

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (postprint):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-755539

Kai Herrmann, Hannes Voigt, Jonas Rausch, Andreas Behrend, Wolfgang Lehner

Robust and simple database evolution

Erstveröffentlichung in / First published in:

Information Systems Frontiers. 2018, 20(1), S. 45–61. ISSN 1572-9419.

DOI: https://doi.org/10.1007/s10796-016-9730-2

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-755539
https://doi.org/10.1007/s10796-016-9730-2

Robust and simple database evolution

Kai Herrmann1 ·Hannes Voigt1 · Jonas Rausch1 ·
Andreas Behrend2 ·Wolfgang Lehner1

Published online: 24 January 2017
© Springer Science+Business Media New York 2017

Abstract Software developers adapt to the fast-moving
nature of software systems with agile development tech-
niques. However, database developers lack the tools and
concepts to keep the pace. Whenever the current database
schema is evolved, the already existing data needs to be
evolved as well. This is usually realized with manually
written SQL scripts, which is error-prone and explains sig-
nificant costs in software projects. A promising solution are
declarative database evolution languages, which couple both
schema and data evolution into intuitive operations. Exist-
ing database evolution languages focus on usability but do
not strive for completeness. However, this is an inevitable
prerequisite to avoid complex and error-prone workarounds.
We present CODEL which is based on an existing language
but is relationally complete. We precisely define its seman-
tic using relational algebra, propose a syntax, and formally
validate its relational completeness. Having a complete and

� Andreas Behrend
behrend@cs.uni-bonn.de

Kai Herrmann
kai.herrmann@tu-dresden.de

Hannes Voigt
hannes.voigt@tu-dresden.de

Jonas Rausch
jonas.rausch@tu-dresden.de

Wolfgang Lehner
wolfgang.lehner@tu-dresden.de

1 Dresden Database Systems Group, Technische Universität
Dresden, Dresden, Germany

2 Computer Science III, University of Bonn, Bonn, Germany

comprehensive database evolution language facilitates valu-
able support throughout the whole evolution of a database.
As an instance, we present VACO, a tool supporting devel-
opers with variant co-evolution. Given a variant schema
derived from a core schema, VACO uses the richer seman-
tics of CODEL to semi-automatically co-evolve this variant
with the core.

Keywords Database evolution · Evolution language ·
Relational completeness · Co-Evolution

1 Introduction

Changes in modern software systems are no longer an
exception but have become daily business. Following the
mantra “Evolution instead of Revolution”, agile software
development focuses the creativity and excellence of peo-
ple to handle the unpredictably dynamic world of software
development (Beck et al. 2001). Agile methods are charac-
terized by short development cycles, each with the goal of
a shippable product. This creates constant feedback, which
helps to establish a customer-oriented development pro-
cess resulting in products that fit customers’ true needs and
yield high customer acceptance. It is in the very nature of
agile development, that requirement specifications are in
perpetual flux. Adjusting the software’s design to updated
requirements is as much daily business as developing new
features.

To handle complexity, modern software systems are com-
posed of a multitude of single components, e.g. core com-
ponents, common extensions, customized extensions, and
respective variants, which can all be developed by different
teams (Herrmann et al. 2015). However, each single com-
ponent is, at the same time, exposed to the discussed agile

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-016-9730-2&domain=pdf
mailto:behrend@cs.uni-bonn.de
mailto:kai.herrmann@tu-dresden.de
mailto:hannes.voigt@tu-dresden.de
mailto:jonas.rausch@tu-dresden.de
mailto:wolfgang.lehner@tu-dresden.de

evolution process, which, in turn, adds significant complex-
ity to the evolution of the whole system. The orchestrated
co-evolution of all components is a major challenge in
software development. While the co-evolution is straight
forward for independent components interacting over well
defined interfaces, it becomes a challenge for depending
components, like variants or (customized) extensions of a
given core component.

A major obstacle in the whole process of evolution
and co-evolution are the database systems (Ambler and
Sadalage 2006). Whereas software development tools sup-
port developers in the process of both designing changes
with a comprehensive set of automatized refactoring fea-
tures and (semi-) automated co-evolution, the evolution of
databases is usually realized by manually writing scripts
of SQL-DDL and -DML operations. Due to the separation
of schema changes (DDL) and the actual data migration
(DML), the developer’s intention is lost between the lines.
Any subsequent development task like ensuring consis-
tency, co-evolving other components, reducing downtime,
optimizing the migration, as well as documentation needs
to be performed additionally and manually. This manual
database evolution is expensive and error-prone, particu-
larly because many software projects show poor integration
of the database developers. According to a survey (Ambler
2006), two third of the polled software developers perform
database-related changes without consulting the responsible
database developers, which certainly increases the software
developer’s productivity but is not necessarily increasing the
quality of the resulting database.

To keep pace with agile software development, the
database systems have to supply software-refactoring-like
features. Such database evolution features need to evolve
the database schema (schema evolution) and payload data
(data evolution) in a single consistent step (Roddick 1995).
The proposed database evolution process is illustrated in
Fig. 1. While evolving an application, the developer spec-
ifies the corresponding database evolution with the help
of schema modification operations (SMOs). In contrast
to SQL-DDL and -DML statements, SMOs specify the

evolution of the schema and the data in a descriptive, inte-
grated way and ensure that the data is consistently evolved
with the schema. SMOs are typically more compact than a
script of DDL and DML operations resulting in the same
evolution. On the user side, SMOs increase the developer’s
productivity while dealing with database evolution and
reducing the chances of faulty evolution scripts and unin-
tended data loss. As SMOs capture the developer’s inten-
tion, they can be e.g. combined in a meaningful way greatly
simplifying the co-evolution of components/variants. On the
DBMS side, SMOs open the opportunity to optimize and
reduce the data movement in an evolution step or even invert
evolution steps for database versioning with co-existing
schema versions (Herrmann et al. 2016). These benefits are
enabled by using SMOs instead of DDL/DML. A set of
SMOs forms a database evolution language.

Naturally, the design of a database evolution language
determines its expressiveness. A powerful database evolution
language lets the user easily specify all necessary evolution
steps. In contrast, a weak one forces the user into more com-
plicated evolution scripts or even to fall back on DDL/DML
statements, which renders the database evolution language
useless. A database evolution language should at least cover
the power of DDL and DML of a standard database sys-
tem. We argue, that a database evolution language for
relational databases should at least be relational complete:
for any relational DDL/DML script, there exists a semanti-
cally equivalent sequence of SMOs. Relational DDL/DML
scripts create, alter, and drop database objects, while con-
ditions and the actual data are specified using DQL expres-
sions. The latter motivates the relational algebra (Codd
1970) as the natural reference for the power of relational
DDL and DML. We present CODEL, a relational com-
plete database evolution language with precisely defined
syntax and semantics (Herrmann et al. 2015). Developers
can purely rely on CODEL to specify any database evolu-
tion. This makes CODEL a great facilitator for further tool
support for database evolution in order to catch up on the
agile software development (Herrmann et al. 2016). In this
article, we focus on the relational completeness of CODEL

…
App

Database
Evolu�on

Schema Evolu�on

Data Evolu�on

Agile
Applica�on Evolu�on

Evolu�on Script

Developers specify Developers specify

Evolu�on Script

Fig. 1 Database evolution

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

and show one example of great tool support facilitated by
CODEL: semi-automated variant co-evolution. Regarding
the expressiveness of CODEL, we intentionally exclude the
evolution of constraints. In practice, constraint evolution is
a very relevant aspect, which has already been solved con-
veniently for PRISM++ (Curino et al. 2010). Since this
solution is applicable to CODEL as well, we do not cover
constraint evolution here again.

Example Let us consider the example shown in Fig. 2 to
illustrate the power of declarative database evolution. We
develop an application TasKy to manage tasks each hav-
ing a priority, ranging from 3 (lowest) to 1 (highest), as
well as an associated author. The first release of TasKy
stores all its data in the two tables Task(id,task,prio,author) and
Author(id,name) where author is a foreign key from Task to the
id of Author. After productive go-live, users add data to TasKy
as shown in this figure.

Starting with this core application we will derive a variant
for the mobile application Do! to manage short term todos
at any place and any time. Do! has three major differences
to TasKy. First, we only show the most urgent tasks with the
highest priority and store the remaining tasks in an archive,
which needs to be accessed separately. Second, we eliminate
the priority column from the short term todos, since it is
always 1 for those tasks. Third, we additionally need a new
column to store whether the todos have been recognized in
the phones notification bar or not. We obtain this variant
with the CODEL script:

EVOLUTION FROM 'TasKy' TO 'Do!':

PARTITION TABLE Task INTO TodosWITH prio=1 AND ArchiveWITH

prio>1;

DROP COLUMN prio FROM Todos;

ADD COLUMN new AS ’True’ INTO Todos;

This script contains all required information to create the
new schema and migrate the existing data while still cap-
turing the developer’s intention explicitly. We continue the
development of the core TasKy to a new version TasKy2.
Among other improvements, this update includes a denor-
malization as we join the tasks and the authors. With
CODEL, we simply write:

EVOLUTION FROM 'TasKy' TO 'TasKy2':

JOIN TABLE Task AND Author INTO Task ON Task.author=Author.id;

DROP COLUMN author FROM Task;

RENAME COLUMN name IN Task TO author;

Again, this script carries enough information to allow
creating the new schema and transforming the existing data
accordingly. However, there is a problem now: the variant
Do! is based on TasKy, which has now evolved to TasKy2
and does not exist any longer. In (Herrmann et al. 2016)
we present INVERDA, a tool to generate co-existing schema
versions from CODEL-like evolutions. INVERDA keeps
old schema versions alive, both for reading and writing, and
hence could keep both TasKy and the initial variant Do!
accessible.

However, DBMSes usually do not have such advanced
features and it is more feasible to simply co-evolve the
variant matching it to the new core version. We derive
a new variant DoTwo!, which reflects the intentions of
the initial variant Do! but is derived from TasKy2. Manu-
ally co-evolving the variant is an expensive and complex
task in practice. Fortunately, it pays off now to have both
the core evolution and the variant defined as CODEL
scripts. We present VACO a tool for semi-automatic co-
evolution of a variant with its core. As CODEL evolution
scripts precisely capture the developer’s intention, VACO

can semi-automatically propose an evolution from TasKy2

author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2
3 Ann Write paper 1
4 Ben Clean room 1

Task TasKy2TasKy
task prio author

1 Organize party 3 5
2 Learn for exam 2 6
3 Write paper 1 5
4 Clean room 1 6

name
5 Ann
6 Ben

author task new
3 Ann Write paper True
4 Ben Clean room True

Todos DoTwo!

Author

Task
Evolu�on

Variant

Do!

Co-Evolved Variant

task new author
3 Write paper True 5
4 Clean room True 6

name
5 Ann
6 Ben

AuthorTodos

Variant

Core

Co-Evolu�on

task prio author
1 Organize party 3 5
2 Learn for exam 2 6

author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2

Archive Archive

Fig. 2 Example for Database Evolution and the Co-Evolution of the Variant

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

to the co-evolved variant DoTwo!. The developer merely has
to give simple decisions for ambiguous combinations. In our
example, VACO would automatically propose:

EVOLUTION FROM 'TasKy2' TO 'DoTwo!':

PARTITION TABLE Task INTO Todos WITH prio=1 AND Archive

WITH prio>1;

DROP COLUMN prio FROM Todos;

ADD COLUMN prio AS ’True’ INTO Todos;

The new variant combines both the intent of the core
evolution and the variant. Through the simple and intu-
itive format of CODEL the developer can easily understand
and modify the proposed sequence of SMOs in case the
developer intends to do further adjustments to the proposed
DoTwo!.

Declarative database evolution languages like CODEL
enable sophisticated tool support throughout the whole pro-
cess of database evolution. Using the relational complete
CODEL, developers can specify any evolution at hand.
So, CODEL does not only simplify database evolution and
makes it more robust but also opens many opportunities
to automate further tasks associated to database evolution.
VACO is a vivid example for the power of CODEL, as it
realizes semi-automated variant co-evolution, a repetitive,
expensive, and error-prone task. Our contributions are:

1. We provide formal definitions of the semantics of
CODEL’s operations and an SQL-like syntax. With
that, CODEL can serve as a reference language for
the formal evaluation of other database evolution lan-
guages.

2. We formally validate the relational completeness of
CODEL. We show that all operations of the relational
algebra can be expressed with CODEL.

3. We realize semi-automated variant co-evolution
based on CODEL. Given a core schema from which we
derive a variant, it is possible to co-evolve the variant
whenever the core evolves.

4. CODEL is relationally complete with precisely defined
semantics. So, it is a perfect basis for further research
toward agile database evolution. Researchers can
“Divide and Conquer” the challenges on a per-SMO-
basis.

We define our database evolution language CODEL in
Section 2. We show that CODEL can handle common evo-
lution scenarios just like PRISM and additionally prove its
relational completeness in Section 3. With that, CODEL
facilitates valuable features for supporting database evolu-
tion. In Section 4, we present semi-automatic co-evolution
of variants as an example. Finally, we discuss related work
in Section 5 and conclude the paper in Section 6.

2 CODEL

CODEL is a relational complete database evolution lan-
guage. We introduce both a minimal relational complete
database evolution language Lmin and our comprehensive
CODEL. By showing the equivalent expressiveness of these
two languages, we formally validate CODEL’s relational
completeness. In general, a database evolution language L
is a set of SMOs with parameters to be instantiated. For
instance, the SMO to drop a column from a table requires
two parameters: the name of the table and the name of the
column. Let inst(L) be the set of all operation instances
of L with valid parameters. Then, a relational database
D = {R1, . . . , Rn} with tables Ri can be evolved to another
relational database D′ = {

R′
1, . . . , R

′
m

}
with a sequence of

SMOs s ∈ inst(L)+. We formally denote this as: D
s−→ D′.

The whole evolution history is a tree-shaped graph with
database versions D as nodes—the initial database is the
root node—and sequences of SMOs s ∈ inst(L)+ as edges.
A single database exists exclusively in one version, how-
ever, the evolution tree captures all the information about
the evolution to other versions serving e.g. as documenta-
tion or as basis for semi-automated co-evolution as we will
show in this work as well.

The relational completeness of a database evolution
language is a fundamental prerequisite, as the advantages
of database evolution languages can only be used when
the developer specifies all evolution steps with the given
set of SMOs. So, we have to make sure that there is no
need for a developer to fall back on traditional SQL in
any situation. We take the relational algebra as the key
reference for the expressiveness of traditional SQL. A min-
imal language providing relational completeness is Lmin =
{ADD(·, ·), DEL(·)} with

ADD
(
R′, ε

) → D ∪ {
R′ = ε(R1, . . . , Rn)

}

DEL(R) → D \ {R}

The ADD(·, ·) operation adds a new table R′ to the database
D based on the given relational algebra expression ε that
works on the relations of D. The DEL(·) operation removes
the specified table R from D. A database D can be evolved
to any other database D′ with a sequence s ∈ inst(Lmin)

+,
where the tables in D′ are computed from D with relational
algebra expressions in the ADD(·, ·) operation. So, Lmin is
relationally complete. From a practical standpoint however,
Lmin is not very appealing, because it is rather unintuitive
and not oriented on actual evolution steps. However, any
other database evolution language that is as expressive as
Lmin is relationally complete as well.

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

To the best of our knowledge, one of the most advanced
database evolution language designs is PRISM++ (Curino
et al. 2008; Curino et al. 2010). PRISM++ provides SMOs
to create, rename, and drop both tables and columns, to
divide and combine tables both horizontally and verti-
cally, and to copy tables. The PRISM++ authors claim
practical completeness for their powerful database evolu-
tion language, by validating it against evolution histories
of several open source projects. Although this evaluation
suggests that PRISM++ is sufficient also for other soft-
ware projects, it does not provide any reliable completeness
guarantee. For instance, we do not see an intuitive way
to remove all rows from a table A, which also occur in a
table B using the PRISM++ database evolution language,
since it does not offer any direct or indirect outer join
functionality. Thus, we consider PRISM++ not to be rela-
tionally complete. Nevertheless, PRISM++ has an intuitive
and field-proven design. In this work, we present a rela-
tional Complete Database Evolution Language (CODEL),
inspired by the set of PRISM++ SMOs to inherit its prac-
tical feasibility. However, CODEL is relationally complete
and equally expressive as Lmin.

Database evolution changes the schema of a database
and/or the already existing data. A database evolution lan-
guage contains operations to descriptively specify such
changes as units, which clearly distinguishes it from SQL-
DDL and -DML. PRISM++ limits itself to operations that
modify individual tables – no PRISM++ operation accepts
more than two tables. This keeps the PRISM++ database
evolution language intuitive and easy to learn. CODEL
adopts this principle. However, CODEL operations sys-
tematically cover all possible changes that can be applied
to tables. Tables are the fundamental structuring element
and the container for payload data in a relational database.
Secondary database objects such as views, constraints, func-
tions, stored procedures, indexes, etc. should be considered
in database evolution as well. However, in this paper we
focus on the evolution of the primary data.

Our database evolution language CODEL defines
SMOs of the pattern 〈smo〉〈scope〉(�), where 〈smo〉 is the
type of operation, 〈scope〉 is the general database object
the operation works on, and � is the set of parameters
the SMO requires. Figure 3 gives a systematic overview
of all SMOs in CODEL. A relational database table is a
two-dimensional structure consisting of columns and rows,
hence, SMOs can operate on the level of columns, of rows,
or of whole tables. On all three levels there are five basic
operations: ADD, DEL, SPLIT, UNITE, and REN. We now
introduce the meaningful operations, as shown in Fig. 3.
First, CODEL has two basic operations to create (ADDtable)
and drop (DELtable) tables as a whole, similar to their
counterparts in a standard DDL. Second, CODEL has a

set of operations to modify a table. Hence, CODEL offers
eight table modification SMOs 〈smo〉〈scope〉 with 〈scope〉 ∈
{column, row} and 〈smo〉 ∈ {ADD, DEL, SPLIT, UNITE}.
For instance, DELcolumn removes a column from a given
table and SPLITrow partitions a table horizontally, while
SPLITcolumn partitions it vertically. CODEL defines no
SPLIT or UNITE of whole tables, since these operations are
restricted to either column or row scope. Third, CODEL
includes two SMOs to rename a table (RENtable) and a
column (RENcolumn). The renaming of rows is undefined.

Regarding relational completeness, RENcolumn,
RENtable, DELcolumn, and DELrow are not necessary, as
they are subsumed by the remaining SMOs. However, they
are very common (Curino et al. 2008) and included in
CODEL for usability’s sake. To summarize, CODEL is the
database evolution language LC with:

LC =

⎧
⎪⎨

⎪⎩

ADDtable, DELtable,
ADDcolumn, DELcolumn, SPLITcolumn, UNITEcolumn,
ADDrow, DELrow, SPLITrow, UNITErow,
RENtable, RENcolumn

⎫
⎪⎬

⎪⎭

All CODEL SMOs require a set � of parameters.
Let inst(o,D) be the set of instances of the SMO
o with a valid parameterization regarding the database
D. For instance, the only parameter to remove a table
with DELtable(�) is the name of an existing table, so
inst(DELtable(�), D) = {DELtable(R)|R ∈ D}. Further, let
inst(L, D) = ⋃

o∈L inst(o,D) be the set of all validly
parameterized SMO instances of the database evolution
language L. Then, a CODEL evolution script s for a
database D is a sequence of instantiated SMOs with s ∈
inst(LC, Di)

+, where Di is the database after applying the
i-th SMO.

In the following, we specify the semantics of all CODEL
SMOs. Table 1 summarizes the definition of the semantics
based on Lmin. The table also shows the SQL-like syntax we
propose for the implementation of CODEL. In the remain-
der, R.C = {c1, . . . , cn} denotes the set of columns of table
R and Ri specifies the revision i of the table R. Whenever
an SMO does not change the table’s name but its columns
or rows, we increment this revision counter i to avoid nam-
ing conflicts. CODEL SMOs take tables as input and return
tables. According to the SQL standard, tables are multisets.
Our Lmin semantics is based on the relational algebra, so
tables are sets. However, relational database systems inter-
nally manage row identifiers, which are at least unique per
table. At the level of SMO implementation, we consider the
row identifiers as part of the tables, hence tables are sets.
The corresponding multiset semantics of the SMOs can be
achieved, by adding a multiset projection of the resulting
tables that removes the row identifiers without eliminating
duplicates.

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ADDtable and DELtable: The SMOs ADDtable and
DELtable are the simplified version of their Lmin counter-
parts. ADDtable(R, {c1, . . . , cn}) requires two parameters,
a table name R and a set of column definitions ci . It cre-
ates an empty table with the specified name and schema.
DELtable(R) takes only a single parameter, the name of the
table to be dropped.

ADDcolumn and DELcolumn: The SMO ADDcolumn

adds a new column to an existing table. As parameter
ADDcolumn(Ri, c, f(c1, . . . , cn)) takes the name Ri of the
table, the column definition c of the new column, and a
function f . The resulting table is Ri+1. ADDcolumn applies
the function f to each row in Ri to calculate the row’s value
for the new column c. The function f is a standard SQL
function that can access the existing values of the row, but
must not contain nested queries.

DELcolumn removes a column from a table. Specifically,
DELcolumn(Ri, c) takes the name Ri of an existing table and
the name c ∈ Ri.C of the column that should be removed
from Ri . The resulting table is Ri+1.

SPLITcolumn and UNITEcolumn: The SMO SPLITcolumn

partitions a table vertically. SPLITcolumn has a generalized
semantics, where the resulting partitioning is allowed to
be incomplete and overlapping. The partitioning SMO
SPLITcolumn(R, (S, {s1, . . . , sn}), (T , {t1, . . . , tm})) takes
the name R of the original table, a pair consisting out of
a table name S and a set of column names si as specifi-
cation of the first partition and optionally a second pair
(T , {t1, . . . , tm}) as specification of the second partition.
The two sets of column definitions are independent. In case
S.C ∩ T .C 	= ∅, the columns S.C ∩ T .C are copied. In case
S.C ∪ T .C ⊂ R.C, the partitioning is incomplete. If the
second partition is not specified, T is not created. CODEL
prohibits empty column sets for S and T , since tables must
have at least one column.

UNITEcolumn is the inverse operation of SPLITcolumn and
joins two tables based on a given condition. As parame-
ters, UNITEcolumn(R, S, T , cond, o) takes the names R and
S of the original tables, the name T of the resulting table, a

join condition cond, and the optional boolean o to indicate
an outer join. The join condition is an arbitrary SQL predi-
cate without further nesting, so N:M mappings are explicitly
allowed. In case o = �, UNITEcolumn performs an outer
join, so that no rows from the original tables are lost. In case
o = ⊥ (or not specified) UNITEcolumn performs an inner
join. With the inner join, UNITEcolumn loses all rows from
R and S that do not find a join partner, since R and S are
dropped after the join. More complex join types like e.g.
left, right, or full outer joins can be simulated in sequences
with other SMOs (Ullman 1988). Note that restricting the
join to foreign key relations as other database evolution lan-
guages do, does not prevent this information loss. A foreign
key does not guarantee that every row in the referenced table
is actually referenced by at least one row in the referencing
table.

ADDrow and DELrow: ADDrow creates new rows. The
values of these new rows are either constants or deter-
mined by aggregations functions over the currently exit-
ing rows. ADDrow

(
Ri, G,

{(
aj , fj(G, V)

)|1 ≤ j ≤ m
}
, S

)

requires the following parameters: the name Ri of the orig-
inal table, the set of grouping columns G = {g1, . . . , gn} ⊆
Ri.C, a set of pairs of column name aj and function fj ,
and optionally a new table name S. ADDrow produces new
rows by grouping table Ri by all columns gk ∈ G and
calculating the values for the columns aj with the functions
fj . The functions fj have to return one value that is either
a constant or computed by the standard aggregate functions
upon the remaining columns V = Ri.C \ G. In general, the
set of grouping columns is also allowed to be empty result-
ing in one group and hence, one new row. In the simplest
case, e.g.

ADDrow

(
T ask, ∅,

{(
task,′ DinnerwithFamily′), (prio, 1), (author, 5)

}
,∅)

merely adds a new task in the TasKy version of our example
in Fig. 2. ADDrow appends new rows to Ri to form its new
revision Ri+1 if the table name S is not given. In this case,

Fig. 3 Structuring of CODEL

Column Row

Add

Delete

Split

Unite

Rename

Table

Undefined

Undefined

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

we require the column definitions of the new rows to match
the original table Ri , hence {g1, . . . , gn} ∪ {a1, . . . , am} =
R.C. If the new table name S is specified, ADDrow creates
S with the newly produced rows and Ri remains available,
which is particularly necessary, when the newly created
rows have a different set of columns than Ri.C. For instance

ADDrow(T ask, (author), {(avg prio,AV G(prio))}, Avg prio)

creates a new table Avg prio with two columns: the author
and the average priority of the respective author’s tasks.

DELrow removes rows from a given table.
DELrow(Ri, cond) takes the name of an existing table Ri

and a condition cond. It removes all rows, which satisfy the
condition and evolves the table to Ri+1.

SPLITrow and UNITErow: SPLITrow partitions a table
horizontally. However, its semantics is more general than
standard horizontal partitioning (Ceri et al. 1982). The
SMO creates at most two partitions out of a given
table—with the partitioning allowed to be incomplete
and overlapping—and removes the original table. More
precisely, SPLITrow(R, (S, condS), (T , condT)) takes the
name R of the original table, a pair of table name S and
condition condS as specification of the first partition and
optionally a second pair (T , condT) as specification of the
second partition. Both conditions condS and condT are
independent. If the original tables contain rows that fulfill
neither of the conditions, the resulting partitioning is incom-
plete. Rows that fulfill both conditions are copied resulting
in overlapping partitions. In case both conditions hold for

Table 1 Syntax and Semantic
of CODEL operations

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

all rows, i.e., condS = � and condT = �, both S and T

are complete copies of R. Hence, SPLITrow subsumes the
functionality of a copy operation that can be found in other
database evolution languages. If condT is not specified,
SPLITrow does not create table T .

UNITErow is the inverse operation of SPLITrow; it merges
two given tables along the row dimension and removes the
original tables. As parameters UNITErow(R, S, T) requires,
the names R and S of the original tables and the name T of
the resulting table. The schema of R and S are not required
to by equivalent. In case both schemas differ, T contains
null values (ω) in the respective cells. UNITErow eliminates
duplicates in T . In case R and S contain equivalent rows,
these rows will show up only once in T .

RENtable and RENcolumn: The last two SMOs rename
schema elements. RENtable

(
R, R′) renames the table with

the name R into R′. RENcolumn

(
Ri, c, c

′) renames the col-
umn c in table Ri into c′, which results in table Ri+1.

Now, we have a precise definition of both the syntax
and semantics of CODEL; summarized in Table 1. In the
next section, we show that the introduced SMOs are pow-
erful enough to cover common evolution scenarios and
provide a formal guarantee for relational completeness as
well.

3 Completeness Properties

Using a comprehensive database evolution language like
CODEL, greatly simplifies a database developer’s life,
since it serves as an intuitive documentation, prevents mis-
takes, and facilitates to automate further tasks that come
along with the database evolution. In order to benefit from
these advantages, there is one fundamental requirement: the
database evolution language must be complete. A complete
database evolution language allows the developer to intu-
itively specify any intended evolution with the given SMOs.
In contrast, whenever the developer has to fall back on tra-
ditional SQL, all the formerly solved problems return. We
consider two levels of completeness:

– Practical Completeness: Given the evolution history
of existing projects, e.g. the Wikimedia project, a
database evolution language must allow to model the
same evolution exclusively with the given SMOs.

– Relational Completeness: Relational completeness is
a formal property. It guarantees that any evolution that
can be expressed with relational algebra expressions
can be expressed with the given SMOs as well.

We show CODEL’s practical completeness in Section 3.1,
formally validate its relational completeness in Section 3.2,
and therefore confidently consider CODEL as a feasible
database evolution language for any evolution scenario.

3.1 Practical Completeness

We use the database evolution benchmark from Carlo
Curino et al. (Curino et al. 2008) that is based on actual
evolution histories of open source projects. They modeled
the evolution history of Wikimedia (171 versions) with their
database evolution language PRISM (Curino et al. 2012)
and we did the same with CODEL. CODEL proved to be
capable of providing the database schema in each version
exactly according to the benchmark and migrate the data in
a meaningful way. So, CODEL is practical complete and
feasible to handle such real world scenarios.

Figure 4 summarizes characteristics of the 209 SMOs
long CODEL evolution history. Particularly, Fig. 4a shows
how often each SMO has been used in total. We account
the dominance of simple SMOs like adding and removing
both columns and tables mainly to the restricted database
evolution support current DBMSes provide. Still, there are
more complex evolutions requiring the other SMOs as well,
so there is a need for more sophisticated database evolution
support. Figure 4b shows the number of SMOs per evolu-
tion step from one version to its successor. Again, we see
the same pattern: there are mostly simple evolutions with
only a few SMOs, but also some more complex ones. In
general, the characteristics of the evolution with CODEL is
obviously very similar to the same evolution modeled with
PRISM (Curino et al. 2008), however there are slight differ-
ences, since the respective sets of SMOs differ. For instance
the complex evolution from version v06696 to v06710 takes
31 SMOs instead of 92 SMOs due CODEL’s powerful
decompose SMO. The sequence of CODEL SMOs, used
to model Wikimedia’s 171 schema versions, is accessible
online.1

3.2 Relational Completeness

To show the relational completeness of CODEL, we argue
that it is at least as powerful as Lmin (Section 2), which
is relationally complete by definition. There is always
a semantically equivalent expression in CODEL for any
expression in Lmin. The DEL(R) operation from Lmin is
trivial, since it is equivalent to CODEL’s DELtable(R). On
the contrary, ADD(R, ε) from Lmin is more complex, as
ε covers the power of the relational algebra. Since both
the relational algebra and CODEL are closed languages,
it is reasonable to address each operation of the relational
algebra separately. We show that, for each operation from
the relational algebra, there is a semantically equivalent
sequence of SMOs in CODEL.

1https://wwwdb.inf.tu-dresden.de/research-projects/projects/inverda.

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://wwwdb.inf.tu-dresden.de/research-projects/projects/inverda

Fig. 4 Wikimedia Benchmark:
The history of schema versions
modeled with CODEL

We assume the basic relational algebra (Codd 1970) and
add common extensions like the extended projection, aggre-
gation, and outer joins. For the basic relational algebra
we consider selection, renaming, projection, cross prod-
uct, as well as union and difference of sets—the minimal
set of operations that covers the whole relational algebra
including other operations like intersection and division
(Ullman 1988). We intentionally exclude other extensions
like the transitive closure and sorting, since CODEL is
non-recursive and set-based. We maintain these characteris-
tics, since they proved to be a reasonable trade-off between
expressiveness and usability, however, they are open for
further research. With respect to implementations based
on current database management systems, the distinction
between different types of null values (Zaniolo 1984) is
not considered. For instance UNITErow adds null values in
columns, which existed in only one input table, losing the
information, whether a value was null before or did not exist
at all. The following sections consider the relational alge-
bra operations (Ullman 1988) plus the chosen extensions
and show that CODEL is capable to obtain the semantically
equivalent results.

Relation: R The basic elements of the relational alge-
bra are relations. They contain the data and are directly
accessible by CODEL as tables. Whenever one table
is required multiple times within a relational alge-
bra expression, CODEL allows to copy them using
SPLITrow(R, (S,�), (T , �)).

Selection: σcond(R) The relational selection operation
returns the subset of rows from R, where each row satis-
fies the condition cond. CODEL’s SPLITrow(R, (S, cond))

is semantically equivalent, which directly follows from the
semantics definition in Table 1.

Rename: ρc′/c(Ri) Renaming a column is subsumed by
the extended projections, however, we include it here

for completeness. CODEL’s obvious semantic equivalent
according to Table 1 is RENcolumn

(
Ri, c, c

′).

Extended Projection: πP (R) We will consider the
extended projection, as it subsumes the traditional pro-
jection as well. The extended projection defines a new
set of columns, whose values are computed by functions
depending on the existing columns. The projection P =
{fk(R.C) → ak|1 ≤ k ≤ m} produces a relation with m

columns, each being computed by a function fk(R.C) tak-
ing the n = |R.C| columns from R as input. For instance,
we project the task table in version TasKy in Fig. 2 to
πtask→task,(prio==1)→isUrgent (T ask), so we return the task
and a boolean stating whether its priority is 1 or not.
Algorithm 1 describes the CODEL sequence for the rela-
tional projection operation in general.

Without loss of generality, we use for-loops to iterate
over the attribute sets. Since this is only schema depending
and data independent, it does not extend the expressive-
ness of the database evolution language but is simply a
short notation. The first SMO adds a new column, with a
masked name, for each column of the output table. This
allows to compute the new values based on all existing
ones. Afterwards, we drop the old columns, rename the new
columns to their unmasked name, and remove all interme-
diate tables. In our example above, we first add the two
columns task′ and isUrgent ′ and computer the projected
values. Afterwards, we remove the original columns name,
prio, and author and finally rename the projected columns
to task and isUrgent . Applying the semantics definitions

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

of the CODEL SMOs to Algorithm 1 results in the desired
extended projection, as we will show now. The concrete line
of the CODEL sequence in Algorithm 1, which is applied
in the semantics computation, is indicated by the numbers
above the equal signs.

Ri+1
l.2= πr1,...,rn,f1(r1,...,rn)→a′

1
(Ri) (1)

Ri+m
l.1,2= πr1,...,rn,f1(r1,...,rn)→a′

1,...,fm(r1,...,rn)→a′
m
(Ri) (2)

Ri+m+1
l.4= πr2,...,rn,a′

1,...,a
′
m
(Ri+m) (3)

Ri+m+n
l.3,4= πa′

1,...,a
′
m
(Ri+m)

= πf1(r1,...,rn)→a′
1,...,fm(r1,...,rn)→a′

m
(Ri) (4)

Ri+m+n+1
l.6= πa′

1→a1,a
′
2,...,a

′
m
(Ri+m+n) (5)

Ri+m+n+m
l.5,6= πa′

1→a1,...,a
′
m→am

(Ri+m+n)

= πf1(Ri .C)→a1,...,fm(Ri .C)→am(Ri) (6)

In Eq. 1, we apply Line 2 from Algorithm 1 for the first pro-
jected column a′

1, which merely adds the calculated value
and the column name to the projection clause. According
to the loop on Lines 1 and 2 we do this for all projected
columns as shown in Eq. 2. In the second loop on Lines 3
and 4, we drop the original columns of the table, since they
are no longer required for the calculation. Equation 3 shows
the result after dropping the first column, while Eq. 4 shows
the table after full iteration of the second loop. Finally,
we replace the masked names with the originally intended
names of the projected columns on Lines 5 and 6 to first
obtain Eq. 5 and finally the extended projection in Eq. 6.

Outer Join: The outer join is another common
extension to the traditional relational algebra. Beyond the
rows according to an inner join, it also includes those rows
in the result, which did not find a join partner. The missing
values for columns of the other table are filled with null val-
ues. Obviously, CODEL’s UNITEcolumn(R, S, T , p, �) is
semantically equivalent, since we explicitly introduced the
option to perform outer joins.

Cross Product: R×S The cross product produces a row in
the output table for each pair of rows from the input tables.
Algorithm 2 describes the CODEL sequence to obtain the
relational cross product. We add a new column j to both
tables with j 	∈ Ri.C and j 	∈ Sk.C. The default value of j

is a constant 1, so we can perform an inner join on j , such
that there will be one row in the output table for each pair of
rows from the two input tables. Finally, we remove the addi-
tional column j and summarize the outcome to the cross

product of R and S. Thereby, we show the semantic equiva-
lence between the relational cross product and the presented
sequence of CODEL SMOs.

Ri+1
l.1= πr1,...,rn,1→j (Ri) = {(r1, . . . , rn, 1)|(r1, . . . , rn) ∈ Ri} (7)

Sk+1
l.2= {(s1, . . . , sm, 1)|(s1, . . . , sm) ∈ Sk} (8)

T0
l.3= Ri+1 ��Ri+1.j=Sk+1.j Sk+1

= {(r1, . . . , rn, s1, . . . , sm, 1)|(r1, . . . , rn)

∈ Ri, (s1, . . . , sm) ∈ Sk} (9)

T1
l.4= {(r1, . . . , rn, s1, . . . , sm)|(r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk}
= R × S (10)

Aggregate: γG,F (R): The aggregation is a typical exten-
sion to the relational algebra. The rows are grouped by
one set of columns G = {g1, . . . , gn} ⊆ R.C. Additional
columns A = {ai |1 ≤ i ≤ p} are computed by functions
F = {fi(G, V) → ai |ai ∈ A} with V = {v1, . . . , vm} =
R.C\G. These functions may contain values from grouping
columns G, aggregate functions on the remaining columns
in V , constants, and arithmetic functions. CODEL contains
a dedicated operation ADDrow(R,G, F, S). It writes the
result of the aggregation to the new table S. According to
the semantics definition in Table 1, the semantics of Algo-
rithm 3 equals the discussed aggregation semantics from the
relational algebra.

T
l.1= γ(g1,...,gn),{fi→ai |1≤i≤o}(R) = γG,F (R) (11)

Union: R ∪ S The relational union operation merges the
rows from both input tables to the one output table includ-
ing an elimination of duplicates. Using the SMO UNITErow,
CODEL provides a semantic equivalent to the relational
union operation.

T
l.1= πR.C(R) ∪ πS.C(S) = R ∪ S (12)

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Please note, that the union in the relational algebra requires
R and S to have identical sets of attributes (R.C = S.C),
which justifies the simplification step.

Difference:R\S The relational difference returns all rows,
which occur in the first, but not in the second table. Anal-
ogous to the union, it requires R and S to have identical
sets of columns (R.C = S.C). Algorithm5 describes the
CODEL sequence to obtain the relational difference, where
ω denotes a null value. We add a new column j to Sk

with j 	∈ Sk.C and the default value 1. The outer join
on all column pairs in {(Ri.ci, Sk.ci)|ci ∈ Ri.C} (remem-
ber Ri.C = Sk.C), results in a table containing all rows
which were in at least one of the two input tables. However,
all rows that occurred in Sk have the value 1 in the col-
umn j and are removed by the third SMO. All rows which
occurred exclusively in R have a null value ω in the column
j and remain as a result. Applying the semantics defini-
tion of the SMOs finally leads to the relational difference
operation. Please note, that (r1, . . . , rn) 	∈ Sk is equal to
(r1, . . . , rn, 1) 	∈ Sk+1 due to the first step.

Sk+1
l.1= πs1,...,sm,1→j (Sk) (13)

(14)

T1
l.3= σ¬(j 	=ω)(T0) = σ(j=ω)(T0)

= {(r1, . . . , rn, ω)|(r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) 	∈ Sk+1} (15)

T2
l.4= πR.C(T1)

= {(r1, . . . , rn)|(r1, . . . , rn) ∈ Ri, (r1, . . . , rn) 	∈ Sk} = Ri \ Sk

(16)

In Eq. 13, we apply Line 1 from Algorithm 5 so that Sk+1

contains the added column j with the value 1. Equation 14
shows the joint table T0 according to the outer equi join on
all columns except j , such that T0 is basically a duplicate-
eliminating union of R and S, where any tuple occurring is
S has j = 1 (Line 2). In Eq. 15, we use this and filter those
tuples in S out (Line 3), so we can finally drop the auxiliary
column j in Eq. 16 (Line 4) to obtain the desired relational
difference operation.

Finally, we successfully showed that CODEL provides a
semantic equivalent for each relational algebra expression,
which makes it equally expressive as Lmin. Hence, CODEL
is a relational complete database evolution language and a
sound foundation for further research.

4 Semi-automatic Variant Co-evolution

CODEL is a powerful database evolution language that cou-
ples the evolution of both the schema and the data in simple
SMOs and thereby captures the developers’ intention. This
facilitates valuable simplifications and supporting tools for
database developers. We present semi-automated variant co-
evolution as an example. While SQL hides the developer’s
intent between the lines, namely between DDL and DML
and DQL statements, CODEL represents the intent explic-
itly, which essentially allows us to consolidate the intentions
of multiple evolutions in the first place.

Figure 5 illustrates variant co-evolution using the exam-
ple from Fig. 2: Given the core application TasKy, we
derive a variant Do! with a sequence of CODEL SMOs.
When evolving the core TasKy to the next version TasKy2,
we also want to co-evolve the variant. Intuitively, the new
variant, called DoTwo!, should consolidate the intended
changes from both the evolution to Do! and the evolution to
TasKy2. Generally speaking, given a sequence of SMOs SV

that evolves the core database DCore to a variant DV ariant ,
and another sequence of SMOs SC′ that evolves the core
database DCore to a new version DCore′

, the goal is to pro-
pose a co-evolved variant DV ariant ′ that is based on the
evolved core DCore′

and preferably maintains the intents of
SV in SV ′ . So, we consolidate the intentions of SV′ with
the intention of SC′ . To summarize the problem of variant
co-evolution:

Given : DCore SV−→ DV ariant and DCore SC′−−→ DCore′

Wanted : DCore′ SV ′−−→ DV ariant ′

We present VACO, a tool utilizing the strength of
CODEL to semi-automate the variant co-evolution and
thereby release developers from the repetitive task of apply-
ing core-evolutions to the respective variants manually. To
resolve contradictions or ambiguities of different intents, we
chose a semi-automatic approach to keep the developer in
the loop and clarify such conflicts by answering very sim-
ple questions. VACO helps avoiding faulty evolutions and
allows the developer to focus on the actual implementation
task. By merely combining the SMOs of both the variant
evolution SV and the core evolution SC′ , VACO can propose
a co-evolved variant evolution SV ′ to the developer.

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

VACO follows a two level algorithm: globally consoli-
dating sequences of SMOs by locally consolidating pairs of
SMOs. So, on the local level, VACO combines one SMO
of the variant with one SMO of the core evolution. This
combination process is backed by a consolidation matrix
that defines the intuitively expected result for any pair of
SMOs. We present the SMO consolidation including the
interface of the consolidation matrix in Section 4.1. This
consolidation matrix is exchangeable, however, we propose
one specific consolidation matrix for the general case in
Section 4.2. For several combinations, the consolidation
matrix can define a range of possibly intended results. In
these situations, VACO prompts the developer for clarifi-
cation of his/her intent. On the global level, the algorithm
extends the local consolidation of two single SMOs to two
sequences of SMOs, which finally allows semi-automatic
variant co-evolution as we show in Section 4.3.

4.1 Consolidation of SMOs

Combining two SMOs, one from the core and one from the
variant, is the very foundation of VACO. This SMO com-
position operation ◦ : {SMOcore} × {SMOvar} → SMO∗
takes a core SMOcore and a variant SMOvar , and returns
a sequence SMO∗ that can be executed after the SMOcore.
Executing the derived sequence of SMOs after SMOcore

should represent the intention of SMOvar as close as pos-
sible. The result of ◦ is a sequence of SMOs since one
SMOvar may result in multiple SMOs after the consolida-
tion. For instance, the core partitions a table and the variant’s
evolution has to be applied to both partitions.

The composition operation ◦ is not commutative. As
shown in Fig. 5, the core evolution remains unchanged. The
co-evolved variant SMOs S ′

V have to start at the evolved
core Core′. On the application level, this allows to keep
the evolved core application unchanged but requires corre-
sponding evolution of the variant application. Hence, the
SMO consolidation ◦ is not commutative to ensure that
SMOCore remains unchanged and the derived sequence
SMO∗ is applicable after this SMOCore.

The result of the SMO composition ◦ is the intuitively
expected combination of the two input SMOs. However,
the intuitive expectation is hard to grasp formally. Hence,
VACO stores these intuitive expectations explicitly in the
consolidation matrix. The consolidation matrix represents
the consolidation operation ◦. For each possible pair of
SMOs the consolidation matrix contains the intuitively
expected outcome. VACO can handle any consolidation
matrix matching this interface. In this article, we propose
one possible consolidation matrix for the general case, but
VACO is by no means limited to it. Based on the example
in Fig. 5, let us consider e.g. the consolidation of the vari-
ant’s partitioning with the core’s join SMO. Intuitively, the
co-evolved variant should also partition the joint table.

UNITEcolumn(T ask, Author, T ask, T ask.author =Author.id, ⊥)

◦ SPLITrow(T ask, (T odos, prio = 1), (Archive, prio > 1))

= (SPLITrow(T ask, (T odos, prio = 1), (Archive, prio > 1)))

In this particular example, the variant SMO remains
unchanged, though this is no general rule. Thanks to the well

Variant

Core

Variant’

TasKy

DoTwo!Do!

Core’

TasKy2

author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2
3 Ann Write paper 1
4 Ben Clean room 1

Task
task prio author

1 Organize party 3 5
2 Learn for exam 2 6
3 Write paper 1 5
4 Clean room 1 6

name
5 Ann
6 Ben

author task new
3 Ann Write paper True
4 Ben Clean room True

Todos

Author

Task

task new author
3 Write paper True 5
4 Clean room True 6

name
5 Ann
6 Ben

AuthorTodos

task prio author
1 Organize party 3 5
2 Learn for exam 2 6

author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2

Archive Archive

PARTITION TABLE Task INTO Todos WITH prio=1
AND Archive WITH prio>1;

DROP COLUMN prio FROM Todos;
ADD COLUMN new AS 'True' INTO Todos;

PARTITION TABLE Task INTO Todos WITH prio=1
AND Archive WITH prio>1;
DROP COLUMN prio FROM Todos;
ADD COLUMN new AS 'True' INTO Todos;

JOIN TABLE Task AND Author INTO Task ON Task.author=Author.id;
DROP COLUMN author FROM Task;
RENAME COLUMN name IN Task TO author;

Fig. 5 Variant Co-Evolution with the running example

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

defined interface of ◦, VACO clearly separates the definition
of the intuitive expectations from the effective algorithm.

4.2 General Consolidation Matrix

We propose a consolidation matrix containing each possible
combination of SMOcore and SMOvar and the intuitively
expected output for the general case. In specific domains
it seems to be reasonable to adapt this matrix accordingly.
As SMOs are compact and intuitive, developers can easily
adapt the proposed sequence of SMOs and tweak it to the
concretely expected variant.

Table 2 shows all combinations of a core SMO and a
variant SMO. Most pairs can be consolidated automatically
(, 108 times). Some combinations of SMOs are contra-
dicting (, 18 times), hence the respective SMOvar cannot
be executed at all. Further, there are three different kinds
of user interaction (, 18 times in total). First, the devel-
oper has to resolve naming conflicts (, 12 times). Second,
the developer has to choose one out of two possible paths
for a consolidation when the core splits a table (, 3 times).
And finally, the developer has to extend the list of columns
of an SMOvar=SPLITcolumn in case there are newly cre-
ated columns in the core (, 3 times). All questions are
comprehensible and easy to answer by selecting an option
or typing a name, which significantly simplifies the devel-
oper’s effort for the variant co-evolution. In the following,
we will explain the consolidation matrix in more detail.
First, we discuss how to consolidate SMOs on table level

(SMOtable) with any other SMO. Afterwards, we go through
the consolidation matrix line by line to elaborate on the con-
solidation of an SMOcore both on row (SMOrow) and on
column (SMOcolumn) level with any other SMOvar .

SMOtable ◦ SMOtable,row,column and SMOrow,column◦
SMOtable : Consolidating SMOs that work on different
input tables is trivial, as they do not interfere at all, so
a core’s or a variant’s ADDtable can never conflict with
any other SMO except when naming conflicts. Any com-
bination of ADDtable SMOs and RENtable SMOs might
require the developer to assign a new name to the vari-
ant table in case it should have the same name as a core
table. If the core deletes a table that also serves as input
for SMOvar , the consolidation will ignore SMOvar as the
concept was intentionally removed from the database in the
core evolution. If the variant removes a table that is used
by SMOcore, VACO can easily propagate this to the tar-
get tables of SMOcore and delete those tables as well. For
SPLITcolumn and SPLITrow, we drop both resulting tables.
We ignore the variant SMO DELtable if the core SMO is
either UNITEcolumn or UNITErow i.a. on the table to drop,
as the variant needs to keep the data of the other input
table. Given a RENtable in the core evolution, we can easily
rename the input table in SMOvar , however, this does not
work in the other direction. Particularly for those SMOcore

that split or unite tables, we ask the developer to give names
for the newly created tables as well.

SMOrow ◦ SMOrow,column : When the core adds or
removes a tuple from a table, we propagate all SMOvar

Table 2 Compatibility Matrix
for SMO Consolidation

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

without any change, as neither ADDrow nor DELrow change
the structure of the respective table. The two tables result-
ing from a core’s SPLITrow have the same structure as the
input table, which allows propagating any SMOvar simply
to both resulting tables as well. Merely when consolidating
a core’s SPLITrow with a variant SMO that has two input
tables (UNITErow and UNITEcolumn), the developer needs
to decide to which output of the SMOcore to propagate the
SMOvar . Further, a core’s UNITErow produces one output
table whose columns are the union of the two input tables.
Hence, any SMOvar working on one input table does also
work on the output table and can be propagated naı̈vely.
The only SMOvar to take special care of is SPLITcolumn. We
offer the developer to extend the column sets of the output
tables as the input table from the updated core may have
more columns, now.

SMOcolumn ◦ SMOrow,column : Finally, we discuss the
core SMOs on column level focusing on the ambiguous
combinations that require an interaction of the devel-
oper. Given the SMOcore extends the set of columns
(UNITEcolumn and ADDcolumn), the developer needs to
adjust the column set of the variants SPLITcolumn. Given
the SMOcore is SPLITcolumn, it is not possible to also apply
a variant’s SPLITcolumn since the original set of column
might be incompletely/redundantly distributed over the two
output tables. Hence the original concept which should be
decomposed in the variant does not exist any longer. How-
ever, VACO can propagate an ADDcolumn through such a
SPLITcolumn by explicitly asking the developer to which
output table(s) to propagate the new column. Finally, if
both the core and the variant add a new column or rename
an existing one, we have to check for naming conflicts
and potentially ask the developer for adjustments in the
SMOvar . In all other cases, there are no conflicts when
consolidating the two SMOs.

Summing up, we can consolidate most pairs of SMOs
automatically. Obviously there are destructive SMOcore,
removing either tables or columns, that render certain
SMOvar impossible. Furthermore, there are a few pairs
that require the developer’s interaction. The questions
VACO asks the developer are short and simple, keep-
ing the whole semi-automatic co-evolution process con-
venient. Mainly, we ask the developer to clarify naming
conflicts, extend the columns set of SPLITcolumn, or to
choose one output table of splitting SMOs. The proposed
consolidation results meet the intuitive expectations and
should cover the general case, significantly simplifying the
co-evolution.

4.3 Consolidation of Evolutions

Both the variant and the core evolution are defined with
sequences of SMOs SV and SC′ . To co-evolve the variant

and obtain SV ′ , we extend the SMO composition operation
◦ from single SMOs to sequences of SMOs. The sequence
composition • : SV ×SC′ → SMO∗

var ′ returns the sequence
of SMOs SV ′ starting at the new core version. To consolidate
whole sequences of SMOs, the general idea is to repeat-
edly apply the SMO composition ◦. Figuratively speaking,
VACO takes each variant SMO from SV and propagates
each one through the core evolution SC′ while applying the
SMO composition ◦.

Figure 6 illustrates this algorithm for the co-evolution

process of a variant V created by C
SV−→ V with the core

evolution C
SC′−−→ C′. The final result is the co-evolved

variant evolution C′ SV ′−−→ V ′. In each depicted step VACO

propagates one variant SMO from SV through all core
SMOs in SC′ . For each pair of SMOs, VACO first checks,
whether their sets of input tables overlap. If not, VACO

can simply proceed with the next core SMO. If yes, VACO

applies the composition operation ◦ presented before. For
the first SMO v1 in Fig. 6 this works just fine and VACO

appends the resulting SMOs to SV ′ .
Revisiting the example in Fig. 5: the partitioning of the

Task table is the first SMO of the variant Do!. When prop-
agating it through the join SMO of the core, VACO simply
partitions the Task table resulting from the join. The sub-
sequent dropping and renaming of columns in the core
evolution can be consolidated directly with the variant’s par-
titioning SMO. So, VACO appends the partitioning SMO to
the evolved core.

However, already in the second step, we cannot imme-
diately propagate the variant SMO v2 through the core
evolution, since it potentially works on different tables. The
first variant SMO v1 might e.g. rename a table. To compen-
sate for such evolutions, VACO adapts v2 to represent the
intended evolution on the tables of the initial core schema.
This tracing process needs to be inverted after propagating
the respective SMOvar through the core evolution to obtain
the correct SV ′ . VACO continues until all variant SMOs
are propagated through the core evolution and appended
to SV ′ .

In our example (Fig. 5), dropping the prio column is
the next variant SMO. When tracing this back, VACO hits
the partitioning SMO, which creates new tables, hence
breaks the tracing of tables. When VACO appends this SMO
directly to the co-evolved variant SMOs, it drops the column
from the new Todos table as expected. The same applies to
the final rename column SMO of the variant. We obtain the
co-evolved variant as expected and VACO proposes it to the
developer without any further interaction required.

Finally, one remark on the escalation of contradicting
SMOs: Whenever VACO cannot consolidate a variant SMO
s, because s contradicts the core evolution (marked with in
Table 2), all subsequent variant SMOs that rely on s can not

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

14

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Legend: Scheme version SMO Consolida�on TracingS

 noitulovE tnaraV

Va
ria

nt
 C

o-
Ev

ol
u�

on

Va
ria

nt
 E

vo
lu

�o
n

Va
ria

nt
 E

vo
lu

�o
n

Core Evolu�on Core Evolu�on

Fig. 6 Consolidation of Sequences of SMOs

be consolidated with the core as well. When e.g. the variant
adds a column to a table, however the core evolution intends
to drop this table, VACO has to ignore the variant SMO,
since the core evolution SC′ must not be changed. This
also affects all subsequent variant SMOs that rely on the
added column in the variant. As the core concepts, on which
the variant was based, are removed by the core evolution,
the developer has to rethink this part of the variant either
way. Pragmatically, VACO simply ignores the variant SMO
and leaves it to the developer to integrate the contradicting
variant.

Summing up, we use the richer semantics of CODEL
to semi-automatically co-evolve a variant with the evolving
core. This increases the speed and quality of the develop-
ment, as VACO supports the developer with the repetitive
and error-prone task of co-evolving the variant. So, we
showed one useful approach to use CODEL’s richer seman-
tics to simplify the database evolution process.

5 Related Work

Database evolution is a well recognized topic in the database
research community (Rahm and Bernstein 2006; Terwilliger
et al. 2012). There is a number of approaches to increase
comfort and efficiency in database evolution, e.g. by defining
a schema evolution aware query language (Roddick 1992).
Another approach is to define database evolution lan-
guages in a graph-based way (Papastefanatos et al. 2008).
This allows modeling dependencies between different arti-
facts in the information system and applying changes glob-
ally. Furthermore, MeDEA (Domı́nguez et al. 2008) pro-
vides a general framework to describe database evolution in
the context of evolving applications. MoDEF (Terwilliger
et al. 2010a) introduces an IDE extension to automate the
co-evolution of the evolving client schemas and the store.

Currently, PRISM (Curino et al. 2012) appears to pro-
vide the most advanced database evolution tool including
an SMO-based database evolution language. PRISM was

first introduced in 2008 and focused on the plain database
evolution (Curino et al. 2008). Later, the authors extended
it to PRISM++, which includes the modification of con-
straints and update rewriting (Curino et al. 2010) as well
as an algorithm to derive the evolution from one given
schema version to another as a sequence of SMOs (Curino
et al. 2012). To benchmark database evolution languages
and tools, researchers also analyzed the evolution histo-
ries of open source projects (Curino et al. 2008; Skoulis
et al. 2014). Finally, database versioning extends the ideas
of database evolution to allow both forward and backward
compatibility between the different versions of evolving
schemas (Herrmann et al. 2016; Roddick 1995). Another
extension of PRISM takes a first step into this direction by
answering queries on former schema versions according to
the current data (Moon et al. 2009).

CODEL inherits the principle style of PRISM, partic-
ularly the coupling of both schema and data evolution in
compact SMOs, which facilitates valuable features like e.g.
semi-automatic variant co-evolution or database version-
ing in the first place. However, PRISM is not relationally
complete, while CODEL is. This additional characteristic
provided by CODEL is highly valuable with respect to the
facilitated features, since falling back on common DDL and
DML evolution scripts makes them inapplicable. Table 3
summarizes the key differences between traditional SQL
based approaches, PRISM, and CODEL. All three are prac-
tically complete, hence they can express common evolution
scenarios (shown for Wikimedia in Section 3.1). While SQL
is relationally complete but separates the schema evolution
from the data evolution, PRISM has exactly the opposite

Table 3 Comparison of database evolution approaches

SQL PRISM CODEL

Practical completeness

Relational completeness

Couple data- and schema evolution

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

15

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

characteristics. The major contribution of CODEL is to
combine both characteristics. Even though developers are
already familiar with SQL, the additional effort of learning
a new language like PRISM or CODEL pays off in the end,
thanks to the facilitated features.

With VACO, we showcase how to use the power of
database evolution languages for semi-automated variant
co-evolution. The problem of model co-evolution in gen-
eral is broadly examined in research, e.g. (Qiu et al. 2013)
provides an analysis of the relevance and challenges of co-
evolving a database schema and the actual application code.
Many researchers aim to automate and simplify this process
(Cicchetti et al. 2008; Terwilliger et al. 2010b). However,
the evolution of data is typically out of the scope. CODEL
precisely captures the evolution of both schema and data and
hence facilitates to semi-automate the variant co-evolution
with VACO. Including the data into the variant co-evolution
now greatly simplifies continuously developing multiple
components of a software in an agile manner.

6 Conclusion

Agile software development methods embrace the change.
While software developers find support in refactoring meth-
ods to evolve their software, database developers still have
to fiddle with SQL DDL/DML scripts to evolve schema
and data of a productive database consistently. Adding
evolution support to a DBMS involves the design of a
database evolution language (database evolution language).
In this paper we considered the relational completeness of
database evolution languages for relational databases. Rela-
tional completeness is an important property of database
evolution languages, since incomplete database evolution
languages can force the user back to the manual evolution
process based on SQL DDL and DML limiting the utility
of the evolution functionality. We presented the relational
complete database evolution language CODEL. We detailed
its formal definition and showed its relational completeness.
CODEL is to our best knowledge the first well-defined,
relational complete database evolution language. CODEL
can serve as a reference language for productive implemen-
tations of database evolution in DBMSes.

The solid formal base of CODEL is important for
research and development beyond database evolution. For
instance, we showed how to use CODEL to semi-automate
variant co-evolution with VACO. As CODEL SMOs cap-
ture the developer’s intention both on the schema and data
level, VACO can combine different evolutions. Given a
variant that is based on a given core, VACO proposes a
co-evolved variant whenever the core evolves. This greatly
supports developers with the expensive and error-prone task
of manual co-evolution. Promising future work could extend

VACO with schema constraints that are maintained over
variants to give developers guarantees on invariant parts
of their variants. Further, CODEL itself could be extended
to cover database constraints—e.g. by mapping the conve-
nient constraint evolution of PRISM++ (Curino et al. 2010)
to CODEL as well. For the near future, we hope CODEL
helps to jump start more implementations of proper database
evolution features in DBMSes, so agile development meth-
ods finally arrive at the database layer.

Acknowledgments This work is funded by the German Research
Foundation (Deutsche Forschungsgemeinschaft; DFG) within the
RoSI research training group (GRK 1907).

References

Ambler, S.W. (2006). Whence Data Management?. Dr. Dobb’s Jour-
nal, 390, 79.

Ambler, S.W., & Sadalage, P.J. (2006). Refactoring Databases: Evo-
lutionary Database Design. Addison-Wesley Signature, isbn 978-
0321774514.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., & et al (2001). Manifesto for Agile
Software Development.

Ceri, S., Negri, M., & Pelagatti, G. (1982). Horizontal Data Partition-
ing in Database Design. SIGMOD Conference, 128–136.

Cicchetti, A., Ruscio, D.D., Eramo, R., & Pierantonio, A. (2008).
Automating Co-evolution in Model-Driven Engineering. EDOC,
222–231.

Codd, E.F. (1970). A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM, 15(3), 162–166.

Curino, C.A., Moon, H.J., Deutsch, A., & Zaniolo, C. (2010). Update
Rewriting and Integrity Constraint Maintenance in a Schema Evo-
lution Support System: PRISM++. VLDB Endowment, 4(2), 117–
128.

Curino, C.A., Moon, H.J., Deutsch, A., & Zaniolo, C. (2012).
Automating the Database Schema Evolution Process. VLDB Jour-
nal, 22(1), 73–98.

Curino, C.A., Moon, H.J., & Zaniolo, C. (2008). Graceful Database
Schema Evolution: the PRISM Workbench. VLDB Endowment,
1(1), 761–772.

Curino, C.A., Tanca, L., Moon, H.J., & Zaniolo, C. (2008). Schema
Evolution in Wikipedia: Toward a Web Information System
Benchmark. ICEIS, 323–332.

Domı́nguez, E., Lloret, J., Rubio, Á.L., & Zapata, M.A. (2008).
MeDEA: A Database Evolution Architecture with Traceability.
Data & Knowledge Engineering, 65(3), 419–441.

Herrmann, K., Reimann, J., Voigt, H., Demuth, B., Fromm, S.,
Stelzmann, R., & Lehner, W. (2015). Database Evolution for
Software Product Lines. DATA, 125–133.

Herrmann, K., Voigt, H., Behrend, A., & Lehner, W. (2015). CoDEL
– A Relationally Complete Language for Database Evolution.
ADBIS, 63–76.

Herrmann, K., Voigt, H., Seyschab, T., & Lehner, W. (2016). InVerDa
– Co-existing Schema Versions Made Foolproof. ICDE (Demo).

Moon, H.J., Curino, C.A., Ham, M., & Zaniolo, C. (2009). PRIMA –
Archiving and Querying Historical Data with Evolving Schemas.
SIGMOD Conference, 1019–1022.

Papastefanatos, G., Vassiliadis, P., Simitsis, A., Aggistalis, K.,
Pechlivani, F., & Vassiliou, Y. (2008). Language Extensions for
the Automation of Database Schema Evolution. ICEIS, 74–81.

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

16

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Qiu, D., Li, B., & Su, Z. (2013). An empirical analysis of the
co-evolution of schema and code in database applications.
ESEC/FSE, 125.

Rahm, E., & Bernstein, P.A. (2006). An Online Bibliography on
Schema Evolution. SIGMOD Record, 35(4), 30–31.

Roddick, J.F. (1992). SQL/SE – A Query Language Extension for
Databases Supporting Schema Evolution. SIGMODRecord, 21(3),
10–16.

Roddick, J.F. (1995). A Survey of Schema Versioning Issues for
Database Systems. Information and Software Technology, 37(7),
383–393.

Skoulis, I., Vassiliadis, P., & Zarras, A. (2014). Open-Source
Databases: Within, Outside, or Beyond Lehman’s Laws of Soft-
ware Evolution LNCS, 8484, 379–393.

Terwilliger, J.F., Bernstein, P.A., & Unnithan, A. (2010). Worry-Free
Database Upgrades. SIGMOD Conference, 1191.

Terwilliger, J.F., Bernstein, P.A., & Unnithan, A. (2010). Automated
co-evolution of conceptual models, physical databases, and map-
pings. ER, 146–159.

Terwilliger, J.F., Cleve, A., & Curino, C.A. (2012). How Clean is Your
Sandbox LNCS, 7307(2012), 1–23.

Ullman, J.D. (1988). Principles of database and knowledge-base
systems: Computer Science Press. ISBN 9780881751888.

Zaniolo, C. (1984). Database Relations with Null Values. Journal of
Computer and System Sciences, 28(1), 142–166.

Kai Herrmann is a PhD student at the Dresden Database Systems
Group at Technische Universität Dresden as well as an associated PhD
student at Aalborg University. After obtaining his diploma degree in
Dresden in 2013, he worked for one year in the EuroTRACKex indus-
try project and designed a flexible database layer for a software product
line. Inspired by the gained insights, in 2014 he joined the RoSI
research training group that promotes dynamic and adaptive software
development. His particular research interests are database evolution,
database versioning, as well as flexible database design.

Hannes Voigt is a post-doctoral researcher at the Dresden Database
Systems Group, Technische Universität Dresden and obtained his PhD
from the same university in 2014. He worked on various database top-
ics such as physical design, management of schema-flexible data, and
self-adapting indexes. From 2010 to 2011, he worked at SAP Labs,
Palo Alto contributing to a predecessor of SAP HANA Graph Project.
His current research focuses on database evolution and versioning,
declarative graph query languages and efficient graph processing on
NUMA in-memory storage systems. He is also member of the LDBC
Graph Query Language Standardization Task Force.

Jonas Rausch received his diploma degree in Computer Science from
Technische Universität Dresden in 2016. His research focus comprises
database evolution as well as database versioning. He is currently
working at ORSOFT GmbH, Leipzig where he contributes to inno-
vative and reliable solutions as addition to SAP ERP, SAP SCM
and SAP S/4HANA for production planning, advanced planning and
scheduling, and supply chain management.

Andreas Behrend is a senior researcher in the Intelligent Database
Group at the University of Bonn. He studied Computer Science and
Economics in Rostock, Aberdeen, and Bonn. He received a Ph.D. and
a habilitation degree, resp., from the University of Bonn in 2004, resp.
2011. He was on leave to the University of Dresden (2014), Marburg
(2015), and Halle-Wittenberg (2016) holding an interim full profes-
sorship for database systems resp. Big Data Analytics. His research
is focused on monitoring applications, in-database analytics, index-
ing temporal data on NUMA in-memory storage systems, data-driven
model generation and visualization as well as deductive and predictive
reasoning.

Wolfgang Lehner is head of the Dresden Database Systems Group
at Technische Universität Dresden. He obtained his Ph.D. degree
(Dr.-Ing.) at the University of Erlangen-Nuremberg. Subsequently,
he joined the Business Intelligence (BI) group at the IBM Almaden
Research Center in San Jose (CA). After his return to Germany, he
again joined the database system group at University of Erlangen-
Nuremberg as a senior researcher. From 10/2000 to 2/2002, Wolfgang
Lehner was on a temporary assignment at the University of Halle-
Wittenberg, holding the professorship for database systems. In 7/2001
he finished his habilitation and was awarded with the venia legendi.
Since 10/2002, Prof. Lehner has been conducting research and teach-
ing at TU Dresden and is involved in multiple industrial projects.
He was a temporarily visiting scientist at the University of Water-
loo (Canada), SAP Palo Alto, GfK Nuremberg, SAP Walldorf, UBS
WMBB Zurich, and Microsoft Research in Redmond (WA). Wolfgang
Lehner is currently the spokesperson of the Review Board on Com-
puter Science of DFG (German Research Foundation). Since 2014, he
is also an appointed member of Academia Europaea (The Academy of
Europe).

Final edited form was published in "Information Systems Frontiers" 20 (1), S. 45 - 61. ISSN: 1572-9419
https://doi.org/10.1007/s10796-016-9730-2

17

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Robust and simple database evolution
	Abstract
	Introduction
	Example

	CoDEL
	Completeness Properties
	Practical Completeness
	Relational Completeness
	Relation: R
	Selection: cond(R)
	Rename: c/c(Ri)
	Extended Projection: P(R)
	Outer Join: s10796-016-9730-2fmbc.eps
	Cross Product: R S
	Aggregate: G,F(R):
	Union: R S
	Difference: R S

	Semi-automatic Variant Co-evolution
	Consolidation of SMOs
	General Consolidation Matrix
	Consolidation of Evolutions

	Related Work
	Conclusion
	Acknowledgments
	References

	Robust and simple_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (postprint):
	Kai Herrmann, Hannes Voigt, Jonas Rausch, Andreas Behrend, Wolfgang Lehner
	Robust and simple database evolution

