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Zusammenfassung 
Somatische Mutationen sind eine Hauptursache für die Entstehung von Krebs. Allerdings 

tragen nicht alle Mutationen gleichermaßen zur Tumorentstehung bei. Ein wichtiges Ziel der 

personalisierten Medizin ist es daher, die für das Wachstum und Überleben des Tumors 

wesentlichen (sogenannte „Treiber“-Mutationen) von den zahlreichen biologisch neutralen 

Mutationen (sogenannte „Passagier“-Mutationen) zu unterscheiden. In der vorliegenden 

Studie etablierte ich einen CRISPR-basierten, genetischen Screen mit dessen Hilfe die 

funktionelle Rolle von Mutationen bei Krebs untersucht werden kann. Ich konnte nachweißen, 

dass diese mutationsselektive Strategie geeignet ist, um neue Krebstreibermutationen in der 

Kolorektalkarzinom- Zelllinie RKO zu identifizieren. Dazu verwendete ich 100 unterschiedliche 

sgRNAs, welche jeweils eine Krebsmutationssequenz spezifisch schneiden während die 

Wildtyp-Sequenz nicht verändert wird. Als Kontrolle nutzte ich die Kolorektalkarzinom- Zelllinie 

HCT116, welche die Zielmutationen nicht trägt. Interessanterweise ergab die Datenanalyse, 

dass zwei sgRNAs, welche die gleiche Mutation (UTP14A: S99del) schneiden, besonders 

rasch und ausschließlich in RKO-Zellen verloren gingen. Im Einklang mit den Screening-

Ergebnissen führte die individuelle Infektion der Zellen mit diesen sgRNAs zu einem selektiven 

Verlust in RKO-, nicht aber HCT-Zellen, wodurch UTP14A: S99del als mutmaßliche Treiber-

Mutation in RKO-Zellen identifiziert werden konnte. Die weitere Validierung und 

Charakterisierung dieser mutmaßlichen Treiber-Mutation wird diskutiert. Insgesamt zeigt 

dieser Ansatz, dass ein solches CRISPR-basiertes System ein leistungsfähiges Werkzeug 

auch für umfangreichere Untersuchungen von Krebsmutationen darstellt. 

 

Parallel dazu setzte ich die CRISPR-Cas-Technologie ein, um bekannte und bisher nicht 

therapierbare Treiber-Mutationen, wie z.B. innerhalb der Ras-Onkogen-Familie, zu 

untersuchen. Bemerkenswert ist in diesem Zusammenhang, dass jeder dritte Krebspatient ein 

durch Mutationen aktiviertes KRAS exprimiert, welches damit das am häufigsten mutierte 

Onkogen in menschlichen Tumorzellen ist. Im Gegensatz zu anderen Molekülen des MAPK-

Signalweges konnte KRAS bisher nicht mittels kleiner, inhibitorischer Moleküle inaktiviert 

werden. Unter diesen Voraussetzungen birgt ein genomischer, CRISPR-basierter Ansatz das 

Potenzial, eine dringend benötigte therapeutische Alternative zur KRAS-Inaktivierung zu 

liefern. Ich entwarf daher drei mutationsselektive sgRNAs abzielend auf die häufigsten KRAS-

Mutationen. Obwohl diese Strategie geeignet war, um KRAS-mutierte Tumorzellen in 3 

unterschiedlichen Krebszelllinien effizient und spezifisch zu entfernen, führte die langfristige 

Cas9-Expression zur Bildung von onkogenen, resistenten Klonen. Dieses Phänomen wird 

durch DNA-Doppelstrangbrüche und die nachfolgend einsetzende, endogene DNA-

Reparaturmaschinerie begünstigt. Ich konnte zeigen, dass der Adenin-Basen-Editor im 
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Gegensatz dazu nicht nur in der Lage ist, die KRAS-Mutation ohne Doppelstrangbruch zu 

inaktivieren, sondern diese auch zur Wildtyp-Sequenz reparieren kann. Mit Hilfe dieses 

Ansatzes erreichte ich insbesondere bei Vorliegen der G12D-Mutation, einen fast 

vollständigen Abbau der KRAS-korrigierten Zellen. Die Validierung in patienten-abgeleiteten 

KRAS-G12D-Organoiden bestätigte die effiziente Korrektur sowie die daraus resultierende 

erhöhte Sensitivität, wenn auch in einem geringeren Maße als in Zelllinien. Somit konnte in 

dieser Studie erstmals gezeigt werden, dass Basen-Editierung sowohl in Zelllinien als auch in 

Organoiden, welche aus Tumorzellen der Patienten stammen, erfolgreich eingesetzt werden 

kann. Darüber hinaus ist dieses System gut verträglich und induziert weder in Zelllinien noch 

in Organoiden bei Vorliegen des KRAS Wildtyps unerwünschte Nebeneffekte (sogenannte 

„Off-target-Effekte“). Langfristig kann die Anwendung von CRISPR-basierten- und Basen-

Editierungs-technologien zum Ausschalten von KRAS-Mutationen nicht nur zu einem 

besseren Verständnis der RAS-Biologie führen, sondern zusammen mit neuen 

Verabreichungsformen und Technologien die Grundlage für eine dringend benötigte KRAS-

Therapie bilden.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Summary 
DNA mutations are a major cause of cancer development. Identification of all mutations 

present in cancer cells has been enabled by modern advances in genome sequencing 

technologies. However, not all mutations contribute equally to tumorigenesis. Distinguishing 

the mutations essential for tumor growth and/or survival (so- called ‘‘driver’’ mutations) from 

the numerous biologically neutral mutations (so-called “passenger” mutations) is an important 

goal for precision medicine with substantial impact on disease diagnosis, prognosis, and 

treatment regimens. A classic knock-out experiment to study mutations in cancer cells was 

often thwarted by the complexity of the systems used. The CRISPR-Cas9 system emerged as 

a rather simple and programmable gene editing tool. Adapting the system to functionally test 

the relevance of mutations for cancer cell growth and viability would therefore offer a significant 

advance in the field. Furthermore, sharpening the tool to disable cancer driver mutations, 

especially those which have been notoriously “undruggable”, shall provide a stepping-stone 

into an era of therapeutic genome surgery. In this study, I harnessed the power of genetic 

screens through CRISPR-based system to interrogate the functional role of mutations in 

cancer. As a proof-of-concept, I employed a mutation-selective strategy to identify novel 

cancer driver mutations in the colorectal carcinoma (CRC) cell line RKO, using 100 high-quality 

sgRNAs to specifically cleave cancer mutation sequences, while sparing the wild-type 

sequence. As a control, the CRC cell line HCT116 that does not carry the targeted mutations 

was also infected. Interestingly, the analysis revealed two sgRNAs targeting the same mutation 

(UTP14A: S99del) to be rapidly depleted only in RKO cells. In line with screen results, 

individual infection of the two sgRNAs resulted in the selective depletion in RKO cells, but not 

in HCT116, nominating UTP14A: S99del as a putative driver mutation in RKO cells. Further 

validation and characterization of this putative RKO driver mutation is discussed. Overall, our 

approach demonstrates that the CRISPR-Cas9 system is a powerful tool to functionally dissect 

cancer mutations at large-scale. 

 

In parallel, I employed the CRISPR-Cas9 system to target known cancer driver mutations that 

are notoriously “undruggable” such as the Ras oncogene family. One in every three cancer 

patients has a mutationally-activated KRAS making it the most frequently mutated oncogene 

in human cancers. However, in contrast to other members of the MAPK pathway, small 

molecules directed at targeting KRAS have not been successful. Therefore, a genomic 

CRISPR-based approach holds the potential to offer a much-needed therapeutic alternative to 

inactivate KRAS. To this aim, I designed three mutation-selective sgRNAs targeting three of 

the most common KRAS mutations, and infected cells in conjunction with Cas9 nuclease and 

GFP. Although targeting mutant KRAS depleted cancer cells efficiently and specifically, tested 
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in three different cancer cell lines, long-term Cas9 expression led to the formation of oncogenic 

escape clones, a caveat fostered by DNA double-stranded break and endogenous DNA repair 

machinery. In contrast to CRISPR-Cas9 nucleases, a recently developed CRISPR base editor 

system enables predefined nucleotide exchanges in genomic sequences without generating 

DNA double stranded breaks. Using the cleavage-deficient Adenine Base Editor, we not only 

inactivated KRAS driver mutations, but also repaired it back to wild-type sequence. Intriguingly, 

KRAS-corrected cells were rapidly depleted, almost in its entirety especially in G12D mutant 

cells. Validation in Patient-derived KRAS G12D mutant organoids revealed efficient base 

editing and sensitivity, albeit, to lesser extent than that of cell lines. Conclusively, this study 

demonstrates- for the first time- that Base Editing could be used for the correction of cancer 

driver mutations in established cell lines and in patient-derived organoids. Moreover, the 

system is well-tolerated and did not induce off-target toxicities in the KRAS wild-type 

background, both in cancer cell lines and in patient-derived organoids. On the long run, the 

application of CRISPR and base editing technology for targeting KRAS mutations can be used 

not only for a better understanding of RAS biology but, together with new delivery approaches 

and technologies, might lay the foundation for a much-needed anti-KRAS CRISPR-based 

therapy. 
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1 Introduction 
 

Human beings and other animals have had cancer throughout recorded history. Perhaps the 

oldest description of cancer (although the word cancer was not used) was found in the Edwin 

Smith Papyrus, discovered in Egypt around 3000 BC. The writing describes 8 cases of tumors 

or ulcers of the breast that were removed by cauterization and says about the disease, “There 

is no treatment”. Today, Cancer presents a real global threat accounting for more than 8.5 

million deaths per year, a death toll that is more than AIDS, tuberculosis and malaria combined 

(IARC). In 2018, the global burden stood at 17.0 million new cancer cases and 9.6 million 

deaths and is expected to grow by 2040, to 27.5 million new cancer cases and 16.3 million 

deaths due to the growth and aging of the population. In Germany, nearly a quarter of men 

and 20% of women die of cancer, and it is estimated that around 51% men and 43% women 

will develop cancer during their lifetime (Quante et al., 2016). 

From a biological perspective, all cancers share a common pathogenesis as they develop as 

a result of changes that have occurred in the DNA sequence of the genomes of cancer cells. 

Early insights into the central role of the genome in cancer development emerged in the late 

nineteenth and early twentieth centuries from studies by David von Hansemann (Hansemann, 

1890) and Theodor Boveri (Boveri, 1914) They observed the presence of bizarre chromosomal 

aberrations while examining dividing cancer cells. This led to the proposal that cancers are 

abnormal clones of cells characterized and caused by abnormalities of hereditary material. 

Following the discovery of DNA as the molecular substance of inheritance (Avery et al., 1944) 

and determination of its structure (Watson & Crick, 1953), earlier speculations was supported 

by the demonstration that agents which damage DNA and generate mutations also cause 

cancer (reviewed in Loeb & Harris, 2008). Subsequently, increasingly refined analyses of 

cancer cell chromosomes showed that specific and recurrent genomic abnormalities, such as 

the translocation between chromosomes 9 and 22 (known as the ‘Philadelphia’ translocation) 

are associated with chronic myeloid leukaemia (Rowley, 1973). A few years later, it was 

demonstrated that introduction of total genomic DNA from human cancers into phenotypically 

normal NIH3T3 cells could transform them into cancer cells (Krontiris & Cooper, 1981; Shih et 

al., 1981). Isolation of the specific DNA fragment responsible for this transforming activity led 

to the identification of the first naturally occurring, human cancer-causing sequence mutation—

the single base G>T transversion that causes a glycine to valine substitution in codon 12 of 

the HRAS gene (Reddy et al., 1982; Tabin et al., 1982). This seminal discovery in 1982 

inaugurated an era of vigorous searching for the abnormal genes underlying the development 

of human cancer that continues today. 
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A turning point in cancer research came about with the Human genome project completion in 

April 2003. Sequencing the human genome enabled researchers to determine, with base pair 

resolution, the order of nucleotides which make up the human genome, paving the way to 

identify genetic variants critical in the development of human cancers. Several cancer 

genomics programs such as The Cancer Genome Atlas (TCGA), the Cancer Genome Project 

(CGP), and the International Cancer Genome Consortium (ICGC) have boosted the production 

of cancer genomics data through massively parallel next-generation sequencing (NGS) of 

cancer genomes. To name a few of these accomplishments, in the past decade, the entire 

repertoire of human exons has been sequenced in glioblastoma (Parsons et al., 2008), 

pancreatic (Sondka et al., 2018), which offers a valuable resource for studying driver genes in 

the cancer of individual patients, having an eye for the application of precision medicine (Garay 

& Gray, 2012).  

 

1.1 Driver vs Passenger mutations  
A major challenge in cancer research is the identification of cellular drug targets whose 

inhibition leads to the selective killing of cancer cells, while sparing healthy cells. The number 

of driver mutations required to generate a tumor has been a long-standing question in cancer 

(Armitage & Doll, 1954; Martincorena & Campbell, 2015; Nordling, 1953). By definition, 

mutations that provide a selective growth advantage, or promote cancer cell survival, are 

termed driver mutations, while those that are merely accompanying mutations with no effect 

on cancer development are termed passenger mutations (Stratton et al., 2009). Often times, 

the terms driver and passenger are used to refer to the genes harboring driver mutations. 

Genes that have been identified as drivers in at least one cancer type are described as cancer 

genes (Vogelstein et al., 2013). Of note, oncogenes are defined as driver genes in which driver 

mutations are activating or result in new functions. Meanwhile, tumor suppressors are driver 

genes in which driver mutations are typically inactivating. Oncogenes tend to be affected by 

copy number amplifications or missense mutations at a limited number of codons, whereas 

tumor suppressors tend to be affected by focal deletions, or nonsense, frameshift, and splice-

site mutations dispersed across the gene (Gonzalez-Perez et al., 2013). 
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While mathematical modelling estimates that 5 to 8 driver mutations are required for cancer 

development (Stratton et al., 2009), recent sequencing consortia reveals 3 to 4 driver 

mutations to be sufficient (Brown et al., 2019; Iranzo et al., 2018; Tomasetti et al., 2015). 

However, the number of passenger mutations far exceeds the number of driver mutations in 

any given tumor sample and scientists and clinicians alike go by the assumption that mutations 

in non-cancer genes are passenger mutations. Moreover, cancers which harbor mutations in 

DNA repair genes can tolerate extreme levels of hypermutation, evidenced by many hundreds 

of mutations with every cell division (Shlien et al., 2015), which further complicates the search 

for driver mutations. Conventionally, there are two categories of approaches for identifying 

driver mutations: those that assess the frequency of mutations and those that predict the 

functional impact of mutations (Getz et al., 2007). Both approaches can be applied to find novel 

driver mutations, genes or pathways, however, both have their limitations. For the former, 

given the variability in mutation rates between cancer types (>1000-fold variation), between 

samples of the same cancer type (~1000-fold variation), and across the genome itself (>5-fold 

variation), it is often difficult to accurately estimate background mutation frequencies 

(Lawrence et al., 2013). Moreover, frequency-based approaches, naturally, fail to identify 

driver genes infrequently mutated (Gonzalez-Perez & Lopez-Bigas, 2012). Unlike frequency-

Figure 1 Functional profiling of cancer mutations. While driver mutations are those essential for cancer cell 

survival, passenger mutations are of no biological relevance. Therefore, mutation knock-out is only detrimental 

to targeted cells bearing a driver mutation. This method disregards mutations in tumor suppressor genes. 
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based approaches, function-based approaches can identify candidate driver mutations using 

data from a single sample. Moreover, a few methods consider mutations in specific functional 

domains (Florian et al., 2013), while others consider features specific to certain protein families 

such as kinases (Torkamani & Schork, 2008). However, one must keep caution with 

generalizations drawn from these methods as not all mutations in well-conserved domains are 

drivers and not all in poorly conserved domains are passengers. Notably, out of eight functional 

impact prediction methods, none had greater than 81% accuracy (Florian et al., 2013). 

Sensitivities ranged from 40% to 79% and specificities from 57% to 99%.  

Given the different advantages and drawbacks of frequency- versus function-based 

approaches, it is not surprising that candidate driver lists are overlapping only to a limited 

extent. For instance, when the frequency-based algorithm MuSiC (Dees et al., 2012) and the 

functional impact tool OncodriveFM (Gonzalez-Perez & Lopez-Bigas, 2012) were used to 

identify novel drivers in 3,205 samples form 12 cancer types, both methods identified similar 

number of candidate driver genes (232 and 259, respectively), but only 68 of those candidate 

driver genes were in common (Tamborero et al., 2013). More recently, the IntOGen-mutations 

platform was developed to run multiple frequency- and function-based methods in a single 

pipeline and produced high-confidence candidate drivers (Gonzalez-Perez et al., 2013). 

Nevertheless, the resulting high-confidence list contained 165 candidate driver genes that 

were not in the Cancer Gene Census, demonstrating that integrating frequency- and function-

based approaches can suggest novel drivers. Furthermore, the list contained a total of 291 

genes, far fewer than the 522 in COSMIC, suggesting it may also contain less false positives. 

 

Recently, studies incorporating quantitative measures of selection in cancer evolution have 

provided robust statistical approaches to evaluating the impact of various mutations on the 

development of cancer using dN/dS ratio (Greenman et al., 2006). The dN/dS ratio was 

originally developed for the analysis of genetic sequences from divergent species. It quantifies 

the mode and strength of selection by comparing nonsynonymous substitution rates (dN), 

which are exposed to selection as they change the amino acid composition of a protein with 

synonymous substitution rates (dS)—assumed to be neutral. Adapting a dN/dS model to 

identify novel cancer driver mutations has the advantage that it accounts for the context-

dependent mutation spectrum in addition to estimating the background mutation rate of each 

gene separately using synonymous mutations. Moreover, the mutation rate is estimated 

locally, thus inherently correcting for the variation in mutation rate across the genome, and 

differences in read depth across the genes examined. Genes under positive selection can be 

identified, and the number of driver mutations can be quantified from the excess of non-

synonymous mutations (Martincorena & Campbell, 2015). These approaches revealed a 
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distinct pattern of selection universally shared across cancer types suggesting on average ~4 

coding mutations per tumor under positive selection and highlighted a limited impact of 

negative selection on cancer genome, unlike species evolution (Martincorena et al., 2017). 

Moreover, dN/dS ratios analysis showed that half of the driver substitutions reside in yet-to-

be-discovered cancer genes (Anandakrishnan et al., 2019; Darbyshire et al., 2019; L. Jiang et 

al., 2019; Martincorena et al., 2017). 

 

1.2 CRISPR-Cas9 as a genome editing tool 
Bioinformatic methods cannot provide definitive classification of mutations as drivers or 

passengers but can prioritize them for functional testing (Gonzalez-Perez et al., 2013). The 

gold standard of evidence that a mutation is a driver is that the mutation produces a cellular 

phenotype that contributes a selective advantage to the cells harboring it. Large‐scale genomic 

screening is a powerful technology capable of detecting driver mutations. Therefore, reagents 

such as short interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) and exogenous 

plasmids have been widely used to identify and characterize targeted genes through altering 

their expression. However, it is not always feasible to achieve site‐specific modulations at the 

precision of base pairs using these techniques. The CRISPR-Cas9 technology provides a rapid 

approach to modify endogenous loci to overcome these limitations (Fig. 2). 

 

Figure 2 Schematic representation of CRISPR/Cas9 Gene Editing approaches. 
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The emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-

Cas9 system as a genome editing tool has revolutionized studies of the human genome (Hsu 

et al., 2014; Nowak et al., 2016; Sander & Joung, 2014; X. Wang et al., 2016). Originally 

discovered as a prokaryotic RNA-guided adaptive immune system, the CRISPR/Cas9 system 

has been repurposed for eukaryotic genome editing (Jinek et al., 2012; Mojica et al., 2005), a 

fantastic achievement that secured the Nobel prize in Chemistry this year. The mechanism of 

targeting by all DNA-targeting CRISPR-Cas systems described to date requires that a short 

sequence known as a protospacer-adjacent motif, or PAM, occur near the target DNA site. A 

CRISPR RNA (crRNA) molecule pairs with a trans-activating crRNA (tracrRNA), or a fusion of 

both crRNA and tracrRNA into a single guide RNA molecule (sgRNA), to guide Cas9 nuclease 

via sequence complementarity to a specific site, adjacent to a nuclease-specific PAM 

sequence (Cong et al., 2013; Mali et al., 2013). The PAM sequence for all Cas9 effectors is 

located directly at 3’ end of the protospacer on the non-complementary DNA strand. Cas9 

nuclease predominantly makes a blunt-ended Double-Stranded Break (DSB) 3 bp upstream 

of the PAM (Jinek et al., 2013). For all Cas9 effectors from type-II CRISPR systems, target-

site recognition begins with binding of the Cas9-guide RNA ribonucleoprotein complex to the 

native PAM sequence, followed by DNA unwinding and concurrent formation of an RNA-DNA 

heteroduplex between the sgRNA spacer sequence and the target DNA strand which leaves 

the non-target DNA strand exposed and accessible to other molecules, forming a single-

stranded DNA called “R-loop” (Szczelkun et al., 2014). 

 

After R-loop formation, Cas9 undergoes conformational changes that result in the activation of 

its nuclease domains (F. Jiang et al., 2016; Jinek et al., 2014; Sternberg et al., 2014). These 

conformational changes are obstructed by mismatches between the target strand and guide 

RNA spacer, thus limiting nuclease activation to sequences that are of high complementarity 

to the guide RNA spacer (Sternberg et al., 2019). After nuclease activation, the DNA 

phosphodiester backbone is hydrolyzed by Cas9’s two distinct nuclease domains: the HNH 

nuclease domain, which cleaves the guide RNA–bound target DNA strand; and the RuvC-like 

nuclease domain, which cleaves the PAM-containing non-target DNA strand. Importantly, 

mutating either of the nuclease domains produces a Cas9 nickase (an enzyme that cleaves 

only one of the DNA strands), while inactivation of both nuclease domains generates a 

catalytically-dead Cas9 (dCas9) (Cong et al., 2013; Nishimasu et al., 2014). Nickases are 

particularly useful for base editors and prime editors, both CRISPR-based advancements that 

precisely edit DNA without requiring the formation of DSBs or homology-directed repair, and 

will be discussed later (Anzalone et al., 2019; Gaudelli et al., 2017; Komor et al., 2016; Rees 

& Liu, 2018). Meanwhile, dCas9 can be exploited for various applications without permanent 
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DNA alteration ranging from transcriptional regulation  (Dominguez et al., 2016; Shalem et al., 

2015) to epigenetic modifications (Adli, 2018; Pickar-Oliver & Gersbach, 2019; Thakore et al., 

2016). 

 

Since the initial reports of programmed DNA cleavage by Cas9 nuclease came from 

Streptococcus pyogenes (SpCas9) in vitro (Jinek et al., 2012) and in mammalian cells (Cho et 

al., 2019; Cong et al., 2013; Jinek et al., 2013; Mali et al., 2013), several Cas9 variants have 

been discovered and adapted for genome editing, including orthologs from Staphylococcus 

aureus (Ran et al., 2015), Streptococcus thermophilus (Esvelt et al., 2013; Müller et al., 2016), 

Neisseria meningitidis (Edraki et al., 2019; Hou et al., 2013), Campylobacter jejuni (E. Kim et 

al., 2019) and many other organisms (Chatterjee et al., 2018; Harrington et al., 2017; Hirano 

et al., 2016). These Cas9 effectors differ in their overall size, native PAM sequences, guide 

RNA architecture, optimal spacer length, editing efficiency and specificity. For example, 

SpCas9, currently the most widely used CRISPR-Cas nuclease and the variant primarily used 

throughout this study, contains 1,368 amino acids, recognizes a relatively common NGG PAM, 

can be used with either an sgRNA or crRNA/tracrRNA fusion pair, functions optimally with 20-

nt spacers, has robust DNA targeting and cleavage activity, and, depending on the spacer 

composition, supports relatively high levels of off-target editing (Adli, 2018; D. Kim et al., 2019; 

Komor et al., 2017). Some Cas9 variants offer particular advantages over SpCas9, such as 

smaller sizes (for example, SaCas9 is 1,053 amino acids) (Ran et al., 2015) or pyrimidine-rich 

PAMs (for example, Nme2Cas9) (Edraki et al., 2019; Hou et al., 2013). 

 

CRISPR-Cas nucleases are most commonly used to efficiently and selectively disrupt target 

gene sequences (Sternberg et al., 2015). In most mammalian cells, Cas9-induced DSBs are 

most often repaired by two major DNA repair pathways, namely, End-joining including the 

canonical Non-Homologous End Joining (NHEJ), and Microhomology-Mediated End Joining 

(MMEJ), both of which typically create small insertion or deletion (indel) products at the cut 

site leading to disruption of the coding sequence (Ciccia & Elledge, 2010). On the other hand, 

a more conservative, albeit less efficient repair process is Homology-Directed Repair (HDR), 

which occurs mostly in dividing cells as it requires proteins that are expressed predominantly 

in the S and G2 cell-cycle phases. It is based on using DNA templates for repair at the cut site, 

or through using the sister chromatid as a template thus allowing the correction of dysfunctional 

elements (Chapman et al., 2012). If a perfect end-joining repair regenerates the starting 

sequence, it will nevertheless remain a substrate for subsequent nuclease cleavage, however, 

end-joining resulting in the insertion or deletion of nucleotides at the break site will prevent 

subsequent recognition and re-cutting by the nuclease (Brinkman et al., 2018). Therefore, if 
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nucleases are targeted to open reading frames, indel products after end-joining usually 

generate frameshift mutations in coding sequences that abrogate protein function (Shalem et 

al., 2014; T. Wang et al., 2014). Importantly, the mixture of insertion and deletion (indel) 

products that results from DSBs cannot (as of yet) be controlled, but they are not entirely 

random, and recent studies have shown that it can be predicted using machine-learning 

modelling (Allen et al., 2019; W. Chen et al., 2019; Leenay & Beisel, 2017; Shen et al., 2018; 

van Overbeek et al., 2016). In some cases, end-joining produces high yields of a single desired 

product (Iyer et al., 2019), particularly when the break site lies in a region of microhomology. 

 

Leveraging endogenous DNA repair machinery to generate gene knockouts on a genomic 

scale is the cornerstone of CRISPR-based genetic engineering and has led to a myriad of 

applications for the CRISPR-Cas9 system, where HDR is exploited to insert exogenous DNA 

sequences into the genome, such as markers and corrective sequences. However, this 

approach is often hampered by the low efficiency of HDR (D. B. T. Cox et al., 2015; DeWitt et 

al., 2016). Another application strategy of CRISPR-Cas9 technology comprises Loss-of 

function studies with indel-prone NHEJ repair with a typical deletion spectrum of 1–10 base 

pairs leading to frameshift mutations to induce gene inactivation (Hsu et al., 2013; Ran et al., 

2013a). Given the simplicity and high versatility of the system, numerous laboratories have 

adopted the NHEJ-mediated pathway to screen essential genes where all the sgRNAs 

comprising a library are synthesized, cloned and delivered to a pooled population of cells. 

Subsequently, the edited cells with selected phenotypic change can be separated from the 

entire pooled population using either positive or negative selection. Consequently, several 

genome-scale libraries for pooled CRISPR screens have been generated and allow for high-

throughput and/or multi-loci studies (Miles et al., 2016; Peng et al., 2015; Sanjana, 2017). In 

the past few years, several pooled CRISPR screens have focused on gene inactivation for in 

vitro and in vivo applications) (S. Chen et al., 2015; Hart et al., 2015; Koike-Yusa et al., 2014; 

Kiessling et al., 2016; Parnas et al., 2015; J. Shi et al., 2015; Tzelepis et al., 2016; Wallace et 

al., 2016; T. Wang et al., 2014; Wong et al., 2016; R. Zhang et al., 2016). 
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1.3 Genome editing with base editors 
Base editors are a recent addition to the 

CRISPR toolbox and are particularly useful 

when targeted point mutations without 

DSBs or donor DNA templates are required 

(Gaudelli et al., 2017; Komor et al., 2016; 

Molla & Yang, 2019). Guided by a sgRNA 

molecule, Cas9 directs the deaminase to 

install a transition mutation in a ~5-

nucleotide region within the protospacer 

target sequence. Two classes of base 

editors have been developed to date: 

cytosine base editors (CBEs), which 

catalyze the conversion of C•G to T•A base 

pairs; and adenine base editors (ABEs), 

which catalyze A•T to G•C conversions. 

CBEs and ABEs can efficiently mediate all 

four possible transition mutations (C→T, 

A→G, T→C, G→A), which represent 

approximately 30% of currently annotated 

human pathogenic variants (Landrum et al., 2016). For ABE, TadA, an adenine deaminase 

from Escherichia coli that works on single-stranded RNA, was evolved to function on the 

single-stranded DNA loop created by Cas9, while avoiding double-stranded off-target sites. 

Current base editors consist of a catalytically impaired Cas9 nuclease fused to a single-

stranded DNA deaminase enzyme and, in some cases, to proteins that manipulate DNA repair 

machinery. Several base editors have been described since the initial two reports, showing 

altered editing efficiencies with different Cas variants (T. P. Huang et al., 2019; Gaudelli et al., 

2020; Koblan et al., 2018; Zafra et al., 2018). The first described ABE, ABE7.10, showed 

improved base editing efficiency when a cleavage-deficient Cas nickase was used, rather than 

a dCas DNA-binding protein, to nick the non-deaminated DNA strand. The resulting nick 

stimulates cellular repair machinery to use the deaminated strand as a template for 

resynthesizing the nicked strand. Deamination of one strand and re-synthesis of the 

complementary strand therefore results in editing of both target DNA strands to yield stable 

conversion of the target base pair (Komor et al., 2016). Additional improvements include linker 

optimization, Nuclear localization sequence and codon optimization yielded the ABEmax 

variants, which offer increased editing efficiencies in mammalian cells and in vivo (Koblan et 

Figure 3 Adenine Base Editor (ABE) A•T to G•C base 

editing strategy. ABEs contain a deoxyadenosine 

deaminase, and a catalytically impaired Cas9. They bind 

target DNA in a guide RNA-programmed manner, exposing 

a small bubble of single-stranded DNA. The deoxyadenose 

domain catalyses conversion of adenine to inosine within 

this bubble. Following DNA repair or replication, inosine is 

subsequently corrected to guanine thereby the original A•T 

base pair is replaced with a G•C base pair at the target site. 
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al., 2018; Zafra et al., 2018).  Mechanistically, The R-loop that is formed after the Cas domain 

binds its target provides a single-stranded DNA substrate for the deaminase domain of a base 

editor. Base editing efficiency within this R-loop is determined by productive interactions 

between R-loop substrate nucleotides and the deaminase enzyme (Thuronyi et al., 2019). The 

efficiency with which target bases are edited typically peaks around the most accessible 

nucleotides within the R-loop (Thuronyi et al., 2019). The location of the editing window can 

change when a different Cas domain is used or when the deaminase domain changes (T. P. 

Huang et al., 2019; Y. B. Kim et al., 2017; Richter et al., 2020). However, it is clear that broader 

editing windows also come with an increased risk of bystander editing. 

 

Just as CRISPR-Cas9 system, base editing requires a particular set of criteria: i) An editing 

window (range of editable 4-5 Target Adenine or Cytosine nucleobases) which requires ii) a 

suitable PAM that is roughly 12-18 bp distant. Moreover, off-target potential is influenced by 

several factors, such as the presence of another cytosine or adenine within the editing window, 

nucleotide sequence context, and R-loop accessibility by deaminases, that are not satisfied 

for all Cas nuclease-dependent off-target sites. Of note, the transient formation of R-loops by 

Cas9 melting of off-target DNA may also lead to off-target base editing at sites that are not 

bona fide nuclease off-target loci (D. Kim et al., 2019; Liang et al., 2019). This fact has been 

exploited by detection methods such as CIRCLE-seq (Akcakaya et al., 2018; Tsai et al., 2017), 

an effective assay for identifying Cas-dependent off-target base editing candidate loci. A few 

approaches have already been trialed to curb base editors off-target effects such as using Cas 

domains with enhanced DNA specificity and sgRNA truncations as well have been reported to 

limit off-target base editing (J. K. Lee et al., 2018). Moreover, limiting exposure of cells to base 

editors by delivering base editor RNPs or mRNA, also decreases off-target base editing while 

maintaining on-target editing, likely due to more rapid action of base editors at on-target loci 

than off-target loci (Rees & Liu, 2018). ABE7.10 has proven to be less tolerant of Cas domains 

beyond wild-type SpCas9 than CBEs, although several ABE7.10 Cas variants have been 

reported with at least mild activity in mammalian cells. Recently, the incompatibility of ABEs 

with some Cas domains was overcome through the evolution of ABE8 deaminases. Phage 

assisted non-continuous and continuous evolution (PANCE and PACE) has enabled the 

development of TadA variants with increased deaminase activity, namely TadA-8e (Richter et 

al., 2020). ABE8e kinetic and structural data suggest that it catalyzes DNA deamination up to 

~1100-fold faster than earlier ABEs because of eight new mutations that stabilize DNA 

substrates in a constrained, transfer RNA–like conformation (Lapinaite et al., 2020). 

Furthermore, ABE8e supports a much broader set of Cas domains compared to ABE7.10, 

although the higher activity of ABE8 variants may necessitate the use of Cas domain variants 
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that decrease Cas-dependent off-target DNA editing or the use of deaminase variants 

described that reduce Cas-independent off-target DNA and RNA editing (for example, ABE8e 

V106W or ABE8.17-m V106W) (Gaudelli et al., 2020; Richter et al., 2020). Base editors have 

been applied in a variety of cell types and organisms including cell lines, organoids, and animal 

models of human genetic diseases, to install or revert transition point mutations using CBEs 

(Billon et al., 2017; Chadwick et al., 2018; Kuscu et al., 2017; Levy et al., 2020; Shimatani et 

al., 2017;  B. Ren et al., 2019; Rossidis et al., 2018; Tang & Liu, 2018; Yeh et al., 2018; Zafra 

et al., 2018) and ABEs (C. Lee et al., 2019; Z. Liu et al., 2018; Sürün et al., 2020; M. Song et 

al., 2020; Suh et al., 2021). 

 

1.4 CRISPRing KRAS: New hope to an old problem 
In 1982, the single base G>T substitution that causes a glycine to valine substitution in codon 

12 of the HRAS gene was identified as the first somatic point mutation in human cancer (Reddy 

et al., 1982; Tabin et al., 1982). This pivotal work launched a new era of molecular cancer 

genetics research. Later studies have demonstrated that removal of a RAS oncogene from 

human tumor cell lines or mouse models resulted in reversal of transformation (Chin et al., 

1999; Collins et al., 2012; Fisher et al., 2001; Scolnick et al., 1973; Shirasawa et al., 1993). 

suggesting that these tumors can show RAS oncogene addiction (Sharma et al., 2006). RAS 

genes family (HRAS, KRAS, and NRAS) is the most mutated gene family in cancers, with a 

mutation frequency of roughly one third of all human cancers and accounting for up to one 

million deaths per year worldwide (A. D. Cox & Der, 2014). Most of these missense mutations 

occur in KRAS (85%), and less frequently in NRAS (12%) and HRAS (3%) therefore, in this 

study we will focus on KRAS. In mammalian cells, there are two protein products of the KRAS 

gene that result from the alternative  use of exon 4 (exon 4A and 4B, respectively): KRas4B is 

~5 times more abundant than KRas4A according to TCGA datasets, however, these proteins 

differ only in the structure in their C-terminal region and use different mechanisms to localize 

to the plasma membrane  (Welman et al., 2000). Interestingly, out of the 134 different missense 

mutations identified in KRAS in all cancers, 98% of them are found at one of three hotspots, 

amino acids G12, G13 or Q61 and the frequency of mutation at these three residues, the 

resulting mutant residue, and the RAS isoform mutated, varies amongst different cancer types 

(Simanshu et al., 2017). The vast majority of KRAS mutations occur in exon2 at residue 12 

which is normally occupied by a glycine residue. The mutation of this glycine to anything other 

than proline results in steric hindrance which prevents GTP hydrolysis and thereby increases 

levels of the GTP-bound active form (Haigis, 2017). Activating mutations in KRAS are capable 

of inducing transformation and lead to a constitutively active signaling for proliferation, 

differentiation and metastasis (Fig. 4), making it an attractive therapeutic target (Haigis, 2017). 



Introduction 

 

 

 

12 

However, despite more than three decades of intense research efforts, no clinically effective 

RAS inhibitor has reached a cancer patient and the reasons are manifold. To summarize some 

of the significant challenges hampering traditional drug discovery approaches: (i) KRAS 

proteins are small proteins (~21kDa, 189 amino acids) and lack pockets large enough for small 

molecules to bind; (ii) KRAS exhibit exceptionally high affinity for GTP leading to an extremely 

strong binding (the dissociation constants are in the picomolar range) which prevents direct 

targeting of the nucleotide-binding pocket; (iii) The high intracellular GTP concentrations 

(>500μM) which impedes competition; and (iv) potential toxicity arising from the off-target 

inhibition of wild-type KRAS proteins (A. D. Cox & Der, 2014; J. M. L. Ostrem & Shokat, 2016). 

Therefore, current views have shifted away from a pan-KRAS inhibitor to an approach 

supporting a mutation-selective strategy to be a more successful strategy. Although renewed 

hope has been inspired by the recent development of KRASG12C-specific inhibitors 

(Christensen et al., 2020; J. M. Ostrem et al., 2013; Patricelli et al., 2016), other KRAS mutant 

alleles such as KRASG12D or KRASG13D, which are more common mutations than 

KRASG12C, remain “undruggable”. 

 

Functional genomic studies based on shRNA or CRISPR technologies to disrupt the 

expression of thousands of gene products in hundreds of cancer cell lines have revealed that 

KRAS-mutant cancer cells depend on KRAS function for growth and survival (McDonald et al., 

2017; Tsherniak et al., 2017). The results highlight a central role for mutant KRAS as a causal 

driving force in a large number of cancers and present an exciting opportunity for therapeutic 

agents that target KRAS to make a profound impact in treating these cancers (Christensen et 

al., 2020). Moreover, siRNAs that selectively inhibit mutant KRAS mRNAs (T. L. Yuan et al., 

2014), lead to impeded growth of cancer cells both in vitro and in vivo, however, their 

continuous expression/delivery is required to maintain target RNA suppression. Therefore, a 

CRISPR-Cas9 mutation-selective targeting could be employed for permanent gene disruption, 

in principle, even when transiently expressed. 
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Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent neoplastic disease of the 

pancreas accounting for more than 90% of all pancreatic malignancies (Orth et al., 2019). With 

above 95% KRAS mutation frequency, PDAC is considered the most RAS-addicted of all 

cancers (Orth et al., 2019). Owing to the late detection and a particularly aggressive biology, 

PDAC remains a highly devastating disease with no effective therapeutic options and a dismal 

5-year survival rate of 6%. KRAS mutant allele-specific imbalance have been correlated with 

poor prognosis in PDAC patients (Krasinskas et al., 2013). Interestingly, KRAS mutations 

(predominantly G12 variants) are detected in the earliest lesions in PDACs and are retained in 

all metastases (Prior et al., 2012). Therefore, an effective anti-KRAS therapeutic strategy is 

Figure 4 Key players in RAS/MAPK signalling pathway. Upon ligand binding to the extracellular domain of a receptor 

tyrosine kinase (e.g. EGFR), dimerized activated receptor is phosphorylated and leads to activation of the oncogene 

KRAS. RAS-selective guanine nucleotide exchange factors (GEFs) and GTP-activating proteins (GAPs) regulate 

GDP– GTP cycling. Activating mutations, found primarily (>99%) at residues G12, G13, or Q61 disrupt GDP– GTP 

cycling by impairing intrinsic and GAP-stimulated GTP hydrolysis. Oncogenic KRAS in turn activates intracellular 

PI3K, RAF or RAL-GEF pathways to promote cell survival, proliferation and metastasis. 
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anticipated to make a significant impact on the treatment of PDAC. Similarly, KRAS appears 

to be the initiating event in lung adenocarcinoma and the common G12C mutation is a hallmark 

of exposure to tobacco smoke (Fisher et al., 2001; McCormick, 2015). KRAS mutations are 

found in 25%-30% of lung adenocarcinomas, and are of particular importance in disease 

prognosis and response to targeted therapies (Yu et al., 2015). Likewise, anti-KRAS therapy 

is particularly relevant for colorectal cancer (CRC), the second most common cause of cancer-

related death, although KRAS mutations are probably not primary initiating events (Haigis et 

al., 2008) the vast majority of which are thought to be initiated by loss of APC or, in mismatch-

repair deficient tumors, by mutations in β-catenin signaling. In CRC, other factors such as 

microsatellite instability, cancer subsite within the colon versus rectum, and age at diagnosis 

contribute to the disease course and therapeutic response (Domingo et al., 2013; Serebriiskii 

et al., 2019). Nevertheless, KRAS activating mutations have been reported in ~40% of CRCs 

and studies on cell lines have shown a substantial dependency on KRAS mutations for survival  

(Dwane et al., 2020; Tsherniak et al., 2017). Moreover, preclinical and clinical data show that 

the specific codon mutated, and the resulting mutant residue, differentially impact the disease 

prognosis (Arrington et al., 2012), and the response to epidermal growth factor receptor EGFR-

directed therapy in patients with CRC (Fiala et al., 2016; Imamura et al., 2012). Of interest, 

residue G13 mutations are poorly studied and the least understood mutation hotspot compared 

with G12 and Q61 mutations (Kennedy et al., 2020). Notably, G13D is the third most common 

KRAS mutation in all cancers (13%), and the second most frequent in CRC and is associated 

with aggressive behavior and poor clinical outcomes (Hobbs et al., 2016). 
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1.5 Aim of the thesis 
Recent advances in genome sequencing technologies provide the means to identify all 

mutations present in tumor cells. This mutational profile can predict disease prognosis and aid 

to design the best treatment regimen for each patient. However, in many cases the most 

important driver mutations remain elusive, rendering decisions on the optimal treatment option 

ineffective. Having a system that can functionally test the significance of particular mutations 

for cancer cell growth and viability would therefore be an important advance in the field of 

precision oncology. In this study, I harness the versatility of CRISPR-Cas9 system for a 

mutation-selective strategy to identify novel cancer driver mutations in established cancer cell 

lines. As a readout, I used cellular fitness assayed through a cell competition assay, after 

mutations knockout. In addition, and in parallel, I employed the system to target known cancer 

driver mutations that are infamously “undruggable” such as the KRAS oncogene. The 

application of CRISPR-Cas9 for targeting KRAS mutations can be used not only for a better 

understanding of RAS biology but, together with new delivery approaches and technologies, 

may lay a foundation for a much needed anti-KRAS CRISPR-based therapy. To sum it up, 

Discovery of novel cancer driver mutations and inactivating known driver mutations are the two 

main objectives of my thesis. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5 The Vision of Cancer Precision Medicine. Functional profiling of cancer mutations through 

next-generation sequencing holds the promise to guide medical decisions, and provide 

personalised treatments to subgroups of patients, instead of a suboptimal one‐drug‐fits‐all model. 

 



 

 

2 Methods 
 

2.1 Synthetic oligonucleotides  
All Primers/Oligonucleotides used were synthesized by Sigma-Aldrich for standard cloning 

purposes. 

 

2.2 Recombinant DNA techniques 
2.2.1 DNA purification 
Column purification: DNA clean-up was performed using ISOLATE II PCR and Gel Kit (Bioline) 

according to manufacturer’s instructions. Purification from agarose gel: The DNA band of 

interest was excised under a Safe Imager 2.0 (Invitrogen) and transferred to a 1.5 ml reaction 

tube. DNA was extracted using the ISOLATE II PCR and Gel Kit (Bioline) according to 

manufacturer’s instructions. After the wash and centrifugation, the column was incubated at 

65°C open-capped for 5 min to remove residual traces of ethanol. The water used for elution 

was similarly preheated to 65°C. 

 

2.2.2 Competent cells preparation  
On the previous day, 5 ml of LB medium was inoculated by picking a single E. coli XL1-Blue 

colony growing on a stock plate. On the next day, 100 ml LB medium was inoculated with 1 ml 

of overnight culture and grown for 3.5 hours at 37°C in a standard shaker. Cells were then 

transferred to 50 ml reaction tubes and incubated on ice for 20 min. All subsequent steps were 

carried out on ice. Cells were centrifuged for 10 mins at 3500 g, then the pellet was 

resuspended in 2x 50 ml ice-cold water. Cells were centrifuged for 10 mins at 3500 g, then the 

pellet was resuspended in 2x 25 ml cold water. Afterwards, cells were centrifuged for 10 min 

at 3500 g, then the pellet was resuspended in 1x 25 ml cold water. Finally, cells were 

centrifuged for 10 mins at 3500 g, then the competent cells were resuspended in 300 μl cold 

water.  

 

2.2.3 DNA ligation 
For DNA ligation, roughly 1:3 vector to insert copy number ratio of DNA was used according 

to NEB ligation calculator (https://nebiocalculator.neb.com/#!/ligation). Typically, 50 ng of the 

backbone was mixed with appropriate amounts of insert DNA and 2 μl 10x T4 ligase buffer 

and 1 μl T4 DNA ligase in a total volume of 20 μl. Reactions were incubated for 30 mins at 

room temperature and inactivated for 10 mins at 65°C. 3 μl of this reaction were transformed 

https://nebiocalculator.neb.com/#!/ligation
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into One Shot MAX Efficiency DH5α Competent Cells by heat shock according to 

manufacturer’s instruction. If high transformation efficiency was required, samples were 

purified by microdialysis where the appropriate number of wells of a 6-well cell culture plate 

were filled with water and a single MF membrane filter (0.025 μm VSWP, Millipore) added to 

each well. The sample was carefully added to the floating membrane, left for 20-30 mins, and 

then transferred to a new 1.5 ml reaction tube for transformation and plating on the relevant 

antibiotic plate.  

 

2.2.4 Transformation 
For transformations by heat-shock, One Shot MAX Efficiency DH5α Competent Cells were 

used for according to the manufacturer’s instructions. Typically, 50 μl of competent cells were 

mixed with not more than 100 ng DNA, incubated on ice for 30 mins, moved to the 42ºC for 90 

secs and transferred back on ice for 2 mins. Then, 500 μl SOC medium was added and cells 

incubated at 37ºC for 1 hour with 600 rpm shaking. After this, all cells were plated on agar 

plates substituted with suitable antibiotic. Single clones for each construct were transferred 

into liquid culture and used for DNA extraction. For transformations by electroporation, E. coli 

XL1-Blue competent cells, ligation reactions and Gene Pulser cuvettes (0.1 cm, Bio-Rad) were 

kept on ice at all times. In a 1.5 ml reaction tube, 50 μl competent cells and 2 μl ligation reaction 

were mixed. The sample was transferred to the electroporation cuvette and electroporated at 

1700 V using an Electroporator 2510 (Eppendorf). When recovery is needed, the sample was 

resuspended in 1 ml SOC medium, transferred to a 14 ml round-bottom tube (Corning), and 

incubated for 1 hour in a shaker. In the meantime, LB agar plates containing the appropriate 

antibiotics were warmed to 37°C. Part or all of the transformation was plated on the plates and 

incubated at 37°C in a HeraTherm incubator (Thermo Fisher). 

 

2.2.5 PCR 
Unless otherwise stated, Standard PCR for was performed with MyTaq Red DNA polymerase 

(Bioline) in a 50 μl reaction with 16.7 μl water, 10μl 5x MyTaq Red buffer, 1μl of each primer 

(20μM), 0.5μl MyTaq Red, and 1 μl template. The standard PCR conditions were: 3mins of 

95°C, 35 cycles of 15 s 94°C, 20 s 55°C, 30 s 72°C, and finally 5 min 72°C. For DNA cloning 

and other applications requiring high-fidelity amplification, PCR was performed with Herculase 

II Fusion DNA polymerase (Agilent) in a 50 μl reaction with 35.5 μl water, 10 μl 5x Herculase 

buffer, 0.5 μl dNTP mix (100 mM), 1.25 μl each primer (10 mM), 0.5 μl Herculase, and 1 μl 

template. The standard PCR conditions were: 2 min of 95°C, 30 cycles of 10 s 95°C, 20 s 

55°C, 60 s 72°C, and finally 5 min 72°C. 
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2.2.6 Plasmid DNA preparation  
Mini prep: Plasmid DNA was isolated from up to 5 ml of bacterial overnight culture using 

GeneJET Plasmid Miniprep Kit (Thermo Fisher) according to manufacturer’s instructions. DNA 

was eluted in 30 μl water. Maxi prep: Plasmid DNA was isolated from up to 200 ml of bacterial 

overnight culture using Plasmid Maxi Kit (QIAGEN) according to manufacturer’s instructions. 

DNA was eluted in 1 ml TE buffer or Nuclease-free water. 

 

2.2.7 Preparation of genomic DNA from mammalian cells 
Genomic DNA was isolated using QIAamp DNA Blood Mini Kit (QIAGEN) according to 

manufacturer’s instructions. 

 
2.2.8 Restriction enzyme digestion 
Typically, PCR product or plasmid DNA (up to 5 μg) were mixed with 8μl of the enzyme-

compatible buffer e.g. 10x CutSmart buffer (New England Biolabs, NEB) and 2μl of the 

restriction enzyme (unless otherwise stated, purchased from NEB) in a total volume of 80 μl. 

Samples were incubated at 37°C for 3 hours and subsequently column/gel purified. 

 

2.2.9 DNA gel electrophoresis 
PCR products and plasmids were generally resolved on an 0.5%-2% agarose gel 

supplemented with RedSafe Nucleic Acid Staining Solution (iNtRON Biotechnolobgy) in 1x 

TBE. Samples which were later gel purified were loaded on gels prepared with Ultra-Pure 

Agarose. To determine the size of the bands, 1 kb Plus DNA Ladder (NEB) and 6x Orange 

DNA Loading Dye (NEB) were used. Images of the gels were acquired with a BioVision Imager 

Gel Documentation System (Vilber Lourmat). If necessary, the desired bands were excised 

from the gel and DNA was isolated using the LATE II PCR and Gel Kit (Bioline) according to 

the manufacturer’s instructions. 

 

2.2.10 DNA sequence analysis software 
For in silico assembly of DNA constructs and analysis of Sanger sequencing reads, the 

programmes GenomeCompiler (Twist Bioscience) and SnapGene were used. DNA samples 

for Sanger sequencing were run by Microsynth Seqlab GmbH (Göttingen, Germany), or 

Eurofins genomics GmbH (Ebersberg, Germany). 
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2.2.11 TA cloning  
TA cloning was performed using the TA Cloning® Kit with pCR™2.1 vector (Thermofisher). 

The amplicons were separated using agarose gel electrophoresis and the target bands were 

extracted and purified using the Gel extraction Purification Kit (Bioline). The DNA concentration 

was measured with Nanodrop spectrophotometer. For TA cloning ligation, 0.1–0.3 pmol of 

DNA fragments was mixed with pCR™2.1 vector according to manufacturer’s protocol, 

incubated at 16 °C for 3 hours. The ligation product was transformed into competent E. 

Coli DH5α employing blue/white screening. White Colonies were picked the next day and 

plasmid DNA was extracted via Mini-prep. Finally, colony PCR using MyTaq Red Polymerase 

and M13 forward and reverse primers followed by Sanger sequencing. Visualisation and 

alignment of reads using SnapGene® Version 4.3.2 software (GSL BiotechLLC, San Diego, 

California, United States). 

 

2.2.12 T7 Endonuclease 1 Assay  
T7E1 assay for NHEJ mediated mutation rate was performed as previously described (Sayed 

et al., 2019). Briefly, genomic DNA isolated from infected cells was used as substrate for a 

targeted UTP14A or KRAS PCR. After purification and quantification of PCR product, 

fragments were then hybridized using a thermocycler, followed by T7 endonuclease digestion 

and loaded on a 1% agarose gel containing 0,01% RedSafe. The gel was run at 90 V for 30 

minutes and visualised BioVision Imager Gel Documentation System (Vilber Lourmat). 

 

2.3 sgRNA Design 
sgRNA design tools to generate a knockout and/or to predict the frameshift efficiency of a 

certain sgRNA have greatly improved in the past few years, I have used some of the online 

tools such as CHOPCHOP (Montague et al., 2014), https://chopchop.cbu.uib.no), CCTop 

(Stemmer et al., 2015), https://cctop.cos.uni-heidelberg.de), GPP sgRNA Designer (Doench 

et al., 2016), https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) or  

InDelphi (Shen et al., 2018), http://indelphi.giffordlab.mit.edu), or a combination of all of them. 

These tools have been instrumental for planning a gene knockout experiment. However, since 

we adopt a mutation-selective approach targeting point mutations, most of the sgRNAs used 

target mutations. Therefore, sgRNAs were manually modifed to match the mutant sequence 

in question and subsequently ranked. Often times, such as for all base editing experiments, 

sgRNAs differ in only one nucleotide from the wild-type allele sequence, making the wild-type 

allele the most likely off-target site. Therefore, for each experiment, mutation-selective sgRNAs 

are delivered to cells which do not carry the mutation, to control for off-target toxicities. 

https://chopchop.cbu.uib.no/
https://cctop.cos.uni-heidelberg.de/
https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design
http://indelphi.giffordlab.mit.edu/
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2.4 RKO Screen 
To test the feasibility of using the CRISPR-Cas9 system to functionally profile mutations in a 

cancer cell line. I utilized the CRC cell line RKO and first downloaded the reported 4,762 

mutations, of which 4,410 are coding sequence mutations, from the largest catalogue to date 

on somatic mutations in cell lines is reported on the COSMIC database 

(http://www.sanger.ac.uk/cosmic/), we used version v80 (from 13th of February 2017) to 

extract mutations in RKO cells publicly available (ftp://ftp.sanger.ac.uk/pub/CGP/cosmic/) for 

our analyses. The sequences were then modified to contain the mutated sequences, and 

searched for potential Cas9 target sites using the Azimuth 2.0 algorithm implemented by 

(Doench et al., 2014; Doench et al., 2016) We then extracted 30 bp of sequence upstream and 

downstream of the reported mutations and identified potential sgRNAs in sense and antisense 

orientation. All sgRNAs with a perfect match in the wild-type hg19 genome were discarded 

from further analysis steps. An off-target search for obtained 20-bp long sgRNAs was done 

using an exhaustive short sequence aligner GEM ver. 1.376, with parameters set to report all 

alignments with up to 4 mismatches. Most of the designed sgRNAs target point mutations, 

whereas 190 sgRNAs target small indel mutations. Of note, depending on the mismatch 

position and sequence complexity, Cas9–sgRNA complexes can potentially tolerate 1–5 base 

pairs mismatches between the protospacer and the target sequence. Therefore, we applied 

more stringent criteria through filtering out sgRNAs with up to 2 mismatches to the reference 

genome, especially those residing outside the seed region, distal to the PAM. 

Moreover, excluding sgRNAs bearing stretches of at least 4 nt of the same identity, or those 

containing too high (>70%) or too low (<20%) %GC content (T. Wang et al., 2014). This filtering 

led to 100 high quality sgRNAs targeting RKO mutations. In addition, I included 5 sgRNAs 

targeting the MYC proto-oncogene, an RNA polymerase subunit and essential ribosomal 

proteins as positive controls, as well as 2 sgRNAs targeting LUC as non-targeting negative 

controls. Transduction of both RKO (target) and HCT116 (control) cell lines was done at low 

multiplicity of infection (MOI=0,3) to ensure that most cells receive one copy of Cas9-sgRNA 

complex targeting the mutant sequence, along with GFP as a transduction marker. Sorting 

GFP positive cells three days post infection was followed by genomic DNA isolation for 

baseline time point calling. Cell pellets were collected from the sorted population every three 

days throughout the course of the screen. The number of cells in culture were kept at 1 million 

cells to fully represent the diversity of the library, which exceeds the recommended 100x 

coverage (in our case 10,000x), owing to the small library size. 

 

http://www.sanger.ac.uk/cosmic/
ftp://ftp.sanger.ac.uk/pub/CGP/cosmic/
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2.5 Plasmids  
For expression of Cas9 and sgRNAs from lentiviral vectors we optimized the sequence of pL-

CRISPR.EFS.GFP (Addgene plasmid #57818, (Heckl et al., 2014)), where the tracr sequence 

was modified to increase sgRNA stability and enhance its assembly with Cas9 protein (B. Chen 

et al., 2013). Streptococcus pyogenes Cas9 and GFP were linked via P2A and were expressed 

from the EFS promoter, whereas the sgRNAs were expressed from the human U6 pol III 

promoter. Protospacers targeting mutations were cloned into pL-CRISPR.EFS.GFP by cloning 

complementary oligonucleotides into the vector. Unless a guanine was the first base in the 

protospacer, a guanine was added to the 5’ end of the protospacer before cloning to boost the 

expression of the gRNA from the human U6 promoter. Likewise, for ABE8e timecourses, 

protospacers were cloned into LRT2B vector (Addgene plasmid #110854, (Zafra et al., 2018)), 

using BsmBI/BbsI sites following the standard protocol (Ran et al., 2013b). Briefly, oligos for 

gRNA were phosphorylated and annealed in a 10 μl reaction containing 1 μl of each sgRNA 

oligo (100 μM), 1 μl 10X T4 ligation buffer and 0.5 μl polynucleotide kinase. The reaction was 

run in thermocycler at 37°C for 30 mins, 95°C for 5 mins and then slowly brought down to 25°C 

at 5°C/min rate. The reaction was then diluted 250 times in water and 2 μl was used for 

digestion/ligation reaction. In this reaction, 100 ng backbone plasmid (e.g. pL-

CRISPR.EFS.GFP) was added to annealed oligos together with 2 μl Tango buffer, 1 μl 10 mM 

DTT, 1 μl BsmBI/BbsI and 0.5 μl T4 DNA ligase in 20 μl final reaction. To digest the vector and 

ligate oligos into it, the following temperature profile was repeated 6 times in thermocycler: 

37°C for 5 mins, 23°C for 5 mins. 2 μl of this final reaction was used to transform DH5α E. coli 

bacteria. Occasionally, incubation at 37°C and a colony PCR was performed, with MyTaq Red 

Polymerase according to the manufacturer’s instructions. Plasmids were sequenced through 

sequencing service provider Microsynth Seqlab GmbH (Göttingen, Germany), or Eurofins 

genomics GmbH (Ebersberg, Germany) with forward primer to U6 promoter: 

5’ GAGGGCCTATTTCCCATGATTCC 3’. 

 

2.6 Cloning of adenine base editors in Lentiviral vectors 
The backbone used is pLenti-FNLS-P2A-GFP-PGK-Puro (Addgene #110869, referred to as 

pL-Backbone), which is a lentiviral vector bearing a codon optimized version of a CBE (BE3) 

in conjunction with GFP and puromycin resistance gene. The pipeline established here is used 

for all three adenine base editor variants where CBE in the backbone is exchanged with an 

ABE variant of choice. Due to unavailable restriction sites, cloning required two subsequent 

steps where two restriction sites for Acc65I and BstZ17l-HF were first introduced replacing 

CBE, and on a second step the ABE of choice was cloned in through intermediary Acc65I and 

BstZ17I restriction sites. First, the CBE cassette was excised, through digestion with BamHI-
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HF and NsiI-HF in CutSmart buffer at 37°C for 3 hours. The digestion reaction was run on a 

0.8% Ultrapure agarose gel (0,01% RedSafe™) for 30 mins at 90 V and the DNA band 

corresponding to the linearized pL-Backbone was cut out from the gel and purified with 

ISOLATE II PCR and Gel kit, following the manufacturer’s instructions. To generate the insert 

with cloning sites for Acc65I and BstZ17l-HF, oligos bearing Acc65I and BstZ17l restriction 

sites were phosphorylated and annealed, then the ligation was performed at a 5:1 molar ratio 

of insert to vector using T4 DNA ligase following the manufacturer’s instructions. The ligation 

product was transformed and the bacteria was plated for overnight incubation. Single colonies 

were picked and sequenced using the E. coli NightSeq® service from Microsynth Seqlab 

GmbH (Göttingen, Germany) with the standard primer EGFP-N-Rev provided by the service. 

Clones containing the correct insert were grown overnight in 5 mL LB-Ampicillin (50 μg/mL) 

and were miniprepped according to manufacturer’s instructions. To generate the insert, 

miniprepped and linearized DNA of xCas9-ABE7.10 (Addgene #108382), or NG-Cas9ABEmax 

(Addgene #124163), or NG-ABE8e plasmid (Addgene #138491) was used as a substrate for 

PCR using Herculase II Fusion proof-reading DNA Polymerase according to the 

manufacturer’s instructions, using primer pairs bearing restriction sites in their overhangs 

(Table.4), with an extension time of 3 mins and 30 secs, for 30 cycles. After sequence 

confirmation of an intermediate new vector bearing a multiple cloning site in place of CBE, 

miniprepped plasmid DNA together with PCR product of ABEs were sequentially digested with 

Acc65I and BstZ17l-HF in 10X NEBuffer3.1 and 10X Cutsmart Buffer, respectively. Each 

digestion took place for for 3 hours at 37°C. Then, ligation was performed at a 5:1 molar ratio 

of insert to vector using T4 DNA ligase following the manufacturer’s suggestions. The ligation 

product was transformed and the bacteria was plated for overnight incubation. Single clones 

were picked, grown and miniprepped followed by sequencing by Microsynth Seqlab GmbH 

(Göttingen, Germany) employing multiple primers aligning the full sequence of the base editor 

in addition to diagnostic test digests confirming the correct integration. Finally, Plasmid DNA 

were transformed into E. coli DH5α and cells were grown overnight in at 37°C with constant 

shaking. Plasmid DNA was purified using QIAGEN-tip 20 Maxiprep Kit (Qiagen 10023), 

according to manufacturer’s protocol. The DNA was re-suspended at 1 μg/μl, validated through 

sequencing and then used for virus production or stored at − 20 °C. 

 

2.7 Cell culture 
Cell lines were maintained in the following media: Dulbecco’s modified Eagle’s medium DMEM 

(high glucose, GlutaMAX™, Invitrogen, Carlsbad, CA) for HEK293T, RKO, HeLa, HCT116, 

PANC-1, and A549. All of the media were supplemented with 10% fetal bovine serum (FBS, 

Gibco) and 1% Penicillin-Streptomycin (Gibco) and kept at 37°C, 5% CO2. If selection was 
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necessary, Media was prepared with the following concentrations of antibiotics: 400 μg/ml 

Geneticin (Gibco), 2 μg/ml Puromycin (Thermofischer), 200 μg/ml Hygromycin B (Life 

Technologies), Blasticidin HCl 20 μg/ml (Sigma-Aldrich). For all cell lines used, cells were 

allowed to recover after thawing for two passages, before performing experiments. Most cells 

lines used needed comparable time for population doublings and were passaged every 2–3 

days (1:8 splitting ratio). 

 

2.8 Lentivirus Production and Transduction 
Lentiviral particle production and infection were performed as previously published (Sayed et 

al., 2019). Briefly, fifteen milion HEK293T cells were seeded in T-175 flasks (or 7 million in 

10cm dishes) and transfected on the next day at ~80% confluency with pMD2.G (Addgene 

plasmid #12259), psPAX2 (Addgene plasmid #12260) and pL-CRISPR.EFS.GFP.gRNA using 

PEI (1 mg/mL). After ~20 hours the medium was changed to complete DMEM and 72 hours 

post transfection the viral supernatant was collected, filtered through 0.45 μm filter and 

centrifuged for 2 hours at 100,000xg at 4°C. The supernatant was decanted and the viral 

pellets resuspended in PBS overnight at 4°C on a shaker. For long-term storage the virus 

particles were kept in cryovials at -80°C. Where indicated, the virus particles where 

concentrated using Amicon Ultra-15 Centrifugal Filter Devices according to the manufacturer’s 

instructions. When a new cell line is used for the first time, the amount of virus needed to infect 

10%–30% of the cells was determined by titration. Transduction was performed in 96 well 

plates in the presence of protamine sulfate (final concentration 5 μg/mL, Sigma-Aldrich) and 

spin-infected for 1 hour at 1,000 g and 37° C. As with any transduction, the quality of the 

plasmid DNA is paramount. Plasmid maxiprep kits provided transfection-level DNA of a higher 

quality compared to miniprep or midiprep kits. The amount of DNA used for virus production is 

also an important parameter, since higher transfection efficiency and dosage usually yield 

better quality virus and higher genome-targeting efficiency.  

 

2.9 Flow Cytometry 
Throughout the study I aimed a moderate infection rate to create an internal competition 

between infected and non-infected cells. Transduced cells were further cultured and analyzed 

by MACSQuant VYB Analyzer (Miltenyi Biotec and FlowJO software) for GFP/TdTomato 

expression. Reduction of the percentage of GFP/TdTomato positive cells indicates that the 

infected cells expressing the nuclease-sgRNA complex have a growth disadvantage in 

comparison to the non-infected cells. 
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RKO, PANC-1, A549, and HCT116 were transduced cells in 96 well plates and analyzed for 

GFP or TdTomato expression. 24 hours post transduction, infected cells were washed and 

fresh medium was replenished. 72 hours post transduction, cells were trypsinized and 

collected for flow cytometry analysis. Viable single cells were first gated using the forward and 

side scatter and the GFP fluorescence signal was measured using a 488 nm laser while 

TdTomato using a 561 nm yellow laser and the log area of the signal is collected. FACS sorting 

was carried out using a BD FACS Aria cell sorter (BD Biosciences). For time course 

experiments adherent cells were processed every 48-72 hours by flow cytometry in technical 

triplicates. Briefly, for each time point, medium was aspirated completely using a multichannel 

pipette. Then, cells were washed 200μl sterile PBS and treated with 30μl/well trypsin enough 

to cover the adherent layer of cells. Cells were incubated for 5 mins at 37 °C. Next, 170μl full 

medium was added directly on cells, to obtain a homogenized cells solution by pipetting up 

and down vigorously. Then, 30μl was transferred to a new 96 well plate for later acquisitions, 

topped up to 200μl with prewarmed full medium. Of the remaining 170μl cells solution, 50μl 

was used for FACS acquisition. The rest was used for gDNA isolation and/or freezing. 

 

2.10 Nanopore sequencing  
MinION sequencing was performed on a R9.4.1 MinION Flow Cell following the manufacturer’s 

protocol for 1D Amplicon by ligation (Oxford Nanopore technologies, SQK-LSK108, version: 

ADE_9003_v108_revT_18Oct2016). Briefly, genomic DNA from RKO cells treated with 

sgRNA targeting mutant UTP14A was isolated five days after infection. Next, the UTP14A 

locus flanking the mutation was amplified using Phusion® High-Fidelity DNA Polymerase 

(M0530), followed by PCR purification using a GeneJET PCR purification Kit (Thermo 

Scientific), following the manufacturer’s protocol. End repair and dA-tailing (NEBNext Ultra II 

End-Repair/dA-tailing Module) was then performed on 200 fmol input DNA by adding 7 μl Ultra 

II End-Prep buffer, 3 μl Ultra II End-Prep enzyme mix, and 5 μl Nuclease-free water. The 

mixture was incubated at 20 °C for 5 min and 65 °C for 5 min. A volume (60 μl) AMPure XP 

clean-up was performed and the DNA was eluted in 31 μl Nuclease-free water. A 1-μl aliquot 

was quantified by fluorometry (Qubit) to ensure ≥70% input DNA was retained. Afterwards, 

ligation was performed by adding 20 μl Adapter Mix (SQK-LSK108 Ligation Sequencing Kit 

1D, Oxford Nanopore Technologies) and 50 μl NEB Blunt/TA Master Mix (NEB, cat. no. 

M0367) to the 30 μl dA-tailed DNA, mixing gently and incubating for 10 min at room 

temperature. The adaptor-ligated DNA was cleaned up by adding 60 μl of AMPure XP beads, 

incubating for 5 min at room temperature and resuspending the pellet twice in 140 μl ABB 

(SQKLSK108). The purified-ligated DNA was resuspended by adding 25 μl Elution Buffer 

(SQK-LSK108) and resuspending the beads, incubating at room temperature for 10 min, 
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pelleting the beads again, and transferring the supernatant (pre-sequencing mix) to a new 

tube. A 1-μl aliquot was quantified by fluorometry (Qubit) to ensure ≥43% input DNA was 

retained. Samples were primed and loaded into the SpotON flowcell containing up to 512 

nanopore channels for sequencing DNA in real time. 

The Nanopore sequencing data of sgUTP14A was acquired with MinKNOW 1.15.1 (Oxford 

Nanopore Technology) and base-called with Albacore 2.2.7 (Oxford Nanopore Technology). 

For the sequence data visualization, the sequences were aligned on the UTP14A transcript 

reference (Ensemble ID: ENST00000394422.7) with minimap2 version 2.12 (H. Li, 2018) and 

the alignment displayed with Tablet 1.17.08.17 (Milne et al., 2013). To quantify the deletion 

and insertion sizes caused by the Cas9-sgRNA treatment, the sequence data were aligned on 

a modified UTP14A transcript containing the TCT deletion on position X:129911061-

129911063. From the resulting sam alignment file, CIGAR values for deletions and insertions 

on the sgRNA target site X:129911061 from 100,000 forward aligned reads were read out 

using (Bunn, 2010) and plotted using the R package ggplot2. 

 

2.11 Deep Sequencing  
RKO and HCT116 cells were collected in PBS prior to genomic DNA extraction using the 

QIAamp® DNA Mini and Blood kit (Qiagen), following the manufacturer’s protocol (Qiagen). 

The genomic DNA was used as a template for PCR analysis, following the MyTaq Red DNA 

Polymerase protocol using the PCR program depicted below employing U6-sgRNA specific 

primers. Subsequently, the PCR products were purified using a GeneJET PCR purification Kit 

(Thermo Scientific), following the manufacturer’s protocol. PCR primers were designed to 

amplify the U6-sgRNA on the lentiviral backbone containing sgRNA (Table.4). Primers for 

second PCR contain universal ‘‘tails” that allow for a second amplification step to incorporate 

Illumina adapter sequences as well as sample-specific barcodes. 6 μg/μl in 10μl were 

submitted for next generation sequencing. sgRNAs counts were determined through alignment 

of paired-end reads and programmatic evaluation of variants relative to our baseline sample. 

 

2.12 Organoids culture 
2.12.1 Generation of Human PDAC Organoids (This section was performed by 
our collaborator PD Dr. Dr. med. Daniel E. Stange) 
Tumor specimens were cut into pieces smaller than 1 mm3 and digested with dispase II 

(2.5mg/ml, Roche) and collagenase II (0.625 mg/ml, Sigma-Aldrich) in DMEM/F12+++ medium 

(DMEM/F12 (Invitrogen) supplemented with 1x HEPES (Invitrogen), 1x Pen/Strep (Invitrogen), 

and 1x GlutaMAX (Invitrogen)) at 37°C for 30-120 minutes depending on sample size. After 
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several washing steps with DMEM/F12+++ medium, the remaining cell pellet was 

resuspended in GFR Matrigel (Corning) and cultivated in human PDAC organoid medium 

DMEM/F12+++ supplemented with Wnt3a-conditioned medium (50% v/v), noggin-conditioned 

medium (10% v/v), RSPO1-conditioned medium (10% v/v), B27 (1x, Invitrogen), nicotinamide 

(10mM, Sigma-Aldrich), gastrin (1 nM, Sigma-Aldrich), N-acetyl-L-cysteine (1 mM, Sigma 

Aldrich), primocin (1 mg/ml, InvivoGen), recombinant human fibroblast growth factor 10 

(hFGF10, 100 ng/ml, PeproTech), A-83-01 (0.5 μM, Tocris Bioscience), and N2 (1x, 

Invitrogen).  

 

2.12.2 Human Organoids Culture 
Human PDAC and gastric cancer tissues were obtained from patients who underwent surgery 

at the Department of Visceral, Thoracic and Vascular Surgery at the University Hospital Carl 

Gustav Carus of the TU Dresden. Human PDAC and gastric cancer organoids were cultured 

as described earlier and were passaged twice a week with a split ratio of 1:2/1:3 (Bartfeld et 

al., 2015). Briefly, for 48 well plates, 1 mL cold Advanced-DMEM/F12 was added per well, 

using micropipette and transferred to 15 mL falcon tube. The end of a glass Pasteur pipette 

was narrowed using fire so that this pipette takes up medium slower than an un-narrowed 

pipette. Organoids were pipetted up in Advanced DMEM/F12 using the narrowed pipette 10x 

up and down, breaking up the organoids. Then after centrifugation for 5 min 300 g, the 

supernatant was carefully discarded and the resulting pellet was resuspended thoroughly in 

Matrigel while avoiding air bubbles. In each well of a pre-warmed 48 well plate, a 20 μL drop 

of the Matrigel-cell mixture was placed.  Then, after solidifying for 10 mins at 37°C, the Matrigel 

drop was overlaid with 250 μL medium per well. Finally, the plate was transferred back to the 

incubator and media was replenished every 2-3 days. For long term storage, Organoids were 

disrupted as for passaging using the Pasteur pipette. Then, the fragments were dispensed in 

cold Recovery Cell Culture Freezing Medium (500 μL /well) and placed in 1 mL cryotubes. 

Organoids were frozen down over night in a -80°C freezer in a cryo-freezing container (Mr. 

Frosty, Nalgene). Cells were transferred few days later to liquid nitrogen. For thawing, cryotube 

was warmed at 37°C and cells were resuspended in 10 mL Advanced DMEM/F12. Then, cells 

were centrifuged for 5 mins at 300 g. Pelleted cells were resuspended in 20 μL Matrigel and 

placed in the center of a well of a pre-warmed 48 well plate. The plate was carefully placed in 

the incubator to let the Matrigel solidify at 37°C for 10 mins. Finally, the Matrigel was overlaid 

with 250 μL of prewarmed medium containing all growth factors including RHOKi.  
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2.12.3 PDAC Organoids Time course  
Wells of the same condition were pooled together (up to four wells/falcon tube) by scraping off 

the well bottom with a 1ml pipette to collect Matrigel-containing organoids into a 15ml falcon, 

followed by dissociation by mechanical disruption using a narrow-tip glass pipette and a pipette 

boy. Next, 4ml F+++ was added, followed by mixing and a spin down, 5 mins at 300g. Organoid 

pellets were resuspended in 1ml F+++, splitted into two equal aliquots and spun down again, 

5 mins 300g. One aliquot is passaged in culture, resuspended in an appropriate amount (20ul 

per well) of Matrigel (2 wells/condition, at least), Matrigel was left to polymerize for 10 mins at 

37°C, then 250µl of Pancreatic media containing Puromycin (0,3 µg/ml) or Pancreatic medium 

for WT cells was added to each well and incubated at 37°C. The second aliquot is resuspended 

in prewarmed Tryple Express at 37°C, pellet is gently mixed and dispensed into 48 well plate, 

followed by 5 mins incubation at 37°C. Tryple Express was diluted by adding 5 ml F+++ and 

spun down, 5 mins at 300g. For FACS measurement, cells were resuspended in 200µl 1%BSA 

in PBS, pipette into FACS tubes with filter caps. 

 

2.13 Genotyping of base edited cells 
Genomic DNA was isolated using QIAamp® DNA Blood Mini kit according to manufacturer’s 

instructions. Targeted KRAS exon2 PCR amplification was performed using high-fidelity 

Phusion polymerase using the following protocol: 

 

10 μl HF Buffer  

1 μl dNTP mix (10 mM each) 

1,25 μl 20 μM (KRAS-FwdPrimer)  

1,25 μl 20 μM (KRAS- RevPrimer)  

250ng gDNA or 0.5 μl cell lysate  

0.5 μl Phusion DNA polymerase 

nuclease-free water up to 50 μl 

 

 

A 5-μl aliquot of each PCR reaction was run on agarose gel, confirming primer specificities 

and correctly sized bands. Next, PCR purification was performed using Bioline kit following the 

manufacturer’s instructions and DNA concentrations was quantified using a Nanodrop 

spectrophotometer. Then, the appropriate amount of DNA together with the sequencing primer 

(KRAS forward or reverse primer were used according to company protocol) was submitted 

for Sanger sequencing, a cost-effective alternative to next generation sequencing. 
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2.14 EditR to quantify base editing efficiency 
EditR is a free online tool (www.moriaritylab.shinyapps.io/editr_v10/, (Kluesner et al., 2018)) 

to quantify sequencing reads from raw ab1 files. We amplified a 544bp PCR product spanning 

KRAS residues 12 and 13 of the sgRNA-treated cells, while using the cells treating with the no 

sgRNA vector as a control followed by Sanger sequencing of the PCR products. The obtained 

ab1 files of the potentially edited region was uploaded to EditR together with the sgRNA 

protospacer sequence (∼20 bp). EditR generates a plot displaying editing efficiencies at each 

base within the protospacer (Fig. 25B, C). 

 

2.15 Statistical analysis  
Data were analyzed using GraphPad Prism version 6 (GraphPad Software). Unless otherwise 

stated, timepoints in time-course experiments are presented as the standard deviations (SD, 

presented as error bars) of three independent experiments, performed in biological triplicates. 

The raw FACS points were processed using functions implemented in RStudio Version 

1.2.1335 (RStudio Inc., Boston, Massachusetts, United States) and the statistical difference 

between the mean percentage at end point of experimental gRNA and that of non-targeting 

gRNA/no gRNA was determined using unpaired two-tailed Student t test. P<0.05 was 

considered to be statistically significant. 

 

2.16 Time‐lapse microscopy 
PANC-1-ABE8e-GFP cells expressing the base editor were infected with pLenti.sgG12D-1-

TdTomato, at a MOI=1, resulting in ~60% infection rate to create an internal competition 

between cells bearing the base editing sgRNA and cells expressing only the base editor. Four 

days after infection, cells were seeded into a μ‐Slide 8 well‐chambered coverslip slide (Ibidi) 

containing 300 μl of complete DMEM media. The media was replaced with 300 μl of 

FluoroBrite DMEM (Gibco) supplemented with 10% FBS, 4 mM GlutaMAX, and 1% Pen/Strep. 

Next, 0,2 μM SiR-Hoechst far-red live cell DNA stain with 2,5 μM efflux pump inhibitor 

verapamil following authors’ suggestion (Lukinavičius et al., 2015). Cells were incubated in 

SiR-verapamil in supplemented Fluorobrite for one hour before I started the experiment. Time‐

lapse microscopy‐based imaging was performed using the Deltavision Elite deconvolution 

microscope. Images were acquired on FITC, TRITC and Cy5 channels every 1 hour for 72 

hours using a 60x/1.42 plan‐Apochromat objective with immersion oil as an imaging medium, 

at 37°C with 5% CO2. Subsequently, images were deconvolved and z‐projected using 

Deltavision image processing and analysis software, SoftWoRx. 

 

http://www.moriaritylab.shinyapps.io/editr_v10/
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2.17 Immunofluorescence 
RKO Cells were grown on coverslips overnight, fixed in ice-cold methanol at −20°C for 10 mins, 

quenched in acetone for 1 min, and blocked with 0.2% gelatin from cold‐water fish skin (Sigma‐

Aldrich) in PBS (PBS/FSG) for 20 mins. Cells were stained by incubation with primary antibody 

for UTP14A was diluted in blocking solution (1:1000) for 1 hour in PBS/FSG and washed with 

PBS/FSG. The cells were then incubated with fluorescent‐dye donkey anti rabbit-IgG 

secondary antibody for 1 hour at room temperature. After washing with PBS/FSG, coverslips 

were mounted on glass slides containing 4′,6‐diamidino‐2‐phenylindole (DAPI; ProLong Gold 

anti‐fade; Thermo Fisher Scientific). Images were acquired on an Olympus IX71 equipped with 

the DeltaVision Elite imaging system using 60×/0.95 plan apo objective, deconvolved, and 

projected using softWoRx software (Applied Precision). Acquired images were cropped and 

contrast adjusted using Fiji (Schindelin et al, 2012). 

 

2.18 BAC transfection (RKO-UTP14A BAC line) 
The LAP-tagged hUTP14A BAC was a kind gift from Mihail Sarov, MPI-CBG, Dresden. Stable 

BAC transfection in RKO cells was carried out using Effectene transfection reagent and 

freshly-purified BAC DNA. The transfection mix preparation and transfections were performed 

following the manufacturers protocol (Qiagen) in 12 well plate format. Three days after 

transfection, Geneticin (G418, Invitrogen 10131–019) selection was applied (200 μg/ml). One 

week after transfection, GFP+ cells were visible and G418 concentration was increased to 400 

μg/ml and maintained while changing media every 2-3 days to remove dead cells and cell 

debris. Geneticin-resistant GFP+ clones were pooled into a T-75 flask for expansion, and kept 

at 400 μg/ml geneticin selection throughout all subsequent experiments. 

 

2.19 BAC recombineering  
For generation of a UTP14A BAC variant that carries the UTP14A mutation while being 

resistant to mutation-targeting sgRNA, I utilized the power of recombineering via ccdB 

counterselection and single strand oligonucleotide repair (ssOR) on wild-type UTP14A BAC, 

as previously described (Fu et al., 2010; H. Wang et al., 2014). Briefly, freshly purified WT 

UTP14A BAC was transformed into ccdB-resistant E. coli GBred gyrA462 and plated on 

chloramphenicol plates (15 µg/mL). Next, clones were grown and made electrocompetent 

while separately, the ccdB-Hygromycin cassette was PCR amplified from the linearized and 

DpnI-digested plasmid p15A-ccdB-Hygromycin bearing the necessary homology arms to an 

internal locus flanking UTP14A:S99delS mutation (Table.3). The ccdB-Hygromycin PCR gel-

extract was used for transformation into electrocompetent GBred gyrA462/UTP14A-BAC, after 

https://www.embopress.org/doi/full/10.15252/embr.202050155#embr202050155-bib-0057
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the expression of recombination-mediating genes, induced by L-arabinose and cells were 

plated on Hygromycin plates.  Afterwards, the dual inducible expression plasmid pSC101-

ccdA-gbaA was electroporated into E. coli GB05 and plated on tetracyclin plates (5 µg/mL) 

followed by growing colonies and making these cells electrocompetent. Of note, the 

temperature-sensitive pSC101-ccdA-gbaA carries the ccdA gene under the control of the 

arabinose-inducible PBAD promoter, as well as the λ phage redα, redβ and redγ genes together 

with the E. coli recA gene (redαβγA) in a polycistronic operon under the control of the 

rhamnose-inducible PRhaB promoter. Induction with L-rhamnose promotes homologous 

recombination, whereas induction with L-arabinose promotes CcdA expression to confer CcdB 

resistance. Next, BAC-UTP14A/p15A-ccdB-Hyg was transformed into E. coli 

GB05/pSC101BADccdARhaγβ at 30°C. Finally, ssOR (Table.3) to replace the ccdB-

Hygromycin-cassette with the UTP14A mutant oligonucleotide; the oligonucleotides for the 

insertion are flanked by 40 nt homology on each side. In order to target either the leading or 

the lagging strand in respect to the direction of replication both complementary 

oligonucleotides were used. The recombinants were counter selected on chloramphenicol 

plates at 37 °C. Only clones growing are the ones in which the counterselection cassette was 

replaced by the oligonucleotide. Targeted UTP14A PCR and sanger sequencing validated the 

correct insert integration.  

Original sequence on UTP14A BAC: CTTGAGCCTGTTAAAACTTCATCTTCTTTGGCCACT 

Desired mutant BAC sequence: CTTGAGCCCGTCAAGACCAGTAGCCTTGCCACT 

 

2.20 Protein Immunoblotting 
The rabbit polyclonal antibody against human UTP14A (11474-1-AP, Proteintech) was used 

for detecting 88-kDa UTP14A protein, protein is fused to GFP of Mol wt ~27 kDa). The Anti-

GAPDH polyclonal antibody (AP16240PU-N, Acris Antibodies) for 36-kDa GAPDH protein.  

For sample preparation, four million cells of RKO and UTP14A-BAC line were collected and 

washed in PBS (Pellet can be stored at −80°C). Cells were resuspended in 200 μl Lysis buffer 

mixed with Protease Inhibitor Cocktail (ThermoFisher, 100x) and 5 μl benzonase 25U/μl 

(Merckmillipore, 70664-3), and incubated for 10 min on ice. Then, 9 μl of sample were mixed 

with 3 μl 4x loading dye (Invitrogen, NP0007) and heated for 5 min at 50 °C, before 

centrifugation for 1 min at 14,000 rpm. 12 μl of sample was loaded to 4%−12% Bis-Tris Nu-

Page (Invitrogen, NP0322BOX) with 3 μl Broad Range Marker; Running buffer: MOPS Nu-

Page20x (Invitrogen, NP0001); run at 150 V for 1.15h. Next, blotting was done onto Amersham 

Protran 0.45 NC nitrocellulose membrane using a semi-dry blotting method. Briefly, wet 

nitrocellulose membrane overlaid by gel, were placed between two 1x thick Whatman papers 

moistened in blot buffer (100 ml 10xBlot Buffer+100 ml methanol+800 ml water). Blotting was 
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done through 50 mA (per gel) for 60 min (voltage should be less than 10 V). Afterwards, 

membrane was washed three times with PBST (PBS/0.1% Tween-20), 5 min each and 

incubated for 1 hour at room temperature in blocking buffer (here: milk powder). Blocking buffer 

is always 5% w/v BSA or milk powder in PBST. Then, nitrocellulose membrane was washed 

for 5 min with PBST prior to incubating overnight with primary antibodies: a) anti-UTP14A 

rabbit (11474–1-AP) in 5 ml blocking buffer (5% milk) (1: 1000) and b) anti-GAPDH mouse 

(Sigma, cat. no. G8795) in 5 ml blocking buffer (5% milk) (1:10000). Membrane was incubated 

overnight at 4°C with gentle shaking. Then, nitrocellulose membrane was washed for 5 min 

with PBST before incubating with secondary antibodies, donkey anti-rabbit and anti-goat 

antibody for UTP14A (15,000) and GAPDH (1: 20,000), respectively in 5 ml blocking buffer 

(5% milk). Nitrocellulose membrane was incubated for 30 mins at room temperature, following 

washing 3x for 5 min and scanning on an Odyssey LI-COR Infrared Imaging System. 

 

2.21 Online resources  
Collaborative efforts on cancer genome sequencing have resulted in enormous datasets which 

are compiled on free-access online portals. These expanding databases facilitated information 

exchange, helped me gain knowledge on mutations reported in patients and in cell lines as 

well as giving hints for experimental validation. To list a few of the resources I heavily used 

through this thesis:  

 

cBioPortal for Cancer Genomics, 

https://cancer.sanger.ac.uk/cosmic, 

https://score.depmap.sanger.ac.uk, 

International Cancer Genome Consortium Data Portal,   

TumourPortal - Broad Institute, 

Cancer Cell Line Encyclopedia (CCLE),  

canSAR knowledgebase, 

The Cancer Genome Atlas Data Portal, 

International Cancer Genome Consortium. 

https://score.depmap.sanger.ac.uk/
http://cancergenome.broadinstitute.org/
http://www.broadinstitute.org/ccle
http://cansar.icr.ac.uk/
http://icgc.org/
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2.22 Materials, Reagents, Equipment and Buffers 
 

Reagents & kits 
• MyTaq DNA polymerase with 5x MyTaq buffer (Bioline, BIO-21105)  

• Phusion High Fidelity DNA Polymerase with 5x Phusion HF Reaction Buffer (NEB, 

M0530S) 

• dNTP solution mix, 25 mM each (Enzymatics, cat. no. N205L)  

• 1-kb Plus DNA ladder (Life Technologies, cat. no. 10787-018)  

• Gel Loading Dye, Purple (6x) (New England BioLabs, cat. no. B7024S)  

• BsmBI (New England BioLabs, cat. no. R0580S)  

• EcoRI-HF (NEB) 

• BbsI (NEB) 

• CutSmart buffer (NEB) 

• NEBuffer3.1 (NEB) 

• 10x Tango buffer (Thermo Scientific, cat. no. BY5)  

• DTT (Thermo Scientific, cat. no. R0862)  

• RedSafe Nucleic Acid Staining Solution (intron Biotechnology) 

• T4 DNA ligase with 10x ligation buffer (New England BioLabs, cat. no. B0202S 

• T4 polynucleotide kinase (New England BioLabs, cat. no. M0201S) 

• Isopropyl-D-thiogalactopyranoside (IPTG) solution (Sigma-Aldrich) 

• Adenosine 5′-triphosphate, 10 mM (New England BioLabs, cat. no. P0756S)  

• Stbl3 chemically competent E. coli (Life Technologies, cat. no. C7373-03) 

• One Shot MAX Efficiency DH5α-T1 Competent Cells (Invitrogen) 

• Library Efficiency DH5 alpha Competent Cells (Invitrogen 18263012).  

• Ampicillin, 100 mg ml − 1, sterile filtered (Sigma, cat. no. A5354)  

• Bioline PCR Purification Kit (BIO-52060). 

• QIAprep Spin Miniprep Kit (Qiagen 27106). 

• QIAGEN-tip 20 Maxiprep Kit (Qiagen 10023) 

• QIAquick gel extraction kit (Qiagen, cat. no. 28704)  

• QIAamp® DNA Blood Mini kit (Qiagen, 51104) 

• TA Cloning™ Kit, with pCR™2.1 Vector (Invitrogen) 

• Protease Inhibitor Cocktail (Cell Signaling Technology) 

• Bovine Serum Albumin (BSA) (NEB) 

• Ultra-Pure Agarose (Invitrogen) 
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Mammalian cell culture  
• HEK 293T, HCT116, RKO and A549 cells (Life Technologies, cat. no. R700-07)  

• PANC-1 were a kind gift from Max Heiduk, Seifert AG, Department of Surgery at the 

Univeristy Hospital Carl Gustav Carus Dresden 

• DMEM, Glutamax (Life Technologies, cat. no. GIBCO 10829018)  

• Fetal Bovine Serum (Invitrogen 10108165)  

• 0.05% Trypsin–EDTA (GIBCO 25300054). 

• Penicillin-streptomycin, 100x (GIBCO 15070063)  

• Protamine sulfate (Sigma-Aldrich) 

• Puromycin dihydrochloride (Life Technologies, cat. no. A11138-03)  

• Dimethyl Sulfoxide (DMSO, Sigma D2650) 

• 10 cm diameter tissue culture dishes (Corning 430167). 

• 96-well round bottom tissue culture plate (Corning 3790). 

• 24-well tissue culture plate (Corning 3524). 

• Amicon® Ultra-15 Centrifugal Filter Devices (Merck Millipore) 

• Filtropur S 0.45 μm (Sarstedt) 

• Open-Top Thickwall Polycarbonate Tube (Beckman Coulter) 

• Falcon tubes, polypropylene, 15 ml (BD Falcon, cat. no. 35209) 

• Falcon tubes, polypropylene, 50 ml (BD Falcon, cat. no. 352070) 

 

Organoids culture  
• Advanced Dulbecco's Modified Eagle Medium/Ham's F12 (Gibco, 12634028) 

• B27 (Thermofischer, 17504001) 

• Nicotinamide (Sigma, N0636-100G) 

• TrypLE Express (Thermofischer, 12604-021) 

• Gastrin (Sigma, G945) 

• N-acetyl-L-cysteine (Sigma, A9165-5G) 

• Primocin (InvivoGen, ant-pm-1) 

• FGF-10 (Peprotech, 100-26) 

• A-83-01 (Tocris Bioscience, 2939) 

• ROCK inhibitor (Sigma, Y0503-1MG) 

• N2 (Invitrogen, 17502-048) 

 

Equipment: 
• Thermocycler with programmable temperature stepping functionality. 
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• Desktop microcentrifuges (e.g., Eppendorf, cat. nos. 5424 and 5804). Centrifuge 

(Eppendorf 5810). 

• GelDoc Infinity 3000 (Vilber Lourmat Sté, Collégien, France). 

• MACSQuant® VYB (Miltenyi Biotec, Bergisch Gladbach, Germany)  

• Odyssey® CLx Imaging System (Li-cor Biosciences GmbH, Bad Homburg von der 

Höhe, Germany) 

• Avanti JXN-30 centrifuge (Beckman Coulter). 

• FlowJo™ Software FlowJo, LLC, Ashland, Oregon, United States. 

• Avanti JS-24.38 swinging-bucket rotor (Beckman Coulter). 

• Blue-light transilluminator and orange goggles (Safe Imager 2.0; Invitrogen, cat. no. 

G6600). 

• UV spectrophotometer (NanoDrop 2000c, Thermo Scientific). 

 

Buffers Recipes: 
 

10X Phosphate Buffered Saline (10X PBS) 

For 1000 ml 

43 mM Na2HPO4 (Na2HPO4⋅H2O; MW = 178.0 g/mol) 7.6 g 

14 mM KH2PO4 (MW = 136.1 g/mol) 1.9 g 

27 mM KCl (MW = 74.6 g/mol) 2.0 g 

1.47 M NaCl (MW = 58.4 g/mol) 85.9 g 

All components were dissolved in distilled water. The pH of this solution was adjusted to 7.4 

using NaOH. If PBS were used for cell culture it was autoclaved for 20 min at 121°C prior to 

use. 

 

Protein Lysis buffer (1x): 100 ml 

280mM NaCl (58.4 g/mol) 1.635 g 
0.5% Igepal 500 μl 

5mM MgCl2-hexahydrate (203.30 g/mol) 101.65 mg 

10% Glycerol 10 ml 

50mM Tris, (121.14 g/mol) pH 8.0 605.7 mg 

All components were diluted/dissolved in distilled water. 

 

0.5 M EDTA (pH 8.0) 

For 1000 ml 
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0.5 M C10H14N2Na2O8⋅2 H2O (MW = 372.2 g/mol) 186.1 g 

EDTA was dissolved in distilled water and pH was adjusted with NaOH to 8.0. 

 

1 M Tris buffer (1 M Tris-HCl) 

For 1000 ml 

1 M Tris (MW = 121.1 g/mol) 121.1 g 
Tris was dissolved in distilled water and pH was adjusted with HCl depending on the exact 

experimental requirements. 

 

1X Tris-Borate-EDTA buffer (1X TBE) 

For 1000 ml 

89 mM Tris (MW = 121.1 g/mol) 10.8 g 
89 mM H3BO3 (MW = 61.8 g/mol) 5.5 g 

2 mM EDTA (0.5 M stock solution, pH 8.0) 4 ml 

All components were diluted/dissolved in distilled water. 

 

Protein Immunoblotting buffer (Blot buffer - 10x): 

For 500 ml  

Tris 15.4 g 
Glycine 72.05 g 

SDS 1 g 

All components were diluted/dissolved in 500ml distilled water. 

 

Bacterial media recipes 

Lysogeny broth (LB-Lennox version) 

For 1000 ml 

Bacto tryptone 10 g 
Yeast extract 5 g 

NaCl 5 g 

All components were dissolved in filter sterilized, distilled water and the pH was adjusted to 

using NaOH to 7.5, or adjusted to 8 for LS-LB. The volume was the filed up to 1000 ml and the 

medium was autoclaved for 20 min at 121°C prior to use. Medium was supplemented with 

ampicillin when necessary at working concentration 100 µg/ml. 



 

 

3 Results 
 

3.1 Pooled lentiviral screen to identify novel cancer driver mutations 
I set out to test the feasibility of using the CRISPR-Cas9 system to functionally profile mutations 

in a cancer cell line with the aim to nominate novel cancer driver mutations. As a proof-of-

concept, I utilized the CRC cell line RKO and first downloaded the reported 4,762 mutations, 

of which 4,410 are coding sequence mutations, from the COSMIC database (Forbes et al., 

2010) followed by mutation-specific sgRNAs design in sense and antisense orientation using 

the sgRNA Designer algorithm by Doench et al. (Doench et al., 2014; Doench et al., 2016). 

Most of the designed sgRNAs targeted point mutations, whereas 190 sgRNAs targeted small 

indel mutations. Targeting point mutations with CRISPR-Cas9 is possible (Gebler et al., 2016),  

but more challenging, and enriches false positive hits especially in a pooled screen setting. 

Therefore, in favor of optimal specificity I restricted the sgRNAs in the library to indel mutations, 

regardless of the genes it resides in. Moreover, applying further criteria such as PAM proximity, 

>2 mismatches to off-target sites in the genome in addition to %GC content and stretches of 

same sequence identity nominated 100 sgRNAs with the highest score, targeting indel 

mutations for the screen (Table.1). In addition, 5 sgRNAs were designed targeting the MYC 

proto-oncogene, an RNA polymerase subunit and essential ribosomal proteins as positive 

controls, as well as 2 sgRNAs targeting LUC as non-targeting negative controls. The sgRNAs 

were cloned into an all-in-one lentiviral Cas9-expression vector also carrying a GFP-

expression cassette. The GFP cassette allows for simple evaluation of the infection rate and 

can be used as a straightforward phenotypic readout. 

 

To perform the screen to identify possible vulnerability mutations, I infected RKO cells as well 

as another CRC cell line (HCT116) with the lentiviral sgRNA library at MOI of 0,3. This low 

infection rate was chosen to ensure that most cells were infected with a single copy Cas9-

sgRNA virus, making it possible to investigate the inactivation of individual mutations. HCT116 

cells do not carry the same mutations present in RKO cells and therefore served as the 

negative control. Three days post infection, cells were split and genomic DNA was collected 

from 50% of the cells. These samples were used as the baseline to quantify sgRNA abundance 

at the beginning of the experiment. After 15 days of continuous culture, genomic DNA was 

collected again from both cell lines, the sgRNA cassettes were PCR amplified and sgRNA 

counts were quantified by means of deep sequencing (Fig. 6). 
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As expected, the comparative analysis showed that the positive control sgRNAs targeting 

essential genes were depleted over time in both cell lines, whereas the relative abundance of 

the negative controls did not change significantly over time (Fig. 7). In addition to the positive 

controls, two sgRNAs targeting the same mutation were depleted in RKO cells, suggesting 

that cleavage of the mutation impairs RKO cells growth (Fig. 7). Importantly, reads of these 

sgRNAs were not depleted in HCT116 cells, demonstrating the selectivity of the sgRNAs to 

the mutant sequence in RKO cells. 

 

The analysis revealed depleted counts of two sgRNAs targeting a mutation found in the U3 

small nucleolar RNA-associated protein 14 homolog A gene (UTP14A:S99delS) selectively in 

RKO cells. This mutation reflects a three nucleotide in-frame deletion in the N-terminal part of 

the gene. UTP14A is found on the X chromosome and encodes for a component of a large 

ribonucleoprotein complex implicated in 18S rRNA biogenesis that is involved in pathways 

such as rRNA processing in the nucleus and the cytosol, ribosome biogenesis and gene 

expression (L. Hu et al., 2011; Zhu et al., 2016). Interestingly, UTP14A has recently been 

identified as a critical hub gene in colorectal carcinoma cells (Sun & Qian, 2018) suggesting 

that the gene plays an important role during the transformation process of this tumor type. I 

therefore decided to investigate the UTP14A:S99delS mutation in more detail. 

Figure 6 RKO Screen pipeline. Important steps are highlighted by arrows. 
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3.2 Validation and characterization of UTP14A:S99delS in RKO cells 
For validation, the two sgRNAs “hits” targeting the UTP14A:S99delS mutation and control 

sgRNAs were picked for fresh virus production and transduction of RKO and HCT116 cells. 

No significant change of GFP positive cells was observed over time in HCT116 cells 

transduced with the negative control or with the sgRNAs targeting the UTP14A:S99delS 

mutation (Fig. 8A). In contrast and in line with screen results, the percentage of GFP positive 

cells progressively declined over time in RKO cells transduced with the sgRNAs targeting the 

UTP14A mutation (Fig. 8A), supporting the idea that UTP14A:S99delS might be a driver 

mutation in RKO. To demonstrate selective DNA cleavage in RKO cells, I performed a T7 

endonuclease I assay showing efficient mutation-specific cleavage of UTP14A evident only in 

RKO cells (Fig.8B), demonstrating that indels are introduced at the site of the 

UTP14A:S99delS mutation after cleavage. Nanopore sequencing further confirmed the 

presence of numerous indels in the sample that was treated with the sgRNA targeting 

UTP14A:S99delS (Fig. 8C, D).  

 

 

Figure 7 sgRNA screen results in RKO and HCT116 cells. The plots show sgRNAs initial read count vs Fold-

change after two weeks of infection. Results are shown for RKO (Left) target cells and HCT116 control cells 

(right) for 100 selected sgRNAs and positive control sgRNAs targeting essential genes (filled circles). Non-

targeting control sgRNAs are shown as non-filled circles. Two independent sgRNAs targeting UTP14A:S99delS 

are shown in red. 
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To further characterize the UTP14A:S99delS mutation in RKO cells, I PCR amplified a DNA 

fragment spanning the mutation, cloned the fragments into a TA-cloning vector and sequenced 

the insert of 40 independent clones. While RKO cell line is reported as male (Kong et al., 2019), 

COSMIC database lists this mutation as heterozygous. By contrast, I found that all 40 clones 

sequenced carried the in-frame delTCT mutation (Supplementary figure.1).  

Figure 8 Validation of UTP14A:S99delS mutation as a putative driver mutation in RKO. A) Relative abundance of 

cells treated with sgRNAs targeting mutant UTP14A in RKO (UTP14A mutant) and HCT116 (UTP14A wild-type) 

cells over time, as compared to infection with Empty vector bearing no sgRNA. Day zero timepoint refers to three 

days post infection (dpi), the initial timepoint for measuring GFP signal. In each condition, half of the cells are 

infected and percentage of GFP is measured over time. Error bars presents means ± SD from experiments 

performed in technical triplicates. Significance was assessed by means of Student t test; ****P < 0.0001. B) T7 

Endonuclease I (T7E1) assay to investigate cleavage of sgRNA targeting mutant UTP14A. Genomic DNA used is 

isolated from 5dpi from indicated cell lines with (+) or without (−) expression of the sgRNA. The arrow points to the 

cleavage product. C) Distribution of the deletion (bottom) and insertion (top) sizes of sgUTP14A. A total of 100,000 

aligned nanopore sequencing reads were quantified. A total of 26,974 deletions and 1,410 insertions were 

detected. D) Alignment visualization of Nanopore sequencing data of sgMutUTP14A and UTP14A transcript in 

RKO and HCT116 cells. Analysis shows the TCT deletion on X:129911061-129911063 in the WT RKO cells 

(bottom right panel) and deletions of varying size in the treated RKO cell line (top right panel), whereas no changes 

in HCT116 between sgMutUTP14A treated and untreated cells. Deletions are marked with * on grey background. 

Sequence deviations to the reference are clearly visible through highlighted bases. Most deviations apart from the 

TCT deletions are caused by low accuracy of the Nanopore sequencing technology. 
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Furthermore, sequencing of the purified PCR product also revealed that all reads contain the 

delTCT mutation (Fig. 9A), suggesting that this allele is indeed present in a homozygous or 

hemizygous state in RKO cells. 

 

To support the finding that UTP14A:S99delS is indeed a cancer mutation and not a natural 

human polymorphism, I searched for this sequence in several Human Genetic Variation 

databases (accessed July 2018, (Higasa et al., 2016)), http://www.hgvd.genome.med.kyoto-

u.ac.jp/)  as well as in recently published large-scale human genome sequencing data (Bycroft 

et al., 2018) (Auton et al., 2015). UTP14A:S99delS has not been reported in any of these 

reports, not even in a heterozygous state, making it highly unlikely that it is a natural human 

polymorphic alteration. Next, I questioned the role of wild-type UTP14A in cell proliferation. To 

test whether UTP14A is dispensable for growth and/or viability I designed two different sgRNAs 

targeting wild-type UTP14A and infected RKO, HCT116 and Hela cells using lentiviral vectors 

expressing these sgRNAs in conjunction with Cas9 and GFP. Surprisingly, the percentage of 

** 

Figure 9 Characterization of UTP14A:S99delS mutation. A) Sanger sequencing of the purified PCR product of 

UTP14A locus in various cells lines. In contrast to HCT116 and HeLa cells, RKO cells show a TCT deletion as 

highlighted by an arrow in the chromatogram. In HCT116 and HeLa cells the TCT sequence is highlighted by a blue 

box. This chromatogram was generated using Snapgene viewer. B) Relative abundance of cells treated with two 

different sgRNAs targeting exon1 (top) and exon2 (bottom) of WT UTP14A in RKO, HCT116 and HeLa cells over 

time. Day zero timepoint refers to three days post infection (dpi), the initial timepoint for measuring GFP signal. In 

each condition, half of the cells are infected and percentage of GFP is measured over time. Error bars presents 

means ± SD from experiments performed in technical triplicates. Significance was assessed by means of 

Student t test; **P < 0.005 ***P < 0.0005. C) T7 Endonuclease I (T7E1) assay to investigate cleavage of two 

sgRNAs targeting exon1 and exon2. The arrow points to the cleavage product. 
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GFP-positive cells declined over time in all three cell lines for both sgRNAs (Fig. 9B). Moreover, 

T7 endonuclease I assay showing efficient cleavage of UTP14A (Fig. 9C), demonstrating that 

sgRNAs are efficient and indels are introduced after cleavage. Therefore, we conclude that 

UTP14A knockout cells have a growth disadvantage in cultured cell lines, suggestive of gene 

essentiality in the three tested cell lines. 

 

3.3 Rescue experiment using BAC transgenomics 

The fact that cells require UTP14A for proliferation makes it more difficult to conclude that the 

UTP14A:S99delS is a cancer driver mutation. Towards testing this possibility, I introduced wild-

type UTP14A into the mutant background of RKO cells by means of BAC transgenomics 

(Poser et al., 2008)  (Fig. 10A). I transfected RKO cells with a human BAC construct carrying 

the GFP-tagged wild-type UTP14A gene and confirmed stable and comparable expression 

levels to wild-type UTP14A in these cells (Fig. 10B, C, D). Next, I infected the original and the 

BAC-modified RKO cells with the Cas-sgRNA vectors cleaving the UTP14A:S99delS mutation. 
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If UTP14A:S99delS is not a driver mutation, I expected the expression of the wild-type UTP14A 

to rescue the growth deficiency specifically in the BAC-transgenic cells. Surprisingly, both cell 

lines were equally sensitive to the inactivation of the UTP14A:S99delS mutation (Fig. 10E, F), 

inconsistent with the idea that UTP14A:S99delS is a mere passenger mutation. Importantly, 

GFP signal was expressed at a comparable level over the course of the experiment ensuring 

the employed sgRNAs do not cut the rescue construct (Supplementary Figure.2).  

 

Finally, the definitive proof that UTP14A:S99delS is a driver mutation is the ability to rescue 

the phenotype resulting from targeting the mutation, using the mutant UTP14A protein carrying 

the S99delS mutation (Fig. 11A). I attempted this second rescue experiment using a mutant 

UTP14A BAC that is resistant to the mutation-targeting sgRNA, which I generated using 

recombineering technology (Fu et al., 2010) through counterselection principle (H. Wang et 

al., 2014). Firstly, I deleted the in-frame TCT trinucleotides to generate the S99delS mutation 

on the BAC. Moreover, for one sgRNA, I abrogated the PAM sequence required for Cas9 

binding, in addition to introducing silent mutations that would impede sgRNA binding of either 

sgRNAs to the BAC without changing the resulting amino acids, using codons of comparable 

usage frequency (Fig. 11B). Then, after validation of correct recombination, I transfected RKO 

cells with the newly generated BAC construct carrying mutant-UTP14A, maintained cells under 

Geneticin selection and confirmed stable and comparable expression levels to wild-type 

UTP14A in these cells (Fig. 11C). Next, the mutant BAC-RKO cells were infected with the 

sgRNA targeting the UTP14A:S99delS mutation. Importantly, GFP signal was stable over the 

course of the experiment ensuring the employed sgRNAs do not cut the rescue construct 

(Supplementary Figure.3). However, it seems that this transgenic line was still sensitive to the 

inactivation of the UTP14A:S99delS mutation (Fig. 11D), albeit depletion was seen to a lesser 

extent compared to RKO WT or the BAC transgenic cells. Further experiments for this project 

were not pursued due to time restrictions. 

Figure 10 Phenotype rescue via BAC transgenomics. A) Scheme of UTP14A-BAC rescue experiment. In parallel 

to vulnerable RKO WT cells, UTP14A-GFP BAC-transgenic cells are infected with mutation-targeting sgRNAs. B) 

Immunofluorescent image of fixed RKO WT cells, using UTP14A antibody GFP-labeled secondary goat anti-rabbit 

IgG (Green). Red staining: αTubulin. Blue staining: DAPI. Cells nuclei are visualized by DAPI staining whereas, 

UTP14A-GFP signal could be seen with nucleolar localization. (scale bar= 15μm). C) Images (brightfield, DAPI, 

GFP and merged) of UTP14A-GFP BAC-transgenic RKO cells (scale bar= 25μm). Note the nucleolar localization 

of the fusion protein. WT – wild-type cells. G418: Geneticin. D) E) Relative abundance of cells treated with indicated 

sgRNAs in RKO WT and BAC transgenic line over time. Day zero timepoint refers to three days post infection, the 

initial timepoint for measuring GFP signal. In each condition, half of the cells are infected and percentage of GFP 

is measured over time. Error bars presents means ± SD from biological triplicates performed in three independent 

experiments. Significance was assessed by means of Student t test; ***P < 0.0005 ****P < 0.0001. 
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D 

Figure 11 Phenotype rescue using mutant UTP14A recombineered BAC. A) The recombineering principle involves 

generating a mutation-expressing BAC while evading being targeted by mutation-selective sgRNA. In red are the 

mutated nucleotides, while blue depicts the in frame TCT deletion. Highlighted in yellow are the two PAMs used by 

each sgRNA targeting the mutation. WT: wild-type BAC. AA: amino acid. Mut: Mutant BAC. Exemplary 

chromatograms of wild-type BAC (top) and mutant BAC (bottom) are shown. B) Images (brightfield, DAPI, GFP and 

merged) of mutant UTP14A-GFP recombineered-BAC RKO cells (scale bar= 25μm). Note the expected nucleolar 

localization of the fusion protein. C) Scheme of mutant UTP14A-BAC rescue experiment. In parallel to vulnerable 

UTP14A-GFP BAC-transgenic cells, both transgenic lines are infected with mutation-targeting sgRNAs. G418: 

Geneticin. D) Relative abundance of cells treated with indicated sgRNAs in RKO WT and BAC transgenic line over 

time. Day zero timepoint refers to three days post infection (dpi), the initial timepoint for measuring GFP signal. In 

each condition, half of the cells are infected and percentage of GFP is measured over time. Error bars presents 

means ± SD from biological triplicates performed in three independent experiments. Significance was assessed by 

means of Student t test; ***P < 0.0005. 
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3.4 Arrayed Screen for potential driver mutations in HCT116  
Utilizing the precision and versatility of CRISPR-Cas9 system to identify novel driver mutations 

is scalable to other cell lines. In parallel to the sgRNAs screen in RKO, I sought to screen for 

driver mutations in CRC cell line HCT116. Assisted by a bachelor rotation student, I collected 

mutational information of HCT116 from the COSMIC database, followed by gRNAs design and 

ranking. Mutations were mainly selected based on how specific a sgRNA could be designed. 

However, for this sceen, we adopted a different approach to the unbiased approach in RKO: 

whereas the latter was for identification of novel driver mutations, the former is designed to 

test suspect driver mutations. Therefore, l selected mutations in genes which are implicated in 

cancer (cancer census genes), and thus, are likely to display sensitivity upon inactivation 

followed by gRNAs design and ranking. Briefly, ZNHIT6 (Zinc Finger HIT-Type Containing 6) 

is believed to play a role in invasive breast cancer (W. Shi et al., 2019). Whereas MTR, 

Methionine Reductase, is associated with increased risk for malignant lymphoma (Shrubsole 

et al., 2006). The gene encodes an enzyme catalyzing a reaction to produce Methionine, the 

precursor for the universal methyl donor, S -adenosylmethionine (SAM). Similarly, Mutations 

in FLT3 (FMS-like tyrosine kinase 3) which encodes a receptor tyrosine kinase are the most 

common genetic alterations and well-established driver mutations, in actue myeloid leukemia 

(AML), although, the mutation found in HCT116 cells has not been described in AML (Daver 

et al., 2019; Stirewalt & Radich, 2003). EVL, a transcriptional target of estrogen receptor, plays 

a role in remodelling of the actin cytoskeleton, which is controlled by a multitude of actin 

regulators whose differential expression in cancer leads to distinct architectures that impact 

invasion (Mouneimne et al., 2012; Padilla-Rodriguez et al., 2018).  

 

Interestingly, the transcriptional regulation of ZNF20, was highly correlated with cancer-related 

long non-coding RNA in patients with cervical cancer (L. Yuan et al., 2019). Previous studies 

have confirmed that ryanodine receptor 2, RyR2, is associated with several types of cancers, 

including melanoma (Carpi et al., 2018), breast cancer (Lu et al., 2017), lymphoma (McCarthy 

et al., 2003) and prostate cancer (Mariot et al., 2000). Interestingly, Telomerase reverse 

transcriptase (TERT) is relatively well-studied with known mutations across several tumor 

types (Pestana et al., 2017; X. Yuan et al., 2019), however, in contrast to its frequently reported 

promoter mutations influencing transcription, TERT mutation in HCT116 cells was missense 

mutation in protein, which could potentially reveal a novel driver mutation. For ZNF198, it has 

been shown that fusion of ZNF198 with FGFR1 kinase yields a powerful transforming 

oncogene and alters the transcription profile of the cells expressing it (Kunapuli et al., 2003). 

Additionally, expression of the oncoprotein CAPZB, F-actin-capping protein subunit beta, has 

been strongly linked to some types of sarcoma (Mukaihara et al., 2016).  
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B 

HCT116 

 

Figure 12 Arrayed screen in HCT116 cells. A) Overview of the 

competition assay. Mutant cells are transduced with an all-in-

one sgRNA-Cas9-GFP lentivirus designed to target the 

mutation, infected at a multiplicity-of-infection of nearly 1 and 

the relative abundance of the transduced population (GFP+ 

cells) is measured over the course of time via flow cytometry. 

B) Nine different mutations were tested and the relative 

abundance of cells treated with indicated sgRNAs in HCT116 

cells is shown over time as function of GFP% relative to day 

zero. Day zero timepoint refers to three days post infection 

(dpi), the initial timepoint for measuring GFP signal. Error bars 

presents means ± SD from experiments performed in 

technical triplicates. Significance was assessed by means of 

Student t test; **P < 0.005; ***P < 0.0005; ****P < 0.0001. 
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Finally, mutations in Kirsten-RAt Sarcoma (KRAS) remain the most frequently reported 

oncogenic mutations in cancer, present in more than a quarter of cancer patients. As a readout, 

I used cellular fitness after mutation knockout, assayed through a cell competition assay (Fig. 

12A). Most mutations showed mild alterations over time and infected cells seemed rather 

healthy, except for the cells infected with sgRNA targeting KRAS mutation. The percentage of 

GFP positive cells progressively declined over time in cells bearing the G13D-targeting sgRNA 

(Fig. 12B), suggesting that disruption of mutant KRAS impaired cancer cell proliferation. 

Although the mini-screen in HCT116 cells did not nominate novel oncogenic drivers, the 

resulting phenotype of targeting mutant KRAS emerged as an attractive phenotype. Given its 

remarkable significance in various cancers and profound clinical relevance, we decided to 

explore CRISPR-based targeting of mutant KRAS in more detail. 

 

 

3.5 CRISPR inactivation of mutant KRAS  
To prove that the effect seen is due to mutation disruption in HCT116 cells, I repeated the 

experiment and performed a T7 endonuclease I assay showing efficient cleavage in HCT116 

cells in both sgRNAs against mutant KRAS as well as mutant FLT3 used here as a control for 

cutting a passenger mutation (Fig. 13A, B), demonstrating that indels are introduced after 

mutation cleavage. Next, to test whether this effect is limited to HCT116 cell line, I expanded 

the scope to include some of the most prevalent KRAS mutations in other cancer entities, 

namely G12D in pancreatic cancer and the G12S in lung cancer. Interestingly, in both tested 

cell line models, PANC-1 and A549 harboring G12D and G12S mutations, respectively, I 

noticed a rapid progressive depletion of GFP positive cells over time (Fig. 13C, D), suggesting 

that these cells too depend on mutant KRAS for proliferation. 
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Although the non-infected cells outcompeted the targeted cells in the pool, I noticed that the 

depletion curve flattened at a low percentage of GFP positive cells, an observation seen in all 

three cell lines. Of note, these persistent cells appeared healthy, sustained in culture for 

several weeks despite carrying the mutation-targeting sgRNA and Cas9. Therefore, I sought 

to validate if these cells have been targeted by the Cas9 nuclease through sorting the residual 

GFP-positive HCT116 cells and sequencing ~50 independent clones (Fig. 14A). Interestingly, 

half of all the reads matched the WT allele sequence, reflecting the heterozygous nature of the 

G13D mutation and suggesting high specificity of mutation targeting. Surprisingly, the rest of 

the clones showed several indels, as well as other oncogenic mutations (Fig. 14B, C). 

Importantly, these mutant alleles are resistant to targeting by the initially designed sgRNA. 

Figure 13 CRISPR/Cas9 targeting Mutant KRAS in cancer cell lines. A) The relative abundance of cells treated with 

indicated sgRNAs in HCT116 cells is shown over time as function of GFP% relative to day zero. B) T7 Endonuclease 

I (T7E1) assay to investigate cleavage of sgRNA targeting mutant. Genomic DNA used is isolated from 5dpi. The 

arrow points to the cleavage product. C) The relative abundance of cells treated with sgRNA targeting KRASG12D 

mutation in PANC-1 cells is shown over time as function of GFP% relative to day zero. D) The relative abundance 

of cells treated with sgRNA targeting KRASG12S mutation in A549 cells is shown over time as function of GFP% 

relative to day zero. In all three experiments, Day zero timepoint refers to three days post infection, the initial 

timepoint for measuring GFP signal. Error bars Error bars presents means ± SD from experiments performed in 

technical triplicates. Significance was assessed by means of Student t test; *P < 0.05; ***P < 0.0005. 
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Next, I sought to improve our Cas9-based approach which relies on double-stranded DNA 

breaks (DSBs) to leverage the endogenous DNA repair machinery to inactivate mutations. 

Although the system is efficient and specific, new oncogenic variants at cleavage site present 

a problem, especially for a therapeutic approach. If the approach is to be adapted for a clinical 

setting, we have to circumvent DSBs. Since, its conception, base editing has enabled the 

community to perform targeted chemistry on specific DNA nucleobases, importantly without 

introducing DSBs (Anzalone et al., 2020). This is of particular relevance to my thesis work as 

not only we shall avoid generation of resistant oncogenic clones, but also the adenine base 

editor bodes well to correct the majority of KRAS point mutations e.g. G12D, G13D and G12S 

which are all G>A point mutations. Therefore, I decided to test KRAS mutation inactivation 

using base editing. For KRAS base editing, owing to the lack of a well-positioned SpCas9 NGG 

PAM, I used a less restrictive Cas9 variants that favor NG PAM, while testing different sgRNAs. 

The three generations of base editors used were: xCas9-3.7-ABE7.10, NGCas9-ABEmax and 

NG-ABE8e. The lab of David R. Liu has used directed evolution to generate Cas9 proteins 

Figure 14 Genetic makeup of persisting GFP+ cells at KRAS cleavage site. A) Scheme of the experiment in 

HCT116 cells. B) Representative chromatograms of the escape clones. C) Pie chart representing the sum of 

mutations at codon 13 cut site. 
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with broadened PAM compatibility. Phage-assisted continuous evolution (PACE) and selection 

in bacteria that links phage replication to broader PAM compatibility generated xCas9-3.7 

variant, which displays higher activity on non-NGG PAM sequences (especially NGT and NGA 

PAMs) than that of wild-type SpCas9 and was tested with the newly developed ABE7.10 (J. 

H. Hu et al., 2018). KRAS mutant cell lines were first infected with a lentiviral vector encoding 

the base editor, in addition to Puromycin resistance gene and GFP (Fig. 15). The base editor 

expressing cells were maintained in Puromycin and subjected to a cell competition assay, 

reminiscent of the prior SpCas9-infections, after infecting ~50% of the cells with a sgRNA-

TdTomato encoding lentivirus and monitoring over time.  

 

 

 

 

 

 

 

 

 

 

Figure 15 Adenine Base Editing Experimental Strategy. Key steps are highlighted. 
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First off, in both HCT116 and PANC-1 cells expressing the xCas9-3.7-ABE7.10 base editor, 

all the tested sgRNAs did not result in any apparent compromise of viability, demonstrated by 

the comparable growth rate of the cells bearing the ABE7.10-sgRNA complex targeting 

mutation relative to the non-infected cells (Fig. 16A, B).  
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Next, Nureki and co-workers used structure-guided rational design to develop SpCas9-NG, a 

Cas9 variant that can target all NG PAM sequences with varying activities, with higher 

efficiency than xCas9-3.7 (Nishimasu et al., 2018). In parallel, the Liu lab optimized the 

ABE7.10 variant through codon usage, nuclear localization signals (NLS), and ancestral 

reconstruction of the deaminase to yield ABEmax (Koblan et al., 2018). I tested the newly 

developed SpCas9-NG fused to the codon optimized ABEmax for base editing KRAS. 

However, all the tested sgRNAs did not result in any apparent decrease in viability, 

demonstrated by the comparable growth rate of the cells bearing the ABEmax-sgRNA complex 

targeting mutation relative to the non-infected cells (Fig. 17A, B). 

 

 

 

 

 

 

 

 

 

Figure 16 Adenine Base Editing in HCT116 (A) and PANC-1 (B) cells using xCas9(3.7)-ABE (7.10). Cells 

expressing the xCas9.ABE7.10 Base editor were infected at ~50% infection rate and monitored over time. In each 

cell line, in addition to the no gRNA negative control (panel 7), six sgRNAs were tested (panels 1-6) targeting KRAS 

G13D and G12D in HCT116 cells and PANC-1, respectively. The relative abundance of cells treated with each 

sgRNA is shown over time as function of TdTomato% relative to day zero. Day zero timepoint refers to three days 

post infection, the initial timepoint for measuring TdTomato signal. Error bars presents means ± SD from biological 

triplicates performed in three independent experiments. Significance was assessed by means of Student t test; *P < 

0.05; **P < 0.005. 
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Figure 17 Adenine Base Editing in HCT116 (A) and PANC-1 (B) cells using ABEmax. Cells expressing the 

NGCas9.ABEmax Base editor were infected at ~50% infection rate and monitored over time. In each cell 

line, in addition to the no gRNA negative control (panel 7), six sgRNAs were tested (panels 1-6) targeting 

KRAS G13D and G12D in HCT116 cells and PANC-1, respectively. The relative abundance of cells treated 

with each sgRNA is shown over time as function of TdTomato% relative to day zero. Day zero timepoint 

refers to three days post infection, the initial timepoint for measuring TdTomato signal. Error bars presents 

means ± SD from biological triplicates performed in three independent experiments. Significance was 

assessed by means of Student t test; *P < 0.05; **P < 0.005. 
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In the third and last editor tested, I sought to test most recent addition to the adenine base 

editing toolbox, ABE8e. Interestingly, ABE8e enabled efficient A•T-to-G•C editing with all Cas9 

and Cas12 domains tested, including LbCas12a and SpCas9-NG (Gaudelli et al., 2020; 

Richter et al., 2020). I set out to test the newly developed SpCas9-NG fused to ABE8e for 

KRAS base editing. In HCT116 cells, out of six different sgRNAs tested (Fig. 18A), only 

sgG13D-6 showed a sustained depletion of TdTomato cells over time, suggesting that infected 

cells are experiencing a growth disadvantage (Fig. 18B). 
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To prove that this effect is due to base editing, we isolated gDNA from the pool of cells infected 

with sgG13D-6-TdTomato, did PCR amplification of KRAS codon 13 followed by sanger 

sequencing. Although, the target A seems only slightly edited, we noticed neighboring “A”s are 

edited as bystander mutations, seen through small “G” peaks on the chromatogram (Fig. 18C). 

In PANC1 cells, as six different sgRNAs were tested (Fig. 19A) fast depletion of TdTomato 

signal occurred over time, remarkably down to 1% as seen with gG12D-1 and sgG12D-6, 

suggesting that these infected cells are completely outcompeted by wild-type cells (Fig. 19B). 

To prove that this effect is due to base editing, we isolated gDNA from the pool of cells infected 

with sgG12D-1 six days after infection, did PCR amplification of KRAS codon 12 followed by 

sanger sequencing. Interestingly, we could see a high ratio change of A>G conversions, 

signifying that target A, and seemingly target A only, is edited and corrected back to wild-type 

KRAS with high efficiency (Fig. 19C). 

 

 

Figure 18 Adenine Base Editing in HCT116 cells using ABE8e. A) Overview of sgRNA design strategy targeting 

G13D, depicting sgRNAs position with respect to mutation, highlighting the hypothetical editing window, in 

addition to the sgRNAs length and PAM sequence exploited. B) Cells expressing the NGCas9-ABE8e Base 

editor were infected at ~50% infection rate and passaged over time. The relative abundance of cells treated 

with six sgRNAs in addition to an empty vector control is shown over time as function of TdTomato% relative 

to three days post infection, the initial timepoint for measuring TdTomato signal. Error bars presents means ± 

SD from biological triplicates performed in three independent experiments. Significance was assessed by 

means of Student t test; *P < 0.05. C) Representative chromatogram of cells treated with sgRNA6 (top panel) 

in comparison to cells treated with empty vector (bottom panel), at 15dpi. No-gRNA control cells show sequence 

identity analogous to HCT116 WT cells with G13D heterozygous mutation (highlighted in box) depicted as 

overlapping “G” and “A” peaks. On the top panel, arrows highlight editing activity shown as “G” peaks in black. 
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Figure 19 Adenine Base Editing in PANC-1 cells using ABE8e. A) Overview of sgRNA design strategy targeting 

G12D, depicting sgRNAs position with respect to mutation, highlighting the hypothetical editing window, in addition 

to the sgRNAs length and PAM sequence used. B) Cells expressing the NGCas9-ABE8e Base editor were infected 

at ~50% infection rate and passaged over time. The relative abundance of cells treated with six sgRNAs in addition 

to an empty vector control is shown as a function of TdTomato% relative to three days post infection, the initial 

timepoint for measuring TdTomato signal. Error bars presents means ± SD from biological triplicates performed in 

three independent experiments. Significance was assessed by means of Student t test; *P < 0.05; **P < 0.005. C) 

Representative chromatogram of cells treated with sgRNA1 (top panel) in comparison to cells treated with empty 

vector (bottom panel), at 6dpi. No-gRNA control cells show sequence identity analogous to PANC1 WT cells with 

G12D heterozygous mutation (highlighted in box) depicted as overlapping “G” and “A” peaks. On the top panel, 

arrows highlight editing activity shown as “G” peaks in black. 
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Importantly, ABE8e-expressing RKO cells (KRAS WT) were infected with all 12 sgRNAs tested 

in HCT116 and PANC1 as a test for off-target effects, no toxicity was observed in RKO cells 

(Fig. 20). 

 

Following the rapid loss of edited PANC-1 cells, especially those treated with sgG12D-1 and 

6, I thought to investigate whether the corrected cells arrest in culture or undergo apoptosis in 

these cells in order to probe the consequences of correcting KRAS, I opted for fluorescent 

time-lapse microscopy of the base-edited cells, where I incubated the live cells while acquiring 

images every half an hour for a total duration of over three days. Intriguingly, the base edited 

PANC-1 cells seem to undergo apoptosis as observed in time-lapse microscopy (Fig. 21). Full 

movies of the time-lapse can be found on the following weblink: https://cloudstore.zih.tu-

dresden.de/index.php/s/cYJEQscNaFLzqTi.  

Figure 20 Off-target toxicities of ABE8e- sgG13D and sgG12D in RKO cells. A) RKO Cells expressing the NGCas9-

ABE8e Base editor were infected at ~50% infection rate and passaged over time. The relative abundance of cells 

treated with all twelve sgRNAs used in HCT116 and PANC-1 cells is shown as function of TdTomato% relative to 

three days post infection, the initial timepoint for measuring TdTomato signal. Error bars presents means ± SD from 

biological triplicates performed in three independent experiments. Significance was assessed by means of 

Student t test; *P < 0.05; **P < 0.005. B) Representative chromatogram of RKO cells treated with sgRNA1 against 

G13D (top panel) as well as cells treated with sgRNA1 against G12D (bottom panel), at 29dpi. No off-target activity 

could be seen at KRAS codon 12 and 13. 
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In the third KRAS mutant line, A549 cells harboring KRAS G12S homozygous mutation, we 

tested four sgRNAs (Fig. 22A) Interestingly, all four infections, but not Empty vector, exhibited 

a progressive loss of TdTomato cells (Fig. 22B). Sequencing of the PCR product revealed a 

substantial rate of editing at twelve days after infection and to some extent to bystander A 

although it yields a silent mutation (Fig. 22C). Importantly, RKO-ABE8e cells were not affected 

by infections of the same four viruses (Fig. 22D). 

Figure 21 Time-lapse microscopy of PANC-1-ABE8e cells. Representative time-lapse snapshots of PANC-1 cells 

stably expressing ABE8e (green), after infection with sgRNA vector (red) with G12D-targeting sgRNA1 (panel A) or 

without gRNA (panel B). Infected cells in panel A seem to undergo apoptosis (arrow in cyan) whereas infected cells 

in panel B are proliferating at a regular rate, comparable to non-infected cells in green. Cells were stained with SiR-

Hoechst live-cell stain (blue). Scale bar= 25μm. 
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Figure 22 Adenine Base Editing in A549 cell line using ABE8e. A) Overview of sgRNA design strategy targeting 

G12S, depicting sgRNAs position with respect to mutation, highlighting the hypothetical editing window, sgRNAs 

length and PAM used. B) Cells expressing the NGCas9-ABE8e Base editor were infected at ~50% infection rate 

and passaged over time. The relative abundance of cells treated with four sgRNAs in addition to an empty vector 

control is shown over time as function of TdTomato% relative to three days post infection, the initial timepoint for 

measuring TdTomato signal. Error bars presents means ± SD from biological triplicates performed in three 

independent experiments. Significance was assessed by means of Student t test; *P < 0.05. C) Representative 

chromatogram of cells treated with sgG12S-2 (top panel) in comparison to cells treated with empty vector (bottom 

panel), at 12dpi. No-gRNA control cells show sequence identity analogous to A549 WT cells with G12S 

homozygous mutation (highlighted in box) depicted as “A” peak. On the top panel, arrows highlight editing activity 

shown as “G” peaks in black, at target A as well as neighboring “A” as bystander editing. D) RKO Cells expressing 

the NGCas9-ABE8e Base editor were infected at ~50% infection rate and passaged over time. The relative 

abundance of cells treated with all four sgRNAs used in A549 cells is shown as function of TdTomato% relative 

to three days post infection, the initial timepoint for measuring TdTomato signal. Error bars presents means ± SD 

from experiments performed in technical triplicates. No off-target toxicities of ABE8e-sgG12S were observed in 

RKO cells. Significance was assessed by means of Student t test; *P < 0.05. 
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Cancer organoids have proven to constitute valuable hybrid systems that combine the 

experimental tractability of traditional two-dimensional cell lines with the cellular attributes of in 

vivo model systems (Lo et al., 2020). Seminal characteristics of these systems include a three-

dimensional structure which recapitulates characteristics of self-renewal, differentiation and 

disease pathology, offering a valuable intermediary model between 2D cell lines and patient 

trials, that is amenable to drug screens and genetic manipulations (Driehuis & Clevers, 2017). 

Therefore, I set out to validate our findings in patient-derived organoids of the highly KRAS-

dependent Pancreatic ductal adenocarcinoma (PDAC). The experimental scheme above 

summarizes the procedure (Fig. 23). I adopted two KRAS G12D mutant organoid lines for 

testing base editing in addition to a KRAS WT control: DD442 (+/G12D), DD314 (KRAS 

+/G12D) and DD107 (KRAS WT) as a control for sgRNA-specific toxicity. Importantly, in 

Figure 23 Graphical presentation of validation experiments in organoids. Important steps are indicated by arrows. 



Results 

 

 

 

60 

DD107 time course I could see virtually no change between infection using the lentivirus with 

or without the sgRNA1- G12D (Fig. 24A), demonstrating that the ABE8e-sgG12D-1 complex 

is well tolerated in organoids in KRAS WT background not inducing off-target toxicities. Using 

sgG12D-1, I could detect a decline in TdTomato signal over time in DD442 line (Fig. 24C), and 

to a lesser extent in DD314 line (Fig. 24B). Notably, repeating the experiment using biological 

replicates (Fig. 25A), after sorting for organoids carrying the base editor and sgG12D-1 

(GFP+TdTomato+), followed by gDNA isolation and sequencing, I could detect >30% correct 

A>G editing 10 days after infection (Fig. 25B, C), indicating that slow regression of infected 

cells seems to reflect the slow base editing reaction. 

Figure 24 Adenine Base Editing in patient-derived organoids using ABE8e. Three organoids lines expressing the 

NGCas9-ABE8e Base editor were infected with selected G12D-targeting base editing sgRNAs in addition to an 

empty vector control at ~50% infection rate and passaged over time. The relative abundance of cells treated is 

shown over time as function of TdTomato% relative to five days post infection, the initial timepoint for measuring 

TdTomato signal. Presented Time course in KRAS WT DD107 organoids as a measure of off-target toxicities (A), 

and two experimental KRAS G12D mutant organoid lines DD314 (B) and DD442 (C) n=1. Representative bright 

field images highlight organoids morphology (Scale bar=1000 μm). Representative Chromatograms of KRAS codon 

12 in DD107 (KRAS WT) and the heterzygous G12D mutant allele in lines DD314 and DD442 with peculiar 

overlapping peaks. 
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Figure 25 Time course of ABE8e and editing efficiency in patient-derived organoids. A) KRAS G12D mutant and 

KRAS WT organoids expressing the NG.Cas9-ABE8e base editor were infected at ~50% infection rate and 

passaged over time. The relative abundance of cells treated with G12D targeting sgRNA (sgG12D-1) in addition to 

an empty vector control in both lines is shown as a function of TdTomato% relative to five days post infection, the 

initial timepoint for measuring TdTomato signal. Error bars presents means ± SD from biological triplicates 

performed in three independent experiments. Significance was assessed by means of Student t test; *P < 0.05. B) 

Quantification of sanger sequencing reads of KRAS codon 12 in DD107 treated with an empty vector (top panel) 

and with sgG12D-1 (bottom panel), 10 days after infection. C) Quantification of sanger sequencing reads of KRAS 

codon 12 in DD442 treated with an empty vector (top panel) and with sgG12D-1 (bottom panel), 10 days after 

infection. 
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4 Discussion 
 

The focus of this work was primarily to exploit the CRISPR-Cas9 system against cancer 

mutations. From one side the aim is to identify novel driver mutations, which has enormous 

implications for disease diagnosis and management. On the other hand, I sought to sharpen 

the tool to efficiently inactivate known oncogenic mutations, especially those which have been 

notoriously “undruggable”, with the ultimate goal of inhibiting tumor growth in vivo. Of particular 

interest, in 2019 over twenty CRISPR-based clinical trials have started recruiting patients for 

conditions such as esophageal cancer, metastatic non-small cell lung cancer, refractory 

leukemias and blood disorders (www.clinicaltrials.gov), paving the way for therapeutic genome 

editing (Bolukbasi et al., 2016; Mullard, 2020).  

For driver mutations identification the premise is that only a small proportion of the somatic 

mutations found in tumor cells drive tumor development (Stratton et al., 2009). One of the key 

questions in the field is to pinpoint the few phenotypically causal variants among the many 

variants present in cancer genomes, a daunting challenge analogous to finding needles in 

stacks of needles (Cooper & Shendure, 2011). With over 30 million coding mutations reported 

to date (COSMIC v92 – 27th August 2020) (Tate et al., 2018), scientists have resorted to 

computational methods to nominate novel driver candidates. A number of highly sophisticated 

bioinformatic tools have been developed to date to identify driver mutations (Buljan et al., 2018; 

Dietlein et al., 2020; Gonzalez-Perez & Lopez-Bigas, 2012; Lawrence et al., 2013; 

Martincorena et al., 2017; Mularoni et al., 2016; Weghorn & Sunyaev, 2017). However, 

computational approaches can only prioritize functional testing (Gonzalez-Perez et al., 2013) 

and doesn’t provide definitive classification of mutations as drivers vs passengers. 

Programmable nucleases enable the targeting of specific genomic sequences including cancer 

mutations. In this study, I demonstrated a powerful method to identify candidate oncogenic 

cancer driver mutations amongst the background of passenger mutations utilizing the 

CRISPR-Cas9 system to efficiently and specifically target cancer mutations. In addition, I 

harnessed CRISPR and base editing systems to selectively abolish mutant KRAS in three 

cancer cell lines representing three different tumor entities, in addition to patient-derived 

organoids. Importantly, correction of disease-causing KRAS mutations has major implications 

on a smooth transition to the gene therapy arena. Simultaneously inactivating a driver mutation 

while precisely restoring the wild-type allele without any further modifications or DNA 

integrations is arguably the least invasive strategy. Moreover, the proposed approach is 

potentially scalable to other oncogenic mutations. 

http://www.clinicaltrials.gov/
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In this chapter I will examine the findings of the mini-screen in RKO, potential applications of 

a mutation-selective strategy and its limitations. In addition, I will review the promise of 

CRISPR targeting of mutant KRAS and further employing base editing. Finally, I will discuss 

limitations of the approaches used with prospective resolutions guiding future directions. 

 

4.1 Pooled Screen in RKO cells nominates a putative driver mutation 
The screen results identified UTP14A:S99delS as a putative driver mutation in RKO cells. 

Interestingly, while the COSMIC database reports that most UTP14A mutations are missense 

mutations, this 3-nt deletion mutation has not been found in any other cancer cell line and it 

has also not been found in the human population. Interestingly, a more comprehensive 

understanding of the role of hUTP14A in human cancers is emerging: hUTP14A has been 

recently demonstrated to promote angiogenesis in CRC through upregulation of transcription 

and secretion of PDGFA (P. Ren et al., 2019). Moreover, other studies have revealed that 

overexpression of the nucleolar protein hUTP14A is associated with poor prognosis in 

hepatocellular carcinoma (J.-Y. Zhang et al., 2017) and in esophageal squamous cell 

carcinoma (K. Li et al., 2019). Collectively, these studies suggest hUTP14A a novel prognostic 

biomarker that is associated with tumor invasiveness. Moreover, studies in yeast have shown 

that UTP14A is a direct interactor with WIG-1 which encodes an RNA zinc finger protein and 

a known TP53 target gene. These results come in line with previous studies that showed that 

hUTP14a caused TP53 protein degradation (L. Hu et al., 2011), and forms positive regulation 

loop with c-Myc (J. Zhang et al., 2019), indicating its oncogenic potential. This emerging body 

of evidence implicates UTP14A in several cancers including CRC, thus motivating me to study 

RKO cells further to elucidate whether UTP14A:S99delS is a bona fide driver mutation, or 

rather is a passenger mutation that occurred by chance in RKO cells in an essential gene with 

no effect of protein functionality. In this study, for the rescue experiments I opted to use 

bacterial artificial chromosomes (BAC) rather than cDNA constructs, whose expression is 

typically driven by viral promoters, and as a consequence, the GFP-tagged genes are typically 

expressed at non-physiological levels, which can lead to phenotypes and mislocalization  

(Garrido et al., 2003; Lisenbee et al., 2003). Furthermore, the expression of cDNAs precludes 

the visualization of alternatively spliced variants, which may differ in their subcellular 

localization. Thus, for these reasons, the use of modified BACs may overcome these 

limitations. 

 

Surprisingly, the growth defect due to targeting the mutation could not be rescued by the 

expression wild-type hUTP14A, in its genomic context using a BAC tagged with a GFP marker. 
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Importantly, protein expression and the characteristic UTP14A nucleolar localization highlight 

the efficiency of BAC transgenomics. However, the similar sensitivity in RKO WT cells and 

RKO-BAC-UTP14A-expressing cells to mutation targeting suggests that UTP14A:S99delS 

mutation is indeed an essential mutation, irrelevant of the wild-type UTP14A expression. To 

corroborate this hypothesis, the ultimate experiment is to express the UTP14A:S99delS 

mutation by BAC transgenomics, ensuring physiological expression of the mutant rescue 

construct while shielding it from Cas9 cleavage with the employed gRNAs. To this aim, I 

successfully recombineered the original BAC sequence to carry the UTP14A:S99delS 

mutation while being resistant to Cas9 cleavage, verified and established RKO line bearing 

BAC-Mutant-UTP14A. However, stable expression of this construct in RKO cells did not rescue 

the phenotype resulting from the mutation targeting, we saw only a milder depletion, compared 

to RKO WT cells upon infection with the sgmutUTP14A.RFP lentivirus. Importantly, 

maintaining cells in Geneticin and stable GFP expression throughout both rescue time courses 

excludes the possibility that the effect seen is due to the targeting of the BAC construct 

(supplementary figure 2, 3). Indeed, live cell imaging illustrated the correct nucleolar 

localization of the protein expressed from the recombineered BAC. However, expression and 

localization are often misinterpreted as functionality. Fusion of UTP14A to a fluorescent marker 

might render the protein inactive or impede binding to effector proteins, which might affect both 

rescue experiment that I attempted. This hypothesis could be confirmed by a test for 

functionality or assaying binding effector proteins, e.g. quantitative interaction proteomics 

using both wild-type and Mutant BAC constructs (Hubner et al., 2010). A detailed analysis for 

functionality will provide us clear insights guiding future directions for this project. 

Complementary to functional assays, whole genome sequencing or targeted amplification of 

likely off-target sites in RKO cells after treatment with sgmutUTP14A.RFP shall provide a proof 

if the sgRNAs used have an off-target effect that is specific to RKO genome. However, due to 

time restrictions I decided to pause further analysis on UTP14A and give priority to the base 

editing story. Nevertheless, while the data makes it difficult to conclude that S99 deletion is a 

driver mutation, a mutation-selective CRISPR-based method has successfully nominated this 

vulnerability, a finding which has several promising applications.  

 

 

4.2 Potential applications for a CRISPR mutation-selective approach 
Even if UTP14A:S99delS is not a driver mutation, this finding highlights the power of the 

CRISPR-Cas9 system to inactivate mutations in an efficient and specific manner, and offers 

an interesting new avenue to tackle a cancer vulnerability. In case future work proves UTP14A 

to be an essential gene that acquired a passenger mutation, which could be nominated through 
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our CRISPR-Cas9 mutation-selective pipeline. Motivated by advances in sequencing 

technologies, this could be harnessed to compromise cell growth/viability, where sequencing 

of cancer cells is followed by mutations mapping in reference to a healthy tissue control, 

mutations accumulating in essential genes in cancer cells could be exploited to draw a cancer-

specific targeting strategy. This will become an increasingly important question as cancer 

genome sequencing moves into routine clinical practice. A mutation-specific sgRNA library 

could be designed in a patient-specific manner has the potential to nominate the driver 

mutations in a patient-specific manner, i.e. including passenger mutations in essential genes. 

Alternatively, the delivery of Cas9 and mutation-specific sgRNAs into tumor cells could be 

envisioned through oncolytic viruses (Kaufman et al., 2015) as a potent, individualized therapy 

that could complement current treatment strategies (Gerstung et al., 2017).  

 

Another interesting avenue which is feasible using CRISPR-Cas9 mutation-selective approach 

is targeting noncoding DNA mutations. So far, most efforts have focused on the 

characterization of cancer mutations in protein coding genes. However, diverse mutations in 

enhancers, promoters, and gene regulatory elements might suggest novel driver mutations, 

beyond the exome. Recent reports suggest that non-coding mutations can be vital for cancer 

growth and survival (Diederichs et al., 2016) and transcriptional regulatory architecture (W. 

Zhang et al., 2018). It would therefore be interesting to extend this screening approach to non-

coding mutations found in cancer cells. 

 

One explorative aspect of this method would be to simultaneously inactivate mutations with 

the aim to investigate potential synergies between certain mutations or synthetic lethal 

mutations. In line with genetic interaction screens in mammalian cells (Du et al., 2017; 

Rauscher et al., 2018), I believe it is possible that similar epistasis effects can also be observed 

between different cancer mutations as tumor phenotype typically result from multiple genetic 

interactions. It would therefore be interesting to inactivate these cancer mutations 

simultaneously and investigate if they have enhancing, or buffering effects. This approach is 

of high clinical relevance to feed the resulting information back to clinicians with the cellular 

outcome of combinatorial targeting of mutations and how it affects cellular networks through 

gain, loss or switch of function in a patient-specific manner.  

 

Finally, recent functional impact prediction models include the incorporation of transcriptome 

data. For instance, searching for correlations between transcription factor mutations and target 

gene expression has identified both well-known and novel candidate drivers (Shah et al., 

2012). Cancer genes tend to be expressed in the tissues in which they are mutated (D’Antonio 
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& Ciccarelli, 2013), a feature only recently incorporated into high-throughput driver 

identification (TCGA Network, 2012; William Lee et al., 2010). Comparison with protein-protein 

interaction networks has also helped identify candidate drivers. Genes whose protein products 

are central nodes in protein interaction networks (Jonsson & Bates, 2006; Rambaldi et al., 

2008) or interact with proteins from known cancer genes (Babaei et al., 2013; B.-Q. Li et al., 

2013) are more likely to be drivers and thereby, could be prirotized for a targeted sgRNA 

library. 

 

 

4.3 CRISPR-Cas9 targeting mutant KRAS is efficient and specific   
Programmable nucleases enable the targeting of specific genomic sequences including cancer 

driver mutations. In this study, I demonstrated the CRISPR-Cas9 system efficiency to target 

cancer driver mutations. In HCT116 cells, I targeted several mutations in cancer census genes 

including TERT, FLT3 and KRAS. Surprisingly, the majority of these mutations seemed 

dispensable for cell growth, at least for the period of the experiment which lasted one month. 

However, Inactivating KRAS G13D mutation progressively depleted targeted cells from the 

pool suggesting the dependence of cells on this mutation. To corroborate this hypothesis, I 

tested whether this phenotype is limited to HCT116 cells bearing the G13D mutation. 

Intriguingly, targeting mutant KRAS in A549 (G12S) and PANC-1 (G12D) cells rapidly depleted 

up to 80% of targeted cells, consistent with the phenotype observed in HCT116 cells. These 

findings come in line with previous studies suggesting that KRAS is indeed a genetic 

dependency in cancer cells (Dwane et al., 2020; Steckel et al., 2012; Tsherniak et al., 2017). 

Of note, targeted KRAS mutations are point mutations with a single nucleotide difference from 

the wild-type sequence introducing the possibility that the KRAS WT allele is targeted as the 

most likely off-target site. Interestingly, TA cloning analysis revealed nearly 50% representation 

of wild-type KRAS allele after one month of culture, reflecting the heterozygous nature of the 

mutation. This observation suggests that the effects seen are not due to targeting of the wild-

type allele, highlighting the precision of the Cas9 nuclease to the mutant sequence, even when 

the difference is a single nucleotide. However, I noticed some of the sequencing reads 

matched other known KRAS oncogenic variants, that were not in parental HCT116 line. This 

is not unexpected, owing to the continuous expression of Cas9 nuclease in long term culture, 

and due to the lack of control over the DNA repair machinery, it seems some of the targeted 

cancer cells adapted to cas9-exerted selection pressure by repairing the DSBs to give rise to 

new escape clones, which are resistant to the Cas9 targeting. 
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Contemporary to my work, in the past three years CRISPR approaches have gained 

momentum towards a mutation-selective therapeutic approach. Several studies have 

attempted, successfully, CRISPR-based targeting of activated oncogenes, such as inactivating 

EGFR in vitro and in vivo (Koo et al., 2017), or harnessing PAMs to distinguish mutant EGFR 

from wild-type (Cheung et al., 2018), or another study disrupting BRAF (V600E) driver mutation 

to control tumor growth (Yang et al., 2017). However, EGFR and BRAF inhibitors are widely 

used in clinical practice with more than 15 inhibitors on the market for various indications. 

Meanwhile, targeting KRAS has been a long-standing goal in cancer research (McCormick, 

2015). The fact that it is mutationally-activated in one of every three cancer patients, with no 

protein inhibitor in the clinic as of yet, prompted several groups to take on a CRISPR-based 

approach for genomic disruption of mutant KRAS with the aim to develop a CRISPR-based 

therapy for cancer patients. For instance, one study showed targeting KRAS G12V and G12D 

PDAC cell lines inhibited cell proliferation (Wookjae Lee et al., 2018), while another group 

reported in vitro and in vivo disruption of KRAS, suppressing tumor growth in immunodeficient 

mice (W. Kim et al., 2018), and most recently KRAS targeting was combined with novel delivery 

approaches such as polymer-based delivery of Cas9 RNP (Wan et al., 2020). However, these 

studies have not investigated the potential occurrence of oncogenic mutant clones following 

Cas9-based DSBs. Consequently, these studies have not offered any means of protection 

against functional Cas9 nuclease, capable of initiating stochastic oncogenic mutations after 

treatment as I have presented, a caveat which clearly obstructs progress towards a therapeutic 

approach. 

 

4.4 CRISPR base editing corrects KRAS recurrent mutations 
To overcome the occurrence of escape clones, I took advantage of the recently developed 

adenine base editing (ABE) system using a cleavage-deficient Cas9 to install targeted A>G 

point mutations. Using this approach, we not only inactivated KRAS G13D driver mutation, but 

also repaired it back to wild-type sequence, disabling cancer cells. Throughout this study, I 

tested three different versions of ABEs namely ABE7.10 fused to xCas-3.7, ABEmax fused to 

NG-SpCas9 and ABE8e fused to NG-SpCas9. Of note, HCT116 and PANC-1 cells treated 

with the ABE7.10 and ABEmax base editors continued to proliferate at a normal growth rate, 

suggesting the inefficient base editing (Fig. 16 and 17). Several early generation ABEs 

applications have been hampered by the broad variation in editing efficiencies as well as the 

variable editing range especially when a different Cas domain other than SpCas9 is used (T. 

P. Huang et al., 2019; Y. B. Kim et al., 2017). This can be influenced by several parameters, 

including the binding affinity of the sgRNA to the nuclease (T. Wang et al., 2014), and the 
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sequence preference of the deaminase (Anzalone et al., 2020). Recently, Phage-assisted 

evolution has enabled the development of ssDNA Adenine deaminase TadA-8e variants with 

increased deaminase activity (Richter et al., 2020). importantly, TadA-8e, appears more 

compatible with a wide range of Cas domain variants (NG-SpCas9) compared to earlier 

versions of ABE (Gaudelli et al., 2020). Applying the ABE8e system to correct KRAS driver 

mutations, all three cell lines tested showed some degree of editing. In the microsatellite 

instable colorectal cell line HCT116, only one sgRNA (sgG13D-6) showed a progressive 

depletion, signifying editing (Fig. 18). This is surprising, given that i) Target A is out of the 

editing range, which could be explained by the broader ABE8e editing range (Anzalone et al., 

2020), and ii) that the sgRNA is 22 nt long. Moreover, we could detect nearby A editing activity 

in V14 which is benign, as it is a silent mutation, however editing K16 could be problematic 

(Fig. 18C). A few strategies to circumvent bystander editing include sliding the protospacer 

sequence to shift Cas9 binding up- or downstream, as well as optimization of alternative base 

editor systems using Cas9 orthologs compatible with ABE8e (Richter et al., 2020), which 

comes with different PAM preferences, or using alternative ABE architectures, such as rigid 

linkers (Tan et al., 2019). Of note, the six sgRNAs employed for HCT116 editing showed no 

effect on proliferation in RKO cells expressing the base editor, proving the effects seen are not 

due to off-target editing (Fig. 20). 

In the lung adenocarcinoma A549 cells, sensitivity to base editing was observed with all four 

sgRNAs tested, with varying efficiencies (Fig. 21). Exemplary editing shown on chromatogram 

with sgRNA2 showing most efficient depletion (Fig. 21C). It is worth mentioning, cells with 

enriched mutant KRAS status, such as A549 homozygous G12S cells, exhibit a distinctive 

metabolic and redox management profiles compared to heterozygous cells (Kerr et al., 2016). 

Therefore, mutant biallelic nature in A549 might explain why we observe a consistent 

sensitivity to all sgRNAs employed. Importantly, RKO cells expressing the A549-G12S-specific 

base editor complex have shown virtually no signs of sensitivity (Fig.  21D) demonstrating that 

the ABE8e-sgG12S expression is well-tolerated and doesn’t induce off-target toxicities. Cells 

with enriched mutant (homozygous) KRAS such as A549 G12S cells, exhibit enhanced 

glycolysis and sensitivity to glucose deprivation. It would therefore be interesting to challenge 

the base edited cells with a glycolytic inhibitor 2-deoxyglucose and the glutathione synthesis 

inhibitor buthionine sulfoximine which have shown a higher sensitivity in mice bearing 

homozygous KRAS-mutant tumours (Ferrer et al., 2018). This would offer us another method 

to test base editing efficiency employing different sgRNAs. 

Remarkably, in PANC-1 cells bearing G12D, the most common KRAS mutation, the edited 

cells were progressively lost from the pool, depleted almost entirely, after treatment with 
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sgG12D-1 or sgG12D-6 (Fig. 19). Moreover, sequencing of the pool of cells after treatment 

with sgG12D-1 showed substantial levels of editing at six days after infection (Fig. 19C), 

suggesting more than 70% editing efficiency (supplementary Fig. 13A). Of note, these sgRNAs 

employed for PANC-1 editing showed virtually no signs of sensitivity in RKO cells expressing 

the base editor proving the effects seen are due to correcting the mutation and not due to off-

target editing (Fig. 20). Furthermore, the base-edited cells seem to undergo apoptosis as 

observed in fluorescent live cell time-lapse microscopy. Motivated by the extraordinary and 

selective editing efficiency of G12D mutation, I sought to step closer to clinical application and 

validate these findings in patient-derived KRAS G12D-mutant organoids. 

The organoid culture system has recently emerged as a powerful technology to propagate 

patient-derived tissues as 3D structures (Boj et al., 2015). Using an adapted artificial stem cell 

niche environment patient-derived tissues could be propagated ex vivo and do recapitulate the 

histological traits, transcriptomic and mutational profiles of the parental tumor, offering a 

valuable resource for precision oncology (Tiriac et al., 2019; Seino et al., 2018; L. Huang et 

al., 2015) including studying KRAS biology (Cheng & Tuveson, 2018). I tested base editing in 

two PDAC KRAS G12D mutant organoid lines, DD442 and DD314 which have been recently 

characterized for CFTR expression (Hennig et al., 2019). Of note, DD314 carries a truncating 

mutation in TP53, whereas DD442 is TP53 WT. Importantly, DD107 organoid line, which has 

been recently characterized (Seidlitz et al., 2019), is KRAS WT and has shown virtually no 

signs of sensitivity to ABE8e-sgG12D-1 complex, pointing towards no apparent off-target 

toxicities, one month after treatment. Moreover, sequencing reads of infected and sorted 

DD107 organoids represents KRAS WT at the KRAS codon 12 locus, indicative of no editing 

of nearby “A” bases (Fig. 24A). Interestingly, DD442 demonstrated a progressive depletion, 

albeit milder than PANC-1 cells using the same sgG12D-1 (Fig. 24C). Sequencing of DD442 

organoid cells carrying the ABE8e complex revealed moderate editing of ~30% A>G 

conversions, ten days after infection, which demonstrates that slow regression of infected cells 

reflects the slow base editing reaction. Interestingly, in contrast to DD442, TP53 mutant DD314 

line infection with both sgG12D-1 and sgG12D-6 did not result in depletion of infected cells 

(Figure 24B). Although it could be explained by a lower editing efficiency (supplementary 

figure. 15A), it could be a first hint that TP53 activity is required to observe a proliferative 

disadvantage following mutant KRAS inactivation, especially as all tested cell lines are TP53 

WT. Intriguingly, base editing in DD442 organoid line seems slower compared to PANC-1 cells 

even employing the same sgRNA. This comes in contrast with existing knowledge in organoids 

research being permissive to genetic manipulations with both NHEJ and HDR repair pathways 

active. It would therefore be interesting to investigate the kinetics and fidelity of DNA repair 

pathways employed to resolve Cas9-induced nicks and the subsequent correction of the 
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mutation in DD442 organoids. Nominating the pathway(s) influencing base editing in these 

cells, and importantly develop ways to modulate it, shall boost the translational aspect of this 

project. However, even though the use of base editing is not directly amenable for clinical 

application, this study did demonstrate- for the first time- the promise base editing holds for 

the correction of cancer driver mutations in established cell lines and in patient-derived 

organoids. 

 

4.5 Addressing Limitations  
 

4.5.1 Screen for driver mutations  

Although the COSMIC database offers a powerful resource, it is not without caveats, and 

caution should be taken when designing the libraries. In the case described in this study, we 

found that the UTP14A:S99delS mutation was present in the homozygous or hemizygous 

state, rather than the reported heterozygous state in the database. In another example (a 

mutation in the gene MRPS30 (E134_P135delEP)), we found that this mutation is not a cancer 

mutation, but rather a frequent polymorphism in the human population (data not shown). This 

issue requires particular attention for already established cancer cell lines, because for these 

cells a “somatic control” cannot be retrieved, thus mutations are frequently called by 

comparison to a reference genome. Hence, one issue to keep in mind is the human genetic 

variation from the “reference genome”. 

An important consideration for CRISPR-based mutation-inactivation screens is the specificity 

of Cas9 cleavage. Point mutations are more difficult to target as they only differ in a single 

nucleotide from the wild-type sequence. Hence, the wild-type sequence might be cleaved as 

well, making it difficult to interpret obtained data. Therefore, for the screen in RKO cells we 

used exclusively insertion or deletion mutations. Nonetheless, the specificity of individual 

sgRNAs can be predicted a priori. For instance, it is known that nucleotide differences in the 

seed region close to the PAM sequence improve selective cleavage (Anderson et al., 2015; 

Kuscu et al., 2014; Zheng et al., 2017). Hence, choosing sgRNA sequences that contain the 

PAM sequence close to the mutation might be preferred over sgRNAs where the mutation is 

distal the PAM sequence. Furthermore, recent protein engineering of Cas9 has revealed 

mutant enzymes with higher specificities (Kleinstiver et al., 2016). These enzymes might be 

advantageous in screens where single nucleotide differences have to be distinguished. Finally, 

to test the selectivity of a given sgRNA experimentally, the so-called traffic-light reporter 
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system (Gebler et al., 2016) can be employed to test sgRNAs on the wild-type versus the 

mutant sequence. It is noteworthy, mutations for which the design of a sgRNA was not possible 

might still be addressable by other programmable nucleases. For instance, CRISPR systems 

from other bacterial strains have been identified that include Cas proteins recognizing different 

PAM sequences (e.g. saCas9, Cpf1, CasX) (Esvelt et al., 2013; Kleinstiver et al., 2015a; 

Kleinstiver et al., 2019; J.-J. Liu et al., 2019; Shmakov et al., 2015). Furthermore, mutants of 

SpCas9 have been generated that recognize alternative PAM sequences (J. H. Hu et al., 2018; 

Kleinstiver et al., 2015b) and recently, the almost PAM-less SpG and SpRY variants have been 

developed. These are two SpCas9-based variants that recognize NGN and NRN/NYN (where 

R is A or G and Y is C or T) PAMs, respectively. Although NRN is recognized more efficiently 

than NYN (Walton et al., 2020). 

 

4.5.2 ABE Targeting oncogenic KRAS mutations 

One obvious limitation to the Adenine base editor system is its inherent restriction to correct 

G>A mutations only. However, Prime Editing, in principle, could be harnessed to correct other 

KRAS mutations (e.g. G>T, G12V) as well as other oncogenic insertion or deletion mutations 

(Anzalone et al., 2019). Prime Editing uses a fusion protein, consisting of a catalytically 

impaired Cas9 fused to an engineered reverse transcriptase enzyme, and a prime editing 

guide RNA, capable of identifying a target site and providing new genetic information to replace 

the target DNA sequence. It mediates targeted insertions, deletions, and base-to-base 

conversions without the need for double strand breaks (DSBs) or donor DNA templates.  

The high activity of ABE8e variants may necessitate the use of Cas domain variants that 

decrease Cas-dependent off-target DNA editing or the use of ABE8e variants described that 

reduce Cas-independent off-target DNA and RNA editing (for example, ABE8e V106W or 

ABE8.17-m V106W) (Gaudelli et al., 2020; Richter et al., 2020). Moreover, because the on-

target efficiencies of all genome editing tools vary by site (including exact protospacer and 

PAM position), cell type and cell state, a diverse toolbox that provides multiple base editor 

options for a given target of interest will facilitate many applications, with a potential to target 

cancer driver mutations (Billon et al., 2017; Kuscu et al., 2017; Jun et al., 2020; J. Yuan et al., 

2018). Lastly, one factor that influence the editing outcomes is the unpredictable sequence 

preference of the deaminase. However, addressing this limitation, a machine learning model 

(BE-Hive) has been recently described capable of predicting editing outcomes and efficiencies 

of several base editors across different target sites (Arbab et al., 2020). Based on such 
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predictions, one can envision a base editing drop-out screening platform aiming to reveal novel 

cancer G>A driver mutations or study splice variants dependency through abrogating splice 

sites in cancer cell lines. 

While one key focus of this study at large and base editing approach in particular was to disable 

oncogenic driver mutations, the system does not explore mutations in tumor suppressor genes, 

which could also be harnessed for cancer therapy (Y. Liu et al., 2015). To address this issue, 

ABE could be used to “rescue” inactivated tumor suppressor genes, particularly those 

inactivated through G>A mutations. Furthermore, such approach bodes well to exploit tumor 

suppressor genes inactivated through mutations in splice donor/acceptor sites. These are 

largely GT/AG sites, and thereby, many of which might be abrogated through G>A mutations. 

Consequently, these mutations are an ideal target for base editing correction and reversing to 

the wild-type sequence in tumor suppressors, while exploiting NG-Cas9 for a wider targetting 

scope. Intriguingly, nearly 75% of the mutations in TP53, reputed as the Guardian of the 

Genome, the gene most mutated in cancer, are splice site variants/indel mutations of unclear 

biological significance (Kastenhuber & Lowe, 2017). While TP53 loss typically occurs through 

a two-hit mechanism involving a missense mutation in one allele and a 'loss of heterozygosity' 

(LOH) by larger deletion encompassing the other allele, presumably correction of one allele 

should be sufficient to revert the phenotype. In principle, adapting the NG-ABE8e, used 

successfully in this study for correcting KRAS, to correct the top three recurrent TP53 G>A 

mutations, is feasible. 

Strategies that directly or indirectly target KRAS have also been evaluated and include 

inhibiting the docking of KRAS to the cell membrane, inhibiting synthetic lethal interactions and 

targeting downstream signaling molecules including RAF, MEK, ERK and PI3K family proteins 

(Papke & Der, 2017). These indirect targeting strategies have also faced dire challenges 

including (i) low therapeutic index which arises from the targeting of essential cell growth and 

survival pathways (Papke & Der, 2017); (ii) compensatory escape mechanisms (Xue et al., 

2020); and (iii) Gene or mutation redundancy due to the feedback regulation of these signaling 

pathways (Muzumdar et al., 2017). However, future avenues could investigate a multiplexed 

CRISPR base editing approach to simultaneously inactivate oncogenic KRAS in addition to 

cellular responses arising in response to it, such as upregulation of PIK3CA (Muzumdar et al., 

2017). Moreover, mechanisms of resistance to KRAS inhibition could be investigated to 

modulate the therapeutic response. 

A few interesting aspects that are out of the scope of this thesis are the epidemiological 

correlations of different KRAS allele variants due to underlying biological differences between 
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mutant forms of KRAS. In particular, recently, Dow and colleagues have characterized the 

differential impact different KRAS mutant residues at codon 12 and 13 possess in vivo with 

respect to impact on tumor initiation and maintenance in the pancreas. Moreover, organoids 

harboring KRAS alterations seem to be differentially sensitive to targeted therapies (Zafra et 

al., 2020). These findings pose an interesting question of whether different KRAS alleles vary 

in their abilities to promote carcinogenesis, due to their inherent biological differences, or is it 

rather due to allele-specific co-segregating mutations in other genes, or perhaps this diverse 

allelic spectrum someway is linked to the underlying biology of the tissue of origin. 

Furthermore, an intriguing perspective is questioning whether the signaling downstream from 

KRAS alleles is qualitatively different or quantitatively different and, more clinically relevant, 

whether the differences in downstream signaling pathways are sufficient to design patient-

tailored allele-specific therapies. Another related question, assuming equal CRISPR/Base-

editing efficiencies, is whether the dependency on different KRAS mutations is linked to certain 

downstream pathways, or is it more associated with KRAS preferential engagement to distinct 

effectors GEFs and GAPs? Studies in mice suggest that genetic background plays a role in 

allele choice. It is still debatable whether the human genome carries modifiers of KRAS allele 

selection, for example single nucleotide polymorphisms that directly or indirectly affect KRAS 

expression.  
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4.6 Conclusion 
 

The presented data demonstrate that CRISPR-Cas9-mediated inactivation screens of cancer 

mutations in established cell lines are possible and cancer driver mutations can be nominated 

using this pipeline. The latest release of the COSMIC database (COSMIC v92 – 27th August 

2020) reports more than 30 million coding mutations and more than 15 million Non-coding 

variants providing a rich resource to initiate screens to probe the vulnerability of cancer cells 

upon inactivation of cancer mutations. Applying the method to primary patient samples would 

have the advantage that the cancer mutations are frequently validated by sequencing a 

somatic control from the same patient as a control, which is impossible in cell lines. However, 

obtaining enough material and establishing efficient transduction protocols are likely 

challenges to transfer this method to primary cancer cells, although rapid progress in culturing 

primary cancer cells as organoids (Drost & Clevers, 2018; Neal & Kuo, 2015) might facilitate 

this process. Additionally, on a different yet complementary approach, this thesis provides a 

proof-of-concept that base editing technology can be harnessed to correct cancer driver 

mutations. To my knowledge, no one has shown a targeted efficient oncogenic correction using 

base editing to date, especially for KRAS mutations which has a huge translational potential. 

Furthermore, KRAS-corrected patient-derived organoids demonstrate a growth disadvantage, 

although strategies to enhance base editing efficiency are currently being investigated. The 

delivery of the ABE8e-sgG12D complex to treat a KRAS G12D mutant mouse model would be 

my next endeavour. Recently, base editing has been harnessed therapeutically for 

hematopoietic stem cells editing (Zeng et al., 2020), treating a model of tyrosinemia (C.-Q. 

Song et al., 2020) as well as restoring visual function in a form of inherited retinal disease (Suh 

et al., 2021) proving the system scalable in vivo, although none of the aforementioned studies 

used ABE8e base editor. More generally, the system can be utilized to investigate the 

functional pathways or identify synthetic lethal interactions with oncogenic KRAS, as well as 

various KRAS allele dependencies. As base editors continue to advance towards clinical 

applications, their continued optimization to maximize their efficiency, specificity and ability to 

be delivered in vivo remains an important priority. Recent work has reported dual AAV split 

base editor systems that enable efficient in vivo base editing (Levy et al., 2020). Further 

optimization of Cas domains and deaminases may enable single-AAV editing approaches. 

Finally, motivated by the great success signal-transduction-based therapies have achieved 

against mutationally activated targets (Iqbal & Iqbal, 2014; A. Kim & Cohen, 2016), there has 

been a renewed hope that new approaches and technologies such as base editing, together 

with recent advances in understanding RAS function, may finally bring cancer’s Achilles heel 

within range (Berndt et al., 2011).



 

 

5 Supplementary Data 
 

   

 

 

 

 

 

 

 

 

Supplementary Figure 1  Sanger sequencing of TA cloned UTP14A PCR amplicon in RKO WT cells (Bottom) 

compared to WT UTP14A cells (Top). A representative sequencing chromatogram shows the in-frame TCT deletion 

coding for Serine residue 99, seen in all 40 sequenced individual clones.  
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Supplementary Figure 2 Representative FACS data visualising data acquisition for UTP14A BAC rescue 

experiment. Gating strategy were set based on RKO wild-type cells. BAC-expressing cells were maintained in 

Geneticin throughout the experiment and double positive (GFP+RFP+) cells were quantified over time. 
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Supplementary Figure 3 Representative FACS data visualising data acquisition for mutant BAC UTP14A rescue 

experiment.  Gating strategy were set based on RKO wild-type cells. BAC-expressing cells were maintained in 

Geneticin throughout the experiment and double positive (GFP+RFP+) cells were quantified over time. 
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Supplementary Figure 4 Arrayed screen in HCT116. Raw FACS data points. 

Supplementary Figure 5 PANC-1 mutant G12D KRAS Time course. Raw FACS data points. 
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Supplementary Figure 6 Gating strategy used for Base Editing Time course experiments. 



Supplementary Data 

 

 

 

80 
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B 

Supplementary Figure 7 xCas9.ABE7.10 Time course in HCT116 (A) and PANC-1 (B). Raw FACS data points. 

Infections of mutation-specific sgRNAs are Depicted here 1-6 and empty vector infection is shown in panel 7. 
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Supplementary Figure 8 NGCas9-ABEmax Time course in HCT116 (A) and PANC-1 (B). Raw FACS data 

points. Infections of mutation-specific sgRNAs are Depicted here 1-6 and empty vector infection is shown 

in panel 7. 
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Supplementary Figure 9 HCT116 ABE8e Base Editing Time course. Raw FACS data points. 

Supplementary Figure 10 PANC-1 ABE8e Base Editing Time course. Raw FACS data points. 
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Supplementary Figure 11 Screen for off-target toxicities of ABE8e-sgG13D (1-6) and sgG12D (7-12) 

sgRNAs in RKO cells. Raw FACS data points. 

Supplementary Figure 12 A549 ABE8e (left) and RKO ABE8e (right) Time course. Raw FACS data points. 
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A 

B 

Supplementary Figure 13 ABE8e Base Editing quantification of sequencing results. A) PANC-1 cells TdTomato 

percentage at 6dpi timepoint stood at ~70%. Mathematical calculation of quantified Editing percentages normalised 

to %TdTomato+ at that timepoint to estimate the cells expressing the sgRNA, yields 71,4% Base Editing efficiency 

at target A (Highlighted by arrow). B) A549 cells TdTomato percentage at 12dpi timepoint stood at ~45%. 

Mathematical calculation of quantified Editing percentages normalised to %TdTomato+ at the same timepoint to 

estimate the cells expressing the sgRNA, yields 55% Base Editing Efficiency at target A (highlighted by arrow) 

whereas 80% Editing Efficiency at nearby bystander A.  
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Supplementary Figure 14 Base editing in organoids Time course. A) Quantification of base editing in DD314 

Time course. Cells treated with empty vector show sequence identity analogous to DD314 WT cells (top panel), 

however, sorted cells treated with sgG12D-1 (Bottom panel) display a moderate increase in “G” reads, verifying 

Editing. B) Raw Chromatogram of Base edited DD442 (bottom panel), compared to empty vector treatment (Top 

panel). 
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Supplementary Figure 15 pLenti.GFP.PGK.Puro backbone used for cloning all base editors in 

this study. Exemplary ABE8e vector presented. 

Supplementary Figure 16 pL-CRISPR.EFS.GFP.U6sgRNA all-in-one vector used in RKO screen 

as well as hit validation experiments. 
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Supplementary Figure 17 pLenti.U6sgRNA.EFS.TdTomato.BlastR vector used for cloning Base 

Editing sgRNAs. 
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Tabel 1 RKO screen sgRNAs library 



List of Tables 

 

 

 

89 

 

 

Tabel 2 cont’d RKO screen sgRNAs library. 
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Tabel 3 Oligos used in this study. 
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Tabel 4 cont’d oligos used in this study. 
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