
Interpreter
CLI

BDSL

>_

BDSL User Manual

BDSL v1.0-SNAPSHOT 1

Bigraphical Domain-specific Language (BDSL): User Manual

BDSL Version: v1.0-SNAPSHOT

Dominik Grzelak∗

Software Technology Group
Technische Universität Dresden, Germany

Abstract

This report describes Bigraphical DSL (BDSL), a domain-specific
language for reactive systems, rooted in the mathematical spirit of
the bigraph theory devised by Robin Milner. BDSL is not only a
platform-agnostic programming language but also a development
framework for reactive applications, written in the Java program-
ming language, with a focus on stability and interoperability. The
report serves as a user manual mainly elaborating on how to write
and execute BDSL programs, further covering several features such
as how to incorporate program verification. Moreover, the manual
procures some best practices on design patterns in form of code
listings. The BDSL development framework comes with a ready-
to-use interpreter and may be a helpful research tool to experiment
with the underlying bigraph theory. The framework is further in-
tended for building reactive applications and systems based on the
theory of bigraphical reactive systems.

This report is ought to be a supplement to the explanation on the website
www.bigraphs.org. The focus in this report lies in the basic usage of the
command-line interpreter and mainly refers to the features available for
the end-user, thus, providing a guidance for taking the first steps. It does
not cover programmatic implementation details in great detail of the
whole BDSL Interpreter Framework that is more suited to developers.

This research project is funded by the German Research FoundationAcknowledgment
(DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s Excel-
lence Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of Ex-
cellence ”Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of
Technische Universität Dresden.

∗ Corresponding author; E-mail: dominik.grzelak@tu-dresden.de

www.bigraphs.org

Contents

1 Introduction 5

1.1 Bigraphical Reactive Systems and Programming 6

1.2 Installation . 9

1.3 How to write and run BDSL programs? 10

1.4 Further Help . 10

1.5 Remarks . 10

2 General Usage of the BDSL Interpreter Tool 11

2.1 The CLI Interpreter of BDSL 11

2.2 Supplying a BDSL Program to the Interpreter 11

2.3 Externalized Configuration 13

3 BDSL Program Structure 18

3.1 Elements of a BDSL program 18

3.2 Main Block . 18

3.3 Scoping, Namespaces and Imports 19

3.4 Classes and Variables . 21

3.5 Event Listeners/Callbacks 27

4 Predefined Methods in BDSL 29

4.1 Printing to the Console 29

4.2 Loading Bigraphs . 29

4.3 Synthesizing Random Bigraphs 30

4.4 Exporting Bigraph Variables 31

4.5 Executing BRSs . 32

5 Examples 33

5.1 Basic Mathematical Calculations the Bigraphical Way . . 33

5.2 Importing External Libraries 35

5.3 Pathfinding: Naive Blind Search 37

5.4 Mutual Exclusion Problem 39

6 Advanced Topics 42

6.1 User-defined Functions . 42

6.2 Using the Interpreter Programmatically 44

6.3 IDE Support . 46

BDSL v1.0-SNAPSHOT 3

7 Conclusion 47

7.1 Future Work . 47

References 49

Appendix 51

A Configuration File for the BDSL Interpreter 51

B BDSL Sample Programs 51

C Using the BDSL Interpreter Programmatically 55

BDSL v1.0-SNAPSHOT 4

1 Introduction

1 Introduction

In this report, we describe a reactive, rule-based, and model-driven
language termed Bigraphical Domain-specific Language (BDSL), which
is both a platform-agnostic, application-independent programming lan-
guage and framework, written in Java, with a focus on stability and
interoperability. BDSL can not only be employed to experiment with
bigraphs but can also be used to write and verify software programs
based on the bigraph theory.

Bigraphs [13], devised by Robin Milner, are not only a special class ofWhat are bigraphs?
graphs where two individual structures are combined (i.e., a forest and
a hypergraph), allowing to express two semantic dimensions at the same
time explicitly, but are also a model of computation that can resemble
the two core elements of ubiquitous computing, namely, location and
communication (see [3]). An example of an arbitrary bigraph is illustrated
on the left-hand side in Figure 2.

A distinctive feature of this theory, and the BDSL language and frame-
work as well, is the ability not only to model reactive systems but at the
same time enabling mathematical verification of the program’s behavior
based on correctness properties. In other words, BDSL allows to check
different concerns of a program, such as correctness, safety or security,
by mathematical means.

The expressiveness of bigraphs makes it possible to use and exploit it in aApplication Domains
variety of contexts. On the one hand, bigraphs can be used as any other
graph structure to resemble data-structures, and on the other, found ap-
plication in many fields such as for the modeling of context-aware systems
[2], cloud systems [17, 14] wireless networks [4], sensor networks [18], in-
door space models [22], spatial-temporal entities [20], or the formalization
of the Web Services Business Process Execution Language (WS-BPEL)
[9], to mention a few.

Application

BDSL Interpreter

BDSL Core Elements

Bigraph Meta-Model

Bigraph Framework

Figure 1: Diagram of the major building blocks of the BDSL environment.

The major building blocks of the whole environment around BDSL is il-Environment around BDSL
lustrated in Figure 1 which puts the BDSL-related frameworks, explained
in a moment, into relation. More about bigraphs and the Bigraph Frame-
work can be found on www.bigraphs.org.

BDSL Interpreter Framework is the name of the Java framework that
contains, among other things, the underpinning functionality of the in-
terpretation behavior and implements the command-line tool. The usage
of both the language and the interpreter is the main focus of this docu-
ment. The project is available from https://git-st.inf.tu-dresden.

de/bigraphs/bigraph-algebraic-interpreter.

BDSL v1.0-SNAPSHOT 5

www.bigraphs.org
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter

1 Introduction

BDSL CE Framework is the name of the Java project that defines the
grammar of BDSL and contains necessary language-specific implementa-
tions. The project is available from https://git-st.inf.tu-dresden.

de/bigraphs/bigraph-dsl-ce.

1.1 Bigraphical Reactive Systems and Programming

Generally, bigraphs can be reconfigured using so-called reaction rules.Dynamic Behavior
Thus, reaction rules enable the modeling of arbitrary behavior which
resembles a basic form of programming. Having these rules at hand
allows one to straightforwardly express dynamic behavior. Commonly,
a rule has a left-hand side and a right-hand side called the redex and
reactum, respectively. The redex is to be matched in a host graph where
the match is afterwards replaced with the reactum. To control the rule
application, they are applied based on a strategy, a fixed workflow, or
before/after certain conditions, for example.

Reactive systems perform their computation by reacting to stimuli fromReactive Systems
their environment. That means that to a great extend, the reactive sys-
tem’s behavior relies on external values and rules that are separate from
the actual application source-code.

A structure comprising a signature and a set of reaction rules is calledBigraphical Reactive
Systems a bigraphical reactive system (BRS, see [13]). Usually, it is augmented

with a bigraph over the same signature, also termed agent here, that
represents the initial state of the BRS to reconfigure with the given rules.
Based on the facts given below, it will be apparent that BDSL provides
a suitable foundation for programming reactive systems and BRSs in a
canonical way.

1.1.1 Managing Complexity of Software

To make the software development of reactive sytems more productive,
maintainable and less error-prone, suitable patterns and programming
models shall be employed which allow semi- or full adaptivity by con-
venient change management of the program’s code at design or runtime
with minimal non-invasive actions. In line with this, rule-based program-
ming and model-driven development are known to reduce the software’s
complexity (see Section 1.1.2). Making use of the notion and patterns→ Section 1.1.2

of reactive systems is not only a suitable approach but also provides a
more realistic view when dealing with distributed systems that behave
non-deterministically in different contexts and strongly depend on exter-
nal values from the environment (e.g., sensor values, user preferences, or
location models).

Bigraphs are naturally predestined for modular composition, which easesModularity
the creation of complex structures by simpler ones. This ability comes
right from their mathematical underpinning by utilizing their categorical
operators composition and product (see [13]).

BRSs (Section 1.1) provide the necessary means to model and verify theFormal Verification
behavior of a reactive system. The building blocks for this mathemati-
cal reasoning are provided by the underlying operational semantics that
bigraphs employ. BRSs are a model of computation and utilize so-called
Labeled Transition Systems as their operational semantic model, which
are often used for concurrent programs and reactive, distributed systems
(cf. [6]). In particular, they “provide the basis for automatic system
analysis and verification” [25]. We refer the reader to [16, 10, 1], because

BDSL v1.0-SNAPSHOT 6

https://git-st.inf.tu-dresden.de/bigraphs/bigraph-dsl-ce
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-dsl-ce

1 Introduction

a more detailed description of the subject called formal methods would
go beyond the scope of this report.

1.1.2 Programming Models and Paradigms

Commonly, expert systems or other AI-driven software apply rule enginesRule-based Programming
in order to primarily model knowledge by means of rules. Rule-based Pro-
gramming (RP) is regarded as programming paradigm or programming
model in line with Object-oriented Programming (OOP) or Functional
Programming (FP), for instance, where classes or functions, respectively,
are the primary artifacts to program with. Thus, RP provides a different
approach to dynamically implement, configure and change the behav-
ior of a system, application or module in any architecture or software,
primarily by means of rules.

RP is concerned with three main questions (see [24, p. 25]):

1. Where is the source of the rules?

2. When, how and where do rules change the behavior of the applica-
tion?

3. Which effect has the changed behavior of the application be-
fore/whilst/after execution and appliance of the rules?

The reader may refer to [24], in order to get familiar with this kind of
programming.

Compared with Model-driven Development (MDD), models are the pri-Model-driven Development
mary artifacts and transformations are considered as the fundamental
operations for and on these models. To obtain another view of the bi-
graphical programming model presented here, we can follow the general
vision of MDD that in the broader sense programming is model transfor-
mation, and further, on a lower mathematical level that graph rewriting,
which BRSs resemble, can be regarded as model transformation.

Thus, to close the loop with RP and MDD in mind, we may argue that
bigraphical reaction rules can be regarded as a model transformation lan-
guage for bigraphs; and that the bigraph theory represents a form of
rule-based model-driven programming. The following analogy may help:
Reaction rules are both rules in RP and model transformation specifica-
tion in MDD.

v0:BRoot

index = 0

v0:Room

bPrnt

bChld

bPrnt

bChld

v2:Person

v1:Computer

bPrnt
bChld

:BPort

index = 0

:BPort

index = 1

:BPort

index = 0
bNode

bPorts

bNode

bPorts

network:BOuter

bLink

bPoints
:BEdge

:BEdge

bLink

bPoints

bPoints

bLink

Figure 2: A bigraph 𝐵 with signature Σ (left-hand side) and its corresponding type graph 𝐺 over 𝑇𝐺Σ

compatible to Σ (right-hand side). The metamodel of 𝐺 is shown in Figure 3.

BDSL v1.0-SNAPSHOT 7

1 Introduction

1.1.3 Yet Another Bigraph Tool?

BDSL was grown of the need to provide a more recent software exposition
of a bigraphical tool that is developed with the two aspects maintainabil-
ity and extensibility in mind for longevity. In fact, this is one of the major
driver to contribute to the research of the bigraph theory and evaluation
of real-world scenarios.

Until now, the lack of sophisticated bigraphical tools impede buildingAlternative Tools
elaborated real-world applications based on the bigraph theory. Cur-
rently available bigraph tools can hardly be integrated in any software.
The reason is that there are only a few working implementations of tools
to compare. No systematic study has been reported in the scientific
literature to evaluate all existing tools in detail. To fill this gap and un-
derstand the differences and commonalities of all available tools we are
in the process of conducting a comparative study (not yet published) in-
cluding a thorough analysis of these tools, namely, BigMC, BigraphER,
BigRED, BigM, jLibBig, bigraphspace, DBtk and BPL Tool, to mention
a few. In this study, we come to the preliminary conclusion that the
majority of the examined tools do not possess the maturity to be used
effortlessly and to be integrated in other software to build on the foun-
dations of the, still young, bigraph theory. Most of them are outdated
(4-10 years), not maintained anymore (e.g., BigMC, BigRED), or dis-
continued (e.g., DBtk). Moreover, the proprietary formats of these tools
hamper the interoperability across these tools which make it difficult to
build bigraphical tool chains (see [11]) or any other kind of software that
wants to exploit the bigraph theory. Though, current bigraph tools such
as BigraphER [19] are still suitable for experimentation.

To partly alleviate these shortcomings, a model-driven development ap-Bigraph Metamodels
proach was followed for the development of BDSL and also its underlying
components such as Bigraph Framework1. Therefore, the generic meta-
model described in [11] was employed, particularly to encode bigraphical
models by the EMOF standard. To illustrate, Figure 3 depicts the bi-
graphical metamodel, also called type graph 𝑇𝐺Σ, of the typed graph 𝐺
in Figure 2 (right-hand side), which is the representation of a concrete bi-
graph and compliant with the EMOF standard. This metamodel “serves

1 Refer also to Figure 1, where its dependency relationships are depicted. More
information on Bigraph Framework is available from www.bigraphs.org.

0..* bPorts
bNode 1..1

1..* bPoints bLink 1..1

BRoot

index: int

BNodeBSite

BPlace 0..1
bPrnt

bChld 0..*

BPoint BLink

BPort

index: int

BInner BEdge BOuter

Room Computer Person

Figure 3: Type Graph 𝑇𝐺Σ compatible to Σ of the bigraph 𝐵 and type graph 𝐺 both depicted in
Figure 2.

BDSL v1.0-SNAPSHOT 8

www.bigraphs.org

1 Introduction

as an abstract syntax specification” [11, p. 19], which allows to derive
instance models that syntactically conform to this metamodel.2

Furthermore, another metamodel was developed that describes the struc-
ture and semantic of BDSL programs and provides ample opportuni-
ties for extensions. It incorporates the generic bigraphical metamodel
of Kehrer et. al. [11] for any bigraph expression: In what follows, any
bigraph variable over a signature Σ (Section 3.4.2) is internally always→ Section 3.4.2

an instance of a bigraphical metamodel, such as 𝑇𝐺Σ in Figure 3, for
instance.

1.2 Installation

First of all, BDSL is an open-source research project and thus primarily
distributed as source code to be built manually. The source code can
be obtained via this repository: https://git-st.inf.tu-dresden.de/
bigraphs/bigraph-algebraic-interpreter.

BDSL is written in the Java programming language. Therefore, the JDKPrerequisites
or JRE (minimum version 11) must be installed depending on the in-
tended use: Acquire the JDK 11 for active development or just the JRE
if only running the tool is sufficient. Further Git is needed in order to
clone the repository mentioned above. Also Maven (minimum version
3.6) is used for the build management.

1.2.1 Build Configuration

First, clone the Git repository by using the link provided above. After,
change into the created directory. Then, execute the following commands
inside this directory within a terminal to start the build process:

1 $ git clone -b ’v1.0-SNAPSHOT’ --depth 1

https://git-st.inf.tu-dresden.de/bigraphs/bigraph-
algebraic-interpreter

2 $ cd ./bdsl -algebraic -bigraph -interpreter/

3 $ mvn clean install -DskipTests

The first line checks out the given tag v1.0-SNAPSHOT (i.e., the cur-
rent version of BDSL) of the specified repository without cloning the
complete commit history. In the last line, the build process of all inter-
preter components is started using Maven. After completion the tool can
then be located inside the folder ./bigraph-algebraic-interpreter-

cli/target/bdsl-1.0-SNAPSHOT.jar from the root directory of the
cloned repository.

1.2.2 Downloading the Binaries

Although, BDSL is primarily available as source-code, the binaries can
also be obtained directly. The compiled tool is available from
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-

interpreter/-/releases. Nevertheless, to obtain the latest version the
project can be build directly (see Section 1.2.1).→ Section 1.2.1

This distribution includes a launcher script to run the tool effortlessly
on most Unix-like platforms. Therefore, consult the README.md of the

2 In turn, the metamodel of 𝑇𝐺Σ is a generic type graph called 𝑇𝐺𝐵𝑎𝑠𝑒, which
contains no information about the bigraphical signature Σ (see [11]). Thus, 𝑇𝐺Σ is
an extension of 𝑇𝐺𝐵𝑎𝑠𝑒.

BDSL v1.0-SNAPSHOT 9

https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter/-/releases
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter/-/releases

1 Introduction

BDSL Interpreter Framework repository (https://git-st.inf.tu-
dresden.de/bigraphs/bigraph-algebraic-interpreter) for further
instructions.

1.3 How to write and run BDSL programs?

Writing BDSL programs is possible with

• any text editor (e.g., Visual Code), or

• Theia BDSL (a browser application, see Section 6.3).→ Section 6.3

To run BDSL programs the following options are available:

• Via the command-line tool, which is mainly used in this report
(Section 1.2). It can also be accessed via the integrated terminal→ Section 1.2

window in Theia BDSL.

• Via the BDSL Interpreter Framework to programmatically start
BDSL programs in Java applications. This topic, however, is not
elaborated here in great detail. Though, Section 6.2 provides a brief→ Section 6.2

introduction.

1.4 Further Help

Learning by examples is a useful strategy to get acquainted very fast with
the BDSL syntax and features:

• Section 5 illustrates by examples how to model typical problems in→ Section 5

computer science the bigraphical way.

• Moreover, the website www.bigraphs.org provides further infor-
mation on the underlying Bigraph Framework and other related
components (refer also to Figure 1), which are particularly useful
for developers.

• Robin Milner’s book entitled “The Space and Motion of Communi-
cating Agents” [13] is a self-contained resource about the bigraph
theory and adequate to provide the necessary mathematical back-
ground.

1.5 Remarks

A BDSL program, also simply referred to as program here, is also called
a BDSL document.

LHS and RHS are short for left-hand side and right-hand side, respec-
tively.

BDSL v1.0-SNAPSHOT 10

https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter
www.bigraphs.org

2 General Usage of the BDSL Interpreter Tool

2 General Usage of the BDSL Interpreter Tool

2.1 The CLI Interpreter of BDSL

BDSL can be, as with most other DSLs, implemented by interpretation
and code generation. As apparent from the name, the CLI interpreter
implements the interpretation approach to execute BDSL programs.

Here, interpretation means that a BDSL program is treated like a script
that is evaluated at run-time. That mans that no executable binary is
created.

Generally, the BDSL interpreter can be used from the command-line by
issuing the following command:

1 $ java -jar bdsl.jar <options... >

In order to make the execution more convenient under different operating
systems, a start script for Unix-like operating systems is provided to ease
the use of BDSL (see Section 1.2.2). For the rest of this manual, we will→ Section 1.2.2

refer to the start scripts only. For example, instead of the call above, one
can simply use the command “bdsl <options...>” in the terminal to
achieve the same.

When starting the CLI interpreter for the first time without arguments,
it will first introduce itself with a banner and exit gracefully afterwards:

Listing 1: Starting the interpreter from the command-line.

1 $ bdsl

2 ___ _ _ ___ ___ _

3 | _) (_) __ _ _ _ __ _ _ __ | |_ | \ / __| | |

4 | _ \ | | / _‘ | | ’_| / _‘ | | ’_ \ | ’ \ | |) | __ \ | |__

5 |___/ |_| __, | |_| __ ,_| | .__/ |_||_| |___/ |___/ |____|

6 |___/ |_|

See Section 2.3 on how to disable the banner at startup.Disabling the Banner

2.1.1 Command-line Option Format

The BDSL interpreter tool accepts various command-line options. Op-
tions are passed to the interpreter by prefixing them with a dash - (short
options) or a double dash -- (long options), followed by the option’s
name.

Some options act as switches when passed without a value, whereas other
options may be used to pass also values to a BDSL program. Therefore,
the value for an option is specified using an equal sign = between the
option’s name and its value.

A list of all options can be printed when calling the interpreter with the
--help switch. The output is shown below in Figure 4. More details on
the meaning of some command-line options are given in Section 2.3.3.→ Section 2.3.3

2.2 Supplying a BDSL Program to the Interpreter

In the current version, a BDSL program for the interpreter can be pro-
vided from the filesystem. Listing 2 shows how to supply a BDSL doc-

BDSL v1.0-SNAPSHOT 11

2 General Usage of the BDSL Interpreter Tool

Figure 4: The output of the interpreter tool is shown when called with the -help switch.

ument for the interpreter from the filesystem and also the exemplary
output after its execution.3

Listing 2: Interpreting a BDSL program.

1 $ bdsl --main=test_bdsl_01.bdsl

2 ___ _ _ ___ ___ _

3 | _) (_) __ _ _ _ __ _ _ __ | |_ | \ / __| | |

4 | _ \ | | / _‘ | | ’_| / _‘ | | ’_ \ | ’ \ | |) | __ \ | |__

5 |___/ |_| __, | |_| __ ,_| | .__/ |_||_| |___/ |___/ |____|

6

7 Printing bigraph variable as Ecore model ...

8 <?xml version ="1.0" encoding ="UTF -8"?>

9 <bigraphMetaModel:BBigraph xmi:version ="2.0" xmlns:xmi="http ://www.omg

.org/XMI" xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xmlns:bigraphMetaModel ="de.tud.inf.st.bigraphs" xsi:schemaLocation

="de.tud.inf.st.bigraphs jar:file:/home/dominik /.m2/repository/de/

tudresden/inf/st/bigraphs/model/bigraph -ecore -model /1.1.0/ bigraph -

ecore -model -1.1.0. jar!/model/bigraphBaseModel.ecore">

10 <bRoots >

11 <bChild xsi:type=" bigraphMetaModel:a" name="v0"/>

12 <bChild xsi:type=" bigraphMetaModel:b" name="v1"/>

13 <bChild xsi:type=" bigraphMetaModel:b" name="v2"/>

14 </bRoots >

15 </bigraphMetaModel:BBigraph >

16 Translating BRS to BigMC ...

17 %passive a : 1;

18 %passive b : 1;

19

20

21 a | b | b -> b | a;

22

23 a | b | b ;

24

25 %check

The used BDSL example program test_bdsl_01.bdsl is printed in full
length in the appendix in Listing 36. As apparent from the program’s

3 Future works considers loading and storing BDSL programs from and to a database
(see Section 7.1).

BDSL v1.0-SNAPSHOT 12

2 General Usage of the BDSL Interpreter Tool

call above, the argument --main points to the resource path of the BDSL
document to be interpreted by the tool. Concerning the output, the tool
first introduces itself with a banner, then prints the bigraph variable
$bigVar as Ecore model to the console, before exporting the declared
BRS variable $example to the console in the term language of BigMC 4.

Variables and methods are discussed later in the course of this user
manual— before, the configuration concept of the BDSL interpreter shall
be introduced.

2.3 Externalized Configuration

Different kinds of options, such as key-value pairs and flags, can be set
to change various details of a BDSL program or its bigraph model dec-
larations. To give an idea, it is possible to globally specify certain prop-
erties of the bigraph models (e.g., the namespace URI of the models,
see Section 2.3.1) for the whole program, or the execution details of the→ Section 2.3.1

interpreter, among other things.

All configurable properties can be adjusted by several means. For in-Variants and Precedence
stance, configuring a BDSL program can be accomplished by setting
various properties in an externalized configuration file. Moreover, the
following mechanisms exist, which are in the order of precedence:

1. Command-line arguments ,→ Section 2.3.3

2. External Configuration Files, and→ Section 2.3.2

3. Magic Comments .→ Section 2.3.1

Note that higher items in the list will override properties that are also! →
specified by items lower in the list.

Note further that not all options can be specified by all three configuration! →
mechanism above.

Therefore, Table 1 gives an overview of all available configurable proper-Overview of Configurable
Properties ties, and under which configuration mechanism they can be accessed and

modified. Their usage is explained in the following subsections.

As an example, we show how to disable the introductory banner of theExample: Disabling the
Banner CLI interpreter at startup (refer to Listing 2) via a command-line option.5

To run the interpreter without showing the banner, add the following
argument to the call:

1 bdsl --disableBanner ...

4 http://bigraph.org/bigmc/, (last visited June 24, 2021).
5 See also Table 1—disabling the banner can also be achieved by setting the right
property in an external configuration file.

BDSL v1.0-SNAPSHOT 13

http://bigraph.org/bigmc/

2 General Usage of the BDSL Interpreter Tool

Table 1: An overview of configurable properties concerning the execution of a BDSL program.

Property Type (Description)
Configuration Variant

MC CF ARGS

G
en
er
al

Main file String (filename) □ ■ ■
Include files String[] (array of filenames) □ ■ ■
Include UDF archives String[] (array of filenames) □ ■ ■
Verbosity Enum (TRACE, DEBUG, INFO,

WARN, ERROR, FATAL, OFF)
□ ■ ■

Banner visibility at startup Flag/Switch □ ■ ■

B
R
S
E
x
ec
u
ti
on Base export path String (path) □ ■ ■

Transition system of a BRS String (filename) □ ■ ■
States of the transition system String (path) □ ■ ■
Measure execution time Boolean □ ■ ■
Maximum transitions of a BRS Long □ ■ ■
Labels of the transition system Boolean □ ■ ■

(M
et
a)
M
o
d
el Encoding see Section 2.3.1 ■ ■ ■

Namespace URI see Section 2.3.1 ■ ■ ■
Namespace prefix see Section 2.3.1 ■ ■ ■
Name of the instance model see Section 2.3.1 ■ ■ ■
Location of metamodel file see Section 2.3.1 ■ ■ ■

MC means magic comments, CF means configuration file, and ARGS means command-line arguments.

BDSL v1.0-SNAPSHOT 14

2 General Usage of the BDSL Interpreter Tool

2.3.1 Magic Comments

Magic comments provide a way to configure additional pre-defined pa-
rameters per BDSL document within a BDSL document’s header. To
be recognized, these comments have to be inserted in the first lines of a
BDSL document. A typical magic comment section is shown in Listing 3.

Listing 3: All Available Magic Comment Directives

1 // encoding: UTF -8

2 // ns-uri: http ://www.example.org

3 // ns-prefix: sample

4 // name: F

5 // schemaLocation: test -1. ecore

The meanings of each magic comment are as follows:

Magic Comment Directive Description
encoding The encoding directive specifies the en-

coding of all model resources that are
loaded or serialized.

ns-uri The namespace URI defines an identi-
fier for the namespace to use for bigraph
model elements.

ns-prefix The namespace prefix to use for bigraph
model elements (i.e., “tags”) in the model
file.

name The name of the “bigraph” in the model
file.

schemaLocation The location of the metamodel. Useful
for auto-validation of the Ecore instance
models against the specified metamodel.
It is only considered when a bigraph is
exported.

2.3.2 Configuration file

A BDSL program can also be configured via an external configuration
file with the default name bdsl-execution.properties. Two locations
are supported by default (the list is ordered by precedence):

1. Within a /config sub-folder of the current directory.

2. The current directory

These locations are always scanned before, looking for bdsl-execu-

tion.properties. To clarify, configurable properties specified in the
config sub-folder override properties specified in the current directory.

Instead of describing each available configurable property that can be setAvailable Properties
in an external configuration file, a complete listing is given in Listing 35
in the appendix. The default values and additional comments on the
usage are provided as well.

The default location for external configuration files can be configured.Default Location
A different location can be specified by passing the command-line argu-
ment -Dspring.config.location=PATH/TO/CONFIG/FILE. As explained
before in Section 2.3, configuration files specified in this way will have the→ Section 2.3

BDSL v1.0-SNAPSHOT 15

2 General Usage of the BDSL Interpreter Tool

highest precedence compared to properties specified in configuration files
located in any of the listed locations above.

Suppose that the default configuration called bdsl-execution.proper-Example
ties is placed next to the BDSL program to be executed. Further,
an additional configuration file is supplied with the following argu-
ment: -Dspring.config.location=new-config.properties. Other
than that, no other configurations are present. The locations are scanned
in the following order:

• bdsl-execution.properties in the current folder of the BDSL
program.

• new-config.properties in the current folder of the BDSL pro-
gram.

Consequently, the respective properties contained in there are also eval-
uated in this order. This enables convenient overriding of previously
defined default properties.

2.3.3 Command-line Options

Some properties can also be changed retrospectively, or in an ad-hoc fash-
ion via program arguments. According to the configuration precedence
described in Section 2.3, values supplied via arguments have the highest→ Section 2.3

precedence and will overwrite all previous set parameters with the same
name. This behavior allows to set default parameters via configuration
files which can then be later conveniently modified via parameters over
program arguments.

The general configurable properties shown in Table 1 (top part) have toGeneral Options
be passed according to this template: --name=value, with an exception
of the disableBanner property. See Section 2.3.2 for a reference of all→ Section 2.3.2

available property names that can be configured. For example, to pass the
main BDSL program and additional include files, the call in the terminal
is:

1 $ bdsl --include=lib.bdsl --main=program.bdsl

The other properties are supplied in a slightly different format as de-
scribed below.

To supply BRS execution details presented in Table 1 (middle block)Specifying BRS Execution
Details as arguments, these key-value properties have to be passed according to

this template: -Dname=value. For example, to restrict the number of
maximum transitions when executing BRSs (Sections 3.4.8 and 4.5), one→ Sections 3.4.8 and 4.5

has to pass:

1 $ bdsl ... -Dmodel -

checking.transitionOptions.maximumTransitions

=123 ...

The names after -D resemble the same names that are also used within an
external configuration file (refer to Listing 35). The above call overrides
the previously set value in a bdsl-execution.properties file under the
same name—here it will be the option model-checking.transition-

Options.maximumTransitions. See Section 2.3.2 for a reference of all→ Section 2.3.2

available property names that can be configured.

The prefix to supply magic comment directives is -B followed by theSpecifying Magic Comments

BDSL v1.0-SNAPSHOT 16

2 General Usage of the BDSL Interpreter Tool

name of the respective directive according to key labels described in
Section 2.3.1 and in Table 1 (bottom block). The value of the corre-→ Section 2.3.1

sponding key must be set after an equal sign =. For example, to override
the ns-uri and encoding property specified in the magic comment sec-
tion of a BDSL program, the interpreter call is:

1 bdsl ... -Bns -uri=http// www.example.org -

Bencoding=UTF -8

Each key must be individually prefixed with -B when values of multiple
keys shall be changed at the same time. See Section 2.3.2 for a reference→ Section 2.3.2

of all available property names that can be configured.

BDSL v1.0-SNAPSHOT 17

3 BDSL Program Structure

3 BDSL Program Structure

3.1 Elements of a BDSL program

A BDSL program basically consists of four parts: (i) Namespaces and
imports (Section 3.3); (ii) a main block (Section 3.2); (iii) several vari-
able declarations of signatures (Section 3.4.1), bigraphs (Section 3.4.2),
reaction rules (Section 3.4.6), predicates (Section 3.4.7) and BRSs (Sec-
tion 3.4.8); and (iv) event listeners (Section 3.5).

BDSL possesses the notion of a workspace. The workspace is made upWorkspaces
of a main program, i.e., a program containing a main block, and all
additional included files, usually termed libraries here. These files can be
supplied using the command-line interpreter (see properties “Main Files”
and “Include Files” in Table 1). For example, workspaces enable to refer
to elements in other files, see Section 3.3.1, and, as a result, facilitate→ Section 3.3.1

the separation of different concerns as illustrated in Section 5.2 by an→ Section 5.2

example.

Before each element of a BDSL program is explained in more detail, a
quick syntax overview is given in Table 2.

Table 2: Short syntax overview for BDSL programs in *.bdsl files.

Syntax Meaning

signature Sig { } Signature declaration with name Sig.
[active|passive|atomic] ctrl a arity 1 Control definition inside a signature declaration.

The status of a control can either be active,
passive or atomic. The control label is of type
String, the arity is of type Integer.

val A(Sig) = {X} Bigraph variable declaration assigned the explicit
signature Sig. X is a bigraph, where controls are
drawn from Sig.

react B(Sig) = {X}, {Y} Reaction rule declaration assigned the explicit sig-
nature Sig. X is the redex, Y the reactum. Both
are bigraph expressions, or methods that return
a bigraph.

pred C(Sig):[iso|partial] = {X} Predicate declaration assigned the explicit signa-
ture Sig. X is the redex, Y the reactum. Both
are bigraph expressions, or methods that return
a bigraph. The type of a predicate can either be
iso or partial.

$R Reference to a bigraph, predicate, rule or BRS
variable.

brs D(Sig) = { agents=[$A], rules=[$B],

preds=[$C] }

BRS declaration, assigning a bigraph A, a rule B

and a predicate C. The the name of the BRS is D.
All entries accept an array of references.

a * a Composition operator inside a bigraph expres-
sion.

a - a Nesting operator inside a bigraph expression.
a | a Merge operator inside a bigraph expression.
a || a Parallel operator inside a bigraph expression.

3.2 Main Block

The main block provides the main entry point of any BDSL program.
The statements inside the main block are executed from top to bottom in

BDSL v1.0-SNAPSHOT 18

3 BDSL Program Structure

the sequence they are given within the curly brackets: main = { ... }.
However, “global” definitions outside the main block are possible and are
always evaluated first.

3.3 Scoping, Namespaces and Imports

A scope can be defined as “the collection of valid targets for a reference”
[21, p. 222]. The element’s scope depends on its environment, for exam-
ple, the namespace within which the element lives (see below), or possibly
any other location, even non-structural in nature (see also [21]). Before
discussing scopes in more detail, the basic concepts are introduced first.
Therefore, we introduce the notion of namespaces in order to allow the
referencing of elements in other BDSL programs.

A namespace is similar to the notion of a package in the Java program-Namespace
ming language. They are optional, and consequently, if omitted it is not
possible to refer to elements in other files by using its simple name, also
called identifier (ID).

The fully qualified name is made up of the namespace—if specified—Full Qualified Name
and the identifier of the element. The ID is usually a name specified by
the user such that of a signature definition (Section 3.4.1) or a bigraph
variable declaration (Section 3.4.2). If the element is further contained in
another element then the ID of the container is appended before, which
is done recursively for the whole containment hierarchy. In other words,
the qualified name is a data structure which comprises the parent-child
relationship of some element within a namespace.

For example, the mechanism for computing the qualified name for a bi-
graph variable named bigraphVariableName under a namespace dec-
laration my.namespace specified in the same BDSL program is as fol-
lows. Its fully qualified will include the namespace and its ID, namely,
my.namespace.bigraphVariableName in this example. This form holds
for all elements in a BDSL file.

As long as an element in BDSL has a name, it can technically be re-Referencing
ferred. Bigraphs (Section 3.4.2), reaction rules (Section 3.4.6), predicates
(Section 3.4.7) and BRS declarations (Section 3.4.8) can be referenced
from any place. For referencing, the qualified name is further prefixed
by a dollar symbol $ (see, for example, Line 6 in Listing 13), with an
exception for signatures (see, for example, Line 1 in Listing 13).

In case the namespace is left out and the element is not contained any-
where, a valid qualified name may only include a single ID. Then the
qualified name will be computed only using the ID of the element.

3.3.1 Scope

The global scope is regarded as the outermost scope of a BDSL program.Global Scoping
Global scoping automatically acquires elements in same workspace, with-
out the need of an explicit import. As a result, we can refer to all public
elements in a BDSL program by using the qualified name. The workspace
concept is explained in Section 3.2.→ Section 3.2

The scope is an essential data structure that comes into play when refer-
ring to elements. Given a certain location in a BDSL program, the scope
describes all the reachable elements from their. Basically, it describes
the visibility of elements depending on their context. Further, scopes are

BDSL v1.0-SNAPSHOT 19

3 BDSL Program Structure

recursive and can be chained, leading to the notion of an outer and inner
scope. This chain of responsibility allows variable shadowing.Variable Shadowing

Given two bigraph variables with the same name declared in differentExample
locations (e.g., in the main block and outside the main block), they can
still be uniquely referred to. This is shown in Listing 4.

Listing 4: Demonstration of the scoping mechanism.

1 signature Sig1 {

2 ctrl a arity 1

3 ctrl b arity 1

4 }

5

6 val a1(Sig1) = { a }

7

8 main = {

9 val a1(Sig1) = { b }

10 val bigVar = $a1

11 }

12

13 val bigVarOuter = $a1

The variable a1 outside the main block has a node a, whereas the variable
a1 inside the main block contains the node b. When referring to a1 inside
the main-block, the declaration in Line 9 is used, because it lies in the
inner scope. In contrast, the outer scope carries a1 in Line 6. Bigraph
variable declarations are described in more detail in Section 3.4.2.→ Section 3.4.2

3.3.2 Namespace Mechanism

Sometimes it is useful to allow references to elements in a BDSL program
using the fully qualified name. Especially, when external variables shall be
referenced that have the same name and are specified in different scopes,
or no import mechanism is employed (Section 3.3.3).→ Section 3.3.3

The usage of the namespace mechanism is exemplified both in Listing 5
and Listing 6.

Listing 5: BDSL program 1.

1 namespace first.program

2

3 signature Sig1 {ctrl a arity 1}

4

5 val a1(Sig1) = { a }

Listing 6: BDSL program 2.

1 namespace second.program

2

3 signature Sig1 {ctrl b arity 1}

4 val a1(Sig1) = {b}

5 val b1(Sig1) = $first.program.a1

In Listing 5, the signature Sig1 and bigraph variable a1 are stored in
the index (i.e., the global scope) with the qualified name my.first.-

program.Sig1 and my.first.program.a1, respectively. This enables to
refer to elements in a non-ambiguous way without using imports in List-
ing 6.

However, using the full qualified name is sometimes not always the short-
est and most convenient way to reference elements. Below imports are
introduced, to refrain from using the qualified name every time for refer-
encing in other files.

BDSL v1.0-SNAPSHOT 20

3 BDSL Program Structure

3.3.3 Import Mechanism

BDSL provides an import mechanism, similar to the import statement in
Java, that allows to import variables by their fully qualified names only
once at the beginning of a program. Afterwards, they can be referred to
by using only their simple name (i.e., their ID).

BDSL import statements also support wildcards * to import all variables
of a specific namespace.

The following three listings illustrate the usage of BDSL imports.

Listing 7: BDSL program 1 to be imported

1 namespace my.first.bdsl.program

2

3 signature Sig1 {ctrl a arity 1}

4 val a1(Sig1) = { a }

5 val a2(Sig1) = { a }

Listing 8: BDSL program 2 to be imported

1 namespace my.second.bdsl.program

2

3 signature Sig1 {ctrl b arity 1}

4 val b1(Sig2) = { b }

5 val b2(Sig2) = { b }

Listing 9: BDSL program 3 with imports

1 namespace my.third.bdsl.program

2 import my.first.bdsl.program.a1

3 import my.second.bdsl.program .*

4

5 val c1 = $a1 // a1 is imported

6 val c2 = $my.first.bdsl.program.a2 // a2 is not imported above , but

fully qualified name is used

7 val c3 = $b1 // b1 imported by wildcard

8 val c4 = $b2 // b2 imported by wildcard

As explained in Section 3.3.1, the variable resolution depends also on the! →
scope. In Listing 9 only the global scope comes into play.

3.3.4 Elements of the same namespace

It is possible to reference elements of the same namespace in other files
without the need of an import statement. This is illustrated in the fol-
lowing example below (see Listing 10 and Listing 11).

Listing 10: BDSL program 1

1 namespace my.bdsl

2 signature Sig1 {ctrl a arity 1}

3 val a1(Sig1) = { a }

Listing 11: BDSL program 2

1 namespace my.bdsl

2

3 val b1(Sig1) = $a1

Both programs are able to refer to each other without an explicit import
because they are under the same namespace. In Listing 11, the bigraph
variable a and signature Sig1 from Listing 10 are used.

3.4 Classes and Variables

BDSL introduces many new features compared to currently available bi-
graph tools, such as the possibility to load bigraphical variables from

BDSL v1.0-SNAPSHOT 21

3 BDSL Program Structure

external resources (e.g., filesystem, or database6), the definition of inner
variables or listeners.

3.4.1 Signature Declarations

The concept of a class as known from classical object-oriented program-
ming is implemented currently only for signatures. More specifically,
signature classes are singletons, which means that there can be only one
instance of a signature class at a time. A signature is passed to bigraphs,
rules and predicates, among others, in the course of a declaration, and,
thus, always represents the same instance. All the modifications and up-
dates that occur inside the same signature class will have the same effect
on all instances that use this signature variable.

The basic definition of a bigraphical signature class is presented in List-
ing 12:

Listing 12: Example of a Bigraphical Signature Specification

1 signature Sig1 {

2 active ctrl a arity 1

3 passive ctrl b arity 1

4 atomic ctrl c arity 1

5 }

When defining a signature class, an instance of that singleton is automat-
ically created with the identifier after the signature symbol and can be
directly used afterwards. In the example of Listing 12 it is Sig1. It can
also be considered as a constant.

The first letter of the signature’s name should be capitalized. Otherwise,
a warning is outputted, when the interpreter is executed.

Every entry inside the signature definition defines a control which is as-Label and Arity
signed a name and an arity (i.e., the number of ports of a control, see
Figure 2).

Furthermore, a control can be active, passive or atomic which actsControl Status
as some kind of constraint when building bigraphs and executing BRSs.
It basically determines the activity or ”reactiveness” of a control and its
sub-structures later. This symbol can be omitted, with the result that
the control’s status is automatically set to active. For further details
refer to [13, Def. 8.2].

The specification of the status, label and arity of a control can be writtenSyntactic Sugar
also in a sugared form like this: a: 1. This expression exactly represents
Line 2 in Listing 12. Here, active is always the default status for a
control if not explicitly specified.

More sophisticated type systems are discussed in [5], which however, are
not implemented yet in this tool.

3.4.2 Bigraph Declarations

Bigraphs can be defined and constructed in many ways. For example, by
using categorical operators (Section 3.4.5), by referencing other bigraph→ Section 3.4.5

variables, or by assigning a function that returns a bigraphical structure

6 Loading bigraphical resources from a database is an issue for future releases to
explore.

BDSL v1.0-SNAPSHOT 22

3 BDSL Program Structure

(Section 4). Moreover, it is further possible to create local inner variables→ Section 4

within a bigraph declaration (Section 3.4.3), which can be referenced too.→ Section 3.4.3

Every bigraph variable has a name. The name of the bigraph can be used
to refer to it later in order to conveniently build larger bigraphs or use
them within another method.

For a brief overview, Listing 13 shows some viable declarations and as-
signments that are possible:

Listing 13: Some examples of bigraph variable declarations. The signature is ommitted from the code.

1 val bigVar2(Sig1):a = { a | b | b }

2

3 val bigVar1 = load(sig=Sig1 , as=xmi , resourcePath="file:path/test.xmi")

4

5 main = {

6 val foo = $bigVar2 // signature will be Sig1

7 $foo = $bigVar1 // still Sig1

8 $foo = $bigSig2 // has now Sig2

9 }

A bigraph contains nodes, possibly hierarchically structured using the
available operators (Section 3.4.5). These nodes are created by directly→ Section 3.4.5

using their control label which in turn are specified in the signature.
Bigraphs must be assigned a signature before they can be created. The
signature is passed to the bigraph declaration within the parenthesis ()
right after the variable name (see Line 1).

The available controls for the bigraph expression definition are deter-
mined through the specified signature. That ensures to use only valid
control labels inside the curly brackets of a declaration. Alternatively,
the fully qualified name can also be used (see Section 3.3) to refer-→ Section 3.3

ence these controls. For example, Line 1 above can be rewritten to val

bigVar2: Sig1.a = { Sig1.a | Sig1.b | Sig1.b}.

The control specification right after the colon : of a bigraph variable
is a convenience feature that creates a node with the given control and
automatically nests all further nodes under this one.

Every bigraph variable implicitly instantiates a bigraph class (i.e., a meta-
model) with the given signature and is a variable of that type. With re-
gards to Listing 13 for example, the bigraph variable bigVar2 in Line 1 is
an instance of a type graph 𝑇𝐺Sig1 compatible to Sig1. Refer to the de-
tails given in Section 1.1.3, and Figure 3 which illustrates such a bigraph→ Section 1.1.3

metamodel extending a bigraphical signature.

In order to connect an outer name to a node (recall the bigraph in Fig-Attaching Links to Nodes
ure 2), the name of the outer name has to be written inside square brack-
ets [] right after the node’s name. For instance, a["network", "door"],
creates a node named a that is connected to the two outer names network
and door. The outer name is created automatically, when specified in
this manner. See also Section 3.4.4, where special bigraphs are intro-→ Section 3.4.4

duced that allow the creation of different kinds of linking structures eas-
ily. When attaching links to nodes, the arity of the control is respected! →
(Section 3.4.1). If too many links are going to be connected, an error will→ Section 3.4.1

be thrown.

Bigraphs can be defined in the global scope outside the main block andDeclaration Scope
also within the main block.

BDSL v1.0-SNAPSHOT 23

3 BDSL Program Structure

A bigraph is always defined over a signature. Therefore, the first argu-Signature Overwriting
ment is a signature Sig1 which is automatically resolved from the BDSL
document. Consider the declaration val baz = {Sig1.a * Sig1.b}. If
no signature is explicitly defined, the interpreter tries to infer the signa-
ture according to this scheme:

1. Check if control type is explicitly defined with the qualified name
after the colon :. Then its “container”, i.e., its signature, will be
used.

2. Otherwise, the bigraph expression definitions are inspected in order
to find any control expression. Then, for the first one found, return
the signature of this control.

In case the signature cannot be inferred, an error will be thrown. How-
ever, this also depends on the RHS of the bigraph variable declaration.
If a bigraph variable (LHS) without an explicit signature definition is
(re-)assigned a new bigraph (RHS, possibly from a load() method, see
Section 4.2), the signature of the RHS will be used always. If for a bigraph→ Section 4.2

reference (LHS) a reassignment is made and it has a different signature
than the RHS, then the signature of the RHS will be used to overwrite
the one on the LHS.

If this behavior is not wanted, the signature of the bigraph declaration
on the LHS should be explicitly specified. Then during the validation
phase the signature will be checked against each other if they match,
otherwise an error is thrown. This does not apply, however, for bigraph
references on the LHS where the signature cannot be re-declared but only
overwritten.

3.4.3 Inner Variables

A bigraph declaration supports also inner variables. They automatically
infer the signature of their parent variable declaration in order to use the
controls of the passed signature. Inner variables can be referenced in the
same way as standard variables in BDSL. A brief demonstration on how
to declare inner variables is given in Listing 14 (see also Listing 39 in the
appendix for more examples).

Listing 14: Example of inner variable declarations. The signature is omitted.

1 val big1(Sig1) = {

2 val ex1:a = {

3 a - b

4 a - a

5 }

6 val ex2:b = { $ex1 } // creates a node with the control "b" and

places "ex1" under it

7 val ex3:c = { } // creates a node with control "c"

8 }

Since the signature for inner variables is automatically inferred, the ex-
plicit specification is not necessary.

Moreover, they enable a convenient way of placing bigraphs side-by-side
as the parallel product (Section 3.4.5) is implicitly used. This is shown→ Section 3.4.5

in Line 2 to Line 7.

BDSL v1.0-SNAPSHOT 24

3 BDSL Program Structure

The declaration of the inner variable ex2 in Line 6 illustrates how to refer
to the inner variable ex1 that is contained in the same block under big1.

3.4.4 Elementary Bigraphs

Elementary bigraphs are node-free bigraphs and can be classified into
placings and linkings (see [13]). They are a means for building complex
bigraphical structures from elementary ones. Furthermore, they enable
the expression of more sophisticated linking structures as explained in
Section 3.4.2 in the paragraph “Attaching Links to Nodes”.

BDSL provides special symbols in order to use them for a bigraph decla-
ration:

• barren(): This function creates a placing comprising only one root
node. It can also be written by using the short form brn().

• merge(i: int): This function returns a placing that has one root
and i sites.

• id(i: int): This identity function creates a place graph id𝑖 : 𝑖 → 𝑖
where the 𝑘-th site is connected to the 𝑘-th root (𝑘 ∈ 𝑖). The
argument denotes how many“site-root-pairs”shall be created. Only
positive integers are allowed. The index of both the site and root
is determined automatically.

• join(): This function creates the elementary placing 𝑗𝑜𝑖𝑛 : 2 → 1.
Two sites are nested under a root.

• closure(s: string, . . .): A function that creates a linking com-
prising only idle inner names. It accepts an arbitrary number of
names. It can also be written by using the symbol clsre(...) or
simply /(...).

• substitution(from: string, [to: string, ...]): This func-
tion creates a substitution, where from is the label for the outer
name to be created, and the second argument accepts a string array
for inner names to be connected to from. It can also be written by
using the symbol subst(...).

The usage of these elementary bigraphs is illustrated in the appendix in
Listing 37 and Listing 38.

3.4.5 Bigraphical Operators

So far, bigraph declarations were covered without actually constructing a
complex hierarchical structure. However, in Listing 13, for example, the
bigraph created in Line 1 contained the three nodes a, b, and b under a
node a. This was accomplished by using special operators.

To effectively create complex bigraphs from simple ones, BDSL provides
several operators, which resemble the categorical operators of bigraphs
(see [13]):

The operators | and || denote the merge and parallel product, respec-Products
tively. They are used to place a bigraph side-by-side to another bigraph.

The operators - and * denote the nesting and composition operation,Composition
respectively. They allow to place a bigraph within another bigraph for
expressing containment.

Note that composition is not valid if a node has an atomic control assigned! →

BDSL v1.0-SNAPSHOT 25

3 BDSL Program Structure

(see [13]). In this case, an error will be thrown by the interpreter.

3.4.6 Reaction Rule Declarations

Listing 15 shows some possible reaction rule declarations. A reaction
rule R = (𝑅,𝑅′) is a tuple comprising a redex and reactum (see [13]).
In BDSL they are enclosed within curly brackets in the following format:
{REDEX},{REACTUM}. It is possible to directly assign the redex and reac-
tum either a bigraph variable reference, or a method which produces a
bigraph (refer to Section 4).→ Section 4

Listing 15: Reaction Rule Declarations

1 react ruleVar1(Sig1) = {a | b}, {a | b}

2 react ruleVar2(Sig1) = {

3 // loading the redex from the filesystem , see Section 4.2

4 load(sig=Sig1 , as=xmi , resourcePath="file:models/redex.xmi")

5 }, {

6 a | b // specifying the reactum directly

7 }

8 react ruleVar3 = $ruleVar1 // referencing a rule variable

9 react ruleVar4(Sig1) = $ruleVar2

In the example above, $ruleVar3 and $ruleVar4 have no explicit sig-Signature Overwriting
nature specified and both will automatically get assigned the signature
of the rule variable references, namely in this case, Sig1. If however the
signature is explicitly given and does not match with the RHS, an error
will be thrown.

3.4.7 Predicate Declarations

Predicates represent essential elements for the verification of BDSL pro-
grams and individual BRSs. They are mainly regarded as correctness
properties that must hold for all or individual states during the program’s
execution.

Moreover, they can be employed as constrains to fire specific events when
these hold true or false (refer to Section 6 for more details).

Listing 16: Predicate declaration examples.

1 pred pVar1(Sig1):partial = {a | b}

2 pred pVar2(Sig1) = load(sig=Sig1 , as=xmi , resourcePath="file:test.xmi")

3 pred predVar3 = $pVar1

4 pred predVar4(Sig1):iso = {a | b | b}

In the example above, $predVar3 has no explicit signature specified; thus,Signature Overwriting
it will automatically get assigned the signature of the predicate variable
references, namely in this case, Sig1. If however the signature is explicitly! →
given and does not match with the RHS, an error will be thrown.

Predicates serve as some kind of logical statements in a BRS that arePredicate Types
evaluated at every state change. They come in two forms and are termed
partial and iso. Partial means, that only the substructure of a bi-
graphical state of a BRS’s transition system must match according to
the predicate definition. Whereas, however, iso means that the whole
bigraph definition is matched against the current bigraphical state of the
transition system.

BDSL v1.0-SNAPSHOT 26

3 BDSL Program Structure

3.4.8 Bigraphical Reactive System Declarations

A BRS can be regarded as some container with a signature, and references
to other variables (i.e., bigraphs, reaction rules and predicates).

Listing 17: BRS declaration example.

1 brs example(Sig1) = {

2 agents = [$bigVar],

3 rules = [$rule],

4 preds = [$pred]

5 }

BRS variables are mainly declared by references to other variables. This
allows to conveniently change the contents of a BRS by changing the
referenced variables. That also means that explicit bigraph definitions
are not supported.

The signature of a BRS must match the signature of the agents, rules
and predicates. Otherwise, an error will be produced and the program is
not executed.

To execute a BRS, the execute() method (Section 4.5) is the right can-Executing a BRS
didate.

3.5 Event Listeners/Callbacks

BDSL defines some special default events, where it is possible to re-
act on these events by incorporating additional logic to be executed.
These events are emitted in the course of the execution of a BRS (see
Section 4.5),→ Section 4.5

Currently available events are:Event Types

• Start and finish of a BRS evaluation,

• Rule matches (single, many or all), and

• Predicate matches (single, many or all).

These events are coupled with a BRS declaration. Listing 18 shows an
excerpt of an usage example on how to integrate additional functionality
after certain events occur.

Listing 18: BRS events.

1 // signature and other variable declaration omitted

2 main = {

3 brs example(Sig1) = {

4 agents = [$agent],

5 rules = [$rule1 , $rule2],

6 preds = [$pred1]

7 }

8 execute($example)

9 }

10

11 onReactiveSystemStarted($example) = {

12 println("BRS execution started")

13 j {

BDSL v1.0-SNAPSHOT 27

3 BDSL Program Structure

14 HelloUdfFunction ()

15 }

16 }

17

18 onReactiveSystemFinished($example) = {

19 println("BRS execution finished")

20 }

21

22 listenForPredicateMatch($example , [$pred1]) = {

23 println("predicate matched!")

24 }

25

26 listenForRuleMatch($example , [$rule1 , $rule2]) = {

27 println("Rule was applied")

28 }

The event listeners can be regarded as callback functions. Therein, all
statements as in the main block are valid (see also Sections 4 and 6.1).→ Sections 4 and 6.1

For example, calling a user-defined function as demonstrated in Line 14
of Listing 18 is also possible. Refer also to Listing 33 for more usage
examples on user-defined functions.

In order to aggregate multiple events, i.e. more than one predicate matchAggregate Events
(rule match), the respective variables can be supplied as an array between
square brackets [...]. This is shown in Line 26 in Listing 18. Here, the
same logic is executed when either $rule1 or $rule2 could be matched
in the current“host”bigraph of the evolving transition system of the BRS
variable $example.

BDSL v1.0-SNAPSHOT 28

4 Predefined Methods in BDSL

4 Predefined Methods in BDSL

BDSL provides several standard methods:

• println(...)→ Section 4.1

• load(...)→ Section 4.2

• randomBigraph(...)→ Section 4.3

• export(...)→ Section 4.4

• execute(...)→ Section 4.5

Where they can be used depends on their function. Some of them can
only be called within the main block, within a callback block or in a
completely different context such as in a bigraph declaration. Therefore,
all methods are explained in the following subsections in more detail.

4.1 Printing to the Console

The println() method allows to print a string or a bigraph to the con-
sole. This method can only be called within the main block (Section 3.1)→ Sections 3.1 and 3.5

or in a event listener block (Section 3.5).

Listing 19: Println method examples.

1 println("Hello , BDSL!")

2 println($bigVar)

3 println($bigVar , xmi)

4 println($bigVar , ecore)

The following parameters are available:Parameters

Argument Description
1 PrintableExpression A printable expression, either a char se-

quence or bigraph variable.
2 Enum The model format to use when the 1st

argument is a bigraph. Accepts either
xmi or ecore. Default is xmi.

4.2 Loading Bigraphs

The load()method is able to load arbitrary bigraph expressions from dif-
ferent resources. The result of a load()method can in some cases directly
assigned to a bigraph, rule or predicate declaration (see Sections 3.4.2,→ Sections 3.4.2, 3.4.6

and 3.4.7 3.4.6 and 3.4.7).

Listing 20: Load method examples.

1 // loading two bigraph instances

2 val big1 = load(sig=Sig1 , as=xmi , resourcePath="classpath:test1.xmi")

3 val big2(Sig1) = load(sig=Sig1 , resourcePath="file:test2.xmi")

4

5 react(Sig1) = { // loading a reaction rule

6 load(sig=Sig1 , as=ecore , resourcePath="file:redex.xmi")

7 }, {

8 load(sig=Sig1 , as=ecore , resourcePath="file:reactum.xmi")

9 }

BDSL v1.0-SNAPSHOT 29

4 Predefined Methods in BDSL

The following parameters must be supplied:Parameters

Argument Description
1 sig:Signature The signature of the bigraph to be

loaded.
2 as:Enum The Ecore format of the model to load.

Either xmi or ecore.
3 resourcePath:String A valid resource path with a specific

prefix. See below.

It is necessary to specify the concrete signature because it is not stored in
a model file. The argument as shall be supplied to indicate the model for-
mat, which can either be a metamodel (ecore) or instance model (xmi).
It can be omitted when the file extension is provided. Then this argument
is tried to be derived automatically.

Bigraph expressions can be loaded from several locations, where the re-Resource Locations
source location identifier must be accordingly specified:

Resource Type Description
Filesystem via "file:"; a model on the filesystem.
Classpath via "classpath:"; a model in the classpath of the

interpreter.

In every case the resource path follows the same schema, where slashes
are used for navigation.

4.3 Synthesizing Random Bigraphs

The randomBigraph() method allows the creation of random bigraphs
according to the algorithm proposed in [8]. An example is shown below
on how to use this method.

The following parameters must be supplied:Parameters

Argument Description
1 sig:Signature The signature with the controls to use for the

random bigraph
2 t:int The number of roots the bigraph shall have

(i.e., width of the forest).
3 n:int The number of nodes in total
4 p:float The fraction of nodes that should be linked

randomly via an outer name or an edge (50%-
50%). A value of 0.0 means that no nodes will
be linked and 1.0 means that all nodes are tried
to be linked.

Listing 21: Random bigraph generation example.

1 signature Sig1 {

2 ctrl a arity 4

3 ctrl b arity 4

4 ctrl c arity 4

5 ctrl d arity 4

6 }

7

8 signature Sig2 {

9 ctrl a arity 4

BDSL v1.0-SNAPSHOT 30

4 Predefined Methods in BDSL

10 }

11

12 val test3 = randomBigraph(sig=Sig2 , n = 10, t = 1, p = 0.5)

13

14 main = {

15 val test2(Sig1) = randomBigraph(sig=Sig1 , n = 20, t = 2, p = 1.0)

16 println($test2)

17 println($test3)

18 }

If the signature is specified on the left-hand side of the assignment, then
it must match with the one specified in the randomBigraph() method.
Otherwise, an error is thrown. You may also discard the explicit signature
assignment as for example in Line 12. After evaluation, $test3 will have
the signature Sig2.

The outcome of the generated bigraphs strongly depend on the passedSome Notes on the Output
parameters. Note that the linking behavior is determined by the given
signature and the assigned arity of each control. See also [8] for further
details on how the random bigraph generation algorithm works.

4.4 Exporting Bigraph Variables

The export() method enables to export BDSL variables into several
formats such as to BigMC [15], BigraphER [19], or even as a graphics file
(*.png), and to different locations (whereby the console and filesystem
is the only available option in the current version of BDSL). Listing 22
shows several examples on how to call this method.

Listing 22: Exporting a BRS into several formats.

1 brs example(Sig1) = {

2 agents = [$agent1],

3 rules = [$rule1],

4 preds = [$pred1]

5 }

6

7 export($example) // default is Ecore ’s *.xmi format

8 export($example , as=bigrapher) // output is printed to the console

9 export($example , as=bigmc , resourcePath="console:") // output is

printed to the console

10 export($example , as=bigmc , resourcePath="file :./ dump/test.bigmc")

11 export($example , as=ecore)

12 export($example , as=ecore , resourcePath="file :./ dump/test.ecore")

13

14 export($agent1 , as=png , resourcePath="file :./ dump/bigraphVar.png")

15 export($pred1 , as=png , resourcePath="file :./ dump/bigraphVar.png")

If no resource path is specified, the output will be printed to the console.
For the export format png, a resource path must be explicitly defined.
Otherwise, an validation error will be thrown.

The following parameters are available:Parameters

BDSL v1.0-SNAPSHOT 31

4 Predefined Methods in BDSL

Argument Description
1 bigraph variable The bigraph, predicate or BRS to ex-

port.
2 as:Enum The export format for the bigraph

variable. Either xmi, ecore,
bigrapher, or bigmc. To export
the variable into a graphics file, the
option png can be used.

3 resourcePath:String The resource path to which the
bigraph variable should be exported
to. Refer to Section 4.2, whereby only
“file: and console:” is available
here.

Exporting a variable to a graphic file (*.png) is only supported for! →
bigraphs (Section 3.4.2) and predicates (Section 3.4.7) in the current ver-→ Sections 3.4.2 and 3.4.7

sion of BDSL.

4.5 Executing BRSs

To explicitly execute a BRS declaration (Section 3.4.8), BDSL provides→ Section 3.4.8

the execute() method, which accepts a BRS variable reference. List-
ing 23 shows how to call this method.

Listing 23: Executing a BRS.

1 brs example(Sig1) = {

2 agents = [$agent1],

3 rules = [$rule1],

4 preds = [$pred1]

5 }

6 execute($example)

When a BRS is executed, a transition system is generated in the “back-
ground” and the given predicates (Section 3.4.7) are evaluated. A user→ Section 3.4.7

might want to react on these events by actively listening to these, and
for attaching additional logic. Refer to Section 3.5 to get more details on→ Section 3.5

that topic.

The generated transition system can be automatically exported to a fileTransition System
either by using an external configuration file, or by passing a specific
command-line argument (see Section 2.3). It is not only possible to export→ Section 2.3

the transition system but also all generated states as images or Ecore
models (*.xmi and *.ecore files).

BDSL v1.0-SNAPSHOT 32

5 Examples

5 Examples

This section provides some introductory examples on how to model spe-
cific problems using BDSL. Further it is shown how to verify pre-defined
properties that must hold during the program’s execution, or, more gener-
ally, the program’s behavior in combination with the underlying bigraph
theory.

Therefore, this report provides examples of different applications in the
field of computer science to demonstrate the wide spectrum in which
bigraphs may be employed. The first examples can be categorized roughly
as optimization problems or logic games.

Note that, however, even it is possible to express some computational
problems in the field of theoretical computer science with BDSL, more
specific algorithms may be much more efficient. Take for example the
pathfinding problem, which is modeled in BDSL in Section 5.3. Other→ Section 5.3

alternatives more suited to solves this problem are, for instance, the A*
search algorithm or random trees, because there are designed to solve
this specific problem smarter by exploiting various concepts. Therefore,
these examples serve only for demonstration purposes in order to show
the variability of BDSL’s expressiveness.

5.1 Basic Mathematical Calculations the Bigraphical Way

BRSs can also be exploited to formulate simple computational expressions
such as the sum of two integers, or a comparison operator.

Next, Listing 24 and Listing 25 show exactly how to implement these two
operations for two integers in a bigraphical way using BDSL, all expressed
with bigraphs.

Listing 24: Computing the inequality of two integers that are expressed as bigraphs.

1 signature SigLt {

2 active ctrl lessThenExpr arity 0

3 atomic ctrl true arity 0

4 atomic ctrl false arity 0

5 active ctrl s arity 0

6 atomic ctrl z arity 0

7 active ctrl left arity 0

8 active ctrl right arity 0

9 }

10

11 main = {

12 val numberExpr(SigLt):lessThenExpr = {

13 (left - s - s - s - z) | (right - s - s - s - s - z)

14 }

15 brs comp(SigLt) = {

16 agents = [$numberExpr],

17 rules = [$reduce , $isLes , $isGreater]

18 }

19 execute($comp) // perform computation

20 }

21

22 react reduce(SigLt) = { left - s - id(1) | right - s - id(1)},

BDSL v1.0-SNAPSHOT 33

5 Examples

23 { left - id(1) | right - id(1) }

24

25 react isLess(SigLt) = { left - z | right - s - id(1)},

26 { true }

27

28 react isGreater(SigLt) = { left - id(1) | right - z },

29 { false }

The first example in Listing 24 basically evaluates, whether 3 < 4 isEquality of integers
true. The numbers and the comparison expression including the < oper-
ator are expressed by purely using bigraphs (see numberExpr in Line 12),
whereas the evaluation is performed by the BRS declaration comp defined
in Line 15. The graphical representation of both the “number bigraph”
and“less-than sign” is depicted in Figure 5. It can be seen that only three
reaction rules are needed. The order of the rules in the BRS specification
is not important as each is matched in the beginning against the original
variable number (and afterwards, also the re-written variable state) until
the rule isLess or isGreater matches.

Figure 5: A bigraph representing a less than expression between two integers, namely, 3 < 4.

The second example in Listing 25 calculates the sum of two integers.Summation of integers
Similar to the first example, the two numbers and the + operator are
formulated by one bigraph variable numberExpr in Line 10. Here, the
expression 3 + 4 shall be calculated. The first rule r1 describes how to
move a node s from left under right. This is done as long as s-nodes
are contained under left. Lastly, the second rule r2 reduces the bigraph
to a result containing only s-nodes that were previously collected under
right. The execution itself is started by passing the BRS declaration
sum (Line 13) to the method execute() (see Section 4.5).→ Section 4.5

Listing 25: Summation.

1 signature SigSum {

2 active ctrl plusOp arity 0

3 active ctrl s arity 0

4 active ctrl z arity 0

5 active ctrl left arity 0

6 active ctrl right arity 0

7 }

8

9 main = {

10 val numberExpr(SigSum):plusOp = {

11 (left - s - s - s - z) | (right - s - s - s - s - z)

BDSL v1.0-SNAPSHOT 34

5 Examples

12 }

13 brs sum(SigSum) = {

14 agents = [$numberExpr],

15 rules = [$r1 , $r2]

16 }

17 execute($sum) // perform computation

18 }

19

20 react r1(SigSum) = {left -s-id(1) | right -s-id(1)},

21 {Left | Right - s - id(1)}

22

23 react r2(SigSum) = {left -z | right -s-id(1)},

24 {s - id(1)}

5.2 Importing External Libraries

In this example, a BDSL program is given and further designated to
be the main program that imports a user-written library with a specific
namespace. This library itself is a BDSL program, usually without a
main block.

Here, the operation that the main program executes is rather simple and
serves only as demonstration for the library approach explained here.
For instance, recall the two examples regarding bigraphical computa-
tions in Section 5.1. Here, the “number bigraphs” can be specified in→ Section 5.1

a distinct library file as well as the BRS that performs the computation
(e.g., summation). Then, a third program needs to import both programs
by their respective namespace. Computing the sum for different “num-
ber bigraphs” can be accomplished by changing the bigraph variables in
the first library only, or by passing a completely different library to the
interpreter but using the same namespace.

Listing 26: Common signature declaration.

1 namespace sum.types

2

3 signature SigSum {

4 active ctrl plusOp arity 0

5 active ctrl s arity 0

6 active ctrl z arity 0

7 active ctrl left arity 0

8 active ctrl right arity 0

9 }

Listing 27: Bigraphical number declarations.

1 namespace sum.numbers

2 import:bdsl sum.types.*

3

4 val numberLeft(SigSum): left = {

5 s - s - s - s - s - s - z

6 }

7

8 val numberRight(SigSum): right =

{

9 s - s - s - s - z

10 }

11

12 val expression(SigSum): plusOp =

{

13 $numberLeft | $numberRight

14 }

For the next example, the primary purpose of these libraries is to config-
ure the main program without any modification afterwards. Therefore,

BDSL v1.0-SNAPSHOT 35

5 Examples

three additional libraries are implemented, one for the common signa-
ture definition (Listing 26), one that declares two “bigraphical numbers”
(Listing 27), and one that specifies the actual summation operation in a
bigraphical way (Listing 28). All three libaries are consolidated in List-
ing 29, where only the execution of the defined BRS is started.

Listing 28: Declaration of the summation opera-
tion.

1 namespace sum.operation

2 import:bdsl sum.types.*

3 import:bdsl sum.numbers .*

4

5 react r1(SigSum) = { (left - s -

id(1)) | (right - id(1)) }, {

(left - id(1)) | (right - s -

id(1)) }

6 react r2(SigSum) = { (left - z) |

(right - s - id(1)) }, { s -

id(1) }

7

8 brs summation(SigSum) = {

9 agents = [$expression],

10 rules = [$r1 , $r2]

11 }

Listing 29: Main program of the summation op-
eration example.

1 namespace sum.program

2 import:bdsl sum.types.*

3 import:bdsl sum.numbers .*

4 import:bdsl sum.operation .*

5

6 main = {

7 execute($summation)

8 }

To execute the whole program, assuming that all four files above are
located in the same directory, the following command is used:

1 ./bdsl --include=include -1.bdsl include -2.bdsl

include -3 .bdsl --main=main.bdsl

The first argument --include determines the additional libraries to in-
clude. The first one must be Listing 26, since Listings 27 and 28 are
also importing the common signature declaration. The second argument
--main specifies the BDSL program to be executed (more concretely, the
respective main block contained therein). These arguments are discussed
in Sections 2.2 and 2.3.3. The reaction rules in Listing 28 basically de-→ Sections 2.2 and 2.3.3

scribe how to “transfer” a node, here s, from the left-hand side to the
right-hand side until no s-nodes are available anymore under the node
left.

Though, this simple example is deliberately over-complicated, it shows
the full separation of different concerns, namely, from the specification of
the data and the operational semantics to the actual execution instruc-
tion.

In contrast to hard-code different behaviors in a BDSL program that
are switched based on external values (refer to Section 2.3), this form of→ Section 2.3

library approach may provide also a mechanism for dynamic configuration
of programs by simply swapping out the specific library that contains
configurable data.

BDSL v1.0-SNAPSHOT 36

5 Examples

5.3 Pathfinding: Naive Blind Search

Consider the following problem.7 Given is an arbitrary map that consists
of places and roads. A place comprises roads, and roads are connected
to places or to other roads. It is possible that a place has roads which
are not connected to other places or roads. Further, a car is given with
a limited amount of fuel. The car starts at a random place called 𝐴
and needs to travel to a destination called 𝑡𝑎𝑟𝑔𝑒𝑡. A car can only travel
on connected roads. The starting situation is conceptually illustrated in
Figure 6.

Place X

Place A

Road

Place B

Place C

R
oad

Road …

…

Road

Ta
rg
et

…

Car

F F F

R
oad

R
oad

…

Figure 6: The initial situation of the pathfinding problem.

Several interesting questions can be posted now:

• Is the car able to reach the target with the given amount of fuel?
If yes, how many roads and places must the car travel to reach the
target?

• Are there any blind ends?

• At which states will the car get out of fuel so it never reaches the
target?

Listing 30 shows an excerpt of the whole program on how to express
this problem in BDSL by implementing a naive blind search in order
to verify, whether the car will reach its target or not. (The full code
is printed in Listing 40.) Here, verification is a means to answer the
questions mentioned above, which will be apparent in a moment.

Listing 30: Pathfinding example (bdsl-pathfinding.bdsl, see Listing 40).

1 signature SigMap {

2 Car: 1

3 Fuel: 0

4 Place: 1

5 Road: 1

6 Target: 1

7 }

8

7 This particular example was inspired by jLibBig (https://github.com/bigraphs/
jlibbig, last visited June 24, 2021), a Java library for BRSs. The concrete imple-
mentation in jLibBig is available from https://github.com/EPresident/UniUdBig

(last visited June 24, 2021).

BDSL v1.0-SNAPSHOT 37

https://github.com/bigraphs/jlibbig
https://github.com/bigraphs/jlibbig
https://github.com/EPresident/UniUdBig

5 Examples

9 main = {

10 brs findPath(SigMap) = {

11 agents = [$map],

12 rules = [$moveCar],

13 preds = [$targetReached]

14 }

15 execute($findPath)

16 }

17

18 val map(SigMap) = {

19 // declaration omitted

20 }

21

22 react moveCar(SigMap) = {

23 // declaration omitted

24 }

25

26 pred targetReached(SigMap) = {

27 // declaration omitted

28 }

From Listing 30 it can be observed that only one rule and a predicate
is needed to solve the stated problem above. The rule moveCar specifies
when a car is able to move from a place to another place via a road, also
reducing one amount of fuel, and, if possible, does so by rewriting the
bigraph variable map (determined by its reactum, i.e., the second curly
bracket clause of moveCar). The predicate specifies a state in which the
car reaches the target. The input of this problem is a map declared in
Line 22 which itself is a bigraph. This “bigraphical map” is visualized in
Figure 7, whereas the full declaration is given in Listing 40.

Figure 7: The map as a bigraphical structure, resembling the map in Figure 6.

The map, rule and predicate are supplied to the BRS variable declaration
in Line 10, ready to be executed. The questions stated above can be
answered by observing the synthesized transition system of the BDSL
program after its execution in Line 15. The output of the transition
system is depicted in Figure 8. This transition system was automatically
exported by configuring the appropriate property (see Table 1).

The car reaches its target in two steps which is indicated by the greenInterpretation of the Result
rectangle around a state due to the predicate targetReached in Line 37.
BDSL automatically renders the file in this way. Moreover, it can be
observed that four blind ends exist that do not have a road back to
another place or road—the car gets stuck. Because the initial amount of

BDSL v1.0-SNAPSHOT 38

5 Examples

Figure 8: Generated transition system of the pathfinding problem as modeled in Listing 30.

fuel for the car was set to 8, it is logical, that the car has no fuel after 8
steps, which is indicated by a red rectangle in Figure 8.8

In this specific example the program was executed with the goal to explore
all possible states. This may not be the desired goal, especially for the
case in which the state-space is infinite. It is possible to add constraints to
the execution by configuring the respective parameters (see Section 2.3).→ Section 2.3

5.4 Mutual Exclusion Problem

This section deals with the well-known mutual exclusion problem in com-
puter science. The aim of this example is to show how to model two
processes that mutually access an exclusive resource using BDSL. Fur-
ther, we show how to verify the correctness of the program. Therefore,
we are going to specify some predicates that are checked at every state
change. The resulting transition system used for verifying the behavior
is exported for later inspection, or for further processing.

Different approaches are possibly to model this kind of behavior. Here,States of the Program
Execution we show only one of many in BDSL. The operation specification is always

the same for every process: First, a process has to undergo a registration
process by acquiring a token. After, the process may perform its work
and is allowed to access the shared resource. Finally, the process has
to release the access lock to make the shared resource available again for
other processes. This operational behavior is expressed via three reaction
rules (see Listing 31).

Figure 9: Initial state of the mutual exclusion problem. This state represents the variable startingState
in Line 16 of Listing 31.

8 These last two assertions are not given in the BDSL program in Listing 30, but were
added later to the transition system in Figure 8.

BDSL v1.0-SNAPSHOT 39

5 Examples

The initial situation is depicted in Figure 9. The figure shows two pro-Initial State of the Program
cesses which have assigned the same control Process but are identified
by two different links, namely, access2 and access1 for the “left” and
“right”process, respectively. This fact can be exploited to add many more
processes to the program without changing the logic (i.e., rules). Under
the same environment a resource exists which contains an access token.

The complete BDSL program is presented in Listing 31.

Listing 31: Mutual exclusion problem in BDSL for two processes.

1 signature Sig1 {

2 Process: 1

3 Token: 1

4 Working: 1

5 Resource: 1

6 }

7

8 main = {

9 brs $mutual(Sig1) = {

10 agents = [$startingState],

11 rules = [$r0 , $r1 , $r2]

12 }

13 execute($mutual)

14 }

15

16 val startingState(Sig1): {

17 Process["access1"]

18 Process["access2"]

19 Resource - Token

20 }

21

22 react r0(Sig1) = { // acquire lock

23 Process["access"] || (Resource - Token)

24 }, {

25 Process["access"] || (Resource - Token["access"])

26 }

27

28 react r1(Sig1) = { // do work

29 Process["access"] || (Resource - Token["access"])

30 }, {

31 Process["access"] - Working || (Resource - Token["access"])

32 }

33

34 react r2(Sig1) = { // release lock

35 Process["access"] - Working || (Resource - Token["access"])

36 }, {

37 Process["access"] || (Resource - Token)

38 }

The variable startingState in Line 16 declares the initial state with twoDescription of the Program
processes. The declaration utilizes a feature described in Section 3.4.3→ Section 3.4.3

that automatically places the next nodes in parallel under one parent.
(Here, it is the root node.) Another way would be to explicitly use the
merge product operator | (Section 3.4.5). After the state declaration,→ Section 3.4.5

BDSL v1.0-SNAPSHOT 40

5 Examples

three rule definitions follow, see Line 22, Line 28 and Line 34. Basically,
these rules implement the program execution behavior mentioned in the
beginning of this section. They are generic and do not rely on the number
of processes involved. This is exploited later at the end of this section.

Atfer the program’s execution in Line 13, a transition system is generated
which is depicted in Figure 10. This transition system was automatically
exported by configuring the appropriate property (see Table 1). Figure 10
shows how each of the two processes are able to consecutively acquire a
lock by connecting a link (either access1 or access2) to a token under
the resource Resource in order to access the resource and perform the
actual work.

Figure 10: Generated transition system of the mutual exclusion problem as modeled in Listing 31. The
states are bigraphs encoded as strings by using the breadth-first string encoding as described in [7].

The arc’s labels and their direction of the transition system further show
that the order of the reaction rules adhere to the operation specification,
that is, first acquire lock (r0), do work (r1), finally release lock (r2).
This is also apparent by the two cycles formed in the transition system.
In other words, it is not possible for a process to acquire a lock, when
the other process has access to the shared resource and is in the working
state.

The example presented exemplifies that the behavioral logic expressedExtensions
in the program is very generic, as a result, the program can be ex-
tended with many more processes without any change of the core logic at
all. Since links are used to distinguish between available processes, new
ones can be easily added. For example: val = startingState(Sig1):

Process["a"] | Process["b"] | Process["c"] |

BDSL v1.0-SNAPSHOT 41

6 Advanced Topics

6 Advanced Topics

6.1 User-defined Functions

User-defined functions (UDF) provide the basic functionality to external-
ize additional logic or behavior in form of arbitrary Java expressions. In
other words, a BDSL program can be enriched by using the Java program-
ming language, enabling to call specifically declared functions contained
in a so-called UDF archive (see below). They are suited to be called after
reactions occur in order to interact with the system’s environment. For
example, to communicate with OpenHAB to switch on a lamp in a smart
home. This form of externalization facilitates strict separation of addi-
tional logic, and retains the core logic of a BDSL program. Moreover,
UDFs can be tested independently by utilizing traditional test methods
such as JUnit tests.

Usually, a collection of UDFs are packaged within a *.jar archive allow-Collection of Functions . . .
ing them to be conveniently imported in a BDSL program. These are. . . UDF archive
usually called also UDF archives. This helps to organize UDFs that have
similar concerns.

UDFs can be used within by importing their namespace via the im-Importing an UDF archive
port:udf statement. Their namespace resembles the Java package name
under which the functions are located in the archive. A user can then
refer to these classes by using its simple name, which represents the Java
class name in the corresponding Java package. Without an import:udf

statement, the fully qualified name must be used. This name corresponds
to the Java package, under which the specific Java class is contained,
and the name of the Java class itself.

Logically, a BDSL program needs to know the location of UDF archives in! →
order to be included first. The default here is the current directory from
where the BDSL program is executed. To change the source locations
from where to search for UDF archives and load them, see Section 2.3.9→ Section 2.3

Three steps are necessary to utilize UDFs in a BDSL program, which areBasic Usage
also explained in the following by a running example:

• UDFs must implement a specific interface from the BDSL CE
Framework .

• A collection of UDFs must be packaged as a *.jar archive.

• They should be imported by their namespace (which corresponds
to the Java package name under which they are placed).

• Functions defined in such a UDF archive can be directly called in a
BDSL program by using their simple name or full qualified name.

The following explanation assumes basic knowledge on how to setup and
package a Java project in combination with Maven, because further de-
tails are out of scope of this manual.

6.1.1 A Hello-World UDF Example

The BDSL CE Framework provides several Java interfaces depending onImplementing the Java
Interface which kind of UDF one needs to implement (see Section 6.1.2). They→ Section 6.1.2

differ from each other mainly in the type of the return value and type of
arguments they accept.

9 Therefore, the configurable property called includeUdf exists, which can be specified
either via the command-line, or via an external configuration file.

BDSL v1.0-SNAPSHOT 42

6 Advanced Topics

For the first step, a new Maven project is created, with the depen-
dency bigraph-algebraic-interpreter-core of the BDSL Interpreter
Framework .10 In this example, the UDF should print the character
sequence “Hello, BDSL” to the console. Here, no argument is needed
and no return value is necessary, thus, we use ToVoidNoArgsFunction

from the bigraph-algebraic-interpreter-core dependency of the
BDSL CE Framework . The content of that Java function is de-
picted in Listing 32. The interface ToVoidNoArgsFunction extends
BDSLUserDefinedConsumer<Void> and provides a convenient way to
implement UDFs that do not process a parameter and do not return
anything.

Listing 32: A Java function showing the logic of the UDF for the running example.

1 package de.tudresden.inf.st.bigraphs.examples.interpreter.udf;

2 import de.tudresden.inf.st.bigraphs.dsl.udf.ToVoidNoArgsFunction;

3

4 public class HelloUdfFunction implements ToVoidNoArgsFunction {

5

6 @Override

7 public void accept(Void unused) {

8 System.out.println("Hello , BDSL");

9 }

10 }

After implementing the desired logic, the Java project needs to be com-
piled to produce the *.jar archive for the next step. For this example it
is necessary to store the UDF archive next to the BDSL program which
is presented in a moment.

If external dependencies are included beside using the standard Java func-! →
tionality, it is necessary to build a so-called fat jar that includes all ad-
ditional dependencies.

The Java package name of the UDF archive (Line 1 in Listing 32) re-Importing the UDF Archive
sembles the namespace to use in BDSL. To include the UDF archive, we
write the following at the very top of a BDSL program (under the magic
comment section): import:udf de.tudresden.inf.st.bigraphs.ex-

amples.interpreter.udf.*. Wildcards are allowed and work in the
same way as for standard BDSL imports described in Section 3.3.3. Such
an instruction is shown in Line 1 of Listing 33 that uses the special
import:udf statement.

In case the UDF archive is not placed next to the BDSL program in the! →
same folder, one can supply the command-line argument --includeUDF
which accepts a comma separated list of filenames (see Section 2.3).→ Section 2.3

After importing the namespace of the corresponding UDF (i.e., the corre-Calling an UDF in BDSL
sponding Java package), the next step is to call the implemented function
(i.e., the corresponding Java class). The example in Listing 33 shows how
to call the UDF HelloUdfFunction within the main block (Line 5) of a
BDSL program.

10 For more details, please refer to the documentation under this link https://git-

st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter.

BDSL v1.0-SNAPSHOT 43

https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter
https://git-st.inf.tu-dresden.de/bigraphs/bigraph-algebraic-interpreter

6 Advanced Topics

Listing 33: Example on how to use UDFs in a BDSL program.

1 import:udf de.tudresden.inf.st.bigraphs.examples.interpreter.udf.*

2

3 main = {

4 j {

5 HelloUdfFunction ()

6 }

7 }

A Java expression, more specifically a BDSL UDF call, must be enclosed
in a j { ... } block within curly brackets. Therein, multiple function
calls are possible.

6.1.2 The Different Types of Functions

The BDSL CE Framework provides several Java interfaces to implementReturn Values and
Arguments UDFs for different use cases, which vary with respect to their argument

and return types. All BDSL-related UDF interface definitions are con-
tained in the de.tudresden.inf.st.bigraphs.dsl module of the BDSL
CE Framework under the Java package de.tudresden.inf.st.bi-

graphs.dsl.udf.

Basically, two core Java interfaces exist that can be implemented:

• BDSLUserDefinedFunction<R>: This interface specifies the method
R apply(UDFArgumentTypes var1) which accepts one parameter
and returns a value. The class UDFArgumentTypes represents,
among others, all BDSL elements described in Section 3.4.→ Section 3.4

• BDSLUserDefinedConsumer<T>: This interface specifies the method
void accept(T var1) which accepts one parameter and does not
return anything.

The type of the argument and return value can be freely specified. Note
that only types inherent of BDSL can be used such as the variable types
introduced in Section 3.4.→ Section 3.4

An error will be thrown in case the number and types of arguments that! →
need to be supplied to the UDF call in BDSL does not match with the
Java implementation contained in the corresponding UDF archive.

User-defined functions are usually executed in an asynchronous fashionSome Notes on the
Execution in order to avoid blocking the program execution. Therefore, they shall

only contain logic that is meant to be executed asynchronously.

6.2 Using the Interpreter Programmatically

The example presented here briefly outlines the programmatic integration
of the BDSL interpreter in another application by using Java in combi-
nation with Maven as the build system. This programmatic approach is
especially useful for developers who want to integrate the BDSL inter-
preter in custom applications without interacting with the command-line
version of the interpreter through external scripts. The full build config-
uration (pom.xml), and both the Java and BDSL program are printed in
Appendix C.→ Appendix C

In light of the library case study described in Section 5.2, one could
implement the following application. A BDSL program simply outputs

BDSL v1.0-SNAPSHOT 44

6 Advanced Topics

a bigraph variable to the console declared therein. The interpreter runs
in a Java for loop and in every iteration a bigraph variable is randomly
created that the main BDSL program uses.

The bigraph variable is created dynamically in Java using the Bigraph
Framework. Afterwards it is exported to a file, more specifically, to an
instance model file in the Ecore format (*.xmi). Then, the main BDSL
program uses the load() method (Section 4.2) to load the bigraph model→ Section 4.2

from the filesystem for assigning it to the variable declared in the BDSL
program.

Listing 34: Excerpt of the Java program showing on how to use the interpreter programmatically.

1 // This methods defines the core logic on how to call the BDSL

interpreter

2 public void run(String ... args) throws Exception {

3 CliExecutor cliExecutor = cliFactory.createCliExecutor ();

4 CommandLineParser commandLineParser = cliFactory.

getCommandLineParser ();

5 CliOptionProcessor cliProcessor = cliFactory.

createCliOptionProcessor ();

6 DefaultDynamicSignature exampleSignature = createSignature ();

7 for (int i = 0; i < 5; i++) {

8 // A random bigraph is created

9 PureBigraph generated = pureRandomBuilder(exampleSignature).

generate(1, 6, 0.f);

10 // The instance and metamodel of the generated bigraph are saved

on the filesystem

11 BigraphArtifacts.exportAsMetaModel(generated , dumpFolder.toPath ())

;

12 BigraphArtifacts.exportAsInstanceModel(generated ,

13 new FileOutputStream(

14 Paths.get(

15 dumpFolder.getAbsolutePath (),

16 "random -bigraph.xmi"

17).toString ()

18));

19 // Command -line arguments are parsed ...

20 cliProcessor.process(commandLineParser , args);

21 // This statement actually calls the interpreter

22 cliExecutor.execute(cliProcessor.getProcessorResult ());

23 }

24 }

Now to the Java program that is fully provided in Appendix C. An ex-→ Appendix C

cerpt is shown in Listing 34 highlighting only the important parts with
respect to the usage. The BDSL Interpreter Framework is implemented
using the Spring Framework11. In this example, the program arguments
are directly passed to the command-line processor object in Line 20 of
Listing 34, which specifies the location of the BDSL program to parse.
The CliExecutor object created in Line 3 is responsible for the actual
execution, i.e., the interpretation, after the program was parsed. This is
shown in Line 22.

11 Spring Framework, https://spring.io/ (last visited June 24, 2021).

BDSL v1.0-SNAPSHOT 45

https://spring.io/

6 Advanced Topics

6.3 IDE Support

The integrated development environment (IDE) specifically designed for
BDSL provides a fast, platform-independent and flexible development
environment for BDSL programs. The BDSL-IDE is available from
https://git-st.inf.tu-dresden.de/bigraphs/bdsl-textual-ide,
where all necessary installation instructions are provided as well.

Some of its features are:

• Platform-independent browser application

• Automatic syntax checking and early error reporting

• Auto-completion and syntax highlighting

• Outline of the program structure

• Creation of workspaces

• Git-like versioning support

• Execution of the interpreter in integrated terminal

Theia BDSL

localhost:3000

Figure 11: Screenshot of the BDSL-IDE that is based on Eclipse Theia.

BDSL v1.0-SNAPSHOT 46

https://git-st.inf.tu-dresden.de/bigraphs/bdsl-textual-ide

7 Conclusion

7 Conclusion

Bigraphs allow to freely specify the syntax and semantic of reactive sys-
tems. One of the characteristics of bigraphs is the fact that they enable
to change their structure by means of so-called reaction rules.

The intention of BDSL is the provision of a foundational framework to
built upon other bigraphical model-driven domain-specific languages for
the development of reactive systems.

The meta-modeling approach additionally facilitates the interoperability
between different existing bigraph tools, thus, also enables the develop-
ment of bigraphical tool chains [11].

Furthermore, software verification techniques can be employed that are
going beyond traditional software testing methods such as functional unit
test. Since bigraphs are a mathematical framework, it is possible to
conduct mathematical reasoning and build programs based on a sound
theory for reactive systems. Allowing to formally specify the semantic
of a program and model checking it against some correctness properties,
provides the formal means to design safe program.

7.1 Future Work

This section explores various directions for future work of BDSL. The
main goals will be to add more language features for a greater support
of a context-sensitive and rule-based programming approach, to extend
the tool support of BDSL for end-users and developers alike, and finally
improve the quality of the frameworks’s code to enable more generalized
and consistent grammar extensions for new domain-specific languages for
reactive systems.

7.1.1 Language Features

One idea is to provide additional rule programming features and patterns
such as priorities, re-invoking rules multiples times, rule inheritance (see
[23]), or rule-based transformation of reaction rules (see [12]), to mention
a few.

Another direction is to expand the possibilities that ease the con-
struction of bigraphs. With regard to rule declarations it is planned
to support direct loading of reaction rule files instead of individu-
ally assigning a bigraph to the redex and reactum of a RR (refer to
Sections 3.4.6 and 4.2). To clarify, it is preferable to declare a rule like→ Sections 3.4.6 and 4.2

this: react r = load(sig=Sig1, resourcePath="file:rule.xmi").
Moreover, support for supplying instantiation maps for RR is planned.

The implementation of BDSL methods that accelerate the creation of
bigraphs are also of focus for further work. One example could be the
introduction of a rep() method that allows to conveniently create nodes
in a specific way. To illustrate, rep(a, op=’|’, times=3) would be the
equivalent of writing a | a | a | a.

Another emphasis lies on the declaration of bigraphical signatures. Sig-
nature inheritance is in some cases desirable, similar to rule inheritance.
Therefore, the specification of an extension strategy must be supported
that define whether duplicate controls should be overwritten, merged or
deleted, for instance.

The combination of declared predicate variables (Section 3.4.7) is of in-→ Section 3.4.7

BDSL v1.0-SNAPSHOT 47

7 Conclusion

terest. Predicates shall be connected via and and or operators to conve-
niently form more complex predicate expressions from simple ones.

7.1.2 Database Support

Currently only one option is available to supply a BDSL program to the
interpreter. Namely, from the filesystem. Future work considers to pass
a BDSL program also from a database. The same applies to the results
that may be written into a database.

7.1.3 Interactive Shell

The functionality of the interpreter in BDSL CE Framework is designed
to interpret any statement at any place in a BDSL program. The inter-
preter is able figure out the dependencies of the entities to evaluate next.
In most cases, there is no extension necessary on prior or next state-
ments to evaluate. This feature is independent of the integrated caching
mechanism employed—omitting it would lead to the side-effect that the
interpretation process will take more time.

Thus, a so-called read-eval-print loop can be built easily. Having anREPL for Exploratory
Programming and

Debugging
interactive language shell for BDSL enables quick execution of single ex-
pressions and therefore facilitates experimentation12 and debugging. In
contrast to the interpreter presented in Section 2, where a BDSL docu-→ Section 2

ment must be supplied, a REPL expects single expressions. A temporary
environment is created to write the results and acquire current variables.
When the shell is closed, the whole environment will be deleted.

12 See https://en.wikipedia.org/wiki/Exploratory_programming (last visited June
24, 2021).

BDSL v1.0-SNAPSHOT 48

https://en.wikipedia.org/wiki/Exploratory_programming

7 Conclusion

References

References
[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. Cambridge, Mass: The

MIT Press, 2008. 975 pp. isbn: 978-0-262-02649-9.
[2] L. Birkedal et al. “Bigraphical Models of Context-Aware Systems”. In: Foundations of Software

Science and Computation Structures. International Conference on Foundations of Software Science
and Computation Structures. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
Mar. 25, 2006, pp. 187–201. isbn: 978-3-540-33045-5 978-3-540-33046-2. doi: 10.1007/11690634_
13. (Visited on 08/17/2018).

[3] Roberto Bruni et al. “On Hierarchical Graphs: Reconciling Bigraphs, Gs-Monoidal Theories and
Gs-Graphs”. In: Fundamenta Informaticae 134 (Jan. 1, 2014), pp. 287–317. doi: 10.3233/FI-
2014-1103.

[4] Muffy Calder et al. “Real-Time Verification of Wireless Home Networks Using Bigraphs with
Sharing”. In: Science of Computer Programming 80 (Feb. 1, 2014), pp. 288–310. issn: 0167-6423.
doi: 10.1016/j.scico.2013.08.004. (Visited on 11/23/2018).

[5] Ebbe Elsborg, Thomas T. Hildebrandt, and Davide Sangiorgi. “Type Systems for Bigraphs”. In:
Trustworthy Global Computing. Ed. by Christos Kaklamanis and Flemming Nielson. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2009, pp. 126–140. isbn: 978-3-642-00945-7.

[6] Roberto Gorrieri. “Labeled Transition Systems”. In: Process Algebras for Petri Nets: The Alpha-
betization of Distributed Systems. Ed. by Roberto Gorrieri. Monographs in Theoretical Computer
Science. An EATCS Series. Cham: Springer International Publishing, 2017, pp. 15–34. isbn: 978-
3-319-55559-1. doi: 10.1007/978-3-319-55559-1_2. (Visited on 12/05/2018).

[7] Dominik Grzelak and Uwe Aßmann. “A Canonical String Encoding for Pure Bigraphs”. In: SN
Computer Science X.X (2021), p. XXX. issn: 2661-8907. doi: 10.1007/XXXXX.

[8] Dominik Grzelak, Barbara Priwitzer, and Uwe Aßmann. Generating Random Bigraphs with Pref-
erential Attachment. Feb. 18, 2020. arXiv: 2002.07448 [cs]. (Visited on 02/19/2020).

[9] Thomas Hildebrandt, Henning Niss, and Martin Olsen. “Formalising Business Process Execution
with Bigraphs and Reactive XML”. In: Coordination Models and Languages. Ed. by Paolo Cian-
carini and Herbert Wiklicky. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, pp. 113–129. isbn: 978-3-540-34695-1.

[10] Dirk W. Hoffmann. “Software-Verifikation”. In: Software-Qualität. Ed. by Dirk W. Hoffmann.
eXamen.press. Berlin, Heidelberg: Springer, 2013, pp. 333–369. isbn: 978-3-642-35700-8. doi:
10.1007/978-3-642-35700-8_6. (Visited on 12/14/2019).

[11] Timo Kehrer, Christos Tsigkanos, and Carlo Ghezzi. “An EMOF-Compliant Abstract Syntax for
Bigraphs”. In: Electronic Proceedings in Theoretical Computer Science 231 (Dec. 4, 2016), pp. 16–
30. issn: 2075-2180. doi: 10.4204/EPTCS.231.2. arXiv: 1612.01638. (Visited on 11/23/2018).

[12] Rodrigo Machado, Leila Ribeiro, and Reiko Heckel.“Rule-Based Transformation of Graph Rewrit-
ing Rules: Towards Higher-Order Graph Grammars”. In: Theoretical Computer Science 594
(Aug. 23, 2015), pp. 1–23. issn: 0304-3975. doi: 10.1016/j.tcs.2015.01.034. (Visited on
12/04/2019).

[13] Robin Milner. The Space and Motion of Communicating Agents. 1st. New York, NY, USA: Cam-
bridge University Press, 2009. isbn: 978-0-521-73833-0.

[14] Rayene Moudjari, Zaidi Sahnoun, and Faiza Belala. “Towards a Fuzzy Bigraphical Multi Agent
System for Cloud of Clouds Elasticity Management”. In: International Journal of Approximate
Reasoning 102 (Nov. 1, 2018), pp. 86–107. issn: 0888-613X. doi: 10.1016/j.ijar.2018.07.012.
(Visited on 02/04/2019).

[15] Gian Perrone, Søren Debois, and Thomas T. Hildebrandt. “A Model Checker for Bigraphs”. In:
Proceedings of the 27th Annual ACM Symposium on Applied Computing. SAC ’12. New York,
NY, USA: ACM, Mar. 26, 2012, pp. 1320–1325. isbn: 978-1-4503-0857-1. doi: 10.1145/2245276.
2231985. (Visited on 10/01/2018).

[16] J. Alan Robinson and Andrei Voronkov, eds. Handbook of Automated Reasoning. 2-Volume Set
ed. edition. Amsterdam ; New York : Cambridge, Mass: The MIT Press, Sept. 1, 2001. 2150 pp.
isbn: 978-0-262-18223-2.

BDSL v1.0-SNAPSHOT 49

https://doi.org/10.1007/11690634_13
https://doi.org/10.1007/11690634_13
https://doi.org/10.3233/FI-2014-1103
https://doi.org/10.3233/FI-2014-1103
https://doi.org/10.1016/j.scico.2013.08.004
https://doi.org/10.1007/978-3-319-55559-1_2
https://doi.org/10.1007/XXXXX
https://arxiv.org/abs/2002.07448
https://doi.org/10.1007/978-3-642-35700-8_6
https://doi.org/10.4204/EPTCS.231.2
https://arxiv.org/abs/1612.01638
https://doi.org/10.1016/j.tcs.2015.01.034
https://doi.org/10.1016/j.ijar.2018.07.012
https://doi.org/10.1145/2245276.2231985
https://doi.org/10.1145/2245276.2231985

7 Conclusion

[17] Hamza Sahli, Faiza Belala, and Chafia Bouanaka.“Model-Checking Cloud Systems Using BigMC”.
In: CEUR Workshop Proceedings. Vol. 1256. Sept. 29, 2014.

[18] M. Sevegnani et al. “Modelling and Verification of Large-Scale Sensor Network Infrastructures”.
In: 2018 23rd International Conference on Engineering of Complex Computer Systems (ICECCS).
2018 23rd International Conference on Engineering of Complex Computer Systems (ICECCS).
Dec. 2018, pp. 71–81. doi: 10.1109/ICECCS2018.2018.00016.

[19] Michele Sevegnani and Muffy Calder. “BigraphER: Rewriting and Analysis Engine for Bigraphs”.
In: 28th International Conference on Computer Aided Verification. CAV 2016. Ed. by Swarat
Chaudhuri and Azadeh Farzan. Vol. 9780. Toronto, Canada: Springer International Publishing,
July 17, 2016, pp. 494–501. isbn: 978-3-319-41539-0 978-3-319-41540-6. doi: 10.1007/978-3-
319-41540-6_27. (Visited on 08/15/2018).

[20] John Stell et al. “Spatio-Temporal Evolution as Bigraph Dynamics”. In: Spatial Information The-
ory. Ed. by Max Egenhofer et al. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2011, pp. 148–167. isbn: 978-3-642-23196-4.

[21] Markus Voelter. DSL Engineering: Designing, Implementing and Using Domain-Specific Lan-
guages. CreateSpace Independent Publishing Platform, 2013. 558 pp. isbn: 978-1-4812-1858-0.

[22] Lisa A. Walton and Michael Worboys. “A Qualitative Bigraph Model for Indoor Space”. In:
Geographic Information Science. Ed. by Ningchuan Xiao et al. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 226–240. isbn: 978-3-642-33024-7.

[23] Manuel Wimmer et al. “A Comparison of Rule Inheritance in Model-to-Model Transformation
Languages”. In: Theory and Practice of Model Transformations. Ed. by Jordi Cabot and Eelco
Visser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 31–46. isbn:
978-3-642-21732-6.

[24] Lars Wunderlich. Java Rules Engines: Entwicklung von regelbasierten Systemen. Frankfurt am
Main: Entwickler.press, 2006. isbn: 978-3-935042-75-8.

[25] Zhenchang Xing et al. “Differencing Labeled Transition Systems”. In: Formal Methods and Soft-
ware Engineering. Ed. by Shengchao Qin and Zongyan Qiu. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2011, pp. 537–552. isbn: 978-3-642-24559-6. doi: 10.1007/978-3-
642-24559-6_36.

BDSL v1.0-SNAPSHOT 50

https://doi.org/10.1109/ICECCS2018.2018.00016
https://doi.org/10.1007/978-3-319-41540-6_27
https://doi.org/10.1007/978-3-319-41540-6_27
https://doi.org/10.1007/978-3-642-24559-6_36
https://doi.org/10.1007/978-3-642-24559-6_36

B BDSL Sample Programs

Appendix

A Configuration File for the BDSL Interpreter

Listing 35: A complete configuration file with all available configurable properties. Refer to Sec-
tions 2.1.1 and 2.3.2.

1 # BDSL - General

2 disableBanner=true # any value to disable the banner

3 main=main.bdsl # one filename

4 include=lib.bdsl ,lib2.bdsl ,lib3.bdsl # list of filenames

5 includeUdf=udf1.jar ,../ udf2.jar ,config/udf3.jar # list of filenames

6 outputDir =./ states/ # folder

7

8 # Model checking properties

9 model -checking.transitionOptions.maximumTransitions =1309 # Long value

10 model -checking.transitionOptions.maximumTime =1000 # Long value (

milliseconds)

11 model -checking.exportOptions.printCanonicalStateLabel=false # "true"

for simple labels for the transition system file below

12 model -checking.exportOptions.reactionGraphFile =./ transitionSystem.png

13 model -checking.exportOptions.outputStatesFolder =./ states/

14 model -checking.measure -time=false # for debugging

15

16 # Model properties

17 ns-uri=org.example

18 ns-prefix=sample

19 name=bigraph

20 encoding=UTF -8

21 schemaLocation =./ metamodel.ecore # filename to the Ecore file

B BDSL Sample Programs

BDSL program examples that were abbreviated and mentioned in this
manual are printed here in full length.

Listing 36: Source code of test_bdsl_01.bdsl.

1 // encoding: UTF -8

2 // ns-uri: http ://www.example.org

3 // ns-prefix: sample

4 // name: F

5 // schemaLocation: test -1. ecore

6

7 signature Sig1 {

8 atomic ctrl a arity 1

9 atomic ctrl b arity 1

10 }

11

12 main = {

13 println("Printing bigraph variable as Ecore model ...")

14 println($bigVar)

BDSL v1.0-SNAPSHOT 51

B BDSL Sample Programs

15 brs example = {

16 agents = [$bigVar],

17 rules = [$testReact1],

18 preds = [$pred1]

19 }

20 println("Translating BRS to BigMC ...")

21 export($example , as=bigmc)

22 }

23

24 val bigVar(Sig1) = {a | b | b}

25 react testReact1(Sig1) = {$bigVar}, {a | b}

26 pred pred1(Sig1):iso = {a}

Listing 37: Source code of bdsl_operators_01.bdsl. Refer to Sections 3.4.4 and 3.4.5.

1 signature Sig1 {

2 active ctrl a arity 1

3 passive ctrl b arity 1

4 atomic ctrl c arity 1

5 }

6

7 // output all bigraphs defined below to the console

8 main = {

9 println($big1)

10 println($big2)

11 println($big3)

12 println($bigSubst1)

13 }

14

15 // creates three idle names "x", "y" and "z"

16 val big1(Sig1) = {

17 closure("x", "y", "z")

18 }

19

20 // closes the outer name and transforming it to an idle name , and

removes the site of node a

21 val big2(Sig1): Sig1.a = {

22 closure("x") * (a["x"] - barren ())

23 }

24

25 // creates for idle names "a", "x", "y", and "z"

26 val big3(Sig1) = {

27 closure("x") | clsre("z") | closure("y", "a") | clsre("z") | /("x")

28 }

29

30 // connects the outer name "a" with the two inner names "x" and "y"

31 val bigSubst1(Sig1) = {

32 subst("a", ["x", "y"])

33 }

BDSL v1.0-SNAPSHOT 52

B BDSL Sample Programs

Listing 38: Source code of bdsl_operators_02.bdsl. Refer to Sections 3.4.4 and 3.4.5.

1 signature Sig1 {

2 active ctrl a arity 1

3 passive ctrl b arity 1

4 }

5

6 main = {

7 println($big1)

8 println($big2)

9 }

10

11 val big1(Sig1) = {

12 a | id(1) | b | id(2)

13 }

14

15 val big2(Sig1): Sig1.a = {

16 a || id(1) || b || id(2)

17 }

Listing 39: Source code of bigraph_innerVars_01.bdsl. Refer to Section 3.4.3.

1 signature Sig1 {

2 active ctrl a arity 1

3 passive ctrl b arity 1

4 atomic ctrl c arity 1

5 }

6

7 main = {

8 println($big1)

9 println($big2)

10 }

11

12 val big1(Sig1) = {

13 val ex1:a = {

14 a - b

15 a - a

16 }

17 val ex2:a = {

18 val foo:a = {

19 }

20 }

21 val ex3:a = { $ex2 }

22 }

23

24 val big2(Sig1): a = {

25 val ex1:a = {

26 a - b

27 a - a

28 }

29 val ex2:b = { }

30 val ex3:c = { }

BDSL v1.0-SNAPSHOT 53

B BDSL Sample Programs

31 }

Listing 40: Source code of bdsl-pathfinding.bdsl. Refer to Section 5.3.

1 signature SigMap {

2 Car: 1 // control status is "active" by default

3 atomic Fuel: 0

4 Place: 1

5 Road: 1

6 atomic Target: 1

7 }

8

9 main = {

10 brs findPath(SigMap) = {

11 agents = [$map],

12 rules = [$moveCar],

13 preds = [$targetReached]

14 }

15 execute($findPath)

16 }

17

18 val car(SigMap) = {

19 Car["target"] - (Fuel | Fuel | Fuel | Fuel | Fuel | Fuel | Fuel |

Fuel)

20 }

21

22 val map(SigMap) = {

23 Place["p0"] - ($car | Road["p3"] - brn() | Road["p1"] - brn()) |

24 Place["p7"] - (Target["target"] | Road["p2"] - brn()) |

25 Place["p3"] - (Road["p7"] - brn() | Road["p4"] - brn()) |

26 Place["p1"] - (Road["p2"] - brn() | Road["p4"] - brn()) |

27 Place["p4"] - (Road["p1"] - brn() | Road["p5"] - brn()) |

28 Place["p2"] - (Road["p5"] - brn())

29 }

30

31 react moveCar(SigMap) = {

32 Place["fromD"] - id(1) | Place["fromS"] - (Road["fromD"] - brn() | (

Car["target"] - (id(1) | Fuel)) | id(1))

33 }, {

34 (Place["fromD"] - (id(1) | Car["target"] - id(1))) | (Place["fromS"]

- (id(1) | Road["fromD"] - brn()))

35 }

36

37 pred targetReached(SigMap):partial = {

38 Place["from"] - (id(1) | Target["target"] | Car["target"])

39 }

BDSL v1.0-SNAPSHOT 54

C Using the BDSL Interpreter Programmatically

C Using the BDSL Interpreter Programmatically

The next listings are referring to the example presented in Section 6.2.
The complete project is also available from https://git-st.inf.tu-

dresden.de/bigraphs/examples/bigraph-test-examples/-/tree/

master/bdsl-interpreter-example.

Listing 41: Main BDSL program called example-01.bdsl that is executed by the Java program shown
in Listing 42.

1 signature Sig1 {

2 atomic ctrl A arity 1

3 atomic ctrl B arity 2

4 atomic ctrl C arity 3

5 atomic ctrl D arity 4

6 }

7

8 main = {

9 println("<BDSL Program > \t Loading bigraph instance model now ..."

)

10 val bigvar(Sig1) = load(sig=Sig1 , as=xmi , resourcePath="file :./ dump/

random -bigraph.xmi")

11 println("<BDSL Program > \t Printing bigraph instance model now ...")

12 println($bigvar)

13 }

Listing 42: The complete Java program is printed here showing how to implement the interpreter in
order to run the script shown in Listing 41 .

1 package de.tudresden.inf.st.bigraphs.examples.interpreter;

2

3 import de.tudresden.inf.st.bigraphs.core.BigraphArtifacts;

4 import de.tudresden.inf.st.bigraphs.core.impl.DefaultDynamicSignature;

5 import de.tudresden.inf.st.bigraphs.core.impl.pure.PureBigraph;

6 import de.tudresden.inf.st.bigraphs.dsl.cli.CliExecutor;

7 import de.tudresden.inf.st.bigraphs.dsl.cli.CliFactory;

8 import de.tudresden.inf.st.bigraphs.dsl.cli.CliOptionProcessor;

9 import de.tudresden.inf.st.bigraphs.dsl.cli.configuration.

BDSLExecutionProperties;

10 import de.tudresden.inf.st.bigraphs.dsl.cli.configuration.v1.

BatchConfigurationV1;

11 import de.tudresden.inf.st.bigraphs.simulation.modelchecking.

ModelCheckingOptions;

12 import org.apache.commons.cli.CommandLineParser;

13 import org.springframework.beans.factory.annotation.Autowired;

14 import org.springframework.beans.factory.annotation.Qualifier;

15 import org.springframework.boot.CommandLineRunner;

16 import org.springframework.boot.SpringApplication;

17 import org.springframework.boot.autoconfigure.SpringBootApplication;

18 import org.springframework.boot.autoconfigure.jdbc.

DataSourceAutoConfiguration;

19 import org.springframework.context.annotation.Import;

20

BDSL v1.0-SNAPSHOT 55

https://git-st.inf.tu-dresden.de/bigraphs/examples/bigraph-test-examples/-/tree/master/bdsl-interpreter-example
https://git-st.inf.tu-dresden.de/bigraphs/examples/bigraph-test-examples/-/tree/master/bdsl-interpreter-example
https://git-st.inf.tu-dresden.de/bigraphs/examples/bigraph-test-examples/-/tree/master/bdsl-interpreter-example

C Using the BDSL Interpreter Programmatically

21 import java.io.File;

22 import java.io.FileOutputStream;

23 import java.io.IOException;

24 import java.io.InputStream;

25 import java.net.URL;

26 import java.nio.file.Files;

27 import java.nio.file.Paths;

28 import java.nio.file.StandardCopyOption;

29 import java.util.LinkedList;

30 import java.util.List;

31 import java.util.Objects;

32

33 import static de.tudresden.inf.st.bigraphs.core.factory.BigraphFactory

.pureRandomBuilder;

34 import static de.tudresden.inf.st.bigraphs.core.factory.BigraphFactory

.pureSignatureBuilder;

35

36 /**

37 * @author Dominik Grzelak

38 */

39 @SpringBootApplication(// Basic Spring annotations

40 scanBasePackageClasses = {ModelCheckingOptions.class ,

BDSLExecutionProperties.class},

41 exclude = {DataSourceAutoConfiguration.class}

42)

43 @Import(BatchConfigurationV1.class) // necessary configuration for the

interpreter

44 public class Main implements CommandLineRunner {

45 @Autowired

46 @Qualifier("cliFactory")

47 CliFactory cliFactory;

48

49 public static String dumpDir = "./dump/";

50 public static File dumpFolder = new File(dumpDir);

51

52 public static void main(String [] args) {

53 // Some preparation

54 String mainFile = "--main=" + getMainBDSLProgramPath("example

-01. bdsl");

55 if (dumpFolder.mkdirs ()) {

56 System.out.println("Output directory created: " +

dumpFolder.getAbsolutePath ());

57 } else {

58 System.out.println("Output directory is: " + dumpFolder.

getAbsolutePath ());

59 }

60

61 SpringApplication app = new SpringApplication(Main.class);

62 // The argument for the main program is configured directly

here

63 List <String > argsNew = new LinkedList <>();

64 argsNew.add(mainFile);

65 app.run(argsNew.toArray(new String [0])); // and passed to the

actual interpreter

BDSL v1.0-SNAPSHOT 56

C Using the BDSL Interpreter Programmatically

66 }

67

68 // This methods defines the core logic on how to call the BDSL

interpreter

69 public void run(String ... args) throws Exception {

70 CliExecutor cliExecutor = cliFactory.createCliExecutor ();

71 CommandLineParser commandLineParser = cliFactory.

getCommandLineParser ();

72 CliOptionProcessor cliProcessor = cliFactory.

createCliOptionProcessor ();

73 DefaultDynamicSignature exampleSignature = createSignature ();

74 for (int i = 0; i < 5; i++) {

75 // A random bigraph is created

76 PureBigraph generated = pureRandomBuilder(exampleSignature

).generate(1, 6, 0.f);

77 // The instance and metamodel of the generated bigraph are

saved on the filesystem

78 BigraphArtifacts.exportAsMetaModel(generated , dumpFolder.

toPath ());

79 BigraphArtifacts.exportAsInstanceModel(generated ,

80 new FileOutputStream(

81 Paths.get(

82 dumpFolder.getAbsolutePath (),

83 "random -bigraph.xmi"

84).toString ()

85));

86 // Command -line arguments are parsed ...

87 cliProcessor.process(commandLineParser , args);

88 // This statement actually calls the interpreter

89 cliExecutor.execute(cliProcessor.getProcessorResult ());

90 }

91 }

92

93 /**

94 * Helper method to resolve the real path of the BDSL program

located in the resource directory of this project.

95 *

96 * @param programFilename the absolute path of the BDSL program to

resolve

97 * @return the absolute path of the given BDSL program

98 */

99 private static String getMainBDSLProgramPath(String

programFilename) {

100 URL resource = Main.class.getClassLoader ().getResource(

programFilename);

101 String mainBdslProgram = "src/main/resources/" +

programFilename;

102 try {

103 File tempFile = File.createTempFile("bdsl -interpreter -

example_", ".bdsl");

104 InputStream inputStream = Objects.requireNonNull(resource)

.openStream ();

105 Files.copy(inputStream , tempFile.toPath (),

StandardCopyOption.REPLACE_EXISTING);

BDSL v1.0-SNAPSHOT 57

C Using the BDSL Interpreter Programmatically

106 mainBdslProgram = tempFile.getAbsolutePath ();

107 return mainBdslProgram;

108 } catch (IOException e) {

109 e.printStackTrace ();

110 return mainBdslProgram;

111 }

112 }

113

114 /**

115 * Must resemble the same signature as specified in the BDSL

program

116 */

117 private DefaultDynamicSignature createSignature () {

118 return pureSignatureBuilder ()

119 .newControl("A", 1).assign ()

120 .newControl("B", 2).assign ()

121 .newControl("C", 3).assign ()

122 .newControl("D", 4).assign ()

123 .create ();

124 }

125 }

Listing 43: Build configuration details of the pom.xml for the Maven-based Java program shown in
Listing 42.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <project xmlns="http: //maven.apache.org/POM /4.0.0"

3 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

4 xsi:schemaLocation="http://maven.apache.org/POM /4.0.0 http://

maven.apache.org/xsd/maven -4.0.0. xsd">

5 <modelVersion >4.0.0</modelVersion >

6 <groupId >de.tudresden.inf.st.bigraphs.examples.interpreter </

groupId >

7 <artifactId >bdsl -interpreter -example </artifactId >

8 <name>bdsl -interpreter -example </name>

9 <version >1.0- SNAPSHOT </version >

10

11 <properties >

12 <java.version >11</java.version >

13 <maven.compiler.source >${java.version}</maven.compiler.source >

14 <maven.compiler.target >${java.version}</maven.compiler.target >

15 <!-- BDSL -->

16 <bdsl.interpreter.version >1.0.0- SNAPSHOT </bdsl.interpreter.

version >

17 </properties >

18

19 <repositories >

20 <repository >

21 <snapshots >

22 <enabled >true</enabled >

23 </snapshots >

24 <id>STFactory </id>

BDSL v1.0-SNAPSHOT 58

C Using the BDSL Interpreter Programmatically

25 <name>st-tu-dresden -artifactory </name>

26 <url>https: // stgroup.jfrog.io/artifactory/st-tu -dresden -

maven -repository/</url>

27 </repository >

28 <repository >

29 <id>sonatype -snapshots </id>

30 <url>https: //oss.sonatype.org/content/repositories/

snapshots </url>

31 </repository >

32 </repositories >

33

34 <dependencies >

35 <dependency >

36 <groupId >de.tudresden.inf.st.bigraphs.dsl.interpreter </

groupId >

37 <artifactId >bdsl -interpreter -cli</artifactId >

38 <version >${bdsl.interpreter.version}</version >

39 </dependency >

40 </dependencies >

41

42 <build>

43 <plugins >

44 <plugin >

45 <groupId >org.springframework.boot</groupId >

46 <artifactId >spring -boot -maven -plugin </artifactId >

47 <version >2.5.1</version >

48 <executions >

49 <execution >

50 <goals>

51 <goal>repackage </goal>

52 </goals>

53 </execution >

54 </executions >

55 </plugin >

56 </plugins >

57 </build>

58 </project >

BDSL v1.0-SNAPSHOT 59

	Introduction
	Bigraphical Reactive Systems and Programming
	Installation
	How to write and run BDSL programs?
	Further Help
	Remarks

	General Usage of the BDSL Interpreter Tool
	The CLI Interpreter of BDSL
	Supplying a BDSL Program to the Interpreter
	Externalized Configuration

	BDSL Program Structure
	Elements of a BDSL program
	Main Block
	Scoping, Namespaces and Imports
	Classes and Variables
	Event Listeners/Callbacks

	Predefined Methods in BDSL
	Printing to the Console
	Loading Bigraphs
	Synthesizing Random Bigraphs
	Exporting Bigraph Variables
	Executing BRSs

	Examples
	Basic Mathematical Calculations the Bigraphical Way
	Importing External Libraries
	Pathfinding: Naive Blind Search
	Mutual Exclusion Problem

	Advanced Topics
	User-defined Functions
	Using the Interpreter Programmatically
	IDE Support

	Conclusion
	Future Work

	References
	Appendix
	Configuration File for the BDSL Interpreter
	BDSL Sample Programs
	Using the BDSL Interpreter Programmatically

