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Cover letter to the reviewers 

Dear reviewers 

Please find following the manuscript "Uncertainty in life cycle costing for long-range infrastructure. Part II: 
Guidance and suitability of applied methods to address uncertainty" by Scope, C., Ilg, P., Münch, S., and 
Günther, E. that we would like to submit for publication in the International Journal of Life Cycle Assessment. 

The paper is the second part of a series, succeeding “Uncertainty in life cycle costing for long-range 
infrastructure. Part I: Identified sources and methods to address uncertainty” that is also submitted in the 
International Journal of Life Cycle Assessment.  

To our knowledge, this is the first paper series providing a comprehensive literature review that identifies and 
categorizes different sources and methods of uncertainty in Life Cycle Costing for infrastructure. This article 
extends Part I of the series by further inquiring into two issues. First, it includes a combined analysis of 
uncertainties and methods to address them in LCC calculations. It thus addresses the suitability of methods. 
Second, it assesses which types of uncertainty were neglected in previous literature. 

We would like to give you some further information on our submission: 

• The comprehensive review was conducted by predefined selection criteria, strict application of the search
terms, using a well-documented review protocol, and double coding by three authors enhancing
intercoder reliability.

• We provide useful information for planners, users, and builders in evaluating life cycle costs of
infrastructure projects.

• As suggested in the Author Information Pack, the manuscript was sent to a language editing service to
ensure correct scientific US English.

Should you require further information, please do not hesitate to contact us. We look forward to hearing from 
you. 

Yours faithfully, 

Christoph Scope, Patrick Ilg, Stefan Münch, and Edeltraud Günther 
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1 Introduction 

Infrastructure is an important pillar for every economy (Morcous and Lounis 2005; Terzi and Serin 2014). 

However, the long lifespan of projects in this sector is a challenge for infrastructure planners (Truffer et al. 2010; 

Albogamy and Dawood 2015). In particular, cost estimations for long-term projects are often not precise and 

have frequently been proven inaccurate in the past (Kostka and Anzinger 2015). Life Cycle Costing (LCC) is a 

promising tool to improve cost estimations of long-term projects (Goh et al. 2010; Swarr et al. 2011; Simões et 

al. 2013). Nevertheless, uncertainty in LCC has been discussed in previous literature (Gluch and Baumann 2004; 

Cole et al. 2005; Kayrbekova et al. 2011). It is argued that LCC practitioners should systematically consider the 

impact of uncertainties on LCC results (Greenberg et al. 2004; Lindholm and Suomala 2007; McDonald and 

Madanat 2012). Previous literature on uncertainty in LCC calculations has focused on selected sources of 

uncertainty and how to handle them (Budnitz et al. 1997; Goh et al. 2010; Xu et al. 2012). To the best of our 

knowledge, no holistic analysis on how to treat different uncertainties in LCC calculations has been published to 

date. 

The present series consists of two parts. In Part I, a systematic overview and categorization of uncertainties in 

LCC calculations is presented and is recommended for better understanding of the fundamental concepts of 

uncertainty. However, it also became apparent that further research was necessary. This article extends Part I of 

the series by further inquiring into two issues. First, it includes a combined analysis of uncertainties and methods 

to address them in LCC calculations. It thus addresses the suitability of methods. Second, it assesses which types 

of uncertainty were neglected in previous literature. Consequently, this article addresses the following two 

research questions:  

1) What methods can be used to address uncertainties in LCC calculations?

2) What methods to deal with uncertainty have been insufficiently addressed in previous research?

By summarizing the overall findings, Part II provides guidance for LCC practitioners and decision makers based 

on risk management to further integrate uncertainties in future applications of LCC as well as in management 

practice. Reasoning for the latter, Erkoyuncu et al. (2011) diagnose a lack of “work on integrating the whole 

process of uncertainty identification, quantification, response and management strategies”. Decision makers are 

often not involved in the analyzing process and are not familiar with applied methods to address uncertainties. 

As Ciuffo et al. (2012) argues, decision makers can be confused when confronted with results. Thus, Part II 

further aims to provide guidance for a science-based and practical application of uncertainty analysis that is 

integrated within risk management in accordance with ISO 31000 (2009) and IEC 62198 (2013) as demanded by 

Pappenberger and Beven (2006). The integration is interesting because, with the availability of modern software 

packages, conducting probabilistic analyses no longer requires mathematical sophistication, (Bolger 1996). The 

ability of using methods to address uncertainties requires guidance on how to interpret, implement, and 

communicate uncertainty insights into management routines (Heidmann and Milde 2013). The systematic 

overview of the subject provides this guidance to interested readers who are willing to improve reliability of their 

own LCC calculations and applications. 

This paper is structured as follows. Section 2 contains a brief overview of the applied methodology. Section 3 

presents a holistic assessment of the suitability of methods to address sources and types of uncertainty (Section 

3.1). That includes a discussion of potential methods that have not been sufficiently used in previous research on 

LCC for infrastructure (Section 3.2). Furthermore, it is evaluated if learning from Life Cycle Assessment (LCA) 
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and Life Cycle Sustainability Assessment (LCSA) applications is feasible and relevant to filling these gaps 

(Section 3.3). An integrated approach based on risk management is further suggested to build a bridge from LCC 

analysts to decision makers (Section 3.4). Section 4 concludes and reflects on the validity and reliability of 

overall findings from this analysis.  

2 Methods 

To set up a common understanding of key terms, three short but concise definitions follow, equivalent to Part I. 

LCC is defined as “an economic method for assessing all (direct, indirect, internal, and external) costs and 

revenues (cash flows) arising within a defined life cycle considered important to the investment decision and 

project evaluation” (Ilg et al. 2015). Infrastructure is understood as buildings and constructions utilized for 

energy supply and distribution, transportation, waste and water treatment (ASCE 2015). The term ‘uncertainty’ 

hereby represents all uncertainty and variability in LCC, while keeping in mind the various sources and types of 

uncertainty. In a narrower sense, ‘uncertainty’ refers to uncertain outcomes lacking good probability information 

(Park and Sharp-Bette 1990a). Uncertainty in that wider sense also includes ‘risk’, i.e. outcomes not known with 

certainty but with probability information (Park and Sharp-Bette 1990a). Essentially, sources of uncertainty are 

categorized twofold: in aleatoric and epistemic uncertainty as well as parameter, model, and scenario 

uncertainty.  

Using a systematic literature review, we gathered and synthesized relevant studies applying uncertainty analysis 

in LCC for infrastructure following Cooper (1982) as well as Fink (2013), Mayring (2003), and Seuring and 

Müller (2008). Arguments of Zamagni et al. (2012) referring to the subjective conclusions were considered. The 

review consisted of four steps: selecting research questions and bibliographic databases, applying practical and 

methodological screening, as well as synthesizing results. Whereas Part I focused on categorizing identified 

sources and methods to address uncertainties, Part II concentrates on integrating both spheres. The latter 

included assessing the suitability of methods, exploring usage patterns, drawing parallels to other life cycle based 

methods, and summarizing best practices. The necessary content analysis was realized by using MAXQDA, a 

qualitative data analysis software program. After the initial identification of sources of uncertainty, each article 

was screened on applied methods to address uncertainty. Based on findings from the systematic review, each 

article is encoded with sources of uncertainty discussed and methods applied. Sources are then categorized into 

epistemic and aleatoric nature and the so-called PMS system (parameter, model, and scenario uncertainty). The 

four classes of methods are deterministic, probabilistic, possibilistic, and others. The results of the integration are 

presented in Table 1 in Section 3. For a more detailed description of the methodology, including search terms 

and screening information, see Section 2 of Part I. 

In order to fill existing research gaps of applied methods to address types of uncertainty within LCC, a second 

study pool related to LCA and LCSA was scrutinized. LCA is seen as a systematic, analytical process for 

assessing the environmental implications of product systems over their entire life cycle (ISO 14040:2006; ISO 

14044:2006). LCSA is best described as a transdisciplinary integration framework for methods and models close 

to the field of integrated assessment (Guinée et al. 2011). Working step one of our systematic literature review 

was modified to include keywords (‘life cycle ass*’, ‘life cycle anal*’, ‘life cycle sustainab*’, ‘sustainab* ass*’) 

instead of LCC related expressions. In addition, the keyword ‘review’ was added to further restrict the study 

pool. Applying practical screening (English, no limit on publication year, no ranking minimum, infrastructure as 

topic) as step two, there were 48 studies considered relevant, after delimiting 148 from a pool of 196 studies, and 

adding 6 by means of cross reference (Crane 1969). In step three, methodological screening, the rule-based 
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procedure for content analysis was unchanged as compared to the LCC studies. It was transparently documented 

and encoded with MAXQDA. The systematic approach, the repeated formal analysis by all three authors, and a 

pre-defined coding scheme ensure objectivity of the research process. Coding differences were analyzed and 

dissipated case by case. Intercoder reliability was tested by having all the authors encode the same articles. Only 

minor discrepancies were observed. 

The following Section 3 summarizes the results, representing step four of the systematic review. 

3 Results and Discussion 

Categorization of sources, as shown in Part I of our series, aims to differentiate epistemic from aleatoric as well 

as parameter, model, and scenario uncertainty. This helps to choose the appropriate type of method to address 

uncertainty. Similarly, the classification of methods pursues a generic decision for its application on the 

respective type of data. Depending on the characterized source of uncertainty, an appropriate method can 

display, explain, and (or) reduce uncertainty. In Section 3.1, empirically applied methods in LCC to address 

different sources of uncertainty are illustrated and their suitability is discussed. Section 3.2 then analyzes 

research gaps understood as yet missing methods in the context of LCC for infrastructure or a missing 

framework to integrate various methods into management practices. In the end, Section 3.3 presents and 

evaluates learning potentials from LCA and LCSA to fill these gaps. 

3.1 Suitability of applied methods to address uncertainty 

It is each analyst’s work to assess the overall level of uncertainty, which is often denominated as propagating 

uncertainty in LCA studies (e.g. Lloyd and Ries 2007), caused by each input parameter, the model structure, and 

the model context within the LCC modeling. The process of identifying appropriate methods is surely of iterative 

character. The following order of working steps can therefore be seen as suggestion. A possible way to 

standardize this approach is laid out in Section 3.4.  

First and foremost, the application of methods depends on data availability and related type of data (see Figure 

1). Initially, the type of data on hand leads to the appropriate class of method. Tangible and certain data is an 

ideal case seldom found in real-life problem sets. If enough tangible data (historic, estimated, comparable, 

confounding, etc.) is available but uncertain and random, sophisticated probability models can be applied. In that 

case, a new data collection allows for the opportunity to gain knowledge about the parameters’ true probability 

distributions functions. Otherwise, methods to either fill data gaps by means of modeling or restrictive 

assumptions for probability distribution functions (e.g. triangular shaped) may be appropriate. If only 

unrepresentative data is available, methods should be used that adapt data to local, i.e. specific, circumstances. In 

case of intangible data (but not limited to), intuitive or possibilistic methods, like expert elicitation and fuzzy 

sets, are recommended. Overall, LCC calculations most likely contain all classes of methods for data estimation 

scattered among different parameters: deterministic, probabilistic, and possibilistic. 

[Insert here Figure 1] 

In a second step, screening routines like Sensitivity Analysis should be applied in order to check each LCC 

calculation for hot spots regarding uncertainty. As introduced, overall uncertainty is partly caused by chosen 

input parameters. Sensitivity Analysis is a means to study effects on outputs through arbitrary changes in inputs 

(Reap et al. 2008a), thereby helping to rank the influence of each input by importance. This is necessary at an 
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early stage when uncertainty is rather difficult to quantify. Due to limited resources (funding, time, computer 

power, man power, expertise of analysts, and skills among the decision-makers), each LCC practitioner has to 

weigh and balance the efforts to newly measure or estimate data points based on models. According to Schmidt 

(2003), these circumstances complicate the interpretation of LCC results and, hence, should only be conducted 

by experts. Resuming, a first screening such as this allows for iterative deepening of uncertainty analyses 

concentrating on identified hot spots. 

In a third step, suitable and appropriate methods need to be tested to address the identified hot spots as well as 

relevant model and scenario uncertainties. Björklund (2002a) summarized that a suitable tool “must lead to an 

actual improvement of data inventory routines, model insight and results presentation, as well as be of help to 

decision makers.” As mentioned before, a lack of integrated views on the diverse and numerous sources and 

methods makes it difficult to choose the appropriate one. Table 1 combines all reviewed sources and methods in 

an attempt to ease that process. An ‘x’ displays an applied method for specific sources as identified from the 

study pool. An ‘o’ extends the table by marking methods as capable of addressing these sources. The latter is 

suggested by the authors of this review. 

Table 1 Combination of sources of uncertainty and methods to address them 

PMS Parameter uncertainty Model uncertainty Scenario uncertainty 
Aleatoric x x x x x 
Epistemic x x x x x x x x x x x x x x x x 
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Monte Carlo Simulation o x x o x x x x x x o o 
Random sampling x x o x x 
Subset simulation o x 
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 Bayesian expert opinion o x o o o x x o o x x x o o o o x 
Bayesian Markov Chain x x x o 
Bayesian Latent Markov Decision Process x o o o o 
Fuzzy sets x x x x o x 
Evolutionary and Genetic Algorithm x x x 
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 Analogy to prior literature x x o o o x x x o o x o x x o o o x o o 
Check by comparing with deterministic model x x o x 
Check by multiple cases o x x 
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Check by tests within the model x o x o o o x o 
Increasing data transparency x x o o x o x x o x x o x o 
Measuring and field data o o x o x x 
Standardization (standard specification) x x x x o x o o 
Standardization (software, databases) x o o o x o x x 

x: methods to address uncertainty identified in literature 
o: methods to address uncertainty suggested by the authors 

For the choice of method, no obvious pattern is visible in Table 1 at first glance. In Table 1, it seems that 

deterministic methods predominate the category of scenario uncertainty and probabilistic methods the one of 

parameter uncertainty. Possibilistic methods are applied infrequently. The last class, so-called other methods, are 

applied in all areas and describe less statistical but rather procedure-based techniques, e.g. using data based on 

analogy to prior literature.  

As mentioned before, the main problem for LCC is unavailability of data and related uncertainty of input 

parameters. Most applied methods in this area are Sensitivity Analysis (Herbold 2000; Sterner 2000; Singh and 

Tiong 2005), rules of thumb or best guesses (Rabl 1985; Hinow and Mevissen 2011; Liu et al. 2014), Bayesian 

Expert Opinion (Apostolakis 1990; Budnitz et al. 1997; Kayrbekova et al. 2011), and analogy to prior literature 

(Hong and Hastak 2007; Mavrotas et al. 2010; Hinow and Mevissen 2011). Data quality, in particular data 

estimation errors, is mainly addressed by two methods, namely Monte Carlo Simulation (Ergonul 2005; Jung et 

al. 2009; Firouzi and Rahai 2012; Saassouh and Lounis 2012) and Sensitivity Analysis (Walls and Smith 1998; 

Zayed et al. 2002; Choe et al. 2008). 

Scenario uncertainty, such as the choice of input parameter and system boundaries, is mainly addressed by 

improved documentary transparency (Reich 2005; Upadhyay et al. 2012; Moore and Morrissey 2014) and two 

original deterministic approaches: Sensitivity Analysis (Budnitz et al. 1997; Swarr et al. 2011; Liu et al. 2014) 

and Scenario Analysis (Tähkämö et al. 2012; Li et al. 2014; Robert and Gosselin 2014). Contrarily, the choice of 

methodology is dominated by other methods, i.e. standardization (Andrade and Teixeira 2012; Mata et al. 2014; 

Noori et al. 2014), check by comparing with a deterministic model (Zhu et al. 2012; Aissani et al. 2014), the 

exclusion of parameters (Han et al. 2014), check by multiple cases (Hong et al. 2007), or analogy to prior 

literature (Battke et al. 2013). 

To give an example, multiple data sources can be addressed by means of Monte Carlo Simulations (MCS). In 

that case, using min, max, and median values for triangular shaped probability distribution functions derived 

from a literature search within MCS may illustrate the effect on the overall result as a kind of Sensitivity 

Analysis (e.g. Nachtmann and Needy 2003). Surely, MCS does not directly help in the choice between sources, 

but it does indicate their implications. Similarly, Sensitivity Analysis, possibly in combination with rules of 

thumb concerning the size, may address data collection errors by estimating measurement errors for each input 

parameter showing impacts on the overall result. A comprehensive overview of sources and related applied 

methods is presented in a table within Appendix A. That table shall provide guidance to readers looking to 

identify existing (better) practice (see Section 3.4). 

The selection of the methods according to a specific source or type of uncertainty is important as every method 

has its advantages and disadvantages. It should be kept in mind that quality of data is a “relative concept” 

(Silvestre et al. 2015), meaning for a given national context a data set may count as appropriate, whereas it is not 

in another national context. Common to all deterministic methods are the following critical points. First, 

deterministic approaches can only be used when all data is known with certainty (Kishk 2004). If there is 
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variability associated with input parameters, deterministic approaches are not able to cope with this kind of 

uncertainty (Walls and Smith 1998). Second, many important phenomena cannot be modeled by deterministic 

approaches, e.g. actual ground motion parameter in seismic risk assessments (Apostolakis 1990; Budnitz et al. 

1997). For these phenomena, more sophisticated models are necessary. Third, deterministic methods are limited 

in their application to real world scenarios as they cannot display continuous scales. Deterministic models are 

only able to predict two states for each variable or performance measure, i.e. failure or non-failure (Saassouh and 

Lounis 2012). Consequently, deterministic models cannot ensure a long service life because they fall short in 

selecting the appropriate design, maintenance, and rehabilitation strategies (Saassouh and Lounis 2012). 

Consequently, tailored methods are important to address uncertainty and often more sophisticated methods lead 

to better results. 

There is some criticism regarding probabilistic methods, too. First, in most cases the forms of the distributions 

are based on estimates that do not directly stem from historical data and, therefore, their accuracy is questionable 

(Lindholm and Suomala 2007; Li and Madanu 2009). Half a century ago, Weiler (1965) already concluded that 

many errors in the outputs of simulation models could be traced back to assigning incorrect values to the 

parameters of a distribution, and indeed the selection of an appropriate distribution. There are tests to verify the 

chosen distribution: Chi-square, Kolmogorov-Smirnov, Anderson-Darling (Boussabaine and Kirkham 2004). 

Luckily, some software packages enable the correct choice of distribution from a given data set by integrating 

these tests. Second, lack of a strong statistical background of some LCC practitioners leads to the inappropriate 

application of probabilistic methods (Apostolakis 1990). Thus, not only the wrong distribution but also the 

wrong application of these methods leads to misinterpretation. Similarly, for a decent application, experts must 

understand how their judgments will be used (Budnitz et al. 1997). A similar disadvantage is the missing 

differentiation between short-term and long-term consequences (Wen and Kang 2001). Hence, the researcher has 

to be able to interpret results adequately in order to avoid a wrong application of the results. Third, most non-

parametric methods see a drawback in the choice of the bandwidth (smoothing parameter). A wrong choice of 

this parameter will either under- or over-smooth the representation of the true distribution (Asiedu and Besant 

2000). 

The seemingly easier applicability of deterministic and probabilistic methods is the main disadvantage of 

possibilistic methods, as they need a high level of expertise for adequate application. A lot of time and highly 

skilled employees are required, which hampers frequent application in real-life projects. As mentioned before, 

practitioners trust their instincts based on their own experience more than on data-based analysis. The use of 

possibilistic methods demands even more effort and they are thus hardly ever applied in practice. 

3.2 Identified patterns in applying methods to address uncertainties 

Reviewing the current status quo in Section 3.1, different patterns of usage and scholarly discussions for the 

identified sources as well as addressing methods of uncertainty were observed. This includes sources and 

methods hardly or not studied at all within the context of LCC for infrastructure (see Table 1). 

As shown previously in Section 3 (see Table 1), the most popular sources of uncertainty are related to data 

quality and availability. As indicated by an assigned ‘x’, linguistic uncertainty, as an exception, is seldom 

studied. Sensitivity Analysis and MCS are possible methods to handle them. On the other hand, methods for 

probabilistic modeling like Design of Experiment (Patra et al. 2009) and Subset Simulation (Walls and Smith 

1998) are infrequently discussed and applied. Among methods related to Bayesian statistics and possibilistic 

modeling, these gaps seem even larger: the Bayesian Latent Markov Decision Process has only rarely been 
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applied in previous research (e.g. Mishalani and Gong 2009). Reconsidering the complexity of those methods as 

described in Part I of our series, these low application levels are not surprising. Yet, the task of detecting why 

certain methods are applied or others are not in specific circumstances and articles is demanding. 

Table 1 offers additional insights. Whereas ‘x’ symbolizes that research is conducted, ‘o’ marks combinations of 

sources and methods that could be feasible but have not been analyzed yet. For example, scenario analysis is a 

method able to showcase many more sources than as currently applied. In case of multiple data sources, 

scenarios as a means of sensitivity analysis could calculate different LCC outcomes based on each data source. It 

seems clear that scenarios are not able to explain a choice for a single data source. However, it provides an 

indication of magnitude (of changes in the overall LCC result) when choosing a certain data source over an 

alternative one. Therefore, it may help each LCC analyst to screen for key drivers which suggest they are worth 

additional data collection routines or data estimation methods in order to make a more profound choice. Here, 

the meaning of the first row, ‘Exclusion of parameters’, should be clarified. For example, Stamford et al. (2014) 

exclude Carbon Capture Storage for coal, because that technology was not commercially available, hereby 

referred to as ‘no data’. Considering current practice in LCC, LCA, and LCSA, exclusion of parameters is 

widespread and surely necessary to build any model (of real life systems). By ‘Exclusion of parameters’, the 

authors understand a deliberate, arbitrary decision based e.g. on lack of data. Dixit et al. (2010) exemplifies that 

boundaries were set in “past embodied energy analyses […] whenever it became difficult to acquire the 

necessary reliable and consistent information”. The relatively empty row signals that, though often applied, it is 

not an appropriate method to propagate uncertainty within LCC or LCA. In case of excluding parameters, the 

bare minimum requirement is to document (‘Increasing data transparency’) and qualitatively discuss its potential 

consequences for each LCC or LCA estimation. 

How can the current limited interest in some of the presented methods be resolved? Some methods may prove to 

be impractical or do not address uncertainties as expected. Or, as just illustrated for ‘Exclusion of parameters’, a 

method is not recommended practice. Other barriers include lack of knowledge about methods and their 

limitations. This review shall help to overcome that obstacle by presenting existing applications to the scholarly 

community. Showcasing sources and addressing methods, their origin, and applied examples may help to reduce 

reservations regarding them. Transparently showcasing research gaps may motivate scholars to reconsider LCC 

approaches or start new research on methods.  

As introduced in Section 1, research in the field of uncertainty related to LCC for infrastructure is of great 

importance when mirroring its share in negative externalities (Menikpura et al. 2012; Ostermeyer et al. 2013; 

2014). LCC is seen as a decisive factor to include economics, but also the cost of externalities of products and 

services (Simões et al. 2013). Most authors within the study pool are motivated by the idea that more 

sophisticated methods to address uncertainty may “significantly change, hopefully enhance, results derived by 

using the conventional deterministic method” (Zhu et al. 2012). That review shares this understanding that an 

increasing sophistication is very useful (Zhu et al. 2012) for LCC as compared to purely deterministic models. 

Another pushing factor is the integration of methods within software packages (Bolger 1996). A good example is 

MCS. Software like Oracle Crystall Ball (Kishk 2004), Palisade @RISK (Nachtmann and Needy 2003; 

Lindholm and Suomala 2007; Zhu et al. 2012), PRé Consultants’ SimaPro, and US-NREL’s HOMER (Anwari et 

al. 2012; Kumar and Bhimasingu 2015) all include MCS more or less with a mouse click, although it does not 

release each analyst from being familiar with each method’s limitations or from interpreting results of MCS in an 

appropriate manner. Still, a persisting and intrinsic problem is hard to counteract: more sophisticated methods 
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may add extra time in computer power, time to analyze, funding needs for working hours, and additional 

dialogue between LCC practitioners, (engineering) experts, and lack of understanding by those who receive LCC 

results. Computer time can be reduced by applying data compression techniques such as Latin Hypercube 

sampling instead of standardized MCS. Lack of understanding can only be addressed by patience and thorough 

communication of problem sets, applied methods, and achieved outcome. 

Moreover, scholars may learn from each other across disciplines. That means methods applied to a different field 

of application could be transferred to infrastructure with minor adaptations. Or, as is presented within the next 

Section 3.3, one can study uncertainty modeling for similar life cycle based concepts like LCA and LCSA. 

3.3 Learning from applied methods within LCSA and LCA 

In order to close existing research gaps, this section aims to draw parallels from scholarly fields. LCA and LCSA 

are then a logical choice to scrutinize, as LCC is discussed as a third pillar within LCSA (Klöpffer 2008; Schau 

et al. 2011; Zamagni 2012). In this review, the vivid scholarly discussion over what other type of hybrid LCA-

LCC serves as the best way to support sustainability assessments is neither continued nor is of interest (Heijungs 

et al. 2013). The authors of this review follow Klöpffer and Ciroth (2011) who refuted arguments by Jørgensen 

et al. (2010) that, in turn, had not advocated LCC as necessary within LCSA. 

Schmidt (2003) claims that LCC entails larger uncertainties than LCA, especially in early stages of development. 

Nevertheless, LCA applications to the same products often end in very different results (Williams et al. 2009), 

too. LCA has a seemingly more intense discussion about data quality und uncertainty propagation within its 

scholarly community as compared to LCC. Björklund (2002a) presented the first comprehensive survey “of 

methods and approaches for data quality management, sensitivity analysis, and uncertainty analysis published” 

for LCA. Although focusing on uncertainty located in the inventory phase, she systemizes sources of 

uncertainties in a formerly unseen manner while criticizing the current practice of point estimates as 

overestimating reliability. She roots critique that LCA researchers fail to handle data quality issues and lack a 

systematic approach to uncertainty analyses back to as early as 1992. 

In 1996, authors within the International Journal of Life Cycle Assessment discussed approaches to address 

uncertainty of generic (e.g. Heijungs 1996; Kennedy et al. 1996) or sector specific nature (e.g. Chevalier and 

Téno 1996). Eventually, Huijbregts et al. (2001) published a framework to assess data uncertainty within life 

cycle inventories. Similarly, Data Quality Indicators (DQI), as suggested by Weidema and Wesnæs (1996), 

which center on input parameters, namely data inaccuracy and lack of representative data, are deep-rooted within 

the LCA community. Research on DQI and pedigree matrix is ongoing (Henriksson et al. 2014; de Saxcé et al. 

2014; Muller et al. 2014). Scenario uncertainty is discussed along with the many choices of LCA analysts e.g. 

functional unit, system boundaries, etc. (Ciuffo et al. 2012; Clavreul et al. 2012). Björklund (2002a) stated that 

“choices are unavoidable” and there is “not one single correct choice”. 

As a response to ongoing research, many cautionary statements were included in the ISO 14040 series (Ross et 

al. 2002; ISO 14040:2006; ISO 14044:2006) and a handbook for data quality was published (ILCD Handbook, 

EU-COM JRC IES 2015). Corominas et al. (2013) argue to improve overall LCA reliability by strictly following 

the ISO methodological standards. Unfortunately, that guidance may be overlooked by LCA analysts for reasons 

of budget, time, and resource constraints. As Münch and Günther (2013) show, for allocation procedures related 

to LCAs for bioenergy systems, the ISO standard is often neglected and rarely do LCA practitioners document 

their decisions in a transparent manner. The scholarly community focusing on LCSA is also questioning how to 

accommodate or manage uncertainty, as the latter is seen as inherent (Zamagni 2012).  
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In summary, the scholarly community for LCA and LCSA is at the forefront of framing methods to address 

parameter and scenario uncertainty. Model uncertainty seems to play a minor role within the discussion. Or, as 

Ciuffo et al. (2012) suggest, it is “common practice to consider the model uncertainty alongside the parametric 

inputs.” When looking at the screened pool of LCA and LCSA studies related to infrastructure (see Appendix B 

for a complete list), one can draw parallels in the following manner: sources should be similar, if not equal, on 

the analytical level. The PMS categorization is equally applicable. Then, methods of handling these uncertainties 

shall be comparable and can be adapted to LCC problems. Therefore, Table 1 as displayed in Section 3.1 is 

extended by replacing identified white spots (marked with “o”) with ‘Δ’ where applications for LCA exist. 

Within the LCA community, ‘uncertainty analysis’ usually refers to mapping the uncertainty in the inputs into 

the uncertainty measures in the outputs. In that sense, uncertainty is understood in a narrower sense as compared 

to this review. 

Table 2 Extended combination of sources and methods by LCA and LCSA 
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Design of experiment x x x o 
Importance sampling x x o o x 
Latin hypercube sampling x o o x o x o 
Monte Carlo Simulation o x x Δ x x x x x x Δ Δ 
Random sampling x x o x x 
Subset simulation o x 
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 Bayesian expert opinion Δ x o o o x x Δ o x x x Δ o Δ Δ x 
Bayesian Markov Chain x x x o 
Bayesian Latent Markov Decision Process x o o o o 
Fuzzy sets x x x x o x 
Evolutionary and Genetic Algorithm x x x 
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Analogy to prior literature x x Δ Δ o x x x o o x o x x o Δ o X Δ Δ 
Check by comparing with deterministic model x x o X 
Check by multiple cases o x X 
Check by tests within the model x o x Δ o Δ x o 
Increasing data transparency x x Δ o x o x x o x x O x o 
Measuring and field data Δ Δ x o x x 
Standardization (standard specification) x x x x o X o o 
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Standardization (software, databases) x Δ o Δ x Δ x X 
x: methods to address uncertainty identified in literature for LCC 
o: methods to address uncertainty suggested by the authors 
Δ: methods to address uncertainty identified in literature for LCA/LCSA 

Not surprisingly, the comparison with LCA and LCSA mostly fills gaps within parameter (13) and scenario 

uncertainty (11), whereas applications for model uncertainty is only improved within 4 articles. That underlines 

the initially expected focus on the former two types of uncertainty. Examples now follow assorted along the 

columns of parameter uncertainty (each column representing one source).  

Dixit et al. (2010) argue that lack of standardization or ambiguity in literature makes estimation difficult in case 

of multiple data sources. Ergo, ‘Δ’ are set in the respective rows. Silvestre et al. (2015) suggest in the case of 

mixed data the characterization of each data source by means of DQI in order to transparently show possible 

deviations from the scope of the study. As DQI is hereby categorized as Bayesian expert opinion, this class 

receives a ‘Δ’. Buyle et al. (2013) points to DQI as a means to handling data collection errors as well as the 

Ecoinvent database. Corominas et al. (2013) differentiate between foreground and background Life Cycle 

Inventory (LCI) data. The former should be measured directly or collected by comprehensive vendor-supplied 

information; the latter derives from databases. The same authors also demand appropriate final mass balances for 

all analyzed compounds within the class of data estimation errors. Heijungs and Huijbregts (2004) criticize a 

missing common understanding of terms like ‘significant’ or ‘large’, referred here as linguistic uncertainty. They 

suggest standardization, software, and multiple cases to reduce that non-standardized terminology, referred to 

here as ‘other method’. Li et al. (2013) recommend applying MCS to illustrate inherent variability. “Future 

techniques”, a term relating to Scenario Analysis as used in this paper, are suggested methods to encounter 

inherent variability as well (Georgiadou et al. 2012). 

‘No data’ is often the consequence of confidentially within companies (Silvestre et al. 2015), which could only 

be handled by opening field data through contractual agreements. May and Brennan (2003) suggest applying 

rules of thumb in case of ‘data gaps’ to establish likely ranges, whereas data scarcity drives the application of 

possibilistic methods like Fuzzy Sets, DQI, or expert judgement in general (Nilsen and Aven 2003; Wang and 

Shen 2013; Corominas et al. 2013). Defined sources of uncertainty are sometimes recommended to handle other 

sources. Namely, Björklund (2002a) suggests using unrepresentative data in case of data gaps. Surely, DQIs are 

the method of choice to assess uncertainty related to unrepresentative data (Buyle et al. 2013). On the other hand, 

the confirmed method ‘analogy to literature’ is challenged by Laurent et al. (2014), arguing that roughly one 

third of their reviewed studies used inadequate literature data. Hence, that method may only be valid if combined 

with DQI or similar techniques. Generic databases may support practitioners in overcoming data gaps, while 

Muller et al. (2014) points to the necessary documentation of metadata along the dimensions time, location, 

technology etc. within each data set. 

The IEC 60300-3-3 (2004) and Björklund (2002b) argue for the application of uncertainty importance analysis in 

order to explore all key issues. That process is twofold: a Sensitivity Analysis evaluates sources of uncertainty 

by determining its influence if varied. All sources are ranked according to its variance and influence upon the 

overall result. Their recommendations could add to the suggested guidance as presented in Section 3.4 (Figure 

2). Namely, such importance ranking is recommended between identifying sources of uncertainty and the 

starting ‘uncertainty analysis’. Another standardized procedure suggested by the ISO 14040 series ( ISO 

14040:3006; ISO 14044:2006) may be integrated: third party verification. Structured expert opinion is often 
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presented as recommended practice in case of high uncertainties. Demanding expert feedback on LCC 

assumptions about data, model, and scenarios may offer a role model for what is denominated as communicating 

as well as monitoring and controlling results in Figure 2 in Section 3.4. External third party verification is time 

consuming and expensive, but considering internal expert feedback within the project team is an absolute 

prerequisite for an appropriate LCC. 

Summarizing the historic development and identified practice on handling uncertainties within the scholarly 

community on LCA and LCSA, the authors strongly recommend fostering a dialogue between LCC, LCA, and 

LCSA practitioners and academics. That call is not new (Zamagni 2012; Hoogmartens et al. 2014), but the 

previous detailed gap analysis encourages scholars afresh. This section transparently shows how some current 

research gaps within LCC may be closed by LCA and LCSA. 

3.4 Better practice of uncertainty analysis in LCC 

This section summarizes our findings concerning existing practices of uncertainty analyses in LCC modeling. It 

also borrows from experiences within other life cycle based concepts like LCA and LCSA. 

First, we suggest studying some of our screened articles as best practice. We recommend reading Engelhardt et 

al. (2014), Li et al. (2014), Zhu et al. (2012), Zakeri and Syri (2015) as well as Kim and Frangopol (2011). 

Naturally, there is not a single article that addresses all aspects of a better practice. Engelhardt et al. (2014) 

provide a valuable and thorough framework that helps to systemize the initial working steps of setting the 

context. Li et al. (2014) provide readers with an application of uncertainty analysis for wind power. The strength 

of their work is their clear and easy-to-follow working procedure. Zhu et al. (2012) compare a deterministic with 

a probabilistic model to assess ground source heat pumps. It is a good example of how to use MCS within a 

software like Palisade @RISK as a means to simulate cost data. Zakeri and Syri (2015) illustrate impacts of 

ignoring uncertainty for existing data about electrical energy storage systems in previous literature. Their results 

of that meta-analysis make a strong case for considering uncertainties. Lastly, Kim and Frangopol (2011) 

showcase Bayesian techniques related to inspection planning for highway bridges. They represent an example 

for applying an advanced possibilistic method. We additionally advocate screening the following studies related 

to LCA and LCSA in order to properly understand DQI as a meaningful method to assess data 

representativeness: Ciroth (2009) and Ciroth et al. (2013). An application of DQI is well-presented in Gavankar 

et al. (2015). Although the latter is not related to infrastructure, the articles paint a good picture of how DQI is 

put into practice. 

Second, this review provides guidance for the readers’ choice: Table 2 illustrated what sources and methods are 

applied to address uncertainties in LCC, LCA, and LCSA. Appendix A, which is sorted by the sources of 

uncertainty, then gives a thorough overview of all articles with their applied methods addressing uncertainty. 

Succeeding columns contain their addressing methods and the articles studying this combination. It allows the 

reader to identify articles applying a specific method that is of interest. 

Third, uncertainties should eventually be transferred into business or project risks. Risk was initially defined as 

uncertain outcomes with good probability information (Park and Sharp-Bette 1990b) in Section 1. However, we 

associate the wider definition of uncertainty as used throughout this article with these project risks. That includes 

uncertainties with no probability information. As presented in previous sections, Bayesian techniques including 

Expert opinion offers a way to define expected probabilities in this case. In LCC modeling for infrastructure 

decisions, these uncertainties may convert into current (or future) requirements of the organization, following the 

standards ISO 31000 (2009) and IEC 62198 (2013). The ISO 31000 (2009) and IEC 62198 (2013) process of 
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handling risks offers guidance on how to embed uncertainty analyses within business or project management 

practices. Whereas our review, so far, has covered areas that are named as risk assessment (including risk 

identification, risk analysis, and risk evaluation) and risk treatment within the standard, the ISO 31000 (2009) 

goes beyond that scope by introducing a framework about how to proceed with the results in a business context. 

Figure 2 illustrates a suggestion on how such integration in business management is feasible. It combines laid 

out analysis steps to identify sources of uncertainty with the ensuing matching of sources and methods. In the 

end, controlling and managing evaluated, accepted levels of uncertainties closes a feedback-loop to the initial 

steps of uncertainty analysis. It is of great importance that LCC modeling is accompanied with subsequent, 

iterative updates of data, and (sub-)modeling routines that pay respect to the cost commitment curve (Roy 2003). 

Clear communication of the results of uncertainty analyses is important in order to avoid misunderstandings, too 

(Heidmann and Milde 2013). 

[Insert here Figure 2] 

Fourth, by synthesizing our findings, including learning aspects from LCA and LCSA (see Section 3.3 and 

Simões et al. 2013), the LCC modeling requires information about the following: (1) intended goal and scope of 

the analysis; (2) definition of the product to be analyzed, including its structure, components, and function 

(including functional unit, and, ideally, a product tree or product breakdown structure); (3) the life cycle of the 

product and its components (system boundaries, perspective of analysis, level of externalities addressed, 

reference year); (4) a cost classification or cost breakdown structure including an allocation regime; (5) cost and 

related life cycle inventory data sources (technological, time, and geographical background as shown by DQI, 

currency units, discount rate); (6) model and scenario uncertainty analysis for (1) to (4); and (7) a data 

uncertainty analysis for (3) and (5). These working steps are included in Figure 2 (right-hand side) and may 

provide a checklist to practitioners. Working steps (1) to (4) refer to ‘setting the context’ in Figure 2. The 

processes ‘identifying sources of uncertainty’ and ‘uncertainty analysis’ are included in steps (5) to (7). The 

necessary follow-up by forming a business response towards identified and evaluated uncertainties is illustrated 

as step (8). 

4 Conclusions 

The results of an LCC are influenced by various uncertainties. These uncertainties rise with longer lifespans and 

higher complexity. Infrastructure projects are characterized by both aspects. The following research gaps were 

listed and discussed in the identified articles about uncertainty in LCC for infrastructure prior to our review 

series. They ranged from generic statements like “setting a framework to capture all or most important 

uncertainties” (Xu et al. 2012), to very specific requests, e.g. “an inflation index for a given pavement type could 

be extracted” (Gransberg and Diekmann 2004). Exemplary, Xu et al. (2012) demanded that uncertainty be 

estimated by probabilistic methods and propagating uncertainty with MCS. Further research on fuzzy set and 

possibilistic approaches for cases of unavailable data (Srivastava and Nema 2012; Xu et al. 2012; Zhang et al. 

2014) is requested. Xu et al. (2012) asked for modeling approaches differentiating between epistemic and 

aleatoric uncertainty, too. 

In summary, previous research lacks a holistic framework that categorizes uncertainties and methods to address 

them, nor does it provide guidance on which method has to be applied for a certain type of uncertainty. The aim 
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of this series is to facilitate the handling of uncertainties in infrastructure LCC and shed light on the variety of 

methods to address them. 

Part I of this series addressed two research gaps. First, it collected in a systematic and comprehensive way 

different types of uncertainty and methods to address them. Afterwards these uncertainties and methods were 

categorized and advantages and disadvantages were presented. The results help to level the playing field for 

readers not yet familiar with uncertainty in LCC. In addition, Part I sets the ground for evaluating suitability of 

methods within the context of LCC for infrastructure. The latter is conducted in Part II of the series, where the 

collected types of uncertainty were compared with applied methods. Further, we identified types of uncertainty 

that had been insufficiently addressed so far. In a third step, these types were covered by methods applied in 

other life cycle approaches. Finally, best practices for LCC practitioners were developed. Our results contribute 

to improving future applications of LCC as well as implementation of uncertainty analysis in management 

practice. 

In Part I, 33 sources of uncertainty and 24 methods to address them were collected.  Most applied methods are of 

deterministic character. They are easier to apply but not able to address all types of uncertainty. For probabilistic 

methods MCS is most often applied. Possibilistic methods are used only a few times as they are time consuming 

and require substantial effort and expertise; however, they create the best results. Suitability of sources and 

methods is guarded by these categorization schemes. We observed that data collection and estimation errors as 

well as the simplification by reduced observations are dominated by probabilistic methods. Further, methods to 

address inherent randomness are hardly mentioned in literature although there are several methods that fit very 

well to this kind of uncertainty.  

In this context, we show that LCA and LCSA studies can teach LCC practitioners valuable lessons related to 

methods addressing parameter and scenario uncertainty. All in all, 28 previously unseen combinations of sources 

and methods to address uncertainty are discussed within pertinent research on LCA and LCSA. Learning 

potentials are largest for methods regarding data and scenario uncertainty. LCC analysts can learn the most for 

data representativeness (pedigree matrix) and Delphi scenario (planning). Third party verification, as demanded 

by the ISO 14040 series, encourages LCC analysts to include expert elicitation as a feedback routine not only on 

uncertain data, but also on modeling and system choices. Our findings encourage a vivid exchange of research 

and best practice between these three communities, namely LCC, LCA, and LCSA. 

The results of this series provide guidance to practitioners in choosing the proper category; however, the 

individual method has to be selected case by case. The selection of the method depends on the type of 

uncertainty, the requirements to the methods, and the available time and expertise. 

We aimed to provide even more insights, but during the study we experienced some drawbacks. First, we were 

not able to assign the identified sources to a certain life cycle stage. Instead, we analyzed the life cycle stages in 

which uncertainty analysis was performed. Second, we intended to assign the identified sources of subject 

hierarchy to the PMS categories. However, it turned out that the uncertainties in this category are parameter, 

model, and scenario uncertainty at the same time and, thus, a categorization was unrewarding. Third, we aimed 

to develop a step-by-step guidance for all types of uncertainties. During the research we noticed that too many 

variations and ramifications exist. As mentioned before, the selection of an appropriate method depends on the 

individual case and a comprehensive overview of these cases is not within the scope of a research article.  

As presented above, the handling of uncertainties in infrastructure LCC improved with this series and became 

more structural. Additionally, best practices facilitate theoretical and practical application. Still, there remain 
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several areas of further research. First, this article used broad suitability criteria of uncertainties and methods 

and, thus, the process could be refined and suitability tests intensified. Second, we started a first approach to 

integrate uncertainty analysis of LCC in risk assessment. The merging process is rather sophisticated and 

requires further efforts for satisfactory implementation. Third, dynamic changes of parameters within uncertainty 

analysis have large effects on the results. However, they are not fully understood and further research is 

necessary to develop appropriate methods. Finally, very little research regarding uncertainties in infrastructure 

modeling is conducted in the end-of-life phase. This led to underestimations in cost calculations as disposal or 

recycling costs were neglected. 
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Appendix 

[Insert here Appendix A] 
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Monte Carlo Simulation x (Walls and Smith 1998; Ergonul 2005; 
Jung et al. 2009; Firouzi and Rahai 2012) 

Design of experiment x (Apostolakis 1990; Budnitz et al. 1997) 
Design of Experiment and Monte 
Carlo Simulation 

x (Patra et al. 2009) 

Random sampling x (Budnitz et al. 1997; Wen and Kang 
2001a) 

Importance sampling x (Budnitz et al. 1997) 
Latin hypercube sampling x (Budnitz et al. 1997) 
Check by tests within the model x (Walls and Smith 1998) 

Data quality: Lack of 
experience 

Sensitivity analysis x (Sterner 2000) 

Latin hypercube sampling x (Budnitz et al. 1997) 
Importance sampling x (Budnitz et al. 1997) 
Random sampling x (Budnitz et al. 1997) 
Bayesian expert opinion x (Budnitz et al. 1997) 
Increasing data / documentary 
transparency 

x (Battke et al. 2013) 

Data quality: Subjective 
judgement / Optimism bias 

Sensitivity analysis x (Walls and Smith 1998; Zayed et al. 2002) 

Data quality: Vagueness / 
Linguistic uncertainty 

Standardization (Norm, 
standard, guideline or law) 

x (Mavrotas et al. 2010) 

Data quality: Variability / 
inherent randomness 

Increasing data / documentary 
transparency 

x (Battke et al. 2013) 

Lack of data: Data gaps / 
lack of any data 

Rules of thumb / best guess x (Rabl 1985; Herbold 2000; Hinow and 
Mevissen 2011; Liu et al. 2014)  

Sensitivity analysis x (Herbold 2000; Sterner 2000; Singh and 
Tiong 2005; Val 2007) 

Monte Carlo Simulation x (Firouzi and Rahai 2012) 
Latin hypercube sampling x (Butry 2009) 
Bayesian expert opinion x (Apostolakis 1990; Budnitz et al. 1997; 

Kayrbekova et al. 2011) 
Analogy to prior literature x (Hong and Hastak 2007; Mavrotas et al. 

2010; Hinow and Mevissen 2011) 

Lack of data: 
Unrepresentative data 

Sensitivity analysis x (Russell 1981; Lindholm and Suomala 
2007; Aissani et al. 2014; Moore and 
Morrissey 2014) 
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Applied in… 

Scenario analysis x (Russell 1981) 
Monte Carlo Simulation x (Lindholm and Suomala 2007; Minne and 

Crittenden 2015) 
Measuring and field data x (Zakeri and Syri 2015) 
Increasing data / documentary 
transparency 

x (Ciroth 2009) 

Standardization (Norm, 
standard, guideline or law) 

x (Mata et al. 2014) 

Analogy to prior literature x (Zakeri and Syri 2015) 

Model errors and 
assumptions 

Sensitivity analysis x (Sterner 2000; Singh and Tiong 2005; 
Choe et al. 2008; McDonald and Madanat 
2012; Troldborg et al. 2014) 

Exclusion of parameters x (Yu et al. 2013) 
Monte Carlo Simulation x (Battke et al. 2013) 
Bayesian expert opinion x (Apostolakis 1990; Morcous and Lounis 

2005) 
Increasing data / documentary 
transparency 

x (Aissani et al. 2014) 

Check by test within the model x (Kayrbekova et al. 2011) 

Simplification by averaging Rules of thumb / best guess x (Amoiralis et al. 2007) 
Bayesian expert opinion x (Apostolakis 1990) 
Check by comparing with 
reduced model 

x (Mavrotas et al. 2010) 

Analogy to prior literature x (Andrade and Teixeira 2012; Yu et al. 
2013) 

Simplification by reducing 
variables 

Scenario analysis x (Minne and Crittenden 2015) 

Monte Carlo Simulation x (Chiu et al. 2013) 
Analogy to prior literature x (Andrade and Teixeira 2012; Mata et al. 

2014) 
Simplification of the 
functional form 

Monte Carlo Simulation x (De León et al. 2013; Troldborg et al. 
2014) 

Parametric method x (Mata et al. 2014) 
Analogy to prior literature x (Liu et al. 2014) 
Check by tests within the model x (Liu et al. 2014) 

Choice of cost allocation 
Increasing data / documentary 
transparency 

x (Reich 2005; Swarr et al. 2011) 

Standardization (Norm, 
standard, guideline or law) 

x (Swarr et al. 2011) 

Choice of cost definition 
Increasing data / documentary 
transparency 

x (Reich 2005; Swarr et al. 2011) 

Choice of methodology Exclusion of parameters x (Han et al. 2014) 
Sensitivity Analysis x (Sterner 2000) 
Standardization (Norm, 
standard, guideline or law) 

x (Hong et al. 2007; Andrade and Teixeira 
2012; Anwari et al. 2012; Mata et al. 2014; 
Noori et al. 2014)  

Check by comparing with 
deterministic model 

x (Zhu et al. 2012; Aissani et al. 2014) 

Check by multiple cases x (Hong et al. 2007) 
Analogy to prior literature x (Battke et al. 2013) 

Choice of input parameters 
and system boundaries 

Sensitivity analysis x (Budnitz et al. 1997; Swarr et al. 2011; Liu 
et al. 2014) 

Rules of thumb / best guess x (Liu et al. 2014; Robert and Gosselin 
2014) 

Scenario analysis x (Li et al. 2014; Robert and Gosselin 
2014)TAH11:159 

Exclusion of parameters x (Reich 2005; Simões et al. 2013; Hong et 
al. 2014; Sanyé-Mengual et al. 2015) 

Increasing data / documentary 
transparency 

x (Reich 2005; Upadhyay et al. 2012; Moore 
and Morrissey 2014) 

Choice of weighting Sensitivity analysis x (Budnitz et al. 1997; Reich 2005) 
Bayesian expert opinion x (Jung et al. 2009) 
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Applied in… 

Economical context – 
Demand 

Scenario analysis x (Francis et al. 2011; Danaher 2012; Hong 
et al. 2014; Moore and Morrissey 2014) 

Exclusion of parameters x (Willuweit and O’Sullivan 2013; Sanyé-
Mengual et al. 2015) 

Sensitivity analysis x (McDonald and Madanat 2012) 
Monte Carlo Simulation x (Li and Madanu 2009; Li and Sinha 2009; 

Settanni and Emblemsvåg 2010; Danaher 
2012; Koltsaklis et al. 2014) 

Latent Markov Decision Process x (Madanat 1993; Mishalani and Gong 
2009a; Mishalani and Gong 2009b) 

Standardization (Norm, 
standard, guideline or law) 

x (Anwari et al. 2012) 

Measuring and field data x (Willuweit and O’Sullivan 2013)3 
Economical context – 
Inflation 

Exclusion of parameters x (Tähkämö et al. 2012) 

Rules of thumb / best guess x (Walls and Smith 1998) 
Sensitivity analysis x (Walls and Smith 1998; Kang and Wen 

2000; Wen and Kang 2001a; Wen and 
Kang 2001b; Zayed et al. 2002; Singh and 
Tiong 2005; Han and Park 2009; Lee et al. 
2009; Allacker 2012; Kantola and Saari 
2013; Li et al. 2014; Moore and Morrissey 
2014; Zakeri and Syri 2015) 

Scenario analysis x (Rabl 1985; Lee et al. 2009; Francis et al. 
2011; Okasha et al. 2012; Lai et al. 2013; 
Willuweit and O’Sullivan 2013; Han et al. 
2014) 

Monte Carlo Simulation x (Walls and Smith 1998; Ehlen 1999; 
Herbold 2000; Ergonul 2005; Liu and 
Frangopol 2005; Hong et al. 2007; Lekov 
et al. 2010; Settanni and Emblemsvåg 
2010; Andrade and Teixeira 2012; Eamon 
et al. 2012; Okasha et al. 2012; Zakeri and 
Syri 2015) 

Design of Experiment and Monte 
Carlo Simulation 

x (Patra et al. 2009) 

Subset simulation x (Willuweit and O’Sullivan 2013) 
Latin hypercube sampling x (Butry 2009) 
Bayesian expert opinion x (Greenberg et al. 2004; Patra et al. 2009) 
Bayesian expert opinion x (Butry 2009) 
Standardization (Norm, 
standard, guideline or law) 

x (Anwari et al. 2012; Tähkämö et al. 2012) 

Analogy to prior literature x (Allacker 2012; Menikpura et al. 2012; 
Aissani et al. 2014; Han et al. 2014; Hong 
et al. 2014; Moore and Morrissey 2014)  

Economical context – 
Discount rate 

Sensitivity analysis x (Walls and Smith 1998; Ehlen 1999; 
Herbold 2000; Kang and Wen 2000; 
Sterner 2000; Wen and Kang 2001a; 
Wirahadikusumah and Abraham 2003; 
Gransberg and Diekmann 2004; Ergonul 
2005; Singh and Tiong 2005; Amoiralis et 
al. 2007; Hong et al. 2007; Francis et al. 
2011; Allacker 2012; Kantola and Saari 
2013; Li et al. 2014; Mata et al. 2014; 
Moore and Morrissey 2014; Zakeri and 
Syri 2015) 

Scenario analysis x (Walls and Smith 1998; Allacker 2012; 
Okasha et al. 2012; Moore and Morrissey 
2014) 

Random sampling x (Wen and Kang 2001a; Okasha et al. 
2012) 

Monte Carlo Simulation x (Walls and Smith 1998; Gransberg and 
Diekmann 2004; Ergonul 2005; Li and 
Madanu 2009; Li and Sinha 2009; Lekov 
et al. 2010; Danaher 2012; Zhang et al. 
2014) 

Final edited form was published in "The International Journal of Life Cycle Assessment". 2016, 21(8), S. 1170 - 1184. ISSN 1614-7502 
https://doi.org/10.1007/s11367-016-1086-9 

19 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



Source of uncertainty Method to address uncertainty 

D
et

er
m

in
is

tic
 

Pr
ob

ab
ili

st
ic

 
Po

ss
ib

ili
st

ic
 

G
en

er
al

 

Applied in… 

Economical context – 
Discount rate 

Bayesian expert opinion x (Greenberg et al. 2004; Patra et al. 2009) 

Standardization (Norm, 
standard, guideline or law) 

x (Tähkämö et al. 2012; Yu et al. 2013; 
Minne and Crittenden 2015) 

Analogy to prior literature x (Reich 2005; Allacker 2012; Battke et al. 
2013; Aissani et al. 2014) 

Sociopolitical context – 
Regulation and taxation 

Scenario Analysis x (Lee et al. 2009; Aissani et al. 2014; Shin 
and Singh 2014) 

Bayesian expert opinion x (Greenberg et al. 2004) 
Technological context – 
Technological development 

Scenario analysis x (Russell 1981; Willuweit and O’Sullivan 
2013; Rathore and Roy 2014) 

Monte Carlo Simulation x (Ehlen 1999) 
Bayesian expert opinion x (Greenberg et al. 2004) 
Analogy to prior literature x (Battke et al. 2013; Hong et al. 2014) 
Standardization (Norm, 
standard, guideline or law) 

x (Moore and Morrissey 2014) 

Natural context – Availability 
of resources 

Sensitivity analysis x (Greenberg et al. 2004; Anwari et al. 2012; 
Li et al. 2014) 

Exclusion of parameters x (Rathore and Roy 2014) 
Point estimate x (Kavousi-Fard et al. 2014) 
Scenario analysis x (Russell 1981; Willuweit and O’Sullivan 

2013; Rathore and Roy 2014) 
Design of Experiment and Monte 
Carlo Simulation 

x (Patra et al. 2009) 

Subset simulation x (Willuweit and O’Sullivan 2013) 
Monte Carlo Simulation x (Koltsaklis et al. 2014; Troldborg et al. 

2014) 
Bayesian expert opinion x (Greenberg et al. 2004) 
Standardization (Norm, 
standard, guideline or law) 

x (Anwari et al. 2012) 

Analogy to prior literature x (Anwari et al. 2012; Troldborg et al. 2014) 
Natural context – 
Environmental conditions 

Exclusion of parameters x (Francis et al. 2011; Willuweit and 
O’Sullivan 2013) 

Sensitivity analysis x (Lee et al. 2009) 
Scenario analysis x (Wen and Kang 2001b; Francis et al. 

2011; Danaher 2012; Simões et al. 2013; 
Shin and Singh 2014) 

Monte Carlo Simulation x (Kumar et al. 2009; Lekov et al. 2010; 
Danaher 2012; Chiu et al. 2013; De León 
et al. 2013; Fragiadakis et al. 2015; Zakeri 
and Syri 2015) 

Monte Carlo Simulation x (Kayrbekova et al. 2011) 
Latin hypercube sampling x (Butry 2009) 
Bayesian expert opinion x (Budnitz et al. 1997) 
Check by comparing with 
reduced model 

x (Shin and Singh 2014) 

Standardization (Norm, 
standard, guideline or law) 

x (De León et al. 2013; Shin and Singh 
2014) 

Analogy to prior literature (data 
sets) 

x (Wen and Kang 2001b; Srivastava and 
Nema 2012; Willuweit and O’Sullivan 
2013) 

Organizational level – 
Funding and budget 
restrictions 

Cannot directly be lowered by 
analytical methods, but has to 
be assessed before every 
project. 

Organizational level – 
Operating processes 

Rules of thumb / best guess x (Walls and Smith 1998) 

Sensitivity analysis x (Ehlen 1999; Hansson and Bryngelsson 
2009) (Walls and Smith 1998; Kang and 
Wen 2000; Zayed et al. 2002; Singh and 
Tiong 2005; Amoiralis et al. 2007; Val 
2007; McDonald and Madanat 2012) 

Scenario Analysis x (Apostolakis 1990; Zhao et al. 2011) 
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Applied in… 

Organizational level – 
Operating processes 

Monte Carlo Simulation x (Ehlen 1999; Stewart et al. 2004; Ergonul 
2005; Li and Madanu 2009)  

Design of Experiment and Monte 
Carlo Simulation 

x (Patra et al. 2009) 

Design of experiment x (Apostolakis 1990) 
Bayesian expert opinion x (Apostolakis 1990; Greenberg et al. 2004) 
Bayesian Markov Chain x (Jalayer et al. 2011) 

Organizational level – 
Project and red-tape 
complexity 

Exclusion of parameters x (Butry 2009; Zhao et al. 2011; Eamon et 
al. 2012; McDonald and Madanat 2012) 

Sensitivity Analysis x (Sterner 2000) 
Design of Experiment and Monte 
Carlo Simulation 

x (Patra et al. 2009) 

Fuzzy sets x (Boussabaine and Kirkham 2004) 
Product level – Life time 
prediction 

Rules of thumb / best guest x (Hong and Hastak 2007) 

Sensitivity analysis x (Walls and Smith 1998; Kang and Wen 
2000; Sterner 2000; Wen and Kang 
2001b; Singh and Tiong 2005; Han and 
Park 2009; McDonald and Madanat 2012; 
Ostermeyer et al. 2013; Moore and 
Morrissey 2014) 

Scenario Analysis x (Zayed et al. 2002; Li and Sinha 2009; 
Okasha et al. 2012) 

Random sampling x (Wen and Kang 2001a; Okasha et al. 
2012) 

Monte Carlo Simulation x (Ntuen 1985; Ehlen 1999; Stewart et al. 
2004; Ergonul 2005; Liu and Frangopol 
2005; Hong et al. 2007; Jung et al. 2009; 
Li and Madanu 2009; Li and Sinha 2009; 
Lekov et al. 2010; Kayrbekova et al. 2011; 
Eamon et al. 2012; Firouzi and Rahai 
2012)  

Bayesian Markov Chain x (Wirahadikusumah and Abraham 2003; 
van Noortwijk and Klatter 2004; Durango-
Cohen and Tadepalli 2006; Jalayer et al. 
2011) 

Bayesian expert opinion x (Patra et al. 2009) 
Latent Markov Decision Process x (Madanat 1993) 
Standardization (Norm, 
standard, guideline or law) 

x (Sanyé-Mengual et al. 2015) 

Analogy to prior literature x (Hong and Hastak 2007; Aissani et al. 
2014) 

Product level – Product 
performance and output 

Scenario analysis x (Ostermeyer et al. 2013; Yu et al. 2013) 

Sensitivity analysis x (Upadhyay et al. 2012; Kantola and Saari 
2013; Ostermeyer et al. 2013; Sanyé-
Mengual et al. 2015)  

Bayesian expert opinion x (Ostermeyer et al. 2013) 
Fuzzy sets x (Zhang et al. 2014) 
Monte Carlo Simulation x (Zhu et al. 2012) 
Analogy to prior literature x (Aissani et al. 2014) 
Check by multiple cases x (Upadhyay et al. 2012) 
Standardization (Norm, 
standard, guideline or law) 

x (Yu et al. 2013; Kumar and Bhimasingu 
2015) 

Product level – Failure rates 
and product reliability 

Sensitivity analysis x (Walls and Smith 1998; Wen and Kang 
2001b; Val 2007; Han and Park 2009; 
Hinow and Mevissen 2011; McDonald and 
Madanat 2012; Aissani et al. 2014; Liu et 
al. 2014; Zakeri and Syri 2015) 

Scenario Analysis x (Rabl 1985; Wirahadikusumah and 
Abraham 2003; Allacker 2012) 

Rules of thumb / best guess x (Hinow and Mevissen 2011; Noori et al. 
2014) 
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Applied in… 

Product level – Failure rates 
and product reliability 

Design of Experiment and Monte 
Carlo Simulation 

x (Patra et al. 2009; Liu et al. 2014) 

Subset simulation x (Val and Stewart 2005; Choe et al. 2008; 
Aissani et al. 2014) 

Importance Sampling x (Chiu et al. 2013) 
Latin hypercube sampling x (Ntuen 1985; Mitropoulou et al. 2011) 
Monte Carlo Simulation x (Stewart et al. 2004; Ergonul 2005; 

Andrade and Teixeira 2012; Firouzi and 
Rahai 2012; Kim et al. 2012; De León et 
al. 2013; Noori et al. 2014) 

Bayesian Markov Chain x (Wirahadikusumah and Abraham 2003; 
van Noortwijk and Klatter 2004; Durango-
Cohen and Tadepalli 2006; Jalayer et al. 
2011; Andrade and Teixeira 2012; Kim et 
al. 2012) 

Genetic Algorithm x (Morcous and Lounis 2005; Hinow and 
Mevissen 2011) 

Bayesian expert opinion x (Morcous and Lounis 2005; Zhang et al. 
2014) 

Latent Markov Decision Process x (Madanat 1993) 
Measuring and field data x (Hong and Hastak 2007; Shin and Singh 

2014) 
Check by comparing with 
reduced model 

x (Terzi and Serin 2014) 

Analogy to prior literature x (Hong and Hastak 2007; Hinow and 
Mevissen 2011; Allacker 2012; Andrade 
and Teixeira 2012; Kim et al. 2012; Liu et 
al. 2014)  

Check by comparing with 
deterministic model 

x (Aissani et al. 2014) 

Check by tests within the model x (Liu et al. 2014) 
Measuring and field data x (Aissani et al. 2014) 

[Insert here Appendix B] 

No. Abbr. Author Year Title Topic 
CIU12 Ciuffo, B. 

Miola, A. 
Punzo, V. 
Sala, S. 

2012 Dealing with uncertainty in sustainability 
assessment. Report on the application of different 
sensitivity analysis techniques to fieldspecific 
simulation models 

Energy 
infrastructure 

KUC14 Kucukvar, M. 
Noori, M. 
Egilmez, G. 
Tatari, O. 

2014 Stochastic decision modeling for sustainable 
pavement designs 

Transportation 
infrastructure 

MAN12 Manzardo, A. 
Ren, J. 
Mazzi, A. 
Scipioni, A. 

2012 A grey-based group decision-making methodology 
for the selection of hydrogen technologies in life 
cycle sustainability perspective 

Energy 
infrastructure 

PES13 Pesonen, H.-L. 
Horn, S. 

2013 Evaluating the Sustainability SWOT as a 
streamlined tool for life cycle sustainability 
assessment 

Generic 

SAL13b Sala, S. 
Farioli, F. 
Zamagni, A. 

2013 Life cycle sustainability assessment in the context 
of sustainability science progress (part 2) 

Generic 

SAL13a Sala, S. 
Farioli, F. 
Zamagni, A. 

2013b Progress in sustainability science: lessons learnt 
from current methodologies for sustainability 
assessment: Part 1 

Generic 

STA14 Stamford, L. 
Azapagic, A. 

2014 Life cycle sustainability assessment of UK 
electricity scenarios to 2070 

Energy 
infrastructure 

ZAM12b Zamagni, A. 2012 Life cycle sustainability assessment Generic 
BEN08 Benetto, E. 

Dujet, C. 
2008 Integrating fuzzy multicriteria analysis and 

uncertainty evaluation in life cycle assessment 
Energy 
infrastructure 

Final edited form was published in "The International Journal of Life Cycle Assessment". 2016, 21(8), S. 1170 - 1184. ISSN 1614-7502 
https://doi.org/10.1007/s11367-016-1086-9 

22 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



Rousseaux, P. 
BJÖ02 Björklund, A.E. 2002 Survey of Approaches to Improve Reliability in 

LCA 
Generic 

BRE98 Bretz, R. 1998 SETAC LCA Workgroup: Data Availability and 
Data Quality 

Generic 

BUY13 Buyle, M. 
Braet, J. 
Audenaert, A. 

2013 Life cycle assessment in the construction sector: A 
review 

Construction 
materials 

CIR13 Ciroth, A. 2013 Empirically based uncertainty factors for the 
pedigree matrix in ecoinvent 

Generic 

CLA12 Clavreul, J. 
Guyonnet, D. 
Christensen, T.H. 

2012 Quantifying uncertainty in LCA-modelling of waste 
management systems 

Waste 
treatment 

COR13 Corominas, Ll. 
Foley, J. 
Guest, J.S. 
Hospido, A. 
Larsen, H.F. 
Morera, S. 
Shaw, A. 

2013 Life cycle assessment applied to wastewater 
treatment: State of the art 

Water 
infrastructure 

COU97 Coulon, R. 
Camobreco, V. 
Teulon, H. 
Besnainou, J. 

1997 Data Quality and Uncertainty in LCI Generic 

DIX10 Dixit, M.K. 
Fernández-Solís, J.L. 
Lavy, S. 
Culp, C.H. 

2010 Identification of parameters for embodied energy 
measurement: 
A literature review 

Buildings 

DON04 Dones, R. 
Heck, T. 
Emmenegger, M.F. 
Jungbluth, N. 

2004 Life Cycle Inventories for the Nuclear and Natural 
Gas Energy Systems, and Examples of 
Uncertainty Analysis 

Energy 
infrastructure 

FIN09 Finnveden, G. 
Hauschild, M.Z. 
Ekvall, T. 
Guinée, J. 
Heijungs, R. 
Hellweg, S. 
Köhler, A. 
Pennington, D. 
Suh, S. 

2009 Recent developments in Life Cycle Assessment Generic 

GEO12 Georgiadou, M.C. 
Hacking, T. 
Guthrie, P. 

2012 A conceptual framework for future-proofing the 
energy performance of buildings 

Buildings 

GRA15 Grant, A. 
Ries, R. 
Thompson, C. 

2015 Quantitative approaches in life cycle assessment 
— part 2 — multivariate correlation and regression 
analysis 

Buildings / 
Construction 
materials 

GUI11 Guinée, J. 
Heijungs, R. 
Huppes, G. 
Zamagni, A. 
Masoni, P. 
Buonamici, R. 
Ekvall, T. 
Rydberg, T. 

2011 Life cycle assessment: Past, present, and future Generic 

HEI96 Heijungs, R. 1996 Identification of key issues for further investigation 
in improving the reliability of life-cycle 
assessments 

Generic 

HEI04 Heijungs, R. 
Huijbregts, M.A.J. 

2004 A Review of Approaches to Treat Uncertainty in 
LCA 

Generic 

HEI10 Heijungs, R. 2010 Sensitivity coefficients for matrix-based LCA Generic 
HEL03 Hellweg, S. 

Hofstetter, T.B. 
Hungerbühler, K. 

2003 Discounting and the Environment Generic 

HEL14 Hellweg, S. 
Milà i Canals, Ll. 

2014 Emerging approaches, challenges and 
opportunities in life cycle assessment 

Generic 

HOX14 Hoxha, E. 
Habert, G. 
Chevalier, J. 
Bazzana, M. 
Le Roy, R. 

2014 Method to analyse the contribution of material’s 
sensitivity in buildings’ environmental impact 

Buildings 

HUI01 Huijbregts, M.A.J. 
Norris, G. 
Bretz, R. 
Ciroth, A. 
Maurice, B. 

2001 Framework for Modelling Data Uncertainty in Life 
Cycle Inventories 

Generic 
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von Bahr, B. 
Weidema, B. 
de Beaufort, A.S.H. 

HUN09 Hung, M.-L. 
Ma, H.-W. 

2008 Quantifying system uncertainty of life cycle 
assessment based on Monte Carlo simulation 

Generic 

LAU14 Laurent, A. 
Clavreul, J. 
Bernstad, A. 
Bakas, I. 
Niero, M. 
Gentil, E. 
Christensen, T.H. 
Hauschild, M.Z. 

2014 Review of LCA studies of solid waste management 
systems – Part II: Methodological guidance for a 
better practice 

Waste 
treatment 

LAZ10 Lazarevic, D. 
Aoustin, E. 
Buclet, N. 
Brandt, N. 

2010 Plastic waste management in the context of a 
European recycling society: Comparing results and 
uncertainties in a life cycle perspective 

Waste 
treatment 

LEN06 Lenzen, M. 2006 Uncertainty in Impact and Externality Assessments Generic 
LI13 Li, Y. 

Chen, J. 
Feng, L. 

2013 Dealing with Uncertainty: A Survey of Theories 
and Practices 

Generic 

LLO07 Lloyd, S.M. 
Ries, R. 

2007 Characterizing, Propagating, and Analyzing 
Uncertainty in Life-Cycle Assessment 

Generic 

MAU00 Maurice, B. 
Frischknecht, R. 
Coelho-Schwirtz, V. 
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Table captions 

Table 1 Combination of sources of uncertainty and methods to address them 

Table 2 Extended combination of sources and methods by LCA and LCSA 
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Figure Captions 

Fig. 1 Handling of uncertainties in LCC (Kishk 2004) 

Fig. 2 Integrating uncertainty analysis into risk management (adapted from ISO 31000 (2009) and IEC 62198 

(2013)) 

Final edited form was published in "The International Journal of Life Cycle Assessment". 2016, 21(8), S. 1170 - 1184. ISSN 1614-7502 
https://doi.org/10.1007/s11367-016-1086-9 

34 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden


	1 Introduction
	2 Methods
	3 Results and Discussion
	3.1 Suitability of applied methods to address uncertainty
	3.2 Identified patterns in applying methods to address uncertainties
	3.3 Learning from applied methods within LCSA and LCA
	3.4 Better practice of uncertainty analysis in LCC
	4 Conclusions
	Appendix
	References
	Table captions
	Figure Captions
	ADP75CC.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Christoph Scope, Patrick Ilg, Stefan Muench, Edeltraud Guenther
	Uncertainty in life cycle costing for long-range infrastructure. Part II: guidance and suitability of applied methods to address uncertainty




