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Abstract

Abstract

This doctoral thesis is based on three publications (two peer-reviewed, one submitted). Its
objective was to test existing methods and to develop innovative methods for generating
highly resolved climate data with focus on the spatio-temporal distribution of precipitation
as both, the spatial and temporal resolution as well as the length of such data sets are limited.
For this purpose, satellite and radar-based remote sensing data, ground-based station data,
and modelling methods were applied and combined. The Free State of Saxony (Germany)
served as an investigation area as its mountainous regions are prone to heavy precipitation
events and related (flash) floods like e.g., in 2002, in 2010, and in 2013.

Two approaches were developed to generate hourly data when there are no station data
available or only daily data. The first approach applies four different algorithms to estimate
area-wide rain rates by using the satellite data of Meteosat Second Generation (MSG-1) and
compares them to the gauge adjusted radar data product RADOLAN RW. The analyses of
five spatial und six temporal integration steps by means of four fit scores and statistical
relations show a stepwise improvement. That means, the integration leads to increasing
probability of detection (POD) and critical success index (CSI), decreasing false alarm ratio
(FAR) and Bias, and improved statistical relations especially for heavy rain rates. The best
results are achieved for the lowest resolution of 120 km % 120 km and 24 h. However, this
resolution is too low for applications in (flash) flood risk management for small and medium
sized catchments. Such satellite-based estimated rain rates may serve as a data source for
unobserved regions or as an indicator for large catchments or longer periods.

A second approach comprises the newly developed Euclidean distance model (EDM) that
generates hourly climate data by means of a temporal disaggregation procedure. The
delivered data are point data for the climate variables temperature, precipitation, sunshine
duration, relative humidity, and wind speed. They show high correlations and conserve (i)
the statistics in comparison to the observed hourly data and (ii) also the consistency over all
disaggregated climate elements. The results reveal that the EDM performs best for climate
elements with a continuous diurnal cycle like temperature, for the winter half-year, and when
the basic climate stations are characterised by similar climate conditions. The EDM proves
to be a very robust, flexible and fast working model.

Hence, the work presented here succeeded in developing two innovative locally-independent
approaches that are applicable to the climate data of any region or station without complex
model parametrisation. Simultaneously, the method can be applied to future daily climate

data allowing the generation of hourly data that are needed for climate impact models.






Zusammenfassung

Zusammenfassung

Diese Dissertation basiert auf drei Publikationen (zwei begutachtet, eine eingereicht). Ziel
war es, existierende Methoden zur Generierung hochaufgeloster Klimadaten zu untersuchen
und innovative Methoden zu entwickeln mit dem Fokus auf der raumzeitlichen
Niederschlagsverteilung, da sowohl die rdumliche und zeitliche Auflosung als auch die
Linge solcher Datenreihen begrenzt sind. Hierfiir wurden satelliten- und radarbasierte
Fernerkundungsdaten, Bodenstationsdaten sowie Modellierungsverfahren angewendet und
kombiniert. Als Untersuchungsgebiet wurde der Freistaat Sachsen (Deutschland) gewéhlt,
da dessen Gebirgsregionen starkregen- und damit hochwassergefidhrdet sind, wie bei den
Hochwasserereignissen von 2002, 2010 und 2013 sichtbar wurde.

Es wurden zwei Ansitze entwickelt, die die Generierung von Stundendaten ermdoglichen,
wenn keine Daten oder nur Tagesdaten vorhanden sind. Der erste Ansatz verwendet vier
verschiedene Algorithmen zum Abschidtzen flichendeckender Niederschlagsintensitéiten
unter Verwendung der Daten des Satelliten Meteosat Second Generation (MSG-1) und
vergleicht diese mit den an Bodenstationsdaten angeeichten Radardaten des RADOLAN RW
Produktes. Die Analysen von fiinf rdumlichen und sechs zeitlichen Integrationsstufen mit
Hilfe von vier Fit Scores und statistischer Kennwerte zeigen eine schrittweise Verbesserung
der Ergebnisse. Das heilit, dass durch Integration steigende Werte der probability of
detection (POD) und des critical success index (CSI), sinkende Werte der false alarm ratio
(FAR) und des Bias sowie verbesserte statistische Kennwerte erreicht werden. Dies gilt
insbesondere flir Starkniederschlagsintensititen. Die besten Ergebnisse werden bei der
niedrigsten Auflosung von 120 km x 120 km und 24 h erreicht. Jedoch ist diese Auflosung
fiir Anwendungen des Hochwasserrisikomanagements kleiner und mittlerer Einzugsgebiete
zu gering. Solche satellitenbasierten Niederschlagsintensititen konnen als Datenquelle fiir
unbeobachtete Regionen oder als Indikator fiir grofe FEinzugsgebiete oder ldngere
Zeitintervalle dienen.

Ein zweiter Ansatz beinhaltet das neu entwickelte Fuclidean distance model (EDM), das
mittels zeitlicher Disaggregierung stiindliche Klimadaten generiert. Die erzeugten Daten
sind punktbezogene Daten der Klimavariablen Temperatur, Niederschlag,
Sonnenscheindauer, relative Feuchte und Windgeschwindigkeit. Sie weisen hohe
Korrelationen auf und sie wahren (i) die statistischen KenngréBen im Vergleich mit den
beobachteten Stundendaten und (ii) die Konsistenz iiber alle Klimaelemente hinweg.

Die Ergebnisse zeigen, dass das EDM fiir Klimaelemente mit einem kontinuierlichen

Tagesgang, wie z.B. die Temperatur, fiir das Winterhalbjahr und bei der Verwendung von
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Zusammenfassung

Basisstationen mit dhnlicher klimatischer Charakteristik die besten Ergebnisse liefert. Das
EDM erweist sich als ein sehr robustes, flexibles und schnell arbeitendes Modell.

Somit ist es mit der hier vorliegenden Arbeit gelungen, zwei innovative Ansitze zu
entwickeln, die ohne komplexe Modellparametrisierung auf Daten einer jeden Klimaregion

oder Klimastation angewendet werden konnen.
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Introduction

1 Introduction

Following the IPCC synthesis report (2014), the observed climate change led to widespread
consequences for human and natural systems across all continents and oceans in recent
decades. The hydrological systems are changing due to changing precipitation and
temperature conditions in many regions with impact on the quantity and quality of water
resources. Since about 1950, changes in many extreme weather and climate events are
observed, e.g. a decrease in cold temperature extremes, an increase in warm temperature
extremes, and an increase in the frequency of heavy precipitation events. And the intensity
and frequency of heavy precipitation events and hot spells will very probably continue to
increase. The increasing trend of extreme precipitation and related extreme runoff cause
higher flood risks in medium sized water catchments.

For urban areas, increasing risks are projected for the people, property values, economies
and ecosystems. Such risks are e.g., heat stress, storms, extreme precipitation, floods,
droughts, and water shortage. For rural regions, significant consequences are expected for
the water availability and water supply (IPCC 2014). These changes affect almost all areas
of human life, like freshwater resources, hydrometeorological hazards, soil erosion,
changing flora and fauna, and human health.

As precipitation is a key element of the water cycle at all scales from global to small-scale
catchments, its spatial and temporal distribution is of high interest and relevance. Important
aspects of the intensity and spatial distribution of precipitation are the availability of water
and the risks of floods especially due to the increasing influence of climate change. Flooding
is one of the most widely distributed natural hazards threatening millions of people and
causing damages amounting to billions worldwide. The data of Munich Re show an
increasing frequency and financial impact of flooding since the last decades (Munich Re
2018). For example, between 2013 and 2018 there have been severe flood events due to
heavy precipitation in Germany (East and South Germany, June 2013; South Bavaria, June
2016), Italy (North Italy, Piemont and Liguria, November 2017), Argentina and Bolivia
(North-west Argentina, South Bolivia, February 2018), Nigeria (Soth-East Nigeria, August
2017) or China (North China, Hebei province, July 2016).

To forecast and manage such events, to protect the people and their property and to prevent
damages and financial losses, data of heavy precipitation occurrence, location, amount, and
intensity are required in high spatial and temporal resolution. Moreover, the impact of
climate change further increases the requirements. It leads to higher flood risks due to
increasing frequencies of heavy precipitation events, higher precipitation intensities and
decreased return periods of heavy precipitation events (Gorner et al. 2009a, IPCC 2014,
SMUL 2015). These changing climate conditions and the related consequences lead to a

higher need of improved methods and data basis to predict, observe and mitigate risks and
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possible related damages. Hence, precipitation and its distribution play an important role in
a large number of models like water balance models (e.g., WaSim-ETH), rainfall-runoff
models (e.g., NASIM), flood simulation models (e.g., MIKE FLOOD), and soil erosion
models (e.g., EROSION 3D). Future precipitation data are simulated by regional models for
weather prediction (e.g., COSMO-DE) and regional climate models (e.g., WETTREG2010,
WEREX-V or CLM). All these models need precipitation data in sufficient extent and
spatio-temporal resolution, either as a driver (like WaSim-ETH) or for validation (like
COSMO-DE). There are three different approaches to achieve these data, (i) they can be
measured by ground-based rain gauges that provide point measurements, (ii) they can be
estimated by radar and satellite-based remote sensing methods that provide area-wide data,
and (ii1) they can be modelled by methods that generate, complete or extend time series of

precipitation data, e.g. by spatial or temporal downscaling and disaggregation.

2 Objective and background

The Free State of Saxony (Germany) has already been affected by climate change during the
last decades and it will be affected even more in the future (SMUL 2008, SMUL 2015). The
recorded regional climate data show a high natural climate variability since the 1960s. This
variability is increasingly overlaid by a mean trend of increasing temperature. Since about
40 years, each decade has been warmer than the decade before. Between 1961 and 2010 the
annual mean temperature has increased by about 1 °C comparing the first and last decade.
Following recent climate projections for Saxony, this temperature trend will continue
(SMUL 2015). Concerning precipitation, the climate change leads to changes in the spatial
and temporal distribution, higher sums during the summer months and deficits during the
winter months with consequences for the regional climatic water balances (Kronenberg et
al. 2015, SMUL 2015, Gorner et al. 2009a).

The climate change leads to the risk of increasing and coincide extremes like dry spells and
heavy precipitation events with higher intensities, frequencies and sums as well as reduced
return periods especially for the summer months. This causes a higher risk of local (flash)
floods in small and medium catchments, a higher risk of erosion and high challenges for the
water management, e.g. the management of water reservoirs to ensure the (drinking) water
supply as well as the water retention in case of floods. This conflict intensifies by the
different duration of these opposite events. While heavy precipitation events and floods
occur during hours and a few days, dry spells range from weeks to months or even span
years.

Besides the impact of climate change, Saxony is prone to heavy precipitation events because
of its orographic and climate conditions. Hence, there is a high (flash) flood risk (SMUL
2005, Gorner et al. 2011). There have been severe flash floods caused by extreme

precipitation events, e.g. in August 2002, in August and September 2010 and in June 2013.
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Therefore, flood forecasting, flood mitigation and flood risk management and the research
on these are of high interest as e.g. described in Miiller (2010).

These topics were in focus of the project “FLOODsite - Integrated Flood Risk Management
and Methodologies”. FLOODsite was an “Integrated Project” in the Sixth Framework
Programme of the European Commission between 2004 and 2009. The Institute of
Hydrology and Meteorology of Technische Universitit (TU) Dresden was one of the project
partners in Task 15 “Radar and satellite observation of storm rainfall for flash-flood
forecasting in small and medium-size basins” and Task 21 “Pilot Study River Elbe Basin™.
The results summarised in Section 3 and presented in Gorner et al. (2011, 2012 & 2019 or
Appendices A, B and C) are based on the research within this project including recent
research in Saxony.

The aim of Task 15 was the development of a radar and satellite Structured Algorithm
System (SAS) for quantitative precipitation estimation (QPE) at the space and timescales of
interest for flash-flood analysis and prediction. Thereby, the part of the TU Dresden was to
develop a satellite-based SAS for detecting extreme storm rainfall by using highly resolved
geostationary satellite data (Meteosat-6, Meteosat-8) and applying several rainfall estimation
techniques (Gorner et al. 2011, 2012 & 2009b). These techniques were tested for different
flash flood prone regions in the mid-latitudes regarding their potential to derive areal and
highly resolved rain intensity data.

The aim of the research within Task 21 was to improve the understanding of complex flood
risk management in a large transnational river basin and to develop and provide flood risk
management tools (www.floodsite.net). The meteorological investigations of TU Dresden
within this task focused on heavy rainfall events and pre-event moisture as two important
drivers of flood risk under changing climate conditions. This encompassed the analysis of
regionalised daily climate scenario data concerning the temperature increase as well as
reducing return periods and increasing frequencies of heavy precipitation within Saxony
(Gorner et al. 2009a). Since the data of the climate projections were only available in a daily
temporal resolution, while the rainfall runoff model used hourly data as input, there was a
need to develop a tool for disaggregating daily climate data into hourly data (Gorner et al.
2019). The disaggregation of further climate elements, e.g. temperature, allows the
estimation of possible flood risks considering the pre-event moisture.

Both tasks and the challenge of climate change show that required data are not available in
sufficient length or resolution. Therefore, there is a high need of methods for estimating or
generating highly resolved data, especially rainfall data. Hence, the objective of this work is
to develop innovative methods for the acquisition of data of the spatio-temporal distribution
of precipitation and other climate elements by using and combining ground-based
observations and projections, ground-based remote sensing methods (radar), satellite-based
remote sensing methods, and modelling methods with the aim of closing spatial and temporal
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data gaps. Further, it was the aim to develop new methods that can be applied to the data of
climate stations of any climate region without complex and time-consuming

parameterisation of the procedures or model.

3 State of the art of satellite-based precipitation estimation

The current active Meteosat satellite that provides data for Europe is the fourth satellite of
the Meteosat Second Generation series (MSG-4). MSG-4 carries the same Spinning
Enhanced Visible and InfraRed Imager (SEVIRI) like MSG-1 (studies in Gorner et al. 2011
& 2012). Since 2011 further developments and improvements has been achieved concerning
the satellite-based precipitation estimation (Qu et al. 2013, Xu et al. 2014, Li et al. 2016,
Massari et al. 2017, Hong et al. 2018). Improvements are achieved mainly by combining the
data of different satellites, e.g. geostationary and polar orbiting satellites, and different
sensor types like Visible/Infrared Imager, passive/active microwave sensors or radar. Table
1 contains an overview of the existing sensor types, examples of satellites carrying such
sensors, the used basics of precipitation retrieval methods and their pros and cons. With these
various data, integrated precipitation products are generated, e.g. by means of neural
networks or machine learning algorithms (Kiihnlein et al. 2014, Meyer et al. 2016). Such
integrated products are exemplarily generated by the Tropical Rainfall Measuring Mission
(TRMM) (Huffman et al. 2010, Liu et al. 2012), the Global Precipitation Measurement
(GPM) mission (Hou et al. 2014, Skofronick-Jackson et al. 2017), and the global monitoring
programme Copernicus (Aschbacher 2017).

Table 1: Summary of remote sensing techniques for precipitation estimation (after Xu et al. 2014
and Ferraro and Smith 2013)

Sensors (platform) | Orbit type | Retrieval methods Pros Cons

visible / infrared geo- rain rate is estimated based good spatial and | weak physical

(e.g. Meteosat, stationary; | upon the cloud top temporal connection to

GOES, GMYS) polar temperatures resolution precipitation;
orbiting indirect rain rate

spaceborne passive | polar Bayesian approach to match better physical coarse spatial and

microwave sensors | orbiting the observed brightness connection to temporal

(e.g. SSM/I, TMI, temperatures with those from | precipitation resolution;

AMSU-B) simulated hydrometeor profiles indirect rain rate

(Imagers); a combination of
brightness temperatures at
different frequencies

(Sounders)
spaceborne active polar Radar reflectivity — rain rate direct The variability of
microwave sensors / | orbiting and specific attenuation — radar | measurement of | the drop size
radar (e.g. reflectivity relations the 3-D structure | distributions
Precipitation Radar of precipitation | strongly affects
on TRMM) precipitation

estimation.
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TRMM was a cooperative satellite mission of the National Space Development Agency
(NASDA) of Japan and the National Aeronautics and Space Administration (NASA) of the
USA. Between 1997 and 2015, it provided rainfall measurements using a combination of
high resolution radar, passive microwave radiometer and visible-infrared radiometer
measurements from a polar orbiting satellite. The data covered only the tropic and subtropics
between 40°S and 40°N with a spatial and temporal resolution of up to 0.25° x 0.25°and 3 h
(Huffman et al. 2010, Liu et al. 2012).

Since 2014, the GPM mission takes care of TRMM. GPM was initiated by NASA and the
Japan Aerospace Exploration Agency (JAXA) and is an international network of satellites
that provide global observations of rain and snow at a comparatively high temporal (0.5 —
3.0 h) and spatial (5 — 15 km) resolution. GPM enhances precipitation measurements by
using a combination of active and passive remote sensing techniques. The measurements are
used to calibrate, unify and improve global precipitation measurements by including
microwave sensors (Skofronick-Jackson et al. 2017).

Copernicus is the Earth Observation Programme of the European Commission (EC) and the
European Space Agency (ESA). It consists of a complex set of satellites and sensors, called
Sentinels, collecting data from various sources, including Earth observation satellites and in
situ sensors (e.g., ground stations, airborne/seaborne instruments). Among others, it also
provides data for monitoring the atmosphere and the climate change. For example,
Sentinel-1 carries a C-band radar for high resolution weather monitoring, Sentinel-3
provides infrared radiometric data for high-precision temperature measurements, and
Sentinel-4 and -5 will monitor the atmosphere and its composition from geostationary and
polar orbits (Aschbacher 2017). Sentinel-4 will be on board of Meteosat Third Generation
(MTG) as the Flexible Combined Imager (FCI) (see Section 6).

But despite all these developments and improvements, the basic difficulties and problems of
satellite data still persist, either a high spatial or a high temporal resolution. Also radar based
precipitation estimation still suffers from uncertainties like attenuation, beam blockage,
ground clutter, or variability of the Z-R relation (Villarini and Krajewski 2009; Kronenberg
and Bernhofer 2015). And concerning rainfall gauges, the measuring network density is
often too low and varies strongly over regions and countries. Furthermore, the precipitation
characteristics in the mid-latitudes are very complex due to the co-occurrence of convective
and stratiform precipitation. All these basic problems are still unsolved until today and will
not be solved in the near future. Hence, precipitation is and will be prone to a large
uncertainty, and the recognition of precipitation patterns continues to suffer from an

insufficient number of sampling points at the ground.
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4 Material and methods

4.1 Study region

The Free State of Saxony (Germany) was used as a case study region for the methods
developed and applied within the scope of this work. Saxony is located in the westerly wind
zone of the mid-latitudes and it covers an area of about 18 400 km? that encompass low
altitude regions as well as low-range mountains (Ore Mountains). Saxony is prone to heavy
precipitation events and related (flash) floods especially in the mountainous regions (Gorner
etal. 2011 & 2012) due to the climatic characteristics, the impact of climate change (SMUL
2005) and the SW-NE oriented Ore Mountains The changing climate leads also to changes
in the water balance and related problems regarding water availability, distribution, storage

and usage (Gorner et al. 2019).

4.2 Data

For the investigations and results presented in Gorner et al. (2011 & 2012), satellite, radar
and radiosonde data were used. The first satellite of EUMETSAT’s Meteosat Second
Generation satellite series (MSG-1) delivered the satellite data. Since 2004, data with a
temporal resolution of 15 min and a spatial resolution of 3.4 km % 5.9 km (channels 1-11)
for the region of Saxony have been measured (Schmetz et al. 2002). The RADOLAN RW
data are rain gauge adjusted radar data provided by the German Weather Service (DWD).
These data have a temporal resolution of 1 h and a spatial resolution of 1 km x 1 km (Bartels
2004). The DWD also provided the 6-hourly radiosonde data. For this study, the values of
the precipitable water and the mean relative humidity from the DWD observatory
Lindenberg were used.

Data basis for Gorner et al. (2019) were hourly and daily climate data of the six climate
stations Chemnitz, Dresden-Klotzsche, Fichtelberg, Gorlitz, Leipzig/Halle and Plauen of the
DWD. The data cover the time between September 1995 and August 2014 and encompass
the climate elements temperature, precipitation, sunshine duration, relative humidity, and
wind speed. Further, the daily objective weather pattern (OWP) classification provided by
the DWD was used. It consists of 40 classes encompassing all atmospheric circulation

conditions relevant for Germany.

4.3 Methods
In Gorner et al. (2011 & 2012), four satellite-based rainfall algorithms were applied to the
highly resolved MSG-1 satellite data of 9 days with high rainfall amounts between May and
August 2006. The following algorithms were chosen:
- the Operational GOES Infrared Rainfall Estimation Technique [or: Auto-Estimator]
(Vicente et al. 1998)



Major findings

- the Enhanced Convective Stratiform Technique (ECST) (Reudenbach 2003)

- the GOES Multispectral Rainfall Algorithm (GMSRA) (Ba and Gruber 2001)

- the Kurino Method (KM) (Kurino 1997a, b)
The estimated satellite-based hourly rain intensities were compared to radar-based rain
intensities that represented the reference values for these two studies. The radar and satellite
data had to be reduced to a common temporal and spatial resolution of 1 h and 3 km % 6 km
to make them comparable. After this adjustment, spatial integration (Gorner et al. 2011) and
temporal integration (Gorner et al. 2012) were possible to examine their effects on the quality
of the satellite rain intensities (amounts and locations), the related loss of spatial and
temporal information, and possible applications for flood risk management. Five spatial
integration steps ranging between 18 km? and 57 600 km? and six temporal integration steps
ranging between 1 h and 24 h were used. The performance of the satellite-based rainfall
algorithms was examined by a range of statistics of the grid-wise absolute differences and
by using measures of goodness of fit to assess the spatial agreement of satellite- and radar-
based rain intensities. The four fit scores probability of detection (POD), false alarm ratio
(FAR), critical success index (CSI), and Bias (Wilks 2006) were applied.
For the generation of hourly climate data by disaggregating observed daily climate data
presented in Gorner et al. (2019), a new multivariate non-parametric model, the Euclidean
Distance Model (EDM) was developed. This model uses the Euclidean Distance (ED) as a
measure of the similarity of two individual daily climate data sets with the aim to find the
most similar analogous reference day. The model generates hourly data of temperature,
precipitation, sunshine duration, relative humidity and wind speed. As an example, the daily
climate data of the stations Dresden and Fichtelberg were disaggregated for the years 1995-
2014. The generated hourly climate data were compared to the observed hourly data by
statistical analyses and by calculating the mean diurnal cycles based on hourly data and the

mean annual cycles based on monthly data.

5 Major findings

The methods presented in Gorner et al. (2011, 2012 & 2019) deliver hourly climate data by
using two different innovative and location-independent approaches. Both approaches
represent a possibility to generate hourly data when there are no station data or data with
only daily temporal resolution. The estimation of rain intensities by applying satellite-based
rainfall algorithms to highly resolved satellite data (Gorner et al. 2011 & 2012) deliver area-
wide data. This is an advantage for the observation of areal rainfall sums of catchments and
possible related flood risk. Thereby, we receive data also from regions, which are
insufficiently observed or not observed at all by radar stations and/or rain gauges. The spatial
and temporal integration leads to improved agreement of satellite-based and radar-based rain

intensities with increasing POD and CSI, decreasing FAR and Bias, and improved statistical
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relations especially concerning heavy, possible flood-triggering rainfall events. Therefore,
the best results are achieved for the lowest resolution of 120 km X% 120 km and 24 h.
However, since the integration also causes a loss of spatial and temporal information, these
resolutions are not suitable for assessing (flash) flood risks in mid-latitude regions. Higher
resolutions would be suitable but the rainfall algorithms perform poorly in reproducing both
the rainfall intensities and the spatial extend of the rain fields. The rainfall algorithms smooth
the rain field as they tend to underestimate high rain intensities and overestimate low rain
intensities. Hence, these satellite-based rainfall algorithms are currently not suitable for
applications in flood risk management for small-scale catchments in mountainous regions in
the mid-latitudes.

The problems and weakness associated with satellite-based rain intensities result from
several sources of error and uncertainties concerning the measurement system, and the
algorithms. Due to the scanning angle, the rotation of the satellite, and the projection, the
geo-referencing of the satellite data is difficult. The relation between the cloud top
temperature, reflectance, and the rainfall reaching the ground is too weak for correct rain
intensities estimations. In addition, the algorithms have to be well adapted to the used
satellite data as well as to the target region and its climate characteristics. The estimated rain
rates were corrected concerning the moisture conditions of the environment and the growing
or decaying of the raining clouds but further additional data like wind and orography should
be included in the estimation as they have a high influence on the rainfall rate reaching the
ground. But despite all these difficulties, satellite-based rain rates represent a good
possibility for unobserved regions and may be used as an indicator when the catchment is
large or the considered temporal resolution amounts to 12 h or more.

The generation of hourly climate data by disaggregating daily data (Gorner et al. 2019)
delivers point-related data. With such data, the estimation of areal rainfall sums of
catchments and possible related flood risks is more difficult than with the area-wide remote
sensing data but ground-based point data are more exact as they are measured and not
estimated.

The newly developed EDM proved to be a very robust and flexible model that is applicable
to any climate station and that works with several climate elements as well as with only one
climate element. It delivers hourly climate data that show strong correlations to the observed
data for all climate elements, maintaining their statistics, and the generated data set is
consistent over the disaggregated climate elements. But the results fit better to climate
elements with a continuous diurnal cycle. Hence, the best results are achieved for
temperature and the worst for wind speed and sunshine duration. Further, the results fit better
when the used basic climate stations have similar climate conditions and when the
disaggregated element is involved in the calculation of the ED. The analyses of the winter
and summer half-year showed, that the EDM delivers better results for the winter half-year
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than for the summer half-year. This is caused by the fact that the summer month are
characterised by more turbulence and unstable weather conditions. Concerning precipitation,
the EDM tends to overestimate the quantiles of the hourly data, especially for heavy and
extreme values, because the pool of such precipitation events from which EDM can select
the most similar day is smaller. This tendency might be an advantage in the field of hydro
engineering.

To improve the selection of the most similar basic day and the results accordingly, the OWP
were included but it was shown that the OWP lead to only small improvements for all climate
elements and are hence not necessary to generate accurate hourly data.

Due to the functionality of the EDM, the results conserve the daily means or sums of the
disaggregated climate elements. Under the precondition that the used basic climate stations
have been similar, also the mean diurnal and annual cycle are reproduced correctly. Since
the EDM is based on a resampling approach, the generated hourly data are more or less a
copy of the past. However, the applied offset or boost factors for new ‘records’ in the target
time-series, allows the generation of data which have not yet been observed. Therefore, the

model is capable of considering future climate trends.

6 Conclusion and outlook

The acquisition of highly resolved data of the spatio-temporal distribution of precipitation
and other climate elements was realised by developing innovative local-independent
methods that combine ground-based observation data, radar-based data, and satellite-based
data. These methods are applicable for any climate region and climate station, respectively.
Two different approaches were developed.

First, several algorithms for estimating rain rates were applied to the highly resolved satellite
data of MSG-I. Nine days with high rainfall amounts within Saxony (Germany) were
selected as case study. The algorithms deliver area-wide precipitation data with that were
compared to gauge adjusted radar data for five spatial and six temporal integration steps to
investigate the applicability of satellite-based rain rates for flood risk management. Although
each integration step leads to improved results, the estimated rain rates and rain fields are
currently not suitable for applications in flood risk management for small-scale (flash) flood-
prone catchments in the mid-latitudes. This is due to uncertainties and sources of error
related to the satellite measuring system, the satellite data, and the functionality of the
algorithms. However, the estimated rainfall data may be used as an indicator for rainfall
totals over longer periods or for large catchments or when gauge and radar data are missing.
To improve the estimated data and their applicability, the algorithms have to be customised
to the satellite data and the target region, additional data like wind and orography should be
included, and combining data from different systems, such as satellite, radar, and microwave
sensors may be helpful. From the end of 2021 on, the first satellite of Meteosat Third
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Generating (MTG) will deliver data routinely. As MTG will carry more sensors, these will
be distributed on two platforms, an Imaging Satellite (MTG-I) and a Sounding Satellite
(MTG-S). The MTG-I satellite carries the Lightning Imager (LI) and the Flexible Combined
Imager (FCI) that provides 16 spectral channels of image data, with a repeat cycle of 10 min,
and a European regional rapid scan with a repeat cycle of 2.5 min. The MTG-S satellite
carries the Infrared Sounder (IRS) and the high resolution Ultraviolet Visible Near-infrared
(UVN) spectrometer. The IRS provides hyperspectral sounding data every 30 min over
Europe (EUMETSAT 2020). Hence, MTG will deliver data in higher quality and resolution
and it will deliver sounding data from a geostationary orbit for the first time. The
applicability of the satellite-based rainfall estimation algorithms as examined in Gorner et
al. (2011 & 2012) has to be investigated by using and adopting them to the new data of the
FCI and by expanding the algorithms to include the data provided by the IRS sensor.

A second approach for the acquisition of hourly climate data was developed by means of a
temporal disaggregation model, the EDM. It delivers point data sets for several climate
elements with high correlations and conserved statistics compared to the observed data as
well as consistency over the disaggregated climate elements. The EDM is a very robust,
flexible and fast working model that can be applied to any climate station and any climate
data set. However, there are also two restriction: (i) the basic climate data should have similar
climate, and (ii) the model requires a sufficient database of observed hourly data. But
although the generated data are always a copy of the past due to the resampling approach of
the EDM, these data are very useful to fill data gaps and to apply models like water balance
models, rainfall-runoff models, or ecological models. Further, the applied offsets allow the
generation of data, which have not yet been observed. Therefore, the model is capable of
taking future climate trends into account and can disaggregate daily data of climate
projections. This may allow impact modelling and analyses of future climate extremes.

The two locally independent methods presented here are applicable for the acquisition of
highly resolved data of the spatio-temporal distribution of precipitation and other climate
elements. Finally, and importantly, both methods have the technical advantages of an
efficient computing performance and no need for calibration. So, two helpful tools for the
estimation of highly resolved meteorological data (especially precipitation data) are
available and can be used for various climatological and hydrological purposes.

Further work is necessary to combine both methods sufficiently. As the EDM is suitable to
disaggregate any daily climate data, it is also suitable in principle to disaggregate satellite
precipitation data, e.g. the Global Precipitation Climatology Project (GPCP) Combined
Precipitation Dataset (Huffman et al. 1997) or the GPM d. It has to be examined which data
basis is applicable for the disaggregation of pixelwise data, either pixelwise satellite- or
radar-based data or rain gauge data. The future of measuring, estimating and generating of

temporal and spatial highly resolved precipitation data lies in the combination of different
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sensors and methods, while ground truthing remains a crucial task for any remote sensing
precipitation product. And as often in remote sensing, the high costs of the satellite platform
and of the launching vehicle influence the payload. Which in turn does not support a network
of active radar satellites covering the globe sufficiently well for an independent highly
resolved dataset from space.

11
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Abstract

This paper presents a study of the applicability of four satellite-based rainfall
algorithms using highly resolved data from the first Meteosat Second-Generation
satellite to derive hourly rain intensities. Saxony serves as an example of the mid-
latitude regions. The focus is on the suitability of these algorithms to detect and to
monitor (flash) flood-related rain intensities. For this purpose, 9 days with high
rainfall amounts between May and August 2006 were analysed by comparing the
satellite rain intensities to gauge adjusted radar data. Five different spatial
resolutions were used to examine the effects of spatial integration from small scale
(18 km?) to large scale (57 600 km?) on (i) the quality of the satellite rain intensities
(amounts and locations); (ii) the related loss of spatial information; and (iii)
possible applications for flood risk management. The results show that spatial
integration leads to improvements of rain intensities and evaluation scores;
however, it also leads to decreased applicability for estimating high-intensity

rainfall events that affect small- and medium-scale basins.

Introduction

The importance of measuring or estimating rain intensities
in time and space as accurately as possible is obvious as rain
intensities represent a key parameter of the global water
cycle and affect all aspects of human life (Thies, 2008).
Rainfall events can trigger floods or even flash floods. Flash
floods are mostly caused by short high convective rainfall
over small- and medium-sized catchments with rapid hy-
drological response, and hence water levels reach a peak
within 1h to a few hours (Collier, 2007; Borga ef al., 2008).
Moreover, flooding is one of the most frequent and widely
spread causes of loss from natural hazards (Munich Re
Group, 2005). Recently, there have been severe flood events
due to heavy rainfall, e.g. in France (Atlantic coast; March
2010), Great Britain (North of England, Scotland, Wales;
November 2009), Austria (Lower and Upper Austria; June
2009), and Germany (Saxony; August 2002 and 2010) of
which at least some flood events in France, Austria, and
Germany can be categorised as flash floods. Hence, there is a
need for real-time rainfall estimates for nowcasting and
short range forecasting of possible flood risks. These issues
are of increasing interest due to the growing evidence of
climate change. In some regions of the world, this is

© 2011 The Authors

associated with an increased frequency of high-intensity
rainfall events and reduced return periods (IPCC, 2007).
The evidence for these changes is increasing, and these
changes are likely to continue to intensify in the future
(Munich Re Group, 2005; Franke and Bernhofer, 2009). This
trend will lead to higher (flash) flood risks in small- and
medium-sized mountainous catchments. For the related
issues of flood risk management, information about rainfall
distribution in space and time is essential. However, rainfall
is characterised by high spatio-temporal variability, and its
correct detection and quantification in a sufficiently high
spatial and temporal resolution remain a challenging task
(New et al., 2001; Thies, 2008). Currently, precipitation is
measured by rain gauges or is estimated by weather radar
and satellites. Rain gauges represent primary data sources,
and they deliver direct measured point data with relatively
poor spatial resolution (Scofield and Kuligowski, 2003).
They are, therefore, unable to depict the intensity and spatial
extent of heavy rainfall events (Smith et al., 1996), especially
of small-scale convective cells. However, because gauge data
are directly measured, they are used to adjust radar rain
estimates. Radar delivers indirect measured areal rain in-
tensities at a high spatio-temporal resolution and is, hence,
able to depict even small-scale rain events (Scofield and

J Flood Risk Management 4 (2011) 176-188

Journal of Flood Risk Management © 2011 The Chartered Institution of Water and Environmental Management

16



Applicability of satellite-based rainfall algorithms

Kuligowski, 2003). Because of their high quality and resolu-
tion, radar data are often used as areal reference and
adjustment data for satellite rainfall estimates (e.g. Vicente
et al., 1998; Reudenbach, 2003; Roebeling and Holleman,
2009). Radar data are not available for the entire surface of
earth because of certain limitations, such as beam blocking
by any obstacle between radar station and the target volume,
as buildings, mountains, or even large rain drops; the
coverage range of the beam; and high cost. Satellite data
have the advantage of being able to cover the whole earth
surface, and they are increasingly used to improve radar
rainfall estimates (Lakshmanan et al., 2006). Geostationary
weather satellites offer a high potential for detecting and
monitoring area-wide precipitation with relatively high
spatio-temporal resolution (Thies, 2008). Satellite rain in-
tensities also represent indirect rain data because they are
derived from measured radiances reflected or emitted by the
surface, clouds, or the atmosphere. Since the late 1960s, a
plethora of satellite-based rainfall algorithms have emerged
(Alemseged and Rientjes, 2007). Petty (1995) and Levizzani
et al. (2002) reviewed the existing algorithms. Most of these
algorithms rely on relationships between cloud top tem-
peratures and/or reflectances measured in the infrared (IR)/
visible (VIS) range and rainfall probability and intensity
(Thies, 2008), such as the GOES Precipitation Index (Arkin
and Meisner, 1987) and the Convective Stratiform Techni-
que (Adler and Negri, 1988). These algorithms are appro-
priate for convective systems, especially in the tropics.
However, they show deficiencies in detecting extra-tropical
cyclones and mixtures of convective and stratiform precipi-
tation that are typical for frontal rain bands in the mid-
latitudes (Houze, 1993, 1997; Thies et al., 2008; Roebeling
and Holleman, 2009). As a result of the technological
progress made during the last few decades, space-borne
rainfall measurements have been improved (Levizzani et al.,
2002; Ebert et al., 2007) and applied to several events
(Vicente et al., 1998; Bendix et al., 2001). Further algorithm
developments have aimed at resolving shortcomings by
including additional physical cloud properties such as
effective cloud droplet radius or optical cloud thickness (Ba
and Gruber, 2001; Roebeling and Holleman, 2009); addi-
tional data like orography or radiosondes (Vicente et al.,
1998); outputs of cloud or numerical models (Reudenbach
et al., 2007); or combination with other sensors like passive
microwave instruments (Heinemann et al., 2002). Today, for
example, EUMETSAT is routinely generating satellite-based
rainfall products such as the Satellite Application Facility’s
(SAF) Convective Rainfall Rate (CRR), the Meteorological
Products Extraction Facility’s (MPEF) High Resolution
Precipitation Index, and the Multi-Sensor Precipitation
Estimate (MPE).

As satellite-based estimate algorithms have become more
complex, they are more computationally and time intensive.

J Flood Risk Management 4 (2011) 176-188
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With a focus on flood-related rainfall events with short-lead
times, four fast-working algorithms (Kurino, 1997a; Vicente
et al., 1998; Ba and Gruber, 2001; Reudenbach, 2003) were
tested in this study regarding their applicability for deriving
rain intensities in the mid-latitudes using Meteosat Second-
Generation (MSG) data. Saxony (Germany) was chosen as
the study region because it is prone to (flash) flooding due
to its orography and climate (SMUL, 2005), which is likely
to increase in frequency and severity in the future (SMUL,
2008; Franke and Bernhofer, 2009). The algorithms were
applied to 9 days with high rainfall amounts and to five
spatial resolutions to examine the measure of improvement
by spatial integration, the related loss of spatial information,
and their suitability for flood risk management. An exam-
ination of the effects and results of temporal integration will
be presented in a second part to this paper (Gorner et al.,
2011).

Case-study region and data

Selected area and selected days with high
rainfall amounts

The Free State of Saxony (Germany) was used as a test area,
as it is representative of the mid-latitudes. Saxony’s area
covers approximately 18 400 km® between 11.9°~15.0°N and
50.2°-51.7°E, and is characterised by areas of low altitude as
well as medium-elevation mountains (Figure 1). The moun-
tainous region is part of the Ore Mountains, which has
heights up to 1200 m a.s.l. Because of its location within the
moderately cool west wind zone and with the SW-NE-
oriented Ore Mountains, Saxony is prone to heavy rainfall
events, especially in the mountainous regions with small and
medium catchments and short flood response times
(SMUL, 2005). Therefore, there is a high flash flood risk in
the study region. The rivers within the study region that are
most prone to flooding include the Miiglitz (214 km?), the
Gottleuba (252 km?), the Weiferitz (390 km?), the Zschopau
(1847 km?), the Freiberger Mulde (1138 km?), and the
Zwickauer Mulde (2361 km?).

The study region is well covered by rain data from the
radar station Dresden-Klotzsche and 38 radar calibration rain
gauges. Data of atmospheric conditions were provided by
the radiosonde station Lindenberg, which is located north of
the study region (Figure 1).

For the case study, 9 days between May and August 2006
(Figure 2) with convective high daily rainfall amounts and
with good data coverage were selected with reference to the
Berliner Wetterkarte (Berliner Wetterkarte, 2006) and the
rain gauge data of the German Weather Service (DWD). The
stations Fichtelberg (1213 m a.s.l.), Zinnwald (877 m a.s.l.),
Carlsfeld (897 m a.s.l.), Aue (387 m a.s.l.), and Marienberg
(639m a.s.l.) are situated in the Ore Mountains. Figure 2

© 2011 The Authors
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Figure 1 Location and topography of Saxony, including the main radar station Dresden-Klotzsche and the three surrounding radar stations with their

ranges; the radar calibration rain gauges; the radiosonde station Lindenberg.

(Correction added after publication 12 June 2011: Figure 1 has been corrected.)

shows that the highest rainfall amounts occurred mostly in
the mountainous region.

Data
Satellite data

The satellite data used were measured by Meteosat-8, the
first satellite of EUMETSAT’s MSG satellite series. MSG-1
was launched in 2002 and has sent data since January 2004;
it had a nominal position of 0° until May 2008. MSG-1
carries the Spinning Enhanced Visible and Infrared Imager
(SEVIRI), which is a passive radiometer that observes the
full disk of the earth in 12 spectral channels (Table 1) with a
repeat cycle of 15min. In the nadir, channels 1-11 had a
spatial resolution of 3km x3km and channel 12 of
1km x 1km (Schmetz et al., 2002). Because of a viewing
angle of about 58° over Saxony, the spatial resolution was
reduced to approximately 3.4km x 59km and 1.1km X
2km for channels 1-11 and 12, respectively.

© 2011 The Authors

Weather radar data

The radar data were provided by the DWD, and they
represent the reference data for validation. These data are
part of the RADOLAN product, which covers the entire area
of Germany, and they are based on the reflectivities (Z)
measured by the 16 German C-band Doppler radar stations,
which take a scan every 5min. The reflectivities are con-
verted into rain intensities (R) by applying a so-called Z-R
relation [Eqn (1)], where a and b are empirical parameters
that vary in response to current weather and regional
characteristics (Bartels, 2004):

Z =aR’ (1)

The RADOLAN RW data used are the result of a correc-
tion with rain gauge measurements (Figure 1). These
data have a temporal resolution of 1h and a spatial
resolution of lkm x 1km (Bartels, 2004). Only few
assessments of the quality of RADOLAN RW data are
available. Jatho et al. (2010) found a quality reduction with
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Figure 2 The nine selected days, their daily radar measured rainfall totals (mm), and the rain gauges with the highest daily rainfall totals (mm).
(Correction added after publication 12 June 2011: Figure 2 has been corrected.)

Table 1 Spectral channel characteristics of MSG-1 (after Schmetz et al., 2002)

179

Precipitation

Precipitation

Precipitation

Channel
Main gaseous absorber or

Number Designation Measurement range (um) Spectral range atmospheric window

1 VIS 0.6 0.56-0.71 Visible Atmospheric window

2 VIS 0.8 0.74-0.88 Visible Atmospheric window

3 NIR 1.6 1.50-1.78 Near infrared Atmospheric window

4 IR3.9 3.48-4.36 Infrared Atmospheric window

5 WV 6.2 5.35-7.15 Infrared Water vapour

6 WV 7.3 6.85-7.85 Infrared Water vapour

7 IR8.7 8.30-9.10 Infrared Atmospheric window

8 IR9.7 9.38-9.94 Infrared Ozone

9 IR 10.8 9.80-11.8 Infrared Atmospheric window
10 IR12.0 11.0-13.0 Infrared Atmospheric window
11 IR13.4 12.4-14.4 Infrared Carbon dioxide
12 HRV 0.40-1.10 Visible Atmospheric window/water vapour

MSG, Meteosat Second Generation.
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increasing distance to the radar station. This reduc-
tion reaches up to 20% for a maximum distance of 128 km.
The differences between the radar-estimated rain
intensities and independent rain gauges add up to a
mean absolute error of about 1 mm/day for daily rainfall
totals. For days with at least 25 mm/day, the mean absolute
error is between 6 and 9mm/day (E. Weigl, personal
communication).

Since 2000, the radar station Dresden-Klotzsche covers
nearly the entire study region (DWD, 2006). For the
RADOLAN RW data of the study region, 38 rain gauges are
utilised for calibration (Figure 1).

Radiosonde data

Radiosonde data were used to obtain information on
current atmospheric moisture conditions (precipitable
water and mean relative humidity) influencing the rainfall
intensity. This information was obtained from 6-hourly
radiosonde rises of the DWD station Lindenberg, which is
located north of the study area (14.1°W, 52.2°N) (Figure 1).
The data are available via the website of the Department of
Atmospheric Science of the University of Wyoming, USA
(http://weather.uwyo.edu).

Methods

The SEVIRI radiometer scans radiation reflected or emitted
by the earth’s surface, clouds, and atmosphere at different
wavelengths (see Table 1). To apply the satellite rainfall
algorithms, the measured radiation had to first be converted
into radiances. The reflectances (R) and brightness tempera-
tures (Tp), respectively, were then calculable. Both calcula-
tion steps were completed by means of the equations
presented in Rosenfeld (2005). The reflectances and tem-
peratures represent the input data for the rainfall algo-
rithms, which are outlined below. The methods used to
compare the satellite and radar rain intensities follow.

Satellite-based rainfall algorithms

The cloud characteristics that correlate with rainfall and that
can be identified at different wavelengths are used to
determine rainfall (Sevruk, 2004). There are currently
various approaches to estimate satellite-based rainfall (see
Levizzani et al., 2002; Reudenbach, 2003). These approaches
are based on the determination of a functional relation
between ground-based measured rain intensities (rain gauge
and radar) and the corresponding spatio-temporal electro-
magnetic signal in one or several spectral ranges (Menz,
1996). All methods assume that the cloud top brightness
temperature is an indicator of rainfall intensity by presum-

© 2011 The Authors
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ing increasing intensity with higher and hence colder cloud
tops (Thies, 2008). The challenge is to distinguish between
advective and convective raining clouds (Houze, 1997) and
nonraining clouds (e.g. cirrus clouds) (Ba and Gruber,
2001). By a comparison with surface-measured rainfall
amounts, regression equations between cloud top tempera-
tures and rain intensities within certain areas are derived
and tested to address this challenge.

To examine the applicability of existing satellite rainfall
algorithms for estimating rain intensities over Saxony, the
following four algorithms were chosen:

e the Operational GOES Infrared Rainfall Estimation Tech-

nique [or: Auto-Estimator (AE)] (Vicente et al., 1998);

e the Enhanced Convective Stratiform Technique (ECST)

(Reudenbach, 2003);

e the GOES Multispectral Rainfall Algorithm (GMSRA)

(Ba and Gruber, 2001);

e the Kurino method (KM) (Kurino, 1997a,b).

Table 2 contains the basic features of the selected algo-
rithms and the MSG channels used. Detailed information on
the structure and functionality of the algorithms is given in
the related literature.

As none of these algorithms were developed for MSG,
each channel used from their respective development satel-
lites had to be replaced. The ECST was developed for
Meteosat-7 (Meteosat First Generation). To apply the ECST
to MSG, Thies (2008) examined which water vapour (WV)
and IR channel of MSG are most suitable for replacement. It
was shown that the ECST is applicable to MSG, and the best
agreement is achieved when using MSG channels 6 (WV)
and 10 (IR) (see Figure 3). As there are no equivalent studies
for the other three algorithms, their input channels were
replaced by the MSG channels that are most similar in their
measurement ranges. For example, Figure 3 shows the four
GOES-9 channels (grey lines) used to develop the GMSRA
and the proposed MSG replacement channels (black lines).
This demonstrates good agreement for the VIS, near infra-
red, and IR channels. The WV channels show less overlap in
their measurement ranges. MSG channel 5 was used in
preference to MSG channel 6, as channel 5 has a measure-
ment range from 5.35 to 7.15 pm, and a greater overlap with
the GOES-9 WV wavelength than channel 6.

It should be noted that the algorithms were applied to
deliver hourly rain intensities (mm/h) for each MSG time
step (every 15 min).

Comparing rain intensities from radar and
satellite

For the comparisons, the radar estimates represent the
reference values. To make the radar and satellite data
comparable, they had to be reduced to a common temporal
and spatial resolution. As the radar data had a temporal

J Flood Risk Management 4 (2011) 176-188
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Table 2 Basic features of the applied algorithms and the MSG channels used
Development MSG
Method satellite/area Input Thresholds Features channel
AE GOES/USA To,R 190K < Ty r < 260K Moisture and cloud growth correction 9
ECST Meteosat-7/ To,r Tor < 253K Discrimination of stratiform and convective 6
Europe (mid- rain and redux convection
latitudes) Twv Towv—Toir > 0K 10
GMSRA GOES/USA To. R Tpr < 250K (day) 2 parts: day, night 1
To.wv Rvis > 0.4 (day) Includes Ry;s (day) 4
Ruis Toir < 230K (night) Moisture and cloud growth correction 5
9
KM GMS/Okinawa To, R 173K < Tpr < 293K Working with look-up 5
Islands, Japan To.wv Tor=Towy > 263K tables containing 9
Tor=Towv < 301K probability of rain and mean rain intensity 10

Ty, brightness temperature; R, reflectance; AE, Auto-Estimator; ECST, Enhanced Convective Stratiform Technique; GMSRA, GOES Multispectral Rainfall
Algorithm; KM, Kurino method; MSG, Meteosat Second Generation; VIS, visible; IR, infrared; WV, water vapour.
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Figure 3 Spectral responses of the four GOES-9 channels of the GOES Multispectral Rainfall Algorithm (GMSRA) and the four Meteosat Second
Generation (MSG)-1 replacement channels (data sources: ISCCP, 2006; EUMETSAT, 2007).

resolution of 1 h and MSG of 15 min, the hourly mean MSG
rain intensities were calculated by averaging the rainfall
intensities from the four radar scans within the hour. For
the spatial resolution, the radar data (1km x 1km) had to
be reduced to the MSG resolution (~3km x 6km) by
averaging the 18 radar rain intensities covered by one MSG
pixel. After calculating this basic resolution, further spatial
integration was possible. Reference spatial resolutions used
in the papers that present the algorithms and the spatial
integration approaches presented in Ba and Gruber (2001)

J Flood Risk Management 4 (2011) 176-188

and Porct et al. (1999), resulted in the calculation of four

additional resolutions by averaging the rain intensities of the

next higher resolution. Hence, the following five resolutions

were considered:

e 3km x 6 km (MSG resolution);

e 6km x 12km (close to 6 km x 10km as used in Reuden-
bach, 2003);

e 60km x 60km (close to 0.5° x 0.5° and 48 km x 48 km as
used in Ba and Gruber, 2001 and Vicente et al., 1998,
respectively)

© 2011 The Authors
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Table 3 Contingency table for determination of the evaluation scores
(after Wilks, 2006)

Radar (observation)

Yes No
Satellite (forecast)
Yes Hit False alarm
No Miss Correct zero

e 120km x 120km (close to 1° x 1° and 100 km x 100 km
as used in Kurino, 1997a and Vicente et al., 1998,
respectively)

e 240 km x 240 km (entire case-study region).

Adopting the approach of Reudenbach (2003), the per-
formance of the satellite rainfall algorithms can be assessed
in terms of their quantity and in terms of their spatial
agreement with the radar rainfall using a range of statistics
of differences and measures of goodness of fit, respectively.

For the statistical assessment, the data sets from the nine
selected days were compared for each spatial resolution by
analysing the statistics of the grid-wise absolute differences.
For this purpose, the following statistical values were
calculated:
mean (X);
median (Xpeq);
mode (Xmod);
minimum (Xpi,);
maximum (Xay)3
standard deviation (a,);
root mean square error (RMSE);
correlation coefficient (r);

5% (xs0,) and 95% percentile (x950,).

The assessment of spatial agreement can be made using

the goodness of fit scores proposed by Wilks (2006)

(CAWCR, 2010). To compute these scores, a contingency

table containing the grid-wise counted frequencies of hit,

false alarm, miss, and correct zero was needed (Table 3). In
this study, the radar rain intensities represent the observed
data (reference) and the satellite rain intensities are treated
as the estimate data. A hit means a correct estimate of a rain
intensity > 0.0 mm/h. A false alarm denotes that a satellite
rain rate (> 0.0mm/h) is wrong. If the satellite-based

algorithm does not detect a radar rain intensity (> 0.0 mm/h),

it is called a miss. If the algorithm estimates an intensity of

0.0 mm/h, where the radar rain intensity is also 0.0 mm/h, it

is called correct zero.

On the basis of Table 3, the following evaluation scores
are determined (Wilks, 2006):

The probability of detection (POD) is the ratio of correct
rain estimates to the total number of rain observations and
is, hence, a measure of correct estimated satellite rain
intensities of > 0.0 mm/h. POD ranges from zero (poorest
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score) to 1.0 (best score). POD is computed as
hit
hit + miss )

The false alarm ratio (FAR) denotes the proportion of yes
estimates that turn out to be wrong. Thus, FAR expresses
how frequently the satellite-based algorithms estimate mis-
leading rain intensities of > 0.0 mm/h. FAR’s value ranges
between 0 and 1, where 0 is the best possible value. The FAR
is equal to

B false alarm 3)
" hit + false alarm

The critical success index (CSI) combines FAR and POD
and denotes the number of correct rain estimates divided by
the total number of occasions when the rain was estimated
and/or observed. The CSI focuses on the performance of the
algorithm with respect to rain days. The CSI can have a value
between 0 and 1, where 1 denotes a perfect estimate. The CSI
is equal to

FAR

~ hit
" hit + false alarm + miss

csI (4)

The Bias is the ratio of the number of correct rain
estimates to the number of rain observations, and its value
ranges from 0 to + co. A score of 1.0 demonstrates no bias in
the estimating algorithm, a score > 1.0 indicates over-
estimation, with a score < 1.0 indicates underestimation
(Welle, 2009). The Bias is equal to

. hit + false alarm
Bias = —_—
hit + miss

()

Results and discussion
Rain intensities

The statistical assessment of the performance of each algo-
rithm is presented in Tables 4 and 5. For each of the four
tested algorithms, the statistical values contained in these
tables reveal that each spatial integration step yields a
convergence between satellite and radar rain intensities.
The average correlation coefficients ,y, (Table 4) increases
over all of the integration steps. They are all statistically
significant but indicate only weak correlations for the grid
sizes up to 120km x 120 km. Moreover, even the best values
of 0.61 (KM, 240km x 240km) and 0.58 (ECST, 240 km x
240km) show still no satisfying correlation. The correlation
coefficients 7 for the single days cover large ranges, e.g.
between — 0.34 and 0.91 (GMSRA, 240 km x 240 km). How-
ever, these correlation coefficients are statistically significant
for at least 5 days for each method and spatial resolution; 8 or
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Table 4 Minimum (rmin), Maximum (rmax), average correlation coefficient (ra.g), and number of days with a significant r with a probability P>95%

applying a Pearson correlation t-test

Sample size Number of days with
Method Resolution (km?) per day Fonin (=) Fmax (—) Favg (=) significant r (P>95%)
AE 3x6 76800 —-0.02 0.52 0.16 8
6x12 19200 —-0.02 0.54 0.17 8
60 x 60 384 —0.02 0.63 0.22 5
120 x 120 96 —0.05 0.73 0.28 5
240 x 240 24 —-0.29 0.93 0.58 8
ECST 3x6 76800 —0.02 0.32 0.11 9
6x12 19200 —0.02 0.36 0.13 8
60 x 60 384 —0.06 0.50 0.17 5
120 x 120 96 —0.07 0.59 0.20 5
240 x 240 24 —-0.38 0.89 0.45 7
GMSRA 3x6 76800 —-0.02 0.37 0.08 8
6x12 19200 —-0.03 0.41 0.10 8
60 x 60 384 —-0.09 0.55 0.16 7
120 x 120 96 —-0.18 0.58 0.20 6
240 x 240 24 —-0.34 0.91 0.42 7
KM 3x6 76800 —-0.02 0.39 0.18 9
6x12 19200 —-0.02 0.41 0.19 9
60 x 60 384 0.01 0.53 0.26 7
120 x 120 96 0.06 0.64 0.32 5
240 x 240 24 —0.06 0.93 0.61 8

The correlation coefficients of the 9 days’ means are always statistically significant. AE, Auto-Estimator; ECST, Enhanced Convective Stratiform Technique;
GMSRA, GOES Multispectral Rainfall Algorithm; KM, Kurino method. (Correction added after publication 12 June 2011: Table 4 has been corrected.)

9 days (almost the complete sample) are significantly corre-
lated in 50% of the investigated cases (Table 4).

Note that the values of mean X, median x,,.4, and mode
Xmod are not contained in Table 5. This is because the mean
values are independent of spatial integration, the median
varied marginally around 0.0 mm/h, while the mode was
always 0.0 mm/h for all algorithms. Thus, the mean of the
differences has values of —0.2mm/h (AE), 0.1 mm/h
(ECST), —0.3mm/h (GMSRA), and 0.6 mm/h (KM). For
the absolute rain intensities, mean is 0.47 mm/h (radar),
0.3mm/h (AE), 0.6 mm/h (ECST), 0.16 mm/h (GMSRA),
and 1.02 mm/h (KM). Therefore, comparisons across these
statistics were considered somewhat redundant.

Table 5 shows that there is a reduction of the largest
differences, especially the negative differences for the higher
resolutions. However, it must be remembered that the rain
intensities are reduced by averaging in the course of spatial
integration, which automatically leads to lower differences.
High negative differences for the first three integration levels
are identical for all four algorithms, as no algorithm was able
to detect the highest radar rain intensities, and each esti-
mated a rain intensity of 0.0 mm/h for the corresponding
satellite pixel. In contrast, the highest positive differences
occurred when high satellite rain intensity coincided with a
radar rain intensity of 0.0 mm/h. In comparison with radar,
satellite-based algorithms generally estimate more moderate
rain intensities due to limits concerning which cloud
temperatures are assumed to be rain producing (see Table

J Flood Risk Management 4 (2011) 176-188

2), or because they have a fixed rain intensity as an upper
limit. For example, the AE does not permit intensities higher
than 72.0 mm/h. For the nine selected days, the maximum
intensities were 20.0mm/h (AE), 30.0mm/h (ECST),
13.4mm/h (GMSRA), and 8.0 mm/h (KM); but the inten-
sity was 168.4 mm/h for radar.

For each algorithm and integration level, the improve-
ments are also expressed by the reduction of the standard
deviation o, and of the RMSE, e.g. for the GMSRA ranging
from 1.71 to 0.55mm/h and from 1.54 to 0.56 mm/h,
respectively. Furthermore, the interval covered by 90% of
the differences gets smaller. The maximum range is between
—2.29 and 3.23mm/h (ECST, 3km x 6 km). Despite im-
provements in the magnitude of the inter-ninety-percentile
range, the problem of poor performance at the highest
rainfall intensities remains. This problem cannot be solved
by spatial integration, because the extreme rain intensities
are at a small scale, and their data are lost by integration.

By comparing the number of positive and negative
differences for each algorithm and resolution, the ECST
and the GMSRA always underestimate the radar rain
intensities, the KM always overestimate them, whereas the
AE overestimates for the first three integration steps and
underestimates at the resolutions 120km x 120km and
240 km x 240 km.

The satellite rainfall estimates show increasing agreement
with the radar intensities through spatial integration. How-
ever, at small spatial scales, high differences remain.

© 2011 The Authors
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Table 5 Statistics of the absolute differences of the satellite and radar rain intensities for the nine selected days
Method Resolution (km?) Sample size perday  Xmin (MmM/h) Xmax (MmM/h) o, (MM/N)  Xso, (MM/N)  Xg50, (MM/h) RMSE (mm/h)
AE 3x6 76 800 —168.4 20.0 1.79 —2.24 1.00 1.57
6x12 19200 —130.8 16.9 1.71 —2.23 0.98 1.51
60 x 60 384 —-21.0 11.5 1.22 —-1.78 0.86 1.10
120 x 120 96 -9.1 7.8 0.95 —1.47 0.82 0.87
240 x 240 24 -25 2.6 0.61 —1.00 0.99 0.59
ECST 3x6 76800 —168.4 30.0 3.16 -2.29 3.23 2.67
6x12 19200 —130.8 28.9 3.05 —2.25 2.33 2.56
60 x 60 384 —-21.0 24.6 2.52 —1.83 2.93 2.05
120 x 120 96 -54 18.4 2.08 —1.42 3.12 1.66
240 x 240 24 —-2.2 7.6 1.40 —1.02 3.39 1.11
GMSRA 3x6 76 800 —168.4 13.4 1.71 —2.31 0.73 1.54
6x12 19200 —130.8 121 1.61 —2.27 0.65 1.45
60 x 60 384 -21.0 7.6 1.09 -1.8 0.50 1.01
120 x 120 96 -9.0 4.5 0.82 —1.42 0.45 0.79
240 x 240 24 —-2.6 2.0 0.55 —1.08 0.19 0.56
KM 3x6 76 800 —168.4 8.0 1.89 —1.44 3.15 1.86
6x12 19200 -130.8 7.7 1.81 —1.44 3.11 1.80
60 x 60 384 —-21.0 6.1 1.37 —1.05 2.93 1.41
120 x 120 96 -7.6 5.0 1.12 —0.89 2.58 1.19
240 x 240 24 —-0.6 2.8 0.76 —0.30 2.18 0.84

AE, Auto-Estimator; ECST, Enhanced Convective Stratiform Technigue; GMSRA, GOES Multispectral Rainfall Algorithm; KM, Kurino method; RMSE,

root mean square error. (Correction added after publication 12 June 2011: Table 5 has been corrected.)

Therefore, satellite rainfall estimates, based on the algo-
rithms assessed here, are most appropriate for use at lower
spatial resolutions, larger catchments, and longer time
periods (cp. Gorner et al., 2011).

On the basis of the results presented so far, it is not
possible to state which is the best performing algorithm of
the four assessed. The performance of each algorithm in
estimating the spatial extent of rainfall was therefore con-
sidered in the assessment.

Evaluation scores

Figure 4 shows the results for the calculated evaluation scores
for each algorithm and spatial resolution. As expected, integra-
tion leads to improvements in each score. More precisely,
integration leads to increasing values of POD and CSI and
decreasing values of FAR and Bias. The improvements,
averaged over the algorithms and related to the optimum
score values, have the following amounts: POD= +39%,
FAR = +41%, CSI=+46%, and Bias= +33%. In parts, the
scores nearly reach their optimum values (cp. ‘Evaluation
scores’) at the highest integration level. For example, the POD
is approximately 1.0 for the KM and 0.9 for the AE. The FAR is
nearly 0.0 for the ECST and only 0.1 for the AE and the KM.
For the CSI, the best values result for the KM (~0.85) and the
AE (0.8). The AE also delivers the best value for the Bias
(~1.0), followed by the value delivered by the KM (~1.15). All
four algorithms show pronounced improvements between the
resolutions 6km x 12km and 60km x 60km as this is the

© 2011 The Authors

largest spatial integration step, in terms of percentage increase.
Regarding the four scores together, the AE shows the best
results for the last integration level and the GMSRA shows the
worst values. The ECST shows the highest degree of improve-
ment, but there were no satisfying values for the POD, FAR,
and CSL

These results support the findings presented earlier
that satellite estimates are best used at lower spatial resolu-
tions and larger catchments. They show greatest agreement
with radar rainfall estimates at coarser spatial integra-
tion. Therefore, satellite data may deliver useful information
on the spatial extent of rainfall in larger catchments and over
longer time periods (cp. Gorner et al., 2011) and for regions
where alternative data (gauges or radar) are missing.

Effects of spatial integration

The results presented here show that each spatial integration
step leads to improved agreement for the analysed statistical
differences as well as for the evaluation scores. Therefore, the
best results are achieved for the largest resolution tested of
240 km x 240 km. However, this resolution is not suitable
for assessing possible flood risks for relatively small catch-
ments in mid-latitude regions (typical size of flash flood-
prone basins is well below 1000 km? (Samuels et al., 2009),
see catchment sizes in ‘Case-study region’). For the higher
resolutions tested that would be suitable for these catch-
ments, the rainfall algorithms perform poorly in reprodu-
cing both rainfall intensities and the spatial extent of rainfall.
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Figure4 Values of (a) probability of detection (POD), (b) false alarm ratio (FAR), (c) critical success index (CS/), and (d) Bias for the five spatial resolutions
of the algorithms Auto-Estimator (AE), Enhanced Convective Stratiform Technique (ECST), GOES Multispectral Rainfall Algorithm (GMSRA), and Kurino

method (KM).

These results are consistent with those of Porct et al. (1999)
and Ba and Gruber (2001). In addition, Negri and Adler
(1993), Scofield and Kuligowski (2003), and the results of
our present study, satellite estimate algorithms smooth out
the rain intensities by a general underestimation of high rain
intensities and by a partial overestimation of lower rain
intensities.

Although the AE and the KM have their deficiencies
in detecting the radar rain intensities in correct amount
and location, they deliver the best rain intensities of the
four tested algorithms. This provides some support
for their use as the basis for the SAF product CRR (Vicente,
2001).

Weakness associated with satellite-based
rainfall estimates

The satellite-related problems result from several uncertain-

ties and sources of error concerning the measurement
system, the data, and the algorithms used. Satellites operate

J Flood Risk Management 4 (2011) 176-188

from the top of atmosphere and with an increasing scanning
angle depending on the distance from the nadir. Because of
this characteristic and the roll and rotation of the satellite, as
well as the projection, correct geo-referencing of the
satellite data is difficult. Furthermore, only the radiation of
cloud tops is scanned. However, the relation between the
temperatures and reflectances of cloud tops and surface-
reaching rainfall is quite weak (Alemseged and Rientjes,
2007). This is especially the case in the mid-latitudes, which
have a specific rainfall characteristic in that advective and
convective events can occur at the same time. In addition,
orography, wind, and complex cloud and rain-producing
processes are difficult to assess and, thus, to take into account.
Furthermore, the four algorithms used were not developed for
the MSG data or for the mid-latitudes (except the ECST).

To solve the estimate-related problems, it is necessary to
customise the algorithms, especially for the MSG data
and the mid-latitudes (Thies, 2008) as proposed by the
Advective—Convective Technique (Reudenbach et al., 2007).
Furthermore, the algorithms are more complex by including
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additional data like wind, orography, and cloud model
outputs (Vicente, 2001; Reudenbach et al., 2007). To im-
prove applicability, it is also helpful to combine data from
different systems, such as geostationary/polar orbiting satel-
lites, radar, and passive/active microwave sensors. The MPE
(Heinemann et al., 2002) and the precipitation estimates
based on the Tropical Rainfall Measuring Mission (Huffman
et al., 2006) are examples of such combinations. These
combinations deliver improved rain estimates, but currently
only for the tropics or oceans (MPE) (Samain and Heine-
mann, 2007). Moreover, the rainfall-related SAF and MPEF
products still show deficiencies for mid-latitude regions as
they are partially unavailable for mid-latitudes, suffer from
low resolution, or deliver only coarse classes of rain inten-
sities (EUMETSAT, 2009; AEMET, 2010).

Summary and conclusions

This study examines the applicability of four satellite-based
rainfall estimates to detect and monitor flood-related heavy
rainfall events in mid-latitudes by means of highly resolved
MSG-1 data. For this case study, a flood-prone region in the
low mountain ranges of Saxony (Germany) and 9 days with
high rainfall amounts were selected. The analysis compared
satellite with radar rain intensities at five spatial resolutions
to investigate the applicability of these satellite algorithms
and satellite rainfall intensities for flood risk management.
The main conclusions from this study are:

1. Spatial integration leads to an improved agreement of
satellite-based rain intensity estimates compared with
radar rain intensities. However, integration causes a loss
of spatial information and, therefore, reduces the suit-
ability of the satellite estimates to assess spatial rainfall
distribution and related flood risks, especially in small
and medium catchments.

2. A good accordance concerning the intensities is only
achieved at low spatial resolutions of at least 120 km x
120 km. This is larger than the typical catchment size of
flash flood-prone basins.

3. For high spatial resolutions of 3km x 6km or 6 km x
12 km, which are necessary for the nowcasting of flood-
related rainfall events, the results are unsatisfactory.

4. Satellite rainfall algorithms smooth the precipitation
field, thus underestimating high rain intensities and
overestimating lower rain intensities.

5. The satellite-based rainfall algorithms are limited in
estimating extreme rain intensities because they use a
fixed rain intensity as an upper limit.

6. To improve the applicability of satellite rainfall estimates
for flood risk management, the algorithm has to be
customised for the satellite used and the target region.

© 2011 The Authors
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7. It is necessary to include additional data like wind and
orography and to combine the algorithms with other
measurement systems.

8. Rain intensities and rain areas derived from passively
measured satellite data are currently not suitable for
applications in flood risk management for small-scale
(flash) floods in mid-latitudes. However, these data may
be useful as an indicator of large rainfall totals over periods
of several hours to days or when gauging and radar data are
missing and the size of the catchment is large.

In a second part of this paper (Gorner et al., 2011), the
effects of temporal integration will be examined.
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Abstract

In a continuation of Part I on spatial integration, this paper presents research on
the applicability of four satellite-based rainfall algorithms to derive hourly rain
intensities in the mid-latitudes using highly resolved data from the first Meteo-
sat Second Generation (MSG-1) satellite. It focuses on the suitability of these
algorithms to detect and monitor (flash) flood-related rain intensities for dif-
ferent temporal resolutions. The temporal integration is examined using six
different integration steps ranging from 1h to 24 h and three different data-
filtering methods. The effects of this temporal integration on the quality of
satellite-based rain intensities (amounts and locations) are examined with
regard to heavy and possible flood-triggering rain intensities. Also, loss of tem-
poral information and possible applications for flood risk management are
considered. For this purpose, Saxony (Germany) is used as an example, and 9
high-rainfall days between May and August 2006 were analysed by comparing
satellite rain intensities to rain gauge-adjusted radar data. The results show that
temporal integration leads to improvements in evaluation scores, especially for
heavy rain intensities, by up to +62%. However, this integration leads to a
decreased applicability for the detection of high-intensity rainfall events because
they tend to be short in duration.

Introduction

Due to the importance of rainfall in the global water cycle
and all aspects of human life, measuring or estimating it in
time and space as accurately as possible is an obvious neces-
sity (Thies, 2008). Rainfall events can trigger floods, which
are one of the most frequent and widespread causes of eco-
nomic and human loss from natural hazards (Munich Re
Group, 2005). For example, severe floods recently occurred
in France (Atlantic coast; March 2010), Great Britain (North
of England, Scotland, Wales; November 2009), and Germany
(Saxony; August 2010). These events illustrate the need for
real-time rainfall estimates for nowcasting and short-range
forecasting of possible flood risks. There is increasing inter-
est in obtaining these estimates because of the growing
evidence of climate change associated with an increased
frequency of high-intensity rainfall events and reduced
return periods of such events (IPCC, 2007). This trend is
likely to continue to intensify in the future, both locally in
Germany and globally (Munich Re Group, 2005; Franke and
Bernhofer, 2009). As it will result in concomitant higher flash

J Flood Risk Management 5 (2012) 175-186

flood risks in small- and medium-sized mountainous catch-
ments, information on rainfall distribution in space and
time is essential for the management of flood risks. Flash
floods are defined as flooding events predominantly caused
by short, convective, rainfall events over small- and medium-
sized catchments that induce a rapid hydrological response
with water levels peaking in a few hours or less and accord-
ingly short lag times of mostly less than 6 h (Collier, 2007;
Borga et al., 2009; Marchi et al., 2010). Flash flood inducing
storms are mostly associated with convective cells or
mesoscale convective systems with space—time scales of
10-1000 km* and <1-30 h (Borga et al., 2008). Studies on
spatial and temporal rainfall aggregation showed that aggre-
gation leads to dampened mean intensities, to smoothed
variability and to significant rainfall volume errors (Sangati
etal., 2009; Anquetin et al., 2010). Precipitation can be
measured by rain gauges or estimated by weather radar and
satellites. Each of these systems has advantages and disad-
vantages. Rain gauges provide greater accuracy in the meas-
urement of point rainfall depths, while radar and satellite
techniques allow for greater spatial representation of rainfall
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events (Gorner ef al., 2011). In this study, the focus is on
satellite-based rainfall estimates that are derived from meas-
ured radiances that are reflected or emitted by the surface,
the clouds, or the atmosphere; these estimates represent
indirect rainfall measurements. A plethora of satellite-based
rainfall algorithms has been developed through the years
(see Petty, 1995; Levizzani et al., 2002; Gorner et al., 2011).
Most of these algorithms rely on relationships between
cloud-top temperatures and/or reflectances measured in the
infrared/visible range and rainfall probability and intensity
(Thies, 2008). Despite working well in the tropics, these algo-
rithms still show deficiencies in detecting extratropical
cyclones and mixtures of convective and stratiform precipi-
tation that are typical of frontal rain bands in the mid-
latitudes (Houze, 1993, 1997; Thies et al., 2008; Roebeling
and Holleman, 2009).

Part I (Gorner et al., 2011) of the current study addressed
the spatial integration of satellite-based extreme rainfall esti-
mates. This study represents a continuation of the work from
Part I, and the background and motivation are the same for
the two studies; however, where necessary, essential informa-
tion and basic facts are summarised briefly. As in Part I, four
fast-working algorithms (Kurino, 1997a; Vicente et al., 1998;
Ba and Gruber, 2001; Reudenbach, 2003) were tested to
determine their applicability for deriving rain intensities in
the mid-latitudes using Meteosat Second Generation (MSG)
data with a focus on flood-related rainfall events with short
lead times. Saxony (Germany) serves as the study region
again because it is prone to (flash) flooding due to its orog-
raphy and climate (SMUL, 2005). The algorithms were also
applied to the same 9 high-rainfall days selected in Part L. Six
different temporal resolutions and three additional types of
data filtering were used to quantify the improvement due to
temporal integration, the related loss of temporal informa-
tion, and the suitability of the applied algorithms for flood
risk management.

Case study region and data

As in Part I (Gorner ef al., 2011), the selected case study
region is the Free State of Saxony (Germany), which is char-
acterised by areas of low elevation as well as medium-
elevation mountains (Ore Mountains). As in Part I, the same
9 days with high convective rainfall events between May and
August 2006 (Figure 1) were selected.

This study used three types of data:

o satellite data: measured by the first satellite of MSG
(MSG-1) with a temporal resolution of 15 min and a
spatial resolution of approximately 3 km X 6 km over
Saxony (Schmetz et al., 2002)

e radar data: German Weather Service’s (DWD)
RADOLAN RW product with a temporal resolution of

© 2012 The Authors
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1h and a spatial resolution of 1km X 1 km (Bartels,
2004)
e radiosonde data: measured by the DWD at the Linden-
berg station every 6 h
See Gorner et al. (2011) for a more detailed description of
the case study region and the data.

Methods

The four satellite-based rainfall algorithms used in this study
were chosen to examine the applicability of existing satellite
rainfall algorithms for estimating rain intensities over
Saxony. The four algorithms used for this purpose are the
Operational GOES Infrared Rainfall Estimation Technique
[or Auto-Estimator (AE)] (Vicente etal., 1998); the
Enhanced Convective Stratiform Technique (ECST; Reuden-
bach, 2003); the GOES Multispectral Rainfall Algorithm
(GMSRA; Ba and Gruber, 2001); and the Kurino (1997a, b)
method (KM).

Detailed information on the algorithms and the MSG
channels used in this study may be found in the related
literature mentioned above and in Gorner etal. (2011),
respectively.

In the next section, the methods used to compare the
satellite and radar estimated rain intensities are described.

Comparing rain intensities estimated from radar
and satellite

The radar rainfall estimates represent the reference values
used to determine the accuracy of the satellite algorithms.
For comparability, the radar and satellite data had to be
reduced to a common temporal and spatial resolution of 1 h
and 3 km X 6 km, respectively (Gorner et al., 2011). Based
on this common resolution, further temporal integration
was possible.

To examine the effects of temporal integration, six rainfall
totals of 1h, 3h, 6h, 12h, 18 h, and 24 h were used. To
detect and include the largest individual intensities for each
total, running totals with a time lag of 1 h were calculated for
all temporally integrated periods except 24 h, as only 24
consecutive hours were addressed for each of the 9 sample
days. This method expands the data basis and covers the
largest individual intensities of all time integrations.

According to Reudenbach (2003) and Gorner et al.
(2011), the performance of the satellite rainfall algorithms
was examined using measures of goodness of fit and a range
of statistics of differences. By applying four fit scores, the
probability of detection (POD), false alarm ratio (FAR), criti-
cal success index (CSI), and Bias, proposed by Wilks (2006)
and described in Gorner et al. (2011), the spatial agreement
of the satellite- (P,,) and radar-based (P,,) rain intensities
was assessed for all temporal resolutions for the entire data
set.
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Satellite-based rainfall algorithms for estimating rainfall events
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For each temporal resolution, the statistical assessment
was analysed by comparing the various statistics with the
grid-wise absolute differences (Pay) of the rain intensities for
the 9 selected days. The differences were compared by calcu-
lating rain intensities in mm/h for each rainfall total assum-
ing a block rain model. This model is a rather simple but
commonly used model for the description and disaggrega-
tion of rain over a certain time period.

In this study, for each temporal resolution, the following
statistical values were calculated for the absolute differences
of the rain intensities: the mean (x), median (x,.s), mode
(%Xmoq), minimum (X,i,), maximum (x,..x), standard deviation
(0y), and correlation coefficient (r), 5% (xs,;) and 95%
(xo505) of the empirical distribution, as described in Part I
(Gorner et al., 2011). In addition, the following values were
calculated:
® 10% (x100) and 90% (x90e;)
® 25% (x250) and 75% (xs0)

o relative frequencies of the differences

Statistical analyses were performed for four different data
sets of differences Z; ., with radar P, satellite P, and dif-
ference Py pixels in mm/h. The data sets Z,. . , are computed
as:

1. Without filtering:

Pig = Poy — Paa (mm/h) {Pdiﬁ’ € Zl} (1)

2. Filtering for the rainfall area: the pixels with both a radar-
and a satellite-estimated rain intensity of 0.0 mm/h were
excluded.

Py = Puy = Pug (mm/h) if P,y =0N Py =0{Pyy € Z,} (2)

3. Filtering for an overlapping rainfall area: only pixels that
had both a radar- and satellite-based rain intensity of
>0.0 mm/h were used.

IDdiﬁ = Psm _Prad (mm/h) lf Psm >Oml)md >0 {l)dxjj‘ € Z3} (3)

4. Filtering for heavy rainfall: with regard to flood-related
issues, only the pixels that had a radar-based rain inten-
Sity = Pyuson Were considered; pixels of this intensity rep-
resent the minimum rain intensity that defines heavy
rainfall (Wussow, 1922):

Pyison(D) = 5D—(§)2 (mm/D) (4)

where D is the duration (min).
l)dzﬁ‘ = psat - Prud (mm/h) lf Pmd 2 PWussow {Ritﬁ‘ € Z4} (5)

The minimum rainfall intensities for each temporal reso-
lution are listed in Table 1 both as intensity Py in mm/D
and as the corresponding mean hourly intensity P, in
mm/h.

© 2012 The Authors
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Table 1 Minimum rainfall intensity Pwussow (Mm/D) and the corre-
sponding hourly intensity Pmean (mm/h)

D (min) 60 180 360 720 1080 1440
Pwussow (MM/D)  17.1 29.0 397 52.0 58.1 60.0
A Prean (mm/h)  17.1 9.7 6.6 4.3 3.2 2.5

Results and discussion

Evaluation scores

The results for the calculated evaluation scores for each algo-
rithm and temporal resolution are shown in Figure 2. As
expected, and in agreement with the results for spatial inte-
gration (Gorner ef al., 2011), temporal integration leads to
considerable improvements in each score. More precisely,
integration leads to increasing values of POD and CSI and
decreasing values of FAR. Concerning Bias, it leads to
decreasing values for AE and KM and increasing values for
ECST and GMSRA. Both trends indicate improvement
towards the perfect value of Bias (1.0). Improvements in
these four variables can be seen in the averages over
all algorithms related to the optimum score values:
POD =+39%, FAR =+45%, CSI =+53%, and Bias = +32%.
At the highest integration level, some scores tend to their
optimum values (Gorner et al., 2011). For example, POD
tends to 1.0 for AE and KM; FAR is nearly 0.0 for each
algorithm; CSI is 0.97 for AE and KM; and Bias is approxi-
mately 1.0 for AE and KM. For the four scores, AE and KM
show the best results at the largest integration level, while
ECST shows the poorest results except for the FAR score. The
highest degree of improvement for POD occurs with
GMSRA at +48% and for CSI with AE at +62%. For FAR and
Bias, the highest improvement is with the KM at +50% each.
However, there is almost no further improvement for the
24-h integration level. This tendency is most distinct for the
Bias with the AE, the GMSRA, and the KM; for the POD with
the GMSRA and the KM; for the FAR with each algorithm;
and for the CSI with the GMSRA (Figure 2). The reduced
improvement for the 24-h level results from the high spatio-
temporal variability of short intense rain events and the limit
of temporal integration to smooth out the errors of the
related satellite-based estimates.

Rain intensities

Certainly, the four algorithms show individual differences in
the results, but AE performed slightly better. As the differ-
ences were addressed already in Part I of this study (Gorner
et al., 2011), here, only the results for AE are presented in
detail, which are representative for all four algorithms.

The results for the entire data set are shown in Figure 3
and in the Tables 2 and 3. An improvement in the range of
the quantiles for each temporal integration step can be seen.
The ranges covered by 90% of the differences of the satellite-
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Figure 2 Scores related to the temporal resolution for (a) the probability of detection (POD); (b) the false alarm ratio (FAR); (c) the critical
success index (CS/); and (d) the Bias for the five temporal resolutions of the algorithms Auto-Estimator (AE), Enhanced Convective
Stratiform Technique (ECST), GOES Multispectral Rainfall Algorithm (GMSRA), and Kurino method (KM).

and radar-based rain intensities are 3.2 mm/h for the 1-h
resolution and 1.8 mm/h for the 24-h resolution.

On the right side of Figure 3, the related distributions of
the relative frequencies of the differences are shown only for
the most relevant and central range from —1.5mm/h to
1.5 mm/h because the frequencies are close to zero outside
this range (see the quantiles in Figure 3), and the range
covered by all differences is very large (e.g. from —168 mm/h
to 20.0 mm/h for 1 h; Table 2). At a difference of 0.0 mm/h,
the higher temporal resolutions of 1 h, 3 h, and 6 h show
distinct peaks in the relative frequencies of 0.5, 0.4, and 0.25,
respectively. For the range of small negative differences
(around —0.2 mm/h), an increase of the relative frequencies

J Flood Risk Management 5 (2012) 175-186

is observed over each integration step. Figure 3 shows less
distinct improvements for the percentile range and the
changes in the relative frequency distributions for integra-
tion levels >12 h, especially for the step from 18 h to 24 h. As
described above for the evaluation scores, this lack of
improvement can be attributed to the use of running rainfall
totals for the levels = 18 h.

The decreasing peak and the small shift to negative differ-
ences as the integration levels increase may indicate that the
satellite-based rain intensities perform best for higher tem-
poral resolutions such as 1h or 3h. In contrast to the
decreasing peak, Table 2 shows that the standard deviation
decreases with each integration step (from 1.79 mm/h to
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Figure 3 Quantile values (left) and the central range (from —1.5 mm/h to 1.5 mm/h) of the relative frequencies (right) of the differences
(mm/h) of the satellite and radar rain intensities for the entire data set of the Auto-Estimator.

Table 2 Statistics of the absolute differences (mm/h) of the satellite and radar rain intensities for the entire data set for Auto-Estimator

Temporal Number of

resolution (h) values (-) Xmin (Mm/h) Xmax (Mm/h) X (mm/h) o (mm/h) Xmod (MmM/h)
1 632 071 -168.4 20.0 -0.17 1.79 0.0
3 570 621 -56.4 12.5 -0.18 1.24 0.0

6 367 997 -18.7 8.3 -0.19 1.06 0.0

12 303 544 -14.3 5.0 -0.19 0.76 0.0

18 147 108 -9.2 3.3 -0.20 0.66 -0.2

24 27 586 -7.2 2.6 -0.17 0.58 -0.1

Table 3 Number of values, minimum correlation coefficient (rmin), maximum correlation coefficient (rm..), average correlation coefficient
(ravg), and the number of days with a significant r with a probability P = 95% applying a Pearson correlation t-test for the entire data set

for Auto-Estimator

Temporal Sample size Number out of 9 days with
resolution (h) per day (-) Fmin (=) Fmax (=) Favg (<) significant r (P = 95%)
1 76 800 0.04 0.49 0.21 9
3 70 400 0.03 0.62 0.29 9
6 60 800 0.02 0.56 0.28 9
12 41 600 -0.13 0.53 0.29 9
18 22 400 -0.14 0.47 0.21 8
24 3200 -0.65 0.50 0.1 9

Note: The correlation coefficients of the 9 days’ means are all statistically significant.

0.58 mm/h) and that the range covered by the differences de-
creases by a large amount (from 188.4 mm/h to 9.8 mm/h).
These decreases can be explained by two factors. First, the
block rain assumption leads to a smoothening of relative
peaks over the integrated time period and, second, the higher
variability of large rain intensities at smaller time scales.

The empirical distributions of the differences do not
follow a Gaussian distribution. For this reason, a fitting of
generalised normal distributions on the unfiltered data set of
differences is recommended for further analysis.

© 2012 The Authors

Additionally, the correlation coefficient r between P,y and
P.., (mm/h) was examined for the entire data set Z, for each
of the 9 selected days. The results in Table 3 show no con-
sistent characteristics over the integration steps. The
minimum correlation coefficient 7., decreases with the tem-
poral integration, but the 7, has no clear trend, varying
across the integration steps and has its highest value (0.62) at
the 3-h resolution. The correlation coefficients for the single
days cover large ranges, e.g. 24-h period ranges from —0.65 to
0.50. However, the correlation coefficients are statistically

J Flood Risk Management 5 (2012) 175-186

Journal of Flood Risk Management © 2012 The Chartered Institution of Water and Environmental Management

35



Satellite-based rainfall algorithms for estimating rainfall events

significant for all 9 days and for each temporal resolution
except for 18 h where only 8 days are significantly correlated.
The average correlation coefficients 7., are also all statisti-
cally significant but indicate weak correlations for all reso-
lutions. The average correlation coefficient is highest for 3 h
and 6 h with a value of 0.29 and lowest for 24 h with a value
of 0.11.

The results for the different time integrations do not
stratify according to their lengths because there is no trend in
the correlation coefficients (Table 3) or the distribution of
the relative frequencies (Figure 3).

To focus on performance under heavy precipitation and
possible flash flood-causing rain intensities, the data set, as
outlined earlier, was filtered in three steps. The results from
the analysis of the application at each filter step are presented
here following the same approach for the entire data set.
First, the data were filtered by excluding all pixels where the
radar- and satellite-estimated rain intensity was 0.0 mm/h,
which means the area the satellite algorithm correctly
labelled as receiving no rain. The quantiles of the remaining
differences are shown on the left side of Figure4. An
improvement in the range of the quantiles for each temporal
integration step can be seen. For the 1-h resolution, the 5%
and 95% quantiles span a wider range of 5.5 mm/h than for
the unfiltered data of 3.2 mm/h because there are more
excluded rainless pixels for higher temporal resolutions (a
direct result of small-scale convective rain events). In con-
trast, there are almost no rainless pixels at lower resolutions,
e.g. at 24 h (see Figure 1 and Gorner et al., 2011) because of
widespread and moving convection events or fronts over
longer time spans. Therefore, the range covered by 90% of
the differences for the 24-h resolution is the same as for the
unfiltered data (1.8 mm/h). The right side of Figure 4 shows
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the most relevant range (from —1.5 mm/h to 1.5 mm/h) of
the related empirical distributions of the relative frequencies
of the differences. The peaks at the 0.0 mm/h difference in
Figure 4 are omitted by this filter because these peaks were
mainly caused by the detection of rainless areas by each
algorithm. This result is more distinct for the high temporal
resolutions (1 h, 3h, and 6 h) due to the aforementioned
fact that fewer rainless pixels occur at lower temporal reso-
lutions. A bimodal of distribution remains for each resolu-
tion, with peaks both at low negative differences (near
—0.2 mm/h) and at low positive differences (near 0.2 mm/h).
The relative frequencies increase for the negative peak and
decrease for the positive peak over the temporal integration.
These trends mean that the satellite-based algorithms tend to
overestimate the actual rain intensity at 1 h and underesti-
mate it at 24-h resolution. The overestimation is due to the
overestimated spatial extent of the rain fields at higher tem-
poral resolutions. This decreases with the temporal integra-
tion. However, there is a slight tendency of underestimation
for each resolution. This can be seen in the 50% quantile
(median), which is at —0.1 mm/h for 1h and 3h and
—0.2 mm/h for the remainder of the integrations.

The associated statistics for this filtered data set can be
found in Table 4. The improved agreement of the satellite-
based rain intensity estimates by temporal integration is
indicated by a decreasing mean (X ), standard deviation (o),
and range (X — Xmin) Of the differences.

In the second step, the data set was filtered to retain only
pixels for which the radar- and satellite-based rain intensities
were >0.0 mm/h. Hence, only the areas where both systems
estimated rain are examined. In Figure 5, the associated
quantiles (left) and the relative frequencies (right) of the
remaining differences are shown. For the 1-h, 3-h, and 6-h
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Figure 4 Quantile values (left) and the central range (from —1.5 mm/h to 1.5 mm/h) of the relative frequencies (right) of the differences
(mm/h) of the satellite and radar rain intensities for the Auto-Estimator data filtered to remove the pixels with both radar- and

satellite-estimated rain intensities of 0.0 mm/h.
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Table 4 Statistics of the absolute differences (mm/h) of the satellite and radar rain intensities for the Auto-Estimator data filtered to
remove the pixels with both radar- and satellite-estimated rain intensities of 0.0 mm/h

Temporal Number of
resolution (h) values (-) Xmin (MmM/h) Xmax (Mm/h) x (mm/h) o (mm/h) Xmod (MM/h)
1 325001 -168.4 20.0 -0.33 2.44 0.1
3 360 067 -56.4 12.5 -0.29 1.55 0.1
6 288 003 -18.7 8.3 -0.25 1.19 -0.1
12 273703 -14.3 5.0 -0.21 0.80 -0.1
18 143 866 -9.2 3.3 -0.20 0.67 -0.2
24 27 166 -7.2 2.6 -0.17 0.59 -0.1
49 ——0.05th and 0.95th quantiles 0.7 4 ——1h
] ----0.10th and 0.90th quantiles ——3h
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Figure 5 Quantile values (left) and the central range (from —10 mm/h to 10 mm/h) of the relative frequencies (right) of the differences
(mm/h) of the satellite and radar rain intensities for the Auto-Estimator data filtered to analyse only the pixels with both radar- and

satellite-based rain intensities >0.0 mm/h.

resolutions, the 5% and 95% quantiles span a wider range of
6.2 mm/h, 4.7 mm/h and 4.1 mm/h, compared with the first
filter, respectively. For the lower resolutions, the range
becomes close to that of the unfiltered data and the data
filtered using the first method. This result is caused by the
fact that with decreasing temporal resolution, an increasing
number of pixels show rainfall (see above). The range is also
more negative (up to —4.5 mm/h), which indicates that the
satellite-based rain intensities have a larger underestimation
than overestimation. This supports the finding that satellite-
based rainfall algorithms smooth precipitation fields and
tend to overestimate low or zero radar rain intensities and
underestimate the high and extreme radar rain intensities.
The relative frequencies (Figure 5, right) also show improved
agreement with temporal integration for this filtering
method. The highest relative frequency is at 0.0 mm/h for
each temporal resolution, which increases from 0.34 (1 h) to
0.61 (24 h). Furthermore, over the integration, there is a
decrease in the relative frequencies of the negative differ-
ences from —6.0 mm/h to —1.0 mm/h. These results are con-
firmed by the associated statistics in Table 5 that show the
same characteristics as described above for Table 4.

© 2012 The Authors

Finally, the data were filtered using a third method
designed to examine heavy rain intensities with the potential
to cause flash floods. For this purpose, only the pixels with a
radar-based rain intensity = Py.ow (Table 1) were used. For
the remaining differences (mm/h), Figure 6 shows the quan-
tiles (left) and the distributions of the relative frequencies
(right). Both parts of Figure 6 reveal that heavy rain inten-
sities are underestimated by the satellite-based algorithm for
each temporal resolution. The underestimation is very large
for the two highest temporal resolutions. This underestima-
tion is indicated by the peaks of the relative frequencies of
the differences at—17 mm/h (1 h) and -9 mm/h (3 h) and by
the range covered by 90% of the differences of 39.7 mm/h
(I'h) and 29 mm/h (3 h).

The range between the x5 and the xs percentiles
decreases with each integration step, and it spans only
3.8 mm/h at the lowest time resolution (24 h). The greatest
improvement in the quantiles is observed for the temporal
integration step from 3h to 6 h. However, the greatest
improvement for the peaks of the relative frequencies is
observed for the integration from 1 h to 3 h. This discrep-
ancy is caused by the fact that for the integration from 1 h to
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Table 5 Statistics of the absolute differences (mm/h) of the satellite and radar rain intensities for the Auto-Estimator data filtered to
analyse only the pixels with both radar- and satellite-based rain intensities > 0.0 mm/h

Temporal Number of
resolution (h) values (-) Xmin (MmM/h) Xmax (Mm/h) x (mm/h) o (mm/h) Xmod (MM/h)
1 125 358 -166.7 20.0 —-0.80 3.03 0.0
3 211 047 -56.4 12.5 -0.47 1.79 0.0
6 207 584 -18.7 8.3 -0.31 1.29 0.0
12 235597 -14.3 5.0 -0.23 0.83 0.0
18 136 725 -9.2 3.3 -0.21 0.68 -0.2
24 26 652 -7.2 2.6 -0.17 0.59 -0.1
1 —— 0.05th and 0.95th quantiles 0.7 4 - 1h
10 ----0.10th and 0.90th quantiles | —3h
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v | 0.50th quantile (median) - 12h
] 0s ~———18h
10+ 3 1 ! I \ ——24h
< | >
£ g 04 I
E -20 g Il
3 . 3 |
g -30 - ‘; L —T “w /H \
g ] £ A
0O 40 2 b2 t ‘f ~w
: /A
| A\ /4 \
-50 0.1 !
7 /N \‘
4 \ //\ // ( \
-60 T T T T 1 0.0 S (I T - T =)
1 3 6 12 18 24 -30 -25 -20 -15 -10 -5 0 5
Temporal resolution (h) Difference (mm/h)

Figure 6 Quantile values (left) and the central range (from —30 mm/h to 5 mm/h) of the relative frequencies (right) of the differences
(mm/h) of the satellite and radar rain intensities for the AE with only the pixels containing a radar rain intensity =Puwussow-

Table 6 Statistics of the absolute differences (mm/h) of the satellite and radar rain intensities for the Auto-Estimator with only the pixels

containing a radar rain intensity =Puwussow

Temporal Number of

resolution (h) values (-) Xmin (MmM/h) Xmax (Mm/h) X (mm/h) o« (mm/h) Xmod (MmM/h)
1 588 -168.4 -1.1 -24.94 18.58 17.6
3 590 -56.4 -3.5 -13.93 8.99 -9.2
6 267 -18.7 -0.3 -7.7 3.05 -6.8

12 267 -14.3 -1.1 -6.35 2.53 -5.2

18 231 -9.2 -0.8 -4.27 1.58 -3.1

24 86 -7.2 -0.7 -3.20 1.17 -2.6

3 h, the underestimation decreases strongly (see relative
frequency peaks), but extreme rain intensities of up to
57.1 mm/h (£A171.3 mm/3 h) are strongly underestimated
by the satellite-based algorithm, which reports rain intensi-
ties only up to 7 mm/h (221 mm/3 h).

The large underestimation arises partly because the AE
has a fixed upper limit intensity of 72.0 mm/h for the 1-h
resolution, and for the integration from 3 h to 6 h, the total
number of values decreases from 590 to 267 (Table 6). Addi-
tionally, at the 6-h level, the largest intensities reach a
maximum of 18.8 mm/h (2£112.8 mm/6 h), while the
satellite-based algorithm delivers rain intensities of up to

J Flood Risk Management 5 (2012) 175-186

6.6 mm/h (2£39.6 mm/6 h) because of the overall lower dif-
ferences with increasing temporal integration. There are two
causes of this result. First, assuming a block rain as men-
tioned in section ‘Methods’, the mean minimum rain inten-
sity per hour P, (mm/h) that defines heavy rainfall is
decreasing for increasing rain event durations D (see
Table 1). Second, the large hourly underestimation of the
radar intensities by the satellite can be compensated for
during the course of 1 day and by the summing up of hourly
intensities. Therefore, the distributions of the relative fre-
quencies show an increased (from 0.17 to 0.64) and nar-
rowed peak shifting from approximately —17.0 mm/h (1 h)
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to approximately —2.0 mm/h (24 h). This behaviour and the
explanation for it are also confirmed by the statistics in
Table 6 that show a strongly decreasing span, mean, and
standard deviation of the remaining differences.

The smaller improvements in the percentile range, the
distribution of the relative frequencies, and the statistics for
the integration levels > 12 h, especially for the step from 18 h
to 24 h, can again be traced back to the use of running
rainfall totals for the temporal resolutions from 3 h to 18 h.
Thus, the sample size per day is greatly reduced from the
18-h resolution (22 400) to the 24-h resolution (3200).
These smaller improvements and the reduction in sample
size can be seen in each filtered and unfiltered data set.

Consistent with the results from Part I, the AE and the KM
delivered the best results of the four tested algorithms.
However, these two algorithms still have deficiencies in cor-
rectly detecting the amount and location of radar rain inten-
sities. Despite these limitations, this work provides some
support for the use of these algorithms as the basis for the
Satellite Application Facility’s Convective Rainfall Rate
product (Vicente, 2001; AEMET, 2011).

Effects of temporal integration

The results presented here show that each temporal integra-
tion step leads to increased agreement in the evaluation
scores as well as for the analysed statistical differences. This is
most distinct for heavy rain intensities. Therefore, the best
results are achieved for the lowest resolution tested (24 h).
However, this resolution is not suitable for assessing flood
risks for convective rainfall events in mid-latitude regions
because of their short time scales and high intensities.
Higher resolutions (1 h and 3 h) would be suitable for such
rain events, but the rainfall algorithms performed poorly in
reproducing both the rainfall intensities and the spatial
extent of the rainfall. This is highlighted by the fact that in
the mid-latitudes satellite-based rain intensities are mostly
used for climatological purposes such as daily or monthly
rainfall totals and means (e.g. the data sets provided by the
Geostationary Satellite Precipitation Data Center of the
Global Precipitation Climatology Project).

In addition, the present study shows that satellite-based
rainfall algorithms smooth out the rain intensities by a
general underestimation of high-rain intensities and a
partial overestimation of lower rain intensities. Other studies
have also reported this finding (Negri and Adler, 1993;
Scofield and Kuligowski, 2003; Gorner et al., 2011).

Summary and conclusions

Some aspects of the general weakness associated with
satellite-based rainfall estimates for flash flood-relevant rain
intensities have already been described in Part I (Gorner
etal.,2011).

© 2012 The Authors
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This includes the difficulties in correct geo-referencing of
the satellite data, the weak relation between temperatures
and reflectances of cloud tops and rainfall reaching the
surface, the specific rainfall characteristics in mid-latitude
regions, and the fact that the applied algorithms were not
developed for MSG or the mid-latitudes (except the ECST).
In Part I, specific measures for reducing these uncertainties
were also described. These measures contain the combina-
tion of data from different systems, inclusion of additional
data such as wind and orography, and the customisation of
the algorithms for specific target regions and satellite data
sets.

This study examined the ability of four satellite-based
rainfall estimates to detect and monitor flood-related heavy
rainfall events in the mid-latitudes by means of highly
resolved MSG-1 data. Nine high-rainfall days over a flood
prone region in the low mountain ranges of Saxony
(Germany) were investigated. The analysis compared satel-
lite with radar rain intensities for six temporal resolutions
and three different types of data filtering to investigate the
applicability of these satellite algorithms and satellite-
derived rainfall intensities for flood risk management.

The main conclusions of this work are summarised
below:

1. Temporal integration leads to improved agreement
between satellite-based rain intensity estimates and
radar-based rain intensities, especially concerning heavy,
possible flood-triggering events. However, integration
causes a loss of temporal information and reduces the
ability of the satellite estimates to assess spatio-temporal
rainfall distributions and related flood risks, especially for
short-time scale rain events.

2. Satellite-based rainfall estimates are best used at lower
temporal resolutions, as they show the best agreement
with radar estimates at higher temporal integration.

3. Good agreement among the evaluation scores is only
achieved at low temporal resolutions of at least 12 h. This
is longer than the typical short-duration convective rain
events in the mid-latitudes that are associated with flash
flooding risk.

4. For higher temporal resolutions of 1 h or 3 h, which are
necessary for the nowcasting of heavy convective and
flash-flood-related rainfall events, the results demon-
strate that the use of satellite-based precipitation esti-
mates is inappropriate.

5. Current satellite rainfall algorithms smooth the precipi-
tation field by underestimating high-rain intensities and
by overestimating low-rain intensities (Gorner et al.,
2011). The algorithms also suffer because fixed rain
intensities are used for upper limits.

6. The AE and the KM delivered the best results for both
rain intensities and spatial distributions over all temporal
integration steps.
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Rain intensities and rain areas derived from passively
measured satellite data are currently not suitable for appli-
cations in flood risk management for small-scale (flash)
flood-prone, low-range mountains in the mid-latitudes.
However, these data may be useful as an indicator of large
rainfall totals over periods of 12 h to several days or when
rain gauge and radar data are missing and the size of the
catchment is large (Gorner et al., 2011).

There are at least two options to improve the suitability of
satellite-based rainfall estimates. On the one hand, resulting
from the findings of this study, it appears possible to derive
statistically sound correction factors for extreme rainfall
intensities. These factors would consider the degree of satel-
lite underestimation of intensive rainfall and its related
probability so that the corrected satellite rain intensities
would agree with the radar-estimated rain intensities. On the
other hand, it seems necessary to revisit the algorithms and
to start with first principles to develop algorithms suitable to
the specific rainfall characteristics in mid-latitude regions.
However, the challenge is large due to the complexity of
mid-latitude rainfalls, as advective and convective rain
events can occur simultaneously. Also, additional effects of
orography and wind are difficult to assess.

Such further work is recommended for satellite data
application to (extreme) rainfall climatology regardless of its
use for flood risk management. Such studies become increas-
ingly feasible as the sample size of extreme events covered by
satellite and radar is continuously increasing.
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Abstract

The algorithm for and results of a newly developed multivariate non-parametric model, the Euclidean distance model (EDM), for
the hourly disaggregation of daily climate data are presented here. The EDM is a resampling method based on the assumption that
the day to be disaggregated has already occurred once in the past. The Euclidean distance (ED) serves as a measure of similarity to
select the most similar day from historical records. EDM is designed to disaggregate daily means/sums of several climate elements
at once, here temperature (7), precipitation (P), sunshine duration (SD), relative humidity (H), and wind speed (WS), while
conserving physical consistency over all disaggregated elements. Since weather conditions and hence the diurnal cycles of climate
elements depend on the weather pattern, a selection approach including objective weather patterns (OWP) was developed. The
OWP serve as an additional criterion to filter the most similar day. For a case study, EDM was applied to the daily climate data of
the stations Dresden and Fichtelberg (Saxony, Germany). The EDM results agree well with the observed data, maintaining their
statistics. Hourly results fit better for climate elements with homogenous diurnal cycles, e.g., 7 with very high correlations of up to
0.99. In contrast, the hourly results of the SD and the WS provide correlations up to 0.79. EDM tends to overestimate heavy
precipitation rates, e.g., by up to 15% for Dresden and 26% for Fichtelberg, potentially due to, e.g., the smaller data pool for such
events, and the equal-weighted impact of P in the ED calculation. The OWPs lead to somewhat improved results for all climate
elements in terms of similar climate conditions of the basic stations. Finally, the performance of EDM is compared with the
disaggregation tool MELODIST (Forster et al. 2015). Both tools deliver comparable and well corresponding results. All analyses
of the generated hourly data show that EDM is a very robust and flexible model that can be applied to any climate station. Since
EDM can disaggregate daily data of climate projections, future research should address whether the model is capable to respect and
(re)produce future climate trends. Further, possible improvements by including the flow direction and future OWPs should be
investigated, also with regard to reduce the overestimation of heavy rainfall rates.

1 Introduction investigation of climate-related extremes and the changes in
climate statistics are an important and relevant topic of research.
Climate data with high temporal resolution are needed in a A common problem is that often only daily observations

multitude of hydrological models (e.g., WaSim-ETH, MIKE  are available with sufficient spatial resolutions and sufficiently
FLOOD) or ecological models (e.g., SWAT-CN, GASFLUX)  long time series since hourly measurements are more difficult,
and for climate research and analysis. Additionally, the  expensive, and high-maintenance. Hence, hourly time series
are often not available and do not have appropriate lengths or
contain gaps due to failures of the measuring equipment. To
adapt to this lack of data, there are several methods to gener-
< Christina Gérner ate, complete, or extend the hourly time series of different

christina.goerner @tu-dresden.de climate elements. However, most of them are designed for
the disaggregation of only one or two climate elements focus-
ing on the disaggregation of precipitation as in e.g., Glasbey

Institute of Hydrology and Meteorology, Technische Universitét

Dresden, Tharandt, Germany et al. (1995), Giintner et al. (2001), Lisniak et al. (2013), Lee

2 Department of Climate, Air, Noise and Radiation, Saxon State Office and Jeong (2014), and Lu et al. (2015). Only a few models
for Environment, Agriculture and Geology, Dresden, Germany have been developed for the disaggregation of more than one

3 TROPOS Leibniz Institute for Tropospheric Research, climate element, such as in Debele et al. (2007), Mezghani and
Leipzig, Germany Hingray (2009), or Kim et al. (2016). These disaggregate daily
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temperature data among others. Temperature is the second
most disaggregated climate element.

All disaggregation approaches are based either on paramet-
ric or non-parametric methods. For example, the method of
Lisniak et al. (2013) is a parametric one for the temporal
disaggregation of daily data based on multiplicative random
cascades (MRC) as described by Olsson (1998) and Giintner
et al. (2001). The method of Kim et al. (2016) is also a para-
metric one for statistical downscaling based on generalized
linear modeling (GLM), as described in McCullagh and
Nelder (1989). Beck and Bardossy (2013) developed an indi-
rect downscaling method based on a fuzzy logical
classification and Bardossy (1998) used simulated annealing
for the simulation of precipitation time series. Examples of no-
nparametric approaches include the methods of Mezghani and
Hingray (2009), Sharif et al. (2013), Lee and Jeong (2014),
and Lu et al. (2015). These three stochastic approaches are
based on K-nearest neighbor resampling (KNR).

The Euclidean distance model (EDM) presented here is
also based on a non-parametric resampling method. It is able
to disaggregate daily mean/sum values of temperature, precip-
itation, sunshine duration, relative humidity, and wind speed,
filling the need for a model that generates hourly data for a
combination of climate elements and with a physical consis-
tency over all disaggregated climate elements.

The EDM differs from the KNR mainly in the kind of a priori
information considered in the classification of the object of in-
terest into preexisting classes. The KNR is based on (i) a suitable
distance metrics (e.g., Euclidean distance, Manhattan distance,
Mahalanobis distance) and on (ii) the consideration of the total
number of objects that have been divided into classes. Hence,
besides the distance measure in the feature space, also, the a
priori probability with which an object can be expected in one
of the preassigned classes is considered. This is quite similar to a
maximum likelihood approach. However, for classes with only
a small number of objects, the signal-to-noise ratio and with it
the goodness of classification can decrease. This may happen,
especially, when the underlying data are not equally distributed
or the sample size of the data is too small. Similar to KNR, also,
the EDM considers a priori information in the disaggregation
process, but here in a kind of memorization of historically sim-
ilar events, known as the method of analogous cases.

The EDM is based on the assumption that the day to be
disaggregated (hereafter called disaggregation day) has occurred
at least once in the past with more or less the same weather
conditions. In the EDM approach, the minimum distance serves
as the pointer to the most similar day in the historical data set. As
disaggregation is an under-determined task, observations, phys-
ical model assumptions, and arguments of plausibility are re-
quired for its solution. The choice of the distance metrics is
arbitrary to some degree. Due to a lack of sufficient a priori
information required for the determination of more sophisticated
metrics (e.g., employing covariance matrices), the Euclidean
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distance is used as a sufficiently simple and robust distance
measure for the present purposes. The consideration of the meth-
od of analogous cases has the important advantage of reducing
the degrees of freedom in the disaggregation procedure by in-
cluding direct observations.

Since the EDM works without any calibration or
preassigned classifications, it disaggregates each single day
independently and flexible, and potential changes in the clas-
sifications and climate variations are no limitation for the
EDM. Further, it is a location-independent model that can be
applied to any other region or station. Only observed hourly
and corresponding daily data are required. And also, daily
values outside the observed range of cases can therefore be
disaggregated since only a diurnal cycle of the past is trans-
ferred and due to applied quotients, the daily values are con-
served. But if there are not yet observed characteristics of
diurnal cycles, e.g., caused by climate change, the EDM is
unable to generate this as it always provides more or less a
copy of the past.

The structure and functionality of EDM are explained here.
And its performance is examined by means of the data sets
recorded at the two climate stations Dresden and Fichtelberg
over the period 1995-2014. Both stations are located in the
Free State of Saxony (Germany). Dresden is a lowland station,
and Fichtelberg is a mountain station with a more extreme
climate. Finally, the EDM is compared to the functionality
and performance of the disaggregation tool MELODIST of
Forster et al. (2016).

2 Material
2.1 Case-study region

The Free State of Saxony serves as the case-study region for
this work. Saxony is a federal state within Germany, covering
approximately 18,400 km? between 11.9°-15.0° E and 50.2°—
51.7° N. Its topography is flat in the North and West, with
low-range mountains in the South. The Ore Mountains
(Erzgebirge) peak at the Fichtelberg, with heights of up to
1200 m a.s.l. Figure 1 shows the geographical locations as
well as the topography of Saxony.

Saxony lies in the westerly wind zone of the mid-latitudes
and within the transition region between the maritime climate
of Western Europe and the continental climate of Eastern
Europe. Its climate is dominated by the North Atlantic and
the orientation of the low-range mountains due to the
governing weather patterns (SMUL 2008).

Due to its climatic characteristics, the SW-NE-oriented Ore
Mountains and the effects of climate change, Saxony is prone
to heavy rainfall events, especially in mountainous regions with
many small and medium catchments and short flood response
times (SMUL 2005). The climate change also leads to water



Multivariate non-parametric Euclidean distance model for hourly disaggregation of daily climate data

243

Fig. 1 Geographic location and
topography of the Free State of
Saxony, including the
geographical location of the six
selected DWD climate stations
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balance changes and related problems concerning water avail-
ability, distribution, storage, and usage. Therefore, water bal-
ance, flood modeling, and risk management are important
fields of research in Saxony. Various models, like rainfall-run-
off-models, water balance models, or flood forecasting models,
exist for the river catchments in Saxony. The model WAVOS
(Burek and Rademacher 2007) is used for the water level fore-
casting of the River Elbe. To simulate the water balance of the
Mulde River catchment, the model ArcEGMO (Pfiitzner et al.
2007; Schumann 2009) was calibrated. The model WaSiM-
ETH (Schulla and Jasper 2007) is used to estimate the water
balance of the Weiler Schops River catchment. In addition, for
the rainfall-runoff-modeling of the Grofle Rder River catch-
ment, the model HBV (Bergstrom 1992) was adapted. All these
models need highly resolved input data of temperature and
precipitation. The models ArcEGMO and WaSiM-ETH need
data of global radiation or sunshine duration, wind speed, and
vapor pressure or relative humidity.

2.2 Data
2.2.1 Observed climate data

For this study, the six climate stations Chemnitz, Dresden-
Klotzsche, Fichtelberg, Gorlitz, Leipzig/Halle, and Plauen of
the German Weather Service (DWD) were selected as they
belong to the same macro-climatic transition zone between
the maritime influenced climate in Western Europe and the
continental climate in Eastern Europe. Further, they also be-
long to the same meso-climatic zone as they are close to each
other (within a radius of 125 km; Fig. 1) and within one fed-
eral state. Due to meso-climatic variations, Kronenberg et al.
(2015) classified four regions of similar climates for Saxony.
The climate stations used for this study spread over all these
four regions. It is recommended to pool only stations of the

47

same climate region, but this would reduce the available cli-
mate data significantly, especially concerning hourly recorded
data. The consequences of pooling stations of different cli-
mate regions are discussed in Section 4.

For the comparison of the EDM with the disaggregation
tool MELODIST of Forster et al. (2016), the data of the cli-
mate station De Bilt are used. This station is located in the
Utrecht province, Netherlands, about 650 km to the west of
Dresden. De Bilt belongs to the maritime influenced macro-
climatic zone of Western Europe.

The coordinates and altitudes of all climate stations are
listed in Table 1. Figure 1 shows the geographic locations of
the Saxon stations. The observed hourly and corresponding
daily data of the Saxon climate stations were provided by the
DWD and cover the time period between September 1995 and
August 2014. The datasets include the mean temperature
Trnean [°C], precipitation P [mm], sunshine duration SD
[min], relative humidity »H [%], and wind speed WS [m/s] at
10 m height. Additionally, the daily data also include the
minimum and maximum temperature 7,,;, [°C] and T,
[°C]. All of the daily data besides the precipitation data refer
to 00:00 CET and 23:59 CET, where CET = UTC + 1. The
reference time of the daily precipitation data spans between
06:51 CET and 06:50 CET.

The hourly and daily recorded data of De Bilt were provid-
ed by the KNMI and cover the period between January 1981
and December 2014. The datasets include the same climate
elements as the datasets of the Saxon stations.

A basic requirement of the model performance is the phys-
ical consistency between the hourly and the corresponding
daily mean/sum data, i.e., the re-aggregation of hourly data
should not result in deviations from the observed mean/sum
data. To ensure this, the data were corrected for missing values
in an initial step. If hourly values were missing in the data
records, the corresponding gap in the model input data were
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Table 1  Name, geographical location, altitude, mean annual temperature [°C], mean annual precipitation [mm/a], and mean annual sunshine duration
[h/a] (1961-1990) of the seven used climate stations

Climate station Code Latitude [° N] Longitude [° E] Altitude [m a.s.l.] T[°C] P [mm/a] SD [h/a]
Chemnitz 853 (DWD) 50.79 12.87 418 8.6 690 1533
Dresden-Klotzsche 1048 (DWD) 51.13 13.75 222 8.7 735 1659
Fichtelberg 1358 (DWD) 5043 12.95 1213 29 1231 1517
Gorlitz 1684 (DWD) 51.16 14.95 238 8.2 722 1718
Leipzig/Halle 2932 (DWD) 5143 12.24 131 9.1 635 1683
Plauen 3946 (DWD) 50.48 12.13 386 7.5 634 1471

De Bilt 260 (KNMI) 52.10 5.18 2 10.1 887 1602

encoded as —999.0 and the related daily data were hence not
used for disaggregation.

2.2.2 Objective weather pattern data

As an additional characteristic, the daily objective weather
pattern (OWP) classification of the DWD is used in the pres-
ent study. It consists of 40 pattern classes encompassing all
atmospheric conditions. Each of these classes represents a
certain combination of the general flow direction (5 mean
flow directions, e.g., northwest), the synoptic flow pattern at
two tropospheric pressure levels (four categories: cyclonic/
anticyclonic in 950 hPa/500 hPa), as well as the humidity of
the atmosphere (two categories: humid/dry), resulting in alto-
gether 5 x4 x2=40 different OWP classes. For the case
study, only the synoptic flow patterns at the two atmospheric
pressure levels and the humidity of the atmosphere are used.
The mean flow direction was not taken into account, due to
very high effort and the lack of a semi-automated procedure to
recognize the mean flow direction from weather charts.

The weather pattern is derived once a day at 12:00 CET,
covers the territory of Germany and its adjacent regions, and is
available since the 1st July 1979. The derivation of this classifi-
cation is described in detail in Bissolli and Dittmann (2003). The
OWP data are freely available online at the website of the DWD.

3 Methods

The Euclidean distance (ED) is used as a robust measure of
similarity between two individual sets of daily climate data.
The aim is to find the most similar analogous reference day,
called “basic day” (Dp) from records of historical weather
events and to transfer its diurnal cycle to the “disaggregation
day” (Dp). The assignment of an actual event to a historical
analog is the essence of the method of “analogous case”.

First, the structure of the ED model (EDM) is presented
schematically in Fig. 2 and outlined below; afterwards, the
methods to compare the disaggregated and observed hourly
data are described.

@ Springer

3.1 Model structure
3.1.1 Setup of the data base

In the first step, the daily datasets of the basic climate stations
and all daily data that have to be disaggregated are imported
into EDM. Additionally, for each station, an accompanying
dataset containing the time of the sunrise and sunset and the
resulting length of the day (LOD) for each Julian day of a year
is imported as a look-up table.

During the import, each basic day is assigned to each of the
three incremental refining weather pattern groups WPG-1,
WPG-2, and WPG-3:

—  WPG-1: subdivision with different flow patterns in the
950 hPa level (cyclonic/anticyclonic) providing two
classes

—  WPG-2: subdivision with different flow patterns in the
950 hPa level (WPG-1) and additional humidity of the
atmosphere (humid/dry), providing four classes

—  WPG-3: subdivision with different flow patterns in the
950 hPa level (WPG-1), humidity of the atmosphere
(WPG-2) and additional with different flow patterns in
the 500 hPa level (cyclonic/anticyclonic) providing eight
classes

To eliminate the units of the climate elements and to
achieve a dataset with an arithmetic mean of 0.0 and an em-
piric standard deviation of 1.0, a Studentization is done for the
daily data of each element and over all stations by

XE—XE

(1)

iE
Oxp

where zz is the Studentized daily value of a climate element E,
xg is the daily value to be standardized, Xz is the arithmetic
mean of the climate element over all basic stations including
the station to be disaggregated, and oy, is the standard devia-
tion of the element over all basic stations including the station
to be disaggregated.
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Fig.2 Flowchart of the Euclidean
distance model
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The recorded hourly datasets of some climate elements,
e.g., precipitation and relative humidity, are not normally dis-
tributed and it is not assumed to obtain normality by this
Studentization.

Afterwards, to make the climate elements comparable
among each other, all Studentized data are standardized by
dividing each Studentized daily value, zz , by the range of
all the data:

ZE
min zg(j)~ max z¢(/)
J=1.i j=l.i

lE, =

2)

where zg, is the standardized-Studentized daily value of a

climate element E, zz is the Studentized daily value, and m} ‘
J=1.i

z£(j) and Max z; () are the minimum and maximum values
j=li

determined over all climate elements, all stations and all days.
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The following steps are carried out separately for each dis-
aggregation day Dp.

3.1.2 Selection of an analogous day

Ifthe data of the station to be disaggregated are within the pool
of basic days DB (i.c., for validation as shown in Section 4.3),
the specific day DD is excluded to avoid a disaggregation of a
day with its own data. The performance appeared better when
the three preceding and the three subsequent days next to DD
are excluded.

In the first selection step, all basic days Dy in the pool are
filtered according to two constraints. If the Dj, is a precipita-
tion day with P>0.0 mm, the most similar Dp has to be a
precipitation day, too, and if Dp has a sunshine duration >
0.0 h, the most similar D has to have a sunshine duration of >
0.0 h, too.
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Afterwards, the standardized-Studentized daily data of the
selected analogous Dj are used to calculate the similarity met-
rics ED as follows:

ED = \/(ZElLE—ZEls,D)2 + (15253—152&1))2 + ...+ (ZEI'SB_ZEI'SYD)Z (3)
where z, is the standardized and Studentized daily value, sub-
script £ denotes the climate element, index i is the identifier of
the climate element (here e.g., £/ means the maximum tem-
perature), subscript B refers to the basic daily data, and sub-
script D to the daily data to be disaggregated.

The ED is calculated only for all those filtered Djp that con-
tain no missing values in the data of the climate elements that
are used for the £D calculation or that have to be disaggregated.

The subsequent selection of the most similar Dy is based on
the minimization of ED values.

The model performs two different stepwise selection ap-
proaches to filter out the most similar day, both comprising
five steps.

The first selection approach is stepwise filtering the Dy ap-
plying a successively refined LOD interval (Selection 1, S7):

1. LOD=2 h ofthe Dp
2. LOD=1 h ofthe Dp
3. LOD =30 min of the Dp
4. LOD =15 min of the Dp,
5. Same LOD of the Dp

If more than one Dy is left after a selection step, the next
step is performed. Otherwise, if only 1 day is left, this day is
adopted the most similar day and hence, is used as Djp for the
disaggregation (Dpp). In addition, if no Dy is left after a se-
lection step, the most similar day is selected from all the Dy
that were remaining after the prior step. Then, the most similar
Dy will be used as Dy, and has a minimum distance (ED,;,).

The second (alternative) selection approach is stepwise filter-
ing the DB by applying the successively refined LOD (cf. SI)
and a successively extending OWP criteria (Selection 2, S2):

1. LOD =2 h of the D, and:

1.1. Exact same WP
1.2. WPG-3
1.3. WPG-2
1.4. WPG-1
2. LOD=1 h ofthe Dp and:
2.1. Exact same WP
2.2. WPG-3
2.3. WPG-2
24. WPG-1
3. LOD =30 min of the Dp and:
@ Springer
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3.1. Exact same WP
3.2. WPG-3
3.3. WPG-2
4. LOD +15 min of the Dy, and:
4.1. Exact same WP
42. WPG-3
5. Same LOD of the Dp and:
5.1. Exact same WP
5.2. WPG-3

If no Dy is left after a selection step, the next step is per-
formed. If only 1 day is left, this is adopted the most similar day
and hence is used as Dp for the disaggregation (Dpp). In addi-
tion, if more than one Dy is left, the most similar Dy will be
used as Dgp and has a minimum distance ED,,,;, as written in
Eq. 3.

It is possible that there is more than one Dy with ED,,;,,
especially when only a few or even only one element is used
for the ED calculation. In this case, the Dpp, is selected by
means of a uniformly distributed random factor.

3.1.3 Adaptation of the selected hourly meteorological
conditions

To ensure self-consistency between aggregated and disaggre-
gated data, an intermediate adjustment step is necessary. Prior
to application to Dp, the diurnal cycle of the most similar Dy is
rescaled. The rescaling procedure starts with the calculation of
the ratios of the daily values of each climate element besides
temperature; for temperature, the difference is calculated.
These two factors are equal to

=5
AT = Tp-Tg

R (4)

(5)

where R is the ratio of the climate element E, Ep, is the daily
value of the climate element £ that has to be disaggregated, Ep
is the basic daily value of the climate element £ of the most
similar day (Dgp), and AT is the difference between the daily
mean temperatures of the disaggregation day (7)p) and the
most similar basic day (7).

With these two metrics, the hitherto unknown hourly
values of the disaggregation day are generated by applying
them to the known hourly values of the identified analogous
Dgp as follows:

Ep, = Ep, *Rg
TDhr = TBhr + AT

(6)
(7)
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where Epy, is the generated hourly value of the climate ele-
ment, Egy, is the hourly value of the climate element of the
Dgp, Tpy 1s the generated hourly mean temperature, and 7,
is the hourly mean temperature of the D).

Due to multiplication with the scaling R, it is formally
possible that non-physical hourly sunshine durations of >
60.0 min and relative humidities of > 100.0% are generated.
In this case, the sunshine duration is set to 60.0 min and the
relative humidity is set to 100.0%.

Daily precipitation and sunshine duration values of 0.0 mm
and 0.0 min are not disaggregated. Instead, the related 24
hourly values are set equal to 0.0 mm and 0.0 min,
respectively.

If the Dp contains a missing value of a climate element that
is not included in the ED calculation, the missing value is
replaced with 24 hourly missing values for this climate ele-
ment. However, if this climate element is included in the ED
calculation, it leads to missing hourly values for all the climate
elements.

3.1.4 Treatment of hours with precipitations >0 mm
and 60 min of sunshine

Disaggregation might result in simultaneous co-occurrence of
rain events and clear-sky conditions in the hourly data. Of
course, rain and sunshine might be observed simultaneously
at characteristic time scales shorter than 1 h, e.g., during con-
vective rainfall events in postfrontal cold airmasses with par-
tial cloud coverage and sunny episodes, particularly in sum-
mer (frequently associated with the appearance of rainbows).
Unfortunately, the retrieval of such short-term variability from
the hourly data the historical records are based on requires the
solution of a closure problem, which is even trickier than the
disaggregation of hourly data from daily values (as in the
present study). While consideration of subscale cloud variabil-
ity would be a promising task for model refinement, its real-
ization was far beyond the scope of the present analysis.
Focusing on the characteristic conditions revealed in records
of hourly values, here we make use of the ad hoc assumption
that coinciding rain-sunshine events should be excluded, i.e.,
there is either precipitation or sunshine. The disaggregated
hourly data of the sunshine duration are corrected for the re-
lated hourly precipitation amounts to avoid a sunshine dura-
tion of 60.0 min coinciding with a precipitation value of >

0.0 mm. The applied rescaling algorithm is realized via the
following nine steps:

1. Since the reference time intervals of the daily precipitation
sum and sunshine duration differ, the recorded data are
projected into the same time interval. Auxiliary daily pre-
cipitation sums (P,,,) are calculated for the time spans
from 00:00 CET to 23:59 CET for both the Dgp (P,.5)
as well as for the Dp (P,,.p).
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2. The theoretical possible precipitation hours are calculated
for Dgp and Dj, as follows:

PPHp = 24.0 h—SDg
PPHp = 24.0 h—SDp

(3)
©)

with PPHJp, as the possible precipitation hours of the basic day,
SDj as the daily sunshine value of the basic day, and PPH), as
the possible precipitation time of Dp and SDp, as the daily
sunshine value of Dy,

3. For the Dgp and the Dp, averaged daily precipitation in-
tensities are calculated by

Pl = Py, /PPHj
Plp = Puy, /PPHp

with Pl and PI, denoting the mean precipitation intensities
of'the most similar basic and disaggregation day, respectively.

4. Then, a precipitation intensity ratio P/F is calculated by
dividing the two precipitation intensities:

PIF = PIp/Plg (12)
5. The possible numbers of minutes with precipitation for
the hour to be corrected are calculated according to:

PPM = 60.0 min—SDj,, (13)

where PPMjp is the possible number of precipitation minutes
of the basic hour, and SDgy, is the sunshine duration of the
basic hour.

6. The averaged precipitation intensity of the basic hour
Plg;, is calculated by dividing the precipitation value of
the basic hour Pl by PPMj:

Ply, = Py, /PPMp (14)

7. The averaged precipitation intensity for the generated

hourly precipitation value is obtained by multiplying
Py, with the ratio PIF:

PIp, = Plg, *PIF (15)

8. Knowing PIp, , the number of precipitation minutes for
the generated hourly precipitation value is calculated as
follows:

PMp = Pp,,[PIp, (16)

where PM), is the number of precipitation minutes of the gen-
erated hour and Ppy, is the generated hourly precipitation
amount.
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9. Finally, the number of sunshine minutes SMp, for the hour
to be corrected results from the difference of 60.0 min and
the PMp, as follows:

SMp = 60.0 min—PMp, (17)

The corrected hourly value of sunshine duration is only
accepted if it is smaller than the value calculated by using
the ratio (Eq. 6).

After this final data adjustment, the process restarts with the
next disaggregation day. When the disaggregation of all days
is finished, the model creates an output file containing the
disaggregated hourly values for all days and climate elements.

3.2 Comparison of disaggregated and observed
hourly data

The disaggregated and observed hourly data are compared by
using Taylor diagrams, quantile-quantile plots (Q-Q plot), ad-
ditional statistical values, and the mean diurnal and annual
variations. Since the days without precipitation (P = 0.0 mm/
d) or measurable sunshine duration (SD = 0.0 min) were not
disaggregated, they were not included in the comparison.

Taylor diagrams (Taylor 2001) were plotted for the ele-
ments Tean, SD, rH, and WS as they allow good simultaneous
visual comparison of three statistical measures. Here, the mea-
sures of the Pearson correlation coefficient (), normalized
root mean square difference (RMSD,)), and normalized stan-
dard deviation (o,,) were used.

For the comparison of the disaggregated and observed
hourly precipitation data, Q-Q plots of two variables were
chosen. Additionally, the lines for the quantiles of 50%,
75%, 90%, 95% (heavy precipitation), and 99% (extreme pre-
cipitation) were added to the plots.

In addition to the values used for the Taylor diagrams and
Q-Q plots, the statistical values minimum (x,;,), maximum
(*max)> mean (X ), median (x;;.q), and 95% quantile (xgs¢,) were
calculated.

To analyze whether the disaggregated data reproduce the
general basic characteristics of the observed data, the mean
diurnal and annual variations are compared in three ways. The
diurnal variations of the four climate elements 7 [°C], SD
[min], »H [%], and WS [m/s] are compared by calculating
the diurnal cycles based on the observed and disaggregated
hourly data. In addition, the annual variations of each climate
element were compared by means of annual cycles calculated
from the aggregated observed and generated monthly data.

To compare the results delivered by the EDM with those of
the tool MELODIST, the root mean square error (RMSE) was
calculated. Further, five major characteristics of hourly pre-
cipitation features of the observed and generated data for the
stations De Bilt and Dresden were calculated: mean duration
of events [h], mean precipitation sum of events [mm], mean
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duration of dry spells [h], number of events per year, and
number of hours with P> 0.0 mm per day.

4 Results and discussion

The disaggregated climate data are analyzed for the two cli-
mate stations, Dresden and Fichtelberg. Both stations belong
to different regions of similar climate after Kronenberg et al.
(2015). Dresden is a lowland station and was selected because
it has the best data base. Fichtelberg was selected because it is
a mountain station with a more extreme climate and it serves
hence as a kind of test for the performance of the EDM. The
consequences of pooling stations of different climate regions
are discussed in this section.

The results for both stations are analyzed for various aspects.
The differences concerning whole years, summer and winter
half-years, the influence of the stations used as base stations,
the effects of the climate elements used, and the mean diurnal
and annual variations of the generated data are considered.

4.1 Generated datasets based on five stations

At first, the data for the whole period September 1995—-August
2014 are analyzed. These data were generated by using the
observed data of five basic stations. In order to prevent a skill
overestimation, the data of the station which is subject of
disaggregation were not considered in the evaluation of the
pool of basis data. This means that the data for the climate
station Dresden and Fichtelberg, presented here, are generated
without Dresden and Fichtelberg, respectively.

4.1.1 Climate station Dresden

Figure 3 shows the Taylor diagram and the Q-Q plot for cli-
mate station Dresden for both selection approaches S7 and S2,
respectively. The corresponding statistical values are shown in
Table 2. It can be seen that the results of all climate elements
show normalized standard deviations close to 1.0 for S/ as
well as for S2.

The temperature values of both selections show the best
performance with the very high correlations of 0.98 and 0.99
and very low RMSD,, values of 0.19 and 0.15. This results
from the homogenous, sinusoidal character of the diurnal cy-
cle of the temperature, which is properly reproduced by EDM.
In contrast to temperature, the wind speed has a more stochas-
tic character with larger and irregular diurnal variations.
Hence, worse results are provided for the wind speeds with
correlations of 0.73 and 0.79 and RMSD,, values of 0.76 and
0.67. The results of the generated sunshine duration are very
similar to those of the wind speed. The sunshine duration is
strongly correlated with the highly fluctuating cloud cover,
i.e., it is also characterized by possible high variations during
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the day. Such variations lead to more frequent and greater
differences between the observed and generated hourly
values. Since the relative humidity is characterized by a more
homogenous diurnal cycle (essentially affected by the course
of the temperature), these results reveal higher correlations of
0.88 and 0.91 and lower RMSD,, values of 0.48 and 0.42.
The application of the rescaling procedure according to
Section 3.1.3 to hourly »H values results in a cut-off of respec-
tive 3780 (S7) and 2844 (S2) generated hourly values to the
maximum possible value of »H =100%, corresponding to
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of'the observed and generated precipitation [mm/h] for the climate station
Dresden based on five stations

correction rates of 2.3% (S7) and 1.6% (S2), respectively.
Correction of hourly data applies to 783 (11.6%) and 620
(9.2%) disaggregated days, respectively.

Analogously for SD, 8917 (S7) and 8564 (S2) generated
hourly values were constrained to the maximum value of
60.0 min, corresponding to correction rates of 11.1% (S1)
and 10.7% (S2). The corrected values affect 1970 (29.2%)
and 1856 (27.5%) disaggregated days, respectively.

The correction to exclude co-occurrence of rain events and
clear-sky conditions according to Section 3.1.4 applies to 601

Table 2 Statistics of the observed and generated data of the Dresden station based on five stations

Climate element Sample size Dataset Xmin Xmax X Ximed X95% o g, r RMSD,,
T[°C] 162,192 Observed ~ —20.7 36.7 9.44 95 27.8 8.42 - - -
SI -227 37.7 9.44 95 28.0 8.44 100 098 0.19

S2 -20.6 36.9 9.44 9.5 279 8.43 100 099 0.15

SD [min] " 80,227 Observed 0.0 60.0  23.99 13.0 600 2512 - - -
SI 0.0 60.0  22.99 12.1 60.0 2437 0.97 0.74 0.71

S2 0.0 60.0 2323 125 60.0 2452 0.97 0.78 0.65

rH [%)] 162,192 Observed 5.0 100.0 76.17 0.0 100.0 17.19 - - -
SI 2.8 100.0 76.11 79.5 100.0 16.83 0.98 0.88 0.48

S2 143 100.0 76.13 79.6 100.0 1679 098 0.91 0.42

ws 162,192 Observed 0.0 20.4 418 3.8 10.6 2.15 - - -
[/s] S1 0.0 20.5 4.18 38 11.1 230 107 073 0.76
S2 0.0 213 418 3.8 11.0 226 1.07 079 0.67

P [mm] 16,292 Observed 0.1 36.6 0.75 0.3 26 1.37 - - -
14,493 SI 0.1 48.6 0.83 0.4 2.8 158 1.15 - -

15,091 S2 0.1 48.6 0.80 0.4 2.7 1.41 1.03 - -

* Excluding night time values and days with $D = 0.0 min
“Based on hourly values > 0.0 mm
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(S7) and 526 (S2) generated hourly SD values, respectively.
These corrections affect 418 (6.2%) and 366 (5.4%) days, re-
spectively. As a result of these two corrections, the calculated
daily sums differ from the observed daily values. The maxi-
mum differences amount to —4.5 h (S7) and —3.4 h (52), but
89.8% (S1) and 94.2% (S2) of the affected days show only
small differences in the range of — 1 h<SD <0.0 h, i.e., of less
than 1 h.

In the right panel of Fig. 3, the quantiles of the generated
precipitation data are shown. Up to the 96% quantile, the
quantiles differ only between 0.1 and 0.3 mm/h. For the
quantiles >96%, representing heavy and extreme precipita-
tion, the differences increase to 0.9 mm/h (S7) and 0.7 mm/h
(S2), and the overestimation amounts to 15% (S/) and 12%
(S2). There are various potential reasons for the overestima-
tion. Both generated datasets contain less hourly values of >
0.0 mm/h (Table 2) which indicates that the EDM tends to
generate shorter and less precipitation events (cf. Section 4.7).
This results from rounding very small intensities to 0.0 mm/h
and from a potential tendency of the EDM to select a day with
a shorter precipitation event as the most similar day. The
rounding of the disaggregated hourly intensities itself might
be a reason for the differences of the observed and disaggre-
gated intensities. Further, in this analysis, precipitation is one
of seven equal-weighted climate elements included in the cal-
culation of ED, i.e., precipitation has an impact of 1/7 of the
selection of the most similar day. If the impact would be
higher, the results are expected to improve for the quantiles.
This is examined in Section 4.4. Last but not least, there are
supposed to be unintended influences of other variables used
in the EDM resampling.

Fig.4 Confidence interval for the
observed precipitation intensities 40
[mm/h] of station Dresden

35

30

P [mmth]
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To quantify the magnitude of the overestimation of the
quantiles, it was examined whether the overestimation lays
within the confidence interval of an extreme value statistics
as used for engineering design and flood simulation. For ex-
ample, the precipitation intensity of 7.0 mm/h corresponds to a
return period of 0.2 a, which means such intensities are likely
to be observed 5 times per year at the station Dresden. A
confidence interval of [5.04 mm/h, 9.15 mm/h] was estimated
through fitting of a Gumbel distribution to the hourly data and
assuming a critical value of t95.2 =2.95 from the Student’s ¢
distribution. The observed difference [0.9 mm/h] of the 0.99-
quantile lays therefore within the confidence interval of the
fitted extreme value distribution for design rainfall (Fig. 4).

For all elements, Fig. 3 and Table 2 show that the results of
S2 fit better than those of S/, but the differences are very
small. Hence, including the OWP for the selection of the most
similar basic day leads to only weak improvements.

The statistical values contained in Table 2 but not shown in
Fig. 3 exhibit high correspondence for all elements besides the
minimum of »H of S1 (14.3%) and the maximum P of both
selections (48.6 mm/h).

4.1.2 Climate station Fichtelberg

The statistics for climate station Fichtelberg (Fig. 5, Table 3)
show similar results to those of the climate station Dresden,
with normalized standard deviations close to 1.0 for all ele-
ments and both selections. The best results, with a correlation
0f 0.97 and RMSD,, of 0.25, are again obtained for the gener-
ated temperature data. The worst results are obtained again for
the sunshine duration and the wind speeds with correlations

o fitted distribution
e upper confidence limit

o lower confidence limit

10 15 20 25 30 35 40

return period [a]
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Table 3 Statistics of the observed and generated data of station Fichtelberg based on five stations

Climate element Sample size Dataset Xmin Xmax X Xmed X95% o o, r RMSD,,
T[°C] 98,969 Observed  —21.9 28.6 493 5.4 20.7 7.62 - - -
SI -23.7 30.0 4.93 53 21.7 7.78 .02 097 0.25

s2 —254 30.0 493 53 220 7.83 102 097 0.25

SD [min] 50,808 Observed 0.0 60.0  24.44 15.0 60.0  25.04 - - -
S1 0.0 60.0  21.93 8.5 60.0 2460 098 0.8 0.81

S2 0.0 60.0  22.58 10.0 60.0 2474 098  0.72 0.74

rH [%) 98,969 Observed 5.0 100.0 8461 93.0 100.0 18.51 - - -
SI 6.9 100.0 8397 902 100.0 1834 099 082 0.59

S2 6.1 100.0 8374 902 100.0 18.41 099 084 0.57

WS [m/s] 98,969 Observed 0.0 30.1 8.32 7.7 20.5 434 - - -
SI 0.0 59.0 8.31 75 222 4.67 108 070 0.81

s2 0.0 45.7 8.32 75 22.0 4.69 108 074 0.76

P [mm] ™ 11,340 Observed 0.1 32.9 0.79 0.4 27 1.39 - - -
10,134 S1 0.1 33.1 0.86 0.4 3.0 145 1.04 - -

9326 S2 0.1 26.6 0.93 0.4 33 1.58 1.17 - -

* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm

between 0.68 and 0.74 and RMSD,, between 0.74 and 0.81. The application of the rescaling procedure according to
The median of the observed SD (15.0 min) is highly  Section 3.1.2 to hourly »H values results in a cut-off of respec-
underestimated by S7 (8.5 min) and S2 (10.0 min) (Table 3). tive 21,916 (S7) and 22,528 (S2) generated hourly values to
The observed maximum wind speed (30.1 m/s) is highly  the maximum possible value of »H = 100%, corresponding to
overestimated, with 59.0 m/s and 45.7 m/s. In comparison to  correction rates of 22.1% (S7) and 22.8% (S2), respectively,
the Dresden station, the generated relative humidity data show  which is much higher than for the representative low-land
slightly worse results. These findings point to the influence of  station Dresden. Concerning SD, 8162 (S/) and 8042 (S2)
meso-climatic variations in the study region, that were not  generated hourly values were reduced to the maximum val-
included in the present analysis. ue of 60.0 min. This corresponds to correction rates of

observed quantile [-]
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Fig. 5 (left) Normalized root mean square difference [-], normalized of the observed and generated precipitation [mm/h] for climate station
standard deviation [-], and correlation [-] of the generated data of 7, SD, Fichtelberg based on five stations
rH, and WS for Selection 1 (S7) and Selection 2 (S2); (right) the quantiles
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16.1% (S1) and 15.8% (S2). The corrected values affect
1771 (42.9%) and 1615 (39.2%) disaggregated days,
respectively.

The correction to exclude co-occurrence of rain events and
clear-sky conditions according to Section 3.1.4 applies to 800
(S17) and 496 (S2) generated hourly SD values, respectively.
This correction affects 460 (11.2%) and 292 (7.1%) days,
respectively. As a result of these two corrections, the calculat-
ed daily sums differ from the observed daily values. The max-
imum differences amount to — 6.6 h (S7) and — 7.0 h (§2), but
77.1% (S1) and 83.7% (S2) of the affected days show only
small differences in the range of — 1 h<SD <0.0 h, i.e., of less
than 1 h.

As for the lowland station Dresden, the inclusion of the
OWP improves the results slightly.

Concerning the quantiles of the generated precipitation data
(Fig. 5 (right))), both selection approaches tend to overestimate,
and the OWP inclusion leads to even higher overestimations.
This is a clear indication of significant mesoscale variability in
the study region that segregates the climate conditions at the
Fichtelberg station from those of the other five stations. In
addition, EDM tends to prefer days with convective precipita-
tion events to reproduce the higher daily precipitations at sta-
tion Fichtelberg, but this leads to an overestimation of the hour-
ly values. For the quantiles > 93%, the overestimations increase
to maxima of 0.7 mm/h (S7) and 1.5 mm/h (S2), and the over-
estimation amounts increase to 12% (S7) and 26% (S2). For
potential reasons for the overestimation, compare to the analy-
sis in Section 4.1.1.

4.2 Summer and winter half-years

The generated data of the stations Dresden and Fichtelberg are
analyzed separately for the summer and winter half-years based
on five climate stations (cf. Section 4.1). The summer half-year
covers the 6 months from April to September, and the winter
half-year covers the months between October and March. These
both half-years are analyzed since they differ in their climatic
characteristics. Due to higher global radiation and temperatures,
the summer half-year is characterized by more convective and
unstable weather patterns while the winter half-year is predom-
inated by more stable weather patterns. This causes different
diurnal cycles of the climate elements, especially of precipita-
tion. While convective (heavy) precipitation events tend to short
durations of one or only a few hours, stratiform (heavy) precip-
itation events tend to longer durations of up to a few days.

The results for the climate elements 7, SD, rH, and WG
reveal essentially the same basic characteristics for both, the
half-years and the whole year (cf. Section 4.1) for both sta-
tions (see Fig. 11 (left) and Fig. 12 (left) and Tables 8, 9, 10,
and 11 in the Appendix). The temperature data were found to
fit best the wind speed and sunshine data fit worst and those of
the relative humidity are in between. The inclusion of the
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OWP leads to small improvements for these five climate ele-
ments of both half-years.

The climate elements with homogenous diurnal cycles (7,
rH) are well reproduced for the summer as well as for the
winter half-years. In contrast, the climate elements with higher
hourly variations (SD, WS) are less well reproduced in general
but perform slightly better for the winter months. This result
suggests that the basic assumptions of the disaggregation pro-
cedure (e.g., the exclusion of coincidental sunshine and pre-
cipitation) are better fulfilled in the wintertime with less scatter
in the data caused by convective clouds, turbulence, and un-
stable weather conditions.

Concerning precipitation, the results differ between
Dresden and Fichtelberg. For Dresden, the improved repro-
ductions for the winter half-year also apply to the precipitation
data (Fig. 11 (right) in the Appendix), explainable by the low-
er rain intensities and lower frequency of convective rainfall
events during these months. For Fichtelberg, the generated
data show overestimations for both half-years, especially for
the quantiles >95% (Fig. 12 (right) in the Appendix). This
overestimation is distinct higher for the winter months. For
the high daily precipitation sums at station Fichtelberg, the
EDM tends to prefer days with convective weather conditions
and hence higher precipitation rates per hour. Further potential
reasons for the overestimation are given in Section 4.1.1.

The inclusion of the OWP leads to small improvements for
both half-years at the station Dresden. But at the station
Fichtelberg, it worsens the performance of the quantiles of
both half-years. This is supposed to be a consequence of the
neglect of the meso-climatic variability in the setup of the pool
of basic data. While the OWP conditions might apply to all
included stations, orographic effects might cause differences
in the statistical precipitation response from one station to
another. As the climate station Fichtelberg, the only mountain
station in the pool, was excluded in this analysis from the pool
of basis data, the EDM could only select a “most similar
event” of a lowland station.

4.3 Data generation based on the full dataset

In this section, it is examined how the results change if the
data of all six Saxon basic stations are used, i.e., the stations
Dresden and Fichtelberg were included as basic stations, too.

In comparison to the results discussed in Section 4.1.1, the
results for station Dresden are at least identical for all five
climate elements (see Fig. 13 (top) in the Appendix). This
suggests that the basic stations Gorlitz, Chemnitz, Leipzig,
and Dresden belong more or less to the same mesoclimate-
tope. Hence, the inclusion of station Dresden as an additional
basic station does not lead to a substantial gain in physical
information and to an improvement of the overall EDM per-
formance. For all elements, the results of S2 performs better
than those of S/, though the differences are small.
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In contrast, the inclusion of the station Fichtelberg as a
basic station leads to small improvements for the relative hu-
midity, the sunshine duration, and the wind speed for
Selection S/ (Fig. 13 (bottom, left) in the Appendix). The
precipitation quantiles of S2 are overestimated to the same
amount as for S2 as discussed in Section 4.1.2. However, for
S1, the overestimation increases by 0.2-0.3 mm/h for the
quantiles >90% (Fig. 13 (bottom, right) in the Appendix).
Furthermore, the inclusion of the OWP leads again to higher
overestimations of the quantiles although the station
Fichtelberg is included (cf. Section 4.1.2).
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4.4 Sensitivity of the distance metrics against the
number of considered climate elements

To examine the influence of the climate elements used for the
calculation of the ED, the disaggregation for the stations
Dresden and Fichtelberg was performed by using only the
mean temperature and the precipitation amount to calculate
the ED. These two climate elements were selected as they
are the most frequently available observed elements. The sta-
tistical results are shown in Fig. 6. Since the relative humidity,
the sunshine duration, and the wind speed were not used for
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the ED calculation, their statistics show obviously worse re-
sults for both stations and both selection approaches (Fig. 6
(left)). The temperature data fit also slightly worse because the
minimum and maximum temperature were not included in the
ED calculation. However, the quantiles of the precipitation
data show better results for both stations and both selection
approaches (Fig. 6 (right)). For station Dresden, the quantiles
show almost perfect agreements with the observed quantiles.
This is caused by the selection of the most similar day based
on the two climate elements. Hence, the impact of precipita-
tion in an ensemble of only 2 climate elements corresponds to
a weight of 1/2, and in an ensemble of 7 elements (Sections
4.1-4.3) to a weight of only 1/7.

For climate station Fichtelberg, the inclusion of the OWP
leads to equal or even worse results, e.g., of the precipitation
quantiles. Again, this is caused by the fact that for the same
OWP, the climate characteristics at station Fichtelberg differ
from those of the other five stations.

4.5 Mean diurnal cycles

The mean diurnal cycles are analyzed to examine whether the
mean daily statistics and variations are preserved by EDM. The
diurnal cycles were determined for the temperature, the sun-
shine duration, the relative humidity, and the wind speed by
calculating the daily means or sums based on the observed and
generated hourly data of the years 1995-2014. Afterwards, the
mean values were calculated for each hour of the day.

Figure 7 shows the mean diurnal cycles of the four climate
elements at climate station Dresden. For the temperature, the

sunshine duration, and the relative humidity, the mean diurnal
cycles based on the generated data agree with those based on
the observed data. Only for the wind speed, the diurnal cycles
of the generated data show an underestimation during the
night and an overestimation during the day. However, these
are both very small and negligible, with maximum differences
of —0.2 m/s and 0.2 m/s, respectively. The strong results are
caused by the similar climate conditions of the used basic
climate stations (cf. Table 1). Furthermore, it becomes appar-
ent that the two corrections of the sunshine duration and the
correction of the relative humidity have no influence on the
mean diurnal cycle.

The mean diurnal cycles of the four climate elements at
climate station Fichtelberg are shown in Fig. 8. In contrast to
station Dresden, the mean diurnal cycles of station Fichtelberg
have a worse agreement for all elements and both selection
approaches. The mean temperature is overestimated for each
hour, while the highest differences occur in the early after-
noon. Concerning the sunshine duration, the mean diurnal
cycles of the generated data give a slight overestimation for
the daytime hours. During the nighttime hours, there are no
differences because these hours are automatically set to
0.0 min. A distinct underestimation occurs in the relative hu-
midity data of both selections. The highest differences occur
for the afternoon hours and amount to — 10%.

The diurnal cycle of the wind speed at the climate station
Fichtelberg is characterized by a maximum during nighttime
and a minimum during the afternoon, which is in line with
empirical findings on the wind behavior at mountaintops (cf.
Bliithgen and Weischet 1980; Stull 2000).
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However, for wind speed, both EDM selection approaches
deliver diumal cycles which are inverse to the observed one,
with an overestimation in the afternoon and an underestima-
tion at nighttime. The underestimation is greater but still
small, with deviations from the observed values up to —
2.2 m/s (S1), and the overestimation amounts to only
1.4 m/s (S1). The inversion of the diurnal cycle is caused by
the differences in the climate characteristic between the station
Fichtelberg and the other five climate stations. An analysis of

the disaggregation of the dataset of Fichtelberg by using only
Fichtelberg itself as basic station showed that the inverse di-
urnal cycle is then reproduced by the EDM.

Hence, the EDM in its current stage of development is not
yet able to reproduce such an inverse cycle when the basic
stations are not characterized by similar climate conditions.
These differences in the climate conditions of the basic sta-
tions are also the reason for the over- and underestimations of
the other three climate elements. The diurnal cycle of the
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observed basic values should fit the diurnal cycle of the dis-
aggregated station. Therefore, the model application is re-
stricted to basic data representing similar climatic conditions.

4.6 Mean annual cycles based on mean monthly
values

Comparable to Section 4.5, in this section, the mean annual
cycles of all climate elements, including precipitation, are an-
alyzed. The mean monthly data were calculated based on the
observed and generated daily data.

The generated mean annual cycles are almost identical to
the observed cycles for all climate elements at station Dresden
(Fig. 9). This is caused by the preservation of the daily sums or
means of the climate elements, which is a basic function of
EDM. The small differences of the sunshine duration and the
relative humidity result from the corrections implemented in
EDM (cf. Section 3.1).

In general, these findings also apply to the annual cycles at
climate station Fichtelberg (Fig. 10), but the underestimations
of the mean monthly sunshine duration and relative humidity
are greater since more days are affected by the corrections (cf.
Section 4.1.2). Furthermore, there are greater differences for
all elements due to the different climate characteristics of the
basic stations.

4.7 Functionality and performance of the EDM in
comparison to MELODIST

To further assess the performance of the EDM and the quality
of the generated datasets, a comparison with the
MEteoroLOgical observation time series DISaggregation
Tool (MELODIST) developed by Forster et al. (2016) is made
in this section. MELODIST is a robust, reliable, and
transferable tool to disaggregate daily time series of the
climate elements 7, rH, WS, P, and shortwave radiation.
Physical consistency among the climate elements is not

Table 4  Statistics of the observed and generated data of 7' [°C] for the stations De Bilt and Dresden

Climate station Dataset X o RMSE r
De Bilt Observed 10.42 6.88
MELODIST 10.30 6.94 1.74 0.97
EDM De Bilt S/ 1043 6.85 1.93 0.96
EDM Sax S/ 10.43 6.84 2.05 0.96
Dresden observed 9.44 8.42
EDM Dresden S/ 9.43 8.41 1.82 0.98
EDM Sax S/ 9.44 8.44 1.56 0.98
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Table 5  Statistics of the observed and generated data of rH [%] for the stations De Bilt and Dresden

Climate station Dataset X o RMSE r
De Bilt Observed 81.82 15.12
MELODIST 81.63 15.48 12.67 0.66
EDM De Bilt S/ 81.65 14.83 8.60 0.84
EDM Sax S/ 81.64 14.94 9.34 0.81
Dresden observed 76.17 17.19
EDM Dresden S/ 76.02 17.01 9.30 0.85
EDM Sax S/ 76.11 16.83 8.26 0.88

inherent in the methodology of MELODIST as it disaggregates
each element independently. Most of the climate elements are
disaggregated by using parsimonious methods with basic levels
of complexity. The daily values of T are disaggregated using a
cosine function with T, at the time of sunset and 7, 2 h
after sun noon. For disaggregating rH, the model generates
hourly values of dew point temperature. Similar to the
disaggregation of 7, the values of WS are disaggregated by
means of a cosine function. And for the disaggregation of P,
the multiplicative cascade model after Olsson (1998) was
applied.

For this comparison, the daily data of the climate station De
Bilt were disaggregated two times for the validation period,
January 1991-December 2014 (Forster et al. 2016), firstly, by
using De Bilt as sole basic station (dataset “£DM De Bilt”),
and secondly, by using the six Saxon stations as basic stations
(dataset “EDM Sax”). As De Bilt was disaggregated with itself
as basic station, the same procedure was done for Dresden
(dataset “EDM Dresden”) and the results are compared to
those in Section 4.1.1 (dataset “EDM Sax’).

Following the analyses of Forster et al. (2016), the statisti-
cal values X, o, RMSE, and r were calculated for 7, rH, and WS
(Tables 4, 5, 6), and for P, five major characteristics of hourly
precipitation features of the observed and generated data were
calculated (Table 7).

It can be seen, that EDM and MELODIST perform equal
for the disaggregation of T for station De Bilt. The statistics

show only small differences for RMSE with slightly worse
results for the two data sets generated by the EDM
(Table 4). Concerning station Dresden, the EDM performs
also very well due to the very homogeneous diurnal cycle of
T (cf. Section 4.1). Hence, for the disaggregation of 7, also, a
parsimonious method is sufficient (MELODIST).

Concerning the disaggregation of »H for De Bilt, EDM
performs better than MELODIST, with distinct higher corre-
lations and smaller RMSE, and also smaller standard devia-
tions (Table 5). For station Dresden, the results are similar for
both disaggregations with slightly smaller RMSE, smaller
standard deviation, and slightly higher correlation for the data
set “EDM Sax S1.”

The correlations of the disaggregated WS for De Bilt are
distinctly higher for the EDM datasets; although, the RMSE
are higher (Table 6). For station Dresden, the correlation is
slightly higher for the dataset “EDM Sax S1”.

For station De Bilt, the results for P show that MELODIST
overestimates the mean duration of precipitation events and
underestimates the number of precipitation events per year. In
contrast, EDM generates shorter durations of precipitation
events, less numbers of precipitation events per year (data
set “EDM Sax S1”), and less numbers of hours with
P>0.0 mm/h per day while the mean precipitation sum of
events is conserved. The results for Dresden reveal that
EDM tends to underestimate the duration and numbers of
precipitation events as already assumed in Section 4.1.

Table 6  Statistics of the observed and generated data of WS [m/s] for the stations De Bilt and Dresden

Climate station Dataset X o RMSE r
De Bilt Observed 3.49 1.89
MELODIST 3.49 1.59 1.05 0.38
EDM De Bilt S/ 3.48 1.94 1.44 0.72
EDM Sax S/ 3.49 1.97 1.56 0.68
Dresden Observed 4.18 2.15
EDM Dresden S/ 4.18 2.17 1.70 0.69
EDM Sax S1 4.18 2.30 1.65 0.73
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Table 7 Major characteristics of hourly precipitation features of the observed and generated data for the stations De Bilt and Dresden

Climate Dataset Mean duration ~ Mean precipitation sum  Mean duration of dry ~ Number of events ~ Number of hours with
station of events [h] of events [mm)] spells [h] per year P>0.0 mm/h per day
De Bilt Observed 2.99 245 22.02 351 2.9
MELODIST 391 2.52 21.76 342 -
EDM De Bilt S/ 2.53 241 22.04 357 2.5
EDM Sax S1 2.59 2.50 23.03 342 2.4
Dresden  Observed 2.83 2.11 25.45 290 2.4
EDM Dresden S  2.31 2.18 26.90 275 1.8
EDM Sax S/ 2.54 2.11 25.70 285 2.1

It can be summarized that both disaggregation tools per-
form comparable for each climate element while both show
some limitations. But the high benefit of the generated
datasets of EDM is the physical consistency over all climate
elements.

5 Summary and conclusions

In this paper, the structure and results of a newly developed
multivariate non-parametric resampling model, the Euclidean
Distance Model (EDM), for the hourly disaggregation of daily
climate data are presented. As a case study, six climate stations
located in the Free State of Saxony (Germany) were selected.
The daily climate data of stations Dresden and Fichtelberg
were exemplarily disaggregated for the years 1995-2014
and compared to the observed hourly data.

The generated datasets that were disaggregated by using
alternatively either five or six basic stations show very similar
results and strong agreements for all the studied climate ele-
ments. The inclusion of the disaggregated station itself into the
pool of basic stations leads to some improvements of the
model performance. These improvements are greater when
the other basic stations are characterized by different climate
conditions, as is the case for the mountain station Fichtelberg.
It is shown that the results always fit better for such climate
elements, which are characterized by a homogenous diurnal
cycle that is well reproduced by EDM. Hence, each generated
dataset shows the best results for temperature and the worst for
wind speed and sunshine duration.

Concerning precipitation, EDM tends to overestimate the
quantiles of the hourly data, especially for heavy and extreme
values (quantiles >90%). There are various potential reasons
for this. (i) The EDM tends to generate less and shorter pre-
cipitation events. This might be due to rounding small inten-
sities to 0.0 mm/h and a preferred selection of basic day with
less or shorter precipitation events. (ii) The rounding of the
disaggregated hourly intensities itself. (iii) The equal-
weighted impact of precipitation in the calculation of the
ED. (iiii) The pool of heavy and extreme precipitation events
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tended influences of other variables used in the EDM
resampling.

An exemplarily investigation of the magnitude of over-
estimation in terms of a confidence interval of an extreme
value statistic as used for engineering design and flood
simulation showed that the differences of the quantiles lay
within the confidence interval of the fitted extreme value
distribution for design rainfall. Hence, the uncertainty of
the estimation of design rainfall is much higher, than the
uncertainty of the EDM model. However, the differences
should be investigated and validated in each case of an
EDM application.

The overestimation might be an advantage in the field of
hydroengineering. Since an increase in the hourly intensity of
heavy precipitation events is already observed and is expected
to continue in the future, such overestimation anticipates this
trend. But of course, the higher costs of hydroengineering by
using these higher intensities have to be weighed against the
benefits, e.g., the benefits of higher flood protection.
However, with regard to error propagation and unwanted bi-
asing of post-calculated cost functions in optimal decision
strategies, the underlying models such as EDM should advan-
tageously be free of any bias.

Furthermore, it is shown that, for all datasets, the inclusion
of the OWP in the selection of the most similar day leads to
small improvements for all climate elements besides the pre-
cipitation quantiles for station Fichtelberg. Here, the OWP
causes even a worsening of the results, which is caused by
the disregard of the meso-climatic variations within the inves-
tigated territory and their impact on the setup of the basis data
pool. Furthermore, the worsening results from smaller data
pool for events with heavy precipitation. Therefore, the
OWP are not mandatory to obtain accurate hourly data. It
remains to be investigated whether a more sophisticated
OWP approach based on a refined similarity metrics on the
base of further meteorological field observations can enhance
the EDM skill. It is expected to improve the performance of
the EDM by taking the mean flow directions into account as
they have a high impact on the humidity and temperature of an
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airmass. Hence, they are an important indicator for the
(expected) weather situation, e.g., they impact the precipita-
tion events due to possible luv-lee effects.

The analyses for the summer and winter half-years reveal
that EDM delivers better results for the winter half-year. This
applies to both analyzed stations and all climate elements be-
sides the precipitation for station Fichtelberg due to different
climate characteristics at this mountain station. For the sum-
mer half-year, slightly worse results are shown for both ana-
lyzed stations due to the increased turbulence and unstable
weather conditions during these months.

The results for the disaggregation using only the tempera-
ture and precipitation for the calculation of ED reveal that the
generated data fit better if the climate element is involved in
the calculation of the ED. In addition, the fewer elements
used, the better the fit of the results of the used elements as
their influences on the selection of the most similar day are
increased.

Due to the functionality of EDM, the daily sums or means
of the climate elements are conserved. This leads to an exact
reproduction of the mean diurnal cycle if the used basic sta-
tions show similar climate characteristics. If this is not the
case, as shown for station Fichtelberg, there are some over-
and underestimations of all elements and even an inversion of
the diurnal cycle of the wind speed.

Concerning the mean annual cycles based on the mean
monthly values, EDM delivers an accurate reproduction for
each climate element. For the mean annual cycles, the differ-
ent climate characteristics of the used stations have lower
effects.

An additional comparison of the functionality and perfor-
mance of the EDM to the tool MELODIST, showed that the
EDM delivers comparable results for all disaggregated climate
elements. Both tools have their limitations, but the physical
consistency over all disaggregated climate elements is a high
benefit of EDM. Therefore, these generated datasets might be
more suitable as input data for hydrological or ecological
modeling.

EDM is a very robust and flexible model that can be ap-
plied to any climate station if hourly data are available within
the same climate region. This method works with several cli-
mate elements as well as with only one climate element. EDM
delivers data with strong correlation to the observed data,
maintaining their statistical characteristics, and the delivered
hourly data set is physical consistent over the disaggregated
climate elements. Additionally, a technical advantage of EDM
is its efficient computing performance and that there is no
time-consuming calibration needed.

However, there are also some restrictions in the application
of this model. (i) The basic climate stations should have sim-
ilar climate conditions to those of the target station. (ii)) EDM
also requires a sufficient data base of (continuously) recorded
hourly data.
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The climate stations used for this study were selected as
they belong to the same macro- and meso-climatic zone and as
they are close to each other. It is recommended to preferably
pool only stations of only one region of similar climate, e.g.,
as classified by Kronenberg et al. (2015), but usually this
means a significant reduction of available climate data, espe-
cially concerning hourly recorded data. Although the selected
climate stations spread over four climate regions, the climate
characteristics of the stations were similar enough to achieve
high correspondence of the observed and generated hourly
data besides some restriction for the mountain station
Fichtelberg.

How many basic data are sufficient cannot be clearly defined.
The EDM works independently of the amount of basic data. The
disaggregation with only one basic station was tested for the
comparison with the tool MELODIST, and the results showed
no distinct worsening. However, for analyses with climatological
context, a data base covering 30 continuous years (climatological
period) would be required. But regarding the real spatio-temporal
data availability, at least 10 years of continuously recorded data
are required. Of course, the more basic data are available the
better the disaggregated data correspond and the more the gen-
erated diurnal cycles vary.

Finally, but importantly, since EDM is a resampling model
and uses the observed diurnal cycles of the past, the generated
hourly data are more or less a copy of the past. The applied
offset or boost factors for new “records” in the target time-
series, however, allow the generation of data which have not
yet been observed. Therefore, the model is capable of taking
future trends (like climate change) into account; it can disag-
gregate daily data from statistical downscaling (as, e.g.,
WETTREG, Enke et al. 2005; Kreienkamp et al. 2010) of cli-
mate projections. Such a model chain allows impact modeling
with hourly input requirements and might allow the analysis of
future extremes by changing the occurrences of the observed
extremes. Including generated future OWP would improve the
results of the disaggregation of future climate data because
changes of the frequencies of the weather patterns are expected
due to climate changes. But their generation is extremely com-
plex and time-consuming. Future OWP time series exist for
Germany and Saxony after the classification of Enke et al.
(2005). For Germany, they are generated by the model
WETTREG and for Saxony, they are generated by the model
WEREX. These OWP are weather patterns of the atmospheric
condition concerning temperature and humidity. They do not
comprise information of synoptic flow patterns and the mean
flow direction. But such information would be required espe-
cially for the disaggregation of future precipitation time series.
As far as [ am aware, there is still no free available dataset of
OWRPs as used for the present study. The generation of such
future OWP datasets is still a complex field of research.
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Fig. 11 (left) Normalized root mean square difference [-], normalized
standard deviation [-], and correlation [-] of the generated data of 7, SD,
rH, and WS for Selection 1 (S7) and Selection 2 (S2); (right) the quantiles
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Fig. 13 (left) Normalized root mean square difference [-], normalized
standard deviation [-], and correlation [-] of the generated data of 7, SD,
rH, and WS for Selection 1 (S7) and Selection 2 (S2); (right) the quantiles
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Table 8  Statistics of the observed and generated data of the summer half-year for station Dresden based on five stations
Climate element Sample size Dataset Xmin Xmax x Xmed X95% o o, r RMSD,,
T[°C] 81,192 Observed =57 36.7 15.42 15.3 29.3 5.90 - - -
S1 -8.0 37.7 15.42 15.3 29.5 5.96 1.01 0.96 0.28
S2 -72 36.9 15.42 15.3 29.5 5.92 1.01 0.97 0.23
SD [min] * 52,849 Observed 0.0 60.0 25.67 19.0 60.0 25.0 - - -
S1 0.0 60.0 24.85 17.8 60.0 24.41 0.97 0.73 0.73
S2 0.0 60.0 25.00 18.0 60.0 24.59 0.97 0.77 0.67
rH [%] 81,192 Observed 14.0 100.0 70.67 73.0 100.0 18.94 - - -
S1 2.8 100.0 70.59 72.8 100.0 18.58 0.98 0.88 0.50
A\ 14.3 100.0 70.63 72.8 100.0 18.44 0.98 0.90 0.43
WS [m/s] 81,192 Observed 0.0 14.1 3.63 34 8.6 1.71 - - -
S1 0.0 17.3 3.63 33 9.1 1.89 1.11 0.65 0.89
S2 0.0 16.5 3.63 33 8.9 1.84 1.11 0.72 0.78
P [mm] ™ 6907 Observed 0.1 36.6 1.05 0.4 3.8 1.89 - - -
6322 S1 0.1 48.6 1.15 0.5 43 2.20 1.16 - -
6502 S2 0.1 48.6 1.12 0.5 43 1.95 1.03 - -
* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm
Table 9  Statistics of the observed and generated data of the winter half-year for station Dresden based on five stations
Climate element Sample size Dataset Xmin Ximax X Xined X959 o o, r RMSD,,
T [°C] 81,000 Observed -20.7 26.0 3.44 34 17.1 5.93 - - -
S1 -22.7 26.3 3.44 34 16.9 591 1.00 0.97 0.25
S2 —20.6 25.8 3.44 34 17.1 5.93 1.00 0.98 0.20
SD [min] * 27,378 Observed 0.0 60.0 20.75 5.0 60.0 24.89 - - -
S1 0.0 60.0 19.40 34 60.0 23.88 0.96 0.76 0.68
S2 0.0 60.0 19.81 4.0 60.0 24.00 0.96 0.80 0.62
rH [%] 81,000 Observed 5.0 100.0 81.69 84.0 100.0 13.09 - - -
S1 11.2 100.0 81.63 83.7 100.0 12.67 0.97 0.85 0.54
52 14.4 100.0 81.65 83.8 100.0 12.75 097 0.88 0.48
WS [m/s] 81,000 Observed 0.0 20.4 4.74 44 11.4 2.40 - - -
S1 0.0 20.5 4.74 44 12.1 2.52 1.05 0.74 0.74
S2 0.0 21.3 4.74 44 11.9 2.49 1.05 0.80 0.65
P [mm] 9204 Observed 0.1 11.4 0.52 0.3 1.7 0.64 - - -
8171 S1 0.1 12.5 0.58 0.3 1.9 0.73 1.14 - -
8589 S2 0.1 12.0 0.55 0.3 1.8 0.69 1.08 - -

" Excluding night time values and days with $D = 0.0 min

“Based on hourly values >0.0 mm
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Table 10  Statistics of the observed and generated data of the summer half-year for station Fichtelberg based on five stations

Climate element Sample size Dataset Xmin Xmax X Xmed X959 o o, r RMSD,,
T[°C] 55,505 Observed -10.8 28.6 9.35 9.4 21.8 5.49 - - -
S1 -153 30.0 9.35 9.3 23.0 5.78 1.05 0.94 0.35
S2 -11.6 30.0 9.35 9.2 23.1 5.89 1.05 0.95 0.34
SD [min] * 35,614 Observed 0.0 60.0 24.07 15.0 60.0 24.52 - - -
S1 0.0 60.0 22.03 9.5 60.0 22.03 0.99 0.65 0.83
S2 0.0 60.0 22.61 11.0 60.0 22.61 0.99 0.71 0.76
rH [%] 55,505 Observed 12.0 100.0 82.60 86.0 100.0 17.08 - - -
N 16.6 100.0 81.42 86.2 100.0 18.14 1.06 0.81 0.64
S2 13.6 100.0 81.36 86.3 100.0 18.30 1.06 0.83 0.61
LA 55,505 Observed 0.0 25.6 7.33 6.9 17.2 3.60 - - -
[m/s] S1 0.0 59.0 733 6.7 19.3 405 113 062 0.94
S2 0.0 45.7 7.33 6.7 19.1 4.05 1.13 0.67 0.87
P [mm] ™ 5960 Observed 0.1 32.9 0.94 0.4 34 1.74 - - -
5666 S1 0.1 33.1 0.99 0.5 34 1.73 0.99 - -
5284 S2 0.1 26.6 1.07 0.5 4.0 1.84 1.06 - -
* Excluding night time values and days with SD = 0.0 min
** Based on hourly values > 0.0 mm
Table 11 Statistics of the observed and generated data of the winter half-year for station Fichtelberg based on five stations
Climate element Sample size Dataset Xmin Xmax X Xmed X950, o Oy r RMSD,,
T[°C] 43,464 Observed =219 20.1 -0.71 -0.5 12.8 6.08 - - -
S1 -23.7 222 -0.71 -0.6 134 6.18 1.02 0.95 0.32
S2 -254 232 -0.71 -0.6 13.3 6.20 1.02 0.95 0.31
SD [min] * 15,194 Observed 0.0 60.0 2532 13.0 60.0 26.22 - - -
S1 0.0 60.0 21.69 59 60.0 25.13 0.96 0.71 0.75
S2 0.0 60.0 22.51 7.1 60.0 25.44 0.96 0.76 0.68
rH [%] 43,464 Observed 5.0 100.0 87.17 97.0 100.0 19.89 - - -
S1 6.9 100.0 86.08 93.8 100.0 18.26 0.92 0.84 0.56
S2 6.1 100.0 86.04 93.7 100.0 18.23 0.92 0.85 0.53
WS [m/s] 43,464 Observed 0.0 32.0 9.57 9.2 22.0 4.86 - - -
S1 0.0 38.8 9.57 8.9 23.9 5.08 1.05 0.73 0.76
S2 0.0 37.2 9.57 8.9 23.8 5.14 1.05 0.76 0.72
P[mm] 5144 Observed 0.1 10.0 0.60 0.3 2.0 0.73 - - -
4468 S1 0.1 13.1 0.69 0.4 2.3 0.97 1.28 - -
4042 S2 0.1 21.9 0.76 0.4 2.5 1.14 1.56 - -

* Excluding night time values and days with SD = 0.0 min

“Based on hourly values > 0.0 mm
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Climate changes in extreme precipitation events in the Elbe catchment of
Saxony

C. Gorner, J. Franke & C. Bernhofer
Technische Universitdit Dresden, Institute of Hydrology and Meteorology, D-01062 Dresden, Germany

O. Hellmuth
Leibniz Institute for Tropospheric Research, D-04318 Leipzig, Germany

ABSTRACT: To mitigate negative consequences of flooding, flood risk management is necessary which have
to be well adapted to the current climate conditions and its changes in the future, especially concerning heavy
precipitation events. Therefore, regionalized climate change scenarios are required. Two climate scenarios are
analyzed for Saxony and the Upper Mulde river basin as part of the Elbe catchment of Saxony. Furthermore,
the projected climate changes for Saxony are presented exemplarily with focus on precipitation. It is exam-
ined which changes in the amount, frequency, intensity and return period are projected, especially of heavy
rainfall events. With the assumption of a runoff coefficient close to one the occurrence of heavy rainfall will
be similar to the occurrence of heavy floods. Therefore, based on these analyses a first guess on the occur-
rence of future floods and there damage potential is possible.

1 INTRODUCTION This paper presents the results of the investiga-
tion of the future climate changes for the Saxon Elbe

Global climate change is one of the major challenges  river catchment, the changes in the return period of

for mankind and its impact is already noticeable to-  design precipitation and the changes in the maxi-

day. Extreme weather situations are increasingly be-  mum possible rainfall amount.

coming a drastic threat to millions of people and

they cause damage of unprecedented dimensions to

buildings and infrastructures. More heavy precipita- 2 DATA

tion events in western Germany, more hot and dry

summers as well as more severe storms have done 1 M dd

high economical damages in Germany during the : easured data

last decades (UBA & MPI-M 2006; Munich Re  The data of the past were measured and provided by

Group 2005). the Deutscher Wetterdienst (DWD; German Weather

As global climate models predict a clear increase  Service). For the reference time series between 1971

in temperature and weather extremes (IPCC 2001)  and 2003 the data for the elements precipitation and

due to increase in the atmospheric concentration of  temperature were available in daily resolution for

green house gases it is obvious to relate the reported  the stations Chemnitz, Fichtelberg, Marienberg,

increase in flood risk to climate change (Bernhofer  Carlsfeld and Aue.

et al. 2006). Floods, especially flash floods, as a re-

sult of heavy rainfall events are widely distributed

and have increased significantly in the past decades.

To minimize the flooding of populated areas like Two climate scenarios for the ten decades be-

during the Elbe flood in 2002, flood protection con-  tween 2001 and 2100 represented the basic data for

cepts are necessary which have to be well adapted to ~ the investigation of the future climate changes. The

the current climate conditions and its future changes,  basis for these scenarios was the transient run of the

especially concerning heavy precipitation events.  global circulation model ECHAMS/MPI-OM

Speed and degree of climate change influence how  T63L31 of the MPIM (Max-Planck-Institute for Me-

and how fast we have to adapt. Therefore, the deci-  teorology) at Hamburg for the emission scenarios

sion makers in policy, economy and administration = A2  (regional-economic) and Bl  (global-

have to know where and to which degree the climate  environmental) of the Intergovernmental Panel on

will change (UBA & MPI-M 2006). Climate Change (IPCC 2001). The regionalized sce-
narios were calculated by Meteo-Research 2006
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2.2 Future climate scenario data



within the project ENFORCHANGE. Meteo-
Research applied a dynamical statistical down-
scaling using weather patterns. The scenarios con-
tain daily data for the climate elements precipitation,
temperature, relative humidity, air pressure, sun-
shine duration, cloud cover, and wind force. To as-
sess the possible range of fluctuation of the future
climate change, 10 independent simulations have
been generated for each decade and each station on
the basis of the statistical frequency distribution of
the weather patterns of the moisture and temperature
regime. Concerning the temperature these 10 simula-
tions show only marginal differences. Therefore, no
differentiation between warmer and colder simula-
tions was made. But it was considered reasonable to
take the regard annual precipitation sum as a differ-
entiation criterion. On account on this the wettest,
driest and most mean simulations were selected and
combined to one wet, dry and mean transient realiza-
tion. (Enke & Kreienkamp 2005)

For all investigations the mean realization for the
scenarios A2 and B1 has been chosen while Bl is a
more moderate one.

3 CLIMATE CHANGES IN THE SAXON ELBE
RIVER CATCHMENT

Precipitation is the most important factor for trigger-
ing floods, especially flash floods. And also the tem-
perature plays a decisive role. Hence, both climate
elements have been investigated with regard to their
changes in the future and the resulting changes in
possible flood risk.

3.1 Investigation area

Saxony is a federal state in the South-East of Ger-
many. It covers lowlands as well as medium-
elevation mountains (Fig. 1).

The mountainous region is part of the Ore Moun-
tains up to a height of around 1200 m. Saxony also
covers the Mulde and a part of the Elbe river basin
which are the topic of research within Task 21.

3.2 Analysis of the scenario data

The analysis of the scenario data was restricted to
the precipitation and temperature data which are the
most important elements that are mainly examined
when climate changes are investigated.

At first the scenario decade 2041-2050 was se-
lected for the investigation of future flood risk.
Since this decade shows very little changes in pre-
cipitation (frequency, amount) and temperature for
the Upper Mulde and Saxon Elbe river catchment,
the decade 2091-2100 was chosen instead.
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Figure 1: Location of Saxony within Germany (top) and the
orography of Saxony (down)

3.2.1 Changes in summer precipitation

The meteorological summer (JJA) was selected be-
cause this season is characterized by convective pre-
cipitation events. And only this kind of rain events
has the potential to be such heavy events which are
able to trigger flash floods.

There are low changes in precipitation in the dec-
ade 2041-2050, especially in the Upper Mulde
catchment area. Almost whole Saxony is character-
ized by a mean decrease in precipitation of 14 %
(scenario B1). The area of the Upper Mulde shows a
reduction of 5-15 %. The lowlands, especially the
north-eastern and central Saxony, show a higher re-
duction up to 25 %.

For the decade 2091-2100 the decrease in precipi-
tation is more distinct with a mean value of 21 %.
But in the Upper Mulde catchment the increment of
the decrease in precipitation is more moderate and
ranges between 5 % and 20 %. Again, the highest
reductions can be found in the lowlands in central
and eastern Saxony. There, the reduction is partly up
to 35 % (scenario B1).

The following analysis of changes in summer
precipitation refers to the station Chemnitz which is
situated at the foot of the Ore Mountains (cp. Fig. 1).

In Figure 2 it can be seen that there is an increase
in the frequency of days without precipitation for
both scenarios. This increase has an amount up to
20 % (from 1971-2000 to 2091-2100 A2). Further-
more, the scenarios show a decrease in days with



less precipitation but an increase in the precipitation
class from >20 mm to <50 mm, up to a doubling.
These tendencies are already distinguishable by
comparing the two past time series.
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Figure 2. Relative frequency [%] of summer precipitation
(JJA) at Chemnitz for the past (1971-200/1993-2003) and the
future (2091-2100)

The reason that there is no increase in the class
from >50 mm to <200 mm is based on the fact that
the used statistical method for simulation is not able
to generate precipitation values higher than in the
past. It is only possible to simulate the past extreme
precipitation events more frequent. Extreme precipi-
tation like 2002 is not covered by the statistical cli-
mate projections but change in the probability den-
sity functions is possible.

Table 1 contains the mean annual and summer
precipitation sums for the past and the two future
scenarios. In general, there is a reduction in both
scenarios especially for the summer precipitation.

Table 1. Mean annual and summer (JJA) precipi-
tation sums [mm] in the past and future for the
station Chemnitz

Time series mean precipitation sum

year summer

mm mm
1971-2000 705 258
1993-2003 735 262
2091-2100 A2 721 227
2091-2100 Bl 665 245

3.2.2 Changes in summer temperature

Besides precipitation, temperature is the most
important element by analyzing the future climate
change. The two maps of Saxony in figure 4 show
the mean temperature trend in Kelvin for the sum-
mer season of the decades 2041-2050 and 2091-
2100. It can be seen that there is an increase in tem-
perature for the whole Saxon region for both scenar-
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i0s. This increase is more distinct in the north-
western lowlands (both decades) and the Elbe River
basin (2091-2100).

For the decade 2041-2050 (B1), the summer tem-
perature increase ranges between 0.8° C and about
1.4° C and has a mean of 1.2° C for the entire area.
Concerning the Upper Mulde catchment, the tem-
perature shows an increment of about 1.0° -1.2° C.
The decade 2091-2100 (B1) is denoted by a further
temperature increase up to a mean of 2.2° C and a
range from 2.0° C to 2.4° C while the area of the
Upper Mulde is again a region with relatively low
increase (2.0°-2.2° C). In the Saxon lowlands of the
Elbe River basin, the highest values of about 2.4° C
can be found.

Also for the temperature analysis the station
Chemnitz has been selected as an example. The rela-
tive frequencies of the daily mean summer (JJA)
temperature are shown in figure 3 for two past time
series and for the decade 2091-2100 of the scenarios
A2 and BI.

rel. frequency in %
-
o

8 10 12 14 16 18 20 22 24 26 28 30 32

T in °C (upper class limit)

——1971-2000 1993-2003 B12091-2100 A22091-2100

Figure 3. Relative frequency [%] of the mean summer (JJA)
temperature at the station Chemnitz

In evidence, there is a clear tendency to higher
temperatures. While the maximum temperature for
the past time series are 27.4 °C and 27.7 °C, respec-
tively, the maximum temperature for scenario A2 is
30.8 °C and 29.2 °C for scenario B1. This is an in-
crease of around 12 %. The temperature with the
highest relative frequency is shifted from the class
14-16 °C (1971-2000) to the class 18-20 °C (Bl)
and 20-22 °C (A2) respectively. Furthermore, it can
also be seen that the number of warm days with a
mean temperature > 20 °C will increase. In spite of
these three facts, in future, there will still be cold
days like in the past where the minimum mean tem-
peratures were 6.8 °C and 7.0 °C respectively. The
minimum temperatures for the scenarios are 7.9 °C
and 7.0 °C. But the number of days colder than
18 °C will be reducing in the future.



These trends are already observable by compar-
ing the two past time series 1971-2000 and 1993-
2003.

4 CHANGES IN THE RETURN PERIOD OF
PRECIPITATION EVENTS

4.1 Methodic basics

For the estimation of a possible future spatio-
temporal development of statistical heavy precipita-
tion using the statistic of extremes a multiple regres-
sion model based on weather patterns has been built
up. Generally, projected time series of precipitation
were not used because until now they are associated
with high uncertainties. The model is based on a sta-
tistical relation between the parameters of the distri-
bution function of extreme values (Gumbel distribu-
tion) and variable frequency distribution of regional
classes of weather patterns. The time series of the
weather patterns were generated using an objectified
classification method on the basis of meteorological
predictor fields [NCAR/ NCEP-Reanalysis (Kalny et
al. 1996), ECHAMS / MPI-OM T63L31-Simulations
(A2 and B1)]. Changes in the distribution of the
weather patterns were utilized to design changes of
the distribution parameters of future time slices
compared to a reference period (1951-2000).
Equation 1 shows the Gumbel-Distribution trans-
formed as a linear equation. To calculate the future
return period for a statistical heavy precipitation this
equation has to be solved for 7' (Eq. 2).
T
) o

where SHP = statistical, heavy precipitation [mm];
D = duration; T = current return period [a]; t = time
slice (reference period); u, w = parameters of the
Gumbel-Distribution

SHP(D,T,t) = u(D,t) + w(D,t)* (— Inln

with T > 1a;

uW'(D,¢')— SHP(D,T, z)jl T 2

T'(D,t')=|1—]| expex
(D,t') { [ pexp WD)

where T’ = future return period [a]; t” = future time
slice (reference period); u’, w’ = parameters of the
Gumbel-Distribution of the scenarios.

The comparison of calculations on the basis of
measurements versus the control run (Fig. 4) shows
that the characteristic of heavy precipitation is
strong correlated with circulation pattern.
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Figure 4. Mean Model Error [%] concerning return periods of
5-100 yrs and durations of 1 hto 3 d

4.2 Return period changes of the
SHP(24h,100a,1951-2000)

In this section, the changes of the return period are
investigated exemplarily for the current precipitation
event SHP(24h,100a,1951-2000).

To calculate the changes, the mean return period
was computed for the central year of a 30 years run-
ning period (decade wise) between 2011 and 2100
(Fig. 5). There, the considered time period is the ve-
getation period from May to September.

Figure 5 clarifies a decrease in the return period.
For scenario Bl the mean decrease is from about
75yrs (2025) to about 68 yrs (2085). For the A2 sce-
nario it decreases from around 76 yrs to 65 yrs. Con-
cerning both scenarios, this means that such an event
with a current return period of 100 yrs and a dura-
tion of 24 h occurs more and more often in the fu-
ture.

This reducing return period is probably also a re-
sult of the increasing occurrence of rainfall events
with a short duration, e.g. convective events with a
duration of few hours (cf. Section 4.2.1).

The distinctive leap of about 25 yrs between the
current value (100 yrs) and the first value of the sce-
narios (75 / 76 yrs) results from several possible rea-
sons:

- The current return period was calculated for 50

years (1951 —2000).

- The ten years between 2001 and 2010 are missing
- The trends concerning the changes in summer
temperature (warming) and precipitation (in-
crease in heavy precipitation) are already observ-
able in the comparison of the two past time series

(cf. Fig. 2 and 3).

- The model has a mean error of 2.0-4.0 % for an
event with a duration of 24 h and a return period

of 100 years (cf. Fig. 4).
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Figure 5: Changed return period of SHP(24h,100a) for 1951-
2000, vegetation period (may-sep), catchment area "Zwickauer
Mulde" and “Freiberger Mulde”

5 CHANGES IN THE MAXIMUM POSSIBLE
PRECIPITATION AMOUNT IN SAXONY

A comprehensive multiscale simulation approach is
beyond the scope of this section. Nevertheless, to
gain at least some tentative statements about the im-
pact of climate change on extreme weather events,
an epignostic sensitivity study of the century flood
of the river Elbe in August 2002 is performed.
The simulations were performed using the model
COSMO-DE Version 4.2 (the former Lokal-
Modell), which is the NWP model the Deutscher
Wetterdienst (DWD) (Schittler & Doms 2002). The
model domain covers the northern part of Central
Europe with an area of approximately 565 x 565 km?
and a horizontal grid resolution of Ax = 2.8 km
(number of horizontal grid points: 201 x 201, num-
ber of vertical layers: 45, grid resolution in geo-
graphical coordinates: 0.025°). The options for the
physical parameterizations were the same as the one
used in operative model runs. To initialize and force
the COSMO-DE simulations special reanalysis data,
generated by the DWD for this flood event (model
LMQ), were used. The model was initialized at Au-
gust 12, 00 UTC. Model integration time was 30
hours. The predicted 24 h-rain sum was evaluated in
the time interval from 00+06 UTC until 00+30 UTC.
Within the framework of a sensitivity study several
model runs with modified initial and boundary con-
ditions were performed (respective constant offset of
temperature and water vapor mixing ratio to the
LMQ reanalysis data).

The preliminary results can be summarized as
follows (cf. Tab. 2):
- The observed rainfall pattern, especially the loca-

tion of the maximum is well reproduced by the

reference case simulation. However, the observed
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total maximum was underestimated by ca. 70 -

100 mm.

An alteration of the thermo-humid initial and

boundary conditions is accompanied by a change

of the flow conditions. This may result in a

change of the location and intensity of hydro-

thermodynamic structures such as fronts, air mass
internal convergence zones, convective updrafts
etc.

A temperature increase leads to a decrease of the

total rain sum due to an enhanced storage capac-

ity for atmospheric water vapor, ensuring longer
lasting sub-saturated conditions (case 1D02).

Owing to the character of the underlying physical

equations, the model system does not respond

linearly to a change of the initial and boundary
conditions. In dependence of the corresponding
change of the storage capacity for atmospheric
water vapor, constants offsets of temperature and
humidity can decrease or enhance the resulting
rain amount. In one case this results in a superpo-
sition, in another case in a displacement or split-
ting of dynamic and orographic lifting zones, the
latter leading to the weakening of rain maxima
and the appearance of new maxima.

The present simulations insinuate a tendency of

an overall enhancement of the rain sum for an in-

crease of the water vapor mixing ratio above a

certain threshold. Thus, the relative humidity

must exceed the value of the reference run.

The total rain integrated over all grid points of the

model domain reveals the following features:

e Keeping the water vapor mixing ratio constant,
the total amount of precipitation decreases for
a higher temperature (ID02). This case corre-
sponds to an effective decrease of the relative
humidity.

e The cases with nearly constant relative humid-
ity provide nearly the same (ID03) or small
decreasing (ID07) amount of overall precipita-
tion, respectively. The increased amount of
atmospheric water vapor leads to higher con-
version into precipitation in the model domain.
Thus, with respect to the total rain sum, the lo-
cal decrease of rain sum over the Ore Moun-
tains due to the displacement between hydro-
thermodynamic and orographic lifting zones is
overcompensated by a higher availability of
atmospheric water vapor. As expected, a fur-
ther increase of the water vapor mixing ratio at
the same temperature leads to a higher overall
precipitation. This case corresponds to an ef-
fective increase of the relative humidity.



Table 2. Maximum local 24h-rain sums in the whole model
domain and in the Ore Mountains region in dependence of con-
stant offset of temperature and water vapor mixing ratio

Run T Mixing Max. local Max. local  Change
ID offset ratio 24h-rain 24h-rain in in-
tegr.

offset OM* rain
sum

K % mm mm %

01 0 0 230-240 (OM) 230-240 -
02 +2 0 180-190 (OM) 180-190 -23.6
03 +2  +10 190-200 (OM) 190-200 -4.4
04 +2 +15 190-200 (OM) 190-200 +43
05 +2 +20 240-250 (BB*) 190-200 +11.7
06 +2  +40 >450 (BB) 190-200 +28.4
07 +4  +20 210-220 (BF*) 170-180 -11.4
08 +4  +30 230-240 (BB) 160-170 +5.6
09 +4  +40 330-350 (BB) 200-210 +17.6

*  OM = Ore Mountains; BB = Brandenburg; BF = Bohemian
Forest

The bold printed run ID 01 represents the “undis-
turbed” reference case and ID 03 and 07 correspond
to nearly constant relative humidity.

Thereby, it is important to consider that under
these changed climate conditions a quite different
dynamic is developing and such a weather pattern
like in August 2002 would maybe not occur. Fur-
thermore, the results have to be interpreted with re-
gard to the fact that this changing of the climate and
boundary conditions is a rigorous interference in the
model physic and hence does not mandatory produce
realistic conditions and results.

6 CONCLUSIONS

The aim of the work presented was to analyze the
future climate change in Saxony, its impact on return
period and on the maximum possible rainfall amount
over Saxony.

The analysis of the climate change for the sum-
mer period in Saxony shows a general trend of de-
creasing precipitation and increasing temperature.
For the decade 2091-2100 of the SRES scenario B1
this results in a mean precipitation decrease of 21 %
and a mean temperature increase of 2.2 °C. These
trends are not equal over the whole region. For the
Upper Mulde catchment they are less distinct and in
the Saxon lowlands they show the highest values.

As an example the station Chemnitz was ana-
lyzed more detailed. It was shown that the relative
frequency of days without precipitation as well as
for days with high precipitation increases. Concern-
ing the changes in temperature, the relative fre-
quency shows a trend to higher temperatures and
more warm days while the number of cold days de-
creases. But there are still cold days. The class with
the highest relative frequency is shifted to warmer
temperatures.
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It is pointed out that these precipitation and tem-
perature trends are already observable by comparing
the two past time series 1993-2003 and 1971-2000.

From these climate change analysis result an in-
creasing future occurrence probability of summer
rainfall events with high intensities, e.g. convective
cells, what causes a higher risk concerning flash
floods. Furthermore, the climate change will lead to
an increased occurrence probability of warm, hot
and dry days as well as droughts.

In Section 5 the changes in the return period of a
precipitation event with a duration of 24h and a cur-
rent return period of 100 yrs was investigated. The
results show a decrease in the return period of up to
32 yrs for scenario B1 and 35 yrs for scenario A2.
Concerning both scenarios, this means that such an
event will occur more often in the future what is
probably partly a result of the increasing occurrence
of short duration rainfall events like convective
cells.

Additional work investigated the impact of cli-
mate changes on the maximum possible rainfall
amount. This was realized by using the model
COSMO-DE Version 4.2. Within the framework of
a sensitivity study several model runs for the 2002
Elbe flood event were performed with modified ini-
tial and boundary conditions concerning a constant
offset of temperature and water vapor mixing ratio.
Thereby, it was shown that these offsets have a high
influence on the model dynamic as well as on the re-
sulting rain field structure and amount. It was fig-
ured out that a temperature increase leads to a de-
crease of the total rain sum due to an enhanced
storage capacity for atmospheric water vapor. In de-
pendence of that, constant temperature and humidity
offsets can decrease or enhance the resulting rain
amount. This results in a superposition, in a dis-
placement or splitting of dynamic or orographic lift-
ing zones what leads to the weakening of rain
maxima and appearance of new maxima.

By keeping the water vapor mixing ratio constant,
the total rain amount decreases for higher tempera-
tures. The runs with nearly constant relative humid-
ity provide nearly the same rainfall amount.

These results have to be always considered under
the aspect that it is uncertain whether such a weather
pattern like 2002 would occur under these changed
climate conditions.
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ABSTRACT: The satellite meteorology team of the TU Dresden developed a “Structured Algorithm System”
(SAS) for quantitative precipitation estimation (QPE) based on the highly resolved geostationary satellite data
of Meteosat-6 and Meteosat-8. The SAS is used for detecting extreme storm rainfall at the spatial and tempo-
ral scales of interest for flash-flood analysis and prediction. Within this algorithm, several techniques for es-
timating rain rates are applied. The satellite derived rain rates are corrected concerning orographic situation,
the wind and moisture conditions and the cloud growth rate by using additional data like MPEF products and
radiosondes. Furthermore, they are compared and analyzed statistically in relation to radar data. The results
are presented for an example of a flash-flood in the Trentino Alto Adige region in the Italian Alps which oc-

curred in July 2005.

1 INTRODUCTION

Flooding — including flash floods — as a result of
heavy or long-lasting precipitation is the most
widely distributed of all natural hazards across
Europe, causing distress and damage wherever it
happens. Hence, there is a high need of realtime de-
tection of rain fields and determination of the rain
rates to be able to forecast the possible flood risk.
Concerning ground based historical rainfall observa-
tions with rain gauges, only radar measurements are
able to observe heavy rainfall events temporal and
spatial highly resolved. Despite the increasing den-
sity of radar networks covering Europe, radar meas-
urements will ever be limited (e.g. in mountain re-
gions, ocean...). Thus satellite data are more and
more used to improve rainfall estimations (Grassotti
et al. 1998, Lakshmanan et al. 2006). The problem
comparing radar and satellite measurements is based
on the satellite platform itself as well as on the tech-
nical features of instruments. But as a result of the
increasing technical progress in last decades the
space borne rainfall measurements were improved
(Petty 1995, Levizzani et al. 2002, Lang et al. 2003,
Ebert et al. 2007) and applied to several events
(Vicente et al. 1998, Bendix et al. 2001).

The aim of the work presented was to develop a
Structured Algorithm System (SAS) for Quantitative
Precipitation Estimation (QPE) for detecting ex-
treme storm rainfall by using highly resolved geosta-
tionary satellite data. This has been realized by
building up a twofolded SAS, one part based on Me-
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teosat-6 Rapid Scan data (M6/RS-SAS) and the sec-
ond part based on Meteosat-8 data (MSG-SAS).
Both parts include several rainfall estimation tech-
niques. The satellite derived rain rates are corrected
concerning the orography, the wind and moisture
conditions and the cloud growth by using additional
data like MPEF products and radiosondes. And fur-
thermore, they were compared and analyzed statisti-
cally in relation to radar data.

2 DATA

2.1

Meteosat-6 is the sixth satellite of the first genera-
tion of the meteorological geostationary satellites
operated by the European Organisation of the Ex-
ploitation of Meteorological Satellites (EUMET-
SAT).

Meteosat-6 carries the MVIRI (Meteosat Visible
and Infrared Imager) which is able to detect the
emissions of three spectral wavebands (Tab. 1).

The data are recorded every 30 minutes for the
full earth scan (Full Disk) and every 10 minutes for
Europe (Rapid Scan data, available since 01/2002).
The Sub-Satellite-Point (SSP) resolution adds up to
5 x5 km* (WV, IR) and 2.5 x 2.5 km? (VIS)
(EUMETSAT 2003). Since 4th April 2003 all Rapid
Scan imagery are rectified to 10° East and all previ-
ously imagery were rectified to 0°, because of the
changed position of Meteosat-6 to 10° East. The im-

Meteosat-6



ages are adjusted by EUMETSAT and provided by
the EUMETCAST service. The calibration of the
Meteosat-6 IR, WV and VIS channel is done by
EUMETSAT.

Table 1. Spectral wavebands of Meteosat-6 (EUMETSAT

2000)

Channel Measuring range  Main gaseous absorber or
pum window

VIS 045-1.0 Window

IR 10.5-12.5 Window

wv 3.7-7.1 Water vapor

2.2 Meteosat-8

Meteosat-8 is the first satellite of Meteosat Second
Generation (MSG) and is therefore also called
MSG-1. It was launched in 2002, has a nominal po-
sition at 0° and is sending data operationally since
January 2004. It carries the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) which ob-
serves the full disk of the earth with a repeat cycle of
15 minutes in 12 spectral channels (Tab. 2). The
channels 1-11 have a spatial resolution of 3 x 3 km?
at the Sub-Satellite Point (SSP) and channel 12
(High Resolution Visible, HRV) has a spatial resolu-
tion of 1 x 1 km? (SSP). The calibration of the Me-
teosat-8 channels is done by EUMETSAT, too
(EUMETSAT 2006b).

Table 2.  Spectral channel characteristics of Meteosat-8
(Schmetz et al. 2002)

Channel Measuring range  Main gaseous absorber
um or window

1 VISO0.6 0.56 -0.71 Window

2 VISO0S8 0.74 - 0.88 Window

3 NIR1.6 1.50-1.78 Window

4 IR39 3.48 -4.36 Window

5 WV 6.2 535-7.15 Water vapor

6 WV73 6.85—-7.85 Water vapor

7 IR87 8.30-9.10 Window

8 IR 9.7 9.38-9.94 Ozone

9 IR10.8 9.80-11.8 Window

10 IR 12.0 11.0-13.0 Window

11 IR134 12.4-144 Carbon dioxide

12 HRV about 0.4 — 1.1 Window / water vapor

2.3 Radar

The used radar data of the Italian investigation area
were delivered by the co-operation partner Univer-
sity of Padova. This area is located in the Trentino-
Alto Adige region in the north-eastern Italian Alps
(Fig. 1). The data used were collected by the C-band
radar station Monte Macaion. The region covered by
radar ranges the areas from 200 m a.s.] to 3900 m
a.s.l. (Tonelli et al. 2003). The radar data used from
the Monte Macaion station have a temporal resolu-
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tion of 5 minutes and a spatial resolution of
1 x 1 km2

Monte Macaion
&

VWeather Radar
e
)

Figure 1. Position of Monte Macaion weather radar (right) and
its surrounding topography (left) (Tonelli et al. 2003)

2.4 Additional data and rain rate correction

2.4.1 MO6/RS-SAS

At regular intervals many meteorological products
(e.g. Meteorological Products Extraction Facility -
MPEF) are generated from the Meteosat image data
(EUMETSAT 1996). The spatial resolution of
MPEF products depends on the distribution per
segments. One segment consists of 32 x 32 infrared
pixels and a matrix of 80 x 80 segments covers the
complete field of view. The MPEF-products Cloud
Analysis (CLA), Cloud Motion Winds (CMW) and
Upper Tropospheric Humidity (UTH) are integrated
in the M6/RS-SAS.

Some satellite based rainfall estimation tech-

niques include a moisture correction factor (PWRH)
as a product of precipitable water (PW) for entire
sounding and relative humidity (RH) as the UTH
value. (Vicente et al. 1998, Ba & Gruber 2001). Fur-
ther used radiosonde values are Convective Avail-
able Potential Energy (CAPE), level of free convec-
tion (LFC) as well as the temperature and pressure
of the lifted condensation level.
For taking into account the effects of the 3D struc-
ture of the terrain (e.g. windward-lee-effects) a rain-
fall multiplier is applied. It increases or reduces the
derived rain rates depending on the orographic in-
formation and the wind conditions.



242 MSG-SAS

For two of the four applied methods the moisture
correction factor PWRH using radiosonde data and a
cloud growth rate correction factor have been inte-
grated in the MSG-SAS. The cloud growth correc-
tion is realized by comparing pixel wise the IR-
temperatures of two consecutive images based on
two assumptions: 1) a decrease in temperature de-
noting the growing of the cloud and increasing rain
rates; 2) an increase in temperature denoting the de-
caying of the cloud and decreasing rain rates.

From the image data various MPEF and SAF
(Satellite Application Facility) products are gener-
ated which could be useful for the correction and
validation of the estimated rain rates

The MPEF products (e.g. Atmospheric Motion
Vectors, Tropospheric Humidity) are regularly pro-
duced, archived and distributed by EUMETSAT.
They have a spatial resolution of 1° x 1° and differ-
ent temporal resolutions (e.g. 15 min, 1 h, 3 h).

The SAF products (e.g. Precipitating Cloud, Con-
vective Rainfall rate) are mainly distributed to users
on demand, either as finalized products or as product
extraction algorithm software packages for which a
license is needed. The SAF have a spatial and tem-
poral resolution equivalent to the MSG data resolu-
tion.

Both product types are encoded in the very com-
plex and compressed BUFR (Binary Universal Form
for the Representation of meteorological data) and
GRIB II (GRIdded Binary II) data format. To use
them special decoder are needed which do not work
under Windows. MPEF as well as SAF could not be
included in the MSG-SAS within the FLOODsite
project because of problems with the required li-
cense and the data formats.

3 IMPLEMENTED METHODS

3.1 M6/RS-SAS

To simplify matters first analyses were made by us-
ing Rapid Scan data because of their reduced spec-
tral information of three channels in comparison to
Meteosat-8 data and its spectral information of 12
channels. To derive rain rates from the satellite data
the following methods are included:

e Griffith-Woodley Technique (Negri et al. 1984,

Negri & Adler1993)
e Auto-Estimator Technique (AE) (Vicente et al.

1998)
e GOES Multispectral ~ Rainfall ~ Algorithm
(GMSRA) (Ba & Gruber 2001)

e Technique after Grose (Grose et al. 2002)

e Enhanced Convective Stratiform Technique
(ECST) (Reudenbach 2003, Bendix et al.2001)
¢ Combined Method after Jatho

81

3.2 MSG-S4S

The following four algorithms for rainfall estima-
tions are implemented in the MSG-SAS:

Enhanced Convective Stratiform Technique

e Auto-Estimator Technique

e GOES Mutlispectral Rainfall Algorithm

e Method after Kurino (Kurino 1997a, 1997b)
4 CASE STUDY

4.1 Research area and event characteristic

As already mentioned in section 2.3 the exemplarily
investigation area is located in the Trentino-Alto
Adige region in the north-eastern Italian Alps (Fig.
1). The relief heights of the radar covered region
range between 200 m a.s.] to 3900 m a.s.l., corre-
sponding to the highest mountains in north-eastern
Italy (Tonelli et al. 2003). The region is classifiable
as an Alpine high-mountainous area (Delrieu 2006).

The examined event was a convective precipitation
event in the Val Pusteria. It occurred in the after-
noon of 18th July 2005, implicated some heavy
thunderstorms, had a duration of about four hours,
and had a direction of tension from west to east.

The event was analyzed between the period from
14:30 UTC to 15:30 UTC and for the time step of
14:30 UTC concerning the quality and quantity of
satellite derived rain rates comparing to radar meas-
urements. Figure 2 shows exemplarily the radar
measurement for the selected time step.

F [mm/h]

latitude

longitude

Figure 2. Radar derived rain rates, Val Pusteria, 18" July 2005,
14:30 UTC

The radiosonde data of Udine at 12.00 UTC de-
livered the required additional data relative humidity
and precipitable water for the PWRH correction. At
that point of time the relative humidity between sur-
face and the 500 hPa level was 61.85 %. The pre-
cipitable water for the entire sounding was 1.44
inches. That results in a PWRH factor of 0.89 what
leads to a reduction of the estimated rain rates.



4.2 M6/RS-S4S

The tested satellite techniques are the Auto-
Estimator as a simple way to derive rain from cloud
top temperature, the ECST developed for Europe
(Fig. 3), the modified ECST as well as the new de-
veloped Combined Method (Fig. 4).

A first comparison between the radar measured
rain and Auto-Estimator, ECST and Combined
Method derived rain rates (without any additional
rainfall correction) is done. For the comparisons, the
radar data are used as reference. Concerning
Baumgartner & Liebscher (1996) the threshold to de-
fine heavy rainfall is about 10 mm/h. This value is
used to differentiate between radar measured rain
considered as flash flood relevant or not.

P [mmih]

|atitude
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Figure 3. ECST derived rain rates without rainfall correction,
Meteosat-6, Val Pusteria, 18" July 2005, 14:30 UTC

latitude

longitude

Figure 4. Combined Method derived rain rates without correc-
tion, Meteosat-6, Val Pusteria, 18" July 2005, 14:30 UTC

On consideration of the extension of rain areas
and their rain rates, large differences between radar
and satellite data are shown. Particularly in the
north-east part of the investigated area the satellite
data yield more precipitation. There, the area of ra-
dar measured rain is limited by the range of radar
station itself.

A further comparison of radar and satellite data
shows a spatial offset. The offset maybe caused by a
relocation of rainfall derived via satellite at the cloud
top and measured at surface.
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Comparing the several satellite derived rain, dif-
ferences between the techniques become apparent.
Concerning the marginal information used as input
for the Auto-Estimator the rain rate are lower than
for the complex method ECST. The Combined
Method combines the features of several techniques.
Thus the method is able to derive higher rain values
following an area of maximized extension.

The impact of orography as well as current wind
situation of satellite derived rain rates using a rain
multiplier is done exemplarily for the ECST (FIG. 5)
and the Combined Method (Fig 6). It is shown that
the rain multiplier increases and reduces the satellite
derived rain rates in regions of distinct orography.
The intensification of rain rates using the multiplier
is caused by the high wind speed of 10.1 to 11.0m/s.
The spatial outline of satellite derived rain depends
on the small range of tested surrounding pixels
(3 x 3 environment) used for determination of the
rain multiplier. Thus the orographic attributes are
considered well and the areas of increased or re-
duced satellite rain are very local.

A comparison of the satellite techniques with and
without rain correction in account with radar meas-
ured rain represents still an underestimation for the
simple Auto-Estimator. In contrast, the ECST, the
modified ECST as well as the Combined Method
overestimate the radar measurements.
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Figure 5. ECST derived rain rates with rainfall correction, Me-
teosat-6, Val Pusteria, 18" July 2005, 14:30 UTC
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Figure 6. Combined Method derived rain rates with rainfall
correction, Meteosat-6, Val Pusteria, 18" July 2005, 14:30
UTC

Exemplary for the period 14:30-15:30 UTC the
statistic, represented by the minimum (Min), maxi-
mum (Max), mean (Mean), standard deviation (SD)
and standard error (SE) of differences, is given in
Table 3.

Table 3. Statistic for the comparison of Meteosat-6 and radar
derived rain rates of 18" July 2005, 14:30-15:30 UTC

Statistical ~ simple AE  ECST Comb. Meth.
value nc* c* nc ¢ m* nc c
Min [mm/h] -17.8 -17.8 -17.9 -17.8 -179 -174 -17.5
Max [mm/h] -1.7 -1.1 5.3 6.7 243 49 6.1
Mean [mm/h] -7.8 -7.7 -57 -53 22 -1.6 -1.6
Mean [%]  -55.3 -549 -394 -364 218 -7.7 -79
SD [mm/h] 3.9 40 51 56 100 54 56
SE [mm/h] 0.8 08 1.0 1.1 19 10 1.1

* nc = not corrected, ¢ = corrected, m = modified

Comparing the mean values for the time period
14:30-15:30 UTC an underestimation of satellite de-
rived rain as to radar is assigned except for the
modified ECST. This is caused by an occurrence of
a spatial offset between satellite and radar detected
areas. This offset results probably from a relocation
of satellite derived rainfall at the cloud top and
ground measured rain. Hence it is possible that the
satellite derived rain rates at the cloud top differ in
spatial allocation to the radar measured rain.

A further factor for spatial offset between the sat-
ellite and radar rain field is based on the limitation
of radar measurements depending on the range of
the radar station. Therefore, in contrast to the satel-
lite the field of view of radar is limited. Thus a com-
parison between flash flood relevant radar rain rates
(>= 10mm/h) and satellite derived rain shows an un-
derestimation for the satellite.

4.3 MSG-SAS

For statistical analysis the radar data >= 10 mm/h
were again selected. Then the differences of them
and the corresponding satellite data were calculated.

For the comparisons of the results this satellite
scan was chosen who was temporal the closest to the
radar time. In contrast to Meteosat-6 the time stamp
of a Meteosat-8 picture denotes the start of the scan
of this picture (EUMETSAT 2006a). The scan al-
ways starts in the south-east (South Pole) and takes
about 13 minutes till its end in the north-west (North
Pole). So after about 9 and 10 minutes north Italy is
scanned.

For the methods Auto-Estimator and GMSRA the
moisture correction factor PWRH (0.89) and the
cloud growth rate correction are applied.

Figure 7 gives an impression of the satellite de-
rived rain rates using the ECST for 14:30 UTC. Fur-
ther, the Figures 8 shows the corresponding rain
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rates for the Auto-Estimator without any correction.
The effect of the moisture and growth correction is
given in Figure 9 for the Auto-Estimator.
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Figure 7. ECST derived rain rates, Meteosat-8, Val Pusteria,
18" July 2005, 14:30 UTC
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Figure 8. Auto-Estimator derived rain rates without correction,
Meteosat-8, Val Pusteria, 18" July 2005, 14:30 UTC
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Figure 9. Auto-Estimator derived rain rates with moisture and
growth correction, Meteosat-8, Val Pusteria, 181 July 2005,
14:30 UTC

It can be seen that there are big differences be-
tween the radar and satellite derived rain rates and
also between the four satellite estimation techniques
and their modifications. These differences concern
the range of the rain rates as well as the size and lo-
cation of the rain field area. The rain field area de-



rived by radar is only partly covered by the satellite
derived rain rates but the satellite rain field is much
bigger and relocated in the north-east of the re-
searched area. However, the areas with the highest
rain rates are situated near the highest radar rain
rates. Thus a spatial offset is distinguishable. For the
four algorithms the maximum rain rate varies from
7.6 mm/h (Kurino) to 32.3 mm/h (GMSRA) while
the maximum of radar rain rates is 31.5 mm/h. There
is a tendency of the satellite estimation techniques to
underestimate the radar rain rates of these grid cells
having rates >= 10 mm/h. This results in negative
values for the means (Tab. 4) of the differences be-
tween radar and satellite rain rate. Beside of the ab-
solute and relative mean, Table 4 contains the statis-
tical parameters minimum (Min), maximum (Max),
standard deviation (SD) and the standard error of the
mean (SE).

Table 4. Statistic for the comparison of Meteosat-8 and radar
derived rain rates of 18" July 2005, 14:30-15:30 UTC

Statistical AE ECST GMSRA Kurino
value s* c* S [

Min [mm/h] -14.0 -154 -123 -86 -19.6 -15.3
Max [mm/h] 30.0 -2.6 13.1 143 23 -45
Mean [mm/h] 5.0 -9.0 32 0.4 7.9 9.1
Mean [%] 2396 -659 234 26 -57.6 -67.0
SD [mm/h] 7.5 33 6.1 5.1 5.0 2.8
SE [mm/h] 1.4 06 1.1 1.0 0.9 0.5

* g = simple, ¢ = corrected

The tendency to underestimate is most distinct for
the corrected Auto-Estimator and GMSRA what re-
sults from the PWRH correction (PWRH < 1.0). For
the areas with little or no radar derived rain the sat-
ellite techniques tend to an overestimation, espe-
cially the simple GMSRA and the ECST. Both ten-
dencies are partly a consequence of the relocation of
the satellite rain field. This relocation may results of
the different angle of view of the two systems radar
and satellite and the different points in time of scan-
ning.

4.4 Comparison of Meteosat-6 and Meteosat-8

Further analyses are done comparing Meteosat-6 and
Meteosat-8 with regard to the advantages using
more spectral information provided by Meteosat-8.
The comparison is done for the methods Auto-
Estimator and ECST for the 18™ July 2005 for the
hour 14:30-15:30 UTC and the time step 14:30
UTC.

The rain fields for the time step 14:30 UTC dem-
onstrate similar extensions but differences in the
quantity of the rain rates. As already mentioned, a
spatial offset between the satellite and radar meas-
urements exists. The offset is not fully explainable
and maybe caused by features of the measurement
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instruments itself. Furthermore, a spatial offset be-
tween the two satellite data is noticeable which is
maybe caused by the differences in scanning time as
a result of the different duration of the repeat cycles.

Concerning the ECST, the analysis demonstrates
fewer differences in the detected rain area but high
differences in the quantity of rain rates. The Me-
teosat-8 data represents higher rain rates followed by
increased extensions.

Using the rain multiplier for Metosat-6 data in-
creased the quantity of derived rain rates. A com-
parison clarifies higher rain values for the improved
Meteosat-6 data as derived for Meteosat-8.

As well as for the Auto-Estimator, the results of
both satellite data for the ECST differ in spatial and
quantitative assignment. Using the rain multiplier ef-
fects higher rain values for Meteoast-6 data in com-
parison to Meteosat-8.

Table 5 contains the statistic values of the derived
rain rates concerning the radar rain rates >=10mm/h
the results of Auto-Estimator and ECST for the time
step 14:30 UTC.

Table 5. Statistic for the comparison of Meteosat-6, Meteosat-
8 and radar derived rain rates of 18" July 2005, 14:30 UTC

Statistical simple AE ECST
value M6* M8* M6 M8
nc c nc c -

Min [mm/h] -17.3 -21.8 -21.8 -12.8 -162 -254
Max [mm/h] -0.8 -05 -1.0 11.0 13.0 112
Mean [mm/h] -6.6 -6.5 -10.8 1.6 1.1 -1.7
Mean [%] -442 439 -68.1 107 7.4 -48.7
SD [mm/h] 49 52 5.5 8.4 9.7 9.9
SE [mm/h] 1.1 1.2 1.2 1.9 2.2 2.1

* M6 = Meteosat-6, M8 = Meteosat-8

As shown in Table 5 the results for the Auto-
Estimator and the ECST for both satellites differ.
The Auto-Estimator derived rain rates underestimate
the radar measurements. Comparing the results of
both satellites, Meteosat-8 tends to underestimate
the highest radar rates more than Meteosat-6. For the
ECST it can be seen that the Meteosat-6 tends to
overestimate radar and Meteosat-8 tends to underes-
timate again. Possible reasons are the differences in
scanning time, the spatial offset between radar and
satellite and the filter functions of the input chan-
nels.

The statistical values for the analysis of the time
span 14:30-15:30 UTC are summarized in Table 6.
Considering the Mean values the application of the
rain multiplier effects less improvement to derived
Meteosat-6 rain rates. The rain multiplier is not able
to reach the Mean values of Meteosat-8. This may
be due to the feature of Meteosat-6 Rapid Scan data
to underestimate the derived rain rates in compari-
son to Meteosat-8 based on the marginal spectral in-
formation of Meteosat-6.



Table 6. Statistic for the comEarison of Meteosat-6, Meteosat-
8 and radar derived rain of 18" July 2005, 14:30-15:30 UTC

Statistical simple AE ECST
value Mo6* M8* Mo M8
nc ¢ ne c B

Min [mm/h] -17.8 -17.8 -140 -179 -17.8 -12.3
Max [mm/h] -1.7  -1.1 30.0 53 6.7 13.1
Mean [mm/h] -7.8 -7.7 -50 -57 -53 32
Mean [%] -553 -549 -39.6 -39.2 -364 -234
SD [mm/h] 39 40 75 5.1 5.6 6.1
SE [mm/h] 07 08 14 0.9 1.0 1.1

A comparison of Mean values for both satellites
represents an underestimation for the Auto-
Estimator which is more distinct for Meteosat-6.

The results of the ECST show a tendency of un-
derestimation for Meteosat-6 and overestimation for
Meteosat-8. This overestimation is explainable with
the higher extension of the detected heavy rainfall
area. Furthermore the application of the ECST to the
Meteosat-8 data is not completely clarified until now
(Reudenbach 2005). And the effect of this is difficult
to discuss.

As a conclusion it can be noted that the results
depends on the applied satellite based estimation
technique as well as on the used satellite input data
(Meteosat-6, Meteosat-8). At least Meteosat-8 offers
partly improved rainfall estimations because of its
better spatial resolution and the increased spectral
information but the estimation techniques have to be
adapted to that.

5 CONCLUSIONS

The aim of TU Dresden within Task 15 of the
FLOODsite project was to develop a satellite based
Algorithm System (SAS). The M6/RS-SAS inte-
grates six different satellite rainfall estimation tech-
niques. To improve the results additional data like
MPEF products and radiosonde data are imple-
mented. Thus the current wind and the atmospheric
condition can be considered.

To consider the influence of orography and cur-
rent wind situation the investigation area is tested
concerning the windward and lee situation. By de-
fining a rain multiplier the satellite derived rain can
be increased or reduced.

Based on the integrated satellite methods Auto-
Estimator, GMSRA, Grose and ECST a new method
called Combined Method was developed and inte-
grated in the M6/RS-SAS.

To validate the satellite derived rain rates radar
data from the co-operation partner are integrated. To
compare the data for one grid cell the radar data are
scaled to satellite resolution.
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Both SAS were tested for a case study character-
ized by very local heavy rainfall.

For the QPE with Meteosat-8 four algorithms
have been implemented in the MSG-SAS. For im-
proving the estimated rain rates, radiosonde data are
taking into account.

It could be seen that there are big differences be-
tween the rain rates derived by radar and satellite.
These differences concern the size and location of
the rain field area as well as the amount of the esti-
mated rain rates. However, the structure of the radar
rain field is partly distinguishable in the satellite es-
timated rain fields.

All of the used algorithms show a tendency to
underestimate the rain rates measured by radar for
the grid cells having rain rates >= 10 mm/h. For the
areas with less or no radar derived rain a tendency of
overestimation is evident for all techniques.

Both tendencies are partly a consequence of the
relocation of the satellite rain field. This relocation
may result from the different scanning angle of the
two systems radar and satellite, the different points
in scanning time and processes and influences
(wind, moisture,...) between the cloud top and the
earth surface.

There are various problems and sources of error
causing the discrepancies between the radar and sat-
ellite derived rain rates. First of all there is the basic
problem that the satellite can only scan the top of
clouds and it is unable to see which processes go on
inside and below a cloud. Therefore, the rain rates
have to be estimated from the temperature and re-
flectance of the cloud tops.

Another problem is that all of the implemented
algorithms were developed for other satellites and/or
regions. So they are not applicable to Meteosat-6/-8
without adjustments to their different spectral re-
sponses and spatial and temporal resolution.

Differences between the radar and satellite rain
rates also result from the different spatial resolution
as well as from the different points in time of the
measurement and scan.

It can be said that the satellite based estimation of
rain rates already shows good approaches but for
improving the accuracy in space and intensity it is
necessary to adjust the algorithms to the used satel-
lite and region. And there is a need of including ad-
ditional data like orography, MPEF, SAF, wind data,
atmospheric profiles, cloud life cycles and cloud
models how it has already been partly done for the
MG6/RS-SAS.

Further analyses were done comparing the satel-
lite results with regard to the advantages using more
spectral information provided by Meteosat-8 data.
The comparison was done for the methods AuTO-
ESTIMATOR and ECST.

Problems result from the different scanning
points in time and the duration of the repeat cycle of



Meteosat-6 Meteosat. This could take effect to the
spatial assignment of rain.

Following Negri & Adler (1993), Scofield & Ku-
ligowski (2003) as well as the results of the satellite
team of TU Dresden it can not explicitly be said
whether satellite estimation techniques under- or
overestimate radar measurements. It depends on
various conditions (atmospheric conditions, orogra-
phy, technical features, estimation method,...).

As a conclusion it can be noted that the results

depends on the applied estimation technique as well
as on the used satellite input data. At least Meteosat-
8 is able to offer improved rainfall estimations be-
cause of its better spatial resolution and the in-
creased spectral information but the estimation tech-
niques have to be adapted to that.
The project work of TU Dresden pointed out that the
satellite based rainfall estimation still includes sev-
eral uncertainties and require reference data (ground
measurements). Nevertheless the satellite derived
rain rates provide helpful additional information of
researched rainfall areas, particularly in regions low
or not covered by ground measurements.
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