunfluoreszenzfärbung 

verwendet, zum anderen Laserablationsmikroskopie um in lebenden Zellen zeitlich und 

räumlich präzise DNS Schaden zu induzieren und dynamisch die Reparaturantwort 

darzustellen. Dazu wurden isogene FUS-GFP Zelllinien verwendet, die zuvor mittels CRISPR-

Cas9n kreiert und zur Verfügung gestellt worden sind. Zur Erfassung des klinischen Phänotyps 
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erfolgte eine multizentrische, retrospektive Studie neuer FUS-ALS Patienten und Metaanalyse 

mit bereits publizierten Fällen.  

Ergebnisse: Es wurde primär regelrechte neuronale Differenzierung der FUS-ALS MN 

beobachtet, bevor sich ein neurodegenerativer Phänotyp in-vitro entwickelte passend zum 

Charakter neurodegenerativer Erkrankungen. Die typische zelluläre Pathologie in Form von 

zytoplasmatischen FUS Ablagerungen konnte im Anschluss in spinalen humanen 

Motoneuronen dargestellt werden, sodass von einem suffizienten Modell auszugehen war. 

Unter Verwendung sogenannter Microfluidic Chambers gelang die gerichtete Kultivierung der 

Neurone mit somato-axonaler Orientierung des Neuritenauswuchses entlang von 

Mikrokanälen in-silico. Dabei wurde ein distal axonaler Phänotyp im Sinne eines 

Motilitätsverlusts von Mitochondrien und Lysosomen und Zusammenbruch des 

mitochondrialen Membranpotentials gesehen, gefolgt vom progredienten Verlust der Axone 

spinaler Motoneurone mit FUS Mutation. Diese pathologische Veränderung konnte kausal auf 

erhöhten nukleären DNS Schaden zurückgeführt werden. Experimentell wurde ursächlich eine 

verminderte nukleäre FUS Konzentration identifiziert, was zu einem pathologischen 

Teufelskreis führte, da der nukleäre Funktionsverlust von FUS PAR-abhängige DNS 

Reparaturprozesse negativ beeinflusste, woraus chronische DNS Schädigung und 

Reparaturantwort folgte. Der verbleibende nukleäre FUS Pool wurde darauf weiterhin 

vermindert durch DNS Reparatur assoziierte DNA-PK Aktivität, was zur Phosphorylierung und 

nachfolgend zytoplasmatischen Translokation von FUS führte. Die biologische Funktion dieses 

Prozesses bleibt bis jetzt unklar. Durch Inhibition des Abbaus des PAR Biopolymers oder der 

DNA-PK konnte die nukleäre Konzentration von mutiertem FUS erhöht werden, was sowohl 

die Funktion im Rahmen der DNS Reparatur wiederherstellte, als auch den axonalen Phänotyp 

verhinderte.  

Weiterhin wurden im Rahmen der multizentrischen, retrospektiven Studie 36 neu 

diagnostizierte FUS-ALS Patienten beschrieben. Nur in einem von 40 Fällen wurde eine 

maligne Tumorerkrankung festgestellt. Unter Einbeziehung bisher publizierter Patienten 

umfasste die Metaanalyse anamnestischer und klinischer Parameter insgesamt 186 Patienten. 

Die Genotyp-Phänotyp Analyse zeigte klare Zusammenhänge zwischen der Art und 

Lokalisation individueller Mutationen im FUS Gen und dem klinischen Phänotyp.  

Schlussfolgerung: Die Zellkulturdaten weisen auf eine primär nukleäre Insuffizienz des FUS 

Proteins hin, was zu sekundärer axonaler Schädigung und letztlich axoneuronalem Zelltod 

führte („Dying-Back“). Potentiell kausale Therapeutika wurden identifiziert, die zukünftig weiter 

untersucht werden müssen hinsichtlich Wirksamkeit und Sicherheit. Die Hypothese eines 

erhöhten Risikos für maligne Erkrankungen in der FUS-ALS Studienpopulation wurde 

abgelehnt. Allerdings können die Daten der Metaanalyse genutzt werden bei der Beratung und 
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therapeutischem Management neuer FUS-ALS Patienten in der klinischen Praxis und 

erlauben eine Einordnung der FUS-ALS in die Familie von Krankheiten mit ausschließlich 

neurologischem Phänotyp und gestörter DNA Schaden Reparatur wie AOA1, AOA2 and 

SCAN1.  
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